
Oracle9 i

Streams

Release 2 (9.2)

October 2002

Part No. A96571-02

Oracle9i Streams, Release 2 (9.2)

Part No. A96571-02

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Author: Randy Urbano

Graphic Artist: Valarie Moore

Contributors: Nimar Arora, Lance Ashdown, Ram Avudaiappan, Sukanya Balaraman, Neerja Bhatt,
Ragamayi Bhyravabhotla, Diego Cassinera, Debu Chatterjee, Alan Downing, Lisa Eldridge, Curt
Elsbernd, Yong Feng, Jairaj Galagali, Brajesh Goyal, Sanjay Kaluskar, Lewis Kaplan, Anand
Lakshminath, Jing Liu, Edwina Lu, Raghu Mani, Pat McElroy, Krishnan Meiyyappan, Shailendra Mishra,
Tony Morales, Bhagat Nainani, Anand Padmanaban, Maria Pratt, Arvind Rajaram, Viv Schupmann,
Vipul Shah, Neeraj Shodhan, Wayne Smith, Benny Souder, Jim Stamos, Janet Stern, Mahesh
Subramaniam, Bob Thome, Ramkumar Venkatesan, Wei Wang, Lik Wong, David Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle Store, SQL*Plus, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments .. xvii

Preface .. xix

Audience .. xx
Organization.. xx
Related Documentation .. xxiv
Conventions... xxv
Documentation Accessibility ... xxix

Part I Streams Concepts

1 Introduction to Streams

Streams Overview... 1-2
What Can Streams Do? .. 1-3
Why Use Streams?.. 1-4

Capture Process Overview .. 1-6
Event Staging and Propagation Overview... 1-7

Directed Networks Overview... 1-8
Explicit Enqueue and Dequeue of Events... 1-9

Apply Process Overview ... 1-11
Automatic Conflict Detection and Resolution .. 1-12
iii

Rules Overview ... 1-13
Table Rules Overview .. 1-14
Schema Rules Overview .. 1-14
Global Rules Overview .. 1-14

Transformations Overview.. 1-15
Heterogeneous Information Sharing Overview ... 1-16

Oracle to Non-Oracle Data Sharing Overview... 1-16
Non-Oracle to Oracle Data Sharing Overview... 1-18

Example Streams Configurations... 1-19
Administration Tools for a Streams Environment.. 1-21

Oracle-Supplied PL/SQL Packages ... 1-21
Streams Data Dictionary Views.. 1-22
Streams Tool in Oracle Enterprise Manager ... 1-23

2 Streams Capture Process

The Redo Log and the Capture Process .. 2-2
Logical Change Records (LCRs) ... 2-2

Row LCRs .. 2-3
DDL LCRs .. 2-4

Capture Rules .. 2-5
Datatypes Captured .. 2-6
Types of Changes Captured .. 2-7

Types of DML Changes Captured.. 2-7
Types of DDL Changes Ignored by a Capture Process ... 2-8
Other Types of Changes Ignored by a Capture Process ... 2-9
NOLOGGING and UNRECOVERABLE Keywords for SQL Operations............................ 2-9
UNRECOVERABLE Clause for Direct Path Loads.. 2-10

Supplemental Logging in a Streams Environment .. 2-11
Instantiation ... 2-13
The Start SCN, Captured SCN, and Applied SCN for a Capture Process 2-15

Start SCN.. 2-15
Captured SCN ... 2-16
Applied SCN ... 2-16

Streams Capture Processes and RESTRICTED SESSION.. 2-16
Streams Capture Processes and Oracle Real Application Clusters ... 2-17
iv

Capture Process Architecture ... 2-18
Capture Process Components... 2-19
LogMiner Configuration ... 2-20
Capture Process Creation .. 2-21
ARCHIVELOG Mode and a Capture Process .. 2-25
Capture Process Parameters ... 2-25
Capture Process Rule Evaluation ... 2-27
The Persistent State of a Capture Process ... 2-30

3 Streams Staging and Propagation

Event Staging and Propagation Overview... 3-2
Captured and User-Enqueued Events... 3-3
Event Propagation Between Queues ... 3-4

Propagation Rules .. 3-5
Ensured Event Delivery... 3-6
Directed Networks ... 3-7

SYS.AnyData Queues and User Messages .. 3-11
SYS.AnyData Wrapper for User Messages Payloads.. 3-11
Programmatic Environments for Enqueue and Dequeue of User Messages..................... 3-12
Message Propagation and SYS.AnyData Queues.. 3-16
User-Defined Type Messages ... 3-17

Streams Queues and Oracle Real Application Clusters.. 3-18
Streams Staging and Propagation Architecture .. 3-19

Queue Buffers.. 3-19
Propagation Jobs... 3-20
Secure Queues... 3-22
Transactional and Nontransactional Queues ... 3-24
Streams Data Dictionary for Propagations ... 3-25

4 Streams Apply Process

Apply Process Overview ... 4-2
Apply Rules ... 4-2
Event Processing with an Apply Process ... 4-3

Processing Captured and User-Enqueued Events with an Apply Process.......................... 4-3
Event Processing Options.. 4-4
v

Datatypes Applied .. 4-9
Considerations for Applying DML Changes to Tables ... 4-10

Constraints... 4-10
Substitute Key Columns .. 4-11
Row Subsetting Using Streams Rules .. 4-12
Apply Process Behavior for Column Discrepancies.. 4-14
Conflict Resolution and an Apply Process.. 4-16
Handlers and Row LCR Processing... 4-16

Considerations for Applying DDL Changes ... 4-21
Types of DDL Changes Ignored by an Apply Process.. 4-21
Database Structures in a Streams Environment ... 4-22
Current Schema User Must Exist at Destination Database... 4-23
System-Generated Names ... 4-23
CREATE TABLE AS SELECT Statements ... 4-24

Trigger Firing Property .. 4-25
Instantiation SCN and Ignore SCN... 4-27
The Oldest SCN for an Apply Process.. 4-28
Low-Watermark and High-Watermark for an Apply Process .. 4-28
Streams Apply Processes and RESTRICTED SESSION ... 4-29
Streams Apply Processes and Oracle Real Application Clusters .. 4-29
Apply Process Architecture... 4-30

Apply Process Components .. 4-31
Apply Process Creation ... 4-32
Streams Data Dictionary for an Apply Process .. 4-33
Apply Process Parameters... 4-34
The Persistent State of an Apply Process .. 4-36
Exception Queues ... 4-37

5 Rules

The Components of a Rule.. 5-2
Rule Condition .. 5-2
Rule Evaluation Context .. 5-5
Rule Action Context ... 5-9
vi

Rule Set Evaluation .. 5-12
Rule Set Evaluation Process .. 5-13
Partial Evaluation ... 5-14

Database Objects and Privileges Related to Rules .. 5-15
Privileges for Creating Database Objects Related to Rules .. 5-17
Privileges for Altering Database Objects Related to Rules... 5-17
Privileges for Dropping Database Objects Related to Rules .. 5-18
Privileges for Placing Rules in a Rule Set.. 5-18
Privileges for Evaluating a Rule Set... 5-19
Privileges for Using an Evaluation Context ... 5-19

6 How Rules Are Used In Streams

Overview of How Rules Are Used In Streams.. 6-2
System-Created Rules .. 6-3

Table and Subset Rules .. 6-6
Schema Rules... 6-12
Global Rules .. 6-14

Streams Evaluation Context.. 6-15
Streams and Event Contexts ... 6-18
Streams and Action Contexts.. 6-18
User-Created Rules, Rule Sets, and Evaluation Contexts ... 6-19

Complex Rule Conditions ... 6-20
Custom Evaluation Contexts .. 6-24

Rule-Based Transformations .. 6-25
Rule-Based Transformations and a Capture Process .. 6-28
Rule-Based Transformations and a Propagation ... 6-30
Rule-Based Transformations and an Apply Process ... 6-32
Multiple Rule-Based Transformations .. 6-34

7 Streams Conflict Resolution

About DML Conflicts in a Streams Environment .. 7-2
Conflict Types in a Streams Environment.. 7-2
Conflicts and Transaction Ordering in a Streams Environment.. 7-4
Conflict Detection in a Streams Environment... 7-5
vii

Conflict Avoidance in a Streams Environment ... 7-6
Use a Primary Database Ownership Model ... 7-6
Avoid Specific Types of Conflicts... 7-6

Conflict Resolution in a Streams Environment... 7-8
Prebuilt Update Conflict Handlers .. 7-8
Custom Conflict Handlers... 7-15

8 Streams Tags

Introduction to Tags.. 8-2
Tags and Rules Created by the DBMS_STREAMS_ADM Package.. 8-3
Tags and an Apply Process .. 8-6
Avoid Change Cycling with Tags... 8-8

Each Databases Is a Source and Destination Database for Shared Data 8-8
Primary Database Sharing Data with Several Secondary Databases 8-12
Primary Database Sharing Data with Several Extended Secondary Databases 8-19

9 Streams Heterogeneous Information Sharing

Oracle to Non-Oracle Data Sharing with Streams ... 9-2
Change Capture and Staging in an Oracle to Non-Oracle Environment 9-3
Change Apply in an Oracle to Non-Oracle Environment .. 9-3
Transformations in an Oracle to Non-Oracle Environment ... 9-9
Messaging Gateway and Streams... 9-9
Error Handling in an Oracle to Non-Oracle Environment ... 9-10
Example Oracle to Non-Oracle Streams Environment ... 9-10

Non-Oracle to Oracle Data Sharing with Streams ... 9-10
Change Capture and Staging in a Non-Oracle to Oracle Environment 9-11
Change Apply in a Non-Oracle to Oracle Environment... 9-12
Instantiation from a Non-Oracle Database to an Oracle Database...................................... 9-12

Non-Oracle to Non-Oracle Data Sharing with Streams .. 9-13
viii

10 Streams High Availability Environments

Overview of Streams High Availability Environments .. 10-2
Protection from Failures .. 10-2

Streams Replica Database.. 10-3
When Not to Use Streams ... 10-5
Application Maintained Copies ... 10-6

Best Practices for Streams High Availability Environments.. 10-7
Configuring Streams for High Availability .. 10-7
Recovering from Failures .. 10-9

Part II Streams Administration

11 Configuring a Streams Environment

Configuring a Streams Administrator .. 11-2
Setting Initialization Parameters Relevant to Streams.. 11-4
Setting Export and Import Parameters Relevant to Streams .. 11-8

Export Utility Parameters Relevant to Streams.. 11-9
Import Utility Parameters Relevant to Streams ... 11-10

Configuring a Database to Run a Streams Capture Process ... 11-13
Configuring the Database to Run in ARCHIVELOG Mode... 11-13
Specifying an Alternate Tablespace for LogMiner .. 11-13

Configuring Network Connectivity and Database Links ... 11-14
Configuring a Capture-Based Streams Environment... 11-15

Creating a New Streams Single Source Environment... 11-15
Adding Shared Objects to an Existing Single Source Environment.................................. 11-19
Adding a New Destination Database to an Existing Single Source Environment.......... 11-22
Creating a New Multiple Source Environment.. 11-25
Adding Shared Objects to an Existing Multiple Source Environment 11-30
Adding a New Database to an Existing Multiple Source Environment........................... 11-35

12 Managing a Capture Process

Creating a Capture Process ... 12-2
Example of Creating a Capture Process Using DBMS_STREAMS_ADM 12-3
Example of Creating a Capture Process Using DBMS_CAPTURE_ADM 12-4
ix

Starting a Capture Process... 12-5
Specifying the Rule Set for a Capture Process .. 12-5
Adding Rules to the Rule Set for a Capture Process.. 12-5
Removing a Rule from the Rule Set for a Capture Process .. 12-6
Removing the Rule Set for a Capture Process ... 12-7
Setting a Capture Process Parameter... 12-8
Specifying Supplemental Logging at a Source Database ... 12-9

Specifying Table Supplemental Logging Using Unconditional Log Groups 12-9
Specifying Table Supplemental Logging Using Conditional Log Groups......................... 12-9
Dropping a Supplemental Log Group... 12-10
Specifying Database Supplemental Logging of Key Columns .. 12-10
Dropping Database Supplemental Logging of Key Columns.. 12-10

Setting the Start SCN for a Capture Process.. 12-11
Preparing Database Objects for Instantiation at a Source Database 12-11
Aborting Preparation for Instantiation at a Source Database .. 12-12
Changing the DBID of a Database Where Changes Are Captured....................................... 12-13
Resetting the Log Sequence Number Where Changes Are Captured 12-13
Stopping a Capture Process .. 12-14
Dropping a Capture Process ... 12-14

13 Managing Staging and Propagation

Managing Streams Queues ... 13-2
Creating a Streams Queue ... 13-2
Enabling a User to Perform Operations on a Secure Queue .. 13-3
Disabling a User from Performing Operations on a Secure Queue 13-5
Dropping a Streams Queue ... 13-7

Managing Streams Propagations and Propagation Jobs ... 13-7
Creating a Propagation .. 13-8
Enabling a Propagation Job... 13-11
Scheduling a Propagation Job... 13-11
Altering the Schedule of a Propagation Job.. 13-12
Unscheduling a Propagation Job.. 13-13
Specifying the Rule Set for a Propagation... 13-14
Adding Rules to the Rule Set for a Propagation .. 13-14
Removing a Rule from the Rule Set for a Propagation ... 13-16
x

Removing the Rule Set for a Propagation... 13-16
Disabling a Propagation Job.. 13-17
Dropping a Propagation.. 13-18

Managing a Streams Messaging Environment ... 13-18
Wrapping User Message Payloads in a SYS.AnyData Wrapper 13-19
Propagating Messages Between a SYS.AnyData Queue and a Typed Queue 13-24

14 Managing an Apply Process

Creating, Starting, Stopping, and Dropping an Apply Process... 14-2
Creating an Apply Process.. 14-2
Starting an Apply Process ... 14-7
Stopping an Apply Process ... 14-7
Dropping an Apply Process.. 14-7

Managing the Rule Set for an Apply Process.. 14-8
Specifying the Rule Set for an Apply Process .. 14-8
Adding Rules to the Rule Set for an Apply Process .. 14-8
Removing a Rule from the Rule Set for an Apply Process ... 14-9
Removing the Rule Set for an Apply Process... 14-10

Setting an Apply Process Parameter ... 14-11
Setting the Apply User for an Apply Process.. 14-12
Managing the Message Handler for an Apply Process ... 14-13

Setting the Message Handler for an Apply Process .. 14-13
Removing the Message Handler for an Apply Process .. 14-13

Managing a DML Handler.. 14-14
Creating a DML Handler... 14-14
Setting a DML Handler.. 14-16
Removing a DML Handler.. 14-18

Managing the DDL Handler for an Apply Process.. 14-18
Creating a DDL Handler for an Apply Process ... 14-19
Setting the DDL Handler for an Apply Process... 14-20
Removing the DDL Handler for an Apply Process... 14-21

Managing an Error Handler.. 14-21
Creating an Error Handler .. 14-21
Setting an Error Handler ... 14-26
Removing an Error Handler ... 14-27
xi

Managing the Substitute Key Columns for a Table ... 14-27
Setting Substitute Key Columns for a Table ... 14-28
Removing the Substitute Key Columns for a Table... 14-29

Managing Streams Conflict Resolution.. 14-29
Setting an Update Conflict Handler... 14-30
Modifying an Existing Update Conflict Handler... 14-31
Removing an Existing Update Conflict Handler ... 14-32

Managing Apply Errors ... 14-33
Retrying Apply Error Transactions.. 14-33
Deleting Apply Error Transactions .. 14-34

Setting Instantiation SCNs at a Destination Database.. 14-35
Setting Instantiation SCNs Using Export/Import ... 14-36
Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package 14-38

15 Managing Rules and Rule-Based Transformations

Managing Rule Sets and Rules .. 15-2
Creating a Rule Set ... 15-2
Creating a Rule.. 15-3
Adding a Rule to a Rule Set .. 15-5
Altering a Rule .. 15-5
Modifying System-Created Rules .. 15-6
Removing a Rule from a Rule Set... 15-7
Dropping a Rule.. 15-7
Dropping a Rule Set ... 15-8

Managing Privileges on Evaluation Contexts, Rule Sets, and Rules...................................... 15-8
Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules....................... 15-9
Granting Object Privileges on an Evaluation Context, Rule Set, or Rule 15-9
Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules.................... 15-10
Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule 15-10

Managing Rule-Based Transformations ... 15-11
Creating a Rule-Based Transformation ... 15-11
Altering a Rule-Based Transformation.. 15-18
Removing a Rule-Based Transformation .. 15-21
xii

16 Other Streams Management Tasks

Managing Logical Change Records (LCRs) ... 16-2
Constructing and Enqueuing LCRs ... 16-2
The use_old Parameter in Some Row LCR Member Functions... 16-8
Constructing and Processing LCRs Containing LOB Columns... 16-11

Managing Streams Tags... 16-26
Managing Streams Tags for the Current Session... 16-26
Managing Streams Tags for an Apply Process... 16-27

Performing Database Point-in-Time Recovery on a Destination Database 16-29
Resetting the Start SCN for the Existing Capture Process to Perform Recovery 16-30
Creating a New Capture Process to Perform Recovery.. 16-32

Performing Full Database Export/Import on a Database Using Streams 16-35

17 Monitoring a Streams Environment

Summary of Streams Static Data Dictionary Views .. 17-2
Summary of Streams Dynamic Performance Views .. 17-3
Monitoring a Streams Capture Process .. 17-3

Displaying the Queue, Rule Set, and Status of Each Capture Process 17-3
Displaying General Information About a Capture Process ... 17-4
Listing the Parameter Settings for a Capture Process ... 17-6
Determining the Applied SCN for All Capture Processes in a Database........................... 17-7
Determining Redo Log Scanning Latency for a Capture Process 17-7
Determining Event Enqueuing Latency for a Capture Process ... 17-8
Determining Which Database Objects Are Prepared for Instantiation 17-9
Displaying Supplemental Log Groups at a Source Database .. 17-11

Monitoring a Streams Queue ... 17-12
Displaying the Streams Queues in a Database... 17-12
Determining the Consumer of Each User-Enqueued Event in a Queue 17-13
Viewing the Contents of User-Enqueued Events in a Queue .. 17-13

Monitoring Streams Propagations and Propagation Jobs .. 17-15
Determining the Source Queue and Destination Queue for a Propagation 17-15
Determining the Rule Set for a Propagation... 17-16
Displaying the Schedule for a Propagation Job ... 17-17
Determining the Total Number of Events and Bytes Propagated..................................... 17-19
xiii

Monitoring a Streams Apply Process.. 17-20
Displaying General Information About Each Apply Process .. 17-21
Listing the Parameter Settings for an Apply Process .. 17-22
Displaying Information About Apply Handlers.. 17-23
Displaying the Substitute Key Columns Specified at a Destination Database 17-25
Displaying Information About Update Conflict Handlers for a Destination Database. 17-26
Determining the Tables for Which an Instantiation SCN Has Been Set 17-27
Displaying Information About the Reader Server for an Apply Process 17-28
Determining Capture to Dequeue Latency for an Event .. 17-29
Displaying Information About the Coordinator Process.. 17-30
Determining the Capture to Apply Latency for an Event .. 17-31
Displaying Information About the Apply Servers for an Apply Process 17-33
Displaying Effective Apply Parallelism for an Apply Process .. 17-35
Checking for Apply Errors .. 17-36
Displaying Detailed Information About Apply Errors ... 17-37

Monitoring Rules and Rule-Based Transformations ... 17-42
Displaying the Streams Rules Used by a Streams Process or Propagation...................... 17-43
Displaying the Condition for a Streams Rule ... 17-44
Displaying the Evaluation Context for Each Rule Set ... 17-45
Displaying Information About the Tables Used by an Evaluation Context 17-45
Displaying Information About the Variables Used in an Evaluation Context 17-46
Displaying All of the Rules in a Rule Set .. 17-47
Displaying the Condition for Each Rule in a Rule Set... 17-48
Listing Each Rule that Contains a Specified Pattern in Its Condition............................... 17-49
Displaying the Rule-Based Transformations in a Rule Set ... 17-49

Monitoring Streams Tags... 17-50
Displaying the Tag Value for the Current Session... 17-50
Displaying the Tag Value for an Apply Process .. 17-51

18 Troubleshooting a Streams Environment

Troubleshooting Capture Problems .. 18-2
Is the Capture Process Enabled?... 18-2
Is the Capture Process Current? ... 18-3
Is LOG_PARALLELISM Set to 1?... 18-3
Is LOGMNR_MAX_PERSISTENT_SESSIONS Set High Enough?...................................... 18-4
xiv

Troubleshooting Propagation Problems... 18-4
Does the Propagation Use the Correct Source and Destination Queue?............................ 18-5
Is the Propagation Job Used by a Propagation Enabled? ... 18-6
Are There Enough Job Queue Processes? ... 18-7
Is Security Configured Properly for the Streams Queue? .. 18-8

Troubleshooting Apply Problems ... 18-9
Is the Apply Process Enabled?.. 18-10
Is the Apply Process Current? .. 18-10
Does the Apply Process Apply Captured Events or User-Enqueued Events?................ 18-11
Is a Custom Apply Handler Specified? ... 18-12
Is the Apply Process Waiting for a Dependent Transaction? .. 18-12
Are There Any Apply Errors in the Exception Queue? .. 18-13

Troubleshooting Problems with Rules and Rule-Based Transformations 18-17
Are Rules Configured Properly for the Streams Process or Propagation? 18-17
Are the Rule-Based Transformations Configured Properly? ... 18-23

Checking the Trace Files and Alert Log for Problems ... 18-24
Does a Capture Process Trace File Contain Messages About Capture Problems? 18-25
Do the Trace Files Related to Propagation Jobs Contain Messages About Problems? .. 18-25
Does an Apply Process Trace File Contain Messages About Apply Problems? 18-26

Part III Example Environments and Applications

19 Streams Messaging Example

Overview of Messaging Example .. 19-2
Prerequisites .. 19-4
Set Up Users and Create a Streams Queue .. 19-5
Create the Enqueue Procedures ... 19-10
Configure an Apply Process.. 19-15
Configure Explicit Dequeue ... 19-23
Enqueue Events ... 19-28
Dequeue Events Explicitly and Query for Applied Events.. 19-34
Enqueue and Dequeue Events Using JMS .. 19-35
xv

20 Single Database Capture and Apply Example

Overview of the Single Database Capture and Apply Example ... 20-2
Prerequisites... 20-4
Set Up the Environment .. 20-5
Configure Capture and Apply .. 20-10
Make DML Changes, Query for Results, and Dequeue Events .. 20-22

21 Simple Single Source Replication Example

Overview of the Simple Single Source Replication Example.. 21-2
Prerequisites... 21-3
Set Up Users and Create Queues and Database Links .. 21-4
Configure Capture, Propagation, and Apply for Changes to One Table.............................. 21-10
Make Changes to the hr.jobs Table and View Results .. 21-18

22 Single Source Heterogeneous Replication Example

Overview of the Single Source Heterogeneous Replication Example 22-2
Prerequisites... 22-5
Set Up Users and Create Queues and Database Links .. 22-7
Example Scripts for Sharing Data from One Database ... 22-20

Simple Configuration for Sharing Data from a Single Database 22-21
Flexible Configuration for Sharing Data from a Single Database 22-40

Make DML and DDL Changes to Tables in the hr Schema ... 22-62
Add Objects to an Existing Streams Replication Environment ... 22-64
Make a DML Change to the hr.employees Table.. 22-75
Add a Database to an Existing Streams Replication Environment 22-76
Make a DML Change to the hr.departments Table .. 22-90

23 Multiple Source Replication Example

Overview of the Multiple Source Databases Example .. 23-2
Prerequisites... 23-5
Set Up Users and Create Queues and Database Links .. 23-6
Example Script for Sharing Data from Multiple Databases... 23-25
Make DML and DDL Changes to Tables in the hr Schema ... 23-62
xvi

24 Rule-Based Application Example

Overview of the Rule-Based Application .. 24-2
Using Rules on Non-Table Data Stored in Explicit Variables ... 24-3
Using Rules on Data Stored in a Table ... 24-9
Using Rules on Both Explicit Variables and Table Data ... 24-18
Using Rules on Implicit Variables and Table Data .. 24-27

Part IV Appendixes

A XML Schema for LCRs

Definition of the XML Schema for LCRs ... A-2

Index
xvii

xviii

Send Us Your Comments

Oracle9 i Streams, Release 2 (9.2)

Part No. A96571-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xix

xx

Preface

Oracle9i Streams describes the features and functionality of Streams. This document

contains conceptual information about Streams, along with information about

configuring and managing a Streams environment. In addition, this document

contains detailed examples for configuring a Streams messaging environment, a

Streams replication environment, and a rule-based application.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xxi

Audience
Oracle9i Streams is intended for database administrators who create and maintain

Streams environments. These administrators perform one or more of the following

tasks:

■ Plan for a Streams environment

■ Configure a Streams environment

■ Configure conflict resolution in a Streams environment

■ Administer a Streams environment

■ Monitor a Streams environment

■ Perform necessary troubleshooting activities

To use this document, you need to be familiar with relational database concepts,

SQL, distributed database administration, Advanced Queuing concepts, PL/SQL,

and the operating systems under which you run a Streams environment.

Organization
This document contains:

Part I, Streams Concepts
Contains chapters that describe conceptual information relating to Streams.

Chapter 1, "Introduction to Streams"
Introduces the major features of Streams and how they can be used.

Chapter 2, "Streams Capture Process"
Contains conceptual information about the Streams capture process. Includes

information about logical change records (LCRs), datatypes and types of changes

captured, and supplemental logging, along with information about capture process

architecture.
xxii

Chapter 3, "Streams Staging and Propagation"
Contains conceptual information about staging and propagation in a Streams

environment. Includes information about the differences between captured and

user-enqueued events, propagation, the differences between transactional and

non-transactional queues, and using SYS.AnyData queues. Also includes

information about queue and propagation architecture.

Chapter 4, "Streams Apply Process"
Contains conceptual information about the Streams apply process. Includes

information about event processing with an apply process, considerations for apply

changes to tables, conditions for applying DDL changes, and controlling a trigger’s

firing property, along with information about the oldest SCN for an apply process

and apply process architecture.

Chapter 5, "Rules"
Contains conceptual information about rules. Includes information about rule

components, rule sets, and privileges related to rules.

Chapter 6, "How Rules Are Used In Streams"
Contains conceptual information about how rules are used in Streams. Includes

information about table-level rules, subset rules, schema-level rules, and

global-level rules. Also includes information about rule-based transformations.

Chapter 7, "Streams Conflict Resolution"
Contains conceptual information about conflicts. Includes information about the

possible types of conflicts, conflict detection, conflict avoidance, and conflict

resolution in Streams environments.

Chapter 8, "Streams Tags"
Contains conceptual information about Streams tags. Includes information about

how tag values are used in rules, how a tag value can be set for an apply process,

and how to avoid change cycling using tags.

Chapter 9, "Streams Heterogeneous Information Sharing"
Contains conceptual information about heterogeneous information sharing using

Streams. Includes information about sharing information in an Oracle database

with a non-Oracle database, sharing information in a non-Oracle database with an

Oracle database, and using Streams to share information between two non-Oracle

databases.
xxiii

Chapter 10, "Streams High Availability Environments"
Contains conceptual information about using Streams for high availability

environments.

Part II, Streams Administration
Contains chapters that describe managing a capture process, staging, propagation,

an apply process, rules, rule-based transformations, logical change records (LCRs),

and Streams tags.

Chapter 11, "Configuring a Streams Environment"
Contains information about preparing for a Streams environment. Includes

instructions for configuring a Streams administrator, setting initialization

parameters that are important to Streams, preparing for a capture process, and

configuring networking connectivity.

Chapter 12, "Managing a Capture Process"
Contains information about managing a capture process. Includes instructions for

creating, starting, stopping, and altering a capture process, as well as other

information related to capture process administration.

Chapter 13, "Managing Staging and Propagation"
Contains information about managing staging and propagation of events in a

Streams environment. Includes instructions for creating a Streams queue, and

instructions for enabling, disabling, and altering a propagation, as well as other

information related to staging, propagation, and messaging.

Chapter 14, "Managing an Apply Process"
Contains information about managing an apply process. Includes instructions for

creating, starting, stopping, and altering an apply process, as well as instructions

about using apply process handlers, configuring conflict resolution, and managing

an exception queue.

Chapter 15, "Managing Rules and Rule-Based Transformations"
Contains information about managing rules and rule-based transformations.

Includes instructions for managing rules and rule sets, as well as information about

granting and revoking privileges related to rules. In addition, this chapter includes

instructions for creating, altering, and removing rule-based transformations.
xxiv

Chapter 16, "Other Streams Management Tasks"
Contains information about managing logical change records (LCRs) and Streams

tags. Includes instructions for constructing and enqueuing LCRs, and instructions

for setting and removing tag values for a session or an apply process.

Chapter 17, "Monitoring a Streams Environment"
Contains information about using data dictionary views and scripts to monitor a

Streams environment. Includes information about monitoring capture processes,

queues, propagations, apply processes, rules, rule-based transformations, and tags.

Chapter 18, "Troubleshooting a Streams Environment"
Contains information about possible problems in a Streams environment and how

to resolve them. Includes information about troubleshooting a capture process,

propagation, apply process, and Streams rules, as well as information about

checking trace files and the alert log for problems.

Part III, Example Environments and Applications
Contains chapters that illustrate example environments.

Chapter 19, "Streams Messaging Example"
Contains a step by step example that configures a messaging environment using

Streams.

Chapter 20, "Single Database Capture and Apply Example"
Contains a step by step example that configures a single database capture and

apply example using Streams. Specifically, this chapter illustrates an example of a

single database that captures changes to a table, uses a DML handler during apply

to re-enqueue the captured changes into a queue, and then applies a subset of the

changes to a different table.

Chapter 21, "Simple Single Source Replication Example"
Contains a step by step example that configures a simple single source replication

environment using Streams.

Chapter 22, "Single Source Heterogeneous Replication Example"
Contains a step by step example that configures a single source heterogeneous

replication environment using Streams. Also contains step by step examples for

adding objects and databases to this environment.
xxv

Chapter 23, "Multiple Source Replication Example"
Contains a step by step example that configures a multiple source replication

environment using Streams.

Chapter 24, "Rule-Based Application Example"
Contains step by step examples that illustrate a rule-based application that uses the

Oracle rules engine.

Appendixes
Contains one appendix that describes the XML schema for logical change

records (LCRs).

Appendix A, "XML Schema for LCRs"
Contains the definition of the XML schema for LCRs.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Database Concepts

■ Oracle9i Database Administrator’s Guide

■ Oracle9i SQL Reference

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ PL/SQL User’s Guide and Reference

■ Oracle9i Database Utilities

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide

■ Oracle9i Application Developer’s Guide - Advanced Queuing

■ Streams online help for the Streams tool in Oracle Enterprise Manager

You may find more information about a particular topic in the other documents in

the Oracle9i documentation set.

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them.
xxvi

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN) at

http://otn.oracle.com/

You must register online before using OTN. If you already have a username and

password for OTN, then you can go directly to the documentation section of the

OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples
xxvii

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where
old_release refers to the release you
installed prior to upgrading.
xxviii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;
xxix

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xxx

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xxxi

xxxii

Part I

 Streams Concepts

This part describes conceptual information about Streams and contains the

following chapters:

■ Chapter 1, "Introduction to Streams"

■ Chapter 2, "Streams Capture Process"

■ Chapter 3, "Streams Staging and Propagation"

■ Chapter 4, "Streams Apply Process"

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"

■ Chapter 7, "Streams Conflict Resolution"

■ Chapter 8, "Streams Tags"

■ Chapter 9, "Streams Heterogeneous Information Sharing"

■ Chapter 10, "Streams High Availability Environments"

Introduction to Str
1

Introduction to Streams

This chapter briefly describes the basic concepts and terminology related to Oracle

Streams. These concepts are described in more detail in other chapters in this book.

This chapter contains these topics:

■ Streams Overview

■ Capture Process Overview

■ Event Staging and Propagation Overview

■ Apply Process Overview

■ Automatic Conflict Detection and Resolution

■ Rules Overview

■ Transformations Overview

■ Heterogeneous Information Sharing Overview

■ Example Streams Configurations

■ Administration Tools for a Streams Environment
eams 1-1

Streams Overview
Streams Overview
Oracle Streams enables you to share data and events in a stream. The stream can

propagate this information within a database or from one database to another. The

stream routes specified information to specified destinations. The result is a new

feature that provides greater functionality and flexibility than traditional solutions

for capturing and managing events, and sharing the events with other databases

and applications. Streams enables you to break the cycle of trading off one solution

for another. Streams provides the capabilities needed to build and operate

distributed enterprises and applications, data warehouses, and high availability

solutions. You can use all the capabilities of Oracle Streams at the same time. If your

needs change, then you can implement a new capability of Streams without

sacrificing existing capabilities.

Using Oracle Streams, you control what information is put into a stream, how the

stream flows or is routed from database to database, what happens to events in the

stream as they flow into each database, and how the stream terminates. By

configuring specific capabilities of Streams, you can address specific requirements.

Based on your specifications, Streams can capture, stage, and manage events in the

database automatically, including, but not limited to, data manipulation language

(DML) changes and data definition language (DDL) changes. You can also put

user-defined events into a stream. Then, Streams can propagate the information to

other databases or applications automatically. Again, based on your specifications,

Streams can apply events at a destination database. Figure 1–1 shows the Streams

information flow.

Figure 1–1 Streams Information Flow

ApplyCapture Staging
1-2 Oracle9i Streams

Streams Overview
What Can Streams Do?
You can use Streams to:

■ Capture changes at a database.

You can configure a background capture process to capture changes made to

tables, schemas, or the entire database. A capture process captures changes

from the redo log and formats each captured change into a logical change

record (LCR). The database where changes are generated in the redo log is

called the source database.

■ Enqueue events into a queue. Two types of events may be staged in a Streams

queue: LCRs and user messages.

A capture process enqueues LCR events into a queue that you specify. The

queue can then share the LCR events within the same database or with other

databases.

You can also enqueue user events explicitly with a user application. These

explicitly enqueued events can be LCRs or user messages.

■ Propagate events from one queue to another. These queues may be in the same

database or in different databases.

■ Dequeue events.

A background apply process can dequeue events. You can also dequeue events

explicitly with a user application.

■ Apply events at a database.

You can configure an apply process to apply all of the events in a queue or only

the events that you specify. You can also configure an apply process to call your

own PL/SQL subprograms to process events.

The database where LCR events are applied and other types of events are

processed is called the destination database. In some configurations, the source

database and the destination database may be the same.

Other capabilities of Streams include the following:

■ Directed networks

■ Automatic conflict detection and resolution

■ Transformations

■ Heterogeneous information sharing
Introduction to Streams 1-3

Streams Overview
These capabilities are discussed briefly later in this chapter and in detail later in this

document.

Why Use Streams?
The following sections briefly describe some of the reasons for using Streams.

Message Queuing
Streams allows user applications to enqueue messages of different types, propagate

the messages to subscribing queues, notify user applications that messages are

ready for consumption, and dequeue messages at the destination database. Streams

introduces a new type of queue that stages messages of SYS.AnyData type.

Messages of almost any type can be wrapped in a SYS.AnyData wrapper and

staged in SYS.AnyData queues. Streams interoperates with Advanced Queuing

(AQ), which supports all the standard features of message queuing systems,

including multiconsumer queues, publishing and subscribing, content-based

routing, internet propagation, transformations, and gateways to other messaging

subsystems.

Data Replication
Streams can efficiently capture DML and DDL changes made to database objects

and replicate those changes to one or more other databases. A Streams capture

process captures changes made to source database objects and formats them into

LCRs, which can be propagated to destination databases and then applied by

Streams apply processes.

The destination databases can allow DML and DDL changes to the same database

objects, and these changes may or may not be propagated to the other databases in

the environment. In other words, you can configure a Streams environment with

one database that propagates changes, or you can configure an environment where

changes are propagated between databases bidirectionally. Also, the tables for

which data is shared need not be identical copies at all databases. Both the structure

and the contents of these tables can differ at different databases, and the

information in these tables can be shared between these databases.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about AQ
1-4 Oracle9i Streams

Streams Overview
Data Warehouse Loading
Data warehouse loading is a special case of data replication. Some of the most

critical tasks in creating and maintaining a data warehouse include refreshing

existing data, and adding new data from the operational databases. Streams can

capture changes made to a production system and send those changes to a staging

database or directly to a data warehouse or operational data store. Streams capture

of redo log information avoids unnecessary overhead on the production systems.

Support for data transformations and user-defined apply procedures allows the

necessary flexibility to reformat data or update warehouse-specific data fields as

data is loaded.

Data Protection
One solution for data protection is to create a local or remote copy of a production

database. In the event of human error or a catastrophe, the copy can be used to

resume processing. You can use Streams to configure flexible high availability

environments. In addition, you can use Oracle Data Guard, a data protection feature

built on Streams, to create and maintain a a logical standby database, which is a

logically equivalent standby copy of a production database. As in the case of

Streams replication, a capture process captures changes in the redo log and formats

these changes into LCRs. These LCRs are applied at the standby databases. The

standby databases are fully open for read/write and may include specialized

indexes or other database objects. Therefore, these standby databases can be queried

as updates are applied, making Oracle Data Guard a good solution for off loading

latency sensitive queries from a production database.

The most notable difference between a logical standby database and a Streams data

replication environment is where the changes are captured. It is important to move

the updates to the remote site as soon as possible with a logical standby database.

Doing so ensures that, in the event of a failure, the exposure to lost transactions is

minimal. By directly and synchronously writing the redo logs at the remote

database, you can achieve no data loss in the event of a disaster. At the standby

system, the changes are captured and directly applied to the standby database with

an apply process.

See Also: Oracle9i Data Warehousing Guide for more information

about data warehouses
Introduction to Streams 1-5

Capture Process Overview
Capture Process Overview
Changes made to database objects in an Oracle database are logged in the redo log

to guarantee recoverability in the event of user error or media failure. A capture

process is an Oracle background process that reads the database redo log to capture

DML and DDL changes made to database objects. A capture process formats these

changes into events called LCRs and enqueues them into a queue. There are two

types of LCRs: row LCRs contain information about a change to a row in table

resulting from a DML operation, and DDL LCRs contain information about a DDL

change to a database object. You use rules to specify which changes are captured.

Figure 1–2 shows a capture process capturing LCRs.

Figure 1–2 The Capture Process

See Also:

■ Chapter 10, "Streams High Availability Environments"

■ Oracle9i Data Guard Concepts and Administration for more

information about logical standby databases

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Capture
Process

LCRs

Capture
Changes

Log
Changes
1-6 Oracle9i Streams

Event Staging and Propagation Overview
You can specify Streams tags for redo entries generated by a certain session or by an

apply process. These tags then become part of the LCRs captured by a capture

process. A tag can be used to determine whether a redo entry or an LCR contains a

change that originated in the local database or at a different database, so that you

can avoid sending LCRs back to the database where they originated. Tags may be

used for other LCR tracking purposes as well. You can also use tags to specify the

set of destination databases for each LCR.

Event Staging and Propagation Overview
Streams uses queues to stage events for propagation or consumption. You can use

Streams to propagate events from one queue to another, and these queues can be in

the same database or in different databases. The queue from which the events are

propagated is called the source queue, and the queue that receives the events is

called the destination queue. There can be a one-to-many, many-to-one, or

many-to-many relationship between source and destination queues.

Events that are staged in a queue can be consumed by the Streams apply process or

by a user-defined subprogram. If you configure a propagation to propagate changes

from a source queue to a destination queue, then you can use rules to specify which

changes are propagated. Figure 1–3 shows propagation from a source queue to a

destination queue.

Note: The capture process does not capture some types of DML

and DDL changes, and it does not capture changes made in the SYS
or SYSTEM schemas.

See Also:

■ Chapter 2, "Streams Capture Process" for more information

about capture processes and for detailed information about

which DML and DDL statements are captured by a capture

process

■ Chapter 8, "Streams Tags"
Introduction to Streams 1-7

Event Staging and Propagation Overview
Figure 1–3 Propagation from a Source Queue to a Destination Queue

Directed Networks Overview
Streams enables you to configure an environment where changes are shared

through directed networks. A directed network is one in which propagated events

may pass through one or more intermediate databases before arriving at a

destination database. The events may or may not be processed at an intermediate

database. Using Streams, you can choose which events are propagated to each

destination database, and you can specify the route events will traverse on their

way to a destination database.

Figure 1–4 shows an example directed networks environment. Notice that, in this

example, the queue at the intermediate database in Chicago is both a source queue

and a destination queue.

Source
Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Destination
Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate
Events
1-8 Oracle9i Streams

Event Staging and Propagation Overview
Figure 1–4 Example Directed Networks Environment

Explicit Enqueue and Dequeue of Events
User applications can enqueue events into a queue explicitly. User applications can

format these events as LCRs, which allows an apply process to apply them at a

destination database. Alternatively, these events can be formatted as user messages

for consumption by another user application, which either explicitly dequeues the

events or processes the events with callbacks from an apply process. Events that

were explicitly enqueued into a queue can be explicitly dequeued from the same

queue. Figure 1–5 shows explicit enqueue of events into and dequeue of events

from the same queue.

