
Oracle Text

Application Developer’s Guide

Release 9.2

March 2002

Part No. A96517-01

Oracle Text Application Developer’s Guide, Release 9.2

Part No. A96517-01

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.

Primary Author: Colin McGregor

Contributors: Omar Alonso, Shamim Alpha, Steve Buxton, Chung-Ho Chen, Yun Cheng, Michele Cyran,
Paul Dixon, Mohammad Faisal, Elena Huang, Garrett Kaminaga, V. Jegrag, Ji Sun Kang, Bryn Llewellyn,
Wesley Lin, Yasuhiro Matsuda, Gerda Shank, and Steve Yang.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and ConText, Gist, Oracle Store, Oracle8, Oracle8i, Oracle9i, PL/SQL,
SQL*Net, and SQL*Plus are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface .. xiii

1 Introduction to Oracle Text

What is Oracle Text? ... 1-2
Types of Query Applications.. 1-2
Supported Document Formats ... 1-3
Theme Capabilities ... 1-3
Query Language and Operators... 1-4
Document Services and Using a Thesaurus ... 1-4
Prerequisites For Building Your Query Application... 1-4

Introduction to Loading Your Text Table ... 1-6
Storing Text in the Text Table ... 1-8
Storing File Path Names .. 1-8
Storing URLs ... 1-8
Storing Associated Document Information .. 1-8
Supported Column Types ... 1-9
Supported Document Formats ... 1-9
Loading Methods.. 1-9

Indexing Your Documents .. 1-11
Type of Index .. 1-11
When to Create a CONTEXT Index ... 1-12
When to Create a CTXCAT Index .. 1-14
When to Create a CTXRULE Index.. 1-14
iii

Index Maintenance ... 1-14
Simple Text Query Application.. 1-16
Understanding How to Query Your Index ... 1-18

Understanding How to Query with CONTAINS .. 1-18
Understanding Structured Field Searching .. 1-19
Thesaural Queries ... 1-20
Document Section Searching... 1-20
Other Query Features... 1-20

Presenting the Hit List ... 1-23
Hitlist Example.. 1-23
Presenting Structured Fields ... 1-25
Ordering the Hit List .. 1-25
Presenting Document Hit Count .. 1-25

Document Presentation and Highlighting... 1-26
Highlighting Example.. 1-27
Document List of Themes Example ... 1-28
Gist Example.. 1-29

2 Indexing

About Oracle Text Indexes .. 2-2
Structure of the Oracle Text CONTEXT Index ... 2-2
The Oracle Text Indexing Process .. 2-3
Partitioned Tables and Indexes... 2-5
Creating an Index Online .. 2-6
Parallel Indexing ... 2-6
Limitations for Indexing .. 2-7

Considerations For Indexing .. 2-8
Type of Index... 2-9
Location of Text... 2-12
Document Formats and Filtering ... 2-13
Bypassing Rows for Indexing ... 2-13
Document Character Set .. 2-14
Document Language .. 2-14
Indexing Special Characters .. 2-15
Case-Sensitive Indexing and Querying ... 2-16
iv

Language Specific Features... 2-16
Fuzzy Matching and Stemming ... 2-18
Better Wildcard Query Performance ... 2-19
Document Section Searching .. 2-19
Stopwords and Stopthemes .. 2-19
Index Performance ... 2-20
Query Performance and Storage of LOB Columns ... 2-20

Index Creation ... 2-21
Procedure for Creating a CONTEXT Index .. 2-21
Creating Preferences .. 2-22
Creating Section Groups for Section Searching ... 2-26
Using Stopwords and Stoplists... 2-26
Creating an Index ... 2-28
Creating a CONTEXT Index ... 2-28
Creating a CTXCAT Index .. 2-30
Creating a CTXRULE Index .. 2-33

Index Maintenance ... 2-36
Viewing Index Errors ... 2-36
Dropping an Index ... 2-36
Resuming Failed Index .. 2-37
Rebuilding an Index ... 2-37
Dropping a Preference ... 2-37

Managing DML Operations for a CONTEXT Index.. 2-39
Viewing Pending DML.. 2-39
Synchronizing the Index.. 2-39
Index Optimization .. 2-40

3 Querying

Overview of Queries .. 3-2
Querying with CONTAINS .. 3-2
Querying with CATSEARCH ... 3-4
Querying with MATCHES.. 3-5
Word and Phrase Queries ... 3-7
ABOUT Queries and Themes ... 3-8
Query Expressions.. 3-9
v

Case-Sensitive Searching ... 3-10
Query Feedback .. 3-11
Query Explain Plan... 3-11

The CONTEXT Grammar .. 3-13
ABOUT Query .. 3-13
Logical Operators.. 3-13
Section Searching .. 3-15
Proximity Queries with NEAR Operator .. 3-15
Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators............................ 3-15
Using CTXCAT Grammar ... 3-15
Stored Query Expressions ... 3-16
Calling PL/SQL Functions in CONTAINS... 3-17

The CTXCAT Grammar ... 3-18
Using CONTEXT Grammar with CATSEARCH ... 3-18

Optimizing for Response Time .. 3-19
Other Factors that Influence Query Response Time.. 3-19

Counting Hits .. 3-20
SQL Count Hits Example... 3-20
Counting Hits with a Structured Predicate... 3-20
PL/SQL Count Hits Example ... 3-20

4 Document Presentation

Highlighting Query Terms .. 4-2
Text highlighting... 4-2
Theme Highlighting ... 4-2
CTX_DOC Highlighting Procedures ... 4-2

Obtaining List of Themes, Gists, and Theme Summaries.. 4-4
List of Themes ... 4-4
Gist and Theme Summary... 4-5

5 Performance Tuning

Optimizing Queries with Statistics ... 5-2
Collecting Statistics... 5-2
Re-Collecting Statistics... 5-4
Deleting Statistics.. 5-4
vi

Optimizing Queries for Response Time .. 5-5
Other Factors that Influence Query Response Time ... 5-5
Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries.......................... 5-5
Improved Response Time using Local Partitioned CONTEXT Index.................................. 5-7
Improved Response Time with Local Partitioned Index for Order by Score 5-8

 Optimizing Queries for Throughput ... 5-10
CHOOSE and ALL ROWS Modes ... 5-10
FIRST_ROWS Mode ... 5-10

Parallel Queries ... 5-11
Tuning Queries with Blocking Operations ... 5-12
Frequently Asked Questions a About Query Performance.. 5-13

What is Query Performance? ... 5-13
What is the fastest type of text query?... 5-13
Should I collect statistics on my tables? .. 5-13
How does the size of my data affect queries? .. 5-13
How does the format of my data affect queries? ... 5-14
What is a functional versus an indexed lookup? .. 5-14
What tables are involved in queries?... 5-14
Does sorting the results slow a text-only query? ... 5-15
How do I make a ORDER BY score query faster? ... 5-15
Which Memory Settings Affect Querying?... 5-16
Does out of line LOB storage of wide base table columns improve performance? 5-16
How can I make a CONTAINS query on more than one column faster? 5-16
Is it OK to have many expansions in a query? ... 5-17
How can local partition indexes help? .. 5-18
Should I query in parallel? .. 5-18
Should I index themes?.. 5-19
When should I use a CTXCAT index?... 5-19
When is a CTXCAT index NOT suitable?... 5-19
What optimizer hints are available, and what do they do? ... 5-20

Frequently Asked Questions About Indexing Performance.. 5-21
How long should indexing take? ... 5-21
Which index memory settings should I use?.. 5-21
How much disk overhead will indexing require? ... 5-22
How does the format of my data affect indexing? .. 5-22
vii

Can I index in parallel? .. 5-23
How do I create a local partitioned index in parallel? .. 5-23
How can I tell how far my indexing has got?... 5-24

Frequently Asked Questions About Updating the Index ... 5-25
How often should I index new or updated records?... 5-25
How can I tell when my indexes are getting fragmented? ... 5-25
Does memory allocation affect index synchronization? ... 5-25

6 Document Section Searching

About Document Section Searching ... 6-2
Enabling Section Searching ... 6-2
Section Types... 6-5

HTML Section Searching .. 6-10
Creating HTML Sections ... 6-10
Searching HTML Meta Tags.. 6-10

XML Section Searching.. 6-12
Automatic Sectioning ... 6-12
Attribute Searching... 6-12
Creating Document Type Sensitive Sections .. 6-13
Path Section Searching ... 6-14

7 Working With a Thesaurus

Overview of Thesauri... 7-2
Thesaurus Creation and Maintenance... 7-2
Case-sensitive Thesauri.. 7-3
Case-insensitive Thesauri .. 7-3
Default Thesaurus... 7-4
Supplied Thesaurus.. 7-4

Defining Thesaural Terms ... 7-6
Defining Synonyms .. 7-6
Defining Hierarchical Relations.. 7-6

Using a Thesaurus in a Query Application ... 7-8
Loading a Custom Thesaurus and Issuing Thesaural Queries .. 7-8
Augmenting Knowledge Base with Custom Thesaurus... 7-9

About the Supplied Knowledge Base... 7-12
viii

Adding a Language-Specific Knowledge Base .. 7-13

8 Administration

Oracle Text Users and Roles ... 8-2
CTXSYS User ... 8-2
CTXAPP Role .. 8-2
Granting Roles and Privileges to Users... 8-2

DML Queue ... 8-3
The CTX_OUTPUT Package... 8-4
Servers... 8-5
Administration Tool ... 8-6

A CONTEXT Query Application

Web Query Application Overview .. A-2
The PSP Web Application ... A-2

Web Application Prerequisites ... A-3
Building the Web Application .. A-3
PSP Sample Code.. A-5
loader.ctl... A-6
loader.dat ... A-7
search_htmlservices.sql ... A-8
search_html.psp .. A-10

The JSP Web Application .. A-13
Web Application Prerequisites ... A-13
JSP Sample Code: search_html.jsp ... A-13

B CATSEARCH Query Application

CATSEARCH Web Query Application Overview ... B-2
The JSP Web Application .. B-2

Building the JSP Web Application ... B-2
JSP Sample Code... B-5
loader.ctl... B-5
loader.dat ... B-6
ix

 catalogSearch.jsp.. B-7

Index
x

Send Us Your Comments

Oracle Text Application Developer’s Guide, Release 9.2

Part No. A96517-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

This guide explains how to build query applications with Oracle Text. This preface

contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xiii

Audience
Oracle Text Application Developer’s Guide is intended for users who perform the

following tasks:

■ Develop Oracle Text applications

■ Administer Oracle Text installations

To use this document, you need to have experience with the Oracle object relational

database management system, SQL, SQL*Plus, and PL/SQL.

Organization
This document contains:

Chapter 1, "Introduction to Oracle Text"
This chapter introduces the basic features of Oracle Text. It also explains how to

build a basic query application by using Oracle Text.

Chapter 2, "Indexing"
This chapter describes how to index your document set. It discusses considerations

for indexing as well as how to create CONTEXT, CTXCAT, and CTXRULE indexes.

Chapter 3, "Querying"
This chapter describes how to query your document set. It gives examples for how

to use the CONTAINS, CATSEARCH, and MATCHES operators.

Chapter 4, "Document Presentation"
This chapter describes how to present documents to the user of your query

application.

Chapter 5, "Performance Tuning"
This chapter describes how to tune your queries to improve response time and

throughput.

Chapter 6, "Document Section Searching"
This chapter describes how to enable section searching in HTML and XML.
xiv

Chapter 7, "Working With a Thesaurus"
This chapter describes how to work with a thesaurus in your application. It also

describes how to augment your knowledge base with a thesaurus.

Chapter 8, "Administration"
This chapter describes Oracle Text administration.

Appendix A, "CONTEXT Query Application"
This appendix describes an Oracle Text CONTEXT example web application.

Appendix B, "CATSEARCH Query Application"
This appendix describes an Oracle Text CATSEARCH example web application.

Related Documentation
For more information about Oracle Text, refer to:

■ Oracle Text Reference

For more information about Oracle9i, refer to:

■ Oracle9i Database Concepts

■ Oracle9i Database Administrator’s Guide

■ Oracle9i Database Utilities

■ Oracle9i Database Performance Guide and Reference

■ Oracle9i SQL Reference

■ Oracle9i Database Reference

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Application Developer’s Guide - XML

For more information about PL/SQL, refer to:

■ PL/SQL User’s Guide and Reference

You can obtain Oracle Text technical information, collateral, code samples, training

slides and other material at:

http://otn.oracle.com/products/text/
xv

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of the

this documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.
xvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

The C datatypes such as ub4, sword, or
OCINumber are valid.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates query terms, book
titles, emphasis, syntax clauses, or
placeholders.

Oracle9i Database Concepts

You can specify the parallel_clause.

Run Uold_release .SQL where old_release
refers to the release you installed prior to
upgrading.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database using the BACKUP
command.

Query the TABLE_NAME column in the USER_
TABLES table in the data dictionary view.

Specify the ROLLBACK_SEGMENTS parameter.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.
xvii

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , col n FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as it is shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates variables for
which you must supply particular values.

CONNECT SYSTEM/system_password

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr
xviii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.
xix

xx

Introduction to Oracl
1

Introduction to Oracle Text

This chapter introduces the main features of Oracle Text. It helps you to get started

with indexing, querying, and document presentation.

The following topics are covered:

■ What is Oracle Text?

■ Introduction to Loading Your Text Table

■ Indexing Your Documents

■ Simple Text Query Application

■ Understanding How to Query Your Index

■ Presenting the Hit List

■ Document Presentation and Highlighting
e Text 1-1

What is Oracle Text?
What is Oracle Text?
Oracle Text is a tool that enables you to build text query applications and document

classification applications. Oracle Text provides indexing, word and theme

searching, and viewing capabilities for text.

Types of Query Applications
You can build two types of applications with Oracle Text, discussed in the following

sections:

■ Text Query Application

■ Document Classification Application

Text Query Applications
The purpose of a text query application is to enable users to find text that contains

one or more search terms. The text is usually a collection of documents. A good

application can index and search common document formats such as plain text,

HTML, XML, or Microsoft Word. For example, an application with a browser

interface might enable users to query a company Web site consisting of HTML files,

returning those files that match a query.

To build a text query application, you create either a CONTEXTor CTXCATindex and

query the index with CONTAINS or CATSEARCH operators respectively.

Document Classification Applications
A document classification application is one that classifies an incoming stream of

documents based on its content. They are also known as document routing or

filtering applications. For example, an online news agency might need to classify its

incoming stream of articles as they arrive into categories such as politics, crime, and

sports.

Oracle Text enables you to build these applications with the CTXRULE index. This

index indexes the rules (queries) that define each class. When documents arrive, the

MATCHES operator can be used to match each document with the rules that select it.

You can use the CTX_CLS.TRAIN procedure to generate rules on a document set.

You can then create a CTXRULE index using the output from this procedure.

See Also: "Indexing Your Documents" in this chapter for more

information about these indexes.
1-2 Oracle Text Application Developer’s Guide

What is Oracle Text?
Supported Document Formats
For text query applications, Oracle Text supports most document formats for

indexing and querying, including plain text, HTML and formatted documents such

as Microsoft Word.

For document classification application, Oracle Text supports classifying plain text,

HTML, and XML documents.

Theme Capabilities
With Oracle Text, you can search on document themes if your language is English

and French. To do so, you use the ABOUT operator in a CONTAINS query. For

example, you can search for all documents that are about the concept politics.

Documents returned might be about elections, governments, or foreign policy. The

documents need not contain the word politics to score hits.

Theme information is derived from the supplied knowledge base, which is a

hierarchical listing of categories and concepts. As the supplied knowledge base is a

general view of the world, you can add to it new industry-specific concepts. With

an augmented knowledge base, the system can process document themes more

intelligently and so improve the accuracy of your theme searching.

With the supplied PL/SQL packages, you can also obtain document themes

programatically.

Themes in Other Languages
You can enable theme capabilities such as ABOUTqueries in other languages besides

English and French by loading a language-specific knowledge base.

See Also: Oracle Text Reference for more information on CTX_

CLS.TRAIN.

Note: Oracle Text supports document classification for only plain

text, HTML, and XML documents.

See Also: Oracle Text Reference to learn more about the ABOUT
operator.
Introduction to Oracle Text 1-3

What is Oracle Text?
Query Language and Operators
To query, you use the SQL SELECT statement. Depending on your index, you can

query text with either the CONTAINS operator, which is used with the CONTEXT
index, or the CATSEARCH operator, which is used with the CTXCAT index.

You use these in the WHERE clause of the SELECT statement. For example, to search

for all documents that contain the word oracle, you use CONTAINS as follows:

SELECT SCORE(1) title FROM news WHERE CONTAINS(text, ’oracle’, 1) > 0;

To classify single documents, use the MATCHES operator with a CTXRULE index.

For text querying with the CONTAINS operator, Oracle Text provides a rich query

language with operators that enable you to issue variety of queries including simple

word queries, ABOUT operator queries, logical queries, and wildcard and thesaural

expansion queries.

The CATSEARCH operator also supports some of the operations available with

CONTAINS.

Document Services and Using a Thesaurus
You can use the supplied Oracle Text PL/SQL packages for advanced features such

as document presentation and thesaurus maintenance. Document presentation is

how your application presents to the user documents in a query result set. You can

maintain a thesaurus to expand queries and enhance your application.

Prerequisites For Building Your Query Application
To build an Oracle Text query application, you must have the following:

■ a populated text table

■ an Oracle Text index

See Also: Adding a Language-Specific Knowledge Base in

Chapter 7, "Working With a Thesaurus".

See Also: Chapter 3, "Querying"

See Also:

■ Chapter 7, "Working With a Thesaurus"

■ Chapter 4, "Document Presentation"
1-4 Oracle Text Application Developer’s Guide

What is Oracle Text?
The following sections describe these prerequisites and also describe the main

features of a generic text query application.
Introduction to Oracle Text 1-5

Introduction to Loading Your Text Table
Introduction to Loading Your Text Table
The basic prerequisite for an Oracle Text query application is to have a populated

text table. The text table is where you store information about your document

collection and is required for indexing.

You can populate rows in your text table with one of the following elements:

■ text information (can be documents or text fragments)

■ path names of documents in your file system

■ URLs that specify World Wide Web documents

Figure 1–1, "Different Ways of Storing Text" illustrates these different methods.
1-6 Oracle Text Application Developer’s Guide

Introduction to Loading Your Text Table
Figure 1–1 Different Ways of Storing Text

By default, the indexing operation expects your document text to be directly loaded

in your text table, which is the first method above.

Text Table
author date text

Text Table
author date text

File 1 /my_path/my_system/doc1.doc

File 2 /my_path/my_system/doc2.doc

Document 1

Document 2

Document Collection

Document Stored In
Text Table

Text Column Stores
File Paths

Text Table
author date text

URL 1 http://www.mysite.com/mydoc1.html

URL 2 http://www.mysite.com/mydoc1.html
Text Column
Stores URLs
Introduction to Oracle Text 1-7

Introduction to Loading Your Text Table
However, you can specify the other ways of identifying your documents such as

with filenames or with URLs by using the corresponding data storage indexing

preference.

Storing Text in the Text Table
You can store documents in your text table in different ways.

You can store documents in one column using the DIRECT_DATASTORE data

storage type or over a number of columns using the MULTI_COLUMN_DATASTORE
type. When your text is stored over a number of columns, Oracle concatenates the

columns into a virtual document for indexing.

You can also create master-detail relationships for your documents, where one

document can be stored across a number of rows. To create master-detail index, use

the DETAIL_DATASTORE data storage type.

In your text table, you can also store short text fragments such as names,

descriptions, and addresses over a number of columns and create a CTXCAT index.

A CTXCAT index improves performance for mixed queries.

You can also store your text in a nested table using the NESTED_DATASTORE type.

Oracle Text supports the indexing of the XMLType datatype which you use to store

XML documents.

Storing File Path Names
In your text table, you can store path names to files stored in your file system. When

you do so, use the FILE_DATASTORE preference type during indexing.

Storing URLs
You can store URL names to index web-sites. When you do so, use the URL_
DATASTORE preference type during indexing.

Storing Associated Document Information
In your text table, you can create additional columns to store structured information

that your query application might need, such as primary key, date, description, or

author.
1-8 Oracle Text Application Developer’s Guide

Introduction to Loading Your Text Table
Format and Character Set Columns
If your documents are of mixed formats or of mixed character sets, you can create

the following additional columns:

■ Format column to record format (TEXT or BINARY) to help filtering during

indexing. You can also use to format column to ignore rows for indexing by

setting the format column to IGNORE. This is useful for bypassing rows that

contain data incompatible with text indexing such as images.

■ Character set column to record document character set on a per row basis.

When you create your index, you must specify the name of the format or character

set column in the parameter clause of CREATE INDEX.

Supported Column Types
With Oracle Text, you can create a CONTEXTindex with columns of type VARCHAR2,
CLOB, BLOB, CHAR, BFILE , XMLType, and URIType .

Supported Document Formats
Because the system can index most document formats including HTML, PDF,

Microsoft Word, and plain text, you can load any supported type into the text

column.

When you have mixed formats in your text column, you can optionally include a

format column to help filtering during indexing. With the format column you can

specify whether a document is binary (formatted) or text (non-formatted such as

HTML).

Loading Methods
The following sections describe different methods of loading information into a text

column.

Note: The column types NCLOB, DATE and NUMBER cannot be

indexed.

See Also: Oracle Text Reference for more information about the

supported document formats.
Introduction to Oracle Text 1-9

Introduction to Loading Your Text Table
Loading Text with the INSERT Statement
You can use the SQL INSERT statement to load text to a table.

The following example creates a table with two columns, id and text , by using the

CREATE TABLEstatement. This example makes the id column the primary key. The

text column is VARCHAR2:

CREATE TABLE docs (id NUMBER PRIMARY KEY, text VARCHAR2(80));

To populate this table, use the INSERT statement as follows:

INSERT into docs values(1, ’this is the text of the first document’);
INSERT into docs values(12, ’this is the text of the second document’);

Loading Text from File System
In addition to the INSERT statement, Oracle enables you to load text data (this

includes documents, pointers to documents, and URLs) into a table from your file

system by using other automated methods, including:

■ SQL*Loader

■ DBMS_LOB.LOADFROMFILE() PL/SQL procedure to load LOBs from BFILEs

■ Oracle Call Interface

See Also:

■ Appendix A, "CONTEXT Query Application" for a SQL*Loader

example.

■ Oracle9i Supplied PL/SQL Packages Reference For more

information about the DBMS_LOB package.

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for

more information about working with LOBs.

■ Oracle Call Interface Programmer’s Guide for more information

about Oracle Call Interface.
1-10 Oracle Text Application Developer’s Guide

Indexing Your Documents
Indexing Your Documents
To query your document collection, you must first index the text column of your

text table. Indexing breaks your text into tokens, which are usually words separated

by spaces. Tokens can also be numbers, acronyms and other strings that are

whitespace separated in the document.

A CONTEXT index records each token and the documents that contain it. An

inverted index as such allows for querying on words and phrases. Figure 1–2 shows

a text table within Oracle9i and its associated Oracle Text index.

Figure 1–2 Text table and associated Oracle Text index

Type of Index
Oracle Text supports the creation of three types of indexes depending on your

application and text source. You use the CREATE INDEXstatement to create all types

of Oracle Text indexes.

Oracle Text
Index

Text Table
ID author text

Oracle9i
Introduction to Oracle Text 1-11

Indexing Your Documents
The following table describes these indexes and the type of applications you can

build with them. The third column shows which query operator to use with the

index.

When to Create a CONTEXT Index
Once your text data is loaded in a table, you can use the CREATE INDEX statement

to create a CONTEXT index. When you create an index and specify no parameter

clause, an index is created with default parameters.

For example, the following command creates a CONTEXT index with default

parameters called myindex on the text column in the docs table:

CREATE INDEX myindex ON docs(text) INDEXTYPE IS CTXSYS.CONTEXT;

Defaults for All Languages
When you use CREATE INDEX to create a context index without explicitly

specifying parameters, the system does the following for all languages by default:

Type of Index Description Query Operator

CONTEXT Use this index to build a text retrieval
application when your text consists of
large coherent documents. You can
index documents of different formats
such as Microsoft Word, HTML, XML,
or plain text.

You can customize your index in a
variety of ways.

CONTAINS

CTXCAT Use this index type to improve mixed
query performance. Suitable for
querying small text fragments with
structured criteria like dates, item
names, and prices that are stored across
columns.

CATSEARCH

CTXRULE Use to build a document classification
application. You create this index on a
table of queries, where each query has a
classification.

Single documents (plain text, HTML, or
XML) can be classified by using the
MATCHES operator.

MATCHES
1-12 Oracle Text Application Developer’s Guide

Indexing Your Documents
■ Assumes that the text to be indexed is stored directly in a text column. The text

column can be of type CLOB, BLOB, BFILE , VARCHAR2, XMLType, or CHAR.

■ Detects the column type and filters binary column types. Most document

formats are supported for filtering. If your column consists of plain text, then

the system does filter it.

■ Assumes the language of text to index is the language you specify in your

database setup.

■ Uses the default stoplist for the language you specify in your database setup.

Stoplists identify the words that the system ignores during indexing.

■ Enables fuzzy and stemming queries for your language, if this feature is

available for your language.

You can always change the default indexing behavior by creating your own

preferences and specifying these custom preferences in the parameter clause of

CREATE INDEX.

Customizing Your CONTEXT Index
By using the parameter clause with CREATE INDEX, you can customize your

CONTEXT index. For example, in the parameter clause, you can specify where your

text is stored, how you want it filtered for indexing, and whether sections should be

created.

For example, to index a set of HTML files loaded in the text column htmlfile , you

can issue the CREATE INDEX statement, specifying datastore, filter and section

group parameters as follows:

CREATE INDEX myindex ON doc(htmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
(’datastore ctxsys.default_datastore filter ctxsys.null_filter section group
ctxsys.html_section_group’);

Note: For document filtering to work correctly in your system,

you must ensure that your environment is set up correctly to

support the Inso filter.

To learn more about configuring your environment to use the Inso

filter, see Oracle Text Reference.
Introduction to Oracle Text 1-13

Indexing Your Documents
When to Create a CTXCAT Index
A CTXCAT index is an index optimized for mixed queries. You can create this type

of index when you store small documents or text fragments with associated

structured information. To query this index, you use the CATSEARCH operator and

specify a structured clause, if any. Query performance with a CTXCAT index is

usually better for structured queries than with a CONTEXT index. To achieve better

performance, your CTXCAT index must be configured correctly.

When to Create a CTXRULE Index
You create a CTXRULE index to build a document classification application in which

an incoming stream of documents is routed according content. You define the

classification rules as queries which you index. You use the MATCHES operator to

classify single documents.

Index Maintenance
Index maintenance is necessary after your application inserts, updates, or deletes

documents in your base table. Index maintenance involves synchronizing and

optimizing your index.

If your base table is static, that is, your application does no updating, inserting or

deleting of documents after your initial index, you do not need to synchronize your

index.

However, if your application performs DML operations (inserts, updates, or

deletes) on your base table, you must synchronize your index. You can synchronize

your index manually with the CTX_DDL.SYNC_INDEX PL/SQL procedure.

See Also:

■ "Considerations For Indexing" in Chapter 2, "Indexing" for

more information about the different ways you can create an

index

■ Oracle Text Reference for more information on the CREATE
INDEX statement

See Also: "Creating a CTXCAT Index" in Chapter 2, "Indexing"

for a complete example

See Also: "Creating a CTXRULE Index" in Chapter 2, "Indexing"

for a complete example
1-14 Oracle Text Application Developer’s Guide

Indexing Your Documents
The following example synchronizes the index myindex with 2 megabytes of

memory:

begin
ctx_ddl.sync_index(’myindex’, ’2M’);

end;

If you synchronize your index regularly, you might also consider optimizing your

index to reduce fragmentation and to remove old data.

See Also: "Managing DML Operations for a CONTEXT Index" in

Chapter 2, "Indexing" for more information about synchronizing

and optimizing the index.
Introduction to Oracle Text 1-15

Simple Text Query Application
Simple Text Query Application
A typical query application enables the user to enter a query. The application

executes the query and returns a list of documents, called a hit list usually ranked

by relevance, that satisfy the query. The application enables the user to view one or

more documents in the returned hitlist.

For example, an application might index URLs (HTML files) on the World Wide

Web and provide query capabilities across the set of indexed URLs. Hit lists

returned by the query application are composed of URLs that the user can visit.

Figure 1–3 Flowchart of a simple query application

Figure 1–3 illustrates the flowchart of how a user interacts with a simple query

application. The figure shows the steps required to enter the query and to view the

Enter Query

Execute Query

Present Hitlist

Select From Hitlist

Present Document
User Action

Application
Action
1-16 Oracle Text Application Developer’s Guide

Simple Text Query Application
results. Oval boxes indicate user-tasks and rectangular boxes indicate application

tasks.

As shown, a query application can be modeled according to the following steps:

1. User enters query

2. Application executes query

3. Application presents hitlist

4. User selects document from hitlist

5. Application presents document to user for viewing

The rest of this chapter explains how you can accomplish these steps with Oracle

Text.

See Also: Appendix A, "CONTEXT Query Application" for a

description of a simple Web query application.
Introduction to Oracle Text 1-17

Understanding How to Query Your Index
Understanding How to Query Your Index
With Oracle Text, you use the CONTAINS operator to query a CONTEXT index. This

is the most common operator and index used to build query applications.

For more advanced applications, you use the CATSEARCH operator to query a

CTXCAT index, and you use the MATCHES operator to query the CTXRULE index.

Understanding How to Query with CONTAINS
You can use the CONTAINS operator to retrieve documents that contain a word or

phrase. Your document must be indexed before you can issue a CONTAINS query.

Use the CONTAINS operator in a SELECT statement. With CONTAINS, you can issue

two types of queries:

■ Word query

■ ABOUT query

You can also optimize queries for better response time to obtain a specified number

of the highest ranking (top n) hits. The following sections give an overview of these

query scenarios.