See Also: Chapter 3, "Streams Staging and Propagation" for more

information about staging and propagation

Destination Database
in New York

Queue

Destination Database
in Miami

Queue

Intermediate Database
in Chicago

Queue

This queue is:
• Destination queue

for the source queue
in Hong Kong.

• Source queue for the
destination queues in
New York and Miami.

Source Database
in Hong Kong

Queue
Propagate Events

Propagate
Events

Propagate
Events
Introduction to Streams 1-9

Event Staging and Propagation Overview
Figure 1–5 Explicit Enqueue and Dequeue of Events in a Single Queue

When events are propagated between queues, events that were explicitly enqueued

into a source queue can be explicitly dequeued from a destination queue by a user

application without any intervention from an apply process. Figure 1–6 shows

explicit enqueue of events into a source queue, propagation to a destination queue,

and then explicit dequeue of events from the destination queue.

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

User Application A
Produces Messages

User Application B
Consumes Messages

LCRs or
Messages

LCRs or
Messages
1-10 Oracle9i Streams

Apply Process Overview
Figure 1–6 Explicit Enqueue, Propagation, and Dequeue of Events

Apply Process Overview
An apply process is an Oracle background process that dequeues events from a

queue and either applies each event directly to a database object or passes the event

as a parameter to a user-defined procedure called an apply handler. These apply

handlers can include message handlers, DML handlers, and DDL handlers.

Typically, an apply process applies events to the local database where it is running,

but, in a heterogeneous database environment, it can be configured to apply events

at a remote non-Oracle database. You use rules to specify which events in the queue

are applied. Figure 1–7 shows an apply process processing LCRs and user

messages.

See Also: "SYS.AnyData Queues and User Messages" on

page 3-11 for more information about explicit enqueue and

dequeue of events

Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate
Events

User Application C
Produces Messages

User Application D
Consumes Messages

LCRs or
Messages

LCRs or
Messages
Introduction to Streams 1-11

Automatic Conflict Detection and Resolution
Figure 1–7 The Apply Process

Automatic Conflict Detection and Resolution
An apply process detects conflicts automatically when directly applying LCRs.

Typically, a conflict results when the same row in the source database and

destination database is changed at approximately the same time.

When conflicts occur, you need a mechanism to ensure that the conflict is resolved

in accordance with your business rules. Streams offers a variety of prebuilt conflict

resolution handlers. Using these prebuilt handlers, you can define a conflict

resolution system for each of your databases that resolves conflicts in accordance

with your business rules. If you have a unique situation that Oracle’s prebuilt

conflict resolution handlers cannot resolve, then you can build your own conflict

resolution handlers.

If a conflict is not resolved, or if a handler procedure raises an error, then all events

in the transaction that raised the error are saved in an exception queue for later

analysis and possible reexecution.

See Also: Chapter 4, "Streams Apply Process"

See Also: Chapter 7, "Streams Conflict Resolution"

Database Objects

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Message
Handler

Procedure

LCRs or
Messages

Messages
Apply
Changes

DML
Handler

Procedure

DDL
Handler

Procedure

Apply
Process

Row
LCRs

DDL
LCRs
1-12 Oracle9i Streams

Rules Overview
Rules Overview
Streams enables you to control which information to share and where to share it

using rules. A rule is specified as a condition that is similar to the condition in the

WHERE clause of a SQL query, and you can group related rules together into rule
sets. A rule consists of the following components:

■ The rule condition combines one or more expressions and operators and

returns a Boolean value, which is a value of TRUE, FALSE, or NULL (unknown),

based on an event.

■ The rule evaluation context defines external data that can be referenced in rule

conditions. The external data can either exist as external variables, as table data,

or both.

■ The rule action context is optional information associated with a rule that is

interpreted by the client of the rules engine when the rule is evaluated.

For example, the following rule condition may be used in Streams to specify that

the schema name that owns a table must be hr and the table name must be

departments for the condition to evaluate to TRUE:

:dml.get_object_owner() = 'hr' AND :dml.get_object_name() = 'departments'

In a Streams environment, this rule condition may be used in the following ways:

■ To instruct a capture process to capture DML changes to the hr.departments
table

■ To instruct a propagation to propagate DML changes to the hr.departments
table

■ To instruct an apply process to apply DML changes to the hr.departments
table

Streams performs tasks based on rules. These tasks include capturing changes with

a capture process, propagating changes with a propagation, and applying changes

with an apply process. You can define rules for these tasks at three different levels:

■ Table rules

■ Schema rules

■ Global rules
Introduction to Streams 1-13

Rules Overview
Table Rules Overview
When you define a table rule, the Streams task is performed when a change is made

to the table you specify. For example, you can define a rule that instructs a capture

process to capture changes to the hr.employees table. Given this rule, if a row is

inserted into the hr.employees table, then the capture process captures the insert,

formats it into an LCR, and enqueues the LCR into a queue.

Schema Rules Overview
When you define a schema rule, the Streams task is performed when a change is

made to the database objects in the schema you specify, and any database objects

added to the schema in the future. For example, you can define two rules that

instruct a propagation to propagate DML and DDL changes to the hr schema from

a source queue to a destination queue. Given these rules, suppose the source queue

contains LCRs that define the following changes:

■ The hr.loc_city_ix index is altered.

■ A row is updated in the hr.jobs table.

The propagation propagates these changes from the source queue to the destination

queue, because both changes are to database objects in the hr schema.

Global Rules Overview
When you define a global rule, the Streams task is performed when a change is

made to any database object in the database. If it is a global DML capture rule, then

a capture process captures all DML changes to the database objects in the database.

If it is a global DDL propagation or apply rule, then the Streams task is performed

for all DDL changes in a queue.

Note: The capture process does not capture certain types of

changes and changes to certain datatypes in table columns. Also, a

capture process never captures changes in the SYS and SYSTEM
schemas.

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"
1-14 Oracle9i Streams

Transformations Overview
Transformations Overview
A rule-based transformation is any modification to an event that results when a

rule evaluates to TRUE. For example, you can use a rule-based transformation when

you want to change the datatype of a particular column in a table for an event. In

this case, the transformation can be a PL/SQL function that takes as input a

SYS.AnyData object containing a logical change record (LCR) with a NUMBER
datatype for a column and returns a SYS.AnyData object containing an LCR with a

VARCHAR2 datatype for the same column.

A transformation can occur at the following times:

■ During enqueue of an event, which can be useful for formatting an event in a

manner appropriate for all destination databases

■ During propagation of an event, which may be useful for subsetting data before

it is sent to a remote site

■ During dequeue of an event, which can be useful for formatting an event in a

manner appropriate for a specific destination database

Figure 1–8 shows a rule-based transformation during apply.

Figure 1–8 Transformation During Apply

See Also: "Rule-Based Transformations" on page 6-25

Queue
Dequeue
Events

Apply
Process

Continue Dequeue
of Transformed
Events

Apply Transformed
Events

Transformation
During Dequeue

Database Objects
Introduction to Streams 1-15

Heterogeneous Information Sharing Overview
Heterogeneous Information Sharing Overview
In addition to information sharing between Oracle databases, Streams supports

information sharing between Oracle databases and non-Oracle databases. The

following sections contain an overview of this support.

Oracle to Non-Oracle Data Sharing Overview
If an Oracle database is the source and a non-Oracle database is the destination,

then the non-Oracle database destination lacks the following Streams mechanisms:

■ A queue to receive events

■ An apply process to dequeue and apply events

To share DML changes from an Oracle source database with a non-Oracle

destination database, the Oracle database functions as a proxy and carries out some

of the steps that would normally be done at the destination database. That is, the

events intended for the non-Oracle destination database are dequeued in the Oracle

database itself, and an apply process at the Oracle database uses Heterogeneous

Services to apply the events to the non-Oracle database across a network connection

through a gateway. Figure 1–9 shows an Oracle databases sharing data with a

non-Oracle database.

See Also: Chapter 9, "Streams Heterogeneous

Information Sharing"
1-16 Oracle9i Streams

Heterogeneous Information Sharing Overview
Figure 1–9 Oracle to Non-Oracle Heterogeneous Data Sharing

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
for more information about Heterogeneous Services

Heterogeneous
Services

Oracle
Database

Non-Oracle
Database

Queue

Database
Objects

Dequeue
Events

Gateway

Apply
ChangesApply

Process
Introduction to Streams 1-17

Heterogeneous Information Sharing Overview
Non-Oracle to Oracle Data Sharing Overview
To capture and propagate changes from a non-Oracle database to an Oracle

database, a custom application is required. This application gets the changes made

to the non-Oracle database by reading from transaction logs, using triggers, or some

other method. The application must assemble and order the transactions and must

convert each change into a logical change record (LCR). Then, the application must

enqueue the LCRs into a queue in an Oracle database by using the PL/SQL

interface, where they can be processed by an apply process. Figure 1–10 shows a

non-Oracle databases sharing data with an Oracle database.

Figure 1–10 Non-Oracle to Oracle Heterogeneous Data Sharing

Oracle
Database

Non-Oracle
Database

Queue
Get
Changes

Dequeue
Events

Enqueue User
Messages
Containing
LCRs

Database
Objects

User
Application

Apply
Changes

Apply
Process
1-18 Oracle9i Streams

Example Streams Configurations
Example Streams Configurations
Figure 1–11 shows how Streams might be configured to share information within a

single database, while Figure 1–12 shows how Streams might be configured to share

information between two different databases.

Figure 1–11 Streams Configuration in a Single Database

Oracle Database

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Capture
Process

Message
Handler

Procedure

LCRs
LCRs or
Messages

Changes

Changes

Messages

Changes

User Application A
Produces Messages

User Application B
Consumes Messages

LCRs or
Messages

LCRs or
Messages

DML
Handler

Procedure

DDL
Handler

Procedure

Apply
Process

Row
LCRs

DDL
LCRs
Introduction to Streams 1-19

Example Streams Configurations
Figure 1–12 Streams Configuration Sharing Information Between Databases

Oracle Database Oracle Database

User Changes

Redo
Log

Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Capture
Process

Message
Handler

Procedure

LCRs LCRs or
Messages

Changes

Changes

Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate
Events

MessagesChanges

User Application C
Produces Messages

User Application D
Consumes Messages

LCRs or
Messages

LCRs or
Messages

Database Objects
Database Objects

DML
Handler

Procedure

DDL
Handler

Procedure

Row
LCRs

DDL
LCRs

Apply
Process
1-20 Oracle9i Streams

Administration Tools for a Streams Environment
Administration Tools for a Streams Environment
Several tools are available for configuring, administering, and monitoring your

Streams environment. Oracle-supplied PL/SQL packages are the primary

configuration and management tool, while the Streams tool in Oracle Enterprise

Manager provides some configuration, administration, and monitoring capabilities

to help you manage your environment. Additionally, Streams data dictionary views

keep you informed about your Streams environment.

Oracle-Supplied PL/SQL Packages
The following Oracle-supplied PL/SQL packages contain procedures and functions

that you can use to configure and manage a Streams environment.

DBMS_STREAMS_ADM Package
The DBMS_STREAMS_ADM package provides an administrative interface for adding

and removing simple rules for capture, propagation, and apply at the table, schema,

and database level. This package also contains procedures for creating queues and

for managing Streams metadata, such as data dictionary information. This package

is provided as an easy way to complete common tasks in a Streams replication

environment. You can use other packages, such as the DBMS_CAPTURE_ADM,

DBMS_PROPAGATION_ADM, and DBMS_APPLY_ADM packages, to complete these

same tasks, as well as tasks that require additional customization.

DBMS_CAPTURE_ADM Package
The DBMS_CAPTURE_ADMpackage provides an administrative interface for starting,

stopping, and configuring a capture process. The source of the captured changes is

the redo logs, and the repository for the captured changes is a queue. This package

also provides administrative procedures that prepare database objects at the source

database for instantiation at a destination database.

DBMS_PROPAGATION_ADM Package
The DBMS_PROPAGATION_ADM package provides an administrative interface for

configuring propagation from a source queue to a destination queue.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about these packages
Introduction to Streams 1-21

Administration Tools for a Streams Environment
DBMS_APPLY_ADM Package
The DBMS_APPLY_ADM package provides an administrative interface for starting,

stopping, and configuring an apply process.

DBMS_RULE_ADM Package
The DBMS_RULE_ADMpackage provides an administrative interface for creating and

managing rules, rule sets, and rule evaluation contexts.

DBMS_RULE Package
The DBMS_RULEpackage contains the EVALUATEprocedure, which evaluates a rule

set. The goal of this procedure is to produce the list of satisfied rules, based on the

data.

DBMS_STREAMS Package
The DBMS_STREAMS package provides interfaces to convert SYS.AnyData objects

into logical change record (LCR) objects, to return information about Streams

attributes, and to annotate redo entries generated by a session with a binary tag.

This tag affects the behavior of a capture process, a propagation job, or an apply

process whose rules include specifications for these binary tags in redo entries

or LCRs.

Streams Data Dictionary Views
Every database in a Streams environment has Streams data dictionary views. These

views maintain administrative information about local Streams rules, objects,

capture processes, propagations, and apply processes. You can use these views to

monitor your Streams environment.

See Also:

■ Chapter 17, "Monitoring a Streams Environment"

■ Oracle9i Database Reference for more information about these

data dictionary views
1-22 Oracle9i Streams

Administration Tools for a Streams Environment
Streams Tool in Oracle Enterprise Manager
To help configure, administer, and monitor Streams environments, Oracle provides

a Streams tool in the Oracle Enterprise Manager Console. You can also use the

Streams tool to generate Streams configuration scripts, which you can then modify

and run to configure your Streams environment. The Streams tool online help is the

primary documentation source for this tool. Figure 1–13 shows the Topology tab in

the Streams tool.

Figure 1–13 Streams Tool

See Also: See the online help for the Streams tool in Oracle

Enterprise Manager for more information about using it
Introduction to Streams 1-23

Administration Tools for a Streams Environment
1-24 Oracle9i Streams

Streams Capture Pr
2

Streams Capture Process

This chapter explains the concepts and architecture of the Streams capture process.

This chapter contains these topics:

■ The Redo Log and the Capture Process

■ Logical Change Records (LCRs)

■ Capture Rules

■ Datatypes Captured

■ Types of Changes Captured

■ Supplemental Logging in a Streams Environment

■ Instantiation

■ The Start SCN, Captured SCN, and Applied SCN for a Capture Process

■ Streams Capture Processes and RESTRICTED SESSION

■ Streams Capture Processes and Oracle Real Application Clusters

■ Capture Process Architecture

See Also: Chapter 12, "Managing a Capture Process"
ocess 2-1

The Redo Log and the Capture Process
The Redo Log and the Capture Process
Every Oracle database has a set of two or more redo log files. The redo log files for a

database are collectively known as the database’s redo log. The primary function of

the redo log is to record all changes made to the database.

Redo logs are used to guarantee recoverability in the event of human error or media

failure. A capture process is an optional Oracle background process that reads the

database redo log to capture DML and DDL changes made to database objects.

When a capture process is configured to capture changes from a redo log, the

database where the changes were generated is called the source database.

Logical Change Records (LCRs)
A capture process reformats changes captured from the redo log into LCRs. An LCR

is an object with a specific format that describes a database change. A capture

process captures two types of LCRs: row LCRs and DDL LCRs.

After capturing an LCR, a capture process enqueues an event containing the LCR

into a queue. A capture process is always associated with a single SYS.AnyData
queue, and it enqueues events into this queue only. You can create multiple queues

and associate a different capture process with each queue. Figure 2–1 shows a

capture process capturing LCRs.

Note: A capture process can be associated only with a

SYS.AnyData queue, not with a typed queue.
2-2 Oracle9i Streams

Logical Change Records (LCRs)
Figure 2–1 The Capture Process

Row LCRs
A row LCR describes a change to the data in a single row or a change to a single

LOB column in a row. The change results from a data manipulation language

(DML) statement or a piecewise update to a LOB. For example, a DML statement

may insert or merge multiple rows into a table, may update multiple rows in a

table, or may delete multiple rows from a table. So, a single DML statement can

produce multiple row LCRs. That is, a capture process creates an LCR for each row

that is changed by the DML statement. Further, the DML statement itself may be

part of a transaction that includes many DML statements.

See Also:

■ "Managing Logical Change Records (LCRs)" on page 16-2

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about LCRs

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Capture
Process

LCRs

Capture
Changes

Log
Changes
Streams Capture Process 2-3

Logical Change Records (LCRs)
A captured row LCR may also contain transaction control statements. These row

LCRs contain directives such as COMMIT and ROLLBACK. These row LCRs are

internal and are used by an apply process to maintain transaction consistency

between a source database and a destination database.

Each row LCR contains the following information:

■ The name of the source database where the row change occurred

■ The type of DML statement that produced the change, either INSERT, UPDATE,
DELETE, LOB ERASE, LOB WRITE, or LOB TRIM

■ The schema name that contains the table with the changed row

■ The name of the table that contains the changed row

■ A raw tag that can be used to track the LCR

■ The identifier of the transaction in which the DML statement was run

■ The system change number (SCN) when the change was written to the redo log

■ The old values related to the change. If the type of the DML statement is

UPDATE or DELETE, then these old values include some or all of the columns in

the changed row before the DML statement. If the type of the DML statement

INSERT, then there are no old values.

■ The new values related to the change. If the type of the DML statement is

UPDATE or INSERT statement, then these new values include some or all of the

columns in the changed row after the DML statement. If the type of the DML

statement DELETE, then there are no new values.

DDL LCRs
A DDL LCR describes a data definition language (DDL) change. A DDL statement

changes the structure of the database. For example, a DDL statement may create,

alter, or drop a database object.

Each DDL LCR contains the following information:

■ The name of the source database where the DDL change occurred

■ The type of DDL statement that produced the change, for example ALTER
TABLE or CREATE INDEX

■ The schema name of the user who owns the database object on which the DDL

statement was run

■ The name of the database object on which the DDL statement was run
2-4 Oracle9i Streams

Capture Rules
■ The type of database object on which the DDL statement was run, for example

TABLE or PACKAGE

■ The text of the DDL statement

■ The logon user, which is the user whose session executed the DDL statement

■ The schema that is used if no schema is specified for an object in the DDL text

■ The base table owner. If the DDL statement is dependent on a table, then the

base table owner is the owner of the table on which it is dependent.

■ The base table name. If the DDL statement is dependent on a table, then the

base table name is the name of the table on which it is dependent.

■ A raw tag that can be used to track the LCR

■ The identifier of the transaction in which the DDL statement was run

■ The SCN when the change was written to the redo log

Capture Rules
A capture process captures changes based on rules that you define. Each rule

specifies the database objects for which the capture process captures changes and

the types of changes to capture. You can specify capture rules at the following

levels:

■ A table rule captures either DML or DDL changes to a particular table.

■ A schema rule captures either DML or DDL changes to the database objects in a

particular schema.

■ A global rule captures either all DML or all DDL changes in the database.

Note: Both row LCRs and DDL LCRs contain the source database

name of the database where a change originated. If captured LCRs

will be propagated by a propagation or applied by an apply

process, then, to avoid propagation and apply problems, Oracle

Corporation recommends that you do not rename the source

database after a capture process has started capturing changes.

See Also: The "SQL Command Codes" table in the Oracle Call
Interface Programmer’s Guide for a complete list of types of DDL

statements
Streams Capture Process 2-5

Datatypes Captured
Datatypes Captured
When capturing changes made to tables, a capture process can capture changes

made to columns of the following datatypes:

■ CHAR

■ VARCHAR2

■ NCHAR

■ NVARCHAR2

■ NUMBER

■ DATE

■ CLOB

■ BLOB

■ RAW

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"

Note: The capture process does not capture certain types of

changes and changes to certain datatypes in table columns. Also, a

capture process never captures changes in the SYS and SYSTEM
schemas.
2-6 Oracle9i Streams

Types of Changes Captured
The capture process raises an error when it finds a change that satisfies one of its

rules to a table containing a column with a datatype that is not listed. The capture

process does not capture DML changes in columns of the following datatypes:

NCLOB, LONG, LONG RAW, BFILE , ROWID, and UROWID, and user-defined types

(including object types, REFs, varrays, and nested tables). When the capture process

raises an error, it writes the LCR that caused the error into its trace file, raises an

ORA-00902 error, and becomes disabled.

Types of Changes Captured
A capture process can capture only certain types of changes made to a database and

its objects. The following sections describe the types of DML and DDL changes that

can be captured. A capture process ignores changes that it cannot capture.

Types of DML Changes Captured
When you specify that DML changes made to certain tables should be captured, a

capture process captures the following types of DML changes made to these tables:

■ INSERT

■ UPDATE

■ DELETE

■ MERGE

■ Piecewise updates to LOBs

See Also:

■ "Datatypes Applied" on page 4-9

■ Oracle9i SQL Reference for more information about these

datatypes

Note: A capture process never captures changes in the SYS and

SYSTEM schemas.

See Also: Chapter 4, "Streams Apply Process" for information

about the types of changes an apply process applies and ignores
Streams Capture Process 2-7

Types of Changes Captured
Types of DDL Changes Ignored by a Capture Process
A capture process captures the DDL changes that satisfy the rules in the capture

process rule set, except for the following types of DDL changes:

■ ALTER DATABASE

■ CREATE CONTROLFILE

■ CREATE DATABASE

■ CREATE PFILE

■ CREATE SPFILE

Note:

■ The capture process converts each MERGE change into an

INSERT or UPDATE change. MERGE is not a valid command

type in a row LCR.

■ The capture process does not capture CALL, EXPLAIN PLAN, or

LOCK TABLE statements.

■ The capture process cannot capture DML changes made to

temporary tables, index-organized tables, or object tables.

■ If you share a sequence at multiple databases, then sequence

values used for individual rows at these databases may vary.

Also, changes to actual sequence values are not captured. For

example, if a user references a NEXTVAL or sets the sequence,

then a capture process does not capture changes resulting from

these operations.

See Also:

■ "Considerations for Applying DML Changes to Tables" on

page 4-10

■ "Avoid Uniqueness Conflicts in a Streams Environment" on

page 7-6 for information about strategies to use to avoid having

the same sequence-generated value for two different rows at

different databases.
2-8 Oracle9i Streams

Types of Changes Captured
A capture process captures DDL statements that satisfy the rules in the capture

process rule set, but not the results of these DDL statements, unless the DDL

statement is a CREATE TABLE AS SELECT statement. For example, when a capture

process captures an ANALYZE statement, it does not capture the statistics generated

by the ANALYZE statement. However, when a capture process captures a CREATE
TABLE AS SELECT statement, it captures the statement itself and all of the rows

selected (as INSERT row LCRs).

Some types of DDL changes that are captured by a capture process cannot be

applied by an apply process. If an apply process receives a DDL LCR that specifies

an operation that cannot be applied, then the apply process ignores the DDL LCR

and records information about it in the trace file for the apply process.

Other Types of Changes Ignored by a Capture Process
The following types of changes are ignored by a capture process:

■ The session control statements ALTER SESSION and SET ROLE

■ The system control statement ALTER SYSTEM

■ Invocations of PL/SQL procedures

In addition, online table redefinition using the DBMS_REDEFINITION package is

not supported on a table or schema for which a capture process captures changes.

NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
If you use the NOLOGGING or UNRECOVERABLE keyword for a SQL operation, then

the changes resulting from the SQL operation cannot be captured by a capture

process. Therefore, if the changes resulting from a SQL operation should be

captured by a capture process, then do not use these keywords.

If the object for which you are specifying the logging attributes resides in a database

or tablespace in FORCE LOGGING mode, then Oracle ignores any NOLOGGING or

UNRECOVERABLE setting until the database or tablespace is taken out of FORCE
LOGGING mode. You can determine the current logging mode for a database by

querying the FORCE_LOGGING column in the V$DATABASE dynamic performance

view.

See Also: "Considerations for Applying DDL Changes" on

page 4-21
Streams Capture Process 2-9

Types of Changes Captured
UNRECOVERABLE Clause for Direct Path Loads
If you use the UNRECOVERABLE clause in the SQL*Loader control file for a direct

path load, then the changes resulting from the direct path load cannot be captured

by a capture process. Therefore, if the changes resulting from a direct path load

should be captured by a capture process, then do not use the UNRECOVERABLE
clause.

If you perform a direct path load without logging changes at a source database, but

you do not perform a similar direct path load at the destination databases of the

source database, then apply errors may result at these destination databases when

changes are made to the loaded objects at the source database. In this case, a capture

process at the source database can capture changes to these objects and one or more

propagations can propagate the changes to the destination databases, but these

objects may not exist at the destination databases, or, the objects may exist at the

destination database, but the rows related to these changes may not exist.

Therefore, if you use the UNRECOVERABLE clause for a direct path load and a

capture process is configured to capture changes to the loaded objects, then make

sure any destination databases contain the loaded objects and the loaded data to

avoid apply errors. One way to make sure that these objects exist at the destination

databases is to perform a direct path load at each of these destination databases that

is similar to the direct path load performed at the source database.

If you load objects into a database or tablespace that is in FORCE LOGGING mode,

then Oracle ignores any UNRECOVERABLE clause during a direct path load, and the

loaded changes are logged. You can determine the current logging mode for a

database by querying the FORCE_LOGGING column in the V$DATABASE dynamic

performance view.

Note: The UNRECOVERABLE keyword is deprecated and has been

replaced with the NOLOGGING keyword in the logging_clause .

Although UNRECOVERABLE is supported for backward

compatibility, Oracle Corporation strongly recommends that you

use the NOLOGGING keyword, when appropriate.

See Also: Oracle9i SQL Reference for more information about the

NOLOGGING and UNRECOVERABLE keywords, FORCE LOGGING
mode, and the logging_clause
2-10 Oracle9i Streams

Supplemental Logging in a Streams Environment
Supplemental Logging in a Streams Environment
Supplemental logging places additional column data into a redo log whenever an

UPDATE operation is performed. Such updates include piecewise updates to LOBs.

The capture process captures this additional information and places it in LCRs.

There are two types of supplemental logging: database supplemental logging and

table supplemental logging. Database supplemental logging specifies supplemental

logging for an entire database, while table supplemental logging enables you to

specify log groups for supplemental logging for a particular table. If you use table

supplemental logging, then you can choose between unconditional and conditional

log groups.

Unconditional log groups log the before images of specified columns any time the

table is updated, regardless of whether the update affected any of the specified

columns. This is sometimes referred to as an ALWAYS log group. Conditional log

groups log the before images of all specified columns only if at least one of the

columns in the log group is updated.

Supplementing logging at the database level, unconditional log groups at the table

level, and conditional log groups at the table level together determine which old

values are logged in an update statement or piecewise LOB update.

If you plan to use one or more apply processes to apply LCRs captured by a capture

process, then you must enable supplemental logging at the source database for the

following types of columns in tables at the destination database:

■ Any columns at the source database that are used in a primary key in tables for

which changes are applied at a destination database must be unconditionally

logged in a log group or by database supplemental logging of primary key

columns.

■ If the parallelism of any apply process that will apply the changes is greater

than 1, then any unique constraint at a destination database that comes from

multiple columns at the source database must be conditionally logged.

Supplemental logging need not be specified if the unique constraint comes from

a single column at the source database.

See Also: Oracle9i Database Utilities for information about direct

path loads and SQL*Loader
Streams Capture Process 2-11

Supplemental Logging in a Streams Environment
■ If the parallelism of any apply process that will apply the changes is greater

than 1, then any foreign key constraint at a destination database that comes

from multiple columns at the source database must be conditionally logged.

Supplemental logging need not be specified if the foreign key comes from a

single column at the source database.

■ Any columns at the source database that are used in substitute key columns for

an apply process at a destination database must be unconditionally logged. You

specify substitute key columns for a table using the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package.

■ The columns specified in a column list for conflict resolution during apply must

be conditionally logged if more than one column at the source database is used

in the column list at the destination database.

■ Any columns at the source database that are used by a DML handler or error

handler specified for update operations or piecewise updates to LOBs at a

destination database must be unconditionally logged.

■ Any columns at the source database that are used by a rule or a rule-based

transformation must be unconditionally logged.

■ If you specify row subsetting for a table at a destination database, then any

columns at the source database that are in the destination table or columns at

the source database that are in the subset condition must be unconditionally

logged. You specify a row subsetting condition for an apply process using the

dml_condition parameter in the ADD_SUBSET_RULES procedure in the

DBMS_STREAMS_ADM package.

If you do not use supplemental logging for these types of columns at a source

database, then changes involving these columns might not apply properly at a

destination database.

Note: LOBs, LONGs, and user-defined types cannot be part of a

supplemental log group
2-12 Oracle9i Streams

Instantiation
Instantiation
If you plan to use a capture process to replicate changes made to a database object

from a source database to a destination database, then the destination database

must have a copy of the database object. If the copy does not exist at the destination

database, then you must instantiate the object at the destination database before

you can replicate changes. To instantiate an object means to create an object

physically at a destination database based on an object at a source database. If the

object is a table, then the objects at the source and destination database need not be

an exact match, but, if some or all of the table data is replicated between the two

databases, then the data that is replicated should be consistent when the table is

instantiated. Typically, instantiation is done using export/import.

In a Streams environment that shares a database object within a single database or

between multiple databases, a source database is the database where changes to the

object are generated in the redo log. If a capture process captures or will capture

such changes and the changes will be applied locally or propagated to other

databases and applied at destination databases, then you may need to instantiate

source database objects at destination databases. In any event, you must always

prepare the object for instantiation. By preparing an object for instantiation, you are

setting the earliest SCN for which changes to the object may need to be applied at

the destination database.

See Also:

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9

■ Oracle9i Data Guard Concepts and Administration and Oracle9i
Database Administrator’s Guide for information about using

supplemental logging

■ "Considerations for Applying DML Changes to Tables" on

page 4-10 for more information about apply process behavior

for tables

■ "Constraints" on page 4-10 for more information about

supplemental logging and key columns

■ "Rule-Based Transformations" on page 6-25

■ "Column Lists" on page 7-12 for more information about

supplemental logging and column lists
Streams Capture Process 2-13

Instantiation
The following procedures in the DBMS_CAPTURE_ADM package prepare database

objects for instantiation:

■ PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.

■ PREPARE_SCHEMA_INSTANTIATION prepares for instantiation all of the

database objects in a schema and all database objects added to the schema in

the future.

■ PREPARE_GLOBAL_INSTANTIATION prepares for instantiation all of the

objects in a database and all objects added to the database in the future.

These procedures record the lowest SCN of each object for instantiation. SCNs

subsequent to the lowest SCN for an object can be used for instantiating the object.

These procedures also populate the Streams data dictionary for the relevant capture

processes, propagations, and apply processes that capture, propagate, or apply

changes to the table, schema, or database being prepared for instantiation.

Whenever you add or modify the condition of a capture or propagation rule for an

object, you must run the appropriate procedure to prepare the object for

instantiation at the source database if any of the following conditions are met:

■ One or more rules are added to the rule set for a capture process that instruct

the capture process to capture changes made to the object. When you use the

DBMS_STREAMS_ADM package to add rules to a rule set for a capture process,

the appropriate procedure to prepare for instantiation is run automatically at

the source database. When you use the DBMS_RULE_ADM package to add these

rules, you must prepare for instantiation manually.

■ One or more conditions of rules in the rule set for a capture process are

modified to instruct the capture process to capture changes made to the object.

■ One or more rules are added to the rule set for a propagation that instruct the

propagation to propagate changes made to the object.

■ One or more conditions of rules in the rule set for a propagation are modified to

instruct the propagation to propagate changes made to the object.

When any of these conditions are met, you must prepare these database objects for

instantiation at the source database to populate any relevant Streams data

dictionary that requires information about the source object, even if the object

already exists at a remote database where the rules were added or changed.

The relevant Streams data dictionaries are populated asynchronously for both the

local dictionary and all remote dictionaries. The procedure that prepares for

instantiation adds information to the redo log at the source database. The local

Streams data dictionary is populated with the information about the object when a
2-14 Oracle9i Streams

The Start SCN, Captured SCN, and Applied SCN for a Capture Process
capture process captures these redo entries, and any remote Streams data

dictionaries are populated when the information is propagated to them.

When you instantiate tables using export/import, any table supplemental log group

specifications are retained for the instantiated tables. That is, after instantiation, log

group specifications for imported tables at the import database are the same as the

log group specifications for these tables at the export database. If you do not want

to retain supplemental log group specifications for tables at the import database,

then you can drop specific supplemental log groups after import. Database

supplemental logging specifications are not retained during export/import, even if

you perform a full database export/import.

The Start SCN, Captured SCN, and Applied SCN for a Capture Process
This section describes system change number (SCN) values that are important for a

capture process. You can query the DBA_CAPTURE data dictionary view to display

these values for one or more capture processes.

Start SCN
The start SCN is the SCN from which a capture process begins to capture changes.

When you start a capture process for the first time, by default the start SCN

corresponds to the SCN when the capture process was created. For example, if a

capture process is started two days after it was created, then the capture process

begins capturing changes from the redo log at the time of creation two days in the

past.

You can specify a different start SCN during capture process creation, or you can

alter a capture process to set its start SCN. The start SCN value specified must be

from a time after the first capture process was created for the database.

See Also:

■ "Preparing Database Objects for Instantiation at a Source

Database" on page 12-11

■ "Supplemental Logging in a Streams Environment" on

page 2-11 for information about table and database

supplemental logging

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9 for information about adding and dropping

supplemental log groups
Streams Capture Process 2-15

Streams Capture Processes and RESTRICTED SESSION
Captured SCN
The captured SCN is the SCN that corresponds to the most recent change captured

by a capture process.

Applied SCN
The applied SCN for a capture process is the SCN of the most recent event

dequeued by the relevant apply processes. All events below this SCN have been

dequeued by all apply processes that apply changes captured by this capture

process.

Streams Capture Processes and RESTRICTED SESSION
When you enable restricted session during system startup by issuing a STARTUP
RESTRICT statement, capture processes do not start, even if they were running

when the database shut down. When the restricted session is disabled, each capture

process that was running when the database shut down is started.

When the restricted session is enabled in a running database by the SQL statement

ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause, it does not affect

any running capture processes. These capture processes continue to run and capture

changes. If a stopped capture process is started in a restricted session, then the

capture process does not start until the restricted session is disabled.

See Also:

■ "Setting the Start SCN for a Capture Process" on page 12-11

■ The DBMS_CAPTURE_ADM.ALTER_CAPTURE procedure in the

Oracle9i Supplied PL/SQL Packages and Types Reference for

information about altering a capture process
2-16 Oracle9i Streams

Streams Capture Processes and Oracle Real Application Clusters
Streams Capture Processes and Oracle Real Application Clusters
You can configure a Streams capture process to capture changes in a Real

Application Clusters environment. If you use one or more capture processes and

Real Application Clusters in the same environment, then the environment must

meet the following requirements:

■ All archived logs that contain changes to be captured by a capture process must

be available to all instances in the Real Application Clusters environment. In a

Real Application Clusters environment, a capture process always reads

archived redo logs, and it reads changes made by all instances.

■ Any call to the DBMS_CAPTURE_ADM.START_CAPTURE procedure must be run

on the instance that owns the queue that is used by the capture process. Calls to

other procedures and functions that operate on a capture process can be

performed from any instance.

■ Any supplemental logging specifications must be made on each running

instance. After it is specified for each running instance, it does not need to be

specified again if an instance is shut down and restarted, and it does not need to

be specified for any new instances.

■ The ARCHIVE_LAG_TARGET initialization parameter should be set to a value

greater than zero. This initialization parameter specifies the duration after

which the log files are switched automatically. LogMiner orders all LCRs by

SCN. To do so, it needs the archived log files from all instances. Setting this

parameter to switch the log files automatically ensures that LogMiner does not

wait for an inordinately long time if one instance has far fewer transactions than

another.

If the owner instance for a queue table containing a queue used by a capture process

becomes unavailable, then queue ownership is transferred automatically to another

instance in the cluster. If this happens, then, to restart the capture process, connect

to the owner instance for the queue and run the START_CAPTURE procedure. The

DBA_QUEUE_TABLES data dictionary view contains information about the owner

instance for a queue table. The capture process maintains a persistent start/stop

state in a Real Application Clusters environment only if the owner instance for its

queue does not change before the database instance owning the queue is restarted.

Also, any parallel execution processes used by a single capture process run on a

single instance in a Real Application Clusters environment.
Streams Capture Process 2-17

Capture Process Architecture
Capture Process Architecture
A capture process is an Oracle background process whose process name is cp nn ,

where nn is a capture process number. Valid capture process names include cp01
through cp99 . A capture process captures changes from the redo log by using the

infrastructure of LogMiner. Streams configures LogMiner automatically. You can

create, alter, start, stop, and drop a capture process, and you can define capture

rules that control which changes a capture process captures.

The user who creates a capture process is the user who performs capture rule

evaluations and capture rule-based transformations. This user also enqueues

captured events into the queue used by the capture process. This user must have the

necessary privileges to perform these actions, including execute privilege on the

rule set used by the capture process, execute privilege on all transformation

functions used in the rule set, and privileges to enqueue events into the capture

process queue.

See Also:

■ "Streams Queues and Oracle Real Application Clusters" on

page 3-18

■ "Streams Apply Processes and Oracle Real Application

Clusters" on page 4-29

■ Oracle9i Database Administrator’s Guide for more information on

the ARCHIVE_LAG_TARGET initialization parameter

■ Oracle9i Database Reference for more information about the

DBA_QUEUE_TABLES data dictionary view

■ "The Persistent State of a Capture Process" on page 2-30

■ "Supplemental Logging in a Streams Environment" on

page 2-11

See Also: "Configuring a Streams Administrator" on page 11-2 for

information about the required privileges
2-18 Oracle9i Streams

Capture Process Architecture
This section discusses the following topics:

■ Capture Process Components

■ Alternate Tablespace for LogMiner Tables

■ Capture Process Creation

■ ARCHIVELOG Mode and a Capture Process

■ Capture Process Parameters

■ Capture Process Rule Evaluation

■ The Persistent State of a Capture Process

Capture Process Components
The components of a capture process depend on the setting specified for the

parallelism capture process parameter. If parallelism is set to a value of 3 or

greater, then a capture process uses the following parallel execution servers to

capture changes concurrently:

■ One reader server that reads the redo log to find changes

■ A number of preparer servers that format changes found by the reader into

LCRs. The number of preparer servers equals the number specified for the

parallelism capture process parameter minus two.

■ One builder server that merges the LCRs created by the preparer servers to

preserve the SCN order. After merging the LCRs, the builder server enqueues

them into the queue associated with the capture process.

For example, if parallelism is set to 5, then a capture process uses a total of five

parallel execution servers, assuming five parallel execution servers are available:

one reader server, three preparer servers, and one builder server.

If parallelism is set to 2 or lower, then a capture process itself (cp nn) performs

all the work without using any parallel execution servers.

See Also:

■ "Capture Process Parallelism" on page 2-26 for more

information about the parallelism parameter

■ Oracle9i Database Administrator’s Guide for information about

managing parallel execution servers
Streams Capture Process 2-19

Capture Process Architecture
LogMiner Configuration
The capture process uses LogMiner to capture changes that are recorded in the redo

log. This section describes configuring LogMiner for use by one or more capture

processes.

Alternate Tablespace for LogMiner Tables
LogMiner tables include data dictionary tables and temporary tables used by

LogMiner. By default, all LogMiner tables are created to use the SYSTEMtablespace,

but the SYSTEM tablespace may not have enough space to accommodate the

LogMiner tables. Therefore, Oracle Corporation strongly recommends creating an

alternate tablespace for the LogMiner tables before you create a capture process at a

database. Use the DBMS_LOGMNR_D.SET_TABLESPACE routine to re-create all

LogMiner tables in an alternate tablespace.

Multiple Capture Processes in a Single Database
Each capture process uses one LogMiner session, and the

LOGMNR_MAX_PERSISTENT_SESSIONS initialization parameter controls the

maximum number of active LogMiner sessions allowed in the instance. The default

setting for this initialization parameter is 1. Therefore, to use multiple capture

processes in a database, set the LOGMNR_MAX_PERSISTENT_SESSIONS
initialization parameter to a value higher than the number of capture processes.

In addition, if you run multiple capture processes on a single database, you might

need to increase the System Global Area (SGA) size for each instance. Use the

SGA_MAX_SIZE initialization parameter to increase the SGA size. Also, you should

increase the size of the shared pool by 10 MB for each capture process on a

database.

See Also:

■ "Specifying an Alternate Tablespace for LogMiner" on

page 11-13

■ Oracle9i Database Administrator’s Guide for more information

about using an alternate tablespace for LogMiner tables

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the SET_TABLESPACE procedure
2-20 Oracle9i Streams

Capture Process Architecture
Capture Process Creation
You can create a capture process using the DBMS_STREAMS_ADM package or the

DBMS_CAPTURE_ADM package. Using the DBMS_STREAMS_ADM package to create a

capture process is simpler because defaults are used automatically for some

configuration options. In addition, when you use the DBMS_STREAMS_ADM
package, a rule set is created for the capture process and rules are added to the rule

set automatically. The DBMS_STREAMS_ADM package was designed for use in

replication environments. Alternatively, using the DBMS_CAPTURE_ADM package to

create a capture process is more flexible, and you create a rule set and rules for the

capture process either before or after it is created. You can use the procedures in the

DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package to add rules to the

rule set for the capture process.