Understanding Word Queries
A word query is a query on the exact word or phrase you enter between the single

quotes in the CONTAINS or CATSEARCH operator.

The following example finds all the documents in the text column that contain the

word oracle. The score for each row is selected with the SCORE operator by using a

label of 1:

SELECT SCORE(1) title FROM news WHERE CONTAINS(text, ’oracle’, 1) > 0;

In your query expression, you can use text operators such as AND and OR to achieve

different results. You can also add structured predicates to the WHERE clause.

You can count the hits to a query by using the SQL COUNT(*) statement, or the CTX_
QUERY.COUNT_HITS PL/SQL procedure.

See Also: Oracle Text Reference for more information about the

different operators you can use in queries
1-18 Oracle Text Application Developer’s Guide

Understanding How to Query Your Index
Understanding ABOUT Queries
You issue ABOUT queries with the ABOUT operator in the CONTAINS clause.

In all languages, ABOUT queries increases the number of relevant documents

returned by a query.

In English and French, ABOUT queries can use the theme component of the index,

which is created by default. As such, this operator returns documents based on the

concepts of your query, not only the exact word or phrase you specify.

For example, the following query finds all the documents in the text column that are

about the subject politics, not just the documents that contain the word politics:

SELECT SCORE(1) title FROM news WHERE CONTAINS(text, ’about(politics)’, 1) > 0;

Optimizing Query for Response Time
You can optimize any CONTAINS query (word or ABOUT) for response time in order

to retrieve the highest ranking hits in a result set in the shortest possible time.

Optimizing for response time is useful in a Web-based search application.

Understanding Structured Field Searching
Your application interface can give the user the option of querying on structured

fields related to the text such as item description, author, or date as a means of

further limiting the search criteria.

You can issue structured searches with the CONTAINS operator by using a

structured clause in the SELECT statement. However, for optimal performance,

consider creating a CTXCAT index, which gives better performance for structured

queries with the CATSEARCH operator.

Your application can also present the structured information related to each

document in the hit list.

See Also: Oracle Text Reference to learn more about the ABOUT
operator

See Also: "Optimizing Queries for Response Time" in Chapter 5,

"Performance Tuning".
Introduction to Oracle Text 1-19

Understanding How to Query Your Index
Thesaural Queries
Oracle Text enables you to define a thesaurus for your query application.

Defining a custom thesaurus enables you to process queries more intelligently. Since

users of your application might not know which words represent a topic, you can

define synonyms or narrower terms for likely query terms. You can use the

thesaurus operators to expand your query to include thesaurus terms.

Document Section Searching
Section searching enables you to narrow text queries down to sections within

documents.

Section searching can be implemented when your documents have internal

structure, such as HTML and XML documents. For example, you can define a

section for the <H1> tag that enables you to query within this section using the

WITHIN operator.

You can set the system to automatically create sections from XML documents.

You can also define attribute sections to search attribute text in XML documents.

Other Query Features
In your query application, you can use other query features such as proximity

searching. Table 1–1 lists some of these features.

See Also: "Creating a CTXCAT Index" in Chapter 2, "Indexing"

for more information about creating a CTXCAT index to improve

structured queries with CATSEARCH.

See Also: Chapter 7, "Working With a Thesaurus"

Note: Section searching is supported for only word queries with a

CONTEXT index.

See Also: Chapter 6, "Document Section Searching"
1-20 Oracle Text Application Developer’s Guide

Understanding How to Query Your Index
Table 1–1 Oracle Text Query Features

Feature Description Implement With

Case Sensitive
Searching

 Case-sensitive searches. BASIC_LEXER when you create
the index

Base Letter Conversion Queries words with or
without diacritical marks
such as tildes, accents, and
umlauts. For example, with a
Spanish base-letter index, a
query of energía matches
documents containing both
energía and energia.

BASIC_LEXER when you create
the index

Word Decompounding

(German and Dutch)

Enables searching on words
that contain specified term as
sub-composite.

BASIC_LEXER when you create
the index

Alternate Spelling

(German, Dutch, and
Swedish)

Searches on alternate
spellings of words

BASIC_LEXER when you create
the index

Proximity Searching Searches for words near one
another

NEARoperator when you issue the
query

Stemming Searches for words with same
root as specified term

$ operator at when you issue the
query

Fuzzy Searching Searches for words that have
similar spelling to specified
term

FUZZY operator when you issue
the query

Query Explain Plan Generates query parse
information

CTX_QUERY.EXPLAIN PL/SQL
procedure after you index

Hierarchical Query
Feedback

Generates broader term,
narrower term and related
term information for a query

CTX_QUERY.HFEEDBACK
PL/SQL procedure after you
index.

Browse index Browses the words around a
seed word in the index

CTX_QUERY.BROWSE_WORDS
PL/SQL after you index.

Count hits Counts the number of hits in
a query

CTX_QUERY.COUNT_HITS
PL/SQL procedure after you
index.

Stored Query
Expression

Stores a query expression CTX_QUERY.STORE_SQE
PL/SQL procedure after you
index.
Introduction to Oracle Text 1-21

Understanding How to Query Your Index
Thesaural Queries Uses a thesaurus to expand
queries.

Thesaurus operators such as SYN
and BT as well as the ABOUT
operator.

Use CTX_THES package to
maintain thesaurus.

Table 1–1 Oracle Text Query Features

Feature Description Implement With
1-22 Oracle Text Application Developer’s Guide

Presenting the Hit List
Presenting the Hit List
After executing the query, query applications typically present a hit list of all

documents that satisfy the query along with a relevance score. This list can be a list

of document titles or URLs depending on your document set.

Your application presents a hitlist in one or more of the following ways:

■ By showing documents ordered by score

■ By showing structured fields related to a document, such as the title or author

■ By showing document hit count

Hitlist Example
Figure 1–4 is a screen shot of a query application presenting the hit list to the user.
Introduction to Oracle Text 1-23

Presenting the Hit List
Figure 1–4 Query Application Presenting Hit List
1-24 Oracle Text Application Developer’s Guide

Presenting the Hit List
Presenting Structured Fields
Structured columns related to the text column can help to identify documents.

When you present the hit list, you can show related columns such as document

titles or author or any other combination of fields that identify the document.

You specify the name of the structured columns that you want to include in the hit

list in the SELECT statement.

Ordering the Hit List
When you issue either a text query or a theme query, Oracle returns the hit list of

documents that satisfy the query with a relevance score for each document

returned. You can use these scores to order the hitlist to show the most relevant

documents first.

The score for each document is between 1 and 100. The higher the score, the more

relevant the document to the query.

Oracle calculates scores when you use the CONTAINSor CATSEARCHoperators. You

obtain scores using the SCORE operator.

Presenting Document Hit Count
You can present the number of hits the query returned alongside the hit list, using

SELECT COUNT(*). For example:

SELECT COUNT(*) FROM docs WHERE CONTAINS(text, ’oracle’, 1) > 0;

To count hits in PL/SQL, you can also use the CTX_QUERY.COUNT_HITS
procedure.

See Also: Chapter 3, "Querying"
Introduction to Oracle Text 1-25

Document Presentation and Highlighting
Document Presentation and Highlighting
Typically, a query application enables the user to view the documents returned by a

query. The user selects a document from the hit list and then the application

presents the document in some form.

With Oracle Text, you can display a document in different ways. For example, you

can present documents with query terms highlighted. Highlighted query terms can

be either the words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from

documents with the CTX_DOC PL/SQL package.

Table 1–2 describes the different output you can obtain and which procedure to use

to obtain each type.

Table 1–2 CTX_DOC Output

Output Procedure

Plain text version, no highlights CTX_DOC.FILTER

HTML version of document, no highlights CTX_DOC.FILTER

Highlighted document, plain text version CTX_DOC.MARKUP

Highlighted document, HTML version CTX_DOC.MARKUP

Highlight offset information for plain text
version

CTX_DOC.HIGHLIGHT

Highlight offset information for HTML
version

CTX_DOC.HIGHLIGHT

Theme summaries and gist of document. CTX_DOC.GIST

List of themes in document. CTX_DOC.THEMES

See Also: Chapter 4, "Document Presentation"
1-26 Oracle Text Application Developer’s Guide

Document Presentation and Highlighting
Highlighting Example
Figure 1–5 is a screen shot of a query application presenting a document with the

query terms heart and lungs highlighted.

Figure 1–5 Query Application Presenting Highlighted Document
Introduction to Oracle Text 1-27

Document Presentation and Highlighting
Document List of Themes Example
Figure 1–6 is a screen shot of a query application presenting a list of themes for a

document.

Figure 1–6 Query Application Displaying Document Themes
1-28 Oracle Text Application Developer’s Guide

Document Presentation and Highlighting
Gist Example
Figure 1–7 is a screen shot of a query application presenting a gist for a document.

Figure 1–7 Query Application Presenting Document Gist
Introduction to Oracle Text 1-29

Document Presentation and Highlighting
1-30 Oracle Text Application Developer’s Guide

Ind
2

Indexing

The chapter is an introduction to Oracle Text indexing. The following topics are

covered:

■ About Oracle Text Indexes

■ Considerations For Indexing

■ Index Creation

■ Index Maintenance

■ Managing DML Operations for a CONTEXT Index
exing 2-1

About Oracle Text Indexes
About Oracle Text Indexes
An Oracle Text index is an Oracle domain index.To build your query application,

you can create an index of type CONTEXTand query it with the CONTAINSoperator.

You create an index from a populated text table. In a query application, the table

must contain the text or pointers to where the text is stored. Text is usually a

collection of documents, but can also be small text fragments.

For better performance for mixed queries, you can create a CTXCAT index. Use this

index type when your application relies heavily on mixed queries to search small

documents or descriptive text fragments based on related criteria such as dates or

prices. You query this index with the CATSEARCH operator.

To build a document classification application, you create an index of type

CTXRULE. With such an index, you can classify plain text, HTML, or XML

documents using the MATCHES operator. You store your defining query set in the

text table you index.

If you are working with XMLtype columns, you can create a CTXXPATH index to

speed up queries with ExistsNode.

You create a text index as a type of extensible index to Oracle using standard SQL.

This means that an Oracle Text index operates like an Oracle index. It has a name by

which it is referenced and can be manipulated with standard SQL statements.

The benefits of a creating an Oracle Text index include fast response time for text

queries with the CONTAINS, CATSEARCH, and MATCHES Oracle Text operators.

These operators query the CONTEXT, CTXCAT, and CTXRULE index types

respectively.

Structure of the Oracle Text CONTEXT Index
Oracle Text indexes text by converting all words into tokens. The general structure

of an Oracle Text CONTEXT index is an inverted index where each token contains

the list of documents (rows) that contain that token.

For example, after a single initial indexing operation, the word DOG might have an

entry as follows:

DOG DOC1 DOC3 DOC5

See Also: "Index Creation" in this chapter.

Oracle9i Application Developer’s Guide - XML for information on

using the CTXXPATH indextype.
2-2 Oracle Text Application Developer’s Guide

About Oracle Text Indexes
This means that the word DOG is contained in the rows that store documents one,

three and five.

For more information, see optimizing the index in this chapter.

Merged Word and Theme Index
By default in English and French, Oracle Text indexes theme information with word

information. You can query theme information with the ABOUT operator. You can

optionally enable and disable theme indexing.

The Oracle Text Indexing Process
This section describes the Oracle Text indexing process.You initiate the indexing

process with the CREATE INDEX statement. The goal is to create an Oracle Text

index of tokens according to the parameters and preferences you specify.

Figure 2–1 shows the indexing process. This process is a data stream that is acted

upon by the different indexing objects. Each object corresponds to an indexing

preference type or section group you can specify in the parameter string of CREATE
INDEX or ALTER INDEX. The sections that follow describe these objects.

See Also: To learn more about indexing theme information, see

"Creating Preferences" in this chapter.
Indexing 2-3

About Oracle Text Indexes
Figure 2–1 Oracle Text Indexing process

Datastore Object
The stream starts with the datastore reading in the documents as they are stored in

the system according to your datastore preference. For example, if you have defined

your datastore as FILE_DATASTORE, the stream starts by reading the files from the

operating system. You can also store you documents on the internet or in the Oracle

database.

Filter Object
The stream then passes through the filter. What happens here is determined by your

FILTER preference. The stream can be acted upon in one of the following ways:

■ No filtering takes place. This happens when you specify the NULL_FILTER
preference type. Documents that are plain text, HTML, or XML need no

filtering.

Oracle Text
Index

Datastore
Documents

Marked-up
Text Text Tokens

Lexer Indexing
Engine

Wordlist

Filter Sectioner

Markup

StoplistInternet

O/S file
system
2-4 Oracle Text Application Developer’s Guide

About Oracle Text Indexes
■ Formatted documents (binary) are filtered to marked-up text. This happens

when you specify the INSO_FILTER preference type.

■ Text is converted from a non-database character set to the database character

set. This happens when you specify CHARSET_FILTER preference type.

Sectioner Object
After being filtered, the marked-up text passes through the sectioner that separates

the stream into text and section information. Section information includes where

sections begin and end in the text stream. The type of sections extracted is

determined by your section group type.

The section information is passed directly to the indexing engine which uses it later.

The text is passed to the lexer.

Lexer Object
The lexer breaks the text into tokens according to your language. These tokens are

usually words. To extract tokens, the lexer uses the parameters as defined in your

lexer preference. These parameters include the definitions for the characters that

separate tokens such as whitespace, and whether to convert the text to all uppercase

or to leave it in mixed case.

When theme indexing is enabled, the lexer analyses your text to create theme tokens

for indexing.

Indexing Engine
The indexing engine creates the inverted index that maps tokens to the documents

that contain them. In this phase, Oracle uses the stoplist you specify to exclude

stopwords or stopthemes from the index. Oracle also uses the parameters defined in

your WORDLIST preference, which tell the system how to create a prefix index or

substring index, if enabled.

Partitioned Tables and Indexes
You can create a partitioned CONTEXT index on a partitioned text table. The table

must be partitioned by range. Hash, composite and list partitions are not supported.

You might create a partitioned text table to partition your data by date. For

example, if your application maintains a large library of dated news articles, you

can partition your information by month or year. Partitioning simplifies the
Indexing 2-5

About Oracle Text Indexes
manageability of large databases since querying, DML, and backup and recovery

can act on single partitions.

Querying Partitioned Tables
To query a partitioned table, you use CONTAINS in the SELECT statement no

differently as you query a regular table. You can query the entire table or a single

partition. However, if you are using the ORDER BY SCORE clause, Oracle

recommends that you query single partitions unless you include a range predicate

that limits the query to a single partition.

Creating an Index Online
When it is not practical to lock up your base table for indexing because of ongoing

updates, you can create your index online with the ONLINE parameter of CREATE

INDEX. This way an application with heavy DML need not stop updating the base

table for indexing.

There are short periods, however, when the base table is locked at the beginning

and end of the indexing process.

Parallel Indexing
Oracle Text supports parallel indexing with CREATE INDEX.

When you issue a parallel indexing command on a non-partitioned table, Oracle

splits the base table into partitions, spawns slave processes, and assigns a different

partition to each slave. Each slave indexes the rows in its partition. The method of

slicing the base table into partitions is determined by Oracle and is not under your

direct control. This is true as well for the number of slave processes actually

spawned, which depends on machine capabilities, system load, your init.ora

settings, and other factors. The actual parallel degree may not match the degree of

parallelism requested.

Since indexing is an I/O intensive operation, parallel indexing is most effective in

decreasing your indexing time when you have distributed disk access and multiple

CPUs. Parallel indexing can only affect the performance of an initial index with

See Also: Oracle9i Database Concepts for more information about

partitioning.

See Also: Oracle Text Reference to learn more about creating an

index online.
2-6 Oracle Text Application Developer’s Guide

About Oracle Text Indexes
CREATE INDEX. It does not affect DML performance with ALTER INDEX, and has

minimal impact on query performance.

Since parallel indexing decreases the initial indexing time, it is useful for

■ data staging, when your product includes an Oracle Text index

■ rapid initial startup of applications based on large data collections

■ application testing, when you need to test different index parameters and

schemas while developing your application

Limitations for Indexing

Columns with Multiple Indexes
A column can have no more than a single domain index attached to it, which is in

keeping with Oracle standards. However, a single Text index can contain theme

information in addition to word information.

Indexing Views
Oracle SQL standards does not support creating indexes on views. Therefore, if you

need to index documents whose contents are in different tables, you can create a

data storage preference using the USER_DATASTORE object. With this object, you

can define a procedure that synthesizes documents from different tables at index

time.

See Also:

"Frequently Asked Questions About Indexing Performance" in

Chapter 5, "Performance Tuning" to learn more about creating an

index in parallel.

Oracle Text Reference

See Also: Oracle Text Reference to learn more about USER_
DATASTORE.
Indexing 2-7

Considerations For Indexing
Considerations For Indexing
You use the CREATE INDEX statement to create an Oracle Text index. When you

create an index and specify no parameter string, an index is created with default

parameters.

You can also override the defaults and customize your index to suit your query

application. The parameters and preference types you use to customize your index

with CREATE INDEX fall into the following general categories.
2-8 Oracle Text Application Developer’s Guide

Considerations For Indexing
Type of Index
With Oracle Text, you can create one of four index types with CREATE INDEX. The

following table describes each type, its purpose, and what features it supports:

Index Type Description
Supported Preferences
and Parameters Query Operator Notes

CONTEXT Use this index to build a
text retrieval application
when your text consists
of large coherent
documents. You can
index documents of
different formats such as
MS Word, HTML or
plain text.

With a context index, you
can customize your
index in a variety of
ways.

This index type requires
CTX_DDL.SYNC_
INDEX after DML to
base table.

All CREATE INDEX
preferences and
parameters supported
except for INDEX SET.

These supported
parameters include the
index partition clause,
and the format, charset,
and language columns.

CONTAINS

Grammar is called
the CONTEXT
grammar, which
supports a rich set
of operations.

The CTXCAT
grammar can be
used with query
templating.

Supports all
documents services
and query services.

Supports indexing of
partitioned text
tables.
Indexing 2-9

Considerations For Indexing
CTXCAT Use this index type for
better mixed query
performance. Typically,
with this index type, you
index small documents
or text fragments. Other
columns in the base
table, such as item
names, prices and
descriptions can be
included in the index to
improve mixed query
performance.

This index type is
transactional,
automatically updating
itself after DML to base
table. No CTX_
DDL.SYNC is necessary.

INDEX SET

LEXER (theme indexing
not supported)

STOPLIST

STORAGE

WORDLIST (only prefix_
index attribute
supported for Japanese
data)

Format, charset, and
language columns not
supported.

Table and index
partitioning not
supported.

CATSEARCH

Grammar is called
CTXCAT, which
supports logical
operations, phrase
queries, and
wildcarding.

The CONTEXT
grammar can be
used with query
templating.

The size of a
CTXCAT index is
related to the total
amount of text to be
indexed, number of
indexes in the index
set, and number of
columns indexed.
Carefully consider
your queries and
your resources
before adding
indexes to the index
set.

The CTXCAT index
does not support
table and index
partitioning,
documents services
(highlighting,
markup, themes,
and gists) or query
services (explain,
query feedback, and
browse words.)

Index Type Description
Supported Preferences
and Parameters Query Operator Notes
2-10 Oracle Text Application Developer’s Guide

Considerations For Indexing
CTXRULE Use CTXRULE index to
build a document
classification or routing
application. The
CTXRULE index is an
index created on a table
of queries, where the
queries define the
classification or routing
criteria.

Only the BASIC_LEXER
type supported for
indexing your query set.

Queries in your query set
can include ABOUT,
STEM, AND, NEAR, NOT,
and OR operators.

The following operators
are not supported:
ACCUM, EQUIV,
WITHIN, WILDCARD,
FUZZY, SOUNDEX,
MINUS, WEIGHT,
THRESHOLD.

The CREATE INDEX
storage clause supported
for creating the index on
the queries.

Section group supported
for when you use the
MATCHES operator to
classify documents.

Wordlist supported for
stemming operations on
your query set.

Filter, memory, datastore,
and populate parameters
are not applicable to
index type CTXRULE.

MATCHES Single documents
(plain text, HTML,
or XML) can be
classified using the
MATCHES operator,
which turns a
document into a set
of queries and finds
the matching rows
in the CTXRULE
index.

CTXXPATH Create this index when
you need to speed up
ExistsNode() queries on
an XMLType column.

STORAGE Use with
ExistsNode()

Can only create this
index on XMLType
column.

See Oracle9i
Application
Developer’s Guide -
XML for
information.

See Also: Index Creation in this chapter.

Index Type Description
Supported Preferences
and Parameters Query Operator Notes
Indexing 2-11

Considerations For Indexing
Location of Text
Your document text can reside in one of three places, the text table, the file system,

or the world-wide web. When you index with CREATE INDEX, you specify the

location using the datastore preference. Use the appropriate datastore according to

your application.

The following table describes all the different ways you can store your text with the

datastore preference type.

Indexing time and document retrieval time will be increased for indexing URLs

since the system must retrieve the document from the network.

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in a text column. Each row is
indexed as a single document.

Your text column can be VARCHAR2, CLOB, BLOB,
CHAR, or BFILE . XMLType columns are supported
for the context index type.

MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one column.
Columns are concatenated to create a virtual document,
one document per row.

DETAIL_DATASTORE Data is stored internally in a text column. Document
consists of one or more rows stored in a text column in
a detail table, with header information stored in a
master table.

FILE_DATASTORE Data is stored externally in operating system files.
Filenames are stored in the text column, one per row.

NESTED_DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet
or the Internet. Uniform Resource Locators (URLs) are
stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a
user-defined stored procedure.

See Also: Datastore Examples in this chapter.
2-12 Oracle Text Application Developer’s Guide

Considerations For Indexing
Document Formats and Filtering
Formatted documents such as Microsoft Word and PDF must be filtered to text to be

indexed. The type of filtering the system uses is determined by the FILTER

preference type. By default the system uses the INSO_FILTER filter type which

automatically detects the format of your documents and filters them to text.

Oracle can index most formats. Oracle can also index columns that contain

documents with mixed formats.

No Filtering for HTML
If you are indexing HTML or plain text files, do not use the INSO_FILTER type. For

best results, use the NULL_FILTER preference type.

Filtering Mixed Formatted Columns
If you have a mixed format column such as one that contains Microsoft Word, plain

text, and HTML documents, you can bypass filtering for plain text or HTML by

including a format column in your text table. In the format column, you tag each

row TEXT or BINARY. Rows that are tagged TEXT are not filtered.

For example, you can tag the HTML and plain text rows as TEXT and the Microsoft

Word rows as BINARY. You specify the format column in the CREATE INDEX
parameter clause.

Custom Filtering
You can create your own custom filter to filter documents for indexing. You can

create either an external filter that is executed from the file system or an internal

filter as a PL/SQL or Java stored procedure.

For external custom filtering, use the USER_FILTER filter preference type.

For internal filtering, use the PROCEDURE_FILTER filter type.

Bypassing Rows for Indexing
You can bypass rows in your text table that are not to be indexed, such as rows that

contain image data. To do so, create a format column in your table and set it to

IGNORE. You name the format column in the parameter clause of CREATE INDEX.

See Also: NULL_FILTER Example: Indexing HTML Documents

in this chapter.

See Also: PROCEDURE_FILTER Example in this chapter.
Indexing 2-13

Considerations For Indexing
Document Character Set
The indexing engine expects filtered text to be in the database character set. When

you use the INSO_FILTER filter type, formatted documents are converted to text in

the database character set.

If your source is text and your document character set is not the database character

set, you can use the INSO_FILTER or CHARSET_FILTER filter type to convert your

text for indexing.

Mixed Character Set Columns
If your document set contains documents with different character sets, such as

JA16EUC and JA16SJIS, you can index the documents provided you create a charset

column. You populate this column with the name of the document character set on

a per-row basis. You name the column in the parameter clause of the CREATE
INDEX statement.

Document Language
Oracle can index most languages. By default, Oracle assumes the language of text to

index is the language you specify in your database setup.

You use the BASIC_LEXER preference type to index whitespace-delimited

languages such as English, French, German, and Spanish. For some of these

languages you can enable alternate spelling, composite word indexing, and base

letter conversion.

You can also index Japanese, Chinese, and Korean.

Languages Features Outside BASIC_LEXER
With the BASIC_LEXER, Japanese, Chinese and Korean lexers, Oracle Text provides

a lexing solution for most languages. For other languages such as Thai and Arabic,

you can create your own lexing solution using the user-defined lexer interface. This

interface enables you to create a PL/SQL or Java procedure to process your

documents during indexing and querying.

You can also use the user-defined lexer to create your own theme lexing solution or

linguistic processing engine.

See Also: Oracle Text Reference to learn more about indexing these

languages.

See Also: Oracle Text Reference to learn more about this lexer.
2-14 Oracle Text Application Developer’s Guide

Considerations For Indexing
Indexing Multi-language Columns
Oracle can index text columns that contain documents of different languages, such

as a column that contains documents written in English, German, and Japanese. To

index a multi-language column, you need a language column in your text table. Use

the MULTI_LEXER preference type.

You can also incorporate a multi-language stoplist when you index multi-language

columns.

Indexing Special Characters
When you use the BASIC_LEXER preference type, you can specify how

non-alphanumeric characters such as hyphens and periods are indexed with respect

to the tokens that contain them. For example, you can specify that Oracle include or

exclude hyphen character (-) when indexing a word such as web-site.

These characters fall into BASIC_LEXER categories according to the behavior you

require during indexing. The way the you set the lexer to behave for indexing is the

way it behaves for query parsing.

Some of the special characters you can set are as follows:

Printjoins Character
Define a non-alphanumeric character as printjoin when you want this character to

be included in the token during indexing.

For example, if you want your index to include hyphens and underscore characters,

define them as printjoins. This means that words such as web-site are indexed as

web-site. A query on website does not find web-site.

Skipjoins Character
Define a non-alphanumeric character as a skipjoin when you do not want this

character to be indexed with the token that contains it.

For example, with the hyphen (-) character defined as a skipjoin, the word web-site is

indexed as website. A query on web-site finds documents containing website and

web-site.

See Also: MULTI_LEXER Example: Indexing a Multi-Language

Table in this chapter.

See Also: BASIC_LEXER Example: Setting Printjoins Characters

in this chapter.
Indexing 2-15

Considerations For Indexing
Other Characters
Other characters can be specified to control other tokenization behavior such as

token separation (startjoins, endjoins, whitespace), punctuation identification

(punctuations), number tokenization (numjoins), and word continuation after

line-breaks (continuation). These categories of characters have defaults, which you

can modify.

Case-Sensitive Indexing and Querying
By default, all text tokens are converted to uppercase and then indexed. This results

in case-insensitive queries. For example, separate queries on each of the three words

cat, CAT, and Cat all return the same documents.

You can change the default and have the index record tokens as they appear in the

text. When you create a case-sensitive index, you must specify your queries with

exact case to match documents. For example, if a document contains Cat, you must

specify your query as Cat to match this document. Specifying cat or CAT does not

return the document.

To enable or disable case-sensitive indexing, use the mixed_case attribute of the

BASIC_LEXER preference.

Language Specific Features
You can enable the following language specific features at index time:

Indexing Themes
For English and French, you can index document theme information. A document

theme is a main document concept. Themes can be queried with the ABOUT
operator.

You can index theme information in other languages provided you have loaded and

compiled a knowledge base for the language.

See Also: Oracle Text Reference to learn more about the BASIC_
LEXER.

See Also: Oracle Text Reference to learn more about the BASIC_
LEXER.
2-16 Oracle Text Application Developer’s Guide

Considerations For Indexing
By default themes are indexed in English and French. You can enable and disable

theme indexing with the index_themes attribute of the BASIC_LEXER preference

type.

Base-Letter Conversion for Characters with Diacritical Marks
Some languages contain characters with diacritical marks such as tildes, umlauts,

and accents. When your indexing operation converts words containing diacritical

marks to their base letter form, queries need not contain diacritical marks to score

matches. For example in Spanish with a base-letter index, a query of energía matches

energía and energia in the index.

However, with base-letter indexing disabled, a query of energía matches only

energía.

You can enable and disable base-letter indexing for your language with the base_

letter attribute of the BASIC_LEXER preference type.

Alternate Spelling
Languages such as German, Danish, and Swedish contain words that have more

than one accepted spelling. For instance, in German, the ä character can be

substituted for the ae character. The ae character is known as the base letter form.

By default, Oracle indexes words in their base-letter form for these languages.

Query terms are also converted to their base-letter form. The result is that these

words can be queried with either spelling.

You can enable and disable alternate spelling for your language using the alternate_

spelling attribute in the BASIC_LEXER preference type.

See Also: Oracle Text Reference to learn more about the BASIC_

LEXER.

ABOUT Queries and Themes in Chapter 3, "Querying".

See Also: Oracle Text Reference to learn more about the BASIC_
LEXER.

See Also: Oracle Text Reference to learn more about the BASIC_
LEXER.
Indexing 2-17

Considerations For Indexing
Composite Words
German and Dutch text contain composite words. By default, Oracle creates

composite indexes for these languages. The result is that a query on a term returns

words that contain the term as a sub-composite.

For example, in German, a query on the term Bahnhof (train station) returns

documents that contain Bahnhof or any word containing Bahnhof as a sub-composite,

such as Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

You can enable and disable the creation of composite indexes with the composite

attribute of the BASIC_LEXER preference.

Korean, Japanese, and Chinese Indexing
You index these languages with specific lexers:

The KOREAN_MORPH_LEXER has its own set of attributes to control indexing.

Features include composite word indexing.

Fuzzy Matching and Stemming
Fuzzy matching enables you to match similarly spelled words in queries. Stemming

enables you to match words with the same linguistic root.

Fuzzy matching and stemming are automatically enabled in your index if Oracle

Text supports this feature for your language.

Fuzzy matching is enabled with default parameters for its similarity score lower

limit and for its maximum number of expanded terms. At index time you can

change these default parameters.

See Also: Oracle Text Reference to learn more about the BASIC_
LEXER.

Language Lexer

Korean KOREAN_MORPH_LEXER

Japanese JAPANESE_LEXER

Chinese CHINESE_VGRAM_LEXER

See Also: Oracle Text Reference to learn more about these lexers.
2-18 Oracle Text Application Developer’s Guide

Considerations For Indexing
To improve the performance of stem queries, you can create a stem index by

enabling the index_stems attribute of the BASIC_LEXER.

Better Wildcard Query Performance
Wildcard queries enable you to issue left-truncated, right-truncated and doubly

truncated queries, such as %ing, cos%, or %benz%. With normal indexing, these

queries can sometimes expand into large word lists, degrading your query

performance.

Wildcard queries have better response time when token prefixes and substrings are

recorded in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index.

If your query application makes heavy use of wildcard queries, consider indexing

token prefixes and substrings. To do so, use the wordlist preference type. The

trade-off is a bigger index for improved wildcard searching.

Document Section Searching
For documents that have internal structure such as HTML and XML, you can define

and index document sections. Indexing document sections enables you to narrow

the scope of your queries to within pre-defined sections. For example, you can

specify a query to find all documents that contain the term dog within a section you

define as Headings.

Sections must be defined prior to indexing and specified with the section group

preference.

Oracle Text provides section groups with system-defined section definitions for

HTML and XML. You can also specify that the system automatically create sections

from XML documents during indexing.

Stopwords and Stopthemes
A stopword is a word that is not to be indexed. Usually stopwords are low

information words in a given language such as this and that in English.

See Also: Oracle Text Reference.

See Also: BASIC_WORDLIST Example: Enabling Substring and

Prefix Indexing in this chapter.

See Also: Chapter 6, "Document Section Searching"
Indexing 2-19

Considerations For Indexing
By default, Oracle provides a list of stopwords called a stoplist for indexing a given

language. You can modify this list or create your own with the CTX_DDL package.

You specify the stoplist in the parameter string of CREATE INDEX.

A stoptheme is a word that is prevented from being theme-indexed or prevented

from contributing to a theme. You can add stopthemes with the CTX_DDL package.

You can search document themes with the ABOUT operator. You can retrieve

document themes programatically with the CTX_DOC PL/SQL package.

Multi-Language Stoplists
You can also create multi-language stoplists to hold language-specific stopwords. A

multi-language stoplist is useful when you use the MULTI_LEXER to index a table

that contains documents in different languages, such as English, German, and

Japanese.

At indexing time, the language column of each document is examined, and only the

stopwords for that language are eliminated. At query time, the session language

setting determines the active stopwords, like it determines the active lexer when

using the multi-lexer.

Index Performance
There are factors that influence indexing performance including memory allocation,

document format, degree of parallelism, and partitioned tables.

Query Performance and Storage of LOB Columns
If your table contains LOB structured columns that are frequently accessed in

queries but rarely updated, you can improve query performance by storing these

columns out of line.

See Also: "Frequently Asked Questions About Indexing

Performance" in Chapter 5, "Performance Tuning"

See Also: "Does out of line LOB storage of wide base table

columns improve performance?" in Chapter 5, "Performance

Tuning"
2-20 Oracle Text Application Developer’s Guide

Index Creation
Index Creation
You can create three types of indexes with Oracle Text: CONTEXT, CTXCAT, and

CTXRULE.

Procedure for Creating a CONTEXT Index
By default, the system expects your documents to be stored in a text column. Once

this requirement is satisfied, you can create a text index using the CREATE INDEX
SQL command as an extensible index of type context, without explicitly specifying

any preferences. The system automatically detects your language, the datatype of

the text column, format of documents, and sets indexing preferences accordingly.

To create an Oracle Text index, do the following:

1. Optionally, determine your custom indexing preferences, section groups, or

stoplists if not using defaults. The following table describes these indexing

classes:

2. Optionally, create your own custom preferences, section groups, or stoplists. See

"Creating Preferences" in this chapter.

See Also: For more information about the out-of-box defaults, see

Default CONTEXT Index Example in this chapter.

Class Description

Datastore How are your documents stored?

Filter How can the documents be converted to plaintext?

Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index data be stored?

Stop List What words or themes are not to be indexed?

Section Group How are documents sections defined?

See Also: Considerations For Indexing in this chapter and Oracle
Text Reference.
Indexing 2-21

Index Creation
3. Create the Text index with the SQL command CREATE INDEX, naming your

index and optionally specifying preferences. See "Creating an Index" in this

chapter.

Creating Preferences
You can optionally create your own custom index preferences to override the

defaults. Use the preferences to specify index information such as where your files

are stored and how to filter your documents. You create the preferences then set the

attributes.

Datastore Examples
The following sections give examples for setting direct, multi-column, URL, and file

datastores.

Specifying DIRECT_DATASTORE The following example creates a table with a CLOB
column to store text data. It then populates two rows with text data and indexes the

table using the system-defined preference CTXSYS.DEFAULT_DATASTORE.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555,’this text will be indexed’);
insert into mytable values(111556,’this is a direct_datastore example’);
commit;

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters (’DATASTORE CTXSYS.DEFAULT_DATASTORE’);

Specifying MULTI_COLUMN_DATASTORE The following example creates a

multi-column datastore preference called my_multi on the three text columns to be

concatenated and indexed:

begin
ctx_ddl.create_preference(’my_multi’, ’MULTI_COLUMN_DATASTORE’);
ctx_ddl.set_attribute(’my_multi’, ’columns’, ’column1, column2, column3’);
end;

See Also: Oracle Text Reference for more information about data

storage.
2-22 Oracle Text Application Developer’s Guide

Index Creation
Specifying URL Data Storage This example creates a URL_DATASTORE preference

called my_url to which the http_proxy, no_proxy, and timeout attributes are set. The

defaults are used for the attributes that are not set.

begin
 ctx_ddl.create_preference(’my_url’,’URL_DATASTORE’);
 ctx_ddl.set_attribute(’my_url’,’HTTP_PROXY’,’www-proxy.us.oracle.com’);
 ctx_ddl.set_attribute(’my_url’,’NO_PROXY’,’us.oracle.com’);
 ctx_ddl.set_attribute(’my_url’,’Timeout’,’300’);
end;

Specifying File Data Storage The following example creates a data storage preference

using the FILE_DATASTORE. This tells the system that the files to be indexed are

stored in the operating system. The example uses CTX_DDL.SET_ATTRIBUTEto set

the PATH attribute of to the directory /docs .

begin
ctx_ddl.create_preference(’mypref’, ’FILE_DATASTORE’);
ctx_ddl.set_attribute(’mypref’, ’PATH’, ’/docs’);
end;

NULL_FILTER Example: Indexing HTML Documents
If your document set is entirely HTML, Oracle recommends that you use the NULL_
FILTER in your filter preference, which does no filtering.

For example, to index an HTML document set, you can specify the system-defined

preferences for NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
 parameters(’filter ctxsys.null_filter
 section group ctxsys.html_section_group’);

PROCEDURE_FILTER Example
Consider a filter procedure CTXSYS.NORMALIZEthat you define with the following

signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, you set up your filter preference as follows:

begin
ctx_ddl.create_preference(’myfilt’, ’procedure_filter’);
Indexing 2-23

Index Creation
ctx_ddl.set_attribute(’myfilt’, ’procedure’, ’normalize’);
ctx_ddl.set_attribute(’myfilt’, ’input_type’, ’clob’);
ctx_ddl.set_attribute(’myfilt’, ’output_type’, ’varchar2’);
ctx_ddl.set_attribute(’myfilt’, ’rowid_parameter’, ’TRUE’);
ctx_ddl.set_attribute(’myfilt’, ’charset_parameter’, ’TRUE’);

end;

BASIC_LEXER Example: Setting Printjoins Characters
Printjoin characters are non-alphanumeric characters that are to be included in

index tokens, so that words such as web-site are indexed as web-site.

The following example sets printjoin characters to be the hyphen and underscore

with the BASIC_LEXER:

begin
ctx_ddl.create_preference(’mylex’, ’BASIC_LEXER’);
ctx_ddl.set_attribute(’mylex’, ’printjoins’, ’_-’);
end;

To create the index with printjoins characters set as above, issue the following

statement:

create index myindex on mytable (docs)
 indextype is ctxsys.context
 parameters (’LEXER mylex’);

MULTI_LEXER Example: Indexing a Multi-Language Table
You use the MULTI_LEXER preference type to index a column containing

documents in different languages. For example, you can use this preference type

when your text column stores documents in English, German, and French.

The first step is to create the multi-language table with a primary key, a text column,

and a language column as follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with some German and

Japanese documents. To handle the three languages, you must create three

sub-lexers, one for English, one for German, and one for Japanese:

ctx_ddl.create_preference(’english_lexer’,’basic_lexer’);
2-24 Oracle Text Application Developer’s Guide

Index Creation
ctx_ddl.set_attribute(’english_lexer’,’index_themes’,’yes’);
ctx_ddl.set_attribute(’english_lexer’,’theme_language’,’english’);

ctx_ddl.create_preference(’german_lexer’,’basic_lexer’);
ctx_ddl.set_attribute(’german_lexer’,’composite’,’german’);
ctx_ddl.set_attribute(’german_lexer’,’mixed_case’,’yes’);
ctx_ddl.set_attribute(’german_lexer’,’alternate_spelling’,’german’);

ctx_ddl.create_preference(’japanese_lexer’,’japanese_vgram_lexer’);

Create the multi-lexer preference:

ctx_ddl.create_preference(’global_lexer’, ’multi_lexer’);

Since the stored documents are mostly English, make the English lexer the default

using CTX_DDL.ADD_SUB_LEXER:

ctx_ddl.add_sub_lexer(’global_lexer’,’default’,’english_lexer’);

Now add the German and Japanese lexers in their respective languages with CTX_
DDL.ADD_SUB_LEXER procedure. Also assume that the language column is

expressed in the standard ISO 639-2 language codes, so add those as alternate

values.

ctx_ddl.add_sub_lexer(’global_lexer’,’german’,’german_lexer’,’ger’);
ctx_ddl.add_sub_lexer(’global_lexer’,’japanese’,’japanese_lexer’,’jpn’);

Now create the index globalx , specifying the multi-lexer preference and the

language column in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters (’lexer global_lexer language column lang’);

BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing
The following example sets the wordlist preference for prefix and substring

indexing. Having a prefix and sub-string component to your index improves

performance for wildcard queries.

For prefix indexing, the example specifies that Oracle create token prefixes between

three and four characters long:

begin
ctx_ddl.create_preference(’mywordlist’, ’BASIC_WORDLIST’);
ctx_ddl.set_attribute(’mywordlist’,’PREFIX_INDEX’,’TRUE’);
ctx_ddl.set_attribute(’mywordlist’,’PREFIX_MIN_LENGTH’,3);
Indexing 2-25

Index Creation
ctx_ddl.set_attribute(’mywordlist’,’PREFIX_MAX_LENGTH’, 4);
ctx_ddl.set_attribute(’mywordlist’,’SUBSTRING_INDEX’, ’YES’);

end;

Creating Section Groups for Section Searching
When documents have internal structure such as in HTML and XML, you can

define document sections using embedded tags before you index. This enables you

to query within the sections using the WITHIN operator. You define sections as part

of a section group.

Example: Creating HTML Sections
The following code defines a section group called htmgroup of type HTML_
SECTION_GROUP. It then creates a zone section in htmgroup called heading
identified by the <H1> tag:

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’htmgroup’, ’heading’, ’H1’);
end;

Using Stopwords and Stoplists
A stopword is a word that is not to be indexed. A stopword is usually a low

information word such as this or that in English.

The system supplies a list of stopwords called a stoplist for every language. By

default during indexing, the system uses the Oracle Text default stoplist for your

language.

You can edit the default stoplist CTXSYS.DEFAULT_STOPLIST or create your own

with the following PL/SQL procedures:

■ CTX_DDL.CREATE_STOPLIST

■ CTX_DDL.ADD_STOPWORD

■ CTX_DDL.REMOVE_STOPWORD

You specify your custom stoplists in the parameter clause of CREATE INDEX.

You can also dynamically add stopwords after indexing with the ALTER INDEX
statement.

See Also: Chapter 6, "Document Section Searching"
2-26 Oracle Text Application Developer’s Guide

Index Creation
Multi-Language Stoplists
You can create multi-language stoplists to hold language-specific stopwords. A

multi-language stoplist is useful when you use the MULTI_LEXER to index a table

that contains documents in different languages, such as English, German, and

Japanese.

To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST
procedure and specify a stoplist type of MULTI_STOPLIST. You add language

specific stopwords with CTX_DDL.ADD_STOPWORD.

Stopthemes and Stopclasses
In addition to defining your own stopwords, you can define stopthemes, which are

themes that are not to be indexed. This feature is available for English only.

You can also specify that numbers are not to be indexed. A class of alphanumeric

characters such a numbers that is not to be indexed is a stopclass.

You record your own stopwords, stopthemes, stopclasses by creating a single

stoplist, to which you add the stopwords, stopthemes, and stopclasses. You specify

the stoplist in the paramstring for CREATE INDEX.

PL/SQL Procedures for Managing Stoplists
You use the following procedures to manage stoplists, stopwords, stopthemes, and

stopclasses:

■ CTX_DDL.CREATE_STOPLIST

■ CTX_DDL.ADD_STOPWORD

■ CTX_DDL.ADD_STOPTHEME

■ CTX_DDL.ADD_STOPCLASS

■ CTX_DDL.REMOVE_STOPWORD

■ CTX_DDL.REMOVE_STOPTHEME

■ CTX_DDL.REMOVE_STOPCLASS

■ CTX_DDL.DROP_STOPLIST

See Also: Oracle Text Reference to learn more about using these

commands.
Indexing 2-27

Index Creation
Creating an Index
You create an Oracle Text index as an extensible index using the CREATE INDEX
SQL command.

You can create three types of indexes:

■ CONTEXT

■ CTXCAT

■ CTXRULE

Creating a CONTEXT Index
The context index type is well-suited for indexing large coherent documents such as

MS Word, HTML or plain text. With a context index, you can also customize your

index in a variety of ways.

The documents must be loaded in a text table.

Default CONTEXT Index Example
The following command creates a default context index called myindex on the

text column in the docs table:

CREATE INDEX myindex ON docs(text) INDEXTYPE IS CTXSYS.CONTEXT;

When you use CREATE INDEXwithout explicitly specifying parameters, the system

does the following for all languages by default:

■ Assumes that the text to be indexed is stored directly in a text column. The text

column can be of type CLOB, BLOB, BFILE , VARCHAR2, or CHAR.

■ Detects the column type and uses filtering for binary column types. Most

document formats are supported for filtering. If your column is plain text, the

system does not use filtering.

Note: For document filtering to work correctly in your system,

you must ensure that your environment is set up correctly to

support the Inso filter.

To learn more about configuring your environment to use the Inso

filter, see the Oracle Text Reference.
2-28 Oracle Text Application Developer’s Guide

Index Creation
■ Assumes the language of text to index is the language you specify in your

database setup.

■ Uses the default stoplist for the language you specify in your database setup.

Stoplists identify the words that the system ignores during indexing.

■ Enables fuzzy and stemming queries for your language, if this feature is

available for your language.

You can always change the default indexing behavior by creating your own

preferences and specifying these custom preferences in the parameter string of

CREATE INDEX.

Custom CONTEXT Index Example: Indexing HTML Documents
To index an HTML document set located by URLs, you can specify the

system-defined preference for the NULL_FILTER in the CREATE INDEX statement.

You can also specify your section group htmgroup that uses HTML_SECTION_
GROUP and datastore my_url that uses URL_DATASTORE as follows:

begin
 ctx_ddl.create_preference(’my_url’,’URL_DATASTORE’);
 ctx_ddl.set_attribute(’my_url’,’HTTP_PROXY’,’www-proxy.us.oracle.com’);
 ctx_ddl.set_attribute(’my_url’,’NO_PROXY’,’us.oracle.com’);
 ctx_ddl.set_attribute(’my_url’,’Timeout’,’300’);
end;

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’htmgroup’, ’heading’, ’H1’);
end;

You can then index your documents as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters(’datastore my_url filter ctxsys.null_filter section group htmgroup’);

See Also: "Creating Preferences" in this chapter for more

examples on creating a custom context index.
Indexing 2-29

Index Creation
Creating a CTXCAT Index
The CTXCAT indextype is well-suited for indexing small text fragments and related

information. If created correctly, this type of index can give better structured query

performance over a CONTEXT index.

CTXCAT Index and DML
A CTXCAT index is transactional. When you perform DML (inserts, updates, and

deletes) on the base table, Oracle automatically synchronizes the index. Unlike a

CONTEXT index, no CTX_DDL.SYNC_INDEX is necessary.

About CTXCAT Sub-Indexes and Their Costs
A CTXCAT index is comprised of sub-indexes that you define as part of your index

set. You create a sub-index on one or more columns to improve mixed query

performance.

However, adding sub-indexes to the index set has its costs. The time Oracle takes to

create a CTXCAT index depends on its total size, and the total size of a CTXCAT
index is directly related to

■ total text to be indexed

■ number of sub-indexes in the index set

■ number of columns in the base table that make up the sub-indexes

Having many component indexes in your index set also degrades DML

performance since more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index,

carefully consider the query performance benefit each component index gives your

application before adding it to your index set.

Creating CTXCAT Sub-indexes
An online auction site that must store item descriptions, prices and bid-close dates

for ordered look-up provides a good example for creating a CTXCAT index.

Note: Applications that insert without invoking triggers such as

SQL*Loader will not result in automatic index synchronization as

described above.
2-30 Oracle Text Application Developer’s Guide

Index Creation
Figure 2–2 Auction table schema and CTXCAT index

Figure 2–2 shows a table called AUCTION with the following schema:

create table auction(
item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

To create your sub-indexes, create an index set to contain them:

begin
ctx_ddl.create_index_set(’auction_iset’);

end;

Next, determine the structured queries your application is likely to issue. The

CATSEARCH query operator takes a mandatory text clause and optional structured

clause.

In our example, this means all queries include a clause for the title column which

is the text column.

Auction Table
item_id
number

title
varchar (100)

category_id
number

price
number

bid_close
date

Sub-index A

Sub-index B

CTXCAT
Index

B

A

Indexing 2-31

Index Creation
Assume that the structured clauses fall into the following categories:

Structured Query Clause Category A The structured query clause contains a expression

for only the price column as follows:

SELECT FROM auction WHERE CATSEARCH(title, ’camera’, ’price < 200’)> 0;
SELECT FROM auction WHERE CATSEARCH(title, ’camera’, ’price = 150’)> 0;
SELECT FROM auction WHERE CATSEARCH(title, ’camera’, ’order by price’)> 0;

These queries can be served using sub-index B, but for efficiency you can also create

a sub-index only on price , which we call sub-index A:

begin
ctx_ddl.add_index(’auction_iset’,’price’); /* sub-index A */

end;

Structured Query Clause Category B The structured query clause includes an

equivalence expression for price ordered by bid_close , and an expression for

ordering by price and bid_close in that order:

SELECT FROM auction WHERE CATSEARCH(title, ’camera’,’price = 100 order by bid_
close’)> 0;
SELECT FROM auction WHERE CATSEARCH(title, ’camera’,’order by price, bid_
close’)> 0;

These queries can be served with a sub-index defined as follows:

begin
ctx_ddl.add_index(’auction_iset’,’price, bid_close’); /* sub-index B */

end;

Like a combined b-tree index, the column order you specify with CTX_DDL.ADD_
INDEX affects the efficiency and viability of the index scan Oracle uses to serve

Structured Clauses
Sub-index Definition
to Serve Query Category

’price < 200’

’price = 150’

’order by price’

’price’ A

’price = 100 order by bid_
close’

’order by price, bid_close’

’price, bid_close’ B
2-32 Oracle Text Application Developer’s Guide

Index Creation
specific queries. For example, if two structured columns p and q have a b-tree index

specified as ’p,q’ , Oracle cannot scan this index to sort ’order by q,p’ .

Creating CTXCAT Index
The following example combines the examples above and creates the index set

preference with the three sub-indexes:

begin
ctx_ddl.create_index_set(’auction_iset’);
ctx_ddl.add_index(’auction_iset’,’price’); /* sub-index A */
ctx_ddl.add_index(’auction_iset’,’price, bid_close’); /* sub-index B */

end;

Figure 2–2 shows how the sub-indexes A and B are created from the auction table.

Each sub-index is a b-tree index on the text column and the named structured

columns. For example, sub-index A is an index on the title column and the bid_
close column.

You create the combined catalog index with CREATE INDEX as follows:

CREATE INDEX auction_titlex ON AUCTION(title) INDEXTYPE IS CTXCAT PARAMETERS
(’index set auction_iset’);

Creating a CTXRULE Index
You use the CTXRULE index to build a document classification application. You

create a table of queries and then index them. With a CTXRULE index, you can use

the MATCHES operator to classify single documents.

Create a Table of Queries
The first step is to create a table of queries that define your classifications. We create

a table myqueries to hold the category name and query text:

CREATE TABLE myqueries (
queryid NUMBER PRIMARY KEY,
category VARCHAR2(30)
query VARCHAR2(2000)

);

See Also: Oracle Text Reference to learn more about creating a

CTXCAT index with CREATE INDEX.
Indexing 2-33

Index Creation
Populate the table with the classifications and the queries that define each. For

example, consider a classification for the subjects US Politics, Music, and Soccer.:

INSERT INTO myqueries VALUES(1, ’US Politics’, ’democrat or republican’);
INSERT INTO myqueries VALUES(2, ’Music’, ’ABOUT(music)’);
INSERT INTO myqueries VALUES(3, ’Soccer’, ’ABOUT(soccer)’);

Using CTX_CLS.TRAIN You can also generate a table of rules (queries) with the CTX_

CLS.TRAIN procedure, which takes as input a document training set.

Create the CTXRULE Index
Use CREATE INDEX to create the CTXRULE index. You can specify lexer, storage,

section group, and wordlist parameters if needed:

CREATE INDEX ON myqueries(query) INDEXTYPE IS CTXRULE PARAMETERS(’lexer lexer_
pref storage storage_pref section group section_pref wordlist wordlist_pref’);

Classifying a Document
With a CTXRULE index created on query set, you can use the MATCHES operator to

classify a document.

Assume that incoming documents are stored in the table news:

CREATE TABLE news (
newsid NUMBER,
author VARCHAR2(30),
source VARCHAR2(30),
article CLOB);

See Also: Oracle Text Reference for more information on CTX_

CLS.TRAIN.

Note: The filter, memory, datastore, stoplist, and [no]populate

parameters do not apply to the CTXRULE index type.
2-34 Oracle Text Application Developer’s Guide

Index Creation
You can create a before insert trigger with MATCHES to route each document to

another table news_route based on its classification:

BEGIN
 -- find matching queries
 FOR c1 IN (select category
 from myqueries
 where MATCHES(query, :new.article)>0)
 LOOP
 INSERT INTO news_route(newsid, category)
 VALUES (:new.newsid, c1.category);
 END LOOP;
END;
Indexing 2-35

Index Maintenance
Index Maintenance
This section describes maintaining your index in the event of an error or indexing

failure.

Viewing Index Errors
Sometimes an indexing operation might fail or not complete successfully. When the

system encounters an error indexing a row, it logs the error in an Oracle Text view.

You can view errors on your indexes with CTX_USER_INDEX_ERRORS. View errors

on all indexes as CTXSYS with CTX_INDEX_ERRORS.

For example to view the most recent errors on your indexes, you can issue:

SELECT err_timestamp, err_text FROM ctx_user_index_errors ORDER BY err_timestamp
DESC;

To clear the view of errors, you can issue:

DELETE FROM ctx_user_index_errors;

Dropping an Index
You must drop an existing index before you can re-create it with CREATE INDEX.

You drop an index using the DROP INDEX command in SQL.

For example, to drop an index called newsindex , issue the following SQL

command:

DROP INDEX newsindex;

If Oracle cannot determine the state of the index, for example as a result of an

indexing crash, you cannot drop the index as described above. Instead use:

DROP INDEX newsindex FORCE;

See Also: Oracle Text Reference to learn more about these views.

See Also: Oracle Text Reference to learn more about this command.
2-36 Oracle Text Application Developer’s Guide

Index Maintenance
Resuming Failed Index
You can resume a failed index creation operation using the ALTER INDEX
command. You typically resume a failed index after you have investigated and

corrected the index failure.

Index optimization commits at regular intervals. Therefore if an optimization

operation fails, all optimization work has already been saved.

Example: Resuming a Failed Index
The following command resumes the indexing operation on newsindex with 2

megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS(’resume memory 2M’);

Rebuilding an Index
You can rebuild a valid index using ALTER INDEX. You might rebuild an index

when you want to index with a new preference.

Example: Rebuilding and Index
The following command rebuilds the index, replacing the lexer preference with my_
lexer .

ALTER INDEX newsindex REBUILD PARAMETERS(’replace lexer my_lexer’);

Dropping a Preference
You might drop a custom index preference when you no longer need it for indexing.

You drop index preferences with the procedure CTX_DDL.DROP_PREFERENCE.

Dropping a preference does not affect the index created from the preference.

See Also: Oracle Text Reference to learn more about the ALTER
INDEX command syntax.

See Also: Oracle Text Reference to learn more about the ALTER
INDEX command syntax.

See Also: Oracle Text Reference to learn more about the syntax for

the CTX_DDL.DROP_PREFERENCE procedure.
Indexing 2-37

Index Maintenance
Example
The following code drops the preference my_lexer .

begin
ctx_ddl.drop_preference(’my_lexer’);
end;
2-38 Oracle Text Application Developer’s Guide

Managing DML Operations for a CONTEXT Index
Managing DML Operations for a CONTEXT Index
DML operations to the base table refer to when documents are inserted, updated or

deleted from the base table. This section describes how you can monitor,

synchronize, and optimize the Oracle Text CONTEXT index when DML operations

occur.

Viewing Pending DML
When documents in the base table are inserted, updated, or deleted, their ROWIDs

are held in a DML queue until you synchronize the index. You can view this queue

with the CTX_USER_PENDING view.

For example, to view pending DML on all your indexes, issue the following

statement:

SELECT pnd_index_name, pnd_rowid, to_char(pnd_timestamp, ’dd-mon-yyyy
hh24:mi:ss’) timestamp FROM ctx_user_pending;

This statement gives output in the form:

PND_INDEX_NAME PND_ROWID TIMESTAMP
------------------------------ ------------------ --------------------
MYINDEX AAADXnAABAAAS3SAAC 06-oct-1999 15:56:50

Synchronizing the Index
Synchronizing the index involves processing all pending updates, inserts, and

deletes to the base table. You can do this in PL/SQL with the CTX_DDL.SYNC_
INDEX procedure.

The following example synchronizes the index with 2 megabytes of memory:

begin
ctx_ddl.sync_index(’myindex’, ’2M’);

end;

Note: CTXCAT indexes are transactional and thus updated

immediately when there is an update to the base table. Manual

synchronization as described in this section is not necessary for a

CTXCAT index.

See Also: Oracle Text Reference to learn more about this view.
Indexing 2-39

Managing DML Operations for a CONTEXT Index
Setting Background DML
You can set CTX_DDL.SYNC_INDEX to run automatically at regular intervals using

the DBMS_JOB.SUBMIT procedure. Oracle Text includes a SQL script you can use to

do this. The location of this script is:

$ORACLE_HOME/ctx/sample/script/drjobdml.sql

To use this script, you must be the index owner and you must have execute

privileges on the CTX_DDL package. You must also set the job_queue_
processes parameter in your Oracle initialization file.

For example, to set the index synchronization to run every 360 minutes on myindex,

you can issue the following in SQL*Plus:

SQL> @drjobdml myindex 360

Index Optimization
Frequent index synchronization can fragment your CONTEXT index. Index

fragmentation can adversely affect query response time. You can optimize your

CONTEXT index to reduce fragmentation and index size and so improve query

performance.

To understand index optimization, you must understand the structure of the index

and what happens when it is synchronized.

CONTEXT Index Structure
The CONTEXT index is an inverted index where each word contains the list of

documents that contain that word. For example, after a single initial indexing

operation, the word DOG might have an entry as follows:

DOG DOC1 DOC3 DOC5

Index Fragmentation
When new documents are added to the base table, the index is synchronized by

adding new rows. Thus if you add a new document (DOC 7) with the word dog to

the base table and synchronize the index, you now have:

DOG DOC1 DOC3 DOC5
DOG DOC7

See Also: Oracle Text Reference to learn more about the CTX_
DDL.SYNC_INDEX command syntax.
2-40 Oracle Text Application Developer’s Guide

Managing DML Operations for a CONTEXT Index
Subsequent DML will also create new rows:

DOG DOC1 DOC3 DOC5
DOG DOC7
DOG DOC9
DOG DOC11

Adding new documents and synchronizing the index causes index fragmentation.

In particular, background DML which synchronizes the index frequently generally

produces more fragmentation than synchronizing in batch.

Less frequent batch processing results in longer document lists, reducing the

number of rows in the index and hence reducing fragmentation.

You can reduce index fragmentation by optimizing the index in either FULL or

FAST mode with CTX_DDL.OPTIMIZE_INDEX.

Document Invalidation and Garbage Collection
When documents are removed from the base table, Oracle Text marks the document

as removed but does not immediately alter the index.

Because the old information takes up space and can cause extra overhead at query

time, you must remove the old information from the index by optimizing it in FULL
mode. This is called garbage collection. Optimizing in FULL mode for garbage

collection is necessary when you have frequent updates or deletes to the base table.