When a capture process is created by a procedure in the DBMS_STREAMS_ADM
package, a procedure in the DBMS_CAPTURE_ADM package is run automatically on

the tables whose changes will be captured by the capture process. The following

table lists which procedure is run in the DBMS_CAPTURE_ADM package when you

run a procedure in the DBMS_STREAMS_ADM package.

Note: Oracle Corporation recommends that each capture process

use a separate queue to keep LCRs from different capture processes

separate.

See Also: Oracle9i Database Reference for more information about

the LOGMNR_MAX_PERSISTENT_SESSIONS initialization

parameter

When you run this procedure in the
DBMS_STREAMS_ADM package

This procedure in the DBMS_CAPTURE_ADM
package is run automatically

ADD_TABLE_RULES PREPARE_TABLE_INSTANTIATION

ADD_SCHEMA_RULES PREPARE_SCHEMA_INSTANTIATION

ADD_GLOBAL_RULES PREPARE_GLOBAL_INSTANTIATION
Streams Capture Process 2-21

Capture Process Architecture
More than one call to prepare instantiation is allowed. When a capture process is

created by the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package,

you must run the appropriate procedure manually to prepare each table, schema, or

database whose changes will be captured for instantiation, if you plan to instantiate

the table, schema, or database at a remote site.

Data Dictionary Duplication During Capture Process Creation
When the first capture process is created for a database, Streams populates a

duplicate data dictionary called a Streams data dictionary for use by capture

processes and propagations. Initially, the Streams data dictionary is consistent with

the primary data dictionary at the time when the capture process was created.

A capture process requires a Streams data dictionary because the information in the

primary data dictionary may not apply to the changes being captured from the redo

log. These changes may have occurred minutes or hours before they are captured by

a capture process. For example, consider the following scenario:

1. A capture process is configured to capture changes to tables.

2. A database administrator stops the capture process. When the capture process

is stopped, it records the SCN of the change it was currently capturing.

3. User applications continue to make changes to the tables while the capture

process is stopped.

4. The capture process is restarted three hours after it was stopped.

Note: After creating a capture process at a database, do not

change the DBID or DBNAME of the database.

See Also: Chapter 12, "Managing a Capture Process" and Oracle9i
Supplied PL/SQL Packages and Types Reference for more information

about the following procedures, which can be used to create a

capture process:

■ DBMS_STREAMS_ADM.ADD_TABLE_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

■ DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

■ DBMS_CAPTURE_ADM.CREATE_CAPTURE
2-22 Oracle9i Streams

Capture Process Architecture
In this case, to ensure data consistency, the capture process must begin capturing

changes in the redo log at the time when it was stopped. The capture process starts

at the SCN that it recorded when it was stopped.

The redo log contains raw data. It does not contain database object names and

column names in tables. Instead, it uses object numbers and internal column

numbers for database objects and columns, respectively. Therefore, when a change

is captured, a capture process must reference the data dictionary to determine the

details of the change.

The Streams data dictionary is updated when a DDL statement is processed by a

capture process, if necessary. If there were any DDL changes to the relevant tables in

the time between when a capture process is capturing changes and the current time,

then the primary data dictionary may not contain the correct information for the

captured changes. However, the Streams data dictionary always reflects the correct

time for the captured changes because it versions a subset of the information in the

primary data dictionary.

When a capture process determines whether or not to capture DDL changes

involving a table, the capture process automatically adds information about the

change to the Streams data dictionary. In addition, the capture process determines

whether or not to capture the Streams data dictionary information for the new

version of the table. To make these determinations, the capture rule set is evaluated

with partial information that includes the name and owner of the table created or

altered by the DDL statement. Capturing and propagating Streams data dictionary

information makes it available in each destination queue, where it can be used by

propagations and apply processes.

If at least one rule in the capture rule set either evaluates to TRUE (true_rules) or

could evaluate to TRUE given more information (maybe_rules), then the Streams

data dictionary information is captured for the table. This rule can be either a DML

rule or a DDL rule. A capture process at a source database performs a similar rule

evaluation when a table is prepared for instantiation.

Because the data dictionary is duplicated when the first capture process is created, it

might take some time to create the first capture process for a database. The amount

of time required depends on the number of database objects in the database.

The data dictionary is duplicated only once for a database. Additional capture

processes use the same Streams data dictionary that the first capture process created

in the database. Because the Streams data dictionary is multiversioned, each capture

process is in sync with the Streams data dictionary.
Streams Capture Process 2-23

Capture Process Architecture
Scenario Illustrating the Need for a Streams Data Dictionary Consider a scenario in which

a capture process has been configured to capture changes to table t1 , which has

columns a and b, and the following changes are made to this table at three different

points in time:

Time 1: Insert values a=7 and b=15 .

Time 2: Add column c .

Time 3: Drop column b.

If for some reason the capture process is capturing changes from an earlier time,

then the primary data dictionary and the relevant version in the Streams data

dictionary contain different information. Table 2–1 illustrates how the information

in the Streams data dictionary is used when the current time is different than the

change capturing time.

The capture process captures the change resulting from the insert at time 1 when

the actual time is time 3. If the capture process used the primary data dictionary,

then it might assume that a value of 7 was inserted into column a and a value of 15
was inserted into column c , because those are the two columns for table t1 at time

3 in the primary data dictionary. However, a value of 15 was actually inserted into

column b.

See Also:

■ "Capture Process Rule Evaluation" on page 2-27

■ "Preparing Database Objects for Instantiation at a Source

Database" on page 12-11

■ "Streams Data Dictionary for Propagations" on page 3-25

■ "Streams Data Dictionary for an Apply Process" on page 4-33

Table 2–1 Information About Table t1 in the Primary and Capture Data Dictionaries

Current
Time

ChangeCapturing
Time Primary Data Dictionary Streams Data Dictionary

1 1 Table t1 has columns a and b. Table t1 has columns a and b at time 1.

2 1 Table t1 has columns a, b, and c . Table t1 has columns a and b at time 1.

3 1 Table t1 has columns a and c . Table t1 has columns a and b at time 1.
2-24 Oracle9i Streams

Capture Process Architecture
Because the capture process uses the Streams data dictionary, the error is avoided.

The Streams data dictionary is synchronized with the capture process and continues

to record that table t1 has columns a and b at time 1. So, the captured change

specifies that a value of 15 was inserted into column b.

ARCHIVELOG Mode and a Capture Process
A capture process reads online redo logs whenever possible and archived redo logs

otherwise. For this reason, the database must be running in ARCHIVELOG mode

when a capture process is configured to capture changes. You must keep an

archived redo log file available until you are certain that no capture process will

ever need that file. Make sure redo logs are available until all transactions within

the redo log have been applied at all downstream databases. You can use

APPLIED_SCN column in the DBA_CAPTURE data dictionary view to determine the

SCN of the most recent message dequeued by the relevant apply processes. All

changes below this SCN have been dequeued by all apply processes that apply

changes captured by the capture process.

When a capture process falls behind, there is a seamless transition from reading an

online redo log to reading an archived redo log, and, when a capture process

catches up, there is a seamless transition from reading an archived redo log to

reading an online redo log.

Capture Process Parameters
After creation, a capture process is disabled so that you can set the capture process

parameters for your environment before starting it for the first time. Capture

process parameters control the way a capture process operates. For example, the

time_limit capture process parameter can be used to specify the amount of time

a capture process runs before it is shut down automatically. After you set the

capture process parameters, you can start the capture process.

See Also: Oracle9i Database Administrator’s Guide for information

about running a database in ARCHIVELOG mode
Streams Capture Process 2-25

Capture Process Architecture
Capture Process Parallelism
The parallelism capture process parameter controls the number of preparer

servers used by a capture processes. The preparer servers concurrently format

changes found in the redo log into LCRs.

Automatic Restart of a Capture Process
You can configure a capture process to stop automatically when it reaches certain

limits. The time_limit capture process parameter specifies the amount of time a

capture process runs, and the message_limit capture process parameter specifies

the number of events a capture process can capture. The capture process stops

automatically when it reaches one of these limits.

The disable_on_limit parameter controls whether a capture process becomes

disabled or restarts when it reaches a limit. If you set the disable_on_limit
parameter to y, then the capture process is disabled when it reaches a limit and does

not restart until you restart it explicitly. If, however, you set the

See Also:

■ "Setting a Capture Process Parameter" on page 12-8

■ This section does not discuss all of the available capture process

parameters. See the DBMS_CAPTURE_ADM.SET_PARAMETER
procedure in the Oracle9i Supplied PL/SQL Packages and Types
Reference for detailed information about all of the capture

process parameters.

Note:

■ Resetting the parallelism parameter automatically stops

and restarts the capture process.

■ Setting the parallelism parameter to a number higher than

the number of available parallel execution servers might

disable the capture process. Make sure the PROCESSES and

PARALLEL_MAX_SERVERS initialization parameters are set

appropriately when you set the parallelism capture process

parameter.

See Also: "Capture Process Components" on page 2-19 for more

information about preparer servers
2-26 Oracle9i Streams

Capture Process Architecture
disable_on_limit parameter to n, then the capture process stops and restarts

automatically when it reaches a limit.

When a capture process is restarted, it starts to capture changes at the point where it

last stopped. A restarted capture process gets a new session identifier, and the

parallel execution servers associated with the capture process also get new session

identifiers. However, the capture process number (cp nn) remains the same.

Capture Process Rule Evaluation
A running capture process completes the following series of actions to capture

changes:

1. Finds changes in the redo log.

2. Performs prefiltering of the changes in the redo log. During this step, a capture

process evaluates rules in its rule set at the object level and schema level to

place changes found in the redo log into two categories: changes that should be

converted into LCRs and changes that should not be converted into LCRs.

Prefiltering is a safe optimization done with incomplete information. This step

identifies relevant changes to be processed subsequently, such that:

■ A change is converted into an LCR if one or more rules may evaluate to

TRUE after conversion.

■ A change is not converted into an LCR if the capture process can ensure

that no rules would evaluate to TRUE after conversion.

3. Converts changes that may cause one or more rules to evaluate to TRUE into

LCRs based on prefiltering.

4. Performs LCR filtering. During this step, a capture process evaluates rules

regarding information in each LCR to separate the LCRs into two categories:

LCRs that should be enqueued and LCRs that should be discarded.

5. Discards the LCRs that should not be enqueued based on the rules.

6. Enqueues the remaining captured LCRs into the queue associated with the

capture process.
Streams Capture Process 2-27

Capture Process Architecture
For example, suppose the following rule is defined for a capture process: Capture

changes to the hr.employees table where the department_id is 50 . No other

rules are defined for the capture process, and the parallelism parameter for the

capture process is set to 1.

Given this rule, suppose an UPDATEstatement on the hr.employees table changes

50 rows in the table. The capture process performs the following series of actions for

each row change:

1. Finds the next change resulting from the UPDATE statement in the redo log.

2. Determines that the change resulted from an UPDATE statement to the

hr.employees table and must be captured. If the change was made to a

different table, then the capture process ignores the change.

3. Captures the change and converts it into an LCR.

4. Filters the LCR to determine whether it involves a row where the

department_id is 50.

5. Either enqueues the LCR into the queue associated with the capture process if it

involves a row where the department_id is 50 , or discards the LCR if it

involves a row where the department_id is not 50 or is missing.
2-28 Oracle9i Streams

Capture Process Architecture
Figure 2–2 illustrates capture process rule evaluation in a flowchart.

Figure 2–2 Flowchart Showing Capture Process Rule Evaluation

Could
any rule in the rule

set evaluate to TRUE given the
schema and name
corresponding to the

change ?

Does
any rule in the rule

set evaluate to TRUE for the
LCR?

END

START

Find change in Redo Log

Convert Change into LCR

Yes

No

No

Yes

Enqueue LCR Ignore ChangeDiscard LCR
Streams Capture Process 2-29

Capture Process Architecture
The Persistent State of a Capture Process
A capture process maintains a persistent state. That is, the capture process

maintains its current state when the database is shut down and restarted. For

example, if the capture process is running when the database is shut down, then the

capture process automatically starts when the database is restarted, but, if the

capture process is stopped when a database is shut down, then the capture process

remains stopped when the database is restarted.
2-30 Oracle9i Streams

Streams Staging and Propag
3

Streams Staging and Propagation

This chapter explains the concepts relating to staging events in a queue and

propagating events from one queue to another.

This chapter contains these topics:

■ Event Staging and Propagation Overview

■ Captured and User-Enqueued Events

■ Event Propagation Between Queues

■ SYS.AnyData Queues and User Messages

■ Streams Queues and Oracle Real Application Clusters

■ Streams Staging and Propagation Architecture

See Also: Chapter 13, "Managing Staging and Propagation"
ation 3-1

Event Staging and Propagation Overview
Event Staging and Propagation Overview
Streams uses queues of type SYS.AnyData to stage events. There are two types of

events that can be staged in a Streams queue: logical change records (LCRs) and

user messages. LCRs are objects that contain information about a change to a

database object, while user messages are custom messages created by users or

applications. Both types of events are of type SYS.AnyData and can be used for

information sharing within a single database or between databases.

Staged events can be consumed or propagated, or both. These events can be

consumed by an apply process or by a user application that explicitly dequeues

them. Even after an event is consumed, it may remain in the queue if you have also

configured Streams to propagate the event to one or more other queues or if

message retention is specified. These other queues may reside in the same database

or in different databases. In either case, the queue from which the events are

propagated is called the source queue, and the queue that receives the events is

called the destination queue. There can be a one-to-many, many-to-one, or

many-to-many relationship between source and destination queues. Figure 3–1

shows propagation from a source queue to a destination queue.

Figure 3–1 Propagation from a Source Queue to a Destination Queue

You can create, alter, and drop a propagation, and you can define propagation rules

that control which events are propagated. The user who owns the source queue is

the user who propagates events. This user must have the necessary privileges to

propagate events. These privileges include the following:

■ Execute privilege on the rule set used by the propagation

■ Execute privilege on all transformation functions used in the rule set

■ Enqueue privilege on the destination queue if the destination queue is in the

same database

Source
Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Destination
Queue

User Message
LCR
User Message
LCR
LCR
.
.
.

Propagate
Events
3-2 Oracle9i Streams

Captured and User-Enqueued Events
If the propagation propagates events to a destination queue in a remote database,

then the owner of the source queue must be able to use the propagation’s database

link, and the user to which the database link connects at the remote database must

have enqueue privilege on the destination queue.

Captured and User-Enqueued Events
Events can be enqueued in two ways:

■ A capture process enqueues captured changes in the form of events containing

LCRs. An event containing an LCR that was originally captured and enqueued

by a capture process is called a captured event.

■ A user application enqueues user messages of type SYS.AnyData . These user

messages can contain LCRs or any other type of message. Any user message

that was explicitly enqueued by a user or an application is called a

user-enqueued event. Events that were enqueued by a user procedure called

from an apply process are also user-enqueued events.

So, each captured event contains an LCR, but a user-enqueued event may or may

not contain an LCR. Propagating a captured event or a user-enqueued event

enqueues the event into the destination queue.

Note: Connection qualifiers cannot be used with Streams

propagations.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about message retention
Streams Staging and Propagation 3-3

Event Propagation Between Queues
Events can be dequeued in two ways:

■ An apply process dequeues either captured or user-enqueued events. If the

event contains an LCR, then the apply process can either apply it directly or call

a user-specified procedure for processing. If the event does not contain an LCR,

then the apply process can invoke a user-specified procedure called a message

handler to process it.

■ A user application explicitly dequeues user-enqueued events and processes

them. Captured events cannot be dequeued by a user application; they must be

dequeued by an apply process. However, if a user procedure called by an apply

process explicitly enqueues an event, then the event is a user-enqueued event

and can be explicitly dequeued, even if the event was originally a captured

event.

The dequeued events may have originated at the same database where they are

dequeued, or they may have originated at a different database.

Event Propagation Between Queues
You can use Streams to configure event propagation between two queues, which

may reside in different databases. Streams uses job queues to propagate events.

A propagation is always between a source queue and a destination queue.

Although propagation is always between two queues, a single queue may

participate in many propagations. That is, a single source queue may propagate

events to multiple destination queues, and a single destination queue may receive

events from multiple source queues. However, only one propagation is allowed

between a particular source queue and a particular destination queue. Also, a single

queue may be a destination queue for some propagations and a source queue for

other propagations.

See Also:

■ Chapter 2, "Streams Capture Process" for more information

about the capture process

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

information about enqueuing events into a queue

■ Chapter 4, "Streams Apply Process" for more information about

the apply process

■ "Managing Logical Change Records (LCRs)" on page 16-2
3-4 Oracle9i Streams

Event Propagation Between Queues
A propagation may propagate all of the events in a source queue to the destination

queue, or a propagation may propagate only a subset of the events. Also, a single

propagation can propagate both captured and user-enqueued events. You can use

rules to control which events in the source queue are propagated to the destination

queue.

Depending on how you set up your Streams environment, changes could be sent

back to the site where they originated. You need to ensure that your environment is

configured to avoid cycling the change in an endless loop. You can use Streams tags

to avoid such a change cycling loop.

Propagation Rules
A propagation propagates events based on rules that you define. For LCR events,

each rule specifies the database objects for which the propagation propagates

changes and the types of changes to propagate. You can specify propagation rules

for LCR events at the following levels:

■ A table rule propagates either DML or DDL changes to a particular table.

■ A schema rule propagates either DML or DDL changes to the database objects

in a particular schema.

■ A global rule propagates either all DML or all DDL changes in the source

queue.

For non-LCR events, you can create your own rules to control propagation.

A queue subscriber that specifies a condition causes the system to generate a rule.

The rule sets for all subscribers to a queue are combined into a single

system-generated rule set to make subscription more efficient.

See Also:

■ "Managing Streams Propagations and Propagation Jobs" on

page 13-7

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

detailed information about the propagation infrastructure

in AQ

■ Chapter 8, "Streams Tags"
Streams Staging and Propagation 3-5

Event Propagation Between Queues
Ensured Event Delivery
A user-enqueued event is propagated successfully to a destination queue when the

enqueue into the destination queue is committed. A captured event is propagated

successfully to a destination queue when both of the following actions are

completed:

■ The event is processed by all relevant apply processes associated with the

destination queue.

■ The event is propagated successfully from the destination queue to all of its

relevant destination queues.

When an event is successfully propagated between two Streams queues, the

destination queue acknowledges successful propagation of the event. If the source

queue is configured to propagate an event to multiple destination queues, then the

event remains in the source queue until each destination queue has sent

confirmation of event propagation to the source queue. When each destination

queue acknowledges successful propagation of the event, and all local consumers in

the source queue database have consumed the event, the source queue can drop the

event.

This confirmation system ensures that events are always propagated from the

source queue to the destination queue, but, in some configurations, the source

queue can grow larger than an optimal size. When a source queue grows, it uses

more SGA memory and may use more disk space.

There are two common reasons for source-queue growth:

■ If an event cannot be propagated to a specified destination queue for some

reason (such as a network problem), then the event will remain in the source

queue indefinitely. This situation could cause the source queue to grow large.

So, you should monitor your queues regularly to detect problems early.

■ Suppose a source queue is propagating events to multiple destination queues,

and one or more destination databases acknowledge successful propagation of

events much more slowly than the other queues. In this case, the source queue

can grow because the slower destination databases create a backlog of events

that have already been acknowledged by the faster destination databases. In an

environment such as this, consider creating more than one capture process to

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"
3-6 Oracle9i Streams

Event Propagation Between Queues
capture changes at the source database. Then, you can use one source queue for

the slower destination databases and another source queue for the faster

destination databases.

Directed Networks
A directed network is one in which propagated events may pass through one or

more intermediate databases before arriving at a destination database. An event

may or may not be processed by an apply process at an intermediate database.

Using Streams, you can choose which events are propagated to each destination

database, and you can specify the route that events will traverse on their way to a

destination database. Figure 3–2 shows an example of a directed networks

environment.

Figure 3–2 Example Directed Networks Environment

See Also:

■ Chapter 2, "Streams Capture Process"

■ "Monitoring a Streams Queue" on page 17-12

Destination Database
in New York

Queue

Destination Database
in Miami

Queue

Intermediate Database
in Chicago

Queue

This queue is:
• Destination queue

for the source queue
in Hong Kong.

• Source queue for the
destination queues in
New York and Miami.

Source Database
in Hong Kong

Queue
Propagate Events

Propagate
Events

Propagate
Events
Streams Staging and Propagation 3-7

Event Propagation Between Queues
The advantage of using a directed network is that a source database need not have a

physical network connection with the destination database. So, if you want events

to propagate from one database to another, but there is no direct network

connection between the computers running these databases, then you can still

propagate the events without reconfiguring your network, as long as one or more

intermediate databases connect the source database to the destination database.

If you use directed networks, and an intermediate site goes down for an extended

period of time or is removed, then you may need to reconfigure the network and

the Streams environment.

Queue Forwarding and Apply Forwarding
An intermediate database in a directed network may propagate events using queue

forwarding or apply forwarding. Queue forwarding means that the events being

forwarded at an intermediate database are the events received by the intermediate

database. The source database for an event is the database where the event

originated.

Apply forwarding means that the events being forwarded at an intermediate

database are first processed by an apply process. These events are then recaptured

by a capture process at the intermediate database and forwarded. When you use

apply forwarding, the intermediate database becomes the new source database for

the events because the events are recaptured there.

Consider the following differences between queue forwarding and apply

forwarding when you plan your Streams environment:

■ With queue forwarding, an event is propagated through the directed network

without being changed, assuming there are no capture or propagation

transformations. With apply forwarding, events are applied and recaptured at

intermediate databases and may be changed by conflict resolution, apply

handlers, or apply transformations.

■ With queue forwarding, a destination database must have a separate apply

process to apply events from each source database. With apply forwarding,

fewer apply processes may be required at a destination database because

recapturing of events at intermediate databases may result in fewer source

databases when changes reach a destination database.

■ With queue forwarding, one or more intermediate databases are in place

between a source database and a destination database. With apply forwarding,

because events are recaptured at intermediate databases, the source database

for an event can be the same as the intermediate database connected directly

with the destination database.
3-8 Oracle9i Streams

Event Propagation Between Queues
A single Streams environment may use a combination of queue forwarding and

apply forwarding.

Advantages of Queue Forwarding Queue forwarding has the following advantages

compared to apply forwarding:

■ Performance may be improved because an event is captured only once.

■ Less time may be required to propagate an event from the database where the

event originated to the destination database, because the events are not applied

and recaptured at one or more intermediate databases. In other words, latency

may be lower with queue forwarding.

■ The source database of an event can be determined easily by running the

GET_SOURCE_DATABASE_NAME member procedure on the LCR contained in

the event. If you use apply forwarding, then determining the origin of an event

requires the use of Streams tags and apply handlers.

■ Parallel apply may scale better and provide more throughput when separate

apply processes are used because there are fewer dependencies, and because

there are multiple apply coordinators and apply reader processes to perform

the work.

■ If one intermediate database goes down, then you can reroute the queues and

reset the start SCN at the capture site to reconfigure end-to-end capture,

propagation, and apply.

If you use apply forwarding, then substantially more work may be required to

reconfigure end-to-end capture, propagation, and apply of events, because the

destination database(s) downstream from the unavailable intermediate

database were using the SCN information of this intermediate database.

Without this SCN information, the destination databases cannot apply the

changes properly.
Streams Staging and Propagation 3-9

Event Propagation Between Queues
Advantages of Apply Forwarding Apply forwarding has the following advantages

compared to queue forwarding:

■ A Streams environment may be easier to configure because each database can

apply changes only from databases directly connected to it, rather than from

multiple remote source databases.

■ In a large Streams environment where intermediate databases apply changes,

the environment may be easier to monitor and manage because fewer apply

processes may be required. An intermediate database that applies changes must

have one apply process for each source database from which it receives

changes. In an apply forwarding environment, the source databases of an

intermediate database are only the databases to which it is directly connected.

In a queue forwarding environment, the source databases of an intermediate

database are all of the other source databases in the environment, whether they

are directly connected to the intermediate database or not.

■ In a multiple source Streams environment, you can add databases to the

Streams environment without stopping all DML on the objects at each database

and waiting for all LCRs involving the objects to be captured, propagated, and

applied. A new database is instantiated from the one database that will connect

it to the rest of the Streams environment. In contrast, in a queue forwarding

environment, no single database contains all of the current data for a shared

object with multiple sources, and so DML should be stopped when adding new

databases to the environment.

See Also:

■ Chapter 4, "Streams Apply Process"

■ Chapter 22, "Single Source Heterogeneous

Replication Example" for an example of an environment that

uses queue forwarding

■ "Primary Database Sharing Data with Several Secondary

Databases" on page 8-12 for an example of an environment that

uses apply forwarding
3-10 Oracle9i Streams

SYS.AnyData Queues and User Messages
SYS.AnyData Queues and User Messages
Streams enables messaging with queues of type SYS.AnyData . These queues are

called Streams queues. Streams queues can stage user messages whose payloads are

of SYS.AnyData type. A SYS.AnyData payload can be a wrapper for payloads of

different datatypes. A queue that can stage messages of only a particular type are

called typed queues.

Using SYS.AnyData wrappers for message payloads, publishing applications can

enqueue messages of different types into a single queue, and subscribing

applications can dequeue these messages, either explicitly using a dequeue API or

implicitly using an apply process. If the subscribing application is remote, then the

messages can be propagated to the remote site, and the subscribing application can

dequeue the messages from a local queue in the remote database. Alternatively, a

remote subscribing application can dequeue messages directly from the source

queue using a variety of standard protocols, such as PL/SQL and OCI.

Streams interoperates with Advanced Queuing (AQ), which supports all the

standard features of message queuing systems, including multiconsumer queues,

publish and subscribe, content-based routing, internet propagation,

transformations, and gateways to other messaging subsystems.

SYS.AnyData Wrapper for User Messages Payloads
You can wrap almost any type of payload in a SYS.AnyData payload. To do this,

you use the Convert data_type static functions of the SYS.AnyData type, where

data_type is the type of object to wrap. These functions take the object as input

and return a SYS.AnyData object.

The following datatypes cannot be wrapped in a SYS.AnyData wrapper:

■ Nested table

■ NCLOB

■ ROWID and UROWID

See Also:

■ "Managing a Streams Messaging Environment" on page 13-18

■ Chapter 19, "Streams Messaging Example"

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about AQ
Streams Staging and Propagation 3-11

SYS.AnyData Queues and User Messages
The following datatypes can be directly wrapped in a SYS.AnyData wrapper, but

these datatypes cannot be present in a user-defined type payload wrapped in a

SYS.AnyData wrapper:

■ CLOB

■ BLOB

■ BFILE

■ VARRAY

Programmatic Environments for Enqueue and Dequeue of User Messages
Your applications can use the following programmatic environments to enqueue

user messages into a Streams queue and dequeue user messages from a Streams

queue:

■ PL/SQL (DBMS_AQ package)

■ JMS

■ OCI

The following sections provide information about using these interfaces to enqueue

user messages into and dequeue user messages from a Streams queue.

Enqueuing User Messages Using PL/SQL
To enqueue a user message containing an LCR into a Streams queue using PL/SQL,

first create the LCR to be enqueued. You use the constructor for the

SYS.LCR$_ROW_RECORD type to create a row LCR, and you use the constructor for

the SYS.LCR$_DDL_RECORD type to create a DDL LCR. Then you use the

SYS.AnyData.ConvertObject function to convert the LCR into SYS.AnyData
payload and enqueue it using the DBMS_AQ.ENQUEUE procedure.

See Also:

■ "Wrapping User Message Payloads in a SYS.AnyData Wrapper"

on page 13-19

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the SYS.AnyData type

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about these programmatic interfaces
3-12 Oracle9i Streams

SYS.AnyData Queues and User Messages
To enqueue a user message containing a non-LCR object into a Streams queue using

PL/SQL, you use one of the SYS.AnyData.Convert* functions to convert the

object into SYS.AnyData payload and enqueue it using the DBMS_AQ.ENQUEUE
procedure.

Enqueuing User Messages Using OCI or JMS
To enqueue a user message containing an LCR into a Streams queue using JMS or

OCI, you must represent the LCR in XML format. To construct an LCR, use the

oracle.xdb.XMLType class. LCRs are defined in the SYS schema. The LCR

schema must be loaded into the SYS schema using the catxlcr.sql script in

Oracle home in the rdbms/admin/ directory.

To enqueue a message using OCI, perform the same actions that you would to

enqueue a message into a typed queue. A typed queue is a queue that can stage

messages of a particular type only. To enqueue a message using JMS, a user must

have EXECUTE privilege on DBMS_AQ, DBMS_AQIN, and DBMS_AQJMS packages.

A non-LCR user message can be a message of any user-defined type or a JMS type.

The JMS types include the following:

■ javax.jms.TextMessage

■ javax.jms.MapMessage

■ javax.jms.StreamMessage

■ javax.jms.ObjectMessage

■ javax.jms.BytesMessage

When using user-defined types, you must generate the Java class for the message

using Jpublisher, which implements the ORAData interface. To enqueue a message

into a Streams queue, you can use methods QueueSender.send or

TopicPublisher.publish .

See Also:

■ "Managing a Streams Messaging Environment" on page 13-18

■ Chapter 19, "Streams Messaging Example"
Streams Staging and Propagation 3-13

SYS.AnyData Queues and User Messages
Dequeuing User Messages Using PL/SQL
To dequeue a user message from Streams queue using PL/SQL, you use the

DBMS_AQ.DEQUEUE procedure and specify SYS.AnyData as the payload. The user

message may contain an LCR or another type of object.

Dequeuing User Messages Using OCI or JMS
In a Streams queue, user messages containing LCRs in XML format are represented

as oracle.xdb.XMLType . Non-LCR messages can be one of the following

formats:

■ A JMS type (javax.jms.TextMessage , javax.jms.MapMessage ,

javax.jms.StreamMessage , javax.jms.ObjectMessage , or

javax.jms.BytesMessage)

■ A user-defined type

To dequeue a message from a Streams queue using JMS, you can use methods

QueueReceiver , TopicSubscriber , or TopicReceiver . Because the queue

may contain different types of objects wrapped in a SYS.AnyData wrapper, you

must register a list of SQL types and their corresponding Java classes in the

typemap of the JMS session. JMS types are already preregistered in the typemap.

See Also:

■ "Enqueue and Dequeue Events Using JMS" on page 19-35

■ Oracle9i Application Developer’s Guide - Advanced Queuing and

Oracle9i XML Database Developer’s Guide - Oracle XML DB for

more information about representing messages in XML format

■ Oracle9i Supplied Java Packages Reference for more information

about the oracle.jms Java package

■ The OCIAQenq function in the Oracle Call Interface Programmer’s
Guide for more information about enqueuing messages

using OCI

See Also:

■ "Managing a Streams Messaging Environment" on page 13-18

■ Chapter 19, "Streams Messaging Example"
3-14 Oracle9i Streams

SYS.AnyData Queues and User Messages
For example, suppose a queue contains LCR messages represented as

oracle.xdb.XMLType and messages of type person and address . The classes

JPerson.java and JAddress.java are the ORAData mappings for person and

address , respectively. Before dequeuing the message, the type map must be

populated as follows:

java.util.Dictionary map = ((AQjmsSession)q_sess).getTypeMap();

map.put("SCOTT.PERSON", Class.forName("JPerson"));
map.put("SCOTT.ADDRESS", Class.forName("JAddress"));
map.put("SYS.XMLTYPE", Class.forName("oracle.xdb.XMLType")); // For LCRs

When using message selectors with QueueReceiver or TopicPublisher , the

selector can contain any SQL92 expression that has a combination of one or more of

the following:

■ JMS Message header fields or properties, including JMSPriority ,

JMSCorrelationID , JMSType, JMSXUserI , JMSXAppID, JMSXGroupID , and

JMSXGroupSeq. The following is an example of a JMS message field:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

■ User-defined message properties, as in the following example:

color IN ('RED', 'BLUE', 'GREEN') AND price < 30000

■ PL/SQL functions, as in the following example:

hr.GET_TYPE(tab.user_data) = 'HR.EMPLOYEES'

To dequeue a message using OCI, perform the same actions that you would to

dequeue a message from a typed queue.

See Also:

■ "Enqueue and Dequeue Events Using JMS" on page 19-35

■ Oracle9i Application Developer’s Guide - Advanced Queuing and

Oracle9i XML Database Developer’s Guide - Oracle XML DB for

more information about representing messages in XML format

■ Oracle9i Supplied Java Packages Reference for more information

about the oracle.jms Java package

■ The OCIAQdeq function in the Oracle Call Interface Programmer’s
Guide for more information about dequeuing messages

using OCI
Streams Staging and Propagation 3-15

SYS.AnyData Queues and User Messages
Message Propagation and SYS.AnyData Queues
SYS.AnyData queues can interoperate with typed queues in a Streams

environment. A typed queue can stage messages of a particular type only. Table 3–1

shows the types of propagation possible between queues.

To propagate messages containing a payload of a certain type from a SYS.AnyData
source queue to a typed destination queue, you must perform a transformation.

Only messages containing a payload of the same type as the typed queue can be

propagated to the typed queue.

Although you cannot use Simple Object Access Protocol (SOAP) to interact directly

with a Streams queue, you can use SOAP with Streams by propagating messages

between a Streams queue and a typed queue. If you want to enqueue a message

into a Streams queue using SOAP, then you can configure propagation from a typed

queue to Streams queue. Then, you can use SOAP to enqueue a message into the

typed queue. The message will be propagated automatically from the typed queue

to the Streams queue.

If you want to use SOAP to dequeue a message that is in a Streams queue, then you

can configure propagation from a Streams queue to a typed queue. The message

will be propagated automatically from the Streams queue to the typed queue. Then,

the message would be available for access using SOAP.

Table 3–1 Propagation Between Different Types of Queues

Source Queue Destination Queue Transformation

SYS.AnyData SYS.AnyData None

Typed SYS.AnyData Implicit

Note: Propagation is possible only if the
messages in the typed queue meet the
restrictions outlined in "User-Defined Type
Messages" on page 3-17.

SYS.AnyData Typed Requires a rule to filter messages and a
user-defined transformation

Typed Typed Follows Advanced Queuing (AQ) rules
(see Oracle9i Application Developer’s Guide -
Advanced Queuing for information)
3-16 Oracle9i Streams

SYS.AnyData Queues and User Messages
User-Defined Type Messages
If you plan to enqueue, propagate, or dequeue user-defined type messages in a

Streams environment, then each type used in these messages must exist at every

database where the message may be staged in a queue. Some environments use

directed networks to route messages through intermediate databases before they

reach their destination. In such environments, the type must exist at each

intermediate database, even if the messages of this type are never enqueued or

dequeued at a particular intermediate database.

In addition, the following requirements must be met for such types:

■ The type name must be the same at each database.

■ The type must be in the same schema at each database.

■ The shape of the type must match exactly at each database.

■ The type cannot use inheritance or type evolution at any database.

■ The type cannot contain varrays, nested tables, LOBs, rowids, or urowids.

The object identifier (OID) need not match at each database.

Note: Certain Streams capabilities, such as capturing changes

using a capture process and applying changes with an apply

process, can be configured only with SYS.AnyData queues.

See Also:

■ "Propagating Messages Between a SYS.AnyData Queue and a

Typed Queue" on page 13-24

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about using SOAP and typed queues

See Also:

■ "SYS.AnyData Wrapper for User Messages Payloads" on

page 3-11 for information about wrapping user-defined type

message payloads in SYS.AnyData messages

■ "Directed Networks" on page 3-7
Streams Staging and Propagation 3-17

Streams Queues and Oracle Real Application Clusters
Streams Queues and Oracle Real Application Clusters
You can configure a Streams queue to stage and propagate captured and

user-enqueued events in a Real Application Clusters environment. In a Real

Application Clusters environment, only the owner instance may have a buffer for a

queue. Different instances may have buffers for different queues. Queue buffers are

discussed later in this chapter. A queue buffer is System Global Area (SGA)

memory associated with a Streams queue that contains only captured events.

A Streams queue that contains only user-enqueued events behaves the same as a

typed queue in a Real Application Clusters environment. However, if a Streams

queue contains or will contain captured events in a Real Application Clusters

environment, then the environment must meet the following requirements:

■ Each queue table containing a Streams queue with captured events must be

created using the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM
package. Creating or altering a queue table with the DBMS_AQADM package is

not supported if any queue in the queue table contains captured events.

■ All capture processes and apply processes that deal with captured events and

use a particular Streams queue must be started on the owner instance for the

queue.

■ Each propagation that propagates captured events to a Real Application

Clusters destination database must use an instance-specific database link that

refers to the owner instance of the destination queue. If the propagation

connects to any other instance, then the propagation will raise an error.

■ The AQ time manager must be running on all instances. Therefore, the

AQ_TM_PROCESSES initialization parameter must be set to at least 1 on each

instance.

If the owner instance for a queue table containing a destination queue becomes

unavailable, then queue ownership is transferred automatically to another instance

in the cluster. If this happens, then database links from remote source queues must

be reconfigured manually to connect to the instance that owns the destination

queue. The DBA_QUEUE_TABLES data dictionary view contains information about

the owner instance for a queue table. A queue table may contain multiple queues. In

this case, each queue in a queue table has the same owner instance as the queue

table.
3-18 Oracle9i Streams

Streams Staging and Propagation Architecture
Streams Staging and Propagation Architecture
In general, Streams queues and propagations use the infrastructure of AQ.

However, unlike an AQ queue, which stages all events in a queue table, a Streams

queue has a queue buffer to stage captured events in shared memory. This section

describes queue buffers and discusses how queue buffers are used in a Real

Application Clusters environment. This section also discusses propagation jobs and

secure queues, and how they are used in Streams. In addition, this section discusses

how transactional queues handle captured and user-enqueued events, as well as the

need for a Streams data dictionary at databases that propagate captured events.

Queue Buffers
A queue buffer is System Global Area (SGA) memory associated with a Streams

queue that contains only captured events. A queue buffer enables Oracle to

optimize captured events by buffering captured events in the SGA instead of

always storing them in a queue table. This buffering of captured events happens in

any database where captured events are staged in a Streams queue. Such a database

may be a source database, an intermediate database, or a destination database.

User-enqueued LCR events and user-enqueued non-LCR events are always staged

in queue tables, not in queue buffers.

See Also:

■ "Streams Capture Processes and Oracle Real Application

Clusters" on page 2-17

■ "Streams Apply Processes and Oracle Real Application

Clusters" on page 4-29

■ "Queue Buffers" on page 3-19

■ Oracle9i Database Reference for more information about the

DBA_QUEUE_TABLES data dictionary view

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about queues and Real Application Clusters

See Also:

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about AQ infrastructure

■ Oracle9i Database Administrator’s Guide for more information

about the DBMS_JOB package
Streams Staging and Propagation 3-19

Streams Staging and Propagation Architecture
Queue buffers improve performance, but the contents of a queue buffer are lost if

the instance containing the buffer shuts down normally or abnormally. Streams

automatically recovers from these cases, assuming full database recovery is

performed on the instance.

In a single database, all of the queue buffers combined can use up to 10% of SGA

memory. A queue buffer may overflow if there is not enough shared memory

available to hold captured events. Captured events that overflow a queue buffer are

stored in the appropriate AQ$_queue_table_name _p table, where

queue_table_name is the name of the queue table for the queue. If the events in a

queue buffer are lost, the events spilled from the queue buffer are subsequently

deleted in order to keep the queue buffer and its queue table in sync. Also, when a

transaction is moved to an exception queue, all events in the transaction are staged

in a queue table, not in a queue buffer.

Propagation Jobs
A Streams propagation is configured internally using the DBMS_JOBS package.

Therefore, a propagation job is the mechanism that propagates events from a source

queue to a destination queue. Like other jobs configured using the DBMS_JOBS
package, propagation jobs have an owner, and they use job queue processes (Jnnn)

as needed to execute jobs.

A propagation job may be used by more than one propagation. All destination

queues at a database receive events from a single source queue through a single

propagation job. By using a single propagation job for multiple destination queues,

Streams ensures that an event is sent to a destination database only once, even if the

same message is received by multiple destination queues in the same database.

Communication resources are conserved because messages are not sent more than

once to the same database.

See Also:

■ Oracle9i Database Concepts for more information about the SGA

■ "Performing Database Point-in-Time Recovery on a Destination

Database" on page 16-29
3-20 Oracle9i Streams

Streams Staging and Propagation Architecture
Propagation Scheduling and Streams Propagations
A propagation schedule specifies how often a propagation job propagates events

from a source queue to a destination queue. Therefore, all propagations that use a

propagation job have the same propagation schedule. A default propagation

schedule is established for the new propagation job when you create the

propagation job using one of the following procedures:

■ The ADD_GLOBAL_PROPAGATION_RULE procedure in the

DBMS_STREAMS_ADM package

■ The ADD_SCHEMA_PROPAGATION_RULE procedure in the

DBMS_STREAMS_ADM package

■ The ADD_TABLE_PROPAGATION_RULE procedure in the DBMS_STREAMS_ADM
package

■ The CREATE_PROPAGATION procedure in the DBMS_PROPAGATION_ADM
package

The default schedule has the following properties:

■ The start time is SYSDATE().