Single Token Optimization
In addition to optimizing the entire index, you can optimize single tokens. You can

use token mode to optimize index tokens that are frequently searched, without

spending time on optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if

you know that this token is updated and queried frequently.

An optimized token can improve query response time for the token.

To optimize an index in token mode, you can use CTX_DDL.OPTIMIZE_INDEX.

Viewing Index Fragmentation and Garbage Data
With the CTX_REPORT.INDEX_STATSprocedure, you can create a statistical report

on your index. The report includes information on optimal row fragmentation, list

of most fragmented tokens, and the amount of garbage data in your index.
Indexing 2-41

Managing DML Operations for a CONTEXT Index
Although this report might take long to run for large indexes, it can help you decide

whether to optimize your index.

Examples: Optimizing the Index
To optimize an index, Oracle recommends that you use CTX_DDL.OPTIMIZE_
INDEX.

See Also: Oracle Text Reference to learn more about using this

procedure.

See Also: Oracle Text Reference for the CTX_DDL.OPTIMIZE_
INDEX command syntax and examples.
2-42 Oracle Text Application Developer’s Guide

Que
3

Querying

This chapter describes Oracle Text querying and associated features. The following

topics are covered:

■ Overview of Queries

■ The CONTEXT Grammar

■ The CTXCAT Grammar

■ Optimizing for Response Time

■ Counting Hits
rying 3-1

Overview of Queries
Overview of Queries
The basic Oracle Text query takes a query expression, usually a word with or

without operators, as input. Oracle returns all documents (previously indexed) that

satisfy the expression along with a relevance score for each document. Scores can be

used to order the documents in the result set.

To issue an Oracle Text query, use the SQL SELECT statement. Depending on the

type of index you create, you use either the CONTAINS or CATSEARCH operator in

the WHERE clause. You can use these operators programatically wherever you can

use the SELECT statement, such as in PL/SQL cursors.

Use the MATCHES operator to classify documents with a CTXRULE index.

Querying with CONTAINS
When you create an index of type CONTEXT, you must use the CONTAINS operator

to issue your query. An index of type CONTEXT is suited for indexing collections of

large coherent documents.

With the CONTAINS operator, you can use a number of operators to define your

search criteria. These operators enable you to issue logical, proximity, fuzzy,

stemming, thesaurus and wildcard searches. With a correctly configured index, you

can also issue section searches on documents that have internal structure such as

HTML and XML.

With CONTAINS, you can also use the ABOUT operator to search on document

themes.

CONTAINS SQL Example
In the SELECT statement, specify the query in the WHEREclause with the CONTAINS
operator. Also specify the SCORE operator to return the score of each hit in the

hitlist. The following example shows how to issue a query:

SELECT SCORE(1) title from news WHERE CONTAINS(text, ’oracle’, 1) > 0;
3-2 Oracle Text Application Developer’s Guide

Overview of Queries
You can order the results from the highest scoring documents to the lowest scoring

documents using the ORDER BY clause as follows:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, ’oracle’, 1) > 0
 ORDER BY SCORE(1) DESC;

CONTAINS PL/SQL Example
In a PL/SQL application, you can use a cursor to fetch the results of the query.

The following example issues a CONTAINS query against the NEWS table to find all

articles that contain the word oracle. The titles and scores of the first ten hits are

output.

declare
 rowno number := 0;
begin
 for c1 in (SELECT SCORE(1) score, title FROM news
 WHERE CONTAINS(text, ’oracle’, 1) > 0
 ORDER BY SCORE(1) DESC)
 loop
 rowno := rowno + 1;
 dbms_output.put_line(c1.title||': '||c1.score);
 exit when rowno = 10;
 end loop;
end;

This example uses a cursor FOR loop to retrieve the first ten hits. An alias score is

declared for the return value of the SCORE operator. The score and title are output

to standard out using cursor dot notation.

Structured Query with CONTAINS
A structured query, also called a mixed query, is a query that has a CONTAINS
predicate to query a text column and has another predicate to query a structured

data column.

To issue a structured query, you specify the structured clause in the WHERE
condition of the SELECT statement.

For example, the following SELECT statement returns all articles that contain the

word oracle that were written on or after October 1, 1997:
Querying 3-3

Overview of Queries
SELECT SCORE(1), title, issue_date from news
 WHERE CONTAINS(text, ’oracle’, 1) > 0
 AND issue_date >= (’01-OCT-97’)
 ORDER BY SCORE(1) DESC;

Querying with CATSEARCH
When you create an index of type CTXCAT, you must use the CATSEARCH operator

to issue your query. An index of type CTXCAT is best suited when your application

stores short text fragments in the text column and other associated information in

related columns.

For example, an application serving an online auction site might have a table that

stores item description in a text column and associated information such as date

and price in other columns. With a CTXCAT index, you can create b-tree indexes on

one or more of these columns. The result is that when you use the CATSEARCH
operator to search a CTXCAT index, query performance is generally faster for mixed

queries.

The operators available for CATSEARCH queries are limited to logical operations

such as AND or OR. The operators you can use to define your structured criteria are

greater than, less than, equality, BETWEEN, and IN .

CATSEARCH SQL Query
A typical query with CATSEARCH might include a structured clause as follows to

find all rows that contain the word camera ordered by the bid_close date:

SELECT FROM auction WHERE CATSEARCH(title, ’camera’, ’order by bid_close desc’)>
0;

The type of structured query you can issue depends on how you create your

sub-indexes.

Note: Even though you can issue structured queries with

CONTAINS, consider creating a ctxcat index and issuing the query

with CATSEARCH, which offers better structured query

performance.

See Also: "Creating a CTXCAT Index" in Chapter 2, "Indexing".
3-4 Oracle Text Application Developer’s Guide

Overview of Queries
CATSEARCH Structured Query
You specify the structured part of a CATSEARCH query with the structured_
query parameter. The columns you name in the structured expression must have a

corresponding sub-index.

For example, assuming that category_id and bid_close have a sub-index in

the ctxcat index for the AUCTION table, you can issue the following structured

query:

SELECT FROM auction WHERE CATSEARCH(title, ’camera’, ’category_id=99 order by
bid_close desc’)> 0;

CATSEARCH PL/SQL Example
You can use a cursor to process the output of a CATSEARCH query as you do for

CONTAINS.

Querying with MATCHES
When you create an index of type CTXRULE, you must use the MATCHESoperator to

classify your documents. The CTXRULE index is essentially an index on the set of

queries that define your classifications.

For example, if you have an incoming stream of documents that need to be routed

according to content, you can create a set of queries that define your categories. You

create the queries as rows in a text column. It is possible to create this type of table

with the CTX_CLS.TRAIN procedure.

You then index the table to create a CTXRULE index. When documents arrive, you

use the MATCHES operator to classify each document.

MATCHES SQL Query
A MATCHES query finds all rows in a query table that match a given document.

Assuming that a table querytable has a CTXRULE index associated with it, you

can issue the following query:

SELECT classification FROM querytable WHERE MATCHES(text, ’Smith is a common
name in the United States’) > 0;

See Also: Oracle Text Reference for more information on CTX_

CLS.TRAIN.
Querying 3-5

Overview of Queries
MATCHES PL/SQL Example
The following example assumes that the table of queries profiles has a CTXRULE
index associated with it. It also assumes that the table newsfeed contains a set of

news articles to be categorized.

This example loops through the newsfeed table, categorizing each article using the

MATCHES operator. The results are stored in the results table.

PROMPT Populate the category table based on newsfeed articles
PROMPT
set serveroutput on;
declare
 mypk number;
 mytitle varchar2(1000);
 myarticles clob;
 mycategory varchar2(100);
 cursor doccur is select pk,title,articles from newsfeed;
 cursor mycur is select category from profiles where matches(rule,
myarticles)>0;
 cursor rescur is select category, pk, title from results order by category,pk;

begin
 dbms_output.enable(1000000);
 open doccur;
 loop
 fetch doccur into mypk, mytitle, myarticles;
 exit when doccur%notfound;
 open mycur;
 loop
 fetch mycur into mycategory;
 exit when mycur%notfound;
 insert into results values(mycategory, mypk, mytitle);
 end loop;
 close mycur;
 commit;
 end loop;
 close doccur;
 commit;

end;
/

The following example displays the categorized articles by category.

PROMPT display the list of articles for every category
3-6 Oracle Text Application Developer’s Guide

Overview of Queries
PROMPT

declare
 mypk number;
 mytitle varchar2(1000);
 mycategory varchar2(100);
 cursor catcur is select category from profiles order by category;

cursor rescur is select pk, title from results where category=mycategory order
by pk;

begin
 dbms_output.enable(1000000);
 open catcur;
 loop
 fetch catcur into mycategory;
 exit when catcur%notfound;
 dbms_output.put_line(’********** CATEGORY: ’||mycategory||’ *************’);
open rescur;
 loop
 fetch rescur into mypk, mytitle;
 exit when rescur%notfound;
dbms_output.put_line(’** (’||mypk||’). ’||mytitle);
 end loop;
 close rescur;
 dbms_output.put_line(’**’);
dbms_output.put_line(’***’);
 end loop;
 close catcur;
end;
/

Word and Phrase Queries
A word query is a query on a word or phrase. For example, to find all the rows in

your text table that contain the word dog, you issue a query specifying dog as your

query term.

You can issue word queries with both CONTAINS and CATSEARCH SQL operators.

If multiple words are contained in a query expression, separated only by blank

spaces (no operators), the string of words is considered a phrase and Oracle

searches for the entire string during a query.

For example, to find all documents that contain the phrase international law, you

issue your query with the phrase international law.
Querying 3-7

Overview of Queries
Querying Stopwords
Stopwords are words for which Oracle does not create an index entry. They are

usually common words in your language that are unlikely to be searched on by

themselves.

Oracle Text includes a default list of stopwords for your language. This list is called

a stoplist. For example, in English, the words this and that are defined as stopwords

in the default stoplist. You can modify the default stoplist or create new stoplists

with the CTX_DDL package. You can also add stopwords after indexing with the

ALTERINDEX statement.

You cannot query on a stopword by itself or on a phrase composed of only

stopwords. For example, a query on the word this returns no hits when this is

defined as a stopword.

You can query on phrases that contain stopwords as well as non-stopwords such as

this boy talks to that girl. This is possible because the Oracle Text index records the

position of stopwords even though it does not create an index entry for them.

When you include a stopword within your query phrase, the stopword matches any

word. For example, the query:

’Jack was big’

matches phrases such as Jack is big and Jack grew big assuming was is a stopword.

ABOUT Queries and Themes
An ABOUT query is a query on a document theme. A document theme is a concept

that is sufficiently developed in the text. For example, an ABOUT query on US
politics might return documents containing information about US presidential

elections and US foreign policy. Documents need not contain the exact phrase US
politics to be returned.

During indexing, document themes are derived from the knowledge base, which is

a hierarchical list of categories and concepts that represents a view of the world.

Some examples of themes in the knowledge catalog are concrete concepts such as

jazz music, football, or Nelson Mandela. Themes can also be abstract concepts such as

happiness or honesty.

During indexing, the system can also identify and index document themes that are

sufficiently developed in the document, but do not exist in the knowledge base.
3-8 Oracle Text Application Developer’s Guide

Overview of Queries
You can augment the knowledge base to define concepts and terms specific to your

industry or query application. When you do so, ABOUT queries are more precise for

the added concepts.

ABOUT queries perform best when you create a theme component in your index.

Theme components are created by default for English and French.

Querying Stopthemes
Oracle enables you to query on themes with the ABOUT operator. A stoptheme is a

theme that is not to be indexed. You can add and remove stopthemes with the CTX_

DLL package. You can add stopthemes after indexing with the ALTER INDEX
statement.

Query Expressions
A query expression is everything in between the single quotes in the text_query
argument of the CONTAINS or CATSEARCH operator. What you can include in a

query expression in a CONTAINS query is different from what you can include in a

CATSEARCH operator.

CONTAINS Operators
A CONTAINS query expression can contain query operators that enable logical,

proximity, thesaural, fuzzy, and wildcard searching. Querying with stored

expressions is also possible. Within the query expression, you can use grouping

characters to alter operator precedence. This book refers to these operators as the

CONTEXT grammar.

With CONTAINS, you can also use the ABOUT query to query document themes.

CATSEARCH Operator
With the CATSEARCH operator, you specify your query expression with the text_
query operator and your optional structured criteria with the structured_
query argument. The text_query argument is limited to querying words and

phrases. You can use logical operations, such as logical and, or, and not. This book

refers to these operators as the CTXCAT grammar.

See Also: Oracle Text Reference

See Also: "The CONTEXT Grammar" in this chapter.
Querying 3-9

Overview of Queries
If you want to use the much richer set of operators supported by the CONTEXT

grammar, you can use the query template feature with CATSEARCH.

With structured_query argument, you specify your structured criteria. You can

use the following SQL operations:

■ =

■ <=

■ >=

■ >

■ <

■ IN

■ BETWEEN

You can also use ORDER BY clause to order your output.

MATCHES Operator
The MATCHES operator takes a document as input and finds all rows in a query

table that match it. You do not specify query expressions in the MATCHES operator.

Case-Sensitive Searching
Oracle Text supports case-sensitivity for word and ABOUT queries.

Word Queries
Word queries are case-insensitive by default. This means that a query on the term

dog returns the rows in your text table that contain the word dog, Dog, or DOG.

You can enable case-sensitive searching by enabling the mixed_case attribute in

your BASIC_LEXER index preference. With a case-sensitive index, your queries

must be issued in exact case. This means that a query on Dog matches only

documents with Dog. Documents with dog or DOG are not returned as hits.

Stopwords and Case-Sensitivity If you have case-sensitivity enabled for word queries

and you issue a query on a phrase containing stopwords and non-stopwords, you

must specify the correct case for the stopwords. For example, a query on this boy

See Also: "The CTXCAT Grammar" in this chapter.
3-10 Oracle Text Application Developer’s Guide

Overview of Queries
talks to that girl does not return text that contains the phrase This boy talks to that
girl, assuming this is a stopword.

ABOUT Queries
ABOUT queries give the best results when your query is formulated with proper

case. This is because the normalization of your query is based on the knowledge

catalog which is case-sensitive. Attention to case is required especially for words

that have different meanings depending on case, such as turkey the bird and Turkey
the country.

However, you need not enter your query in exact case to obtain relevant results

from an ABOUTquery. The system does its best to interpret your query. For example,

if you enter a query of ORACLE and the system does not find this concept in the

knowledge catalog, the system might use Oracle as a related concept for look-up.

Query Feedback
Feedback information provides broader term, narrower term, and related term

information for a specified query with a context index. You obtain this information

programatically with the CTX_QUERY.HFEEDBACK procedure.

Broader term, narrower term, and related term information is useful for suggesting

other query terms to the user in your query application.

The feedback information returned is obtained from the knowledge base and

contains only those terms that are also in the index. This increases the chances that

terms returned from HFEEDBACKproduce hits over the currently indexed document

set.

Query Explain Plan
Explain plan information provides a graphical representation of the parse tree for a

CONTAINS query expression. You can obtain this information programatically with

the CTX_QUERY.EXPLAIN procedure.

Explain plan information tells you how a query is expanded and parsed without

having the system execute the query. Obtaining explain information is useful for

knowing the expansion for a particular stem, wildcard, thesaurus, fuzzy, soundex,

or ABOUT query. Parse trees also show the following information:

See Also: Oracle Text Reference for more information about using

CTX_QUERY.HFEEDBACK
Querying 3-11

Overview of Queries
■ order of execution

■ ABOUT query normalization

■ query expression optimization

■ stop-word transformations

■ breakdown of composite-word tokens for supported languages

See Also: Oracle Text Reference for more information about using

CTX_QUERY.EXPLAIN
3-12 Oracle Text Application Developer’s Guide

The CONTEXT Grammar
The CONTEXT Grammar
The CONTEXT grammar is the default grammar for CONTAINS. With this grammar,

you can add complexity to your searches with operators. You use the query

operators in your query expression. For example, the logical operator AND allows

you to search for all documents that contain two different words. The ABOUT
operator allows you to search on concepts.

You can also use the WITHIN operator for section searching, the NEAR operator for

proximity searches, the stem, fuzzy, and thesaural operators for expanding a query

expression.

With CONTAINS, you can also use the CTXCAT grammar with the query template

feature.

The following sections describe some of the Oracle Text operators.

ABOUT Query
Use the ABOUT operator in English or French to query on a concept. The query

string is usually a concept or theme that represents the idea to be searched on.

Oracle returns the documents that contain the theme.

Word information and theme information are combined into a single index. To issue

a theme query, your index must have a theme component which is created by

default in English and French.

You issue a theme query using the ABOUT operator inside the query expression. For

example, to retrieve all documents that are about politics, write your query as

follows:

SELECT SCORE(1), title FROM news
 WHERE CONTAINS(text, ’about(politics)’, 1) > 0
 ORDER BY SCORE(1) DESC;

Logical Operators
Logical operators such as AND or OR allow you to limit your search criteria in a

number of ways. The following table describes some of these operators.

See Also: Oracle Text Reference for complete information about

using query operators.

See Also: Oracle Text Reference for more information about using

the ABOUT operator.
Querying 3-13

The CONTEXT Grammar
Operator Symbol Description Example Expression

AND & Use the AND operator to search
for documents that contain at
least one occurrence of each of
the query terms.

Score returned is the minimum
of the operands.

’cats AND dogs’
’cats & dogs’

OR | Use the OR operator to search
for documents that contain at
least one occurrence of any of
the query terms.

Score returned is the maximum
of the operands.

’cats | dogs’
’cats OR dogs’

NOT ~ Use the NOT operator to search
for documents that contain one
query term and not another.

To obtain the documents that
contain the term animals but not
dogs, use the following expression:

’animals ~ dogs’

ACCUM , Use the ACCUM operator to
search for documents that
contain at least one occurrence
of any of the query terms. The
accumulate operator ranks
documents according to the
total term weight of a
document.

The following query returns all
documents that contain the terms
dogs, cats and puppies giving the
highest scores to the documents
that contain all three terms:

’dogs, cats, puppies’

EQUIV = Use the EQUIV operator to
specify an acceptable
substitution for a word in a
query.

The following example returns all
documents that contain either the
phrase alsatians are big dogs or
German shepherds are big dogs:

’German
shepherds=alsatians are
big dogs’
3-14 Oracle Text Application Developer’s Guide

The CONTEXT Grammar
Section Searching
Section searching is useful for when your document set is HTML or XML. For

HTML, you can define sections using embedded tags and then use the WITHIN
operator to search these sections.

For XML, you can have the system automatically create sections for you. You can

query with the WITHIN operator or with the INPATH operator for path searching.

Proximity Queries with NEAR Operator
You can search for terms that are near to one another in a document with the NEAR
operator.

For example, to find all documents where dog is within 6 words of cat, issue the

following query:

’near((dog, cat), 6)’

Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
You can expand your queries into longer word lists with operators such as

wildcard, fuzzy, stem, soundex, and thesaurus.

Using CTXCAT Grammar
You can use the CTXCAT grammar in CONTAINS queries. To do so, use a query

template specification in the text_query parameter of CONTAINS.

You might take advantage of the CTXCAT grammar when you need an alternative

and simpler query grammar.

See Also: Chapter 6, "Document Section Searching"

See Also: Oracle Text Reference for more information about using

the NEAR operator.

See Also: Oracle Text Reference for more information about using

these operators.

"Is it OK to have many expansions in a query?" in Chapter 5,

"Performance Tuning"

See Also: Oracle Text Reference for more information about using

these operators.
Querying 3-15

The CONTEXT Grammar
Stored Query Expressions
You can use the procedure CTX_QUERY.STORE_SQE to store the definition of a

query without storing any results. Referencing the query with the CONTAINS SQE

operator references the definition of the query. In this way, stored query expressions

make it easy for defining long or frequently used query expressions.

Stored query expressions are not attached to an index. When you call CTX_
QUERY.STORE_SQE, you specify only the name of the stored query expression and

the query expression.

The query definitions are stored in the Text data dictionary. Any user can reference

a stored query expression.

Defining a Stored Query Expression
You define and use a stored query expression as follows:

1. Call CTX_QUERY.STORE_SQE to store the results for the text column. With

STORE_SQE, you specify a name for the stored query expression and a query

expression.

2. Call the stored query expression in a query expression using the SQE operator.

Oracle returns the results of the stored query expression in the same way it

returns the results of a regular query. The query is evaluated at the time the

stored query expression is called.

You can delete a stored query expression using REMOVE_SQE.

SQE Example
The following example creates a stored query expression called disaster that

searches for documents containing the words tornado, hurricane, or earthquake:

begin
ctx_query.store_sqe(’disaster’, ’tornado | hurricane | earthquake’);
end;

To execute this query in an expression, write your query as follows:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, ’SQE(disaster)’, 1) > 0
 ORDER BY SCORE(1);

See Also: Oracle Text Reference to learn more about the syntax of

CTX_QUERY.STORE_SQE.
3-16 Oracle Text Application Developer’s Guide

The CONTEXT Grammar
Calling PL/SQL Functions in CONTAINS
You can call user-defined functions directly in the CONTAINS clause as long as the

function satisfies the requirements for being named in a SQL statement. The caller

must also have EXECUTE privilege on the function.

For example, assuming the function french returns the French equivalent of an

English word, you can search on the French word for cat by writing:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, french(’cat’), 1) > 0
 ORDER BY SCORE(1);

See Also: Oracle Text Reference to learn more about the syntax of

CTX_QUERY.STORE_SQE.

See Also: Oracle9i SQL Reference for more information about

creating user functions and calling user functions from SQL,
Querying 3-17

The CTXCAT Grammar
The CTXCAT Grammar
The CTXCAT grammar is the default grammar for CATSEARCH. This grammar

supports logical operations such as AND and OR as well as phrase queries.

The CATSEARCH query operators have the following syntax:

Using CONTEXT Grammar with CATSEARCH
In addition, you can use the CONTEXT grammar in CATSEARCH queries. To do so,

use a query template specification in the text_query parameter.

You might use the CONTAINS grammar as such when you need to issue proximity,

thesaurus, or ABOUT queries with a CTXCAT index.

Operation Syntax Description of Operation

Logical AND a b c Returns rows that contain a, b and c.

Logical OR a | b | c Returns rows that contain a, b, or c.

Logical NOT a - b Returns rows that contain a and not b.

hyphen with no
space

a-b Hyphen treated as a regular character.

For example, if the hyphen is defined as
skipjoin, words such as web-site treated as
the single query term website.

Likewise, if the hyphen is defined as a
printjoin, words such as web-site treated
as web site with the space in the CTXCAT
query language.

" " "a b c" Returns rows that contain the phrase "a b
c".

For example, entering "Sony CD Player"
means return all rows that contain this
sequence of words.

() (A B) | C Parentheses group operations. This query

is equivalent to the CONTAINS query (A
&B) | C.

See Also: Oracle Text Reference for more information about using

these operators.
3-18 Oracle Text Application Developer’s Guide

Optimizing for Response Time
Optimizing for Response Time
A CONTAINS query optimized for response time provides a fast solution for when

you need the highest scoring documents from a hitlist.

The example below returns the first twenty hits to standard out. This example uses

the FIRST_ROWS(n) hint and a cursor.

declare
cursor c is
 select /*+ FIRST_ROWS(20) */ title, score(1) score
 from news where contains(txt_col, ’dog’, 1) > 0 order by score(1) desc;
begin
 for c1 in c
 loop
 dbms_output.put_line(c1.score||’:’||substr(c1.title,1,50));
 exit when c%rowcount = 21;
 end loop;
end;
/

Other Factors that Influence Query Response Time
Besides using query hints, there are other factors that can influence query response

time such as:

■ collection of table statistics

■ memory allocation

■ sorting

■ presence of LOB columns in your base table

■ partitioning

■ parallelism

■ the number term expansions in your query

See Also: "Optimizing Queries for Response Time" in Chapter 5,

"Performance Tuning"

See Also: "Frequently Asked Questions a About Query

Performance" in Chapter 5, "Performance Tuning"
Querying 3-19

Counting Hits
Counting Hits
To count the number of hits returned from a query with only a CONTAINS
predicate, you can use CTX_QUERY.COUNT_HITS in PL/SQL or COUNT(*) in a

SQL SELECT statement.

If you want a rough hit count, you can use CTX_QUERY.COUNT_HITS in estimate

mode (EXACT parameter set to FALSE). With respect to response time, this is the

fastest count you can get.

To count the number of hits returned from a query that contains a structured

predicate, use the COUNT(*) function in a SELECT statement.

SQL Count Hits Example
To find the number of documents that contain the word oracle, issue the query with

the SQL COUNT function as follows:

SELECT count(*) FROM news WHERE CONTAINS(text, ’oracle’, 1) > 0;

Counting Hits with a Structured Predicate
To find the number of documents returned by a query with a structured predicate,

use COUNT(*) as follows:

SELECT COUNT(*) FROM news WHERE CONTAINS(text, ’oracle’, 1) > 0 and author =
’jones’;

PL/SQL Count Hits Example
To find the number of documents that contain the word oracle, use COUNT_HITS as

follows:

declare count number;
begin
count:=ctx_query.count_hits(index_name=>my_index,text_query=>’oracle’,

 exact => TRUE);
 dbms_output.put_line(’Number of docs with oracle:’);
 dbms_output.put_line(count);
end;

See Also: Oracle Text Reference to learn more about the syntax of

CTX_QUERY.COUNT_HITS.
3-20 Oracle Text Application Developer’s Guide

Document Presen
4

Document Presentation

This chapter describes document presentation. The following topics are covered:

■ Highlighting Query Terms

■ Obtaining List of Themes, Gists, and Theme Summaries
tation 4-1

Highlighting Query Terms
Highlighting Query Terms
In Oracle Text query applications, you can present selected documents with query

terms highlighted for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting: a marked-up

version of the document, a plain text version of the document (filtered output), and

highlight offset information for the document.

The three types of output are generated by three different procedures in the CTX_
DOC (document services) PL/SQL package. In addition, you can obtain plain text

and HTML versions for each type of output.

Text highlighting
For text highlighting, you supply the query, and Oracle highlights words in

document that satisfy the query. You can obtain plain-text or HTML highlighting.

Theme Highlighting
For ABOUT queries, the CTX_DOC procedures highlight and mark up words or

phrases that best represent the ABOUT query.

CTX_DOC Highlighting Procedures
There are three highlighting procedures in CTX_DOC:

■ CTX_DOC.HIGHLIGHT

■ CTX_DOC.MARKUP

■ CTX_DOCFILTER

Highlight Procedure
Highlight offset information is useful for when you write your own custom routines

for displaying documents.

To obtain highlight offset information, use the CTX_DOC.HIGHLIGHT procedure.

This procedure takes a query and a document, and returns highlight offset

information for either plaintext or HTML formats.

With offset information, you can display a highlighted version of document as

desired. For example, you can display the document with different font types or

colors rather than using the standard plain text markup obtained from CTX_
DOC.MARKUP.
4-2 Oracle Text Application Developer’s Guide

Highlighting Query Terms
Markup Procedure
The CTX_DOC.MARKUP procedure takes a document reference and a query, and

returns a marked-up version of the document. The output can be either marked-up

plaintext or marked-up HTML.

You can customize the markup sequence for HTML navigation.

Filter Procedure
When documents are stored in their native formats such as Microsoft Word, you can

use the filter procedure CTX_DOC.FILTER to obtain either a plain text or HTML

version of the document.

See Also: Oracle Text Reference for more information about using

CTX_DOC.HIGHLIGHT.

See Also: Oracle Text Reference for more information about CTX_
DOC.MARKUP.

See Also: Oracle Text Reference for more information about CTX_
DOC.FILTER.
Document Presentation 4-3

Obtaining List of Themes, Gists, and Theme Summaries
Obtaining List of Themes, Gists, and Theme Summaries
The following table describes list of themes, gists, and theme summaries.

To obtain this output, you use procedures in the CTX_DOC supplied package. With

this package, you can do the following:

■ Identify documents by ROWID in addition to primary key

■ Store results in-memory for improved performance

List of Themes
A list of themes is a list of the main concepts in a document. Use the CTX_
DOC.THEMES procedure to generate lists of themes.

In-Memory Themes
The following example generates the top 10 themes for document 1 and stores them

in an in-memory table called the_themes . The example then loops through the

table to display the document themes.

declare
 the_themes ctx_doc.theme_tab;

begin
 ctx_doc.themes(’myindex’,’1’,the_themes, numthemes=>10);
 for i in 1..the_themes.count loop
 dbms_output.put_line(the_themes(i).theme||’:’||the_themes(i).weight);
 end loop;

Table 4–1

Output Type Description

List of Themes A list of the main concepts of a document.

You can generate list of themes where each theme is a single word or

phrase or where each theme is a hierarchical list of parent themes.

Gist Text in a document that best represents what the document is about as a

whole.

Theme Summary Text in a document that best represents a given theme in the document.

See Also: Oracle Text Reference to learn more about the command

syntax for CTX_DOC.THEMES.
4-4 Oracle Text Application Developer’s Guide

Obtaining List of Themes, Gists, and Theme Summaries
end;

Result Table Themes
To create a theme table:

create table ctx_themes (query_id number,
 theme varchar2(2000),
 weight number);

Single Themes To obtain a list of themes where each element in the list is a single

theme, issue:

begin
ctx_doc.themes(’newsindex’,34,’CTX_THEMES’,1,full_themes => FALSE);
end;

Full Themes To obtain a list of themes where each element in the list is a hierarchical

list of parent themes, issue:

begin
ctx_doc.themes(’newsindex’,34,’CTX_THEMES’,1,full_themes => TRUE);
end;

Gist and Theme Summary
A gist is the text of a document that best represents what the document is about as a

whole. A theme summary is the text of a document that best represents a single

theme in the document.

Use the procedure CTX_DOC.GISTto generate gists and theme summaries. You can

specify the size of the gist or theme summary when you call the procedure.

In-Memory Gist
The following example generates a non-default size generic gist of at most 10

paragraphs. The result is stored in memory in a CLOB locator. The code then

de-allocates the returned CLOB locator after using it.

declare
 gklob clob;
 amt number := 40;

See Also: Oracle Text Reference to learn about the command syntax

for CTX_DOC.GIST.
Document Presentation 4-5

Obtaining List of Themes, Gists, and Theme Summaries
 line varchar2(80);

begin
 ctx_doc.gist(’newsindex’,’34’,’gklob’,1,glevel => ’P’,pov => ’GENERIC’,
numParagraphs => 10);
 -- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
 -- CLOB for us and place the results there.

 dbms_lob.read(gklob, amt, 1, line);
 dbms_output.put_line(’FIRST 40 CHARS ARE:’||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(gklob);
 end;

Result Table Gists
To create a gist table:

create table ctx_gist (query_id number,
 pov varchar2(80),
 gist CLOB);

The following example returns a default sized paragraph level gist for document 34:

begin
ctx_doc.gist(’newsindex’,34,’CTX_GIST’,1,’PARAGRAPH’, pov =>’GENERIC’);
end;

The following example generates a non-default size gist of ten paragraphs:

begin
ctx_doc.gist(’newsindex’,34,’CTX_GIST’,1,’PARAGRAPH’, pov =>’GENERIC’,
numParagraphs => 10);
end;

The following example generates a gist whose number of paragraphs is ten percent

of the total paragraphs in document:

begin
ctx_doc.gist(’newsindex’,34,’CTX_GIST’,1, ’PARAGRAPH’, pov =>’GENERIC’,
maxPercent => 10);
end;

Theme Summary
The following example returns a theme summary on the theme of insects for

document with textkey 34. The default Gist size is returned.
4-6 Oracle Text Application Developer’s Guide

Obtaining List of Themes, Gists, and Theme Summaries
begin
ctx_doc.gist(’newsindex’,34,’CTX_GIST’,1, ’PARAGRAPH’, pov => ’insects’);
end;
Document Presentation 4-7

Obtaining List of Themes, Gists, and Theme Summaries
4-8 Oracle Text Application Developer’s Guide

Performance T
5

Performance Tuning

This chapter discusses how to improve your query and indexing performance. The

following topics are covered:

■ Optimizing Queries with Statistics

■ Optimizing Queries for Response Time

■ Optimizing Queries for Throughput

■ Parallel Queries

■ Tuning Queries with Blocking Operations

■ Frequently Asked Questions a About Query Performance

■ Frequently Asked Questions About Indexing Performance

■ Frequently Asked Questions About Updating the Index
uning 5-1

Optimizing Queries with Statistics
Optimizing Queries with Statistics
Query optimization with statistics uses the collected statistics on the tables and

indexes in a query to select an execution plan that can process the query in the most

efficient manner. As a general rule, Oracle recommends that you collect statistics on

your base table if you are interested in improving your query performance.

The optimizer attempts to choose the best execution plan based on the following

parameters:

■ the selectivity on the CONTAINS predicate

■ the selectivity of other predicates in the query

■ the CPU and I/O costs of processing the CONTAINS predicates

The following sections describe how to use statistics with the extensible query

optimizer. Optimizing with statistics allows for a more accurate estimation of the

selectivity and costs of the CONTAINS predicate and thus a better execution plan.

Collecting Statistics
By default, Oracle uses the cost-based optimizer to determine the best execution

plan for a query. To allow the optimizer to better estimate costs, you can calculate

the statistics on the table you query. To do so, issue the following statement:

ANALYZE TABLE <table_name> COMPUTE STATISTICS;

Alternatively, you can estimate the statistics on a sample of the table as follows:

ANALYZE TABLE <table_name> ESTIMATE STATISTICS 1000 ROWS;

or

ANALYZE TABLE <table_name> ESTIMATE STATISTICS 50 PERCENT;

You can also collect statistics in parallel with the DBMS_STATS.GATHER_TABLE_
STATS procedure.

begin
DBMS_STATS.GATHER_TABLE_STATS(’owner’, ’table_name’,
 estimate_percent=>50,
 block_sample=>TRUE,
 degree=>4) ;

end ;
5-2 Oracle Text Application Developer’s Guide

Optimizing Queries with Statistics
These statements collect statistics on all the objects associated with table_name
including the table columns and any indexes (b-tree, bitmap, or Text domain)

associated with the table.

To re-collect the statistics on a table, you can issue the ANALYZE command as many

times as necessary or use the DBMS_STATS package

By collecting statistics on the Text domain index, the Oracle cost-based optimizer is

able to do the following:

■ estimate the selectivity of the CONTAINS predicate

■ estimate the I/O and CPU costs of using the Text index, that is, the cost of

processing the CONTAINS predicate using the domain index

■ estimate the I/O and CPU costs of each invocation of CONTAINS

Knowing the selectivity of a CONTAINS predicate is useful for queries that contain

more than one predicate, such as in structured queries. This way the cost-based

optimizer can better decide whether to use the domain index to evaluate CONTAINS
or to apply the CONTAINS predicate as a post filter.

Example
Consider the following structured query:

select score(1) from tab where contains(txt, ’freedom’, 1) > 0 and author =
’King’ and year > 1960;

Assume the author column is of type VARCHAR2 and the year column is of type

NUMBER. Assume that there is a b-tree index on the author column.

Also assume that the structured author predicate is highly selective with respect to

the CONTAINS predicate and the year predicate. That is, the structured predicate

(author = ’King’) returns a much smaller number of rows with respect to the

year and CONTAINS predicates individually, say 5 rows returned versus 1000 and

1500 rows respectively.

See Also:

Oracle9i SQL Reference and Oracle9i Database Performance Guide and
Reference for more information about the ANALYZE command.

Oracle9i Supplied PL/SQL Packages Reference for information about

DBMS_STATS package.
Performance Tuning 5-3

Optimizing Queries with Statistics
In this situation, Oracle can execute this query more efficiently by first doing a

b-tree index range scan on the structured predicate (author = ’King’), followed

by a table access by rowid, and then applying the other two predicates to the rows

returned from the b-tree table access.

Re-Collecting Statistics
After synchronizing your index, you can re-collect statistics on a single index to

update the cost estimates.

If your base table has been re-analysed before the synchronization, it is sufficient to

analyze the index after the synchronization without re-analyzing the entire table.

To do so, you can issue any of the following statements:

ANALYZE INDEX <index_name> COMPUTE STATISTICS;
or

ANALYZE INDEX <index_name> ESTIMATE STATISTICS SAMPLE 1000 ROWS;

or

ANALYZE INDEX <index_name> ESTIMATE STATISTICS SAMPLE 50 PERCENT;

Deleting Statistics
You can delete the statistics associated with a table by issuing:

ANALYZE TABLE <table_name> DELETE STATISTICS;

You can delete statistics on one index by issuing the following statement:

ANALYZE INDEX <index_name> DELETE STATISTICS;

Note: When statistics are not collected for a Text index, the

cost-based optimizer assumes low selectivity and index costs for

the CONTAINS predicate.
5-4 Oracle Text Application Developer’s Guide

Optimizing Queries for Response Time
Optimizing Queries for Response Time
By default, Oracle optimizes queries for throughput. This results in queries

returning all rows in shortest time possible.

However, in many cases, especially in a web-application scenario, queries must be

optimized for response time, when you are only interested in obtaining the first few

hits of a potentially large hitlist in the shortest time possible.

The following sections describe some ways to optimize CONTAINS queries for

response time:

■ Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries

■ Improved Response Time using Local Partitioned CONTEXT Index

■ Improved Response Time with Local Partitioned Index for Order by Score

Other Factors that Influence Query Response Time
There are other factors that can influence query response time such as:

■ collection of table statistics

■ memory allocation

■ sorting

■ presence of LOB columns in your base table

■ partitioning

■ parallelism

■ the number term expansions in your query

Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries
The FIRST_ROWS(n) hint is new for release 9.0. When you need the first rows of an

ORDER BY query, Oracle recommends that you use this new fully cost-based hint

in place of FIRST_ROWS.

See Also: "Frequently Asked Questions a About Query

Performance" in this chapter.
Performance Tuning 5-5

Optimizing Queries for Response Time
You use the FIRST_ROWS(n) in cases where you want the first n number of rows in

the shortest possible time. For example, consider the following PL/SQL block that

uses a cursor to retrieve the first 10 hits of a query and uses the FIRST_ROWS(n)
hint to optimize the response time:

declare
cursor c is

select /* FIRST_ROWS(10) */ article_id from articles_tab
 where contains(article, ’Oracle’)>0 order by pub_date desc;

begin
for i in c
loop
insert into t_s values(i.pk, i.col);
exit when c%rowcount > 11;
end loop;

end;
/

The cursor c is a SELECT statement that returns the rowids that contain the word

test in sorted order. The code loops through the cursor to extract the first 10 rows.

These rows are stored in the temporary table t_s .

With the FIRST_ROWS hint, Oracle instructs the Text index to return rowids in

score-sorted order, if possible.

Without the hint, Oracle sorts the rowids after the Text index has returned all the

rows in unsorted order that satisfy the CONTAINS predicate. Retrieving the entire

result set as such takes time.

Since only the first 10 hits are needed in this query, using the hint results in better

performance.

Note: As this hint is cost-based, Oracle recommends that you

collect statistics on your tables before you use this hint. See

"Collecting Statistics" in this chapter.

Note: Use the FIRST_ROWS(n) hint when you need only the first

few hits of a query. When you need the entire result set, do not use

this hint as it might result in poor performance.
5-6 Oracle Text Application Developer’s Guide

Optimizing Queries for Response Time
About the FIRST_ROWS Hint
You can also optimize for response time using the related FIRST_ROWS hint. Like

FIRST_ROWS(n), when queries are optimized for response time, Oracle returns the

first rows in the shortest time possible.

For example, you can use this hint as follows

select /*+ FIRST_ROWS */ pk, score(1), col from ctx_tab
 where contains(txt_col, 'test', 1) > 0 order by score(1) desc;

However, this hint is only rule-based. This means that Oracle always chooses the

index which satisfies the ORDER BY clause. This might result in sub-optimal

performance for queries in which the CONTAINS clause is very selective. In these

cases, Oracle recommends that you use the FIRST_ROWS(n) hint, which is fully

cost-based.

Improved Response Time using Local Partitioned CONTEXT Index
Partitioning your data and creating local partitioned indexes can improve your

query performance. On a partitioned table, each partition has its own set of index

tables. Effectively, there are multiple indexes, but the results from each are

combined as necessary to produce the final result set.

You create the CONTEXT index using the LOCAL keyword:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context
PARAMETERS (’...’)
LOCAL

With partitioned tables and indexes, you can improve performance of the following

types of queries:

■ Range Search on Partition Key Column

■ ORDER BY Partition Key Column

Range Search on Partition Key Column
This is a query that restricts the search to a particular range of values on a column

that is also the partition key. For example, consider a query on a date range:

SELECT storyid FROM storytab WHERE CONTAINS(story, ’oliver’)>0 and pub_date
BETWEEN ’1-OCT-93’ AND ’1-NOV-93’;
Performance Tuning 5-7

Optimizing Queries for Response Time
If the date range is quite restrictive, it is very likely that the query can be satisfied by

only looking in a single partition.

ORDER BY Partition Key Column
This is a query that requires only the first N hits and the ORDER BY clause names

the partition key. Consider an ORDER BY query on a price column to fetch the first

20 hits such as:

SELECT * FROM (
SELECT itemid FROM item_tab WHERE CONTAINS(item_desc, ’cd player’)>0 ORDER
BY price)
WHERE ROWNUM < 20;

In this example, with the table partitioned by price, the query might only need to

get hits from the first partition to satisfy the query.

Improved Response Time with Local Partitioned Index for Order by Score
Using the FIRST_ROWS hint on a local partitioned index might result in poor

performance, especially when you order by score. This is because all hits to the

query across all partitions must be obtained before the results can be sorted.

You can work around this by using an inline view when you use the FIRST_ROWS

hint. Specifically, you can use the FIRST_ROWS hint to improve query performance

on a local partitioned index under the following conditions:

■ The text query itself including the order by SCORE() clause is expressed as an

in-line view.

■ The text query inside the in-line view contains the FIRST_ROWS or DOMAIN_

INDEX_SORT hint.

■ The query on the in-line view has ROWNUM predicate limiting number of

rows to fetch from the view.

For example, if you have the following text query and local text index created on a

partitioned table doc_tab:

 select doc_id, score(1) from doc_tab
 where contains(doc, ’oracle’, 1)>0
 order by score(1) desc;

and you are only interested in fetching top 20 rows, you can rewrite the query to
5-8 Oracle Text Application Developer’s Guide

Optimizing Queries for Response Time
 select * from
 (select /*+ FIRST_ROWS */ doc_id, score(1) from doc_tab
 where contains(doc, ’oracle’, 1)>0 order by score(1) desc)
 where rownum < 21;

See Also: Oracle9i Database Performance Guide and Reference for

more information about the query optimizer and using hints such

as FIRST_ROWS.

For more information about the EXPLAIN PLAN command,

Oracle9i Database Performance Guide and Reference and Oracle9i SQL
Reference.
Performance Tuning 5-9

Optimizing Queries for Throughput
 Optimizing Queries for Throughput
Optimizing a query for throughput returns all hits in the shortest time possible.

This is the default behavior.

The following sections describe how you can explicitly optimize for throughput.

CHOOSE and ALL ROWS Modes
By default, queries are optimized for throughput under the CHOOSEand ALL_ROWS
modes. When queries are optimized for throughput, Oracle returns all rows in the

shortest time possible.

FIRST_ROWS Mode
In FIRST_ROWS mode, the Oracle optimizer optimizes for fast response time by

having the Text domain index return score-sorted rows, if possible. This is the

default behavior when you use the FIRST_ROWS hint.

If you want to optimize for better throughput under FIRST_ROWS, you can use the

DOMAIN_INDEX_NO_SORT hint. Better throughput means you are interested in

getting all the rows to a query in the shortest time.

The following example achieves better throughput by not using the Text domain

index to return score-sorted rows. Instead, Oracle sorts the rows after all the rows

that satisfy the CONTAINS predicate are retrieved from the index:

select /*+ FIRST_ROWS DOMAIN_INDEX_NO_SORT */ pk, score(1), col from ctx_tab
 where contains(txt_col, 'test', 1) > 0 order by score(1) desc;

See Also: Oracle9i Database Performance Guide and Reference for

more information about the query optimizer and using hints such

as FIRST_ROWS and CHOOSE.
5-10 Oracle Text Application Developer’s Guide

Parallel Queries
Parallel Queries
Oracle supports parallel query on a local CONTEXT index. That is, based on the

parallel degree of the index and various system attributes, Oracle determines

number of parallel query slaves to be spawned to process the index. Each parallel

query slave will process one or more index partitions. This is the default query

behavior for local indexes created in parallel.

In general, parallel queries are good for DSS or analytical systems with large data

collection, multiple CPUs, and low number of concurrent users.

However, for heavily loaded systems with high number of concurrent users,

parallel query can result in degrading your overall query throughput. In addition,

typical top N text queries with order by partition key column such as

select * from (
 select story_id from stories_tab where contains(...)>0 order by
publication_date desc)
 where rownum <= 10;

will generally perform worse with a parallel query.

You can disable parallel querying after a parallel index operation with ALTER

INDEX command as follows

Alter index <text index name> NOPARALLEL;
Alter index <text index name> PARALLEL 1;

You can also enable or increase the parallel degree by doing

Alter index <text index name> paralllel < parallel degree >;
Performance Tuning 5-11

Tuning Queries with Blocking Operations
Tuning Queries with Blocking Operations
Issuing a query with more than one predicate can cause a blocking operation in the

execution plan. For example, consider the following mixed query:

select docid from mytab where contains(text, ’oracle’, 1) > 0
 AND colA > 5
 AND colB > 1
 AND colC > 3;

Assume that all predicates are unselective and colA, colB, and colC have bitmap

indexes. The Oracle cost-based optimizer chooses the following execution plan:

TABLE ACCESS BY ROWIDS
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP INDEX COLA_BMX
 BITMAP INDEX COLB_BMX
 BITMAP INDEX COLC_BMX
 BITMAP CONVERSION FROM ROWIDS
 SORT ORDER BY
 DOMAIN INDEX MYINDEX

Since the BITMAP AND is a blocking operation, Oracle must temporarily save the

rowid and score pairs returned from the Oracle Text domain index before executing

the BITMAP AND operation.

Oracle attempts to save these rowid and score pairs in memory. However, when the

size of the result set containing these rowid and score pairs exceeds the SORT_
AREA_SIZE initialization parameter, Oracle spills these results to temporary

segments on disk.

Since saving results to disk causes extra overhead, you can improve performance by

increasing the SORT_AREA_SIZE parameter using ALTER SESSION as follows:

alter session set SORT_AREA_SIZE = <new memory size in bytes>;

For example, to set the buffer to approximately 8 megabytes, you can issue:

alter session set SORT_AREA_SIZE = 8300000;

See Also: Oracle9i Database Performance Guide and Reference and

Oracle9i Database Reference for more information on SORT_AREA_
SIZE .
5-12 Oracle Text Application Developer’s Guide

Frequently Asked Questions a About Query Performance
Frequently Asked Questions a About Query Performance
This section answers some of the frequently asked questions about query

performance.

What is Query Performance ?
Answer: There are generally two measures of query performance:

■ response time, the time to get an answer to an individual query, and

■ throughput, the number of queries that can be run in any time period, e.g.

queries per second).

These two are related, but are not the same. In a heavily loaded system, you

normally want maximum throughput, whereas in a relatively lightly loaded system,

you probably want minimum response time. Also, some applications require a

query to deliver all its hits to the user, whereas others might only require the first 20

hits from an ordered set. It is important to distinguish between these two scenarios.

What is the fastest type of text query?
Answer: The fastest type of query will meet the following conditions:

■ Single CONTAINS clause

■ No other conditions in the WHERE clause

■ No ORDER BY clause at all

■ Only the first page of results is returned (e.g. the first 10 or 20 hits).

Should I collect statistics on my tables?
Answer: Yes. Collecting statistics on your tables enables Oracle to do cost-based

analysis. This helps Oracle choose the most efficient execution plan for your

queries.

How does the size of my data affect queries?
Answer: The speed at which the text index can deliver ROWIDs is not affected by

the actual size of the data. Text query speed will be related to the number of rows

See Also: "Optimizing Queries with Statistics" in this chapter.
Performance Tuning 5-13

Frequently Asked Questions a About Query Performance
that must be fetched from the index table, number of hits requested, number of hits

produced by the query, and the presence or absence of sorting.

How does the format of my data affect queries?
Answer: The format of the documents (plain ascii text, HTML or Microsoft Word)

should make no difference to query speed. The documents are filtered to plain text

at indexing time, not query time.

The cleanliness of the data will make a difference. Spell-checked and sub-edited text

for publication tends to have a much smaller total vocabulary (and therefore size of

the index table) than informal text such as emails, which will contain many spelling

errors and abbreviations. For a given index memory setting, the extra text takes up

more memory, which can lead to more fragmented rows than in the cleaner text,

which can adversely affect query response time.

What is a functional versus an indexed lookup?
Answer: There are two ways the kernel can query the text index. In the first and

most common case, the kernel asks the text index for all the rowids that satisfy a

particular text search. These rowids are returned in batches. In the second, the

kernel passes individual rowids to the text index, and asks whether that particular

rowid satisfies a certain text criterion.

The second is known as a functional lookup, and is most commonly done where

there is a very selective structured clause, so that only a few rowids must be

checked against the text index. An example of a search where a functional lookup

may be used:

SELECT ID, SCORE(1), TEXT FROM MYTABLE
WHERE START_DATE = ’21 Oct 1992’ <- highly selective
AND CONTAINS (TEXT, ’commonword’) > 0 <- unselective

Functional invocation is also used for text query ordered by structured column (for

example date, price) and text query is unselective.

What tables are involved in queries?
Answer: All queries look at the index token table. Its name has the form

DR$indexname$I . This contains the list of tokens (column TOKEN_TEXT) and the

information about the row and word positions where the token occurs (column

TOKEN_INFO).
5-14 Oracle Text Application Developer’s Guide

Frequently Asked Questions a About Query Performance
The row information is stored as internal DOCID values. These must be translated

into external ROWID values. The table used for this depends on the type of lookup:

For functional lookups, the $K table, DR$indexname$K , is used. This is a

simple Index Organized Table (IOT) which contains a row for each DOCID/ROWID

pair.

For indexed lookups, the $R table, DR$indexname$R , is used. This holds the

complete list of ROWIDs in a BLOB column.

Hence we can easily find out whether a functional or indexed lookup is being used

by examining a SQL trace, and looking for the $K or $R tables.

Does sorting the results slow a text-only query?
Answer: Yes, it certainly does.

If there is no sorting, then Oracle can return results as it finds them, which is

quicker in the common case where the application needs to display only a page of

results at a time.

How do I make a ORDER BY score query faster?
Answer: Sorting by relevance (SCORE(n)) can be extremely quick if the FIRST_

ROWS(n) hint is used. In this case, Oracle performs a high speed internal sort when

fetching from the text index tables.

An example of such a query:

 SELECT /*+ FIRST_ROWS(10) */ ID, SCORE(1), TEXT FROM MYTABLE
 WHERE CONTAINS (TEXT, ’searchterm’, 1) > 0
 ORDER BY SCORE(1) DESC;

Note that for this to work efficiently, there must be no other criteria in the WHERE

clause other than a single CONTAINS.

Note: These internal index tables are subject to change from

release to release. Oracle recommends that you do not directly

access these tables in your application.
Performance Tuning 5-15

Frequently Asked Questions a About Query Performance
Which Memory Settings Affect Querying?
Answer: For querying, you want to strive for a large system global area (SGA). You

can set these parameters related to SGA in your Oracle initialization file. You can

also set these parameters dynamically.

The SORT_AREA_SIZE parameter controls the memory available for sorting for

ORDER BY queries. You should increase the size of this parameter if you frequently

order by structured columns.

Does out of line LOB storage of wide base table columns improve performance?
Answer: Yes. Typically, a SELECT statement selects more than one column from

your base table. Since Oracle fetches columns to memory, it is more efficient to store

wide base table columns such as LOBs out of line, especially when these columns

are rarely updated but frequently selected.

When LOBs are stored out of line, only the LOB locators need to be fetched to

memory during querying. Out of line storage reduces the effective size of the base

table making it easier for Oracle to cache the entire table to memory. This reduces

the cost of selecting columns from the base table, and hence speeds up text queries.

In addition, having smaller base tables cached in memory allows for more index

table data to be cached during querying, which improves performance.

How can I make a CONTAINS query on more than one column faster?
Answer: The fastest type of query is one where there is only a single CONTAINS

clause, and no other conditions in the WHERE clause.

Consider the following multiple CONTAINS query:

 SELECT title, isbn FROM booklist
 WHERE CONTAINS (title, ’horse’) > 0
 AND CONTAINS (abstract, ’racing’) > 0

See Also:

Oracle9i Database Administrator’s Guide for more information on

setting SGA related parameters.

Oracle9i Database Performance Guide and Reference for more

information on memory allocation and setting the SORT_AREA_

SIZE parameter.
5-16 Oracle Text Application Developer’s Guide

Frequently Asked Questions a About Query Performance
We can obtain the same result with section searching and the WITHIN operator as

follows:

 SELECT title, isbn FROM booklist
 WHERE CONTAINS (alltext,
 ’horse WITHIN title AND racing WITHIN abstract’)>0

This will be a much faster query. In order to use a query like this, we must copy all

the data into a single text column for indexing, with section tags around each

column’s data. This can be done via PL/SQL procedures before indexing, or by

making use of the USER_DATASTORE datastore during indexing to synthesize

structured columns with the text column into one document.

Is it OK to have many expansions in a query?
Answer: Each distinct word used in a query will require at least one row to be

fetched from the index table. It is therefore best to keep the number of expansions

down as much as possible.

You should not use expansions such as wild cards, thesaurus, stemming and fuzzy

matching unless they are necessary to the task. In general, a few expansions (say up

to 20) is OK, but you should try to avoid more than 100 or so expansions in a query.

The query feedback mechanism can be used to determine the number of expansions

for any particular query expression.

In addition for wildcard and stem queries, you can remove the cost of term

expansion from query time to index time by creating prefix, substring or stem

indexes. Query performance increases at the cost of longer indexing time and added

disk space.

Prefix and substring indexes can improve wildcard performance. You enable prefix

and substring indexing with the BASIC_WORDLIST preference. The following

example sets the wordlist preference for prefix and substring indexing. For prefix

indexing, it specifies that Oracle create token prefixes between 3 and 4 characters

long:

begin
ctx_ddl.create_preference(’mywordlist’, ’BASIC_WORDLIST’);
ctx_ddl.set_attribute(’mywordlist’,’PREFIX_INDEX’,’TRUE’);
ctx_ddl.set_attribute(’mywordlist’,’PREFIX_MIN_LENGTH’,3);
ctx_ddl.set_attribute(’mywordlist’,’PREFIX_MAX_LENGTH’, 4);
ctx_ddl.set_attribute(’mywordlist’,’SUBSTRING_INDEX’, ’YES’);

end
Performance Tuning 5-17

Frequently Asked Questions a About Query Performance
 You enable stem indexing with the BASIC_LEXER preference:

begin
ctx_ddl.create_preference(’mylex’, ’BASIC_LEXER’);
ctx_ddl.set_attribute (’mylex’, ’index_stems’, ’ENGLISH’);

end;

How can local partition indexes help?
Answer: You can create local partitioned CONTEXT indexes on partitioned tables.

This means that on a partitioned table, each partition has its own set of index tables.

Effectively, there are multiple indexes, but the results from each are combined as

necessary to produce the final result set.

The index is created using the LOCAL keyword:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context
PARAMETERS (’...’)
LOCAL

With partitioned tables and local indexes, you can improve performance of the

following types of CONTAINS queries:

■ Range Search on Partition Key Column

This is a query that restricts the search to a particular range of values on a

column that is also the partition key.

■ ORDER BY Partition Key Column

This is a query that requires only the first N hits and the ORDER BY clause

names the partition key.

Should I query in parallel?
Answer: Depends. Even though parallel querying is the default behavior for

indexes created in parallel, it usually results in degrading overall query throughput

on heavily loaded systems.

In general, parallel queries are good for DSS or analytical systems with large data

collections, multiple CPUs, and low number of concurrent users.

See Also: "Improved Response Time using Local Partitioned

CONTEXT Index" in this chapter.

See Also: "Parallel Queries" in this chapter.
5-18 Oracle Text Application Developer’s Guide

Frequently Asked Questions a About Query Performance
Should I index themes?
Answer: Indexing theme information with a CONTEXT index takes longer and also

increases the size of your index. However, theme indexes enable ABOUT queries to

be more precise by using the knowledge base, if available. If your application uses

ABOUT queries heavily, it might be worthwhile to create a theme component to the

index, despite the extra indexing time and extra storage space required.

When should I use a CTXCAT index?
Answer: CTXCAT indexes work best when text is in small chunks, maybe a few

lines maximum, and searches need to restrict and/or sort the result set according to

certain structured criteria, usually numbers or dates.

For example, consider an on-line auction site. Each item for sale has a short

description, a current bid price, and dates for the start and end of the auction. A

user might want to see all the records with antique cabinet in the description, with a

current bid price less than $500. Since he’s particularly interested in newly posted

items, he wants the results sorted by auction start time.

Such a search is not always efficient with a CONTAINS structured query on a

CONTEXT index, where the response time can vary significantly depending on the

structured and CONTAINS clauses. This is because the intersection of structured

and CONTAINS clauses or the ordering of text query is computed during query

time.

By including structured information such as price and date within the CTXCAT

index, query response time is always in an optimal range regardless of search

criteria. This is because the interaction between text and structured query is

pre-computed during indexing. Consequently query response time is optimum.

When is a CTXCAT index NOT suitable?
Answer: There are differences in the time and space needed to create the index.

CTXCAT indexes take a bit longer to create and use considerably more disk space

than CONTEXT indexes. If you are tight on disk space, you should consider

carefully whether CTXCAT indexes are appropriate for you.

With respect to query operators, you can now use the richer CONTEXT grammar in

CATSEARCH queries with query templates. The older restriction of a single

CATSEARCH query grammar no longer holds.

See Also: "ABOUT Queries and Themes" in Chapter 3,

"Querying".
Performance Tuning 5-19

Frequently Asked Questions a About Query Performance
What optimizer hints are available, and what do they do?
Answer: The optimizer hint INDEX(table column) can be used in the usual

way to drive the query with a text or b-tree index.

You can also use the NO_INDEX(table column) hint to disable a specific index.

Additionally, the FIRST_ROWS(n) hint has a special meaning for text queries and

should be used when you need the first n hits to a query. Use of the FIRST_ROWS
hint in conjunction with ORDER BY SCORE(n) DESC tells Oracle to accept a

sorted set from the text index, and not to do a further sort.

See Also: "Optimizing Queries for Response Time" in this

chapter.
5-20 Oracle Text Application Developer’s Guide

Frequently Asked Questions About Indexing Performance
Frequently Asked Questions About Indexing Performance
This section answers some of the frequently asked questions about indexing

performance.

How long should indexing take?
Answer: Indexing text is a resource-intensive process. Obviously, the speed of

indexing will depend on the power of the hardware involved.

As a benchmark, with an average document size of 5K, Oracle Text can index

approximately 200 documents per second with the following hardware and parallel

configuration:

■ 4x400Mhz Sun Sparc CPUs

■ 4 gig of RAM

■ EMC symmetrix (24 disks striped)

■ Parallel degree of 5 with 5 partitions

■ Index memory of 600MB per index process

■ XML news documents that averaged 5K in size

■ USER_DATASTORE

Other factors such as your document format, location of your data, and the calls to

user-defined datastores, filters, and lexers can have an impact on your indexing

speed.