■ The duration is NULL, which means infinite.

■ The next time is NULL, which means that propagation restarts as soon as it

finishes the current duration.

■ The latency is five seconds, which is the wait time for a message to be

propagated to a destination queue after it is enqueued into a queue with no

messages requiring propagation to the same destination queue.

Note:

■ Currently, a single propagation job propagates all events that

use a particular database link, even if the database link is used

by more than one propagation to propagate events to multiple

destination queues.

■ The source queue owner performs the propagation, but the

propagation job is owned by the user who creates it. These two

users may or may not be the same.
Streams Staging and Propagation 3-21

Streams Staging and Propagation Architecture
If you want to alter the default schedule for a propagation job, then use the

ALTER_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package.

Propagation Jobs and RESTRICTED SESSION
When the restricted session is enabled during system startup by issuing a STARTUP
RESTRICT statement, propagation jobs with enabled propagation schedules do not

propagate events. When the restricted session is disabled, each propagation

schedule that is enabled and ready to run will run when there is an available job

queue process.

When the restricted session is enabled in a running database by the SQL statement

ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause, any running

propagation job continues to run to completion. However, any new propagation job

submitted for a propagation schedule is not started. Therefore, propagation for an

enabled schedule may eventually come to a halt.

Secure Queues
Secure queues are queues for which AQ agents must be explicitly associated with

one or more database users who can perform queue operations, such as enqueue

and dequeue. The owner of a secure queue can perform all queue operations on the

queue, but other users cannot perform queue operations on a secure queue unless

they are configured as secure queue users. In Streams, secure queues can be used to

ensure that only the appropriate users and Streams processes enqueue events into a

queue and dequeue events from a queue.

All Streams queues created using the SET_UP_QUEUE procedure in the

DBMS_STREAMS_ADM package are secure queues. When you use the

SET_UP_QUEUE procedure to create a queue, any user specified by the

queue_user parameter is configured as a secure queue user of the queue

automatically, if possible. The queue user is also granted ENQUEUE and DEQUEUE
privileges on the queue. To enqueue events into and dequeue events from a queue,

a queue user must also have EXECUTE privilege on the DBMS_AQ package. The

SET_UP_QUEUE procedure does not grant this privilege.

See Also: "Altering the Schedule of a Propagation Job" on

page 13-12
3-22 Oracle9i Streams

Streams Staging and Propagation Architecture
To configure the queue user as a secure queue user, the SET_UP_QUEUE procedure

creates an AQ agent with the same name as the user name, if one does not already

exist. The user must use this agent to perform queue operations on the queue. If an

agent with this name already exists and is associated with the queue user only, then

it is used. SET_UP_QUEUE then runs the ENABLE_DB_ACCESS procedure in the

DBMS_AQADM package, specifying the agent and the user. If the agent that

SET_UP_QUEUE tries to create already exists and is associated with a user other

than the user specified by queue_user , then an error is raised. In this case, rename

or remove the existing agent using the ALTER_AQ_AGENT or DROP_AQ_AGENT
procedure, respectively, in the DBMS_AQADM package. Then, retry SET_UP_QUEUE.

When you create a capture process or an apply process, an AQ agent of the secure

queue associated with the Streams process is configured automatically, and the user

who runs the Streams process is specified as a secure queue user for this queue

automatically. Therefore, a capture process is configured to enqueue into its secure

queue automatically, and an apply process is configured to dequeue from its secure

queue automatically.

For a capture process, the user who invokes the procedure that creates the capture

process is the user who runs the capture process. For an apply process, the user

specified as the apply_user is the user who runs the apply process. If no

apply_user is specified, then the user who invokes the procedure that creates the

apply process is the user who runs the apply process.

Also, if you change the apply_user for an apply process using the ALTER_APPLY
procedure in the DBMS_APPLY_ADM package, then the specified apply_user is

configured as a secure queue user of the queue used by the apply process. However,

the old apply user remains configured as a secure queue user of the queue. To

remove the old apply user, run the DISABLE_DB_ACCESS procedure in the

DBMS_AQADM package, specifying the old apply user and the relevant AQ agent.

You may also want to drop the agent if it is no longer needed. You can view the AQ

agents and their associated users by querying the DBA_AQ_AGENT_PRIVS data

dictionary view.

If you create a SYS.AnyData queue using the DBMS_AQADM package, then you use

the secure parameter when you run the CREATE_QUEUE_TABLE procedure to

specify whether the queue is secure or not. The queue is secure if you specify true
for the secure parameter when you run this procedure. When you use the

DBMS_AQADM package to create a secure queue, and you want to allow users to

perform queue operations on the secure queue, then you must configure these

secure queue users manually.
Streams Staging and Propagation 3-23

Streams Staging and Propagation Architecture
If you use the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to

create a secure queue, and you want a user who is not the queue owner and who

was not specified by the queue_user parameter to perform operations on the

queue, then you can configure the user as a secure queue user of the queue

manually. Alternatively, you can run the SET_UP_QUEUE procedure again and

specify a different queue_user for the queue. In this case, SET_UP_QUEUE will

skip queue creation, but it will configure the user specified by queue_user as a

secure queue user of the queue.

If you drop a capture process or an apply process, then the users who were

configured as secure queue users for these processes remain secure queue users of

the queue. To remove these users as secure queue users, run the

DISABLE_DB_ACCESS procedure in the DBMS_AQADM package for each user. You

may also want to drop the agent if it is no longer needed.

Transactional and Nontransactional Queues
A transactional queue is one in which user-enqueued events can be grouped into a

set that are applied as one transaction. That is, an apply process performs a COMMIT
after it applies all the user-enqueued events in a group. The SET_UP_QUEUE
procedure in the DBMS_STREMS_ADMpackage always creates a transactional queue.

A nontransactional queue is one in which each user-enqueued event is its own

transaction. That is, an apply process performs a COMMIT after each user-enqueued

event it applies. In either case, the user-enqueued events may or may not contain

user-created LCRs.

See Also:

■ "Enabling a User to Perform Operations on a Secure Queue" on

page 13-3

■ "Disabling a User from Performing Operations on a Secure

Queue" on page 13-5

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about AQ agents and using the DBMS_AQADM
package
3-24 Oracle9i Streams

Streams Staging and Propagation Architecture
The difference between transactional and nontransactional queues is important only

for user-enqueued events. An apply process always applies captured events in

transactions that preserve the transactions executed at the source database.

Table 3–2 shows apply process behavior for each type of event and each type of

queue.

Streams Data Dictionary for Propagations
When a capture process is created, a duplicate data dictionary called the Streams

data dictionary is populated automatically. The Streams data dictionary is a

multiversioned copy of some of the information in the primary data dictionary at a

source database. The Streams data dictionary maps object numbers, object version

information, and internal column numbers from the source database into table

names, column names, and column datatypes when a capture process evaluates

rules and creates LCRs. This mapping keeps each captured event as small as

possible because the event can store numbers rather than names.

The mapping information in the Streams data dictionary at the source database may

be needed to evaluate rules at any database that propagates the captured events

from the source database. To make this mapping information available to a

propagation, Oracle automatically populates a multiversioned Streams data

dictionary at each site that has a Streams propagation. Oracle automatically sends

internal messages that contain relevant information from the Streams data

dictionary at the source database to all other databases that receive captured events

from the source database.

Table 3–2 Apply Process Behavior for Transactional and Nontransactional Queues

Event Type Transactional Queue Nontransactional Queue

Captured Events Apply process preserves the
original transaction

Apply process preserves the
original transaction

User-Enqueued
Events

Apply a user-specified group of
user-enqueued events as one
transaction

Apply each user-enqueued
event in its own transaction

See Also:

■ "Managing Streams Queues" on page 13-2

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about message grouping
Streams Staging and Propagation 3-25

Streams Staging and Propagation Architecture
The Streams data dictionary information contained in these internal messages in a

queue may or may not be propagated by a propagation. Which Streams data

dictionary information to propagate depends on the rule set for the propagation.

When a propagation encounters Streams data dictionary information for a table, the

propagation rule set is evaluated with partial information that includes the source

database name, table name, and table owner.

If at least one rule in the rule set either evaluates to TRUE (true_rules) or could

evaluate to TRUE given more information (maybe_rules), then the Streams data

dictionary information is propagated. This rule can be either a DML rule or a DDL

rule.

When Streams data dictionary information is propagated to a destination queue, it

is incorporated into the Streams data dictionary at the database that contains the

destination queue, in addition to being enqueued into the destination queue.

Therefore, a propagation reading the destination queue in a directed networks

configuration can forward LCRs immediately without waiting for the Streams data

dictionary to be populated.

See Also:

■ "Data Dictionary Duplication During Capture Process Creation"

on page 2-22

■ Chapter 6, "How Rules Are Used In Streams"
3-26 Oracle9i Streams

Streams Apply Pr
4

Streams Apply Process

This chapter explains the concepts and architecture of the Streams apply process.

This chapter contains these topics:

■ Apply Process Overview

■ Apply Rules

■ Event Processing with an Apply Process

■ Datatypes Applied

■ Considerations for Applying DML Changes to Tables

■ Considerations for Applying DDL Changes

■ Trigger Firing Property

■ Instantiation SCN and Ignore SCN

■ The Oldest SCN for an Apply Process

■ Low-Watermark and High-Watermark for an Apply Process

■ Streams Apply Processes and RESTRICTED SESSION

■ Streams Apply Processes and Oracle Real Application Clusters

■ Apply Process Architecture

See Also: Chapter 14, "Managing an Apply Process"
ocess 4-1

Apply Process Overview
Apply Process Overview
An apply process is an optional Oracle background process that dequeues logical

change records (LCRs) and user messages from a specific queue and either applies

each one directly or passes it as a parameter to a user-defined procedure. The LCRs

dequeued by an apply process contain data manipulation language (DML) changes

or data definition language (DDL) changes that an apply process can apply to

database objects in a destination database. A user-defined message dequeued by an

apply process is of type SYS.AnyData and can contain any user message,

including a user-created LCR.

Events applied by an apply process are applied by an apply user. The apply user is

the user who applies all DML statements and DDL statements and who runs

user-defined apply handlers.

Apply Rules
An apply process applies changes based on rules that you define. Each rule specifies

the database objects to which an apply process applies changes and the types of

changes to apply. You can specify apply rules at the following levels:

■ A table rule applies either DML or DDL changes to a particular table. Subset

rules are table rules that include a subset of the changes to a particular table.

■ A schema rule applies either DML or DDL changes to the database objects in a

particular schema.

■ A global rule applies either all DML or all DDL changes in the queue associated

with an apply process.

For non-LCR events, you can create your own rules to control apply process

behavior.

Note: An apply process can be associated only with a

SYS.AnyData queue, not with a typed queue.

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"
4-2 Oracle9i Streams

Event Processing with an Apply Process
Event Processing with an Apply Process
An apply process is a flexible mechanism for processing the events in a queue. You

have options to consider when you configure one or more apply processes for your

environment. This section discusses the types of events that an apply process can

apply and the ways that it can apply them.

Processing Captured and User-Enqueued Events with an Apply Process
A single apply process can apply either captured events or user-enqueued events,

but not both. If a queue at a destination database contains both captured and

user-enqueued events, then the destination database must have at least two apply

processes to process the events.

When you create an apply process using a procedure in the DBMS_STREAMS_ADM
package, the apply process applies only captured events. When you create an apply

process using the CREATE_APPLY procedure in the DBMS_APPLY_ADM package,

you use the apply_captured parameter to specify whether the apply process

applies captured or user-enqueued events. By default, the apply_captured
parameter is set to false for an apply process created with this procedure.

The database where an event originated is important to an apply process for

captured events but not for user-enqueued events. For a captured event, the source

database is the database where the change was generated in the redo log. An apply

process must determine the source database for each captured LCR to ensure that it

applies changes from only one source database, and a database administrator must

ensure that an apply process applies changes from only one capture process at that

source database. For a user-enqueued event, an apply process ignores information

about the database where the event originated, even if the event is a user-enqueued

LCR. A single apply process can apply user-enqueued events that originated at

different databases.

See Also:

■ "Event Staging and Propagation Overview" on page 3-2 for

more information about captured and user-enqueued events

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the CREATE_APPLY procedure
Streams Apply Process 4-3

Event Processing with an Apply Process
Event Processing Options
Your options for event processing depend on whether or not the event received by

an apply process is an LCR event. Figure 4–1 shows the event processing options for

an apply process.

Figure 4–1 The Apply Process

LCR Event Processing
Each apply process can apply captured events from only one source database,

because processing the LCRs in these events requires knowledge of the

dependencies, meaningful transaction ordering, and transactional boundaries at the

source database. Captured LCRs from multiple databases may be sent to a single

destination queue. However, if a single queue contains captured LCRs from

multiple databases, then there must be multiple apply processes retrieving these

LCRs. Each of these apply processes should be configured to receive captured LCRs

from exactly one source database using rules. Regarding user-enqueued events

containing LCRs (not captured events), a single apply process can apply these

user-enqueued events, even if they are from multiple source databases.

Also, each apply process can apply captured events from only one capture process.

If there are multiple capture processes running on a source database, and LCRs

from more than one of these capture processes are applied at a destination database,

then there must be one apply process to apply changes from each capture process.

In such an environment, Oracle Corporation recommends that each Streams queue

used by a capture process or apply process have captured events from at most one

capture process from a particular source database. A queue can contain LCRs from

Database Objects

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Message
Handler

Procedure

LCRs or
Messages

Messages
Apply
Changes

DML
Handler

Procedure

DDL
Handler

Procedure

Apply
Process

Row
LCRs

DDL
LCRs
4-4 Oracle9i Streams

Event Processing with an Apply Process
more than one capture process if each capture process is capturing changes at a

different source database.

You can configure an apply process to process a captured or user-enqueued event

that contains an LCR in the following ways: directly apply the LCR event or pass

the LCR event as a parameter to a user procedure for processing. The following

sections explain these options.

Apply the LCR Event Directly If you use this option, then an apply process applies the

LCR event without running a user procedure. The apply process either successfully

applies the change in the LCR to a database object or, if a conflict or an apply error

is encountered, tries to resolve the error with a conflict handler or a user-specified

procedure called an error handler.

If a conflict handler can resolve the conflict, then it either applies the LCR or it

discards the change in the LCR. If the error handler can resolve the error, then it

should apply the LCR, if appropriate. An error handler may resolve an error by

modifying the LCR before applying it. If the error handler cannot resolve the error,

then the apply process places the transaction, and all LCRs associated with the

transaction, into an exception queue.

Call a User Procedure to Process the LCR Event If you use this option, then an apply

process passes the LCR event as a parameter to a user procedure for processing. The

user procedure can then process the LCR event in a customized way.

A user procedure that processes row LCRs resulting from DML statements is called

a DML handler, while a user procedure that processes DDL LCRs resulting from

DDL statements is called a DDL handler. An apply process can have many DML

handlers but only one DDL handler, which processes all DDL LCRs dequeued by

the apply process.

For each table associated with an apply process, you can set a separate DML

handler to process each of the following types of operations in row LCRs:

■ INSERT

■ UPDATE

■ DELETE

■ LOB_UPDATE

For example, the hr.employees table may have one DML handler to process

INSERT operations and a different DML handler to process UPDATE operations.
Streams Apply Process 4-5

Event Processing with an Apply Process
A user procedure can be used for any customized processing of LCRs. For example,

if you want each insert into a particular table at the source database to result in

inserts into multiple tables at the destination database, then you can create a user

procedure that processes INSERT operations on the table to accomplish this. Or, if

you want to log DDL changes before applying them, then you can create a user

procedure that processes DDL operations to accomplish this.

A DML handler should never commit and never roll back, except to a named

savepoint that the user procedure has established. To execute DDL inside a DDL

handler, invoke the EXECUTE member procedure for the LCR.

To set a DML handler, use the SET_DML_HANDLER procedure in the

DBMS_APPLY_ADM package, and this setting is used by all apply processes in the

database. To associate a DDL handler with a particular apply process, use the

ddl_handler parameter in the CREATE_APPLYor the ALTER_APPLYprocedure in

the DBMS_APPLY_ADM package.

You create an error handler in the same way that you create a DML handler, except

that you set the error_handler parameter to true when you run the

SET_DML_HANDLER procedure. Then, the handler is invoked only if an apply error

results when an apply process tries to apply a row LCR with the specified operation

on the specified table.

Note: When you run the SET_DML_HANDLER procedure, you

specify the object for which the handler is used, and Oracle checks

to ensure that the specified object exists in the local destination

database. If the object does not exist, then an error is raised.

Therefore, if the name of the object is different at the source

database and destination database, then use a rule-based

transformation to convert the object name in the row LCR before

the row LCR is applied.

See Also:

■ "Logical Change Records (LCRs)" on page 2-2 for more

information about row LCRs and DDL LCRs

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the EXECUTE member procedure for LCR

types

■ "Rule-Based Transformations" on page 6-25
4-6 Oracle9i Streams

Event Processing with an Apply Process
Non-LCR User Message Processing
A user-enqueued event that does not contain an LCR is processed by the message

handler specified for an apply process, if the user-enqueued event satisfies at least

one rule in the rule set for the apply process. A message handler is a user-defined

procedure that can process non-LCR user messages in a customized way for your

environment.

The message handler offers advantages in any environment that has applications

that need to update one or more remote databases or perform some other remote

action. These applications can enqueue user messages into a queue at the local

database, and Streams can propagate each user message to the appropriate queues

at destination databases. If there are multiple destinations, then Streams provides

the infrastructure for automatic propagation and processing of these messages at

these destinations. If there is only one destination, then Streams still provides a

layer between the application at the source database and the application at the

destination database, so that, if the application at the remote database becomes

unavailable, then the application at the source database can continue to function

normally.

For example, a message handler may format a user message into an electronic mail

message. In this case, the user message may contain the attributes you would expect

in an electronic mail message, such as from , to , subject , text_of_message ,

and so on. A message handler could convert these user messages into electronic

mail messages and send them out through an electronic mail gateway.

You can specify a message handler for an apply process using the

message_handler parameter in the CREATE_APPLY or the ALTER_APPLY
procedure in the DBMS_APPLY_ADM package. A Streams apply process always

assumes that a non-LCR message has no dependencies on any other events in the

queue. Therefore, if dependencies exist between these messages in your

environment, then Oracle Corporation recommends that you set apply process

parallelism to 1.
Streams Apply Process 4-7

Event Processing with an Apply Process
Summary of Event Processing Options
Table 4–1 summarizes the event processing options available when you are using

one or more of the event handlers described in the previous sections. Event

handlers are optional for row LCRs and DDL LCRs because an apply process can

apply these events directly. However, a message handler is required for processing

non-LCR user messages. In addition, an apply process dequeues an event only if the

event satisfies at least one of the rules in the rule set for the apply process.

Table 4–1 Summary of Event Processing Options

Type of Event
Default Apply
Process Behavior User Procedure

Scope of User
Procedure

Row LCR Execute DML DML Handler or
Error Handler

One operation on
one table

DDL LCR Execute DDL DDL Handler Entire apply process

Non-LCR User
Message

Create error
transaction (if no
message handler
exists)

Message Handler Entire apply process

Note:

■ Apply handlers can execute an LCR by calling the LCR’s

EXECUTE member procedure.

■ All applied DDL LCRs commit automatically. Therefore, if a

DDL handler calls the EXECUTE member procedure of a DDL

LCR, then a commit is performed automatically.

■ If necessary, an apply handler can set a Streams session tag.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the EXECUTE member procedure for LCR

types

■ Chapter 8, "Streams Tags"
4-8 Oracle9i Streams

Datatypes Applied
Datatypes Applied
When applying row LCRs for data manipulation language (DML) changes to tables,

an apply process applies changes made to columns of the following datatypes:

■ CHAR

■ VARCHAR2

■ NCHAR

■ NVARCHAR2

■ NUMBER

■ DATE

■ CLOB

■ BLOB

■ RAW

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

The apply process does not apply DML changes in columns of the following

datatypes: NCLOB, LONG, LONG RAW, BFILE , ROWID, and UROWID, and user-defined

type (including object types, REFs, varrays, and nested tables). The apply process

raises an error if it attempts to apply a row LCR that contains information about a

column of an unsupported datatype. Then, the apply process moves the transaction

that includes the LCR into an exception queue.

See Also:

■ "Datatypes Captured" on page 2-6

■ Oracle9i SQL Reference for more information about these

datatypes
Streams Apply Process 4-9

Considerations for Applying DML Changes to Tables
Considerations for Applying DML Changes to Tables
The following sections discuss considerations for applying DML changes to tables:

■ Constraints

■ Substitute Key Columns

■ Row Subsetting Using Streams Rules

■ Apply Process Behavior for Column Discrepancies

■ Conflict Resolution and an Apply Process

■ Handlers and Row LCR Processing

Constraints
You must ensure that the primary key columns at the destination database are

logged in the redo log at the source database for every update. A unique or foreign

key constraint at a destination database that contains data from more that one

column at the source database requires additional logging at the source database.

There are various ways to ensure that a column is logged at the source database. For

example, whenever the value of a column is updated, the column is logged. Also,

Oracle has a feature called supplemental logging that automates the logging of

specified columns.

For a unique key and foreign key constraint at a destination database that contains

data from only one column at a source database, no supplemental logging is

required. However, for a constraint that contains data from multiple columns at the

source database, you must create a conditional supplemental log group containing

all the columns at the source database that are used by the constraint at the

destination database.

Typically, unique key and foreign key constraints include the same columns at the

source database and destination database. However, in some cases, an apply

handler or rule-based transformation may combine a multi-column constraint from

the source database into a single key column at the destination database. Also, an

apply handler or rule-based transformation may separate a single key column from

the source database into a multi-column constraint at the destination database. In

such cases, the number of columns in the constraint at the source database

determines whether a conditional supplemental log group is required. If there is

more than one column in the constraint at the source database, then a conditional

supplemental log group containing all the constraint columns is required at the
4-10 Oracle9i Streams

Considerations for Applying DML Changes to Tables
source database. If there is only one column in the constraint at the source database,

then no supplemental logging is required for the key column.

Substitute Key Columns
If possible, each table for which changes are applied by an apply process should

have a primary key. When a primary key is not possible, Oracle Corporation

recommends that each table have a set of columns that can be used as a unique

identifier for each row of the table. If the tables that you plan to use in your Streams

environment do not have a primary key or a set of unique columns, then consider

altering these tables accordingly.

To detect conflicts and handle errors accurately, Oracle must be able to identify

uniquely and match corresponding rows at different databases. By default, Streams

uses the primary key of a table to identify rows in the table. When a table at a

destination database does not have a primary key, or when you want to use

columns other than the primary key for the key, you can designate a substitute key

at the destination database. A substitute key is a column or set of columns that

Oracle can use to identify rows in the table during apply.

You can specify the substitute primary key for a table using the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package. Unlike true primary keys, the

substitute key columns may contain NULLs. Also, the substitute key columns take

precedence over any existing primary key for the specified table for all apply

processes at the destination database.

If you specify a substitute key for a table in a destination database, and these

columns are not a primary key for the same table at the source database, then you

must create an unconditional supplemental log group containing the substitute key

columns at the source database.

In the absence of both substitute key columns and a primary key constraint, an

apply process uses all of the columns in the table as the key columns, excluding

LOB and LONG columns. In this case, you must create an unconditional

supplemental log group containing these columns at the source database. Using

substitute key columns is preferable when there is no primary key constraint for a

table because fewer columns are needed in the row LCR.

See Also: "Supplemental Logging in a Streams Environment" on

page 2-11
Streams Apply Process 4-11

Considerations for Applying DML Changes to Tables
Row Subsetting Using Streams Rules
You can use the ADD_SUBSET_RULES procedure in the DBMS_STREAMS_ADM
package to maintain a subset of the rows in a particular table. To do this, you

specify a condition similar to the condition in the WHERE clause of a SELECT
statement in the dml_condition parameter for this procedure. For a particular

table, only one subset rule is allowed for a particular apply process.

Row Migration
When you use subset rules, a captured update operation may be converted to an

insert or delete operation when it is applied by an apply process. This automatic

Note:

■ Oracle Corporation recommends that each column you specify

as a substitute key column be a NOT NULL column. You should

also create a single index that includes all of the columns in a

substitute key. Following these guidelines improves

performance for updates, deletes, and piecewise updates to

LOBs because the database can locate the relevant row more

efficiently.

■ You should not permit applications to update the primary key

or substitute key columns of a table. This ensures that the

database can identify rows and preserve the integrity of the

data.

See Also:

■ The DBMS_APPLY_ADM.SET_KEY_COLUMNS procedure in the

Oracle9i Supplied PL/SQL Packages and Types Reference

■ "Supplemental Logging in a Streams Environment" on

page 2-11

Note: Creating subset rules for tables that have one or more LOB

columns is not supported.

See Also: "Table and Subset Rules" on page 6-6
4-12 Oracle9i Streams

Considerations for Applying DML Changes to Tables
conversion is called row migration and is performed by an internal LCR

transformation specified in a rule’s action context.

For example, suppose you use a subset rule to specify that an apply process applies

changes only to the hr.employees table when the employee’s department_id is

50 using the following subset condition: department_id = 50 . Assume that the

table at the destination database is a subset table that only contains records for

employees whose department_id is 50 . If a source database captures a change to

an employee that changes the employee’s department_id from 80 to 50 , then the

apply process with the subset rule at a destination database applies this change by

converting the update operation into an insert operation. This conversion is needed

because the employee’s row does not exist in the destination table.

Figure 4–2 Subset Rule Transformation Example

Source Database

Update hr.employees
SET department_id = 50
WHERE employee_id = 145;

Redo
Log

Capture
Process

Enqueue
LCR

Capture
Change

Record Change

Propagate
LCR

hr.employees Table

Destination Database

Subset Rule
Transformation:
UPDATE to
INSERT

Apply
Process

Continue
Dequeue

Dequeue
LCR

Apply
change
as
INSERT

hr.employees
Subset Table

Queue

Only employees
with
department_id = 50

Queue
Streams Apply Process 4-13

Considerations for Applying DML Changes to Tables
Similarly, if a captured update changes an employee’s department_id from 50 to

20 , then an apply process with this subset rule converts the update operation into a

delete operation.

If an apply process may perform row migration when applying changes to a table

and you allow local changes to the table, then the apply process cannot ensure that

all rows in the table meet the subset condition. For example, suppose the condition

is department_id = 50 for the hr.employees table. If a user or an application

inserts a row for an employee whose department_id is 30 , then this row remains

in the table and is not removed by the apply process. Similarly, if a user or an

application updates a row locally and changes the department_id to 30 , then this

row also remains in the table. To avoid such errors, Oracle Corporation

recommends that you ensure that all DML performed on a subset table satisfy the

subset condition.

Supplemental Logging and Row Subsetting
If you specify a subset rule for a table at a destination database, then an

unconditional supplemental log group must be specified at the source database for

all of the columns in the table at the destination database and all the columns in the

subset condition. In certain cases, when a subset rule is specified, an update may be

converted to an insert by an apply process, and in these cases supplemental

information may be needed for some or all of the columns.

For example, if you specify a subset rule at database dbs2.net on the

postal_code column in the hr.locations table, and the source database for

changes to this table is dbs1.net , then specify supplemental logging at dbs1.net
for all of the columns that exist in the hr.locations table at dbs2.net , as well as

the postal_code column, even if this column does not exist in the table at the

destination database.

Apply Process Behavior for Column Discrepancies
A column discrepancy is any difference in the columns in a table at a source

database and the columns in the same table at a destination database. If there are

column discrepancies in your Streams environment, then use rule-based

transformations or DML handlers to make the columns in row LCRs being applied

by an apply process match the columns in the relevant tables at a destination

database. The following sections describe apply process behavior for common

column discrepancies.

See Also: "Supplemental Logging in a Streams Environment" on

page 2-11
4-14 Oracle9i Streams

Considerations for Applying DML Changes to Tables
Missing Columns at the Destination Database
If the table at the destination database is missing one or more columns that are in

the table at the source database, then an apply process raises an error and moves the

transaction that caused the error into an exception queue. You can avoid such an

error by creating a rule-based transformation or DML handler that eliminates the

missing columns from the LCRs before they are applied. Specifically, the

transformation or handler can remove the extra columns using the

DELETE_COLUMN member procedure on the row LCR.

Extra Columns at the Destination Database
If the table at the destination database has more columns than the table at the source

database, then apply process behavior depends on whether the extra columns are

required for dependency computations. If the extra columns are not used for

dependency computations, then an apply process applies changes to the destination

table. In this case, if column defaults exist for the extra columns at the destination

database, then these defaults are used for these columns for all inserts. Otherwise,

these inserted columns are NULL.

If, however, the extra columns are used for dependency computations, then an

apply process places the transactions that include these changes in an exception

queue. The following types of columns are required for dependency computations:

■ For all changes, all key columns

■ For INSERT and DELETE statements, all columns involved with constraints

■ For UPDATE statements, if a constraint column is changed, such as a unique key

constraint column or a foreign key constraint column, then all columns

involved in the constraint

See Also:

■ "Rule-Based Transformations" on page 6-25 and "Managing

Rule-Based Transformations" on page 15-11

■ "LCR Event Processing" on page 4-4 for more information

about apply process handlers

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about LCRs
Streams Apply Process 4-15

Considerations for Applying DML Changes to Tables
Column Datatype Mismatch
If the datatype for a column in a table at the destination database does not match

the datatype for the same column at the source database, then an apply process

places transactions containing the changes to the mismatched column into an

exception queue. To avoid such an error, you can create a rule-based transformation

or DML handler that converts the datatype.

Conflict Resolution and an Apply Process
Conflicts are possible in a Streams configuration where data is shared between

multiple databases. A conflict can occur if DML changes are allowed to a table for

which changes are captured and to a table where these changes are applied.

For example, a transaction at the source database may update a row at nearly the

same time as a different transaction that updates the same row at a destination

database. In this case, if data consistency between the two databases is important,

then when the change is propagated to the destination database, an apply process

must be instructed either to keep the change at the destination database or replace it

with the change from the source database. When data conflicts occur, you need a

mechanism to ensure that the conflict is resolved in accordance with your business

rules.

Streams automatically detects conflicts and, for update conflicts, tries to use an

update conflict handler to resolve them if one is configured. Streams offers a variety

of prebuilt handlers that enable you to define a conflict resolution system for your

database that resolves conflicts in accordance with your business rules. If you have

a unique situation that a prebuilt conflict resolution handlers cannot resolve, then

you can build and use your own custom conflict resolution handlers in an error

handler or DML handler.

Handlers and Row LCR Processing
Any of the following handlers may process a row LCR:

■ DML handler

■ Error handler

■ Update conflict handler

See Also: Chapter 7, "Streams Conflict Resolution"
4-16 Oracle9i Streams

Considerations for Applying DML Changes to Tables
The following sections describe the possible scenarios involving these handlers:

■ No Relevant Handlers

■ Relevant Update Conflict Handler

■ DML Handler But No Relevant Update Conflict Handler

■ DML Handler And a Relevant Update Conflict Handler

■ Error Handler But No Relevant Update Conflict Handler

■ Error Handler And a Relevant Update Conflict Handler

You cannot have a DML handler and an error handler simultaneously for the same

operation on the same table. Therefore, there is no scenario in which they could

both be invoked.

No Relevant Handlers
If there are no relevant handlers for a row LCR, then an apply process tries to apply

the change specified in the row LCR directly. If the apply process can apply the row

LCR, then the change is made to the row in the table. If there is a conflict or an error

during apply, then the transaction containing the row LCR is rolled back, and all of

the LCRs in the transaction that satisfy the apply process rule set are moved to an

exception queue.

Relevant Update Conflict Handler
Consider a case where there is a relevant update conflict handler configured, but no

other relevant handlers are configured. An apply process tries to apply the change

specified in a row LCR directly. If the apply process can apply the row LCR, then

the change is made to the row in the table.

If there is an error during apply that is caused by a condition other than an update

conflict, including a uniqueness conflict or a delete conflict, then the transaction

containing the row LCR is rolled back, and all of the LCRs in the transaction that

satisfy the apply process rule set are moved to an exception queue.

If there is an update conflict during apply, then the relevant update conflict handler

is invoked. If the update conflict handler resolves the conflict successfully, then the

apply process either applies the LCR or discards the LCR, depending on the

resolution of the update conflict, and the apply process continues applying the

other LCRs in the transaction that satisfy the apply process rule set. If the update

conflict handler cannot resolve the conflict, then the transaction containing the row
Streams Apply Process 4-17

Considerations for Applying DML Changes to Tables
LCR is rolled back, and all of the LCRs in the transaction that satisfy the apply

process rule set are moved to an exception queue.

DML Handler But No Relevant Update Conflict Handler
Consider a case where an apply process passes a row LCR to a DML handler and

there is no relevant update conflict handler configured.

The DML handler processes the row LCR. The designer of the DML handler has

complete control over this processing. Some DML handlers may perform SQL

operations or run the EXECUTE member procedure of the row LCR. If the DML

handler runs the EXECUTE member procedure of the row LCR, then the apply

process tries to apply the row LCR. This row LCR may have been modified by the

DML handler.

If any SQL operation performed by the DML handler fails, or if an attempt to run

the EXECUTE member procedure fails, then the DML handler can try to handle the

exception. If the DML handler does not raise an exception, then the apply process

assumes the DML handler has performed the appropriate action with the row LCR,

and the apply process continues applying the other LCRs in the transaction that

satisfy the apply process rule set.

If the DML handler cannot handle the exception, then the DML handler should

raise an exception. In this case, the transaction containing the row LCR is rolled

back, and all of the LCRs in the transaction that satisfy the apply process rule set are

moved to an exception queue.

DML Handler And a Relevant Update Conflict Handler
Consider a case where an apply process passes a row LCR to a DML handler and

there is a relevant update conflict handler configured.

The DML handler processes the row LCR. The designer of the DML handler has

complete control over this processing. Some DML handlers may perform SQL

operations or run the EXECUTE member procedure of the row LCR. If the DML

handler runs the EXECUTE member procedure of the row LCR, then the apply

process tries to apply the row LCR. This row LCR may have been modified by the

DML handler.

If any SQL operation performed by the DML handler fails, or if an attempt to run

the EXECUTE member procedure fails for any reason other than an update conflict,

then the behavior is the same as that described in "DML Handler But No Relevant

Update Conflict Handler" on page 4-18. Note that uniqueness conflicts and delete

conflicts are not update conflicts.
4-18 Oracle9i Streams

Considerations for Applying DML Changes to Tables
If an attempt to run the EXECUTE member procedure fails because of an update

conflict, then the behavior depends on the setting of the conflict_resolution
parameter in the EXECUTE member procedure:

The conflict_resolution Parameter Is Set To true If the conflict_resolution
parameter is set to true , then the relevant update conflict handler is invoked.

If the update conflict handler resolves the conflict successfully, and all other

operations performed by the DML handler succeed, then the DML handler finishes

without raising an exception and the apply process continues applying the other

LCRs in the transaction that satisfy the apply process rule set.

If the update conflict handler cannot resolve the conflict, then the DML handler can

try to handle the exception. If the DML handler does not raise an exception, then

the apply process assumes the DML handler has performed the appropriate action

with the row LCR, and the apply process continues applying the other LCRs in the

transaction that satisfy the apply process rule set. If the DML handler cannot handle

the exception, then the DML handler should raise an exception. In this case, the

transaction containing the row LCR is rolled back, and all of the LCRs in the

transaction that satisfy the apply process rule set are moved to an exception queue.

The conflict_resolution Parameter Is Set To false If the conflict_resolution
parameter is set to false , then the relevant update conflict handler is not invoked.

In this case, the behavior is the same as that described in "DML Handler But No

Relevant Update Conflict Handler" on page 4-18.

Error Handler But No Relevant Update Conflict Handler
Consider a case where an apply process encounters an error when it tries to apply a

row LCR. This error may be caused by a conflict or by some other condition. There

is an error handler for the table operation but no relevant update conflict handler

configured.

The row LCR is passed to the error handler. The error handler processes the row

LCR. The designer of the error handler has complete control over this processing.

Some error handlers may perform SQL operations or run the EXECUTE member

procedure of the row LCR. If the error handler runs the EXECUTE member

procedure of the row LCR, then the apply process tries to apply the row LCR. This

row LCR may have been modified by the error handler.
Streams Apply Process 4-19

Considerations for Applying DML Changes to Tables
If any SQL operation performed by the error handler fails, or if an attempt to run

the EXECUTE member procedure fails, then the error handler can try to handle the

exception. If the error handler does not raise an exception, then the apply process

assumes the error handler has performed the appropriate action with the row LCR,

and the apply process continues applying the other LCRs in the transaction that

satisfy the apply process rule set.

If the error handler cannot handle the exception, then the error handler should raise

an exception. In this case, the transaction containing the row LCR is rolled back, and

all of the LCRs in the transaction that satisfy the apply process rule set are moved to

an exception queue.

Error Handler And a Relevant Update Conflict Handler
Consider a case where an apply process encounters an error when it tries to apply a

row LCR. There is an error handler for the table operation, and there is a relevant

update conflict handler configured.

The handler that is invoked to handle the error depends on the type of error it is:

■ If the error is caused by a condition other than an update conflict, including a

uniqueness conflict or a delete conflict, then the error handler is invoked, and

the behavior is the same as that described in "Error Handler But No Relevant

Update Conflict Handler" on page 4-19.

■ If the error is caused by an update conflict, then the update conflict handler is

invoked. If the update conflict handler resolves the conflict successfully, then

the apply process continues applying the other LCRs in the transaction that

satisfy the apply process rule set. In this case, the error handler is not invoked.

If the update conflict handler cannot resolve the conflict, then the error handler

is invoked. If the error handler does not raise an exception, then the apply

process assumes the error handler has performed the appropriate action with

the row LCR, and the apply process continues applying the other LCRs in the

transaction that satisfy the apply process rule set. If the error handler cannot

process the LCR, then the error handler should raise an exception. In this case,

the transaction containing the row LCR is rolled back, and all of the LCRs in the

transaction that satisfy the apply process rule set are moved to an exception

queue.
4-20 Oracle9i Streams

Considerations for Applying DDL Changes
Considerations for Applying DDL Changes
The following sections discuss considerations for applying DDL changes to tables:

■ Types of DDL Changes Ignored by an Apply Process

■ Database Structures in a Streams Environment

■ Current Schema User Must Exist at Destination Database

■ System-Generated Names

■ CREATE TABLE AS SELECT Statements

Types of DDL Changes Ignored by an Apply Process
The following types of DDL changes are not supported by an apply process. These

types of DDL changes are not applied:

■ ALTER MATERIALIZED VIEW

■ ALTER MATERIALIZED VIEW LOG

■ CREATE DATABASE LINK

■ CREATE SCHEMA AUTHORIZATION

■ CREATE MATERIALIZED VIEW

■ CREATE MATERIALIZED VIEW LOG

■ DROP DATABASE LINK

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the EXECUTE member procedure for

row LCRs

■ "Managing a DML Handler" on page 14-14

■ "Managing an Error Handler" on page 14-21

■ "Managing Streams Conflict Resolution" on page 14-29

See Also: "Types of DDL Changes Ignored by a Capture Process"

on page 2-8
Streams Apply Process 4-21

Considerations for Applying DDL Changes
■ DROP MATERIALIZED VIEW

■ DROP MATERIALIZED VIEW LOG

■ RENAME

Also, the following types of CREATE TABLE and ALTER TABLE statements are

ignored by an apply process:

■ A CREATE TABLE AS SELECTstatement on a clustered table is not supported in

a Streams environment.

■ A CREATE TABLE statement that creates an index-organized table.

■ An ALTER TABLE statement that alters an index-organized table.

If an apply process receives a DDL LCR that specifies an operation that cannot be

applied, then the apply process ignores the DDL LCR and records the following

message in the apply process trace file, followed by the DDL text ignored:

Apply process ignored the following DDL:

An apply process applies all other types of DDL changes if the DDL LCRs

containing the changes satisfy the rules in the apply process rule set. Also, an apply

process can apply valid, user-enqueued DDL LCRs.

Database Structures in a Streams Environment
For captured DDL changes to be applied properly at a destination database, either

the destination database must have the same database structures as the source

database, or the non-identical database structural information must not be specified

in the DDL statement. Database structures include data files, tablespaces, rollback

segments, and other physical and logical structures that support database objects.

Note:

■ An apply process applies ALTERobject_type object_name
RENAME changes, such as ALTER TABLE jobs RENAME.
Therefore, if you want DDL changes that rename objects to be

applied, then use ALTERobject_type object_name
RENAME statements instead of RENAME statements.

■ The name "materialized view" is synonymous with the name

"snapshot". Snapshot equivalents of the statements on

materialized views are ignored by an apply process.
4-22 Oracle9i Streams

Considerations for Applying DDL Changes
For example, for captured DDL changes to tables to be applied properly at a

destination database, the following conditions must be met:

■ The same storage parameters must be specified in the CREATE TABLEstatement

at the source database and destination database.

■ If a DDL statement refers to specific tablespaces or rollback segments, then the

tablespaces or rollback segments must have the same names and compatible

specifications at the source database and destination database.

However, if the tablespaces and rollback segments are not specified in the DDL

statement, then the default tablespaces and rollback segments are used. In this

case, the tablespaces and rollback segments can differ at the source database

and destination database.

■ The same partitioning specifications must be used at the source database and

destination database.

Current Schema User Must Exist at Destination Database
For a DDL LCR to be applied at a destination database successfully, the user

specified as the current_schema in the DDL LCR must exist at the destination

database. The current schema is the schema that is used if no schema is specified for

an object in the DDL text.

System-Generated Names
If you plan to capture DDL changes at a source database and apply these DDL

changes at a destination database, then avoid using system-generated names. If a

DDL statement results in a system-generated name for an object, then the name of

the object typically will be different at the source database and each destination

database applying the DDL change from this source database. Different names for

objects can result in apply errors for future DDL changes.

See Also:

■ Oracle9i Database Concepts for more information about database

structures

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the current_schema attribute in

DDL LCRs
Streams Apply Process 4-23

Considerations for Applying DDL Changes
For example, suppose the following DDL statement is run at a source database:

CREATE TABLE sys_gen_name (n1 NUMBER NOT NULL);

This statement results in a NOT NULL constraint with a system-generated name. For

example, the NOT NULL constraint may be named sys_001500 . When this change

is applied at a destination database, the system-generated name for this constraint

may be sys_c1000 .

Suppose the following DDL statement is run at the source database:

ALTER TABLE sys_gen_name DROP CONSTRAINT sys_001500;

This DDL statement succeeds at the source database, but it fails at the destination

database and results in an apply error.

To avoid such an error, explicitly name all objects resulting from DDL statements.

For example, to name a NOT NULL constraint explicitly, run the following DDL

statement:

CREATE TABLE sys_gen_name (n1 NUMBER CONSTRAINT sys_gen_name_nn NOT NULL);

CREATE TABLE AS SELECT Statements
When applying a change resulting from a CREATE TABLE AS SELECT statement, an

apply process performs two steps:

1. The CREATE TABLE AS SELECT statement is executed at the destination

database, but it creates only the structure of the table. It does not insert any

rows into the table. If the CREATE TABLE AS SELECT statement fails, then an

apply process error results. Otherwise, the statement autocommits, and the

apply process performs Step 2.

2. The apply process inserts the rows that were inserted at the source database as a

result of the CREATE TABLE AS SELECT statement into the corresponding table

at the destination database. It is possible that a capture process, a propagation,

or an apply process will discard all of the row LCRs with these inserts based on

their rule sets. In this case, the table remains empty at the destination database.

Note: A CREATE TABLE AS SELECTstatement on a clustered table

is not supported in a Streams environment.
4-24 Oracle9i Streams

Trigger Firing Property
Trigger Firing Property
You can control a DML or DDL trigger’s firing property using the

SET_TRIGGER_FIRING_PROPERTY procedure in the DBMS_DDL package. This

procedure lets you specify whether a trigger’s firing property is set to fire once. If a

trigger’s firing property is set to fire once, then it does not fire in the following

cases:

■ When a relevant change is made by an apply process

■ When a relevant change results from the execution of one or more apply errors

using the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the

DBMS_APPLY_ADM package

If a trigger is not set to fire once, then it fires in both of these cases.

By default, DML and DDL triggers are set to fire once. You can check a trigger’s

firing property by using the IS_TRIGGER_FIRE_ONCE function in the DBMS_DDL
package.

For example, in the hr schema, the update_job_history trigger adds a row to

the job_history table when data is updated in the job_id or department_id
column in the employees table. Suppose, in a Streams environment, the following

configuration exists:

■ A capture process captures changes to both of these tables at the dbs1.net
database.

■ A propagation propagates these changes to the dbs2.net database.

■ An apply process applies these changes at the dbs2.net database.

■ The update_job_history trigger exists in the hr schema in both databases.

If the update_job_history trigger is not set to fire once at dbs2.net in this

scenario, then these actions result:

1. The job_id column is updated for an employee in the employees table at

dbs1.net .

2. The update_job_history trigger fires at dbs1.net and adds a row to the

job_history table that records the change.

3. The capture process at dbs1.net captures the changes to both the employees
table and the job_history table.

4. A propagation propagates these changes to the dbs2.net database.
Streams Apply Process 4-25

Trigger Firing Property
5. An apply process at the dbs2.net database applies both changes.

6. The update_job_history trigger fires at dbs2.net when the apply process

updates the employees table.

In this case, the change to the employees table is recorded twice at the dbs2.net
database: when the apply process applies the change to the job_history table

and when the update_job_history trigger fires to record the change made to

the employees table by the apply process.

As you can see, the database administrator may not want the

update_job_history trigger to fire at the dbs2.net database when a change is

made by the apply process. Similarly, a database administrator may not want a

trigger to fire because of the execution of an apply error transaction. If the

update_job_history trigger’s firing property is set to fire once, then it does not

fire at dbs2.net when the apply process applies a change to the employees table,

and it does not fire when an executed error transaction updates the employees
table.

Also, if you use the ON SCHEMA clause to create a schema trigger, then the schema

trigger fires only if the schema performs a relevant change. Therefore, when an

apply process is applying changes, a schema trigger that is set to fire always fires

only if the apply user is the same as the schema specified in the schema trigger. If

the schema trigger is set to fire once, then it never fires when an apply process

applies changes, regardless of whether the apply user is the same as the schema

specified in the schema trigger.

For example, if you specify a schema trigger that always fires on the hr schema at a

source database and destination database, but the apply user at a destination

database is strmadmin , then the trigger fires when the hr user performs a relevant

change on the source database, but the trigger does not fire when this change is

applied at the destination database. However, if you specify a schema trigger that

always fires on the strmadmin schema at the destination database, then this trigger

fires whenever a relevant change is made by the apply process, regardless of any

trigger specifications at the source database.

Note: Only DML and DDL triggers can be set to fire once. All

other types of triggers always fire.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about setting a trigger’s firing property with the

SET_TRIGGER_FIRING_PROPERTY procedure
4-26 Oracle9i Streams

Instantiation SCN and Ignore SCN
Instantiation SCN and Ignore SCN
In a Streams environment that shares information between multiple databases, a

source database is the database where changes are generated in the redo log.

Suppose an environment has the following characteristics:

■ A capture process will capture changes to tables at the source database.

■ The changes to the tables will be propagated to a destination database and

applied there.

■ The destination database already contains some or all of the tables for which

changes will be captured, propagated, and applied.

In such an environment, the tables that already exist at the destination database are

not instantiated. That is, because these tables already exist at the destination

database, they are not created at the destination by exporting them at the source

database and then importing them at the destination database. Instead, the apply

process at the destination database must be instructed explicitly to apply changes

that committed after a specific system change number (SCN) for each source

database table. The instantiation SCN for the tables specifies this SCN.

The instantiation SCN for a database object controls which LCRs that contain

changes to the database object are ignored by an apply process and which LCRs are

applied by an apply process. If the commit SCN of an LCR for a database object

from a source database is less than or equal to the instantiation SCN for that

database object at a destination database, then the apply process at the destination

database discards the LCR. Otherwise, the apply process applies the LCR.

Also, if there are multiple source databases for a shared database object at a

destination database, then an instantiation SCN must be set for each source

database, and the instantiation SCN may be different for each source database. You

can set an instantiation SCN using export/import or using a procedure in the

DBMS_APPLY_ADM package.

Streams also records the ignore SCN for each database object. The ignore SCN is

the SCN below which the instantiation SCN cannot be set. This value corresponds

to the SCN value at the source database at the time when the object was prepared

for instantiation.

You can view the instantiation SCN and ignore SCN for database objects by

querying the DBA_APPLY_INSTANTIATED_OBJECTS data dictionary view.
Streams Apply Process 4-27

The Oldest SCN for an Apply Process
The Oldest SCN for an Apply Process
If an apply process is running, then the oldest SCN is the earliest SCN of the

transactions currently being dequeued and applied. For a stopped apply process,

the oldest SCN is the earliest SCN of the transactions that were being applied when

the apply process was stopped.

The following are two common scenarios in which the oldest SCN is important:

■ You must recover the database in which the apply process is running to a

certain point in time.

■ You stop using an existing capture process that captures changes for the apply

process and use a different capture process to capture changes for the apply

process.

In both cases, you should determine the oldest SCN for the apply process by

querying the DBA_APPLY_PROGRESS data dictionary view; the

OLDEST_MESSAGE_NUMBER column in this view contains the oldest SCN. Then, set

the start SCN for the capture process that is capturing changes for the apply process

to the same value as the oldest SCN value. If the capture process is capturing

changes for other apply processes, then these other apply processes may receive

duplicate LCR events when you reset the start SCN for the capture process. In this

case, the other apply processes automatically discard the duplicate LCR events.

Low-Watermark and High-Watermark for an Apply Process
The low-watermark for an apply process is the system change number (SCN) up to

which all events have been applied. That is, events that were committed at an SCN

less than or equal to the low-watermark number have definitely been applied, but

some events that were committed with a higher SCN also may have been applied.

The low-watermark is also sometimes called the applied SCN.

See Also:

■ "Setting Instantiation SCNs at a Destination Database" on

page 14-35

■ "Preparing Database Objects for Instantiation at a Source

Database" on page 12-11

See Also: "The Start SCN, Captured SCN, and Applied SCN for a

Capture Process" on page 2-15
4-28 Oracle9i Streams

Streams Apply Processes and Oracle Real Application Clusters
The high-watermark for an apply process is the SCN beyond which no events have

been applied. That is, no events that were committed with an SCN greater than the

high-watermark have been applied.

You can view the low-watermark and high-watermark for one or more apply

processes by querying the V$STREAMS_APPLY_COORDINATOR and

ALL_APPLY_PROGRESS data dictionary views.

Streams Apply Processes and RESTRICTED SESSION
When the restricted session is enabled during system startup by issuing a STARTUP
RESTRICT statement, apply processes do not start, even if they were running when

the database shut down. When the restricted session is disabled, each apply process

that was not stopped is started.

When the restricted session is enabled in a running database by the SQL statement

ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause, it does not affect

any running apply processes. These apply processes continue to run and apply

events. If a stopped apply process is started in a restricted session, then the apply

process does not start until the restricted session is disabled.

Streams Apply Processes and Oracle Real Application Clusters
You can configure a Streams apply process to apply changes in a Real Application

Clusters environment. If you use an apply process to apply captured LCRs in a Real

Application Clusters environment, then any call to the START_APPLY procedure in

the DBMS_APPLY_ADM package must be run on the owner instance of the queue

that is used by the apply process.

Calls to other procedures and functions that operate on an apply process can be

performed from any instance. Also, an apply process that applies user-enqueued

events can start in any instance.

If the owner instance for a queue table containing a queue used by an apply process

becomes unavailable, then queue ownership is transferred automatically to another

instance in the cluster. If this happens, then, to restart the apply process, connect to

the owner instance for the queue and run the START_APPLY procedure. The

DBA_QUEUE_TABLES data dictionary view contains information about the owner

instance for a queue table. The apply process maintains a persistent start/stop state

in a Real Application Clusters environment only if the owner instance for its queue

does not change before the database instance owning the queue is restarted.
Streams Apply Process 4-29

Apply Process Architecture
Also, in a Real Application Clusters environment, an apply coordinator process, its

corresponding apply reader server, and all of its apply server processes run on a

single instance.

Apply Process Architecture
You can create, alter, start, stop, and drop an apply process, and you can define

apply rules that control which events an apply process dequeues from the queue.

The user who creates an apply process is, by default, the user who applies changes.

This user must have the necessary privileges to apply changes.

This section discusses the following topics:

■ Apply Process Components

■ Apply Process Creation

■ Streams Data Dictionary for an Apply Process

■ Apply Process Parameters

■ The Persistent State of an Apply Process

■ Exception Queues

See Also:

■ "Streams Queues and Oracle Real Application Clusters" on

page 3-18

■ "Streams Capture Processes and Oracle Real Application

Clusters" on page 2-17

■ Oracle9i Database Reference for more information about the

DBA_QUEUE_TABLES data dictionary view

■ "The Persistent State of an Apply Process" on page 4-36

See Also: "Configuring a Streams Administrator" on page 11-2 for

information about the required privileges
4-30 Oracle9i Streams

Apply Process Architecture
Apply Process Components
An apply process consists of the following components:

■ A reader server that dequeues events. The reader server is a parallel execution

server that computes dependencies between LCRs and assembles events into

transactions. The reader server then returns the assembled transactions to the

coordinator, which assigns them to idle apply servers.

■ A coordinator process that gets transactions from the reader and passes them to

apply servers. The coordinator process name is apnn , where nn is a coordinator

process number. Valid coordinator process names include ap01 through ap99 .

■ One or more apply servers that apply LCRs to database objects as DML or DDL

statements or that pass the LCRs to their appropriate handlers. For non-LCR

messages, the apply servers pass the events to the message handler. Each apply

server is a parallel execution server. If an apply server encounters an error, it

then tries to resolve the error with a user-specified error handler. If an apply

server cannot resolve an error, then it rolls back the transaction and places the

entire transaction, including all of its events, in an exception queue.

When an apply server commits a completed transaction, this transaction has

been applied. When an apply server places a transaction in an exception queue

and commits, this transaction also has been applied.

If a transaction being handled by an apply server has a dependency with another

transaction that is not known to have been applied, then the apply server contacts

the coordinator and waits for instructions. The coordinator monitors all of the apply

servers to ensure that transactions are applied and committed in the correct order.

For example, consider these two transactions:

1. A row is inserted into a table.

2. The same row is updated to change certain column values.

In this case, transaction 2 is dependent on transaction 1, because the row cannot be

updated until after it is inserted into the table. Suppose these transactions are

captured from the redo log at a source database, propagated to a destination

database, and applied at the destination database. Apply server A handles the

insert transaction, and apply server B handles the update transaction.

If apply server B is ready to apply the update transaction before apply server A has

applied the insert transaction, then apply server B waits for instructions from the

coordinator. After apply server A has applied the insert transaction, the coordinator

process instructs apply server B to apply the update transaction.
Streams Apply Process 4-31

Apply Process Architecture
Apply Process Creation
You can create an apply process using the DBMS_STREAMS_ADM package or the

DBMS_APPLY_ADM package. Using the DBMS_STREAMS_ADM package to create an

apply process is simpler because defaults are used automatically for some

configuration options. In addition, when you use the DBMS_STREAMS_ADM
package, a rule set is created for the apply process and rules are added to the rule

set automatically. The DBMS_STREAMS_ADM package was designed for use in

replication environments. Alternatively, using the DBMS_APPLY_ADM package to

create an apply process is more flexible, and you create a rule set and rules for the

apply process either before or after it is created.

An apply process created by the procedures in the DBMS_STREAMS_ADM package

can apply events only at the local database and can apply only captured events. To

create an apply process that applies events at a remote database or an apply process

that applies user-enqueued events, use the CREATE_APPLY procedure in the

DBMS_APPLY_ADM package.

Changes applied by an apply process created by the DBMS_STREAMS_ADM package

generate tags in the redo log at the destination database with a value of 00 (double

zero), but you can set the tag value if you use the CREATE_APPLY procedure.

Alternatively, you can set the tag using the ALTER_APPLY procedure in the

DBMS_APPLY_ADM package.

When you create an apply process by running the CREATE_APPLY procedure in the

DBMS_APPLY_ADM package, you can specify nondefault values for the

apply_captured , apply_database_link , and apply_tag parameters. Then

you can use the procedures in the DBMS_STREAMS_ADM package or the

DBMS_RULE_ADM package to add rules to the rule set for the apply process.

If you create more than one apply process in a database, then the apply processes

are completely independent of each other. These apply processes do not

synchronize with each other, even if they apply LCRs from the same source

database.
4-32 Oracle9i Streams

Apply Process Architecture
Streams Data Dictionary for an Apply Process
When a capture process is created, a duplicate data dictionary called the Streams

data dictionary is populated automatically. The Streams data dictionary is a

multiversioned copy of some of the information in the primary data dictionary at a

source database. The Streams data dictionary maps object numbers, object version

information, and internal column numbers from the source database into table

names, column names, and column datatypes when a capture process evaluates

rules and creates LCRs. This mapping keeps each captured event as small as

possible because a captured event can often use numbers rather than names

internally.

Unless a captured event is passed as a parameter to a user transformation during

capture or propagation, the mapping information in the Streams data dictionary at

the source database is needed to interpret the contents of the LCR at any database

that applies the captured event. To make this mapping information available to an

apply process, Oracle automatically populates a multiversioned Streams data

dictionary at each destination database that has a Streams apply process. Oracle

automatically propagates relevant information from the Streams data dictionary at

the source database to all other databases that apply captured events from the

source database.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the following procedures, which can be

used to create an apply process.

■ DBMS_STREAMS_ADM.ADD_TABLE_RULES

■ DBMS_STREAMS_ADM.ADD_SUBSET_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

■ DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

■ DBMS_CAPTURE_ADM.CREATE_APPLY

See Also: "Data Dictionary Duplication During Capture Process

Creation" on page 2-22
Streams Apply Process 4-33

Apply Process Architecture
Apply Process Parameters
After creation, an apply process is disabled so that you can set the apply process

parameters for your environment before starting the process for the first time.

Apply process parameters control the way an apply process operates. For example,

the time_limit apply process parameter can be used to specify the amount of

time an apply process runs before it is shut down automatically. After you set the

apply process parameters, you can start the apply process.

Apply Process Parallelism
The parallelism apply process parameter specifies the number of apply servers

that may concurrently apply transactions. For example, if parallelism is set to 5,

then an apply process uses a total of five apply servers. In addition, the reader

server is a parallel execution server. So, if parallelism is set to 5, then an apply

process uses a total of six parallel execution servers, assuming six parallel execution

servers are available in the database. An apply process always uses one or more

parallel execution servers.

See Also:

■ "Setting an Apply Process Parameter" on page 14-11

■ This section does not discuss all of the available apply process

parameters. See the DBMS_APPLY_ADM.SET_PARAMETER
procedure in the Oracle9i Supplied PL/SQL Packages and Types
Reference for detailed information about all of the apply process

parameters.

Note:

■ Resetting the parallelism parameter automatically stops

and restarts the apply process when the currently executing

transactions are applied, which may take some time depending

on the size of the transactions.

■ Setting the parallelism parameter to a number higher than

the number of available parallel execution servers may disable

the apply process. Make sure the PROCESSES and

PARALLEL_MAX_SERVERS initialization parameters are set

appropriately when you set the parallelism apply process

parameter.
4-34 Oracle9i Streams

Apply Process Architecture
Commit Serialization
Apply servers may apply transactions at the destination database in an order that is

different from the commit order at the source database. Only nondependent

transactions can be applied in a different order from the commit order at the source

database. Dependent transactions are always applied at the destination database in

the same order as they were committed at the source database.

You control whether the apply servers can apply nondependent transactions in a

different order at the destination database than the source database using the

commit_serialization apply parameter. This parameter has the following

settings:

■ full : An apply process commits applied transactions in the order in which

they were committed at the source database. This setting is the default.

■ none : An apply process may commit transactions in any order. Performance is

best if you specify this value.

If you specify none , then it is possible that a destination database may contain

commit changes in a different order from the source database. For example,

suppose two nondependent transactions are committed at the source database in

the following order:

1. Transaction A

2. Transaction B

At the destination database, these transactions may be committed in the opposite

order:

1. Transaction B

2. Transaction A

See Also:

■ "Apply Process Components" on page 4-31 for more

information about apply servers and the reader server

■ Oracle9i Database Administrator’s Guide for information about

managing parallel execution servers
Streams Apply Process 4-35

Apply Process Architecture
Automatic Restart of an Apply Process
You can configure an apply process to stop automatically when it reaches certain

predefined limits. The time_limit apply process parameter specifies the amount

of time an apply process runs, and the transaction_limit apply process

parameter specifies the number of transactions an apply process can apply. The

apply process stops automatically when it reaches these limits.

The disable_on_limit parameter controls whether an apply process becomes

disabled or restarts when it reaches a limit. If you set the disable_on_limit
parameter to y, then the apply process is disabled when it reaches a limit and does

not restart until you restart it explicitly. If, however, you set the

disable_on_limit parameter to n, then the apply process stops and restarts

automatically when it reaches a limit.

When an apply process is restarted, it gets a new session identifier, and the parallel

execution servers associated with the apply process also get new session identifiers.

However, the coordinator process number (apnn) remains the same.

Stop or Continue on Error
Using the disable_on_error apply process parameter, you can either instruct an

apply process to become disabled when it encounters an error, or you can allow the

apply process to continue applying transactions after it encounters an error.

The Persistent State of an Apply Process
An apply process maintains a persistent state. That is, an apply process maintains

its current state when the database is shut down and restarted. For example, if an

apply process is running when the database is shut down, then the apply process

automatically starts when the database is restarted, but, if an apply process is

stopped when a database is shut down, then the apply process remains stopped

when the database is restarted.

See Also: "Exception Queues" on page 4-37
4-36 Oracle9i Streams

Apply Process Architecture
Exception Queues
An exception queue is associated with each queue table. When you create a Streams

queue using the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package,

an exception queue is created automatically, if one does not already exist for the

queue table used by the Streams queue. To view information about Streams apply

errors in all of the exception queues in a database, query the DBA_APPLY_ERROR
data dictionary view.

An exception queue stores information about transactions that could not be applied

successfully by an apply process running in the database. A transaction may

include many events, and when an unhandled error occurs during apply, the apply

process automatically copies all of the events in the transaction that satisfy the

apply process rule set to an exception queue. The last error moved to an exception

queue is on top of the error stack.

An exception queue contains information only about errors encountered at the local

destination database. It does not contain information about errors for apply

processes running in other databases in a Streams environment.

You can correct the condition that caused an error and then reexecute the error

transaction. For example, you might modify a row in a table to correct the condition

that caused an error. When the condition that caused the error has been corrected,

you can either reexecute the transaction in the exception queue using the

EXECUTE_ERROR and EXECUTE_ALL_ERRORS procedures or delete the transaction

from the exception queue using the DELETE_ERROR and DELETE_ALL_ERRORS
procedures. Both of these procedures are in the DBMS_APPLY_ADM package.

When you reexecute a transaction in an exception queue, you can specify that the

transaction be executed either by the user who originally placed the error in the

exception queue or by the user who is reexecuting the transaction. Also, the current

Streams tag for the apply process is used when you reexecute a transaction in an

exception queue.

A reexecuted transaction uses any relevant apply handlers and conflict resolution

handlers. If, to resolve the error, the LCR inside an exception queue needs to be

modified before it is executed, then you can configure a DML handler to process the

LCR that caused the error in the exception queue. In this case, the DML handler

may modify the LCR in some way to avoid a repeat of the same error. The LCR is

passed to the DML handler when you reexecute the error containing the LCR using

the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the

DBMS_APPLY_ADM package.
Streams Apply Process 4-37

Apply Process Architecture
See Also:

■ "Managing Apply Errors" on page 14-33

■ "Checking for Apply Errors" on page 17-36

■ "Displaying Detailed Information About Apply Errors" on

page 17-37

■ "Managing a DML Handler" on page 14-14

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information on the DBMS_APPLY_ADM package

■ Oracle9i Database Reference for more information about the

DBA_APPLY_ERROR data dictionary view
4-38 Oracle9i Streams

5

Rules

This chapter explains the concepts related to rules.

This chapter contains these topics:

■ The Components of a Rule

■ Rule Set Evaluation

■ Database Objects and Privileges Related to Rules

See Also:

■ Chapter 6, "How Rules Are Used In Streams"

■ Chapter 15, "Managing Rules and Rule-Based Transformations"

■ Chapter 24, "Rule-Based Application Example"
Rules 5-1

The Components of a Rule
The Components of a Rule
A rule is a database object that enables a client to perform an action when an event

occurs and a condition is satisfied. Rules are evaluated by a rules engine, which is a

built-in part of Oracle. Both user-created applications and Oracle features, such as

Streams, can be clients of the rules engine.

A rule consists of the following components:

■ Rule Condition

■ Rule Evaluation Context (optional)

■ Rule Action Context (optional)

Each rule is specified as a condition that is similar to the condition in the WHERE
clause of a SQL query. You can group related rules together into rule sets. A single

rule can be in one rule set, multiple rule sets, or no rule sets.

Rule Condition
A rule condition combines one or more expressions and operators and returns a

Boolean value, which is a value of TRUE, FALSE, or NULL (unknown). An

expression is a combination of one or more values and operators that evaluate to a

value. A value can be data in a table, data in variables, or data returned by a SQL

function or a PL/SQL function. For example, the following condition consists of

two expressions (department_id and 30) and an operator (=):

department_id = 30

This logical condition evaluates to TRUEfor a given row when the department_id
column is 30 . Here, the value is data in the department_id column of a table.

A single rule condition may include more than one condition combined with the

AND, OR, and NOTconditional operators to form compound conditions. For example,

consider the following compound condition:

department_id = 30 OR job_title = 'Programmer'

This rule condition contains two conditions joined by the ORconditional operator. If

either condition evaluates to TRUE, then the rule condition evaluates to TRUE. If the

conditional operator were AND instead of OR, then both conditions would have to

evaluate to TRUE for the entire rule condition to evaluate to TRUE.

Note: A rule must be in a rule set for it to be evaluated.
5-2 Oracle9i Streams

The Components of a Rule
Variables in Rule Conditions
Rule conditions may contain variables. When you use variables in rule conditions,

precede each variable with a colon (:). The following is an example of a variable

used in a rule condition:

:x = 55

Variables enable you to refer to data that is not stored in a table. A variable may

also improve performance by replacing a commonly occurring expression.

Performance may improve because, instead of evaluating the same expression

multiple times, the variable is evaluated once.

A rule condition may also contain an evaluation of a call to a subprogram. These

conditions are evaluated in the same way as other conditions. That is, they evaluate

to a value of TRUE, FALSE, or unknown. The following is an example of a condition

that contains a call to a simple function named is_manager that determines

whether an employee is a manager:

is_manager(employee_id) = 'Y'

Here, the value of employee_id is determined by data in a table where

employee_id is a column.

You can use user-defined types for variables. Therefore, variables can have

attributes. When a variable has attributes, each attribute contains partial data for

variable. In rule conditions, you specify attributes using dot notation. For example,

the following condition evaluates to TRUE if the value of attribute z in variable y
is 9:

:y.z = 9

Simple Rule Conditions
A simple rule condition is a condition that has either of the following forms:

■ simple_rule_expression operator constant

■ constant operator simple_rule_expression

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information about user-defined types
Rules 5-3

The Components of a Rule
In a simple rule condition, a simple_rule_expression is one of the following:

■ Table column

■ Variable

■ Variable attribute

■ Method result where the method takes no arguments and the method result can

be returned by the variable method function, so that the expression is either a

numerical or character type

For table columns, variables, and variable attributes, all numeric (NUMBER, FLOAT,
DOUBLE, INTEGER) and character (CHAR, VARCHAR2) types are supported. Use of

other types of expressions results in non-simple rule conditions.

In a simple rule condition, an operator is one of the following:

■ <=

■ <

■ =

■ >

■ >=

Use of other operators results in non-simple rule conditions.

A constant is a fixed value. A constant can be:

■ A number, such as 12 or 5.4

■ A character, such as x or $

■ A character string, such as "this is a string"

Therefore, the following conditions are simple rule conditions:

■ tab1.col = 5

■ :v1 > 'aaa'

■ :v2.a1 < 10.01

■ :v3.m() = 10
5-4 Oracle9i Streams

The Components of a Rule
Rules with simple rule conditions are called simple rules. You can combine two or

more simple rule conditions with the conditional operators AND and OR for a rule,

and the rule remains simple. However, using the NOT conditional operator in a

rule’s condition causes the rule to be non-simple. For example, rules with the

following conditions are simple rules:

■ tab1.col = 5 AND :v1 > 'aaa'

■ tab1.col = 5 OR :v1 > 'aaa'

Simple rules are important for the following reasons:

■ Simple rules are indexed by the rules engine internally.

■ Simple rules can be evaluated without executing SQL.

■ Simple rules can be evaluated with partial data.

When a client uses DBMS_RULE.EVALUATE to evaluate an event, the client can

specify that only simple rules should be evaluated by specifying true for the

simple_rules_only parameter.

Rule Evaluation Context
A rule evaluation context is a database object that defines external data that can be

referenced in rule conditions. The external data can exist as variables, table data, or

both. The following analogy may be helpful: If the rule condition were the WHERE
clause in a SQL query, then the external data in the rule’s evaluation context would

be the information referenced in the FROM clause of the query. That is, the

expressions in the rule condition should reference the tables, table aliases, and

variables in the evaluation context to make a valid WHERE clause.

A rule evaluation context provides the necessary information for interpreting and

evaluating the rule conditions that reference external data. For example, if a rule

refers to a variable, then the information in the rule evaluation context must contain

the variable type. Or, if a rule refers to a table alias, then the information in the

evaluation context must define the table alias.

The objects referenced by a rule are determined by the rule evaluation context

associated with it. The rule owner must have the necessary privileges to access

these objects, such as SELECT privilege on tables, EXECUTE privilege on types, and

so on. The rule condition is resolved in the schema that owns the evaluation

context.

See Also: Oracle9i SQL Reference for more information about

conditions, expressions, and operators
Rules 5-5

The Components of a Rule
For example, consider a rule evaluation context named hr_evaluation_context
that contains the following information:

■ Table alias dep corresponds to the hr.departments table.

■ Variables loc_id1 and loc_id2 are both of type NUMBER.

The hr_evaluation_context rule evaluation context provides the necessary

information for evaluating the following rule condition:

dep.location_id IN (:loc_id1, :loc_id2)

In this case, the rule condition evaluates to TRUEfor a row in the hr.departments
table if that row has a value in the location_id column that corresponds to either

of the values passed in by the loc_id1 or loc_id2 variables. The rule cannot be

interpreted or evaluated properly without the information in the

hr_evaluation_context rule evaluation context. Also, notice that dot notation

is used to specify the column location_id in the dep table alias.

Explicit and Implicit Variables
The value of a variable referenced in a rule condition may be explicitly specified

when the rule is evaluated, or the value of a variable may be implicitly available

given the event.

Explicit variables are supplied by the caller at evaluation time. These values are

specified by the variable_values parameter when the DBMS_RULE.EVALUATE
procedure is run.

Implicit variables are not given a value at evaluation time. The value of an implicit

variable is obtained by calling the variable value evaluation function. You define

this function when you specify the variable_types list during the creation of an

evaluation context using the DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT
procedure. If the value for an implicit variable is specified during evaluation, then

the specified value overrides the value returned by the variable value evaluation

function.

Specifically, the variable_types list is of type SYS.RE$VARIABLE_TYPE_LIST,

which is a list of variables of type SYS.RE$VARIABLE_TYPE. Within each instance

of SYS.RE$VARIABLE_TYPEin the list, the function used to determine the value of

an implicit variable is specified as the variable_value_function attribute.
5-6 Oracle9i Streams

The Components of a Rule
Whether variables are explicit or implicit is the choice of the designer of the

application using the rules engine. The following are reasons for using an implicit

variable:

■ The caller of the DBMS_RULE.EVALUATE procedure does not need to know

anything about the variable, which may reduce the complexity of the

application using the rules engine. For example, a variable may call a function

that returns a value based on the data being evaluated.

■ The caller may not have execute privileges on the variable value evaluation

function.

■ The caller of the DBMS_RULE.EVALUATE procedure does not know the variable

value based on the event, which may improve security if the variable value

contains confidential information.

■ The variable may be used infrequently, and the variable’s value always can be

derived if necessary. Making such variables implicit means that the caller of the

DBMS_RULE.EVALUATE procedure does not need to specify many uncommon

variables.

For example, in the following rule condition, the values of variable x and variable y
could be specified explicitly, but the value of the variable max could be returned by

running the max function:

:x = 4 AND :y < :max

Alternatively, variable x and y could be implicit variables, and variable max could

be an explicit variable. As you can see, there is no syntactic difference between

explicit and implicit variables in the rule condition. You can determine whether a

variable is explicit or implicit by querying the DBA_EVALUATION_CONTEXT_VARS
data dictionary view. For explicit variables, the VARIABLE_VALUE_FUNCTIONfield

is NULL. For implicit variables, this field contains the name of the function called by

the implicit variable.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_RULE and DBMS_RULE_ADM
packages, and for more information about the Oracle-supplied

rule types

■ Oracle9i Database Reference for more information about the

DBA_EVALUATION_CONTEXT_VARS data dictionary view
Rules 5-7

The Components of a Rule
Evaluation Context Association with Rule Sets and Rules
A single rule evaluation context can be associated with multiple rules or rule sets.

The following list describes which evaluation context is used when a rule is

evaluated:

■ If an evaluation context is associated with a rule, then it is used for the rule

whenever the rule is evaluated, and any evaluation context associated with the

rule set being evaluated is ignored.

■ If a rule does not have an evaluation context, but an evaluation context was

specified for the rule when it was added to a rule set using the ADD_RULE
procedure in the DBMS_RULE_ADM package, then the evaluation context

specified in the ADD_RULE procedure is used for the rule when the rule set is

evaluated.

■ If no rule evaluation context is associated with a rule and none was specified by

the ADD_RULE procedure, then the evaluation context of the rule set is used for

the rule when the rule set is evaluated.

Evaluation Function
You have the option of creating an evaluation function to be run with a rule

evaluation context. You may choose to use an evaluation function for the following

reasons:

■ You want to bypass the rules engine and instead evaluate events using the

evaluation function.

■ You want to filter events so that some events are evaluated by the evaluation

function and other events are evaluated by the rules engine.

You can associate the function with the rule evaluation context by specifying the

function name for the evaluation_function parameter when you create the

rule evaluation context with the CREATE_EVALUATION_CONTEXT procedure in the

DBMS_RULE_ADM package. Then, the rules engine invokes the evaluation function

during the evaluation of any rule set that uses the evaluation context. The function

must have each parameter in the DBMS_RULE.EVALUATE procedure, and the type

of each parameter must be same as the type of the corresponding parameter in the

Note: If a rule does not have an evaluation context, and you try to

add it to a rule set that does not have an evaluation context, then an

error is raised, unless you specify an evaluation context when you

run the ADD_RULE procedure.
5-8 Oracle9i Streams

The Components of a Rule
DBMS_RULE.EVALUATE procedure, but the names of the parameters may be

different.

An evaluation function has the following return values:

■ DBMS_RULE_ADM.EVALUATION_SUCCESS: The user specified evaluation

function completed the rule set evaluation successfully. The rules engine returns

the results of the evaluation obtained by the evaluation function to the rules

engine client using the DBMS_RULE.EVALUATE procedure.

■ DBMS_RULE_ADM.EVALUATION_CONTINUE: The rules engine evaluates the

rule set as if there were no evaluation function. The evaluation function is not

used, and any results returned by the evaluation function are ignored.

■ DBMS_RULE_ADM.EVALUATION_FAILURE: The user specified evaluation

function failed. Rule set evaluation stops, and the rules engine returns the

results of the evaluation obtained by the evaluation function to the rules engine

client using the DBMS_RULE.EVALUATE procedure.

If you always want to bypass the rules engine, then the evaluation function should

return either EVALUATION_SUCCESS or EVALUATION_FAILURE. However, if you

want to filter events so that some events are evaluated by the evaluation function

and other events are evaluated by the rules engine, then the evaluation function

may return all three return values, and it returns EVALUATION_CONTINUE when

the rules engine should be used for evaluation.

If you specify an evaluation function for an evaluation context, then the evaluation

function is run during evaluation when the evaluation context is used by a rule set

or rule.

Rule Action Context
A rule action context contains optional information associated with a rule that is

interpreted by the client of the rules engine when the rule is evaluated for an event.

The client of the rules engine can be a user-created application or an internal feature

of Oracle, such as Streams. Each rule has only one action context. The information

in an action context is of type SYS.RE$NV_LIST, which is a type that contains an

array of name-value pairs.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the evaluation function specified in the

DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT procedure
Rules 5-9

The Components of a Rule
The rule action context information provides a context for the action taken by a

client of the rules engine when a rule evaluates to TRUE. The rules engine does not

interpret the action context. Instead, it returns the action context information when

a rule evaluates to TRUE. Then, a client of the rules engine can interpret the action

context information.

For example, suppose an event is defined as the addition of a new employee to a

company. If the employee information is stored in the hr.employees table, then

the event occurs whenever a row is inserted into this table. The company wants to

specify that a number of actions are taken when a new employee is added, but the

actions depend on which department the employee joins. One of these actions is

that the employee is registered for a course relating to the department.

In this scenario, the company can create a rule for each department with an

appropriate action context. Here, an action context returned when a rule evaluates

to TRUEspecifies the number of a course that an employee should take. Here are the

rule conditions and the action contexts for three departments:

These action contexts return the following instructions to the client application:

■ The action context for the rule_dep_10 rule instructs the client application to

enroll the new employee in course number 1057 .

■ The action context for the rule_dep_20 rule instructs the client application to

enroll the new employee in course number 1215 .

■ The NULL action context for the rule_dep_30 rule instructs the client

application not to enroll the new employee any course.

Each action context can contain zero or more name-value pairs. If an action context

contains more than one name-value pair, then each name in the list must be unique.

In this example, the client application to which the rules engine returns the action

context registers the new employee in the course with the returned course number.

The client application does not register the employee for a course if a NULL action

context is returned or if the action context does not contain a course number.

Rule Name Rule Condition Action Context Name-Value Pair

rule_dep_10 department_id = 10 course_number, 1057

rule_dep_20 department_id = 20 course_number, 1215

rule_dep_30 department_id = 30 NULL
5-10 Oracle9i Streams

The Components of a Rule
If multiple clients use the same rule, or if you want an action context to return more

than one name-value pair, then you can list more than one name-value pair in an

action context. For example, suppose the company also adds a new employee to a

department electronic mailing list. In this case, the action context for the

rule_dep_10 rule might contain two name-value pairs:

The following are considerations for names in name-value pairs:

■ If different applications use the same action context, then avoid naming

conflicts by using different names or prefixes of names.

■ Do not use $ and # in names to avoid conflicts with Oracle-supplied action

context names.

Streams uses action contexts for rule-based transformations and, when subset rules

are specified, for internal transformations that may be required on LCRs containing

UPDATE operations.

You can add a name-value pair to an action context using the ADD_PAIR member

procedure of the RE$NV_LIST type. You can remove a name-value pair from an

action context using the REMOVE_PAIR member procedure of the RE$NV_LIST
type. If you want to modify an existing name-value pair in an action context, then

you should first remove it using the REMOVE_PAIR member procedure and then

add an appropriate name-value pair using the ADD_PAIR member procedure.

Name Value

course_number 1057

dist_list admin_list

See Also:

■ "Row Subsetting Using Streams Rules" on page 4-12

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the RE$NV_LIST type

■ "Rule-Based Transformations" on page 6-25 for examples that

add and modify name-value pairs
Rules 5-11

Rule Set Evaluation
Rule Set Evaluation
The rules engine evaluates rule sets based on events. An event is an occurrence that

is defined by the client of the rules engine. The client initiates evaluation of an event

by calling the DBMS_RULE.EVALUATE procedure. The information specified by the

client when it calls the DBMS_RULE.EVALUATE procedure includes the following:

■ The name of the rule set that contains the rules to use to evaluate the event

■ The evaluation context to use for evaluation. Only rules that use the specified

evaluation context are evaluated.

■ Table values and variable values. The table values contain rowids that refer to

the data in table rows, and the variable values contain the data for explicit

variables. Values specified for implicit variables override the values that might

be obtained using a variable value evaluation function. If a specified variable

has attributes, then the client can send a value for the entire variable, or the

client can send values for any number of the variable’s attributes. However,

clients cannot specify attribute values if the value of the entire variable is

specified.

■ An optional event context. An event context is a varray of type

SYS.RE$NV_LIST that contains name-value pairs that contain information

about the event. This optional information is not directly used or interpreted by

the rules engine. Instead, it is passed to client callbacks, such as an evaluation

function, a variable value evaluation function (for implicit variables), and a

variable method function.

The client can also send other information about the event and about how to

evaluate the event using the DBMS_RULE.EVALUATE procedure. For example, the

caller may specify if evaluation must stop as soon as the first TRUE rule or the first

MAYBE rule (if there are no TRUE rules) is found.

The rules engine uses the rules in the specified rule set to evaluate the event. Then,

the rules engine returns the results to the client. The rules engine returns rules using

the two OUT parameters in the EVALUATE procedure: true_rules and

maybe_rules . That is, the true_rules parameter returns rules that evaluate to

TRUE, and, optionally, the maybe_rules parameter returns rules that may evaluate

to TRUE given more information.
5-12 Oracle9i Streams

Rule Set Evaluation
Rule Set Evaluation Process
Figure 5–1 shows the rule set evaluation process:

1. A client-defined event occurs.

2. The client sends the event to the rules engine by running the

DBMS_RULE.EVALUATE procedure.

3. The rules engine evaluates the event based on rules in the rule set and the

relevant evaluation context. The client specifies both the rule set and the

evaluation context in the call to the DBMS_RULE.EVALUATE procedure. Only

rules that are in the specified rule set and use the specified evaluation context

are used for evaluation.