Which index memory settings should I use?
Answer: You can set your index memory with the system parameters DEFAULT_

INDEX_MEMORY and MAX_INDEX_MEMORY. You can also set your index

memory at run time with the CREATE INDEX memory parameter in the parameter

string.

You should aim to set the DEFAULT_INDEX_MEMORY value as high as possible,

without causing paging.

You can also improve Indexing performance by increasing the SORT_AREA_SIZE

system parameter.

Experience has shown that using a large index memory setting, even into hundreds

of megabytes, will improve the speed of indexing and reduce the fragmentation of
Performance Tuning 5-21

Frequently Asked Questions About Indexing Performance
the final indexes. However, if set too high, then the memory paging that occurs will

cripple indexing speed.

With parallel indexing, each stream requires its own index memory. When dealing

with very large tables, you can tune your database system global area (SGA)

differently for indexing and retrieval. For querying, you are hoping to get as much

information cached in the system global area’s (SGA) block buffer cache as possible.

So you should be allocating a large amount of memory to the block buffer cache.

But this will not make any difference to indexing, so you would be better off

reducing the size of the SGA to make more room for a large index memory settings

during indexing.

You set the size of SGA in your Oracle initialization file.

How much disk overhead will indexing require?
Answer: The overhead, the amount of space needed for the index tables, varies

between about 50% of the original text volume and 200%. Generally, the larger the

total amount of text, the smaller the overhead, but many small records will use

more overhead than fewer large records. Also, clean data (such as published text)

will require less overhead than dirty data such as emails or discussion notes, since

the dirty data is likely to include many unique words from mis-spellings and

abbreviations.

A text-only index is smaller than a combined text and theme index. A prefix and

substring index makes the index significantly larger.

How does the format of my data affect indexing?
Answer: You can expect much lower storage overhead for formatted documents

such as Microsoft Word files since such documents tend to be very large compared

to the actual text held in them. So 1GB of Word documents might only require 50MB

See Also:

Oracle Text Reference to learn more about Oracle Text system

parameters.

Oracle9i Database Administrator’s Guide for more information on

setting SGA related parameters.

Oracle9i Database Performance Guide and Reference for more

information on memory allocation and setting the SORT_AREA_

SIZE parameter.
5-22 Oracle Text Application Developer’s Guide

Frequently Asked Questions About Indexing Performance
of index space, whereas 1GB of plain text might require 500MB, since there is ten

times as much plain text in the latter set.

Indexing time is less clear-cut. Although the reduction in the amount of text to be

indexed will have an obvious effect, you must balance this out against the cost of

filtering the documents with the INSO filter or other user-defined filters.

Can I index in parallel?
Answer: Yes, you can index in parallel. Parallel indexing can improve index

performance when you have a large amount of data, and have multiple CPUs.

You use the PARALLEL keyword when creating the index:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context PARAMETERS (’...’) PARALLEL 3;

This will create the index with up to three separate indexing processes depending

on your resources.

How do I create a local partitioned index in parallel?
Answer: You can improve indexing performance by creating a local index in

parallel.

However, currently you cannot create a local partitioned index in parallel using the

PARALLEL parameter with CREATE INDEX. In such cases the parameter is

ignored and indexing proceeds serially.

Note: It is no longer necessary to create a partitioned table to

index in parallel as was the case in earlier releases.

Note: When you create a local index in parallel as such (which is

actually run in serial), subsequent queries are processed in parallel

by default. Creating a non-partitioned index in parallel does not

turn on parallel query processing.

Parallel querying degrades query throughput especially on heavily

loaded systems. Because of this, Oracle recommends that you

disable parallel querying after indexing. To do so, use ALTER

INDEX NOPARALLEL.
Performance Tuning 5-23

Frequently Asked Questions About Indexing Performance
To create a local index in parallel, create an unusable index first, then run the DBMS_
PCLXUTIL.BUILD_PART_INDEX utility.

In this example, the base table has three partitions. We create a local partitioned

unusable index first, the run the DBMS_PCLUTIL.BUILD_PART_INDEX, which

builds the 3 partitions in parallel (inter-partition parallelism). Also inside each

partition, index creation is done in parallel (intra-partition parallelism) with a

parallel degree of 2.

create index tdrbip02bx on tdrbip02b(text)
indextype is ctxsys.context local (partition tdrbip02bx1,
 partition tdrbip02bx2,
 partition tdrbip02bx3)
unusable;

exec dbms_pclxutil.build_part_index(3,2,’TDRBIP02B’,’TDRBIP02BX’,TRUE);

How can I tell how far my indexing has got?
Answer: You can use the CTX_OUTPUT.START_LOGprocedure to log output from

the indexing process. Filename will normally be written to $ORACLE_
HOME/ctx/log , but you can change the directory using the LOG_DIRECTORY
parameter in CTX_ADM.SET_PARAMETER.

See Also: Oracle Text Reference to learn more about using this

procedure.
5-24 Oracle Text Application Developer’s Guide

Frequently Asked Questions About Updating the Index
Frequently Asked Questions About Updating the Index
This section answers some of the frequently asked questions about updating your

index and related performance issues.

How often should I index new or updated records?
Answer: How often do you need to? The less often you run reindexing with CTX_
DLL.SYNC_INDEX then the less fragmented your indexes will be, and the less you

will need to optimize them.

However, this means that your data will become progressively more out of date,

which may be unacceptable for your users.

Many systems are OK with overnight indexing. This means data that is less than a

day old is not searchable. Other systems use hourly, ten minute, or five minute

updates.

How can I tell when my indexes are getting fragmented?
Answer: The best way is to time some queries, run index optimization, then time

the same queries (restarting the database to clear the SGA each time, of course). If

the queries speed up significantly, then optimization was worthwhile. If they don’t,

you can wait longer next time.

You can also use CTX_REPORT.INDEX_STATS to analyze index fragmentation.

Does memory allocation affect index synchronization?
Answer: Yes, the same way as for normal indexing. But of course, there are often far

fewer records to be indexed during a synchronize operation, so it is not usually

necessary to provide hundreds of megabytes of indexing memory.

See Also: Oracle Text Reference to learn more about using CTX_
DDL.SYNC_INDEX.

"Managing DML Operations for a CONTEXT Index" in Chapter 2,

"Indexing"

See Also: Oracle Text Reference to learn more about using the CTX_
REPORT package.

"Index Optimization" in Chapter 2, "Indexing".
Performance Tuning 5-25

Frequently Asked Questions About Updating the Index
5-26 Oracle Text Application Developer’s Guide

Document Section Sear
6

Document Section Searching

This chapter describes how to use document sections in an Oracle Text query

application.

The following topics are discussed in this chapter:

■ About Document Section Searching

■ HTML Section Searching

■ XML Section Searching
ching 6-1

About Document Section Searching
About Document Section Searching
Section searching enables you to narrow text queries down to blocks of text within

documents. Section searching is useful when your documents have internal

structure, such as HTML and XML documents.

You can also search for text at the sentence and paragraph level.

Enabling Section Searching
The steps for enabling section searching for your document collection are:

1. Create a section group

2. Define your sections

3. Index your documents

4. Section search with WITHIN, INPATH, or HASPATH operators

Create a Section Group
Section searching is enabled by defining section groups. You use one of the

system-defined section groups to create an instance of a section group. Choose a

section group appropriate for your document collection.

You use section groups to specify the type of document set you have and implicitly

indicate the tag structure. For instance, to index HTML tagged documents, you use

the HTML_SECTION_GROUP. Likewise, to index XML tagged documents, you can

use the XML_SECTION_GROUP.

The following table list the different types of section groups you can use:

Section Group Preference Description

NULL_SECTION_GROUP This is the default. Use this group type when you
define no sections or when you define only SENTENCE
or PARAGRAPH sections.

BASIC_SECTION_GROUP Use this group type for defining sections where the
start and end tags are of the form <A> and .

Note: This group type dopes not support input such as
unbalanced parentheses, comments tags, and
attributes. Use HTML_SECTION_GROUP for this type of
input.

HTML_SECTION_GROUP Use this group type for indexing HTML documents
and for defining sections in HTML documents.
6-2 Oracle Text Application Developer’s Guide

About Document Section Searching
You use the CTX_DDL package to create section groups and define sections as part

of section groups. For example, to index HTML documents, create a section group

with HTML_SECTION_GROUP:

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
end;

XML_SECTION_GROUP Use this group type for indexing XML documents and
for defining sections in XML documents.

AUTO_SECTION_GROUP Use this group type to automatically create a zone
section for each start-tag/end-tag pair in an XML
document. The section names derived from XML tags
are case-sensitive as in XML.

Attribute sections are created automatically for XML
tags that have attributes. Attribute sections are named
in the form attribute@tag.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section
groups:

■ You cannot add zone, field or special sections to an
automatic section group.

■ Automatic sectioning does not index XML
document types (root elements.) However, you can
define stop-sections with document type.

■ The length of the indexed tags including prefix and
namespace cannot exceed 64 characters. Tags
longer than this are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. Behaves
like the AUTO_SECTION_GROUP.

The difference is that with this section group you can
do path searching with the INPATH and HASPATH
operators. Queries are also case-sensitive for tag and
attribute names.

NEWS_SECTION_GROUP Use this group for defining sections in newsgroup
formatted documents according to RFC 1036.

Section Group Preference Description
Document Section Searching 6-3

About Document Section Searching
Define Your Sections
You define sections as part of the section group. The following example defines an

zone section called heading for all text within the HTML < H1> tag:

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’htmgroup’, ’heading’, ’H1’);
end;

Index your Documents
When you index your documents, you specify your section group in the parameter

clause of CREATE INDEX.

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters(’filter ctxsys.null_filter section group htmgroup’);

Section Searching with WITHIN Operator
When your documents are indexed, you can query within sections using the

WITHIN operator. For example, to find all the documents that contain the word

Oracle within their headings, issue the following query:

’Oracle WITHIN heading’

Path Searching with INPATH and HASPATH Operators
When you use the PATH_SECTION_GROUP, the system automatically creates XML

sections for you. In addition to using the WITHIN operator to issue queries, you can

issue path queries with the INPATH and HASPATH operators.

Note: If you are using the AUTO_SECTION_GROUP or PATH_
SECTION_GROUP to index an XML document collection, you need

not explicitly define sections since the system does this for you

during indexing.

See Also: "Section Types" in this chapter for more information

about sections.

"XML Section Searching" in this chapter for more information about

section searching with XML.

See Also: Oracle Text Reference to learn more about using the

WITHIN operator.
6-4 Oracle Text Application Developer’s Guide

About Document Section Searching
Section Types
All sections types are blocks of text in a document. However, sections can differ in

the way they are delimited and the way they are recorded in the index. Sections can

be one of the following:

■ zone section

■ field section

■ attribute section (for XML documents)

■ special (sentence or paragraphs)

Zone Section
A zone section is a body of text delimited by start and end tags in a document. The

positions of the start and end tags are recorded in the index so that any words in

between the tags are considered to be within the section. Any instance of a zone

section must have a start and an end tag.

For example, the text between the <TITLE> and </TITLE> tags can be defined as a

zone section as follows:

<TITLE>Tale of Two Cities</TITLE>
It was the best of times...

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the WITHIN operator to search for a term

across all sections. Oracle returns those documents that contain the term within the

defined section.

Zone sections are well suited for defining sections in HTML and XML documents.

To define a zone section, use CTX_DDL.ADD_ZONE_SECTION.

See Also: "XML Section Searching" to learn more about using

these operators.

Oracle Text Reference to learn more about using the INPATH
operator.
Document Section Searching 6-5

About Document Section Searching
For example, assume you define the section booktitle as follows:

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’htmgroup’, ’booktitle’, ’TITLE’);
end;

After you index, you can search for all the documents that contain the term Cities
within the section booktitle as follows:

’Cities WITHIN booktitle’

With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle returns

those documents that contain cat and dog within the same instance of a booktitle

section.

Repeated Zone Sections Zone sections can repeat. Each occurrence is treated as a

separate section. For example, if <H1> denotes a heading section, they can repeat

in the same documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading , the query Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN
Heading does not.

Overlapping Zone Sections Zone sections can overlap each other. For example, if
and <I> denote two different zone sections, they can overlap in a document as

follows:

plain bold <I> bold and italic only italic </I> plain

Nested Zone Sections Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections

within sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone

sections occur as follows in documents doc1 and doc2:

doc1:

<book1> <author>Scott Tiger</author> This is a cool book to read.<book1>
6-6 Oracle Text Application Developer’s Guide

About Document Section Searching
doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.<book2>

Consider the nested query:

’Scott within author within book1’

This query returns only doc1.

Field Section
A field section is similar to a zone section in that it is a region of text delimited by

start and end tags. A field section is different from a zone section in that the region

is indexed separate from the rest of the document.

Since field sections are indexed differently, you can also get better query

performance over zone sections for when you have a large number of documents

indexed.

Field sections are more suited to when you have a single occurrence of a section in a

a document such as a field in a news header. Field sections can also be made visible

to the rest of the document.

Unlike zone sections, field sections have the following restrictions:

■ field sections cannot overlap

■ field sections cannot repeat

■ field sections cannot nest

Visible and Invisible Field Sections By default, field sections are indexed as a

sub-document separate from the rest of the document. As such, field sections are

invisible to the surrounding text and can only be queried by explicitly naming the

section in the WITHIN clause.

You can make field sections visible if you want the text within the field section to be

indexed as part of the enclosing document. Text within a visible field section can be

queried with or without the WITHIN operator.

The following example shows the difference between using invisible and visible

field sections.

The following code defines a section group basicgroup of the BASIC_SECTION_
GROUP type. It then creates a field section in basicgroup called Author for the

<A> tag. It also sets the visible flag to FALSE to create an invisible section:
Document Section Searching 6-7

About Document Section Searching
begin
ctx_ddl_create_section_group(’basicgroup’, ’BASIC_SECTION_GROUP’);
ctx_ddl.add_field_section(’basicgroup’, ’Author’, ’A’, FALSE);
end;

Because the Author field section is not visible, to find text within the Author
section, you must use the WITHIN operator as follows:

’(Martin Luther King) WITHIN Author’

A query of Martin Luther King without the WITHIN operator does not return

instances of this term in field sections. If you want to query text within field sections

without specifying WITHIN, you must set the visible flag to TRUE when you create

the section as follows:

begin
ctx_ddl.add_field_section(’basicgroup’, ’Author’, ’A’, TRUE);
end;

Nested Field Sections Field sections cannot be nested. For example, if you define a

field section to start with <TITLE> and define another field section to start with

<FOO>, the two sections cannot be nested as follows:

<TITLE> dog <FOO> cat </FOO> </TITLE>

To work with nested sections, define them as zone sections.

Repeated Field Sections Repeated field sections are allowed, but WITHIN queries treat

them as a single section. The following is an example of repeated field section in a

document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query dog and cat within title returns the document, even though these words

occur in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

Attribute Section
You can define attribute sections to query on XML attribute text. You can also have

the system automatically define and index XML attributes for you.

See Also: "XML Section Searching" in this chapter.
6-8 Oracle Text Application Developer’s Guide

About Document Section Searching
Special Sections
Special sections are not recognized by tags. Currently the only special sections

supported are sentence and paragraph. This enables you to search for combination

of words within sentences or paragraphs.

The sentence and paragraph boundaries are determined by the lexer.For example,

the BASIC_LEXER recognizes sentence and paragraph section boundaries as

follows:

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are

indexed.

To add a special section, use the CTX_DDL.ADD_SPECIAL_SECTION procedure. For

example, the following code enables searching within sentences within HTML

documents:

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
ctx_ddl.add_special_section(’htmgroup’, ’SENTENCE’);
end;

You can also add zone sections to the group to enable zone searching in addition to

sentence searching. The following example adds the zone section Headline to the

section group htmgroup :

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
ctx_ddl.add_special_section(’htmgroup’, ’SENTENCE’);
ctx_ddl.add_zone_section(’htmgroup’, ’Headline’, ’H1’);
end;

Table 6–1

Special Section Boundary

SENTENCE WORD/PUNCT/WHITESPACE

WORD/PUNCT/NEWLINE

PARAGRAPH WORD/PUNCT/NEWLINE/WHITESPACE

WORD/PUNCT/NEWLINE/NEWLINE
Document Section Searching 6-9

HTML Section Searching
HTML Section Searching
HTML has internal structure in the form of tagged text which you can use for

section searching. For example, you can define a section called headings for the

<H1> tag. This allows you to search for terms only within these tags across your

document set.

To query, you use the WITHIN operator. Oracle returns all documents that contain

your query term within the headings section. Thus, if you wanted to find all

documents that contain the word oracle within headings, you issue the following

query:

’oracle within headings’

Creating HTML Sections
The following code defines a section group called htmgroup of type HTML_
SECTION_GROUP. It then creates a zone section in htmgroup called heading
identified by the <H1> tag:

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’htmgroup’, ’heading’, ’H1’);
end;

You can then index your documents as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters(’filter ctxsys.null_filter section group htmgroup’);

After indexing with section group htmgroup , you can query within the heading

section by issuing a query as follows:

’Oracle WITHIN heading’

Searching HTML Meta Tags
With HTML documents you can also create sections for NAME/CONTENT pairs in

<META> tags. When you do so you can limit your searches to text within CONTENT.

Example: Creating Sections for <META>Tags
Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">
6-10 Oracle Text Application Developer’s Guide

HTML Section Searching
To create a zone section that indexes all CONTENT attributes for the META tag whose

NAME value is author:

begin
ctx_ddl.create_section_group(’htmgroup’, ’HTML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’htmgroup’, ’author’, ’meta@author’);
end

After indexing with section group htmgroup , you can query the document as

follows:

’ken WITHIN author’
Document Section Searching 6-11

XML Section Searching
XML Section Searching
Like HTML documents, XML documents have tagged text which you can use to

define blocks of text for section searching. The contents of a section can be searched

on with the WITHIN or INPATH operators.

For XML searching, you can do the following:

■ automatic sectioning

■ attribute searching

■ document type sensitive sections

■ path section searching

Automatic Sectioning
You can set up your indexing operation to automatically create sections from XML

documents using the section group AUTO_SECTION_GROUP. The system creates

zone sections for XML tags. Attribute sections are created for the tags that have

attributes and these sections named in the form tag@attribute.

For example, the following command creates the index myindex on a column

containing the XML files using the AUTO_SECTION_GROUP:

CREATE INDEX myindex ON xmldocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
(’datastore ctxsys.default_datastore filter ctxsys.null_filter section group
ctxsys.auto_section_group’);

Attribute Searching
You can search XML attribute text in one of two ways:

■ Create attribute sections with CTX_DDL.ADD_ATTR_SECTION and then index

with the XML_SECTION_GROUP. If you use AUTO_SECTION_GROUP when you

index, attribute sections are created automatically. You can query attribute

sections with the WITHIN operator.

■ Index with the PATH_SECTION_GROUP and query attribute text with the

INPATH operator.
6-12 Oracle Text Application Developer’s Guide

XML Section Searching
Creating Attribute Sections
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
 It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP
and define the attribute section as follows:

begin
ctx_ddl.create_section_group(’myxmlgroup’, ’XML_SECTION_GROUP’);
ctx_ddl.add_attr_section(’myxmlgroup’, ’booktitle’, ’book@title’);
end;

To index:

CREATE INDEX myindex ON xmldocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
(’datastore ctxsys.default_datastore filter ctxsys.null_filter section group
myxmlgroup’);

You can query the XML attribute section booktitle as follows:

’Cities within booktitle’

Searching Attributes with the INPATH Operator
You can search attribute text with the INPATH operator. To do so, you must index

your XML document set with the PATH_SECTION_GROUP.

Creating Document Type Sensitive Sections
You have an XML document set that contains the <book> tag declared for different

document types. You want to create a distinct book section for each document type.

Assume that mydocname1 is declared as an XML document type (root element) as

follows:

<!DOCTYPE mydocname1 ... [...

See Also: "Path Section Searching" in this chapter.
Document Section Searching 6-13

XML Section Searching
Within mydocname1, the element <book> is declared. For this tag, you can create a

section named mybooksec1 that is sensitive to the tag’s document type as follows:

begin
ctx_ddl.create_section_group(’myxmlgroup’, ’XML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’myxmlgroup’, ’mybooksec1’, ’mydocname1(book)’);

end;

Assume that mydocname2 is declared as another XML document type (root

element) as follows:

<!DOCTYPE mydocname2 ... [...

Within mydocname2, the element <book> is declared. For this tag, you can create a

section named mybooksec2 that is sensitive to the tag’s document type as follows:

begin
ctx_ddl.create_section_group(’myxmlgroup’, ’XML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’myxmlgroup’, ’mybooksec2’, ’mydocname2(book)’);

end;

To query within the section mybooksec1, use WITHIN as follows:

’oracle within mybooksec1’

Path Section Searching
XML documents can have parent-child tag structures such as the following:

<A> <C> dog </C>

In this example, tag C is a child of tag B which is a child of tag A.

With Oracle Text, you can do path searching with PATH_SECTION_GROUP. This

section group allows you to specify direct parentage in queries, such as to find all

documents that contain the term dog in element C which is a child of element B and

so on.

With PATH_SECTION_GROUP, you can also perform attribute value searching and

attribute equality testing.

The new operators associated with this feature are

■ INPATH

■ HASPATH
6-14 Oracle Text Application Developer’s Guide

XML Section Searching
Creating Index with PATH_SECTION_GROUP
To enable path section searching, index your XML document set with PATH_
SECTION_GROUP.

Create the preference:

begin
ctx_ddl.create_section_group(’xmlpathgroup’, ’PATH_SECTION_GROUP’);
end;

Create the index:

CREATE INDEX myindex ON xmldocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
(’datastore ctxsys.default_datastore filter ctxsys.null_filter section group
xmlpathgroup’);

When you create the index, you can use the INPATH and HASPATH operators.

Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)
or

dog INPATH(A)

Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

<C><A>dog</C>
Document Section Searching 6-15

XML Section Searching
Direct Parentage Searching
To find all documents that contain the term dog in a B element that is a direct child

of a top-level A element:

dog INPATH(A/B)

This query finds the following XML document:

<A>My dog is friendly.

but does not find:

<C>My dog is friendly.</C>

Tag Value Testing
You can test the value of tags. For example, the query:

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

Attribute Searching
You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document

<C> </C>

Attribute Value Testing
You can test the value of attributes. For example, the query

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA
6-16 Oracle Text Application Developer’s Guide

XML Section Searching
But does not find:

San Francisco, California, USA

Path Testing
You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Section Equality Testing with HASPATH
You can use the HASPATHoperator to do section quality tests. For example, consider

the following query:

dog INPATH A

finds

<A>dog

but it also finds

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality

test with the HASPATH operator. For example,

HASPATH(A="dog")

finds and returns a score of 100 only for the first document, and not the second.

See Also: Oracle Text Reference to learn more about using the

INPATH and HASPATH operators.
Document Section Searching 6-17

XML Section Searching
6-18 Oracle Text Application Developer’s Guide

Working With a Thes
7

Working With a Thesaurus

This chapter describes how to improve your query application with a thesaurus.

The following topics are discussed in this chapter:

■ Overview of Thesauri

■ Defining Thesaural Terms

■ Using a Thesaurus in a Query Application

■ About the Supplied Knowledge Base
aurus 7-1

Overview of Thesauri
Overview of Thesauri
Users of your query application looking for information on a given topic might not

know which words have been used in documents that refer to that topic.

Oracle Text enables you to create case-sensitive or case-insensitive thesauri which

define synonym and hierarchical relationships between words and phrases. You can

then retrieve documents that contain relevant text by expanding queries to include

similar or related terms as defined in the thesaurus.

You can create a thesaurus and load it into the system.

Thesaurus Creation and Maintenance
Thesauri and thesaurus entries can be created, modified, and deleted by all Oracle

Text users with the CTXAPP role.

CTX_THES Package
To maintain and browse your thesaurus programatically, you can use the PL/SQL

package, CTX_THES. With this package, you can browse terms and hierarchical

relationships, add and delete terms, and add and remove thesaurus relations.

Thesaurus Operators
You can also use the thesaurus operators in the CONTAINS clause to expand query

terms according to your loaded thesaurus. For example, you can use the SYN
operator to expand a term such as dog to its synonyms as follows:

’syn(dog)’

ctxload Utility
The ctxload utility can be used for loading thesauri from a plain-text file into the

thesaurus tables, as well as dumping thesauri from the tables into output (dump)

files.

The thesaurus dump files created by ctxload can be printed out or used as input

for other applications. The dump files can also be used to load a thesaurus into the

Note: The Oracle Text thesauri formats and functionality are

compliant with both the ISO-2788 and ANSI Z39.19 (1993)

standards.
7-2 Oracle Text Application Developer’s Guide

Overview of Thesauri
thesaurus tables. This can be useful for using an existing thesaurus as the basis for

creating a new thesaurus.

Case-sensitive Thesauri
In a case-sensitive thesaurus, terms (words and phrases) are stored exactly as

entered. For example, if a term is entered in mixed-case (using either the CTX_THES
package or a thesaurus load file), the thesaurus stores the entry in mixed-case.

When loading a thesaurus, you can specify that the thesaurus be loaded

case-sensitive using the -thescase parameter.

When creating a thesaurus with CTX_THES.CREATE_THESAURUS, you can specify

that the thesaurus created be case-sensitive.

In addition, when a case-sensitive thesaurus is specified in a query, the thesaurus

lookup uses the query terms exactly as entered in the query. Therefore, queries that

use case-sensitive thesauri allow for a higher level of precision in the query

expansion, which helps lookup when and only when you have a case-sensitive

index.

For example, a case-sensitive thesaurus is created with different entries for the

distinct meanings of the terms Turkey (the country) and turkey (the type of bird).

Using the thesaurus, a query for Turkey expands to include only the entries

associated with Turkey.

Case-insensitive Thesauri
In a case-insensitive thesaurus, terms are stored in all-uppercase, regardless of the

case in which they were entered.

The ctxload program loads a thesaurus case-insensitive by default.

When creating a thesaurus with CTX_THES.CREATE_THESAURUS, the thesaurus is

created case-insensitive by default.

In addition, when a case-insensitive thesaurus is specified in a query, the query

terms are converted to all-uppercase for thesaurus lookup. As a result, Oracle Text

is unable to distinguish between terms that have different meanings when they are

in mixed-case.

Note: To take full advantage of query expansions that result from

a case-sensitive thesaurus, your index must also be case-sensitive.
Working With a Thesaurus 7-3

Overview of Thesauri
For example, a case-insensitive thesaurus is created with different entries for the

two distinct meanings of the term TURKEY (the country or the type of bird). Using

the thesaurus, a query for either Turkey or turkey is converted to TURKEY for

thesaurus lookup and then expanded to include all the entries associated with both

meanings.

Default Thesaurus
If you do not specify a thesaurus by name in a query, by default, the thesaurus

operators use a thesaurus named DEFAULT. However, Oracle Text does not provide

a DEFAULT thesaurus.

As a result, if you want to use a default thesaurus for the thesaurus operators, you

must create a thesaurus named DEFAULT. You can create the thesaurus through any

of the thesaurus creation methods supported by Oracle Text:

■ CTX_THES.CREATE_THESAURUS (PL/SQL)

■ ctxload

Supplied Thesaurus
Although Oracle Text does not provide a default thesaurus, Oracle Text does supply

a thesaurus, in the form of a ctxload load file, that can be used to create a

general-purpose, English-language thesaurus.

The thesaurus load file can be used to create a default thesaurus for Oracle Text or it

can be used as the basis for creating thesauri tailored to a specific subject or range of

subjects.

Supplied Thesaurus Structure and Content
The supplied thesaurus is similar to a traditional thesaurus, such as Roget’s

Thesaurus, in that it provides a list of synonymous and semantically related terms.

The supplied thesaurus provides additional value by organizing the terms into a

hierarchy that defines real-world, practical relationships between narrower terms

and their broader terms.

See Also: Oracle Text Reference to learn more about using

ctxload and the CTX_THES package.

See Also: Oracle Text Reference to learn more about using

ctxload and the CTX_THES package.
7-4 Oracle Text Application Developer’s Guide

Overview of Thesauri
Additionally, cross-references are established between terms in different areas of the

hierarchy.

Supplied Thesaurus Location
The exact name and location of the thesaurus load file is operating system

dependent; however, the file is generally named dr0thsus (with an appropriate

extension for text files) and is generally located in the following directory structure:

<Oracle_home_directory>
 <interMedia_Text_directory>
 sample
 thes

See Also: For more information about the directory structure for

Oracle Text, see the Oracle9i installation documentation specific to

your operating system.
Working With a Thesaurus 7-5

Defining Thesaural Terms
Defining Thesaural Terms
You can create synonyms, related terms, and hierarchical relationships with a

thesaurus. The following sections give examples.

Defining Synonyms
If you have a thesaurus of computer science terms, you might define a synonym for

the term XML as extensible markup language. This allows queries on either of these

terms to return the same documents.

XML
SYN Extensible Markup Language

You can thus use the SYN operator to expand XML into its synonyms:

’SYN(XML)’

is expanded to:

’XML, Extensible Markup Language’

Defining Hierarchical Relations
If your document set is made up of news articles, you can use a thesaurus to define

a hierarchy of geographical terms. Consider the following hierarchy that describes a

geographical hierarchy for the U.S state of California:

California
 NT Northern California
 NT San Francisco
 NT San Jose
 NT Central Valley
 NT Fresno
 NT Southern California
 NT Los Angeles

You can thus use the NT operator to expand a query on California as follows:

’NT(California)’

expands to:

’California, Northern California, San Francisco, San Jose, Central Valley,
Fresno, Southern California, Los Angeles’
7-6 Oracle Text Application Developer’s Guide

Defining Thesaural Terms
The resulting hitlist shows all documents related to the U.S. state of California

regions and cities.
Working With a Thesaurus 7-7

Using a Thesaurus in a Query Application
Using a Thesaurus in a Query Application
Defining a custom thesaurus allows you to process queries more intelligently. Since

users of your application might not know which words represent a topic, you can

define synonyms or narrower terms for likely query terms. You can use the

thesaurus operators to expand your query into your thesaurus terms.