4. The rules engine obtains the results of the evaluation. Each rule evaluates to

either TRUE, FALSE, or NULL (unknown).

5. The rules engine returns rules that evaluated to TRUE to the client. Each

returned rule is returned with its entire action context, which may contain

information or may be NULL.

6. The client performs actions based on the results returned by the rules engine.

The rules engine does not perform actions based rule evaluations.

Figure 5–1 Rule Set Evaluation

Rules
Engine

Client

Event

True, False,
or Unknown

Optional
Action Context

Rules and
Evaluation
Contexts

Action

2

5
6

Event

1
3

4

Rules 5-13

Rule Set Evaluation
Partial Evaluation
Partial evaluation occurs when the DBMS_RULE.EVALUATE procedure is run

without data for all the tables and variables in the specified evaluation context.

During partial evaluation, some rules may reference columns, variables, or

attributes that are unavailable, while some other rules may reference only available

data.

For example, consider a scenario where only the following data is available during

evaluation:

■ Column tab1.col=7

■ Attribute v1.a1='ABC'

The following rules are used for evaluation:

■ Rule R1 has the following condition:

(tab1.col = 5)

■ Rule R2 has the following condition:

(:v1.a2 > 'aaa')

■ Rule R3 has the following condition:

(:v1.a1 = 'ABC') OR (:v2 = 5)

■ Rule R4 has the following condition:

(:v1.a1 = UPPER('abc'))

Given this scenario, R1 and R4 reference available data, R2 references unavailable

data, and R3 references available data and unavailable data.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_RULE.EVALUATE procedure

■ "Undefined Variables in Rule Conditions Evaluate to NULL for

Streams Clients" on page 6-22 for information about Streams

clients and maybe_rules
5-14 Oracle9i Streams

Database Objects and Privileges Related to Rules
Partial evaluation always evaluates only simple conditions within a rule. If the rule

condition has parts which are not simple, then the rule may or may not be

evaluated completely, depending on the extent to which data is available. If a rule is

not completely evaluated, then it can be returned as a MAYBE rule.

For example, given the rules in the previous scenario, R1 and the first part of R3 are

evaluated, but R2 and R4 are not evaluated. The following results are returned to

the client:

■ R1 evaluates to FALSE, and so is not returned.

■ R2 is returned as MAYBE because information about attribute v1.a2 is not

available.

■ R3 is returned as TRUE because R3 is a simple rule and the value of v1.a1
matches the first part of the rule condition.

■ R4 is returned as MAYBE because the rule condition is not simple. The client

must supply the value of variable v1 for this rule to evaluate to TRUE or FALSE.

Database Objects and Privileges Related to Rules
You can create the following types of database objects directly using the

DBMS_RULE_ADM package:

■ Evaluation contexts

■ Rules

■ Rule sets

You can create rules and rule sets indirectly using the DBMS_STREAMS_ADM
package. You control the privileges for these database objects using the following

procedures in the DBMS_RULE_ADM package:

■ GRANT_OBJECT_PRIVILEGE

■ GRANT_SYSTEM_PRIVILEGE

■ REVOKE_OBJECT_PRIVILEGE

■ REVOKE_SYSTEM_PRIVILEGE

See Also: "Simple Rule Conditions" on page 5-3
Rules 5-15

Database Objects and Privileges Related to Rules
To allow a user to create rule sets, rules, and evaluation contexts in the user’s own

schema, grant the user the following system privileges:

■ CREATE_RULE_SET_OBJ

■ CREATE_RULE_OBJ

■ CREATE_EVALUATION_CONTEXT_OBJ

These privileges, and the privileges discussed in the following sections, can be

granted to the user directly or through a role.

Note: When you grant a privilege on "ANY" object (for example,

ALTER_ANY_RULE), and the initialization parameter

O7_DICTIONARY_ACCESSIBILITY is set to FALSE, you give the

user access to that type of object in all schemas, except the SYS
schema. By default, the initialization parameter

O7_DICTIONARY_ACCESSIBILITY is set to FALSE.

If you want to grant access to an object in the SYSschema, then you

can grant object privileges explicitly on the object. Alternatively,

you can set the O7_DICTIONARY_ACCESSIBILITY initialization

parameter to TRUE. Then privileges granted on "ANY" object will

allow access to any schema, including SYS.

See Also:

■ "The Components of a Rule" on page 5-2 for more information

about these database objects

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the system and object privileges for these

database objects

■ Oracle9i Database Concepts and Oracle9i Database Administrator’s
Guide for general information about user privileges

■ Chapter 6, "How Rules Are Used In Streams" for more

information about creating rules and rule sets indirectly using

the DBMS_STREAMS_ADM package
5-16 Oracle9i Streams

Database Objects and Privileges Related to Rules
Privileges for Creating Database Objects Related to Rules
To create an evaluation context, rule, or rule set in a schema, a user must meet at

least one of the following conditions:

■ The schema must be the user’s own schema, and the user must be granted the

create system privilege for the type of database object being created. For

example, to create a rule set in the user’s own schema, a user must be granted

the CREATE_RULE_SET_OBJ system privilege.

■ The user must be granted the create any system privilege for the type of

database object being created. For example, to create an evaluation context in

any schema, a user must be granted the CREATE_ANY_EVALUATION_CONTEXT
system privilege.

Privileges for Altering Database Objects Related to Rules
To alter an evaluation context, rule, or rule set, a user must meet at least one of the

following conditions:

■ The user must own the database object.

■ The user must be granted the alter object privilege for the database object if it is

in another user’s schema. For example, to alter a rule set in another user’s

schema, a user must be granted the ALTER_ON_RULE_SET object privilege on

the rule set.

■ The user must be granted the alter any system privilege for the database object.

For example, to alter a rule in any schema, a user must be granted the

ALTER_ANY_RULE system privilege.

Note: When creating a rule with an evaluation context, the rule

owner must have privileges on all objects accessed by the

evaluation context.
Rules 5-17

Database Objects and Privileges Related to Rules
Privileges for Dropping Database Objects Related to Rules
To drop an evaluation context, rule, or rule set, a user must meet at least one of the

following conditions:

■ The user must own the database object.

■ The user must be granted the drop any system privilege for the database object.

For example, to drop a rule set in any schema, a user must be granted the

DROP_ANY_RULE_SET system privilege.

Privileges for Placing Rules in a Rule Set
This section describes the privileges required to place a rule in a rule set.

The user must meet at least one of the following conditions for the rule:

■ The user must own the rule.

■ The user must be granted the execute object privilege on the rule if the rule is in

another user’s schema. For example, to place a rule named depts in the hr
schema in a rule set, a user must be granted the EXECUTE_ON_RULE privilege

for the hr.depts rule.

■ The user must be granted the execute any system privilege for rules. For

example, to place any rule in a rule set, a user must be granted the

EXECUTE_ANY_RULE system privilege.

The user also must meet at least one of the following conditions for the rule set:

■ The user must own the rule set.

■ The user must be granted the alter object privilege on the rule set if the rule set

is in another user’s schema. For example, to place a rule in the

human_resources rule set in the hr schema, a user must be granted the

ALTER_ON_RULE_SET privilege for the hr.human_resources rule set.

■ The user must be granted the alter any system privilege for rule sets. For

example, to place a rule in any rule set, a user must be granted the

ALTER_ANY_RULE_SET system privilege.
5-18 Oracle9i Streams

Database Objects and Privileges Related to Rules
Privileges for Evaluating a Rule Set
To evaluate a rule set, a user must meet at least one of the following conditions:

■ The user must own the rule set.

■ The user must be granted the execute object privilege on the rule set if it is in

another user’s schema. For example, to evaluate a rule set named

human_resources in the hr schema, a user must be granted the

EXECUTE_ON_RULE_SET privilege for the hr.human_resources rule set.

■ The user must be granted the execute any system privilege for rule sets. For

example, to evaluate any rule set, a user must be granted the

EXECUTE_ANY_RULE_SET system privilege.

Granting EXECUTE object privilege on a rule set requires that the grantor have the

EXECUTE privilege specified WITH GRANT OPTION on all rules currently in the rule

set.

Privileges for Using an Evaluation Context
To use an evaluation context, a user must meet at least one of the following

conditions for the evaluation context:

■ The user must own the evaluation context.

■ The user must be granted the EXECUTE_ON_EVALUATION_CONTEXT privilege

on the evaluation context, if it is in another user’s schema.

■ The user must be granted the EXECUTE_ANY_EVALUATION_CONTEXT system

privilege for evaluation contexts.
Rules 5-19

Database Objects and Privileges Related to Rules
5-20 Oracle9i Streams

How Rules Are Used In Str
6

How Rules Are Used In Streams

This chapter explains how rules are used in Streams.

This chapter contains these topics:

■ Overview of How Rules Are Used In Streams

■ System-Created Rules

■ Streams Evaluation Context

■ Streams and Event Contexts

■ Streams and Action Contexts

■ User-Created Rules, Rule Sets, and Evaluation Contexts

■ Rule-Based Transformations

See Also:

■ Chapter 5, "Rules" for more information about rules

■ Chapter 15, "Managing Rules and Rule-Based Transformations"
eams 6-1

Overview of How Rules Are Used In Streams
Overview of How Rules Are Used In Streams
In Streams, each of the following mechanisms is a client of a rules engine, when the

mechanism is associated with a rule set:

■ A capture process

■ A propagation

■ An apply process

Each of these mechanisms can be associated with at most one rule set. However, a

single rule set can be used by multiple capture processes, propagations, and apply

processes within the same database. Figure 6–1 illustrates how multiple clients of a

rules engine can use one rule set.

Figure 6–1 One Rule Set Can Be Used by Multiple Clients of a Rules Engine

Specifically, you use rule sets in Streams to do the following:

■ Specify the changes a capture process captures from the redo log. That is, if a

change found in the redo log causes any rule in the rule set associated with a

capture process to evaluate to TRUE, then the change is captured by the capture

process.

■ Specify the events a propagation propagates from one queue to another. That is,

if an event in a queue causes any rule in the rule set associated with a

propagation to evaluate to TRUE, then the event is propagated by the

propagation.

■ Specify the events an apply process retrieves from a queue. That is, if an event

in a queue causes any rule in the rule set associated with an apply process to

evaluate to TRUE, then the event is retrieved and processed by the apply

process.

In the case of a propagation or an apply process, the events evaluated against the

rule sets can be captured events or user-enqueued events.

Rule
Set

PropagationCapture
Process

Apply
Process
6-2 Oracle9i Streams

System-Created Rules
If there are conflicting rules associated with a mechanism, then the mechanism

performs the task if either rule evaluates to TRUE. For example, if a rule set

associated with a capture process contains one rule that instructs the capture

process to capture DML changes to the hr.employees table, but another rule in

the rule set instructs the capture process not to capture DML changes to the

hr.employees table, then the capture process captures DML changes to the

hr.employees table.

System-Created Rules
Streams performs three tasks based on rules:

■ Capturing changes with a capture process

■ Propagating changes with a propagation

■ Applying changes with an apply process

A system-created rule specifies one of the following levels of granularity for a task:

table, schema, or global. This section describes each of these levels. You can specify

more than one level for a particular task. For example, you can instruct a single

apply process to perform table-level apply for specific tables in the oe schema and

schema-level apply for the entire hr schema.

Table 6–1 shows what each level of rule means for each Streams task.

Table 6–1 Types of Tasks and Rule Levels

Task Table Rule Schema Rule Global Rule

Capture Capture the changes in the
redo log for the specified
table, convert them into
logical change records
(LCRs), and enqueue them.

Capture the changes in the
redo log for the database
objects in the specified
schema, convert them into
LCRs, and enqueue them.

Capture the changes to all of
the database objects in the
database, convert them into
LCRs, and enqueue them.

Propagate Propagate the LCRs relating
to the specified table in the
source queue to the
destination queue.

Propagate the LCRs related
to the database objects in the
specified schema in the
source queue to the
destination queue.

Propagate all of the changes
in the source queue to the
destination queue.

Apply Apply all or a subset of the
LCRs in the queue relating
to the specified table.

Apply the LCRs in the
queue relating to the
database objects in the
specified schema.

Apply all of the LCRs in the
queue.
How Rules Are Used In Streams 6-3

System-Created Rules
You can use procedures in the DBMS_STREAMS_ADM package to create rules at each

of these levels. Table 6–2 lists the types of system-created rule conditions specified

in the rules created by the DBMS_STREAMS_ADM package.

Table 6–2 System-Created Rule Conditions Created by DBMS_STREAMS_ADM Package (Page 1 of 2)

Rule Condition Evaluates to TRUE for Streams Mechanism Create Using Procedure

All DML changes to a particular table Capture ADD_TABLE_RULES

All DDL changes to a particular table Capture ADD_TABLE_RULES

All DML changes to all of the tables in a
particular schema

Capture ADD_SCHEMA_RULES

All DDL changes to all of the database objects
in a particular schema

Capture ADD_SCHEMA_RULES

All DML changes to all of the tables in a
particular database

Capture ADD_GLOBAL_RULES

All DDL changes to all of the database objects
in a particular database

Capture ADD_GLOBAL_RULES

All LCRs containing DML changes to a
particular table

Propagation ADD_TABLE_PROPAGATION_RULES

All LCRs containing DDL changes to a
particular table

Propagation ADD_TABLE_PROPAGATION_RULES

All LCRs containing DML changes to the
tables in a particular schema

Propagation ADD_SCHEMA_PROPAGATION_RULES

All LCRs containing DDL changes to the
database objects in a particular schema

Propagation ADD_SCHEMA_PROPAGATION_RULES

All LCRs containing DML changes in a
particular queue

Propagation ADD_GLOBAL_PROPAGATION_RULES

All LCRs containing DDL changes in a
particular queue

Propagation ADD_GLOBAL_PROPAGATION_RULES

All LCRs containing DML changes to a subset
of rows in a particular table

Apply ADD_SUBSET_RULES

All LCRs containing DML changes to a
particular table

Apply ADD_TABLE_RULES

All LCRs containing DDL changes to a
particular table

Apply ADD_TABLE_RULES

All LCRs containing DML changes to the
tables in a particular schema

Apply ADD_SCHEMA_RULES
6-4 Oracle9i Streams

System-Created Rules
Each procedure listed in Table 6–2 does the following:

■ Creates a capture process, propagation, or apply process if it does not already

exist.

■ Creates a rule set for the specified capture process, propagation, or apply

process, if a rule set does not already exist for it.

■ Create zero or more rules and adds the rules to the rule set for the specified

capture process, propagation, or apply process.

All of the rule sets and rules created by these procedures use the

SYS.STREAMS$_EVALUATION_CONTEXT evaluation context, which is an

Oracle-supplied evaluation context for Streams environments.

Except for ADD_SUBSET_RULES, these procedures create either zero, one, or two

rules. If you want to perform the Streams task for only DML changes or for only

DDL changes, then only one rule is created. If, however, you want to perform the

Streams task for both DML and DDL changes, then a rule is created for each. If you

create a DML rule for a table now, then you can create a DDL rule for the same table

in the future without modifying the DML rule created earlier. The same applies if

you create a DDL rule for a table first and a DML rule for the same table in the

future.

The ADD_SUBSET_RULES procedure always creates three rules for three different

types of DML operations on a table: INSERT, UPDATE, and DELETE. The

ADD_SUBSET_RULES procedure does not create rules for DDL changes to a table.

You can use the ADD_TABLE_RULES procedure to create a DDL rule for a table.

All LCRs containing DDL changes to the
database objects in a particular schema

Apply ADD_SCHEMA_RULES

All LCRs containing DML changes in a
particular queue

Apply ADD_GLOBAL_RULES

All LCRs containing DDL changes in a
particular queue

Apply ADD_GLOBAL_RULES

Table 6–2 System-Created Rule Conditions Created by DBMS_STREAMS_ADM Package (Page 2 of 2)

Rule Condition Evaluates to TRUE for Streams Mechanism Create Using Procedure
How Rules Are Used In Streams 6-5

System-Created Rules
When you create propagation rules for captured events, Oracle Corporation

recommends that you specify a source database for the changes. An apply process

uses transaction control events to assemble captured events into committed

transactions. These transaction control events, such as COMMIT and ROLLBACK,
contain the name of the source database where the event occurred. To avoid

unintended cycling of these events, propagation rules should contain a condition

specifying the source database, and you accomplish this by specifying the source

database when you create the propagation rules.

The following sections describe table, schema, and global rules in more detail.

Table and Subset Rules
When you use a rule to specify a Streams task that is relevant only for an individual

table, you are specifying a table-level rule. You can specify a table-level rule for

DML changes, a table-level rule for DDL changes, or two rules for both types of

changes for a specific table.

A subset rule is a special type of table-level rule for DML changes that you can

create with the ADD_SUBSET_RULES procedure. You can use the

ADD_SUBSET_RULES procedure to specify that an apply process only applies a

subset of the row logical change records (LCRs) relating to a particular table based

on a condition similar to a WHERE clause in a SELECT statement. So, the

ADD_SUBSET_RULES procedure can instruct an apply process to maintain only

certain rows in a table.

Note: To create rules with more complex rule conditions, such as

rules that use the NOT or OR conditional operators, use the

DBMS_RULE_ADM package.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_STREAMS_ADM package and the

DBMS_RULE_ADM package

■ "Streams Evaluation Context" on page 6-15

■ "Logical Change Records (LCRs)" on page 2-2

■ "Complex Rule Conditions" on page 6-20
6-6 Oracle9i Streams

System-Created Rules
Table-Level Rules Example
Suppose you use the procedures in the DBMS_STREAMS_ADM package to instruct a

Streams apply process to behave in the following ways:

■ Apply All DML Changes to the hr.locations Table

■ Apply All DDL Changes to the hr.countries Table

■ Apply a Subset of DML changes to the hr.regions Table

Apply All DML Changes to the hr.locations Table These changes originated at the

dbs1.net source database.

Run the ADD_TABLE_RULES procedure to create this rule:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.locations',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'streams_queue',
 include_dml => true,
 include_ddl => false,
 include_tagged_lcr => false,
 source_database => 'dbs1.net');
END;
/

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to

the following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET')

Here, every condition that begins with :dml is a variable. The value is determined

by a call to the specified member function for the row LCR being evaluated. So,

Note: Creating subset rules for tables that have one or more LOB

columns is not supported.

See Also: "Row Subsetting Using Streams Rules" on page 4-12 for

more information about subset rules
How Rules Are Used In Streams 6-7

System-Created Rules
:dml.get_object_owner() in the previous example is a call to the

GET_OBJECT_OWNER member function for the row LCR being evaluated.

Also, the following condition is included by default in all DML rules created by the

procedures in the DBMS_STREAMS_ADM package:

:dml.is_null_tag() = 'Y'

In DDL rules, the condition is the following:

:ddl.is_null_tag() = 'Y'

For a capture process, these conditions indicate that the tag must be NULL in a redo

record for the capture process to capture a change. For a propagation, these

conditions indicate that the tag must be NULL in an LCR for the propagation to

propagate the LCR. For an apply process, these conditions indicate that the tag

must be NULL in an LCR for the apply process to apply the LCR. You can omit this

condition in system-created rules by specifying true for the

include_tagged_lcr parameter when you run a procedure in the

DBMS_STREAMS_ADM package.

Apply All DDL Changes to the hr.countries Table These changes originated at the

dbs1.net source database.

Run the ADD_TABLE_RULES procedure to create this rule:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.countries',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'streams_queue',
 include_dml => false,
 include_ddl => true,
 include_tagged_lcr => false,
 source_database => 'dbs1.net');
END;
/

See Also:

■ Chapter 5, "Rules" for more information about variables in

conditions

■ Chapter 8, "Streams Tags" for more information about tags
6-8 Oracle9i Streams

System-Created Rules
The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to

the following:

(((:ddl.get_object_owner() = 'HR' and :ddl.get_object_name() = 'COUNTRIES')
or (:ddl.get_base_table_owner() = 'HR'
and :ddl.get_base_table_name() = 'COUNTRIES'))
and :ddl.is_null_tag() = 'Y' and :ddl.get_source_database_name() = 'DBS1.NET')

Here, every condition that begins with :ddl is a variable. The value is determined

by a call to the specified member function for the DDL LCR being evaluated. So,

:ddl.get_object_owner() in the previous example is a call to the

GET_OBJECT_OWNER member function for the DDL LCR being evaluated.

Apply a Subset of DML changes to the hr.regions Table This example instructs a Streams

apply process to apply a subset of DML changes to the hr.regions table where

the region_id is 2. These changes originated at the dbs1.net source database.

Run the ADD_SUBSET_RULES procedure to create three rules:

BEGIN
 DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name => 'hr.regions',
 dml_condition => 'region_id=2',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'streams_queue',
 include_tagged_lcr => false,
 source_database => 'dbs1.net');
END;
/

The ADD_SUBSET_RULESprocedure creates three rules: one for INSERT operations,

one for UPDATE operations, and one for DELETE operations.

Here is the rule condition used by the insert rule:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS'
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET'
AND :dml.get_command_type() IN ('UPDATE','INSERT')
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)
AND (:dml.get_command_type()='INSERT'
OR ((:dml.get_value('OLD','"REGION_ID"') IS NOT NULL)
AND NOT EXISTS (SELECT 1 FROM SYS.DUAL
WHERE (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2))))
How Rules Are Used In Streams 6-9

System-Created Rules
Based on this rule condition, LCRs are evaluated in the following ways:

■ For an insert, if the new value in the LCR for region_id is 2, then the insert is

applied.

■ For an insert, if the new value in the LCR for region_id is not 2 or is NULL,

then the insert is filtered out.

■ For an update, if the old value in the LCR for region_id is not 2 or is NULL
and the new value in the LCR for region_id is 2, then the update is converted

into an insert and applied.

Here is the rule condition used by the update rule:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS'
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET'
AND :dml.get_command_type()='UPDATE'
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2)
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)

Based on this rule condition, LCRs are evaluated in the following ways:

■ For an update, if both the old value and the new value in the LCR for

region_id are 2, then the update is applied as an update.

■ For an update, if either the old value or the new value in the LCR for

region_id is not 2 or is NULL, then the update does not satisfy the update

rule. The LCR may satisfy the insert rule, the delete rule, or neither rule.

Here is the rule condition used by the delete rule:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS'
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET'
AND :dml.get_command_type() IN ('UPDATE','DELETE')
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2)
AND (:dml.get_command_type()='DELETE'
OR ((:dml.get_value('NEW','"REGION_ID"') IS NOT NULL)
AND NOT EXISTS (SELECT 1 FROM SYS.DUAL
WHERE (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2))))
6-10 Oracle9i Streams

System-Created Rules
Based on this rule condition, LCRs are evaluated in the following ways:

■ For a delete, if the old value in the LCR for region_id is 2, then the delete is

applied.

■ For a delete, if the old value in the LCR for region_id is not 2 or is NULL, then

the delete is filtered out.

■ For an update, if the old value in the LCR for region_id is 2 and the new

value in the LCR for region_id is not 2 or is NULL, then the update is

converted into a delete and applied.

Summary of Rules In this example, the following table and subset rules were defined:

■ A table rule that evaluates to TRUE if a DML operation is performed on the

hr.locations table.

■ A table rule that evaluates to TRUE if a DDL operation is performed on the

hr.countries table.

■ A subset rule that evaluates to TRUE if an INSERT operation inserts a row with

a region_id equal to 2 or an update operation changes the region_id for a

row from a value that does not equal 2 or is NULL to a value of 2.

■ A subset rule that evaluates to TRUE if an UPDATE operation updates a row and

the region_id is equal to 2 both before and after the update.

■ A subset rule that evaluates to TRUE if a DELETE operation deletes a row with a

region_id equal to 2 or an update operation changes the region_id for a

row from a value that equals 2 to a value that does not equal 2 or is NULL.

Given these rules, the following list provides examples of changes applied by an

apply process:

■ A row is inserted to the hr.locations table.

■ Five rows are deleted from the hr.locations table.

■ A column is added to the hr.countries table.

■ A row is updated in the hr.regions table where the region_id is 2 and the

new value of region_id is 1. This update is transformed into a delete.

The apply process dequeues these changes from its associated queue and applies

them to the database objects at the destination database.
How Rules Are Used In Streams 6-11

System-Created Rules
Given the same rules, the following list provides examples of changes that are

ignored by the apply process:

■ A row is inserted into the hr.employees table. This change is not applied

because the hr.employees table does not satisfy any of the rules.

■ A row is updated into the hr.countries table. This change is a DML change,

not a DDL change. This change is not applied because the rule on the

hr.countries table is for DDL changes only.

■ A column is added to the hr.locations table. This change is a DDL change,

not a DML change. This change is not applied because the rule on the

hr.locations table is for DML changes only.

■ A row is updated in the hr.regions table where the region_id was 1 before

the update and remains 1 after the update. This change is not applied because

the subset rules for the hr.regions table evaluate to TRUEonly when the new

or old (or both) values for region_id is 2.

Schema Rules
When you use a rule to specify a Streams task that is relevant to a schema, you are

specifying a schema-level rule, and the Streams task is performed when there is a

change to any of the database objects currently in the schema and any database

objects added to the schema in the future. You can specify a schema-level rule for

DML changes, a schema-level rule for DDL changes, or two rules for both types of

changes for the objects in the schema.

Schema-Level Rule Example
Suppose you use the ADD_SCHEMA_PROPAGATION_RULES procedure in the

DBMS_STREAMS_ADMpackage to instruct a Streams propagation to propagate LCRs

that contain DML and DDL changes to the hr schema from a queue at the

dbs1.net database to a queue at the dbs2.net database.
6-12 Oracle9i Streams

System-Created Rules
Run the ADD_SCHEMA_PROPAGATION_RULES procedure to create the rules:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name => 'hr',
 streams_name => 'dbs1_to_dbs2',
 source_queue_name => 'streams_queue',
 destination_queue_name => 'streams_queue@dbs2.net',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 source_database => 'dbs1.net');
END;
/

The ADD_SCHEMA_PROPAGATION_RULES procedure creates two rules: one for row

LCRs (which contain DML changes) and one for DDL LCRs.

Here is the rule condition used by the row LCR rule:

(:dml.get_object_owner() = 'HR' and :dml.is_null_tag() = 'Y'
and :dml.get_source_database_name() = 'DBS1.NET')

Here is the rule condition used by the DDL LCR rule:

(:ddl.get_object_owner() = 'HR' and :ddl.is_null_tag() = 'Y'
and :ddl.get_source_database_name() = 'DBS1.NET')

Given these rules, the following list provides examples of changes propagated by

the propagation:

■ A row is inserted to the hr.countries table.

■ The hr.loc_city_ix index is altered.

■ The hr.employees table is truncated.

■ A column is added to the hr.countries table.

■ The hr.update_job_history trigger is altered.

■ A new table named candidates is created in the hr schema.

■ Twenty rows are inserted into the hr.candidates table.

The propagation propagates the LCRs that contain all of the changes previously

listed from the source queue to the destination queue.
How Rules Are Used In Streams 6-13

System-Created Rules
Now, given the same rules, suppose a row is inserted into the oe.inventories
table. This change is ignored because the oe schema was not specified in a

schema-level rule, and the oe.inventories table was not specified in a

table-level rule.

Global Rules
When you use a rule to specify a Streams task that is relevant either to an entire

database or to an entire queue, you are specifying a global-level rule. You can

specify a global rule for DML changes, a global rule for DDL changes, or two rules

for both types of changes.

A single global rule for the capture process means that the capture process captures

either all DML changes or all DDL changes to the source database. A single global

rule for a propagation means that the propagation propagates either all row LCRs

or all DDL LCRs in the source queue to the destination queue. A global rule for an

apply process means that the apply process applies either all row LCRs or all DDL

LCRs in its queue for a specified source database.

Global-Level Rules Example
Suppose you use the ADD_GLOBAL_RULES procedure in the DBMS_STREAMS_ADM
package to instruct a Streams capture process to capture all DML and DDL changes

in a database.

Run the ADD_GLOBAL_RULES procedure to create the rules:

BEGIN DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'streams_queue',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false,
 source_database => NULL);
END;
/

NULL can be specified for the source_database parameter because capture rules

are being created. When creating apply rules using ADD_GLOBAL_RULES, specify a

source database name.

The ADD_GLOBAL_RULES procedure creates two rules: one for row LCRs (which

contain DML changes) and one for DDL LCRs.
6-14 Oracle9i Streams

Streams Evaluation Context
Here is the rule condition used by the row LCR rule:

((:dml.get_source_database_name()>=' ' OR :dml.get_source_database_name()<=' ')
and :dml.is_null_tag() = 'Y')

Here is the rule condition used by the DDL LCR rule:

((:ddl.get_source_database_name()>=' ' OR :ddl.get_source_database_name()<=' ')
and :ddl.is_null_tag() = 'Y')

Given these rules, the capture process captures all supported DML and DDL

changes made to the database. The conditions relating the source database name in

global system generated rules are present to improve rule evaluation performance.

Streams Evaluation Context
System-created rule sets and rules use a built-in evaluation context in the SYS
schema named STREAMS$_EVALUATION_CONTEXT. PUBLIC is granted the

EXECUTE privilege on this evaluation context.

Note: The capture process does not capture some types of DML

and DDL changes, and it does not capture changes made in the SYS
or SYSTEM schemas.

See Also: Chapter 2, "Streams Capture Process" for more

information about the capture process and for detailed information

about which DML and DDL statements are captured by a capture

process
How Rules Are Used In Streams 6-15

Streams Evaluation Context
During Oracle installation, the following statement creates the Streams evaluation

context:

DECLARE
 vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
 vt := SYS.RE$VARIABLE_TYPE_LIST(
 SYS.RE$VARIABLE_TYPE('DML', 'SYS.LCR$_ROW_RECORD',
 'SYS.DBMS_STREAMS_INTERNAL.ROW_VARIABLE_VALUE_FUNCTION',
 'SYS.DBMS_STREAMS_INTERNAL.ROW_FAST_EVALUATION_FUNCTION'),
 SYS.RE$VARIABLE_TYPE('DDL', 'SYS.LCR$_DDL_RECORD',
 'SYS.DBMS_STREAMS_INTERNAL.DDL_VARIABLE_VALUE_FUNCTION',
 'SYS.DBMS_STREAMS_INTERNAL.DDL_FAST_EVALUATION_FUNCTION'));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'SYS.STREAMS$_EVALUATION_CONTEXT',
 variable_types => vt,
 evaluation_function =>
 'SYS.DBMS_STREAMS_INTERNAL.EVALUATION_CONTEXT_FUNCTION');
END;
/

This statement includes references to the following internal functions in the

SYS.DBMS_STREAM_INTERNAL package:

■ ROW_VARIABLE_VALUE_FUNCTION

■ DDL_VARIABLE_VALUE_FUNCTION

■ EVALUATION_CONTEXT_FUNCTION

■ ROW_FAST_EVALUATION_FUNCTION

■ DDL_FAST_EVALUATION_FUNCTION

The ROW_VARIABLE_VALUE_FUNCTION converts a SYS.AnyData payload, which

encapsulates a SYS.LCR$_ROW_RECORD instance, into a SYS.LCR$_ROW_RECORD
instance prior to evaluating rules on the data.

The DDL_VARIABLE_VALUE_FUNCTION converts a SYS.AnyData payload, which

encapsulates a SYS.LCR$_DDL_RECORD instance, into a SYS.LCR$_DDL_RECORD
instance prior to evaluating rules on the data.

The EVALUATION_CONTEXT_FUNCTION is specified as an

evaluation_function in the call to the CREATE_EVALUATION_CONTEXT
procedure. This function supplements normal rule evaluation for captured events.

A capture process enqueues row LCRs and DDL LCRs into its queue, and this

function enables it to enqueue other internal events into the queue, such as
6-16 Oracle9i Streams

Streams Evaluation Context
commits, rollbacks, and data dictionary changes. This information is also used

during rule evaluation for a propagation or apply process.

ROW_FAST_EVALUATION_FUNCTION improves performance by optimizing access

to the following LCR$_ROW_RECORD member functions during rule evaluation:

■ GET_OBJECT_OWNER

■ GET_OBJECT_NAME

■ IS_NULL_TAG

■ GET_SOURCE_DATABASE_NAME

■ GET_COMMAND_TYPE

DDL_FAST_EVALUATION_FUNCTION improves performance by optimizing access

to the following LCR$_DDL_RECORD member functions during rule evaluation if

the operator is <, <=, =, >=, or > and the other operand is a constant:

■ GET_OBJECT_OWNER

■ GET_OBJECT_NAME

■ IS_NULL_TAG

■ GET_SOURCE_DATABASE_NAME

■ GET_COMMAND_TYPE

■ GET_BASE_TABLE_NAME

■ GET_BASE_TABLE_OWNER

Rules created using the DBMS_STREAMS_ADM package use

ROW_FAST_EVALUATION_FUNCTION or DDL_FAST_EVALUATION_FUNCTION,
except for subset rules created using the ADD_SUBSET_RULES procedure.

Attention: Information about these internal functions is provided

for reference purposes only. You should never run any of these

functions directly.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about LCRs and their member functions
How Rules Are Used In Streams 6-17

Streams and Event Contexts
Streams and Event Contexts
In Streams, capture processes do not use event contexts, but propagations and

apply processes do. Both captured events and user-enqueued events can be staged

in a queue. When an event is staged in a queue, a propagation or apply process can

send the event, along with an event context, to the rules engine for evaluation. A

propagation and an apply process always sends an event context with the following

a name-value pair: AQ$_MESSAGE as the name and the Streams event itself as the

value.

If you create a custom evaluation context, then you can create propagation and

apply rules that refer to Streams events using implicit variables. Then, the variable

value evaluation function for each implicit variable can check for event contexts

with the name AQ$_MESSAGE. If an event context with this name is found, then the

variable value evaluation function returns a value based on the event itself. You can

also pass the event context to an evaluation function and a variable method

function.

Streams and Action Contexts
In Streams, an action context has two purposes: for internal LCR transformations in

subset rules and for user-defined rule-based transformations. If an action context for

a rule contains both a subset transformation and a user-defined rule-based

transformation, then the subset transformation is performed before the user-defined

rule-based transformation.

If you use a non-NULL action context for one or more rules in a rule set, either by

specifying a subset rule or a rule-based transformation, then make sure only one

rule can evaluate to TRUE for a particular condition. If more than one rule evaluates

to TRUE for a particular condition, then only one of the rules is returned, which can

lead to unpredictable results.

See Also:

■ "Rule Set Evaluation" on page 5-12 for more information about

event contexts

■ "Explicit and Implicit Variables" on page 5-6 for more

information about variable value evaluation functions

■ "Evaluation Function" on page 5-8
6-18 Oracle9i Streams

User-Created Rules, Rule Sets, and Evaluation Contexts
For example, suppose there are two rules that evaluate to TRUEif an LCR contains a

DML change to the hr.employees table. The first rule has a NULL action context.

The second rule has an action context that specifies a transformation. If there is a

DML change to the hr.employees table, then both rules evaluate to TRUE for the

change, but only one rule is returned. In this case, the transformation may or may

not occur, depending on which rule is returned.

You may want to ensure that only one rule in a rule set can evaluate to TRUEfor any

condition, regardless of whether any of the rules have a non-NULL action context.

By following this guideline, you can avoid unpredictable results if, for example, a

non-NULL action context is added to a rule in the future.

User-Created Rules, Rule Sets, and Evaluation Contexts
If you need to create rules that are more complex than those created by the

DBMS_STREAMS_ADM package, then you can use the DBMS_RULE_ADM package to

create them. Some of the reasons you may need to use the DBMS_RULE_ADM
package are the following:

■ You need to specify complex rule conditions, such as those that use the NOT
conditional operator or those that pertain only to specific operations.

■ You need to create custom evaluation contexts for the rules in your Streams

environment.

You can create a rule set using the DBMS_RULE_ADMpackage, and you can associate

it with a capture process, propagation, or apply process.

See Also:

■ "Row Subsetting Using Streams Rules" on page 4-12 and "Table

and Subset Rules" on page 6-6 for more information about

subset rules

■ "Rule-Based Transformations" on page 6-25

See Also:

■ "Specifying the Rule Set for a Capture Process" on page 12-5

■ "Specifying the Rule Set for a Propagation" on page 13-14

■ "Specifying the Rule Set for an Apply Process" on page 14-8
How Rules Are Used In Streams 6-19

User-Created Rules, Rule Sets, and Evaluation Contexts
Complex Rule Conditions
In a Streams environment, a complex rule condition is one that cannot be created

using the DBMS_STREAMS_ADM package. Table 6–2 on page 6-4 describes the types

of system-created rule conditions that you can create with the DBMS_STREAMS_ADM
package. If you need to create rules with more complex conditions, then use the

DBMS_RULE_ADM package.

There are a wide range of complex conditions. The following sections contain some

examples of complex rule conditions.

Rule Conditions Using the NOT Conditional Operator to Exclude Objects
You can use the NOT conditional operator to exclude certain changes from being

captured, propagated, or applied in a Streams environment.

For example, suppose you want to specify rule conditions that evaluate to TRUE for

all DML and DDL changes to all database objects in the hr schema, except for

changes to the hr.regions table. You can use the NOT conditional operator to

accomplish this with two rules: one for DML changes and one for DDL changes.

Here are the rule conditions for these rules:

(:dml.get_object_owner() = 'HR' AND NOT :dml.get_object_name() = 'REGIONS')
AND :dml.is_null_tag() = 'Y'

(:ddl.get_object_owner() = 'HR' AND NOT :ddl.get_object_name() = 'REGIONS')
AND :ddl.is_null_tag() = 'Y'

Notice that object names, such as HR and REGIONS are specified in all uppercase

characters in these examples. For rules to evaluate properly, the case of the

characters in object names must match the case of the characters in the data

dictionary. Therefore, if no case was specified for an object when the object was

created, then specify the object name in all uppercase in rule conditions. However,

Note:

■ In rule conditions, names of database objects, such as tables

and users, must exactly match the names in the database,

including the case of each character. Also, the name cannot be

enclosed in double quotes.

■ In rule conditions, if you specify the name of a database, then

make sure you include the full database name, including the

domain name.
6-20 Oracle9i Streams

User-Created Rules, Rule Sets, and Evaluation Contexts
if a particular case was specified through the use of double quotation marks when

the objects was created, then specify the object name in the same case in rule

conditions. For example, if the REGIONS table in the HR schema was actually

created as "Regions" , then specify Regions in rule conditions that involve this

table, as in the following example:

:dml.get_object_name() = 'Regions'

You can use the Streams evaluation context when you create these rules using the

DBMS_RULE_ADM package. The following example creates a rule set to hold the

complex rules, creates rules with the previous conditions, and adds the rules to the

rule set:

BEGIN
 -- Create the rule set
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.complex_rules',
 evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
 -- Create the complex rules
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.hr_not_regions_dml',
 condition => ' (:dml.get_object_owner() = ''HR'' AND NOT ' ||
 ' :dml.get_object_name() = ''REGIONS'') AND ' ||
 ' :dml.is_null_tag() = ''Y'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.hr_not_regions_ddl',
 condition => ' (:ddl.get_object_owner() = ''HR'' AND NOT ' ||
 ' :ddl.get_object_name() = ''REGIONS'') AND ' ||
 ' :ddl.is_null_tag() = ''Y'' ');
 -- Add the rules to the rule set
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.hr_not_regions_dml',
 rule_set_name => 'strmadmin.complex_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.hr_not_regions_ddl',
 rule_set_name => 'strmadmin.complex_rules');
END;
/

In this case, the rules inherit the Streams evaluation context from the rule set.
How Rules Are Used In Streams 6-21

User-Created Rules, Rule Sets, and Evaluation Contexts
Rule Conditions for Specific Types of Operations
In some cases, you may want to capture, propagate, or apply changes that contain

only certain types of operations. For example, you may want to apply changes

containing only insert operations for a particular table, but not other operations,

such as update and delete.

Suppose you want to specify a rule condition that evaluates to TRUE only for

INSERT operations on the hr.employees table. You can accomplish this by

specifying the INSERT command type in the rule condition:

:dml.get_command_type() = 'INSERT' AND :dml.get_object_owner() = 'HR'
AND :dml.get_object_name() = 'EMPLOYEES' AND :dml.is_null_tag() = 'Y'

Similarly, suppose you want to specify a rule condition that evaluates to TRUE for

all DML operations on the hr.departments table, except DELETE operations:

:dml.get_command_type() != 'DELETE' AND :dml.get_object_owner() = 'HR'
AND :dml.get_object_name() = 'DEPARTMENTS' AND :dml.is_null_tag() = 'Y'

Undefined Variables in Rule Conditions Evaluate to NULL for Streams Clients
During evaluation, an implicit variable in a rule condition is undefined if the

variable value evaluation function for the variable returns NULL. An explicit

variable without any attributes in a rule condition is undefined if the client does not

send the value of the variable to the rules engine when it runs the

DBMS_RULE.EVALUATE procedure.

Regarding variables with attributes, the variable is undefined if the client does not

send the value of the variable, or any of its attributes, to the rules engine when it

runs the DBMS_RULE.EVALUATE procedure. For example, if variable x has

attributes a and b, then the variable is undefined if the client does not send the

value of x and does not send the value of a and b. However, if the client sends the

value of at least one attribute, then the variable is defined. In this case, if the client

sends the value of a, but not b, then the variable is defined.

An undefined variable in a rule condition evaluates to NULL for Streams clients of

the rules engine, which include capture processes, propagations, and apply

processes. In contrast, for non-Streams clients of the rules engine, an undefined

variable in a rule condition may cause the rules engine to return a maybe rule to the

client. When a rule set is evaluated, maybe_rules are rules that may evaluate to

TRUE given more information.

The number of maybe_rules returned to Streams clients is reduced by treating

each undefined variable as NULL, and reducing the number of maybe_rules can

improve performance if it results in more efficient evaluation of a rule set when an
6-22 Oracle9i Streams

User-Created Rules, Rule Sets, and Evaluation Contexts
event occurs. Rules that would result in maybe_rules for non-Streams clients can

result in TRUE or FALSE rules for Streams clients, as the following examples

illustrate.

Examples of Undefined Variables That Result in TRUE Rules for Streams Clients Consider

the following user-defined rule condition:

:m IS NULL

If the value of the variable m is undefined during evaluation, then a maybe rule

results for non-Streams clients of the rules engine. However, for Streams clients, this

condition evaluates to true because the undefined variable m is treated as a NULL.

You should avoid adding rules such as this to rule sets for Streams clients, because

such rules will evaluate to true for every event. So, if the rule set for a capture

process has such a rule, then the capture process may capture events that you did

not intend to capture.

Here is another user-specified rule condition that uses a Streams :dml variable:

:dml.get_object_owner() = 'HR' AND :m IS NULL

For Streams clients, if an event consists of a row change to a table in the hr schema,

and the value of the variable m is not known during evaluation, then this condition

evaluates to true because the undefined variable m is treated as a NULL.

Examples of Undefined Variables That Result in FALSE Rules for Streams Clients Consider

the following user-defined rule condition:

:m = 5

If the value of the variable m is undefined during evaluation, then a maybe rule

results for non-Streams clients of the rules engine. However, for Streams clients, this

condition evaluates to false because the undefined variable m is treated as a NULL.

Consider another user-specified rule condition that uses a Streams :dml variable:

:dml.get_object_owner() = 'HR' AND :m = 5

For Streams clients, if an event consists of a row change to a table in the hr schema,

and the value of the variable m is not known during evaluation, then this condition

evaluates to false because the undefined variable m is treated as a NULL.

See Also: "Rule Set Evaluation" on page 5-12
How Rules Are Used In Streams 6-23

User-Created Rules, Rule Sets, and Evaluation Contexts
Avoid Using :dml and :ddl Variables as Function Parameters in Rule Conditions
Oracle Corporation recommends that you avoid using :dml and :ddl variables as

function parameters for rule conditions. The following example uses the :dml
variable as a parameter to a function named my_function :

my_function(:dml) = 'Y'

Rule conditions such as these can degrade rule evaluation performance and can

result in the capture or propagation of extraneous Streams data dictionary

information.

Custom Evaluation Contexts
You can use a custom evaluation context in a Streams environment. Any

user-defined evaluation context involving LCRs must include all the variables in

SYS.STREAMS$_EVALUATION_CONTEXT. The type of each variable and its variable

value evaluation function must be the same for each variable as the ones defined in

SYS.STREAMS$_EVALUATION_CONTEXT. In addition, when creating the

evaluation context using DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT, the

SYS.DBMS_STREAMS_INTERNAL.EVALUATION_CONTEXT_FUNCTION must be

specified for the evaluation_function parameter.

You can find information about an evaluation context in the following data

dictionary views:

■ ALL_EVALUATION_CONTEXT_TABLES

■ ALL_EVALUATION_CONTEXT_VARS

■ ALL_EVALUATION_CONTEXTS

If necessary, you can use the information in these data dictionary views to build a

new evaluation context based on the SYS.STREAMS$_EVALUATION_CONTEXT.

See Also: "Data Dictionary Duplication During Capture Process

Creation" on page 2-22

Note: Avoid using variable names with special characters, such as

$ and #, to ensure that there are no conflicts with Oracle-supplied

evaluation context variables.

See Also: Oracle9i Database Reference for more information about

these data dictionary views
6-24 Oracle9i Streams

Rule-Based Transformations
Rule-Based Transformations
In Streams, a rule-based transformation is any modification to an event containing

an LCR that results when a rule evaluates to TRUE. For example, a rule-based

transformation may be used when the datatype of a particular column in a table is

different at two different databases. Such a column could be a NUMBER column in

the source database and a VARCHAR2 column in the destination database. In this

case, the transformation takes as input a SYS.AnyData object containing a row

LCR with a NUMBER datatype for a column and returns a SYS.AnyData object

containing a row LCR with a VARCHAR2 datatype for the same column.

A transformation must be defined as a PL/SQL function that takes a SYS.AnyData
object as input and returns a SYS.AnyData object. Rule-based transformations

support only one to one transformations. Also, the LCR returned by the function

must be the same LCR passed to the function. Although you can modify an LCR

with a rule-based transformation, constructing a new LCR and returning it is not

allowed.

Other examples of transformations on LCRs include:

■ Renaming the owner of a database object

■ Renaming a database object

■ Renaming or removing a column

■ Splitting a column into several columns

■ Combining several columns into one column

■ Modifying the contents of a column

In Streams, you use a rule action context to specify a rule-based transformation. A

rule action context is optional information associated with a rule that is interpreted

by the client of the rules engine after the rule evaluates to TRUE for an event. The

client of the rules engine can be a user-created application or an internal feature of

Oracle, such as Streams. The information in an action context is an object of type

SYS.RE$NV_LIST, which consists of a list of name-value pairs.
How Rules Are Used In Streams 6-25

Rule-Based Transformations
A rule-based transformation in Streams always consists of the following

name-value pair in an action context:

■ The name is STREAMS$_TRANSFORM_FUNCTION.

■ The value is a SYS.AnyData instance containing a PL/SQL function name

specified as a VARCHAR2. This function performs the transformation.

The user that calls the transformation function must have EXECUTEprivilege on the

function. The following list describes which user calls the transformation function:

■ If a transformation is specified for a rule used by a capture process or

propagation, then the user that calls the transformation function is the user that

created the capture process or propagation.

■ If a transformation is specified on a rule used by an apply process, then the user

that calls the transformation function is the apply user for the apply process.

When a rule evaluates to TRUE for an event containing an LCR in a Streams

environment, and an action context that contains a name-value pair with the name

STREAMS$_TRANSFORM_FUNCTION is returned, the PL/SQL function is run,

taking the event as an input parameter. Other names in an action context beginning

with STREAMS$_ are used internally by Oracle and must not be directly added,

modified, or removed. Streams ignores any name-value pair that does not begin

with STREAMS$_.

When a rule evaluates to FALSE for an event in a Streams environment, the rule is

not returned to the client, and any PL/SQL function appearing in a name-value pair

in the action context is not run. Different rules can use the same or different

transformations. For example, different transformations may be associated with

different operation types, tables, or schemas for which changes are being captured,

propagated, or applied. The following sections describe how rule-based

transformations work with a capture process, a propagation, and an apply process.
6-26 Oracle9i Streams

Rule-Based Transformations
Note:

■ Rule-based transformations are different from transformations

performed using the DBMS_TRANSFORM package. This section

does not discuss transformations performed with the

DBMS_TRANSFORM package.

■ If you have a large number of transformations, or

transformations that are expensive, then you may want to

make modifications to events within a DML handler instead,

because DML handlers can execute in parallel when apply

parallelism is greater than 1.

■ When you perform rule-based transformations on DDL LCRs,

you probably need to modify the DDL text in the DDL LCR to

match any other modification. For example, if the rule-based

transformation changes the name of a table in the DDL LCR,

then the table name in the DDL text should be changed in the

same way.

■ You cannot use a rule-based transformation to convert an LCR

event into a non-LCR event. This restriction applies to captured

LCRs and user-enqueued LCRs.

See Also:

■ "Managing Rule-Based Transformations" on page 15-11

■ "Rule Action Context" on page 5-9

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about using the DBMS_TRANSFORM package

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

reference information on the DBMS_TRANSFORM package

■ "Message Propagation and SYS.AnyData Queues" on page 3-16

for examples of using the DBMS_TRANSFORM package to

perform a transformation during propagation

■ "Event Processing with an Apply Process" on page 4-3 for more

information about DML handlers
How Rules Are Used In Streams 6-27

Rule-Based Transformations
Rule-Based Transformations and a Capture Process
If a capture process uses a rule set, then both of the following conditions must be

met in order for a transformation to be performed during capture:

■ A rule evaluates to TRUE for a particular change found in the redo log.

■ An action context containing a name-value pair with the name

STREAMS$_TRANSFORM_FUNCTION is returned to the capture process when

the rule is evaluated.

Given these conditions, the capture process completes the following steps:

1. Formats the change in the redo log into an LCR

2. Converts the LCR into a SYS.AnyData object

3. Runs the PL/SQL function in the name-value pair to transform the

SYS.AnyData object

4. Enqueues the transformed SYS.AnyData object into the queue associated with

the capture process
6-28 Oracle9i Streams

Rule-Based Transformations
Figure 6–2 shows a transformation during capture.

Figure 6–2 Transformation During Capture

For example, if an LCR event is transformed during capture, then the transformed

LCR event is enqueued into the source queue. Therefore, if such a captured LCR

event is propagated from the dbs1.net database to the dbs2.net and the

dbs3.net databases, then the queues at dbs2.net and dbs3.net will contain the

transformed LCR event after propagation.

User Changes

Database Objects

Redo
Log

QueueCapture
Process

Transformation

Enqueue
Transformed
LCRs

Capture
Changes

Log
Changes
How Rules Are Used In Streams 6-29

Rule-Based Transformations
The advantages of performing transformations during capture are the following:

■ Security can be improved if the transformation removes or changes private

information, because this private information does not appear in the source

queue and is not propagated to any destination queue.

■ Space consumption may be reduced, depending on the type of transformation

performed. For example, a transformation that reduces the amount of data

results in less data to enqueue, propagate, and apply.

■ Transformation overhead is reduced when there are multiple destinations for a

transformed LCR event, because the transformation is performed only once at

the source, not at multiple destinations.

The possible disadvantages of performing transformations during capture are the

following:

■ All sites receive the transformed LCR event.

■ The transformation overhead occurs in the source database.

Rule-Based Transformation Errors During Capture
If an error occurs when the transformation function is run during capture, then the

change is not captured, the error is returned to the capture process, and the capture

process is disabled. Before the capture process can be enabled, you must either

change or remove the rule-based transformation to avoid the error.

Rule-Based Transformations and a Propagation
If a propagation uses a rule set, then both of the following conditions must be met

in order for a transformation to be performed during propagation:

■ A rule evaluates to TRUE for an LCR event in the source queue for the

propagation. This LCR event can be a captured or a user-enqueued event.

■ An action context containing a name-value pair with the name

STREAMS$_TRANSFORM_FUNCTION is returned to the propagation when the

rule is evaluated.

See Also: "Captured and User-Enqueued Events" on page 3-3
6-30 Oracle9i Streams

Rule-Based Transformations
Given these conditions, the propagation completes the following steps:

1. Starts dequeuing the LCR event from the source queue

2. Runs the PL/SQL function in the name-value pair to transform the LCR event

3. Completes dequeuing the transformed LCR event

4. Propagates the transformed LCR event to the destination queue

Figure 6–3 shows a transformation during propagation.

Figure 6–3 Transformation During Propagation

For example, suppose you use a rule-based transformation for a propagation from

the dbs1.net database to the dbs2.net database, but you do not use a rule-based

transformation for a propagation from the dbs1.net database to the dbs3.net
database.

In this case, an LCR event in the queue at dbs1.net can be transformed before it is

propagated to dbs2.net , but the same LCR event can remain in its original form

when it is propagated to dbs3.net . In this case, after propagation, the queue at

dbs2.net contains the transformed LCR event, and the queue at dbs3.net
contains the original LCR event.

Source
Queue

Destination
Queue

PropagateTransformation
During Dequeue
How Rules Are Used In Streams 6-31

Rule-Based Transformations
The advantages of performing transformations during propagation are the

following:

■ Security can be improved if the transformation removes or changes private

information before LCR events are propagated.

■ Some destination queues can receive a transformed LCR event, while other

destination queues can receive the original LCR event.

■ Different destinations can receive different variations of the same LCR event.

The possible disadvantages of performing transformations during propagation are

the following:

■ Once an LCR event is transformed, any database to which it is propagated after

the first propagation receives the transformed LCR event. For example, if

dbs2.net propagates the LCR event to dbs4.net , then dbs4.net receives

the transformed LCR event.

■ When the first propagation in a directed network performs the transformation,

the transformation overhead occurs on the source database.

■ The same transformation may be done multiple times when multiple

destination databases need the same transformation.

Rule-Based Transformation Errors During Propagation
If an error occurs when the transformation function is run during propagation, then

the LCR that caused the error is not dequeued, the LCR is not propagated, and the

error is returned to the propagation. Before the LCR can be propagated, you must

change or remove the rule-based transformation to avoid the error.

Rule-Based Transformations and an Apply Process
If an apply process uses a rule set, then both of the following conditions must be

met in order for a transformation to be performed during apply:

■ A rule evaluates to TRUE for an LCR event in the queue associated with the

apply process. This LCR event can be a captured or a user-enqueued event.

■ An action context containing a name-value pair with the name

STREAMS$_TRANSFORM_FUNCTION is returned to the apply process when the

rule is evaluated.

See Also: "Captured and User-Enqueued Events" on page 3-3
6-32 Oracle9i Streams

Rule-Based Transformations
Given these conditions, the apply process completes the following steps:

1. Starts to dequeue the LCR event from the queue

2. Runs the PL/SQL function in the name-value pair to transform the LCR event

during dequeue

3. Completes dequeuing the transformed LCR event

4. Applies the transformed LCR event

Figure 6–4 shows a transformation during apply.

Figure 6–4 Transformation During Apply

For example, suppose an LCR event is propagated from the dbs1.net database to

the dbs2.net database in its original form. When the apply process dequeues the

LCR event from a queue at dbs2.net , the LCR event is transformed.

The possible advantages of performing transformations during apply are the

following:

■ Any database to which the LCR event is propagated after the first propagation

can receive the LCR event in its original form. For example, if dbs2.net
propagates the LCR event to dbs4.net , then dbs4.net can receive the

original LCR event.

■ The transformation overhead does not occur on the source database when the

source and destination database are different.

Queue
Dequeue
Events

Apply
Process

Continue Dequeue
of Transformed
Events

Apply Transformed
Events

Transformation
During Dequeue

Database Objects
How Rules Are Used In Streams 6-33

Rule-Based Transformations
The possible disadvantages of performing transformations during apply are the

following:

■ Security may be a concern if the LCR events contain private information,

because all databases to which the LCR events are propagated receive the

original LCR events.

■ The same transformation may be done multiple times when multiple

destination databases need the same transformation.

Rule-Based Transformation Errors During Apply Process Dequeue
If an error occurs when the transformation function is run during apply process

dequeue, then the LCR that caused the error is not dequeued, the transaction

containing the LCR is not applied, the error is returned to the apply process, and

the apply process is disabled. Before the apply process can be enabled, you must

change or remove the rule-based transformation to avoid the error.

Apply Errors on Transformed LCRs
If an apply error occurs for a transaction in which some of the LCRs have been

transformed by a rule-based transformation, then the transformed LCRs are moved

to an exception queue with all of the other LCRs in the transaction. If you use the

EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package to reexecute a

transaction in an exception queue that contains transformed LCRs, then the

transformation is not performed on the LCRs again because the apply process rule

set is not evaluated again.

Multiple Rule-Based Transformations
You can transform an LCR during capture, propagation, or apply, or during any

combination of capture, propagation, and apply. For example, if you want to hide

sensitive data from all recipients, then you can transform an LCR during capture. If

some recipients require additional custom transformations, then you can transform

the previously transformed LCR during propagation or apply.
6-34 Oracle9i Streams

Streams Conflict Reso
7

Streams Conflict Resolution

Some Streams environments must use conflict handlers to resolve possible data

conflicts that can result from sharing data between multiple databases.

This chapter contains these topics:

■ About DML Conflicts in a Streams Environment

■ Conflict Types in a Streams Environment

■ Conflicts and Transaction Ordering in a Streams Environment

■ Conflict Detection in a Streams Environment

■ Conflict Avoidance in a Streams Environment

■ Conflict Resolution in a Streams Environment

See Also: "Managing Streams Conflict Resolution" on page 14-29
lution 7-1

About DML Conflicts in a Streams Environment
About DML Conflicts in a Streams Environment
Conflicts can occur in a Streams environment that permits concurrent data

manipulation language (DML) operations on the same data at multiple databases.

In a Streams environment, DML conflicts can occur only when an apply process is

applying an event that contains a change resulting from a DML operation. This type

of event is called a row logical change record, or row LCR. An apply process

automatically detects conflicts caused by row LCRs.

For example, when two transactions originating from different databases update the

same row at nearly the same time, a conflict can occur. When you configure a

Streams environment, you must consider whether conflicts can occur. You can

configure conflict resolution to resolve conflicts automatically, if your system design

permits conflicts.

In general, you should try to design a Streams environment that avoids the

possibility of conflicts. Using the conflict avoidance techniques discussed later in

this chapter, most system designs can avoid conflicts in all or a large percentage of

the shared data. However, many applications require that some percentage of the

shared data be updatable at multiple databases at any time. If this is the case, then

you must address the possibility of conflicts.

Conflict Types in a Streams Environment
You may encounter these types of conflicts when you share data at multiple

databases:

■ Update Conflicts in a Streams Environment

■ Uniqueness Conflicts in a Streams Environment

■ Delete Conflicts in a Streams Environment

■ Foreign Key Conflicts in a Streams Environment

Note: An apply process does not detect DDL conflicts or conflicts

resulting from user-enqueued events. Make sure your environment

avoids these types of conflicts.

See Also: "Row LCRs" on page 2-3
7-2 Oracle9i Streams

Conflict Types in a Streams Environment
Update Conflicts in a Streams Environment
An update conflict occurs when the apply process applies a row LCR containing an

update to a row that conflicts with another update to the same row. Update conflicts

can happen when two transactions originating from different databases update the

same row at nearly the same time.

Uniqueness Conflicts in a Streams Environment
A uniqueness conflict occurs when the apply process applies a row LCR containing

a change to a row that violates a uniqueness integrity constraint, such as a PRIMARY
KEY or UNIQUE constraint. For example, consider what happens when two

transactions originate from two different databases, each inserting a row into a table

with the same primary key value. In this case, the transactions cause a uniqueness

conflict.

Delete Conflicts in a Streams Environment
A delete conflict occurs when two transactions originate from different databases,

with one transaction deleting a row and another transaction updating or deleting

the same row. In this case, the row referenced in the row LCR does not exist to be

either updated or deleted.

Foreign Key Conflicts in a Streams Environment
A foreign key conflict occurs when the apply process applies a row LCR containing

a change to a row that violates a foreign key constraint. For example, in the hr
schema, the department_id column in the employees table is a foreign key of

the department_id column in the departments table. Consider what can

happen when the following changes originate from two different databases (A and

B) and are propagated to a third database (C):

■ At database A, a row is inserted into the departments table with a

department_id of 271 . This change is propagated to database B and applied

there.

■ At database B, a row is inserted into the employees table with an

employee_id of 206 and a department_id of 271 .

If the change that originated at database B is applied at database C before the

change that originated at database A, then a foreign key conflict results because the

row for the department with a department_id of 271 does not yet exist in the

departments table at database C.
Streams Conflict Resolution 7-3

Conflicts and Transaction Ordering in a Streams Environment
Conflicts and Transaction Ordering in a Streams Environment
Ordering conflicts can occur in a Streams environment when three or more

databases share data and the data is updated at two or more of these databases. For

example, consider a scenario in which three databases share information in the

hr.departments table. The database names are mult1.net , mult2.net , and

mult3.net . Suppose a change is made to a row in the hr.departments table at

mult1.net that will be propagated to both mult2.net and mult3.net . The

following series of actions may occur:

1. The change is propagated to mult2.net .

2. An apply process at mult2.net applies the change from mult1.net .

3. A different change to the same row is made at mult2.net .

4. The change at mult2.ne t is propagated to mult3.net .

5. An apply process at mult3.net attempts to apply the change from

mult2.net before another apply process at mult3.net applies the change

from mult1.net .

In this case, a conflict occurs because a column value for the row at mult3.net
does not match the corresponding old value in the row LCR propagated from

mult2.net .

In addition to causing a data conflict, transactions that are applied out of order

might experience referential integrity problems at a remote database if supporting

data has not been successfully propagated to that database. Consider the scenario

where a new customer calls an order department. A customer record is created and

an order is placed. If the order data is applied at a remote database before the

customer data, then a referential integrity error is raised because the customer that

the order references does not exist at the remote database.

If an ordering conflict is encountered, then you can resolve the conflict by

reexecuting the transaction in an exception queue after the required data has been

propagated to the remote database and applied.
7-4 Oracle9i Streams

Conflict Detection in a Streams Environment
Conflict Detection in a Streams Environment
An apply process detects update, uniqueness, delete, and foreign conflicts as

follows:

■ An apply process detects an update conflict if there is any difference between

the old values for a row in a row LCR and the current values of the same row at

the destination database.

■ An apply process detects a uniqueness conflict if a uniqueness constraint

violation occurs when applying an LCR that contains an insert or update

operation.

■ An apply process detects a delete conflict if it cannot find a row when applying

an LCR that contains an update or delete operation, because the primary key of

the row does not exist.

■ An apply process detects a foreign key conflict if a foreign key constraint

violation occurs when applying an LCR.

A conflict may be detected when an apply process attempts to apply an LCR

directly or when an apply process handler, such as a DML handler, runs the

EXECUTE member procedure for an LCR. A conflict also may be detected when

either the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the

DBMS_APPLY_ADM package is run.

Identifying Rows During Conflict Detection in a Streams Environment
To detect conflicts accurately, Oracle must be able to identify and match

corresponding rows at different databases uniquely. By default, Oracle uses the

primary key of a table to identify rows in the table uniquely. When a table does not

have a primary key, you must designate a substitute key. A substitute key is a

column or set of columns that Oracle can use to identify uniquely rows in the table.

Note: Any old LOB values in update LCRs, delete LCRs, and

LCRs dealing with piecewise updates to LOB columns are not used

by conflict detection.

See Also: "Substitute Key Columns" on page 4-11
Streams Conflict Resolution 7-5

Conflict Avoidance in a Streams Environment
Conflict Avoidance in a Streams Environment
This section describes ways to avoid data conflicts.

Use a Primary Database Ownership Model
You can avoid the possibility of conflicts by limiting the number of databases in the

system that have simultaneous update access to the tables containing shared data.

Primary ownership prevents all conflicts, because only a single database permits

updates to a set of shared data. Applications can even use row and column

subsetting to establish more granular ownership of data than at the table level. For

example, applications might have update access to specific columns or rows in a

shared table on a database-by-database basis.

Avoid Specific Types of Conflicts
If a primary database ownership model is too restrictive for your application

requirements, then you can use a shared ownership data model, which means that

conflicts may be possible. Even so, typically you can use some simple strategies to

avoid specific types of conflicts.

Avoid Uniqueness Conflicts in a Streams Environment
You can avoid uniqueness conflicts by ensuring that each database uses unique

identifiers for shared data. There are three ways to ensure unique identifiers at all

databases in a Streams environment.

One way is to construct a unique identifier by executing the following select

statement:

SELECT SYS_GUID() OID FROM DUAL;

This SQL operator returns a 16-byte globally unique identifier. This value is based

on an algorithm that uses time, date, and the computer identifier to generate a

globally unique identifier. The globally unique identifier appears in a format similar

to the following:

A741C791252B3EA0E034080020AE3E0A

Another way to avoid uniqueness conflicts is to create a sequence at each of the

databases that shares data and concatenate the database name (or other globally

unique value) with the local sequence. This approach helps to avoid any duplicate

sequence values and helps to prevent uniqueness conflicts.
7-6 Oracle9i Streams

Conflict Avoidance in a Streams Environment
Finally, you can create a customized sequence at each of the databases that shares

data so that no two databases can generate the same value. You can accomplish this

by using a combination of starting, incrementing, and maximum values in the

CREATE SEQUENCE statement. For example, you might configure the following

sequences:

Using a similar approach, you can define different ranges for each database by

specifying a START WITH and MAXVALUE that would produce a unique range for

each database.

Avoid Delete Conflicts in a Streams Environment
Always avoid delete conflicts in shared data environments. In general, applications

that operate within a shared ownership data model should not delete rows using

DELETE statements. Instead, applications should mark rows for deletion and then

configure the system to purge logically deleted rows periodically.

Avoid Update Conflicts in a Streams Environment
After trying to eliminate the possibility of uniqueness and delete conflicts, you

should also try to limit the number of possible update conflicts. However, in a

shared ownership data model, update conflicts cannot be avoided in all cases. If

you cannot avoid all update conflicts, then you must understand the types of

conflicts possible and configure the system to resolve them if they occur.

Parameter Database A Database B Database C

START WITH 1 3 5

INCREMENT BY 10 10 10

Range Example 1, 11, 21, 31, 41,... 3, 13, 23, 33, 43,... 5, 15, 25, 35, 45,...
Streams Conflict Resolution 7-7

Conflict Resolution in a Streams Environment
Conflict Resolution in a Streams Environment
After an update conflict has been detected, a conflict handler can attempt to resolve

it. Streams provides prebuilt conflict handlers to resolve update conflicts, but not

uniqueness, delete, foreign key, or ordering conflicts. However, you can build your

own custom conflict handler to resolve data conflicts specific to your business rules.

Such a conflict handler can be part of a DML handler or an error handler.

Whether you use a prebuilt or custom conflict handlers, a conflict handler is applied

as soon as a conflict is detected. If neither the specified conflict handler nor the

relevant apply handler can resolve the conflict, then the conflict is logged in an

exception queue. You may want to use the relevant apply handler to notify the

database administrator when a conflict occurs.

When a conflict causes a transaction to be moved to an exception queue, sometimes

it is possible to correct the condition that caused the conflict. In these cases, you can

reexecute a transaction using the EXECUTE_ERROR procedure in the

DBMS_APPLY_ADM package.

Prebuilt Update Conflict Handlers
This section describes the types of prebuilt update conflict handlers available to you

and how column lists and resolution columns are used in prebuilt update conflict

handlers. A column list is a list of columns for which the update conflict handler is

called when there is an update conflict. The resolution column is the column used

to identify an update conflict handler. If you use a MAXIMUM or MINIMUM prebuilt

update conflict handler, then the resolution column is also the column used to

resolve the conflict. The resolution column must be one of the columns in the

column list for the handler.

See Also:

■ "Event Processing Options" on page 4-4 for more information

about DML handlers and error handlers

■ "Handlers and Row LCR Processing" on page 4-16 for more

information about how update conflict handlers interact with

DML handlers and error handlers

■ "Exception Queues" on page 4-37

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the EXECUTE_ERROR procedure in the

DBMS_APPLY_ADM package
7-8 Oracle9i Streams

Conflict Resolution in a Streams Environment
Use the SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM
package to specify one or more update conflict handlers for a particular table. There

are no prebuilt conflict handlers for uniqueness, delete, or foreign key conflicts.

Types of Prebuilt Update Conflict Handlers
Oracle provides the following types of prebuilt update conflict handlers for a

Streams environment: OVERWRITE, DISCARD, MAXIMUM, and MINIMUM.

The description for each type of handler later in this section refers to the following

conflict scenario:

1. The following update is made at the dbs1.net source database:

UPDATE hr.employees SET salary = 4900 WHERE employee_id = 200;
COMMIT;

This update changes the salary for employee 200 from 4400 to 4900 .

2. At nearly the same time, the following update is made at the dbs2.net
destination database:

UPDATE hr.employees SET salary = 5000 WHERE employee_id = 200;
COMMIT;

3. A capture process captures the update at the dbs1.net source database and

puts the resulting row LCR in a queue.

See Also:

■ "Managing Streams Conflict Resolution" on page 14-29 for

instructions on adding, modifying, and removing an update

conflict handler

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the SET_UPDATE_CONFLICT_HANDLER
procedure

■ "Column Lists" on page 7-12

■ "Resolution Columns" on page 7-14
Streams Conflict Resolution 7-9

Conflict Resolution in a Streams Environment
4. A propagation propagates the row LCR from the queue at dbs1.net to a

queue at dbs2.net .

5. An apply process at dbs2.net attempts to apply the row LCR to the

hr.employees table but encounters a conflict because the salary value at

dbs2.net is 5000 , which does not match the old value for the salary in the

row LCR (4400).

The following sections describe each prebuilt conflict handler and explain how the

handler resolves this conflict.

OVERWRITE When a conflict occurs, the OVERWRITE handler replaces the current

value at the destination database with the new value in the LCR from the source

database.

If the OVERWRITE handler is used for the hr.employees table at the dbs2.net
destination database in the conflict example, then the new value in the row LCR

overwrites the value at dbs2.net . Therefore, after the conflict is resolved, the

salary for employee 200 is 4900 .

DISCARD When a conflict occurs, the DISCARD handler ignores the values in the

LCR from the source database and retains the value at the destination database.

If the DISCARD handler is used for the hr.employees table at the dbs2.net
destination database in the conflict example, then the new value in the row LCR is

discarded. Therefore, after the conflict is resolved, the salary for employee 200
is 5000 at dbs2.net .

MAXIMUM When a conflict occurs, the MAXIMUM conflict handler compares the new

value in the LCR from the source database with the current value in the destination

database for a designated resolution column. If the new value of the resolution

column in the LCR is greater than the current value of the column at the destination

database, then the apply process resolves the conflict in favor of the LCR. If the new

value of the resolution column in the LCR is less than the current value of the

column at the destination database, then the apply process resolves the conflict in

favor of the destination database.

If the MAXIMUMhandler is used for the salary column in the hr.employees table

at the dbs2.net destination database in the conflict example, then the apply

process does not apply the row LCR, because the salary in the row LCR is less than

the current salary in the table. Therefore, after the conflict is resolved, the salary for

employee 200 is 5000 at dbs2.net .
7-10 Oracle9i Streams

Conflict Resolution in a Streams Environment
If you want to resolve conflicts based on the time of the transactions involved, then

one way to do this is to add a column to a shared table that automatically records

the transaction time with a trigger. Then, you can designate this column as a

resolution column for a MAXIMUM conflict handler, and the transaction with the

latest (or greater) time would be used automatically.

The following is an example of a trigger that records the time of a transaction for the

hr.employees table. Assume that the job_id , salary , and commission_pct
columns are part of the column list for the conflict resolution handler. The trigger

should fire only when an UPDATEis performed on the columns in the column list or

when an INSERT is performed.

CONNECT hr/hr

ALTER TABLE hr.employees ADD (time TIMESTAMP WITH TIME ZONE);

CREATE OR REPLACE TRIGGER hr.insert_time_employees
BEFORE
 INSERT OR UPDATE OF job_id, salary, commission_pct ON hr.employees
FOR EACH ROW
BEGIN
 -- Consider time synchronization problems. The previous update to this
 -- row may have originated from a site with a clock time ahead of the
 -- local clock time.
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

If you use such a trigger for conflict resolution, then make sure the trigger’s firing

property is fire once, which is the default. Otherwise, a new time may be marked

when transactions are applied by an apply process, resulting in the loss of the actual

time of the transaction.

See Also: "Trigger Firing Property" on page 4-25
Streams Conflict Resolution 7-11

Conflict Resolution in a Streams Environment
MINIMUM When a conflict occurs, the MINIMUM conflict handler compares the new

value in the LCR from the source database with the current value in the destination

database for a designated resolution column. If the new value of the resolution

column in the LCR is less than the current value of the column at the destination

database, then the apply process resolves the conflict in favor of the LCR. If the new

value of the resolution column in the LCR is greater than the current value of the

column at the destination database, then the apply process resolves the conflict in

favor of the destination database.

If the MINIMUMhandler is used for the salary column in the hr.employees table

at the dbs2.net destination database in the conflict example, then the apply

process resolves the conflict in favor of the row LCR, because the salary in the row

LCR is less than the current salary in the table. Therefore, after the conflict is

resolved, the salary for employee 200 is 4900 .

Column Lists
Each time you specify a prebuilt update conflict handler for a table, you must

specify a column list. A column list is a list of columns for which the update conflict

handler is called. If an update conflict occurs for one or more of the columns in the

list when an apply process tries to apply a row LCR, then the update conflict

handler is called to resolve the conflict. The update conflict handler is not called if a

conflict occurs only in columns that are not in the list. The scope of conflict

resolution is a single column list on a single row LCR.

You can specify more than one update conflict handler for a particular table, but the

same column cannot be in more than one column list. For example, suppose you

specify two prebuilt update conflict handlers on hr.employees table:

■ The first update conflict handler has the following columns in its column list:

salary and commission_pct .

■ The second update conflict handler has the following columns in its column list:

job_id and department_id .

Also, assume that no other conflict handlers exist for this table. In this case, if a

conflict occurs for the salary column when an apply process tries to apply a row

LCR, then the first update conflict handler is called to resolve the conflict. If,

however, a conflict occurs for the department_id column, then the second update

conflict handler is called to resolve the conflict. If a conflict occurs for a column that

is not in a column list for any conflict handler, then no conflict handler is called, and

an error results. In this example, if a conflict occurs for the manager_id column,

then an error results. If conflicts occur in more than one column list when a row

LCR is being applied, and there are no conflicts in any columns that are not in a
7-12 Oracle9i Streams

Conflict Resolution in a Streams Environment
column list, then the appropriate update conflict handler is invoked for each

column list with a conflict.

Column lists enable you to use different handlers to resolve conflicts for different

types of data. For example, numeric data is often suited for a maximum or

minimum conflict handler, while an overwrite or discard conflict handler might be

preferred for character data.

If a conflict occurs in a column that is not in a column list, then the error handler for

the specific operation on the table attempts to resolve the conflict. If the error

handler cannot resolve the conflict, or if there is no such error handler, then the

transaction that caused the conflict is moved to an exception queue.

Also, if a conflict occurs for a column in a column list that uses either the

OVERWRITE, MAXIMUM, or MINIMUM prebuilt handler, and the row LCR does not

contain all of the columns in this column list, then the conflict cannot be resolved

because all of the values are not available. In this case, the transaction that caused

the conflict is moved to an exception queue. If the column list uses the DISCARD
prebuilt method, then the row LCR is discarded and no error results, even if the row

LCR does not contain all of the columns in this column list.

A conditional supplemental log group must be specified for the columns specified

in a column list if more than one column at the source database affects the column

list at the destination database. Supplemental logging is specified at the source

database and adds additional information to the LCR, which is needed to resolve

conflicts properly. Typically, a conditional supplemental log group must be specified

for the columns in a column list if there is more than one column in the column list,

but not if there is only one column in the column list.

However, in some cases, a conditional supplemental log group is required even if

there is only one column in a column list. That is, an apply handler or rule-based

transformation may combine multiple columns from the source database into a

single column in the column list at the destination database. For example, a

rule-based transformation may take three columns that store street, state, and postal

code data from a source database and combine the data into a single address

column at a destination database.

Also, in some cases, no conditional supplemental log group is required even if there

is more than one column in a column list. For example, an apply handler or

rule-based transformation may separate one address column from the source

database into multiple columns that are in a column list at the destination database.

A rule-based transformation may take an address that includes street, state, and

postal code data in one address column at a source database and separate the data

into three columns at a destination database.
Streams Conflict Resolution 7-13

Conflict Resolution in a Streams Environment
Resolution Columns
The resolution column is the column used to identify an update conflict handler. If

you use a MAXIMUM or MINIMUM prebuilt update conflict handler, then the

resolution column is also the column used to resolve the conflict. The resolution

column must be one of the columns in the column list for the handler.

For example, if the salary column in the hr.employees table is specified as the

resolution column for a maximum or minimum conflict handler, then the salary
column is evaluated to determine whether column list values in the row LCR are

applied or the destination database values for the column list are retained.

In either of the following situations involving a resolution column for a conflict, the

apply process moves the transaction containing the row LCR that caused the

conflict to an exception queue, if the error handler cannot resolve the problem. In

these cases, the conflict cannot be resolved and the values of the columns at the

destination database remain unchanged:

■ The new LCR value and the destination row value for the resolution column are

the same (for example, if the resolution column was not the column causing the

conflict).

■ Either the new LCR value of the resolution column or the current value of the

resolution column at the destination database is NULL.

Note: Prebuilt update conflict handlers do not support LOB

columns. Therefore, you should not include LOB columns in the

column_list parameter when running the procedure

SET_UPDATE_CONFLICT_HANDLER.

See Also: "Supplemental Logging in a Streams Environment" on

page 2-11

Note: Although the resolution column is not used for OVERWRITE
and DISCARD conflict handlers, a resolution column must be

specified for these conflict handlers.
7-14 Oracle9i Streams

Conflict Resolution in a Streams Environment
Data Convergence
When you share data between multiple databases, and you want the data to be the

same at all of these databases, then make sure you use conflict resolution handlers

that cause the data to converge at all databases. If you allow changes to shared data

at all of your databases, then data convergence for a table is possible only if all

databases that are sharing data capture changes to the shared data and propagate

these changes to all of the other databases that are sharing the data.

In such an environment, the MAXIMUM conflict resolution method can guarantee

convergence only if the values in the resolution column are always increasing. A

time-based resolution column meets this requirement, as long as successive

timestamps on a row are distinct. The MINIMUM conflict resolution method can

guarantee convergence in such an environment only if the values in the resolution

column are always decreasing.

Custom Conflict Handlers
You can create a PL/SQL procedure to use as a custom conflict handler. You use the

SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package to designate one

or more custom conflict handlers for a particular table. Specifically, you set the

following parameters when you run this procedure to specify a custom conflict

handler:

■ Set the object_name parameter to the fully qualified name of the table for

which you want to perform conflict resolution.

■ Set the object_type parameter to TABLE.

■ Set the operation_name parameter to the type of operation for which the

custom conflict handler is called. The possible operations are the following:

INSERT, UPDATE, DELETE, and LOB_UPDATE.

■ If you want an error handler to perform conflict resolution when an error is

raised, then set the error_handler parameter to true . Or, if you want to

include conflict resolution in your DML handler, then set the error_handler
parameter to false .

If you specify false for this parameter, then, when you execute a row LCR

using the EXECUTE member procedure for the LCR, the conflict resolution

within the DML handler is performed for the specified object and operation(s).

■ Specify the procedure to resolve a conflict by setting the user_procedure
parameter. This user procedure is called to resolve any conflicts on the specified

table resulting from the specified type of operation.
Streams Conflict Resolution 7-15

Conflict Resolution in a Streams Environment
If the custom conflict handler cannot resolve the conflict, then the apply process

moves the transaction containing the conflict to an exception queue and does not

apply the transaction.

If both a prebuilt update conflict handler and a custom conflict handler exist for a

particular object, then the prebuilt update conflict handler is invoked only if both of

the following conditions are met:

■ The custom conflict handler executes the row LCR using the EXECUTE member

procedure for the LCR.

■ The conflict_resolution parameter in the EXECUTE member procedure

for the row LCR is set to true .

See Also:

■ "Handlers and Row LCR Processing" on page 4-16 for more

information about you update conflict handlers interact with

DML handlers and error handlers

■ "Managing a DML Handler" on page 14-14

■ "Managing an Error Handler" on page 14-21

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the SET_DML_HANDLER procedure
7-16 Oracle9i Streams

Streams
8

Streams Tags

This chapter explains the concepts related to Streams tags.

This chapter contains these topics:

■ Introduction to Tags

■ Tags and Rules Created by the DBMS_STREAMS_ADM Package

■ Tags and an Apply Process

■ Avoid Change Cycling with Tags

See Also: "Managing Streams Tags" on page 16-26
 Tags 8-1

Introduction to Tags
Introduction to Tags
Every redo entry in the redo log has a tag associated with it. The datatype of the tag

is RAW. By default, when a user or application generates redo entries, the value of

the tag is NULL for each redo entry, and a NULL tag consumes no space in the redo

entry. The size limit for a tag value is 2000 bytes.

You can configure how tag values are interpreted. For example, a tag can be used to

determine whether an LCR contains a change that originated in the local database

or at a different database, so that you can avoid change cycling (sending an LCR

back to the database where it originated). Tags may be used for other LCR tracking

purposes as well. You can also use tags to specify the set of destination databases

for each LCR.

You can control the value of the tags generated in the redo log in the following

ways:

■ Use the DBMS_STREAMS.SET_TAG procedure to specify the value of the redo

tags generated in the current session. When a database change is made in the

session, the tag becomes part of the redo entry that records the change.

Different sessions can have the same tag setting or different tag settings.

■ Use the CREATE_APPLY or ALTER_APPLY procedure in the DBMS_APPLY_ADM
package to control the value of the redo tags generated when an apply process

runs. All sessions coordinated by the apply process coordinator use this tag

setting. By default, redo entries generated by an apply process have a tag value

that is the hexadecimal equivalent of '00' (double zero).