There are two ways to enhance your query application with a custom thesaurus so

that you can process queries more intelligently:

■ Load your custom thesaurus and issue queries with thesaurus operators

■ Augment the knowledge base with your custom thesaurus (English only) and

use the ABOUT operator to expand your query.

Each approach has its advantages and disadvantages.

Loading a Custom Thesaurus and Issuing Thesaural Queries
To build a custom thesaurus, follow these steps:

1. Create your thesaurus. See "Defining Thesaural Terms" in this chapter.

2. Load thesaurus with ctxload. For example, the following example imports a

thesaurus named tech_doc from an import file named tech_
thesaurus.txt :

ctxload -user jsmith/123abc -thes -name tech_doc -file tech_thesaurus.txt

3. Use THES operators to query. For example, you can find all documents that

contain XML and its synonyms as defined in tech_doc:

’SYN(XML, tech_doc)’

Advantage
The advantage of using this method is that you can modify the thesaurus after

indexing.

Limitations
This method requires you to use thesaurus expansion operators in your query. Long

queries can cause extra overhead in the thesaurus expansion and slow your query

down.
7-8 Oracle Text Application Developer’s Guide

Using a Thesaurus in a Query Application
Augmenting Knowledge Base with Custom Thesaurus
You can add your custom thesaurus to a branch in the existing knowledge base. The

knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT
queries, and deriving themes for document services.

When you augment the existing knowledge base with your new thesaurus, you

query with the ABOUT operator which implicitly expands to synonyms and

narrower terms. You do not query with the thesaurus operators.

To augment the existing knowledge base with your custom thesaurus, follow these

steps:

1. Create your custom thesaurus, linking new terms to existing knowledge base

terms. See "Defining Thesaural Terms" and "Linking New Terms to Existing

Terms".

2. Load thesaurus with ctxload . See "Loading a Thesaurus with ctxload".

3. Compile the loaded thesaurus with ctxkbtc compiler. "Compiling a Loaded

Thesaurus" later in this section.

4. Index your documents. By default the system creates a theme component to

your index.

5. Use ABOUT operator to query. For example, to find all documents that are

related to the term politics including any synonyms or narrower terms as

defined in the knowledge base, issue the query:

’about(politics)’

Advantage
Compiling your custom thesaurus with the existing knowledge base before

indexing allows for faster and simpler queries with the ABOUT operator. Document

services can also take full advantage of the customized information for creating

theme summaries and Gists.

Limitations
Use of the ABOUToperator requires a theme component in the index, which requires

slightly more disk space. You must also define the thesaurus before indexing your

documents. If you make any change to the thesuarus, you must recompile your

thesaurus and re-index your documents.
Working With a Thesaurus 7-9

Using a Thesaurus in a Query Application
Linking New Terms to Existing Terms
When adding terms to the knowledge base, Oracle recommends that new terms be

linked to one of the categories in the knowledge base for best results in theme

proving.

If new terms are kept completely separate from existing categories, fewer themes

from new terms will be proven. The result of this is poor precision and recall with

ABOUT queries as well as poor quality of gists and theme highlighting.

You link new terms to existing terms by making an existing term the broader term

for the new terms.

Example: Linking New Terms to Existing Terms You purchase a medical thesaurus

medthes containing a a hierarchy of medical terms. The four top terms in the

thesaurus are the following:

■ Anesthesia and Analgesia

■ Anti-Allergic and Respiratory System Agents

■ Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation

Mediators

■ Antineoplastic and Immunosuppressive Agents

To link these terms to the existing knowledge base, add the following entries to the

medical thesaurus to map the new terms to the existing health and medicine branch:

health and medicine
 NT Anesthesia and Analgesia
 NT Anti-Allergic and Respiratory System Agents
 NT Anti-Inflamammatory Agents, Antirheumatic Agents, and Inflamation Mediators
 NT Antineoplastic and Immunosuppressive Agents

Loading a Thesaurus with ctxload
Assuming the medical thesaurus is in a file called med.thes , you load the

thesaurus as medthes with ctxload as follows:

ctxload -thes -thescase y -name medthes -file med.thes -user ctxsys/ctxsys

See Also: Oracle Text Reference for more information about the

supplied English knowledge base.
7-10 Oracle Text Application Developer’s Guide

Using a Thesaurus in a Query Application
Compiling a Loaded Thesaurus
To link the loaded thesaurus medthes to the knowledge base, use ctxkbtc as

follows:

ctxkbtc -user ctxsys/ctxsys -name medthes
Working With a Thesaurus 7-11

About the Supplied Knowledge Base
About the Supplied Knowledge Base
Oracle Text supplies a knowledge base for English and French. The supplied

knowledge contains the information used to perform theme analysis. Theme

analysis includes theme indexing, ABOUT queries, and theme extraction with the

CTX_DOC package.

The knowledge base is a hierarchical tree of concepts and categories. It has six main

branches:

■ science and technology

■ business and economics

■ government and military

■ social environment

■ geography

■ abstract ideas and concepts

The supplied knowledge base is like a thesaurus in that it is hierarchical and

contains broader term, narrower term, and related term information. As such, you

can improve the accuracy of theme analysis by augmenting the knowledge base

with your industry-specific thesaurus by linking new terms to existing terms.

You can also extend theme functionality to other languages by compiling a

language-specific thesuarus into a knowledge base.

Knowledge Base Character Set
Knowledge bases can be in any single-byte character set. Supplied knowledge bases

are in WE8ISO8859P1. You can store an extended knowledge base in another

character set such as US7ASCII.

See Also: Oracle Text Reference for the breakdown of the category

hierarchy.

See Also: "Augmenting Knowledge Base with Custom

Thesaurus" in this chapter.

See Also: "Adding a Language-Specific Knowledge Base" in this

chapter.
7-12 Oracle Text Application Developer’s Guide

About the Supplied Knowledge Base
Adding a Language-Specific Knowledge Base
You can extend theme functionality to languages other than English or French by

loading your own knowledge base for any single-byte whitespace delimited

language, including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting,

and the generation of themes, gists, and theme summaries with CTX_DOC.

You extend theme functionality by adding a user-defined knowledge base. For

example, you can create a Spanish knowledge base from a Spanish thesuarus.

To load your language-specific knowledge base, follow these steps:

1. Load your custom thesaurus using ctxload .

2. Set NLS_LANG so that the language portion is the target language. The charset

portion must be a single-byte character set.

3. Compile the loaded thesaurus using ctxkbtc :

ctxkbtc -user ctxsys/ctxsys -name my_lang_thes

This command compiles your language-specific knowledge base from the loaded

thesaurus. To use this knowledge base for theme analysis during indexing and

ABOUT queries, specify the NLS_LANG language as the THEME_LANGUAGE attribute

value for the BASIC_LEXER preference.

Limitations
The following limitations hold for adding knowledge bases:

■ Oracle supplies knowledge bases in English and French only. You must provide

your own thesaurus for any other language.

■ You can only add knowledge bases for languages with single-byte character

sets. You cannot create a knowledge base for languages which can be expressed

only in multi-byte character sets. If the database is a multi-byte universal

character set, such as UTF-8, the NLS_LANG parameter must still be set to a

compatible single-byte character set when compiling the thesaurus.

■ Adding a knowledge base works best for whitespace delimited languages.

■ You can have at most one knowledge base per NLS language.

■ Obtaining hierarchical query feedback information such as broader terms,

narrower terms and related terms does not work in languages other than

English and French. In other languages, the knowledge bases are derived
Working With a Thesaurus 7-13

About the Supplied Knowledge Base
entirely from your thesauri. In such cases, Oracle recommends that you obtain

hierarchical information directly from your thesauri.

See Also: Oracle Text Reference for more information about theme

indexing, ABOUT queries, using the CTX_DOC package, and the

supplied English knowledge base.
7-14 Oracle Text Application Developer’s Guide

Administ
8

Administration

This chapter describes Oracle Text administration.The following topics are covered:

■ Oracle Text Users and Roles

■ DML Queue

■ The CTX_OUTPUT Package

■ Servers

■ Administration Tool
ration 8-1

Oracle Text Users and Roles
Oracle Text Users and Roles
While any user can create an Oracle Text index and issue a CONTAINSquery, Oracle

Text provides the CTXSYS user for administration and the CTXAPP role for

application developers.

CTXSYS User
The CTXSYS user is created at install time. You administer Oracle Text users as this

user.

CTXSYS can do the following:

■ Modify system-defined preferences

■ Drop and modify other user preferences

■ Call procedures in the CTX_ADM PL/SQL package to set system-parameters

■ Query all system-defined views

■ Perform all the tasks of a user with the CTXAPP role

CTXAPP Role
The CTXAPP role is a system-defined role that enables users to do the following:

■ Create and delete Oracle Text preferences

■ Use the Oracle Text PL/SQL packages

Any user can create an Oracle Text index and issue a Text query. The CTXAPP role

allows users create preferences and use the PL/SQL packages.

Granting Roles and Privileges to Users
The system uses the standard SQL model for granting roles to users. To grant a Text

role to a user, use the GRANT statement.

In addition, to allow application developers to call procedures in the Oracle Text

PL/SQL packages, you must explicitly grant to each user EXECUTE privileges for

the Oracle Text package.
8-2 Oracle Text Application Developer’s Guide

DML Queue
DML Queue
When there are inserts, updates, or deletes to documents in your base table, the

DML queue stores the requests for documents waiting to be indexed. When you

synchronize the index with CTX_DDL.SYNC_INDEX, requests are removed from this

queue.

Pending DML requests can be queried with the CTX_PENDING and CTX_USER_
PENDING views.

DML errors can be queried with the CTX_INDEX_ERRORS or CTX_USER_INDEX_
ERRORS view.

See Also: Oracle Text Reference for more information about these

views.
Administration 8-3

The CTX_OUTPUT Package
The CTX_OUTPUT Package
Use the CTX_OUTPUT PL/SQL package to log indexing and document service

requests.

See Also: Oracle Text Reference for more information about this

package.
8-4 Oracle Text Application Developer’s Guide

Servers
Servers
You index documents and issue queries with standard SQL. No server is needed for

performing batch DML. You can synchronize the CONTEXT index with the CTX_
DDL.SYNC_INDEX procedure.

See Also: For more information about indexing and index

synchronization, see Chapter 2, "Indexing".
Administration 8-5

Administration Tool
Administration Tool
The Oracle Text Manager is a Java application integrated with the Oracle Enterprise

Manager, which is available on a separate CD.

The Text Manager enables administrators to create preferences, stoplists, sections,

and indexes. This tool also enables administrators to perform DML.

See Also: for more information about the Oracle Text Manager,

see the online help shipped with this tool.
8-6 Oracle Text Application Developer’s Guide

CONTEXT Query Applic
A

CONTEXT Query Application

This appendix describes how to build a simple web search application using the

CONTEXT index type. The following topic is covered:

■ Web Query Application Overview

■ The PSP Web Application

■ The JSP Web Application
ation A-1

Web Query Application Overview
Web Query Application Overview
A common use of Oracle Text is to index HTML files on web sites and provide

search capabilities to users. The sample application in this Appendix indexes a set

of HTML files stored in the database and uses a web server connected to Oracle to

provide the search service.

There are two versions of this application. One that uses PL/SQL Server Pages

(PSP) and one that uses Java Server Pages (JSP). This appendix describes both.

You can view and download both the PSP and JSP application code at the Oracle

Technology Network web site:

http://technet.oracle.com/products/text

The PSP Web Application
This application is based on PL/SQL server pages. Figure A–1 illustrates how the

browser calls the PSP stored procedure on Oracle9i via a web server.

Figure A–1

Browser

Browser calls
PSP stored
procedure
with URL

Web Server maps
URLs to PSP
stored procedure

Oracle9 i

PSP
Stored

Procedure

PL/SQL
Gateway

Database stores
compiled PSP files
as PL/SQL Stored
Procedures

http://mymachine:7777 / mypath / search_html

idx_search_table

search_table
A-2 Oracle Text Application Developer’s Guide

The PSP Web Application
Web Application Prerequisites
This application has the following requirements:

■ Your Oracle database (version 8.1.6 or higher) is up and running.

■ You have the Oracle PL/SQL gateway running

■ You have a web server such as Apache up and running and correctly configured

to send requests to the Oracle9i server.

Building the Web Application
This section describes how to build the PSP web application.

Step 1 Create your Text Table
You must create a text table to store your html files. This example creates a table

called search_table as follows:

create table search_table (tk numeric primary key, title varchar2(2000), text
clob);

Step 2 Load HTML Documents into Table Using SQL*Loader
You must load the text table with the HTML files. This example uses the control file

loader.ctl to load the files named in loader.dat. The SQL*Loader command is as

follows:

% sqlldr userid=scott/tiger control=loader.ctl

Step 3 Create the CONTEXT index
Index the HTML files by creating a CONTEXT index on the text column as follows.

Since we are indexing HTML, this example uses the NULL_FILTER preference type

for no filtering and uses the HTML_SECTION_GROUP type:

create index idx_search_table on search_table(text)
 indextype is ctxsys.context parameters
 (’filter ctxsys.null_filter section group CTXSYS.HTML_SECTION_GROUP’);

Step 4 Compile search_htmlservices Package in Oracle9i
The application must present selected documents to the user. To do so, Oracle must

read the documents from the CLOB in search_table and output the result for

viewing, This is done by calling procedures in the search_htmlservices package. The

file search_htmlservices.sql must be compiled. You can do this at the SQL*Plus

prompt:
CONTEXT Query Application A-3

The PSP Web Application
SQL> @search_htmlservices.sql

Package created.

Step 5 Compile the search_html PSP page with loadpsp
The search page is invoked by calling search_html.psp from a browser. You compile

search_html in Oracle9i with the loadpsp command-line program:

% loadpsp -replace -user scott/tiger search_html.psp
"search_html.psp": procedure "search_html" created.

Step 6 Configure Your Web Server
You must configure your web server to accept client PSP requests as a URL. Your

web server forwards these requests to the Oracle9i server and returns server output

to the browser. Refer to Figure A–1.

You can use the Oracle WebDB 2.x web listener or Oracle iAS which includes the

Apache web server. See your web server documentation for more information.

Step 7 Issue Query from Browser
You can access the query application from a browser using a URL. You configure

the URL with your web server. An example URL might look like:

http://mymachine:7777/mypath/search_html

The application displays a query entry box in your browser and returns the query

results as a list of HTML links. See Figure A–2, "Screen shot of Web Query

Application".

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about using PSP.
A-4 Oracle Text Application Developer’s Guide

The PSP Web Application
Figure A–2 Screen shot of Web Query Application

PSP Sample Code
This section lists the code used to build the example web application. It includes the

following files:

■ loader.ctl

■ loader.dat

■ search_htmlservices.sql

■ search_html.psp

See Also: http://otn.oracle.com/products/text/
CONTEXT Query Application A-5

The PSP Web Application
loader.ctl
LOAD DATA
 INFILE ’loader.dat’
 INTO TABLE search_table
 REPLACE
 FIELDS TERMINATED BY ’;’
 (tk INTEGER,
 title CHAR,
 text_file FILLER CHAR,
 text LOBFILE(text_file) TERMINATED BY EOF)
A-6 Oracle Text Application Developer’s Guide

The PSP Web Application
loader.dat
1; Sun finds glitch in new UltraSparc III chip;0-1003-200-5507959.html
2; Redback announces loss, layoffs ;0-1004-200-5424681.html
3; Cisco dumps acquired optical technology ;0-1004-200-5510096.html
4; Microsoft to revise Passport privacy ;0-1005-200-5508903.html
5; Tech stocks fall on earnings concerns;0-1007-200-5506210.html
6; CNET.com - News - Investor - News - Story ;0-9900-1028-5510548-0.html
7; Chicago Tribune JUSTICES HEAR ARGUMENTS ;0_2669_SAV-0103290318_FF.html
8; Massive new effort to combat African AIDS is planned ;WEST04.html
9; U.S. Had Biggest Growth in 1990s ;census_2000.html
10; Congress Discusses Napster Issues ;congress_napster.html
11; Washington And China Face Off in Spy Plane Drama ;crash_china_dc_35.html
12; American Arrive To Study in Cuba ;cuba_us_medical_students_1.html
13; Hubble Spots Most-Distant Supernova ;distant_supernova.html
14; Survey: U.S. Has 90 Percent Chance of Recession;economy_forecast_dc_1.html
15; House Votes To Repeal Estate Tax ;estate_tax.html
16; EU Condemns Bush on Global Warming ;eu_global_warming.html
17; Foot-and-Mouth Vaccinations on Hold ;foot_and_mouth.html
18; Foot-and-Mouth Vaccinations on Hold ;foot_and_mouth_7.html
19; Cancer Research Project Links Millions of PCs ;health_cancer_dc_1.html
20; Company Says Early HIV Vaccine Data Are Promising ;hiv.html
21; Yahoo! Sports: SOW - Maradona Faces New Paternity Suit ;maradona.html
22; Israel, Palestinians Hold High-Level Talks ;mideast_leadall_dc.html
23; Evidence Mounts Against Milosevic ;milosevic_slain_rivals.html
24; Philippines Files Charges Against Estrada ;philippines_estrada_dc.html
25; Power Woes Affecting Calif. Economy ;power_woes.html
26; Dissidents Ask UN Rights Body to Condemn China ;rights_china_dc_2.html
27; South Africa to Act on Basis HIV Causes AIDS ;safrica_aids_dc_1.html
28; Shaggy Found Inspiration For Success In Jamaica ;shaggy_found.html
29; Solar Flare Eruptions Likely ;solar_flare.html
30; Plane Crash Kills Sudanese Officers ;sudan_plane_crash.html
31; SOUNDSCAN REPORT: Recipe for An Aspiring Top Ten;urban_groove_1.html
CONTEXT Query Application A-7

The PSP Web Application
search_htmlservices.sql
set define off

create or replace package search_htmlServices as

 procedure showHTMLDoc (p_id in numeric);

 procedure showDoc (p_id in numeric, p_query in varchar2);

end;
/
show errors;

create or replace package body search_htmlServices as

 procedure showHTMLDoc (p_id in numeric) is
 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 begin

 select text into v_clob_selected from search_table where tk = p_id;
 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;
 end showHTMLDoc;

procedure showDoc (p_id in numeric, p_query in varchar2) is

 v_clob_selected CLOB;
A-8 Oracle Text Application Developer’s Guide

The PSP Web Application
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 v_query varchar(2000);
 v_cursor integer;

 begin
 htp.p(’<html><title>HTML version with highlighted terms</title>’);
 htp.p(’<body bgcolor="#ffffff">’);
 htp.p(’HTML version with highlighted terms’);

 begin
 ctx_doc.markup (index_name => ’idx_search_table’,
 textkey => p_id,
 text_query => p_query,
 restab => v_clob_selected,
 starttag => ’<i>’,
 endtag => ’</i>’);

 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;

 exception
 when others then
 null; --showHTMLdoc(p_id);
 end;
end showDoc;
end;
/
show errors

set define on
CONTEXT Query Application A-9

The PSP Web Application
search_html.psp
<%@ plsql procedure="search_html" %>
<%@ plsql parameter="query" default="null" %>
<%! v_results numeric := 0; %>

<html>
<head>
 <title>search_html Search </title>
</head>
<body>

<%

If query is null Then
%>

 <center>
 <form method=post action="search_html">
 Search for:
 <input type=text name="query" size=30>
 <input type=submit value=Search>
 </center>
<hr>

<%
 Else
%>

 <p>
 <%!
 color varchar2(6) := ’ffffff’;
 %>

 <center>
 <form method=post action="search_html">
 Search for:
 <input type=text name="query" size=30 value="<%= query %>">
 <input type=submit value=Search>
 </form>
 </center>
 <hr>
 <p>

 <%
A-10 Oracle Text Application Developer’s Guide

The PSP Web Application
 -- select statement
 for doc in (
 select /*+ FIRST_ROWS */ rowid, tk, title, score(1) scr
 from search_table
 where contains(text, query,1) >0
 order by score(1) desc
)
 loop
 v_results := v_results + 1;
 if v_results = 1 then

 %>

 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Score</th>
 <th>Title</th>
 </tr>

 <% end if; %>
 <tr bgcolor="#<%= color %>">
 <td> <%= doc.scr %>% </td>
 <td> <%= doc.title %>
 [<a href="search_htmlServices.showHTMLDoc?p_id=<%= doc.tk
%>">HTML]
 [<a href="search_htmlServices.showDoc?p_id=<%= doc.tk %>&p_query=<%=
query %>">Highlight]
 </td>
 </tr>

 <%
 if (color = ’ffffff’) then
 color := ’eeeeee’;
 else
 color := ’ffffff’;
 end if;

 end loop;
 %>

 </table>
 </center>

<%
CONTEXT Query Application A-11

The PSP Web Application
 end if;
%>
</body></html>
A-12 Oracle Text Application Developer’s Guide

The JSP Web Application
The JSP Web Application
This section describes the JSP web application.

Web Application Prerequisites
This application has the following requirements:

■ Your Oracle database (version 8.1.6 or higher) is up and running.

■ You have a web server such as Apache up and running and correctly configured

to send requests to the Oracle9i server.

JSP Sample Code: search_html.jsp
<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>
<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
<jsp:setProperty name="name" property="value" param="query" />
</jsp:useBean>

<%
 String connStr="jdbc:oracle:thin:@localhost:1521:betadev";

 java.util.Properties info = new java.util.Properties();

 Connection conn = null;
 ResultSet rset = null;
 Statement stmt = null;

 if (name.isEmpty()) { %>

 <html>
 <title>search1 Search</title>
 <body>
 <center>
 <form method=post>
 Search for:
 <input type=text name=query size=30>
 <input type=submit value="Search">
 </form>
 </center>
 <hr>
 </body>
CONTEXT Query Application A-13

The JSP Web Application
 </html>

 <%
 }
 else {
 %>

 <html>
 <title>Search</title>
 <body>
 <center>
 <form method=post action="search_html.jsp">
 Search for:
 <input type=text name="query" value=<%= name.getValue() %> size=30>
 <input type=submit value="Search">
 </form>
 </center>

 <%
 try {

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", "ctxdemo");
 info.put ("password","ctxdemo");
 conn = DriverManager.getConnection(connStr,info);

 stmt = conn.createStatement();
 String theQuery = request.getParameter("query");

 String myQuery = "select /*+ FIRST_ROWS */ rowid, tk, title, score(1)
scr from search_table where contains(text, ’"+theQuery+"’,1) > 0 order by
score(1) desc";
 rset = stmt.executeQuery(myQuery);

 String color = "ffffff";
 int myTk = 0;
 String myTitle = null;
 int myScore = 0;
 int items = 0;
 while (rset.next()) {
 myTk = (int)rset.getInt(2);
 myTitle = (String)rset.getString(3);
 myScore = (int)rset.getInt(4);
 items++;
A-14 Oracle Text Application Developer’s Guide

The JSP Web Application
 if (items == 1) {
 %>

 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Score</th>
 <th>Title</th>
 </tr>
 <% } %>

 <tr bgcolor="#<%= color %>">
 <td> <%= myScore %>%</td>
 <td> <%= myTitle %>
 </td>
 </tr>

 <%
 if (color.compareTo("ffffff") == 0)
 color = "eeeeee";
 else
 color = "ffffff";

 }
 } catch (SQLException e) {
 %>
 Error: <%= e %><p>
 <%
 } finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }
 %>
 </table>
 </center>
 </body></html>
 <%
 }

%>
CONTEXT Query Application A-15

The JSP Web Application
A-16 Oracle Text Application Developer’s Guide

CATSEARCH Query Applic
B

CATSEARCH Query Application

This appendix describes how to build a simple web-search application using the

CATSEARCH index type. The following topic is covered:

■ CATSEARCH Web Query Application Overview

■ The JSP Web Application
ation B-1

CATSEARCH Web Query Application Overview
CATSEARCH Web Query Application Overview
The CTXCAT indextype is well suited for merchandise catalogs that have short

descriptive text fragments and associated structured data. This appendix describes

how to build a browser based bookstore catalog that users can search to find titles

and prices.

This application is written in Java Server Pages (JSP).

You can view and download application code at the Oracle Technology Network

web site:

http://otn.oracle.com/products/text

The JSP Web Application
This application is based on Java Server pages and has the following requirements:

■ Your Oracle database (version 8.1.7 or higher) is up and running.

■ You have a web server such as Apache up and running and correctly configured

to send requests to the Oracle9i server.

Building the JSP Web Application
This application models an online bookstore where you can look up book titles and

prices.

Step 1 Create Your Table
You must create the table to store book information such as title, publisher, and

price. From SQL*Plus:

sqlplus>create table book_catalog (
 id numeric,
 title varchar2(80),
 publisher varchar2(25),
 price numeric)

Step 2 Load data using SQL*Loader
You load the book data from the operating system command line with SQL*Loader:

sqlldr userid=ctxdemo/ctxdemo control=loader.ctl
B-2 Oracle Text Application Developer’s Guide

The JSP Web Application
Step 3 Create index set
You can create the index set from SQL*Plus:

sqlplus>begin
 ctx_ddl.create_index_set(’bookset’);
 ctx_ddl.add_index(’bookset’,’price’);
 ctx_ddl.add_index(’bookset’,’publisher’);
 end;

Step 4 Index creation
You can create the ctxcat index from SQL*Plus as follows:

sqlplus>create index book_idx on book_catalog (title)
 indextype is ctxsys.ctxcat
 parameters(’index set bookset’);

Step 5 Try a simple search using catsearch
You can test the newly created index in SQL*Plus as follows:

sqlplus>select id, title from book_catalog
 where catsearch(title,’Java’,’price > 10 order by price’) > 0

Step 6 Copy the catalogSearch.jsp file to your website jsp directory.
When you do so, you can access the application from a browser. The URL should be

http://localhost:port/path/catalogSearch.jsp

The application displays a query entry box in your browser and returns the query

results as a list of HTML links. See Figure B–1, "Screen shot of Web Query

Application".
CATSEARCH Query Application B-3

The JSP Web Application
Figure B–1 Screen shot of Web Query Application
B-4 Oracle Text Application Developer’s Guide

The JSP Web Application
JSP Sample Code
This section lists the code used to build the example web application. It includes the

following files:

■ loader.ctl

■ loader.dat

■ catalogSearch.jsp

loader.ctl
 INFILE ’loader.dat’
 INTO TABLE book_catalog
 REPLACE
 FIELDS TERMINATED BY ’;’
 (id, title, publisher, price)

See Also: http://otn.oracle.com/products/text/
CATSEARCH Query Application B-5

The JSP Web Application
loader.dat
1,A History of the Sciences, MACMILLAN REFERENCE,50
2,Robust Recipes Inspired by the Rustic Foods of France, Italy, and
America,MACMILLAN REFERENCE,28
3, Atlas of Irish History, MACMILLAN REFERENCE, 35
4, Bed and Breakfast Guide: Arizona, New Mexico and Texas, MACMILLAN REFERENCE,
37
5, Before You Say "I Quit"; A Guide to Making Successful Job Transitions,
MACMILLAN REFERENCE,25
6,Born to Shop Hong Kong; The Ultimate Travel Guide for Discriminating
Shoppers,MACMILLAN REFERENCE, 28
7,Complete Book of Sauces, MACMILLAN REFERENCE,16
8,Complete Idiot’s Guide to American History,MACMILLAN REFERENCE, 28
9,Advanced Java Programming, with CD-ROM, MCGRAW HILL BOOK CO, 10
10, Java Master Reference With CDROM,IDG BOOKS WORLDWIDE,10
11, Oracle Performance Tuning Tips & Techniques, OSBORNE, 10
12, Core Java 1.1; Fundamentals, with CDROM, PRENTICE HALL, 11
13, Lady Oracle, DOUBLEDAY & CO 11
14, Core Java 1.1; Advanced Features, with CDROM, PRENTICE HALL, 12
15, Discover Java With Cd, IDG BOOKS WORLDWIDE, 12
16, CORBA & Java; Where Distributed Objects Meet the Web With CDROM, MCGRAW HILL
BOOK CO,13
17, Java 1.1 Developer’s Handbook; With CDROM With CDROM, SYBEX INC, 13
18, Java with Borland C++,AP PROFESSIONAL, 13
19, Just Java 1.1, PRENTICE HALL, 17
20, Internet Programming; An Introduction to Object Oriented Programming with
Java, ADDISON WESLEY PUB CO INC, 14
21, Oracle Certified Professional DBA Certification Exam Guide With CDROM,
OSBORNE, 14
22, Eye of Horus; An Oracle of Ancient Egypt, THOMAS DUNNE BOOKS, 15
23, Java 1.1 Certification Study Guide With CDROM, SYBEX INC, 15
B-6 Oracle Text Application Developer’s Guide

The JSP Web Application
 catalogSearch.jsp
<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>
<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
<jsp:setProperty name="name" property="value" param="v_query" />
</jsp:useBean>

<%
 String connStr="jdbc:oracle:thin:@machine-domain-name:1521:betadev";

 java.util.Properties info = new java.util.Properties();

 Connection conn = null;
 ResultSet rset = null;
 Statement stmt = null;

 if (name.isEmpty()) {

%>
 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post>
 Search for book title:
 <input type=text name="v_query" size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="AP PROFESSIONAL">AP PROFESSIONAL
 <option value="DOUBLEDAY & CO">DOUBLEDAY & CO
 <option value="IDG BOOKS WORLDWIDE">IDG BOOKS WORLDWIDE
 <option value="MACMILLAN REFERENCE">MACMILLAN REFERENCE
 <option value="MCGRAW HILL BOOK CO">MCGRAW HILL BOOK CO
 <option value="OSBORNE">OSBORNE
 <option value="PRENTICE HALL">PRENTICE HALL
 <option value="SYBEX INC">SYBEX INC
 <option value="THOMAS DUNNE BOOKS">THOMAS DUNNE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
CATSEARCH Query Application B-7

The JSP Web Application
 <option value=">">>
 </select>
 <input type=text name="v_price" size=2>
 <input type=submit value="Search">
 </form>
 </center>
 <hr>
 </body>
 </html>

<%
 }
 else {

 String v_query = request.getParameter("v_query");
 String v_publisher = request.getParameter("v_publisher");
 String v_price = request.getParameter("v_price");
 String v_op = request.getParameter("v_op");
%>

 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post action="catalogSearch.jsp">
 Search for book title:
 <input type=text name="v_query" value=
 <%= v_query %>
 size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="AP PROFESSIONAL">AP PROFESSIONAL
 <option value="DOUBLEDAY & CO">DOUBLEDAY & CO
 <option value="IDG BOOKS WORLDWIDE">IDG BOOKS WORLDWIDE
 <option value="MACMILLAN REFERENCE">MACMILLAN REFERENCE
 <option value="MCGRAW HILL BOOK CO">MCGRAW HILL BOOK CO
 <option value="OSBORNE">OSBORNE
 <option value="PRENTICE HALL">PRENTICE HALL
 <option value="SYBEX INC">SYBEX INC
 <option value="THOMAS DUNNE BOOKS">THOMAS DUNNE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
B-8 Oracle Text Application Developer’s Guide

The JSP Web Application
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" value=
 <%= v_price %> size=2>
 <input type=submit value="Search">
 </form>
 </center>

<%
 try {

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", "ctxdemo");
 info.put ("password","ctxdemo");
 conn = DriverManager.getConnection(connStr,info);

 stmt = conn.createStatement();
 String theQuery = request.getParameter("v_query");
 String thePrice = request.getParameter("v_price");

 // select id,title
 // from book_catalog
 // where catsearch (title,'Java','price >10 order by price') > 0

 // select title
 // from book_catalog
 // where catsearch(title,'Java','publisher = ''PRENTICE HALL'' and price < 40
order by price')>0

 String myQuery = "select title, publisher, price from book_catalog
where catsearch(title, '"+theQuery+"', 'publisher = ''"+v_publisher+"'' and
price "+v_op+thePrice+" order by price') > 0";
 rset = stmt.executeQuery(myQuery);

 String color = "ffffff";

 String myTitle = null;
 String myPublisher = null;
 int myPrice = 0;
 int items = 0;

 while (rset.next()) {
 myTitle = (String)rset.getString(1);
 myPublisher = (String)rset.getString(2);
CATSEARCH Query Application B-9

The JSP Web Application
 myPrice = (int)rset.getInt(3);
 items++;

 if (items == 1) {
%>
 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Title</th>
 <th>Publisher</th>
 <th>Price</th>
 </tr>
<%
 }
%>
 <tr bgcolor="#<%= color %>">
 <td> <%= myTitle %></td>
 <td> <%= myPublisher %></td>
 <td> $<%= myPrice %></td>
 </tr>
<%
 if (color.compareTo("ffffff") == 0)
 color = "eeeeee";
 else
 color = "ffffff";

 }

 } catch (SQLException e) {

%>

 Error: <%= e %><p>

<%

 } finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }

%>
 </table>
 </center>
B-10 Oracle Text Application Developer’s Guide

The JSP Web Application
 </body>
 </html>
<%
 }
%>
CATSEARCH Query Application B-11

The JSP Web Application
B-12 Oracle Text Application Developer’s Guide

Index

A
ABOUT query, 3-13

adding for your language, 7-13

case-sensitivity, 3-11

definition, 3-8

example, 1-19

accents

indexing characters with, 2-17

ACCUM operator, 3-14

ADD_STOPCLASS procedure, 2-27

ADD_STOPTHEME procedure, 2-27

ADD_STOPWORD procedure, 2-26, 2-27

ADD_SUB_LEXER procedure

example, 2-24

administration tool, 8-6

ALTER INDEX command

rebuilding index, 2-37

resuming failed index, 2-37

alternate spelling, 2-17

AND operator, 3-14

application

sample, A-1, B-1

attribute

searching XML, 6-12

attribute sections, 6-8

AUTO_SECTION_GROUP object, 6-3

automatic sections, 6-12

B
background DML, 8-5

base-letter conversion, 2-17

BASIC_LEXER, 2-14

BASIC_SECTION_GROUP object, 6-2

BFILE column, 1-9

indexing, 1-13, 2-28

BINARY

format column value, 2-13

BLOB column, 1-9

indexing, 1-13, 2-28

blocking operations

tuning queries with, 5-12

bypassing rows, 2-13

C
case-sensitive

ABOUT query, 3-11

indexing, 2-16

queries, 3-10

thesaurus, 7-3

CATSEARCH, 3-4

creating index for, 2-31

operators, 3-18

SQL example, 3-4

structured query, 3-5

CHAR column, 1-9

character set

indexing, 2-14

indexing mixed, 2-14

character set column, 1-9

charset column, 2-14

CHARSET_FILTER, 2-5, 2-14

Chinese indexing, 2-18

CHINESE_VGRAM_LEXER, 2-18

classification

about, 1-2
Index-1

CLOB column, 1-9

indexing, 1-13, 2-28

column types

supported for indexing, 1-9

composite words

indexing, 2-18

concept query, See ABOUT

CONTAINS

operators, 3-13

PL/SQL example, 3-3

query, 3-2

SQL example, 3-2

structured query, 3-3

CONTEXT grammar, 3-13

CONTEXT index, 1-2

about, 1-12, 2-9

creating, 1-12, 2-21, 2-28

customizing, 1-13

HTML example, 2-29, A-3

counting hits, 3-20

CREATE INDEX command, 2-28

CREATE_STOPLIST procedure, 2-26, 2-27

CTX_CLS.TRAIN procedure, 1-2

CTX_DDL.SYNC_INDEX procedure, 2-40

CTX_DOC package, 4-2

CTX_INDEX_ERRORS view, 2-36, 8-3

CTX_PENDING view, 8-3

CTX_REPORT, 2-41

CTX_THES package

about, 7-2

CTX_USER_INDEX_ERRORS view, 2-36, 8-3

CTX_USER_PENDING view, 8-3

CTXAPP role, 8-2

CTXCAT grammar, 3-18

CTXCAT index, 1-2, 1-14

about, 1-12, 2-10

about performance, 5-19

example, 2-30

ctxkbtc

example, 7-11

ctxload

load thesaurus example, 7-2, 7-8, 7-10

CTXRULE index, 1-2, 1-14

about, 1-12, 2-11

creating, 2-33

CTXSYS user, 8-2

CTXXPATH index

about, 2-11

D
data storage

index default, 1-13, 2-28

preference example, 2-23

datastore

about, 2-4, 2-21

DATE column, 1-13, 2-28

DBMS_JOB.SUBMIT procedure, 2-40

default thesaurus, 7-4

DEFAULT_INDEX_MEMORY, 5-21

defaults

index, 1-12, 2-28

DETAIL_DATASTORE, 1-8

about, 2-12

diacritical marks

characters with, 2-17

DIRECT_DATASTORE, 1-8

about, 2-12

example, 2-22

DML

view pending, 2-39

DML processing, 1-14

background, 8-5

DML queue, 8-3

document classification, 2-33

about, 1-2

document format

affect on index performance, 5-22

affect on performance, 5-14

document formats

filtering, 2-13

supported, 1-3, 1-9

document hit count

presenting, 1-25

document invalidation, 2-41

document loading

methods, 1-9

document presentation

about, 1-26

document sections, 2-26
Index-2

document services

about, 1-26

DOMAIN_INDEX_NO_SORT hint

better throughput example, 5-10

drjobdml.sql script, 2-40

DROP INDEX command, 2-36

DROP_STOPLIST procedure, 2-27

dropping an index, 2-36

E
EQUIV operator, 3-14

errors

DML, 8-3

viewing, 2-36

explain plan, 3-11

extensible query optimizer, 5-2

F
feedback

query, 3-11

field section

definition, 6-7

nested, 6-8

repeated, 6-8

visible and invisible, 6-7

file paths

storing, 1-8

FILE_DATASTORE, 2-4

about, 1-8, 2-12

example, 2-23

filter

about, 2-4, 2-21

FILTER procedure, 4-3

filtering

custom, 2-13

index default, 1-13, 2-28

to plain text and HTML, 1-26

filtering documents, 2-13

to HTML and plain text, 4-3

FIRST_ROWS hint, 3-19

better response time example, 5-7

better throughput example, 5-10

example, 1-19

format column, 1-9, 2-13

formats

filtering, 2-13

supported, 1-9

fragmentation of index, 2-40, 5-25

viewing, 2-41

full themes

obtaining, 4-5

functional lookup, 5-14

fuzzy matching, 2-18

default, 1-13, 2-29

fuzzy operator, 3-15

G
garbage collection, 2-41

gist

definition, 4-4

example, 4-5

GIST procedure, 4-5

grammar

CTXCAT, 3-18

grammar CONTEXT, 3-13

granting roles, 8-2

H
HASPATH operator, 6-14

examples, 6-17

HFEEDBACK procedure, 3-11

HIGHLIGHT procedure, 4-2

highlighting

about, 1-26

overview, 4-2

highlighting text, 4-2

highlighting themes, 4-2

hit count, 3-20

hitlist

presenting, 1-23

HTML

filtering to, 1-26, 4-3

indexing, 2-23, 6-2

indexing example, A-3

searching META tags, 6-10

zone section example, 2-26, 6-10
Index-3

HTML_SECTION_GROUP object, 2-26, 6-2, 6-10

with NULL_FILTER, 2-23, A-3

I
IGNORE

format column value, 2-13

index

about, 2-2

creating, 2-21, 2-28

dropping, 2-36

multiple, 2-7

optimizing, 2-40, 2-42

rebuilding, 2-37

structure, 2-2, 2-40

synchronizing, 2-39, 8-5

index defaults

general, 1-12, 2-28

index engine

about, 2-5

index errors

viewing, 2-36

index fragmentation, 2-40, 5-25

index maintenance, 1-14, 2-36

index memory, 5-21

index types

about, 1-11

choosing, 2-9

INDEX_STATS procedure, 2-41

indexed lookup, 5-14

indexing

about, 1-11

bypassing rows, 2-13

considerations, 2-8

limitations, 2-7

overview of process, 2-3

parallel, 2-6, 5-23

resuming failed, 2-37

special characters, 2-15

indexing performance

FAQs, 5-21

parallel, 5-23

indexing time, 5-21

indexing views, 2-7

INPATH operator, 6-14

examples, 6-15

INSERT statement

load text example, 1-10

INSO filter, 5-22

INSO_FILTER, 2-5, 2-13, 2-14

J
Japanese indexing, 2-18

JAPANESE_LEXER, 2-18

K
knowledge base

about, 7-12

augmenting, 7-9

linking new terms, 7-10

supported character set, 7-12

user-defined, 7-13

Korean indexing, 2-18

KOREAN_MORP_LEXER, 2-18

L
language

default setting for indexing, 1-13, 2-29

language specific features, 2-16

languages

indexing, 2-14

language-specific knowledge base, 7-13

lexer

about, 2-5, 2-21

list of themes

definition, 4-4

obtaining, 4-4

loading text

about, 1-6

SQL INSERT example, 1-9

LOB columns

improving query performance, 5-16

indexing, 1-13, 2-28

local partitioned index, 5-18

improved response time, 5-7

location of text, 2-12

logical operators, 3-13
Index-4

M
maintaining the index, 2-36

marked-up document

obtaining, 4-3

MARKUP procedure, 4-3

MATCHES

about, 3-5

PL/SQL example, 2-34, 3-6

SQL example, 3-5

MAX_INDEX_MEMORY, 5-21

memory allocation

index synchorization, 5-25

indexing, 5-21

querying, 5-16

META tag

creating zone section for, 6-10

mixed formats

filtering, 2-13

MULTI_COLUMN_DATASTORE, 1-8

about, 2-12

example, 2-22

MULTI_LEXER, 2-15

example, 2-24

multi-language columns

indexing, 2-15

multi-language stoplist

about, 2-27

multiple CONTAINS

improving performance, 5-16

multiple indexes, 2-7

N
NCLOB column, 1-13, 2-28

NEAR operator, 3-15

nested zone sections, 6-6

NESTED_DATASTORE, 1-8

about, 2-12

NEWS_SECTION_GROUP object, 6-3

NOT operator, 3-14

NULL_FILTER, 2-4

example, 2-23, A-3

NULL_SECTION_GROUP object, 6-2

NUMBER column, 1-13, 2-28

O
offset information

highlight, 4-2

operators

CATSEARCH, 3-18

CONTAINS, 3-13

logical, 3-13

thesaurus, 7-2

optimizing index, 2-40

example, 2-42

single token, 2-41

optimizing queries, 3-19, 5-2

FAQs, 5-13

response time, 1-19, 5-5

statistics, 5-2

throughput, 5-10

with blocking operations, 5-12

OR operator, 3-14

Oracle Enterprise Manager, 8-6

Oracle9i Text Manager, 8-6

out of line LOB storage

improving performance, 5-16

P
parallel indexing, 2-6, 5-23

partitioned table, 5-23

parallel queries, 5-11, 5-18

paramstring for CREATE INDEX, 2-28

partitioned index, 5-18

improved response time, 5-7

path section searching, 6-14

PATH_SECTION_GROUP

example, 6-15

pending DML

viewing, 2-39

pending updates, 8-3

performance tuning

indexing, 5-21

querying, 5-13

updating index, 5-25

phrase query, 3-7

plain text

filtering to, 4-3
Index-5

indexing with NULL_FILTER, 2-23

plain text filtering, 1-26

PL/SQL functions

calling in contains, 3-17

preferences

creating (examples), 2-22

creating with admin tool, 8-6

dropping, 2-37

presenting hitlist, 1-23

printjoins character, 2-15

PROCEDURE_FILTER, 2-13

PSP application, A-2, B-2

Q
query

ABOUT, 3-13

about, 1-18

blocking operations, 5-12

case-sensitive, 3-10

CATSEARCH, 3-4

CONTAINS, 3-2

counting hits, 3-20

MATCHES, 3-5

optimizing for throughput, 5-10

overview, 3-2

parallel, 5-11

query application

prerequisites, 1-4

sample, 1-16

query example, 1-18

query explain plan, 3-11

query expressions, 3-9

query features, 1-20

query feedback, 3-11

query optimization, 3-19

FAQs, 5-13

response time, 5-5

query performance

FAQs, 5-13

query template, 3-15, 3-18

queue

DML, 8-3

R
rebuilding an index, 2-37

REMOVE_SQE procedure, 3-16

REMOVE_STOPCLASS procedure, 2-27

REMOVE_STOPTHEME procedure, 2-27

REMOVE_STOPWORD procedure, 2-26, 2-27

response time

improving, 5-5

optimizing for, 1-19, 3-19

result buffer size

increasing, 5-12

resuming failed index, 2-37

roles

granting, 8-2

system-defined, 8-2

S
score

presenting, 1-25

section

attribute, 6-8

field, 6-7

HTML example, 2-26

nested, 6-6

overlapping, 6-6

repeated zone, 6-6

special, 6-9

zone, 6-5

section group

about, 2-21

creating with admin tool, 8-6

section searching

about, 1-20, 6-2

enabling, 6-2

HTML, 6-10

sectioner

about, 2-5

sectioning

automatic, 6-12

path, 6-14

SGA memory allocation, 5-21

single themes

obtaining, 4-5
Index-6

skipjoins character, 2-15

SORT_AREA_SIZE, 5-12, 5-16, 5-21

special characters

indexing, 2-15

special sections, 6-9

spelling

alternate, 2-17

SQE operator, 3-16

statistics

optimizing with, 5-2

stem operator, 2-18, 3-15

stemming

default, 1-13, 2-29

improving performance, 5-17

stopclass, 2-27

stoplist, 2-26

about, 2-21

creating with admin tool, 8-6

default, 1-13, 2-29

multi-language, 2-20, 2-27

PL/SQL procedures, 2-27

stoptheme, 2-27

about, 2-19

definition, 3-9

stopword, 2-26, 2-27

about, 2-19, 3-8

case-sensitive, 3-10

storage

about, 2-21

STORE_SQE procedure, 3-16

stored query expressions, 3-16

storing text, 2-12

about, 1-8

structure of index, 2-40

structured field searching

about, 1-19

structured fields

presenting in application, 1-25

structured query

example, 2-30

SYN operator, 7-6

SYNC_INDEX procedure, 2-40

synchronizing index, 1-14, 2-39, 8-5

improving performance, 5-25

synonyms

defining, 7-6

T
template queries, 3-15, 3-18

TEXT

format column value, 2-13

text column

supported types, 1-9

text highlighting, 4-2

Text Manager tool, 8-6

text query applications

about, 1-2

text storage, 2-12

theme capabilities

overview, 1-3

theme functionality

adding, 7-13

theme highlighting, 4-2

theme query, See ABOUT

theme summary

definition, 4-4

themes

indexing, 2-16

THEMES procedure, 4-4

thesaural queries

about, 1-20

thesaurus

about, 7-2

adding to knowledge base, 7-9

case-sensitive, 7-3

DEFAULT, 7-4

default, 7-4

defining terms, 7-6

hierarchical relations, 7-6

loading custom, 7-8

operators, 7-2

supplied, 7-4

using in application, 7-8

thesaurus operator, 3-15

throughput

improving query, 5-10

tildes

indexing characters with, 2-17

TRAIN procedure, 1-2
Index-7

tuning queries

for response time, 1-19, 5-5

for throughput, 5-10

increasing result buffer size, 5-12

with statistics, 5-2

U
umlauts

indexing characters with, 2-17

updating index performance

FAQs, 5-25

URL_DATASTORE

about, 2-12

example, 2-23

URLs

storing, 1-8

user

system-defined, 8-2

USER_DATASTORE, 2-7

about, 2-12

USER_FILTER, 2-13

V
VARCHAR2 column, 1-9

views

indexing, 2-7

W
wildcard operator, 3-15

improving performance, 5-17

WITHIN operator, 2-26

word query, 3-7

case-sensitivity, 3-10

example, 1-18

wordlist

about, 2-21

X
XML documents

attribute searching, 6-12

doctype sensitive sections, 6-13

indexing, 6-3

section searching, 6-12

XML_SECTION_GROUP object, 6-3

Z
zone section

definition, 6-5

nested, 6-6

overlapping, 6-6

repeating, 6-6
Index-8

	Contents
	Send Us Your Comments
	Preface
	1 Introduction to Oracle Text
	What is Oracle Text?
	Types of Query Applications
	Text Query Applications
	Document Classification Applications

	Supported Document Formats
	Theme Capabilities
	Themes in Other Languages

	Query Language and Operators
	Document Services and Using a Thesaurus
	Prerequisites For Building Your Query Application

	Introduction to Loading Your Text Table
	Storing Text in the Text Table
	Storing File Path Names
	Storing URLs
	Storing Associated Document Information
	Format and Character Set Columns

	Supported Column Types
	Supported Document Formats
	Loading Methods
	Loading Text with the INSERT Statement
	Loading Text from File System

	Indexing Your Documents
	Type of Index
	When to Create a CONTEXT Index
	Defaults for All Languages
	Customizing Your CONTEXT Index

	When to Create a CTXCAT Index
	When to Create a CTXRULE Index
	Index Maintenance

	Simple Text Query Application
	Understanding How to Query Your Index
	Understanding How to Query with CONTAINS
	Understanding Word Queries
	Understanding ABOUT Queries
	Optimizing Query for Response Time

	Understanding Structured Field Searching
	Thesaural Queries
	Document Section Searching
	Other Query Features

	Presenting the Hit List
	Hitlist Example
	Presenting Structured Fields
	Ordering the Hit List
	Presenting Document Hit Count

	Document Presentation and Highlighting
	Highlighting Example
	Document List of Themes Example
	Gist Example

	2 Indexing
	About Oracle Text Indexes
	Structure of the Oracle Text CONTEXT Index
	Merged Word and Theme Index

	The Oracle Text Indexing Process
	Datastore Object
	Filter Object
	Sectioner Object
	Lexer Object
	Indexing Engine

	Partitioned Tables and Indexes
	Querying Partitioned Tables

	Creating an Index Online
	Parallel Indexing
	Limitations for Indexing
	Columns with Multiple Indexes
	Indexing Views

	Considerations For Indexing
	Type of Index
	Location of Text
	Document Formats and Filtering
	No Filtering for HTML
	Filtering Mixed Formatted Columns
	Custom Filtering

	Bypassing Rows for Indexing
	Document Character Set
	Mixed Character Set Columns

	Document Language
	Languages Features Outside BASIC_LEXER
	Indexing Multi-language Columns

	Indexing Special Characters
	Printjoins Character
	Skipjoins Character
	Other Characters

	Case-Sensitive Indexing and Querying
	Language Specific Features
	Indexing Themes
	Base-Letter Conversion for Characters with Diacritical Marks
	Alternate Spelling
	Composite Words
	Korean, Japanese, and Chinese Indexing

	Fuzzy Matching and Stemming
	Better Wildcard Query Performance
	Document Section Searching
	Stopwords and Stopthemes
	Multi-Language Stoplists

	Index Performance
	Query Performance and Storage of LOB Columns

	Index Creation
	Procedure for Creating a CONTEXT Index
	Creating Preferences
	Datastore Examples
	Specifying DIRECT_DATASTORE
	Specifying MULTI_COLUMN_DATASTORE
	Specifying URL Data Storage
	Specifying File Data Storage

	NULL_FILTER Example: Indexing HTML Documents
	PROCEDURE_FILTER Example
	BASIC_LEXER Example: Setting Printjoins Characters
	MULTI_LEXER Example: Indexing a Multi-Language Table
	BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

	Creating Section Groups for Section Searching
	Example: Creating HTML Sections

	Using Stopwords and Stoplists
	Multi-Language Stoplists
	Stopthemes and Stopclasses
	PL/SQL Procedures for Managing Stoplists

	Creating an Index
	Creating a CONTEXT Index
	Default CONTEXT Index Example
	Custom CONTEXT Index Example: Indexing HTML Documents

	Creating a CTXCAT Index
	CTXCAT Index and DML
	About CTXCAT Sub-Indexes and Their Costs
	Creating CTXCAT Sub-indexes
	Structured Query Clause Category A
	Structured Query Clause Category B

	Creating CTXCAT Index

	Creating a CTXRULE Index
	Create a Table of Queries
	Using CTX_CLS.TRAIN

	Create the CTXRULE Index
	Classifying a Document

	Index Maintenance
	Viewing Index Errors
	Dropping an Index
	Resuming Failed Index
	Example: Resuming a Failed Index

	Rebuilding an Index
	Example: Rebuilding and Index

	Dropping a Preference
	Example

	Managing DML Operations for a CONTEXT Index
	Viewing Pending DML
	Synchronizing the Index
	Setting Background DML

	Index Optimization
	CONTEXT Index Structure
	Index Fragmentation
	Document Invalidation and Garbage Collection
	Single Token Optimization
	Viewing Index Fragmentation and Garbage Data
	Examples: Optimizing the Index

	3 Querying
	Overview of Queries
	Querying with CONTAINS
	CONTAINS SQL Example
	CONTAINS PL/SQL Example
	Structured Query with CONTAINS

	Querying with CATSEARCH
	CATSEARCH SQL Query
	CATSEARCH Structured Query
	CATSEARCH PL/SQL Example

	Querying with MATCHES
	MATCHES SQL Query
	MATCHES PL/SQL Example

	Word and Phrase Queries
	Querying Stopwords

	ABOUT Queries and Themes
	Querying Stopthemes

	Query Expressions
	CONTAINS Operators
	CATSEARCH Operator
	MATCHES Operator

	Case-Sensitive Searching
	Word Queries
	Stopwords and Case-Sensitivity

	ABOUT Queries

	Query Feedback
	Query Explain Plan

	The CONTEXT Grammar
	ABOUT Query
	Logical Operators
	Section Searching
	Proximity Queries with NEAR Operator
	Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
	Using CTXCAT Grammar
	Stored Query Expressions
	Defining a Stored Query Expression
	SQE Example

	Calling PL/SQL Functions in CONTAINS

	The CTXCAT Grammar
	Using CONTEXT Grammar with CATSEARCH

	Optimizing for Response Time
	Other Factors that Influence Query Response Time

	Counting Hits
	SQL Count Hits Example
	Counting Hits with a Structured Predicate
	PL/SQL Count Hits Example

	4 Document Presentation
	Highlighting Query Terms
	Text highlighting
	Theme Highlighting
	CTX_DOC Highlighting Procedures
	Highlight Procedure
	Markup Procedure
	Filter Procedure

	Obtaining List of Themes, Gists, and Theme Summaries
	List of Themes
	In-Memory Themes
	Result Table Themes
	Single Themes
	Full Themes

	Gist and Theme Summary
	In-Memory Gist
	Result Table Gists
	Theme Summary

	5 Performance Tuning
	Optimizing Queries with Statistics
	Collecting Statistics
	Example

	Re-Collecting Statistics
	Deleting Statistics

	Optimizing Queries for Response Time
	Other Factors that Influence Query Response Time
	Improved Response Time with FIRST_ROWS(n) for ORDER BY Queries
	About the FIRST_ROWS Hint

	Improved Response Time using Local Partitioned CONTEXT Index
	Range Search on Partition Key Column
	ORDER BY Partition Key Column

	Improved Response Time with Local Partitioned Index for Order by Score

	Optimizing Queries for Throughput
	CHOOSE and ALL ROWS Modes
	FIRST_ROWS Mode

	Parallel Queries
	Tuning Queries with Blocking Operations
	Frequently Asked Questions a About Query Performance
	What is Query Performance?
	What is the fastest type of text query?
	Should I collect statistics on my tables?
	How does the size of my data affect queries?
	How does the format of my data affect queries?
	What is a functional versus an indexed lookup?
	What tables are involved in queries?
	Does sorting the results slow a text-only query?
	How do I make a ORDER BY score query faster?
	Which Memory Settings Affect Querying?
	Does out of line LOB storage of wide base table columns improve performance?
	How can I make a CONTAINS query on more than one column faster?
	Is it OK to have many expansions in a query?
	How can local partition indexes help?
	Should I query in parallel?
	Should I index themes?
	When should I use a CTXCAT index?
	When is a CTXCAT index NOT suitable?
	What optimizer hints are available, and what do they do?

	Frequently Asked Questions About Indexing Performance
	How long should indexing take?
	Which index memory settings should I use?
	How much disk overhead will indexing require?
	How does the format of my data affect indexing?
	Can I index in parallel?
	How do I create a local partitioned index in parallel?
	How can I tell how far my indexing has got?

	Frequently Asked Questions About Updating the Index
	How often should I index new or updated records?
	How can I tell when my indexes are getting fragmented?
	Does memory allocation affect index synchronization?

	6 Document Section Searching
	About Document Section Searching
	Enabling Section Searching
	Create a Section Group
	Define Your Sections
	Index your Documents
	Section Searching with WITHIN Operator
	Path Searching with INPATH and HASPATH Operators

	Section Types
	Zone Section
	Repeated Zone Sections
	Overlapping Zone Sections
	Nested Zone Sections

	Field Section
	Visible and Invisible Field Sections
	Nested Field Sections
	Repeated Field Sections

	Attribute Section
	Special Sections

	HTML Section Searching
	Creating HTML Sections
	Searching HTML Meta Tags
	Example: Creating Sections for <META>Tags

	XML Section Searching
	Automatic Sectioning
	Attribute Searching
	Creating Attribute Sections
	Searching Attributes with the INPATH Operator

	Creating Document Type Sensitive Sections
	Path Section Searching
	Creating Index with PATH_SECTION_GROUP
	Top-Level Tag Searching
	Any-Level Tag Searching
	Direct Parentage Searching
	Tag Value Testing
	Attribute Searching
	Attribute Value Testing
	Path Testing
	Section Equality Testing with HASPATH

	7 Working With a Thesaurus
	Overview of Thesauri
	Thesaurus Creation and Maintenance
	CTX_THES Package
	Thesaurus Operators
	ctxload Utility

	Case-sensitive Thesauri
	Case-insensitive Thesauri
	Default Thesaurus
	Supplied Thesaurus
	Supplied Thesaurus Structure and Content
	Supplied Thesaurus Location

	Defining Thesaural Terms
	Defining Synonyms
	Defining Hierarchical Relations

	Using a Thesaurus in a Query Application
	Loading a Custom Thesaurus and Issuing Thesaural Queries
	Advantage
	Limitations

	Augmenting Knowledge Base with Custom Thesaurus
	Advantage
	Limitations
	Linking New Terms to Existing Terms
	Example: Linking New Terms to Existing Terms

	Loading a Thesaurus with ctxload
	Compiling a Loaded Thesaurus

	About the Supplied Knowledge Base
	Knowledge Base Character Set
	Adding a Language-Specific Knowledge Base
	Limitations

	8 Administration
	Oracle Text Users and Roles
	CTXSYS User
	CTXAPP Role
	Granting Roles and Privileges to Users

	DML Queue
	The CTX_OUTPUT Package
	Servers
	Administration Tool

	A CONTEXT Query Application
	Web Query Application Overview
	The PSP Web Application
	Web Application Prerequisites
	Building the Web Application
	PSP Sample Code
	loader.ctl
	loader.dat
	search_htmlservices.sql
	search_html.psp

	The JSP Web Application
	Web Application Prerequisites
	JSP Sample Code: search_html.jsp

	B CATSEARCH Query Application
	CATSEARCH Web Query Application Overview
	The JSP Web Application
	Building the JSP Web Application
	JSP Sample Code
	loader.ctl
	loader.dat
	catalogSearch.jsp

	Index