These tags become part of the LCRs captured by a capture process retrieving

changes from the redo log. Based on the rules in the rule set for the capture process,

the tag value in the redo entry for a change may determine whether or not the

change is captured.

Similarly, once a tag is part of an LCR, the value of the tag may determine whether a

propagation propagates the LCR and whether an apply process applies the LCR.

The behavior of a transformation, DML handler, or error handler can also depend

on the value of the tag. In addition, you can set the tag value for an existing LCR

using the SET_TAG member procedure for the LCR. For example, you may set a tag

in an LCR during a transformation.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the SET_TAG member procedure for LCRs
8-2 Oracle9i Streams

Tags and Rules Created by the DBMS_STREAMS_ADM Package
Tags and Rules Created by the DBMS_STREAMS_ADM Package
When you use a procedure in the DBMS_STREAMS_ADM package to create rules, by

default each rule contains a condition that evaluates to TRUEonly if the tag is NULL.

In DML rules, the condition is the following:

:dml.is_null_tag()='Y'

In DDL rules, the condition is the following:

:ddl.is_null_tag()='Y'

Consider a rule set with a single rule and assume the rule contains such a condition.

In this case, Streams capture processes, propagations, and apply processes behave

in the following way:

■ A capture process captures a change only if the tag in the redo log for the

change is NULL and the rest of the rule conditions evaluate to TRUE for the

change.

■ A propagation propagates an event containing an LCR only if the tag in the

LCR is NULL and the rest of the rule conditions evaluate to TRUE for the LCR.

■ An apply process applies an event containing an LCR only if the tag in the LCR

is NULL and the rest of the rule conditions evaluate to TRUE for the LCR.

Specifically, the following procedures in the DBMS_STREAMS_ADM package create

rules that contain one of these conditions by default:

■ ADD_GLOBAL_PROPAGATION_RULES

■ ADD_GLOBAL_RULES

■ ADD_SCHEMA_PROPAGATION_RULES

■ ADD_SCHEMA_RULES

■ ADD_SUBSET_RULES

■ ADD_TABLE_PROPAGATION_RULES

■ ADD_TABLE_RULES

If you do not want the created rules to contain such a condition, then set the

include_tagged_lcr parameter to true when you run these procedures. This

setting results in no conditions relating to tags in the rules. Therefore, rule

evaluation of the LCR does not depend on the value of the tag.
Streams Tags 8-3

Tags and Rules Created by the DBMS_STREAMS_ADM Package
For example, consider a table-level rule that evaluates to TRUE for all DML changes

to the hr.locations table that originated at the dbs1.net source database.

Assume the ADD_TABLE_RULES procedure is run to generate this rule:

BEGIN DBMS_STREAMS_ADM.ADD_TABLE_RULES(
table_name => 'hr.locations',
streams_type => 'capture',
streams_name => 'capture',
queue_name => 'streams_queue',

 include_tagged_lcr => false, -- Note parameter setting
 source_database => 'dbs1.net',

include_dml => true,
include_ddl => false);

END;
/

Notice that the include_tagged_lcr parameter is set to false , which is the

default. The ADD_TABLE_RULES procedure generates a rule with a rule condition

similar to the following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET')

If a capture process uses a rule set that contains this rule, then the rule evaluates to

FALSE if the tag for a change in a redo entry is a non-NULL value, such as

'0' or '1' . So, if a redo entry contains a row change to the hr.locations table,

then the change is captured only if the tag for the redo entry is NULL.

However, suppose the include_tagged_lcr parameter is set to true when

ADD_TABLE_RULES is run:

BEGIN DBMS_STREAMS_ADM.ADD_TABLE_RULES(
table_name => 'hr.locations',
streams_type => 'capture',
streams_name => 'capture',
queue_name => 'streams_queue',

 include_tagged_lcr => true, -- Note parameter setting
 source_database => 'dbs1.net',

include_dml => true,
include_ddl => false);

END;
/

8-4 Oracle9i Streams

Tags and Rules Created by the DBMS_STREAMS_ADM Package
In this case, the ADD_TABLE_RULES procedure generates a rule with a rule

condition similar to the following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.get_source_database_name() = 'DBS1.NET')

Notice that there is no condition relating to the tag. If a capture process uses a rule

set that contains this rule, then the rule evaluates to TRUE if the tag in a redo entry

for a DML change to the hr.locations table is a non-NULL value, such as

'0' or '1' . The rule also evaluates to TRUE if the tag is NULL. So, if a redo entry

contains a DML change to the hr.locations table, then the change is captured

regardless of the value for the tag.

If you want to modify the is_null_tag condition in a system-created rule, then

you should use an appropriate procedure in the DBMS_STREAMS_ADM package to

create a new rule that is the same as the rule you want to modify, except for the

is_null_tag condition. Then, use the REMOVE_RULE procedure in the

DBMS_STREAMS_ADM package to remove the old rule from the appropriate rule set.

If you created a rule with the DBMS_RULE_ADMpackage, then you can add, remove,

or modify the is_null_tag condition in the rule by using the ALTER_RULE
procedure in this package.

If you are using global rules to capture and apply DDL changes for an entire

database, then online backup statements will be captured, propagated, and applied

by default. Typically, database administrators do not want to replicate online

backup statements. Instead, they only want them to run at the database where they

are executed originally. To avoid replicating online backup statements, you can use

one of the following strategies:

■ Include one or more calls to the DBMS_STREAMS.SET_TAG procedure in your

online backup procedures, and set the session tag to a value that will cause the

online backup statements to be ignored by a capture process.

■ Use a DDL handler for an apply process to avoid applying the online backup

statements.
Streams Tags 8-5

Tags and an Apply Process
Tags and an Apply Process
An apply process generates entries in the redo log of a destination database when it

applies DML or DDL changes. For example, if the apply process applies a change

that updates a row in a table, then that change is recorded in the redo log at the

destination database. You can control the tags in these redo entries by setting the

apply_tag parameter in the CREATE_APPLY or ALTER_APPLY procedure in the

DBMS_APPLY_ADM package. For example, an apply process may generate redo tags

that are equivalent to the hexadecimal value of '0' (zero) or '1' .

The default tag value generated in the redo log by an apply process is '00' (double

zero). This value is the default tag value for an apply process if you use a procedure

in the DBMS_STREAMS_ADM package or the CREATE_APPLY procedure in the

DBMS_APPLY_ADM package to create an apply process. There is nothing special

about this value beyond the fact that it is a non-NULL value. The fact that it is a

non-NULL value is important because rules created by the DBMS_STREAMS_ADM
package by default contain a condition that evaluates to TRUE only if the tag is

NULL in a redo entry or LCR. You can alter the tag value for an existing apply

process using the ALTER_APPLY procedure in the DBMS_APPLY_ADM package.

If a DML handler, DDL handler, or message handler calls the SET_TAGprocedure in

the DBMS_STREAMS package, then any subsequent redo entries generated by the

handler will include the tag specified in the SET_TAG call, even if the tag for the

apply process is different. When the handler exits, any subsequent redo entries

generated by the apply process have the tag specified for the apply process.

See Also:

■ Chapter 6, "How Rules Are Used In Streams" for examples of

rules generated by the procedures in the DBMS_STREAMS_ADM
package

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_STREAMS_ADM package and the

DBMS_RULE_ADM.ALTER_RULE procedure

■ "Setting the Tag Values Generated by the Current Session" on

page 16-26 for more information about the SET_TAG procedure
8-6 Oracle9i Streams

Tags and an Apply Process
See Also:

■ Chapter 4, "Streams Apply Process" for more information about

the apply process

■ "Tags and Rules Created by the DBMS_STREAMS_ADM

Package" on page 8-3 for more information about the default

tag condition in Streams rules

■ "Setting the Tag Values Generated by an Apply Process" on

page 16-28

■ "Event Processing Options" on page 4-4 for more information

about DML handlers, DDL handlers, and message handlers

■ "Setting the Tag Values Generated by the Current Session" on

page 16-26 for more information about the SET_TAG procedure

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_STREAMS_ADM package and the

DBMS_APPLY_ADM package
Streams Tags 8-7

Avoid Change Cycling with Tags
Avoid Change Cycling with Tags
In a Streams environment that includes more than one database sharing data

bidirectionally, you can use tags to avoid change cycling. Change cycling means

sending a change back to the database where it originated. Typically, change cycling

should be avoided because it can result in each change going through endless loops

back to the database where it originated. Such loops can result in unintended data

in the database and tax the networking and computer resources of an environment.

By default, Streams is designed to avoid change cycling.

Using tags and appropriate rules for Streams capture processes, propagations, and

apply processes, you can avoid such change cycles. The following sections describe

various Streams environments and how tags and rules can be used to avoid change

cycling in these environments:

■ Each Databases Is a Source and Destination Database for Shared Data

■ Primary Database Sharing Data with Several Secondary Databases

■ Primary Database Sharing Data with Several Extended Secondary Databases

Each Databases Is a Source and Destination Database for Shared Data
This scenario involves a Streams environment in which each database is a source

database for every other database, and each database is a destination database of

every other database. Each database communicates directly with every other

database.

For example, consider an environment that replicates the database objects and data

in the hr schema between three Oracle databases: mult1.net , mult2.net , and

mult3.net . DML and DDL changes made to tables in the hr schema are captured

at all three databases in the environment and propagated to each of the other

databases in the environment, where changes are applied. Figure 8–1 illustrates an

example environment in which each database is a source database.
8-8 Oracle9i Streams

Avoid Change Cycling with Tags
Figure 8–1 Each Database Is a Source and Destination Database

mult2.net mult3.net

mult1.net

Propagate
Locally

Captured
LCRs

Propagate
Locally

Captured
LCRs

Propagate Locally
Captured LCRs

Propagate Locally
Captured LCRs

User Changes User Changes

User Changes

Database Objects

Capture
Process

Enqueue
LCRs

Capture
Changes

Queue

Apply Process for mult1.net changes

Apply Process for mult2.net changes

Dequeue LCRs
sent From
mult2.net

Dequeue
LCRs sent
From
mult1.net

Apply Changes sent from mult2.net

Apply Changes sent from mult1.net

Database Objects

Capture
Process

Enqueue
LCRs

Capture
Changes

Queue

Apply Process for mult1.net changes

Apply Process for mult3.net changes

Dequeue LCRs
sent From
mult3.net

Dequeue
LCRs sent
From
mult1.net

Apply Changes sent from mult3.net

Apply Changes sent from mult1.net

Database Objects

Capture
Process

Enqueue
LCRs

Capture
Changes

Queue

Apply Process for mult2.net changes

Apply Process for mult3.net changes

Dequeue LCRs
sent From
mult3.net

Dequeue
LCRs sent
From
mult2.net

Apply Changes sent from mult3.net

Apply Changes sent from mult2.net
Streams Tags 8-9

Avoid Change Cycling with Tags
You can avoid change cycles by configuring such an environment in the following

way:

■ Configure one apply process at each database to generate non-NULL redo tags

for changes from each source database. If you use a procedure in the

DBMS_STREAMS_ADM package to create an apply process, then the apply

process generates non-NULL tags with a value of '00' in the redo log by

default. In this case, no further action is required for the apply process to

generate non-NULL tags.

If you use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package to

create an apply process, then do not set the apply_tag parameter. Again, the

apply process generates non-NULL tags with a value of '00' in the redo log by

default, and no further action is required.

■ Configure the capture process at each database to capture changes only if the

tag in the redo entry for the change is NULL. You do this by ensuring that each

DML rule in the rule set used by the capture process has the following

condition:

:dml.is_null_tag()='Y'

Each DDL rule should have the following condition:

:ddl.is_null_tag()='Y'

These rule conditions indicate that the capture process captures a change only if

the tag for the change is NULL. If you use the DBMS_STREAMS_ADM package to

generate rules, then each rule has one of these conditions by default.

This configuration prevents change cycling because all of the changes applied by

the apply processes are never recaptured (they were captured originally at the

source databases). Each database sends all of its changes to the hr schema to every

other database. So, in this environment, no changes are lost, and all databases are

synchronized. Figure 8–2 illustrates how tags can be used in a database in a

multiple source environment.
8-10 Oracle9i Streams

Avoid Change Cycling with Tags
Figure 8–2 Tag Use When Each Database Is a Source and Destination Database

See Also: Chapter 23, "Multiple Source Replication Example"

illustrates this example

mult1.net

User Changes

Database Objects

Enqueue
LCRs

Capture changes with
NULL Tags

Capture
Process

Redo
Log

Record
apply
changes
from
mult2.net
(Tag is '00')

Record
apply
changes
from
mult3.net
(Tag is '00')

Queue

Apply Changes sent from mult2.net

Apply Changes sent from mult3.net changes

Dequeue
LCRs sent
From
mult3.net

Dequeue
LCRs sent
From
mult2.net

Apply Changes sent from mult3.net

Apply Changes sent from mult2.net

Record user
changes
(Tag is NULL)

Propagate
Locally

Captured
LCRs

Propagate
Locally

Captured
LCRs
Streams Tags 8-11

Avoid Change Cycling with Tags
Primary Database Sharing Data with Several Secondary Databases
This scenario involves a Streams environment in which one database is the primary

database, and this primary database shares data with several secondary databases.

The secondary databases share data only with the primary database. The secondary

databases do not share data directly with each other, but, instead, share data

indirectly with each other through the primary database. This type of environment

is sometimes called a "hub and spoke" environment, with the primary database

being the hub and the secondary databases being the spokes.

In such an environment, changes are captured, propagated, and applied in the

following way:

■ The primary database captures local changes to the shared data and propagates

these changes to all secondary databases, where these changes are applied at

each secondary database locally.

■ Each secondary database captures local changes to the shared data and

propagates these changes to the primary database only, where these changes are

applied at the primary database locally.

■ The primary database applies changes from each secondary database locally.

Then, these changes are captured at the primary database and propagated to all

secondary databases, except for the one at which the change originated. Each

secondary database applies the changes from the other secondary databases

locally, after they have gone through the primary database. This configuration is

an example of apply forwarding.

An alternate scenario may use queue forwarding. If this environment used

queue forwarding, then changes from secondary databases that are applied at

the primary database are not captured at the primary database. Instead, these

changes are forwarded from the queue at the primary database to all secondary

databases, except for the one at which the change originated.

For example, consider an environment that replicates the database objects and data

in the hr schema between one primary database named ps1.net and three

secondary databases named ps2.net , ps3.net , and ps4.net . DML and DDL

changes made to tables in the hr schema are captured at the primary database and

at the three secondary databases in the environment. Then, these changes are

propagated and applied as described previously. The environment uses apply

forwarding, not queue forwarding, to share data between the secondary databases

See Also: "Directed Networks" on page 3-7 for more information

about apply forwarding and queue forwarding
8-12 Oracle9i Streams

Avoid Change Cycling with Tags
through the primary database. Figure 8–3 illustrates an example environment which

has one primary database and multiple secondary databases.

Figure 8–3 Primary Database Sharing Data with Several Secondary Databases

You can avoid change cycles by configuring the environment in the following way:

■ Configure each apply process at the primary database ps1.net to generate

non-NULL redo tags that indicate the site from which it is receiving changes. In

this environment, the primary database has at least one apply process for each

secondary database from which it receives changes. For example, if an apply

process at the primary database receives changes from the ps2.net secondary

site, then this apply process may generate a raw value that is equivalent to the

hexadecimal value '2' for all changes it applies. You do this by setting the

apply_tag parameter in the CREATE_APPLY or ALTER_APPLY procedure in

the DBMS_APPLY_ADM package to the non-NULL value.

Primary
Database

Secondary
Database

Secondary
Database

Secondary
Database
Streams Tags 8-13

Avoid Change Cycling with Tags
For example, run the following procedure to create an apply process that

generates redo entries with tags that are equivalent to the hexadecimal

value '2' :

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'apply_ps2',
 rule_set_name => 'strmadmin.apply_rules_ps2',
 apply_tag => HEXTORAW('2'),
 apply_captured => true);
END;
/

■ Configure the apply process at each secondary database to generate non-NULL
redo tags. The exact value of the tags is irrelevant as long as it is non-NULL. In

this environment, each secondary database has one apply process that applies

changes from the primary database.

If you use a procedure in the DBMS_STREAMS_ADM package to create an apply

process, then the apply process generates non-NULL tags with a value of '00'
in the redo log by default. In this case, no further action is required for the

apply process to generate non-NULL tags.

For example, assuming no apply processes exist at the secondary databases, run

the ADD_SCHEMA_RULES procedure in the DBMS_STREAMS_ADM package at

each secondary database to create an apply process that generates non-NULL
redo entries with tags that are equivalent to the hexadecimal value '00' :

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'ps1.net');
END;
/

8-14 Oracle9i Streams

Avoid Change Cycling with Tags
■ Configure the capture process at the primary database to capture changes to the

shared data regardless of the tags. You do this by setting the

include_tagged_lcr parameter to true when you run one of the

procedures that generate capture rules in the DBMS_STREAMS_ADM package. If

you use the DBMS_RULE_ADM package to create rules for the capture process at

the primary database, then make sure the rules do not contain is_null_tag
conditions, because these conditions involve tags in the redo log.

For example, run the following procedure at the primary database to produce

one DML capture process rule and one DDL capture process rule that each have

a condition that evaluates to TRUE for changes in the hr schema, regardless of

the tag for the change:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'strmadmin.streams_queue',
 include_tagged_lcr => true, -- Note parameter setting
 include_dml => true,
 include_ddl => true);
END;
/

■ Configure the capture process at each secondary database to capture changes

only if the tag in the redo entry for the change is NULL. You do this by ensuring

that each DML rule in the rule set used by the capture process at the secondary

database has the following condition:

:dml.is_null_tag()='Y'

DDL rules should have the following condition:

:ddl.is_null_tag()='Y'

These rules indicate that the capture process captures a change only if the tag

for the change is NULL. If you use the DBMS_STREAMS_ADMpackage to generate

rules, then each rule has one of these conditions by default. If you use the

DBMS_RULE_ADM package to create rules for the capture process at a secondary

database, then make sure each rule contains one of these conditions.
Streams Tags 8-15

Avoid Change Cycling with Tags
■ Configure one propagation from the queue at the primary database to the

queue at each secondary database. Each propagation should use a rule set with

rules that instruct the propagation to propagate all LCRs in the queue at the

primary database to the queue at the secondary database, except for changes

that originated at the secondary database.

For example, if a propagation propagates changes to the secondary database

ps2.net , whose tags are equivalent to the hexadecimal value '2' , then the

rules for the propagation should propagate all LCRs relating to the hr schema

to the secondary database, except for LCRs with a tag of '2' . For row LCRs,

such rules should include the following condition:

:dml.get_tag()!=HEXTORAW('2')

For DDL LCRs, such rules should include the following condition:

:ddl.get_tag()!=HEXTORAW('2')

You can use the CREATE_RULE procedure in the DBMS_RULE_ADM package to

create rules with these conditions.

■ Configure one propagation from the queue at each secondary database to the

queue at the primary database. A queue at one of the secondary databases

contains only local changes made by user sessions and applications at the

secondary database, not changes made by an apply process. Therefore, no

further configuration is necessary for these propagations.

This configuration prevents change cycling in the following way:

■ Changes that originated at a secondary database are never propagated back to

that secondary database.

■ Changes that originated at the primary database are never propagated back to

the primary database.

■ All changes made to the shared data at any database in the environment are

propagated to every other database in the environment.

So, in this environment, no changes are lost, and all databases are synchronized.
8-16 Oracle9i Streams

Avoid Change Cycling with Tags
Figure 8–4 illustrates how tags are used at the primary database ps1.net .

Figure 8–4 Tags Used at the Primary Database

Primary Database ps1.net

User Changes

Database Objects

Propagate All locally captured
LCRs to ps2.net, except
LCRs with Tag = '2'

Receive LCRs
sent from
ps2.net

Propagate All locally captured
LCRs to ps3.net, except
LCRs with Tag = '3'

Receive LCRs
sent from
ps3.net

Propagate all locally
captured LCRs to ps4.net,
except LCRs with Tag = '4'

Receive LCRs
sent from
ps4.net

Enqueue LCRs
(including Tags)

Capture Changes
with Any Tag
(including a NULL tag)

Capture
Process

Redo
Log

Record
apply
changes
from
ps4.net
(Tag is '4')

Record
apply
changes
from
ps2.net
(Tag is '2')

Record
apply
changes
from
ps3.net
(Tag is '3')

Queue

Apply Process for ps2.net changes

Apply Process for ps3.net changes

Apply Process for ps4.net changes

Dequeue LCRs sent
From ps4.net

Dequeue
LCRs sent
From
ps3.net

Dequeue
LCRs sent
From ps2.net

Apply Changes sent from ps4.net

Apply Changes sent from ps3.net

Apply Changes sent from ps2.net

Record user
changes
(Tag is NULL)
Streams Tags 8-17

Avoid Change Cycling with Tags
Figure 8–5 illustrates how tags are used at one of the secondary databases

(ps2.net).

Figure 8–5 Tags Used at a Secondary Database

Secondary Database ps2.net

Database Objects

Propagate locally
captured LCRs
to ps1.net

Receive LCRs
From Primary
Database

Enqueue
LCRs

Capture Changes
with NULL Tag

Capture
Process

Redo
Log

Record
changes
from
ps1.net
(Tag is '00')

Queue

Apply Process for ps1.net changes

Dequeue
LCRs sent
from ps1.net

Apply Changes sent from ps1.net

Record user changes
(Tag is NULL)

User Changes
8-18 Oracle9i Streams

Avoid Change Cycling with Tags
Primary Database Sharing Data with Several Extended Secondary Databases
In this environment, one primary database shares data with several secondary

databases, but the secondary databases have other secondary databases connected

to them, which will be called remote secondary databases. This environment is an

extension of the environment described in "Primary Database Sharing Data with

Several Secondary Databases" on page 8-12.

A remote secondary database does not share data directly with the primary

database, but instead shares data indirectly with the primary database through a

secondary database. So, the shared data exists at the primary database, at each

secondary database, and at each remote secondary database. Changes made at any

of these databases are captured and propagated to all of the other databases.

Figure 8–6 illustrates an environment with one primary database and multiple

extended secondary databases.
Streams Tags 8-19

Avoid Change Cycling with Tags
Figure 8–6 Primary Database and Several Extended Secondary Databases

Remote
Secondary
Database

Primary
Database

Remote
Secondary
Database

Secondary
Database

. . .

Secondary
Database

Secondary
Database

Remote
Secondary
Database

Remote
Secondary
Database

Remote
Secondary
Database

Remote
Secondary
Database

.
8-20 Oracle9i Streams

Avoid Change Cycling with Tags
In such an environment, you can avoid change cycling in the following way:

■ Configure the primary database in the same way that it is configured in the

example described in "Primary Database Sharing Data with Several Secondary

Databases" on page 8-12.

■ Configure each remote secondary database similar to the way that each

secondary database is configured in the example described in "Primary

Database Sharing Data with Several Secondary Databases" on page 8-12. The

only difference is that the remote secondary databases share data directly with

secondary databases, not the primary database.

■ At each secondary database, configure one apply process to apply changes from

the primary database with a redo tag value that is equivalent to the

hexadecimal value '00' . This value is the default tag value for an apply

process.

■ At each secondary database, configure one apply process to apply changes from

each of its remote secondary databases with a redo tag value that is unique for

the remote secondary database.

■ Configure the capture process at each secondary database to capture all changes

to the shared data in the redo log, regardless of the tag value for the changes.

■ Configure one propagation from the queue at each secondary database to the

queue at the primary database. The propagation should use a rule set with rules

that instruct the propagation to propagate all LCRs in the queue at the

secondary database to the queue at the primary database, except for changes

that originated at the primary database. You do this by adding a condition to

the rules that evaluates to TRUE only if the tag in the LCR does not equal '00' .

For example, enter a condition similar to the following for row LCRs:

:dml.get_tag()!=HEXTORAW('00')
Streams Tags 8-21

Avoid Change Cycling with Tags
■ Configure one propagation from the queue at each secondary database to the

queue at each remote secondary database. Each propagation should use a rule

set with rules that instruct the propagation to propagate all LCRs in the queue

at the secondary database to the queue at the remote secondary database,

except for changes that originated at the remote secondary database. You do

this by adding a condition to the rules that evaluates to TRUE only if the tag in

the LCR does not equal the tag value for the remote secondary database. For

example, if the tag value of a remote secondary database is equivalent to the

hexadecimal value '19' , then enter a condition similar to the following for row

LCRs:

:dml.get_tag()!=HEXTORAW('19')

By configuring the environment in this way, you prevent change cycling, and no

changes originating at any database are lost.
8-22 Oracle9i Streams

Streams Heterogeneous Information
9

Streams Heterogeneous

Information Sharing

This chapter explains concepts relating to Streams support for information sharing

between Oracle databases and non-Oracle databases.

This chapter contains these topics:

■ Oracle to Non-Oracle Data Sharing with Streams

■ Non-Oracle to Oracle Data Sharing with Streams

■ Non-Oracle to Non-Oracle Data Sharing with Streams
Sharing 9-1

Oracle to Non-Oracle Data Sharing with Streams
Oracle to Non-Oracle Data Sharing with Streams
To share DML changes from an Oracle source database to a non-Oracle destination

database, the Oracle database functions as a proxy and carries out some of the steps

that would normally be done at the destination database. That is, the events

intended for the non-Oracle destination database are dequeued in the Oracle

database itself and an apply process at the Oracle database applies the changes to

the non-Oracle database across a network connection through a gateway. Figure 9–1

shows an Oracle databases sharing data with a non-Oracle database.

Figure 9–1 Oracle to Non-Oracle Heterogeneous Data Sharing

Heterogeneous
Services

Oracle
Database

Non-Oracle
Database

Queue

Database
Objects

Dequeue
Events

Gateway

Apply
ChangesApply

Process
9-2 Oracle9i Streams

Oracle to Non-Oracle Data Sharing with Streams
Change Capture and Staging in an Oracle to Non-Oracle Environment
In an Oracle to non-Oracle environment, the capture process functions the same

way as it would in an Oracle-only environment. That is, it finds changes in the redo

log, captures them based on capture process rules, and enqueues the captured

changes as logical change records (LCRs) in a SYS.AnyData queue. In addition, a

single capture process may capture changes that will be applied at both Oracle and

non-Oracle databases.

Similarly, the SYS.AnyData queue that stages the captured LCRs functions the

same way as it would in an Oracle-only environment, and you can propagate LCRs

to any number of intermediate queues in Oracle databases before they are applied

at a non-Oracle database.

Change Apply in an Oracle to Non-Oracle Environment
An apply process running in an Oracle database uses Heterogeneous Services and a

gateway to apply changes encapsulated in LCRs directly to database objects in a

non-Oracle database. The LCRs are not propagated to a queue in the non-Oracle

database, as they would be in an Oracle-only Streams environment. Instead, the

apply process applies the changes directly through a database link to the

non-Oracle database.

See Also:

■ Chapter 2, "Streams Capture Process"

■ Chapter 3, "Streams Staging and Propagation"

See Also: Chapter 4, "Streams Apply Process" for detailed

information about the apply process
Streams Heterogeneous Information Sharing 9-3

Oracle to Non-Oracle Data Sharing with Streams
Apply Process Configuration in an Oracle to Non-Oracle Environment
This section describes the configuration of an apply process that will apply changes

to a non-Oracle database.

Database Link to the Non-Oracle Database When you create an apply process that will

apply changes to a non-Oracle database, you must previously have configured

Heterogeneous Services, the gateway, and a database link, which will be used by

the apply process to apply the changes to the non-Oracle database. The database

link must be created with an explicit CONNECT TO clause.

When the database link is created and working properly, create the apply process

using the CREATE_APPLY procedure in the DBMS_APPLY_ADM package and specify

the database link for the apply_database_link parameter. After you create an

apply process, you can use apply process rules to specify which changes are applied

at the non-Oracle database.

Substitute Key Columns in an Oracle to Non-Oracle Heterogeneous Environment If you use

substitute key columns for any of the tables at the non-Oracle database, then specify

the database link to the non-Oracle database when you run the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package.

See Also:

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide for

more information about Heterogeneous Services and gateways

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the procedures in the DBMS_APPLY_ADM
package

■ Chapter 6, "How Rules Are Used In Streams" for information

about specifying apply process rules

See Also:

■ "Substitute Key Columns" on page 4-11

■ "Managing the Substitute Key Columns for a Table" on

page 14-27
9-4 Oracle9i Streams

Oracle to Non-Oracle Data Sharing with Streams
Parallelism in an Oracle to Non-Oracle Heterogeneous Environment You must set the

parallelism apply process parameter to 1, the default setting, when an apply

process is applying changes to a non-Oracle database. Currently, parallel apply to

non-Oracle databases is not supported. However, you may use multiple apply

processes to apply changes a non-Oracle database.

DML Handlers in an Oracle to Non-Oracle Heterogeneous Environment If you use a DML

handler to process row LCRs for any of the tables at the non-Oracle database, then

specify the database link to the non-Oracle database when you run the

SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package.

Message Handlers in an Oracle to Non-Oracle Heterogeneous Environment If you want to

use a message handler to process user-enqueued messages for a non-Oracle

database, then, when you run the CREATE_APPLY procedure in the

DBMS_APPLY_ADM package, specify the database link to the non-Oracle database

using the apply_database_link parameter, and specify the message handler

procedure using the message_handler parameter.

Error and Conflict Handlers in an Oracle to Non-Oracle Heterogeneous Environment
Currently, error handlers and conflict handlers are not supported when sharing

data from an Oracle database to a non-Oracle database. If an apply error occurs,

then the transaction containing the LCR that caused the error is moved into an

exception queue in the Oracle database.

See Also:

■ "Event Processing Options" on page 4-4

■ "Managing a DML Handler" on page 14-14

See Also:

■ "Event Processing Options" on page 4-4

■ "Managing the Message Handler for an Apply Process" on

page 14-13
Streams Heterogeneous Information Sharing 9-5

Oracle to Non-Oracle Data Sharing with Streams
Datatypes Applied at Non-Oracle Databases
When applying changes to a non-Oracle database, an apply process applies changes

made to columns of only the following datatypes:

■ CHAR

■ VARCHAR2

■ NCHAR

■ NVARCHAR2

■ NUMBER

■ DATE

■ RAW

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

The apply process does not apply changes in columns of the following datatypes to

non-Oracle databases: CLOB, NCLOB, BLOB, BFILE , LONG, LONG RAW, ROWID,
UROWID, and user-defined types (including object types, REFs, varrays, and nested

tables). The apply process raises an error when an LCR contains a datatype that is

not listed, and the transaction containing the LCR that caused the error is moved to

an exception queue in the Oracle database.

Each transparent gateway may have further limitations regarding datatypes. For a

datatype to be supported in an Oracle to non-Oracle environment, the datatype

must be supported by both Streams and the gateway being used.

See Also:

■ Oracle9i SQL Reference for more information about these

datatypes

■ Your Oracle-supplied gateway-specific documentation for

information about transparent gateways
9-6 Oracle9i Streams

Oracle to Non-Oracle Data Sharing with Streams
Types of DML Changes Applied at Non-Oracle Databases
When you specify that DML changes made to certain tables should be applied at a

non-Oracle database, an apply process can apply only the following types of DML

changes:

■ INSERT

■ UPDATE

■ DELETE

Instantiation in an Oracle to Non-Oracle Environment
Before you start an apply process that applies changes to a non-Oracle database,

complete the following steps to instantiate each table at the non-Oracle database:

1. Use the DBMS_HS_PASSTHROUGH package or the tools supplied with the

non-Oracle database to create the table at the non-Oracle database.

2. If the changes that will be shared between the Oracle and non-Oracle database

are captured by a capture process at the Oracle database, then prepare all tables

that will share data for instantiation.

3. Create a PL/SQL procedure (or a C program) that performs the following

actions:

■ Gets the current SCN using the GET_SYSTEM_CHANGE_NUMBERfunction in

the DBMS_FLASHBACK package.

■ Invokes the ENABLE_AT_SYSTEM_CHANGE_NUMBER procedure in the

DBMS_FLASHBACK package to set the current session to the obtained SCN.

This action ensures that all fetches are done using the same SCN.

Note: The apply process cannot apply DDL changes at non-Oracle

databases.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
and your Oracle supplied gateway-specific documentation for more

information about Heterogeneous Services and transparent

gateways

See Also: "Preparing Database Objects for Instantiation at a

Source Database" on page 12-11
Streams Heterogeneous Information Sharing 9-7

Oracle to Non-Oracle Data Sharing with Streams
■ Populates the table at the non-Oracle site by fetching row by row from the

table at the Oracle database and then inserting row by row into the table at

the non-Oracle database. All fetches should be done at the SCN obtained

using the GET_SYSTEM_CHANGE_NUMBER function.

For example, the following PL/SQL procedure gets the flashback SCN, fetches

each row in the hr.regions table in the current Oracle database, and inserts

them into the hr.regions table in the het.net non-Oracle database. Notice

that flashback is disabled before the rows are inserted into the non-Oracle

database.

SET SERVEROUTPUT ON
CREATE OR REPLACE PROCEDURE insert_reg IS
 CURSOR c1 IS
 SELECT region_id, region_name FROM hr.regions;
 c1_rec c1 % ROWTYPE;
 scn NUMBER;
BEGIN
 scn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER(
 query_scn => scn);
 /* Open c1 in flashback mode */
 OPEN c1;
 /* Disable Flashback */
 DBMS_FLASHBACK.DISABLE;
 LOOP
 FETCH c1 INTO c1_rec;
 EXIT WHEN c1%NOTFOUND;
 /*
 Note that all the DML operations inside the loop are performed
 with Flashback disabled
 */
 INSERT INTO hr.regions@het.net VALUES (
 c1_rec.region_id,
 c1_rec.region_name);
 END LOOP;
 COMMIT;
 DBMS_OUTPUT.PUT_LINE('SCN = ' || scn);
 EXCEPTION WHEN OTHERS THEN
 DBMS_FLASHBACK.DISABLE;
 RAISE;
END;
/

Make a note of the SCN returned.
9-8 Oracle9i Streams

Oracle to Non-Oracle Data Sharing with Streams
4. Specify the SCN you obtained in Step 3 in the

SET_TABLE_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package to instruct the apply process to skip all LCRs with changes that

occurred before the SCN you obtained in Step 3. Make sure you set the

apply_database_link parameter to the database link for the remote

non-Oracle database.

Transformations in an Oracle to Non-Oracle Environment
In an Oracle to non-Oracle environment, you can specify rule-based

transformations during capture or apply the same way as you would in an

Oracle-only environment. In addition, if your environment propagates LCRs to one

or more intermediate Oracle databases before they are applied at a non-Oracle

database, then you can specify a rule-based transformation during propagation

from a queue at an Oracle database to another queue at an Oracle database.

Messaging Gateway and Streams
Messaging Gateway is a feature of the Oracle database that provides propagation

between Oracle queues and non-Oracle message queuing systems. Messages

enqueued into an Oracle queue are automatically propagated to a non-Oracle

queue, and the messages enqueued into a non-Oracle queue are automatically

propagated to an Oracle queue. It provides guaranteed message delivery to the

non-Oracle messaging system and supports the native message format for the

non-Oracle messaging system. It also supports specification of user-defined

transformations that are invoked while propagating from an Oracle queue to the

non-Oracle messaging system or from the non-Oracle messaging system to an

Oracle queue.

Note: The user who creates and runs this procedure must have

EXECUTE privilege on the DBMS_FLASHBACK package and all

privileges on the tables involved.

See Also: "Setting Instantiation SCNs at a Destination Database"

on page 14-35 and Oracle9i Supplied PL/SQL Packages and Types
Reference for more information about the

SET_TABLE_INSTANTIATION_SCN procedure in the

DBMS_APPLY_ADM package

See Also: "Rule-Based Transformations" on page 6-25
Streams Heterogeneous Information Sharing 9-9

Non-Oracle to Oracle Data Sharing with Streams
Error Handling in an Oracle to Non-Oracle Environment
If the apply process encounters an unhandled error when it tries to apply an LCR at

a non-Oracle database, then the transaction containing the LCR is placed in an

exception queue in the Oracle database that is running the apply process. The apply

process detects data conflicts in the same way as it does in an Oracle-only

environment, but automatic conflict resolution is not supported currently in an

Oracle to non-Oracle environment. Therefore, any data conflicts encountered are

treated as apply errors.

Example Oracle to Non-Oracle Streams Environment
Chapter 22, "Single Source Heterogeneous Replication Example" contains a detailed

example that includes sharing data in an Oracle to non-Oracle Streams

environment.

Non-Oracle to Oracle Data Sharing with Streams
To capture and propagate changes from a non-Oracle database to an Oracle

database, a custom application is required. This application gets the changes made

to the non-Oracle database by reading from transaction logs, by using triggers, or

by some other method. The application must assemble and order the transactions

and must convert each change into a logical change record (LCR). Then, the

application must enqueue the LCRs into a queue in an Oracle database using the

DBMS_AQ package. The application must commit after enqueuing all LCRs in each

transaction. Figure 9–2 shows a non-Oracle databases sharing data with an Oracle

database.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about the Messaging Gateway
9-10 Oracle9i Streams

Non-Oracle to Oracle Data Sharing with Streams
Figure 9–2 Non-Oracle to Oracle Heterogeneous Data Sharing

Change Capture and Staging in a Non-Oracle to Oracle Environment
Because the custom user application is responsible for assembling changes at the

non-Oracle database into LCRs and enqueuing the LCRs into a queue at the Oracle

database, the application is completely responsible for change capture. This means

that the application must construct LCRs that represent changes at the non-Oracle

database and then enqueue these LCRs into the queue at the Oracle database. The

application must enqueue transactions serially in the same order as the transactions

committed on the non-Oracle source database.

If you want to ensure the same transactional consistency at both the Oracle database

where changes are applied and the non-Oracle database where changes originate,

then you must use a transactional queue to stage the LCRs at the Oracle database.

For example, suppose a single transaction contains three row changes, and the

custom application enqueues three row LCRs, one for each change, and then

commits. With a transactional queue, a commit is performed by the apply process

after the third row LCR, retaining the consistency of the transaction. If you use a

nontransactional queue, then a commit is performed for each row LCR by the apply

Oracle
Database

Non-Oracle
Database

Queue
Get
Changes

Dequeue
Events

Enqueue User
Messages
Containing
LCRs

Database
Objects

User
Application

Apply
Changes

Apply
Process
Streams Heterogeneous Information Sharing 9-11

Non-Oracle to Oracle Data Sharing with Streams
process. The SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package

creates a transactional queue automatically.

Change Apply in a Non-Oracle to Oracle Environment
In a non-Oracle to Oracle environment, the apply process functions the same way as

it would in an Oracle-only environment. That is, it dequeues each event from its

associated queue based on apply process rules, performs any rule-based

transformation, and either sends the event to a handler or applies it directly. Error

handling and conflict resolution also function the same as they would in an

Oracle-only environment. So, you can specify a prebuilt update conflict handler or

create a custom conflict handler to resolve conflicts.

Instantiation from a Non-Oracle Database to an Oracle Database
There is no automatic way to instantiate tables that exist at a non-Oracle database at

an Oracle database. However, you can perform the following general procedure to

instantiate a table manually:

1. At the non-Oracle database, use a non-Oracle utility to export the table to a flat

file.

2. At the Oracle database, create an empty table that matches the table at the

non-Oracle database.

3. At the Oracle database, use SQL*Loader to load the contents of the flat file into

the table.

See Also:

■ "Constructing and Enqueuing LCRs" on page 16-2

■ "SYS.AnyData Queues and User Messages" on page 3-11

See Also:

■ Chapter 4, "Streams Apply Process"

■ Chapter 5, "Rules"

■ Chapter 7, "Streams Conflict Resolution"

■ "Rule-Based Transformations" on page 6-25

See Also: Oracle9i Database Utilities for information about using

SQL*Loader
9-12 Oracle9i Streams

Non-Oracle to Non-Oracle Data Sharing with Streams
Non-Oracle to Non-Oracle Data Sharing with Streams
Streams supports data sharing between two non-Oracle databases through a

combination of non-Oracle to Oracle data sharing and Oracle to non-Oracle data

sharing. Such an environment would use Streams in an Oracle database as an

intermediate database between two non-Oracle databases.

For example, a non-Oracle to non-Oracle environment may consist of the following

databases:

■ A non-Oracle database named het1.net

■ An Oracle database named dbs1.net

■ A non-Oracle database named het2.net

A user application assembles changes at het1.net and enqueues them into a

queue in dbs1.net . Then, the apply process at dbs1.net applies the changes to

het2.net using Heterogeneous Services and a gateway. Another apply process at

dbs1.net could apply some or all of the changes in the queue locally at

dbs1.net . One or more propagations at dbs1.net could propagate some or all of

the changes in the queue to other Oracle databases.
Streams Heterogeneous Information Sharing 9-13

Non-Oracle to Non-Oracle Data Sharing with Streams
9-14 Oracle9i Streams

Streams High Availability Enviro
10

Streams High Availability Environments

This chapter explains concepts relating to Streams high availability environments.

This chapter contains these topics:

■ Overview of Streams High Availability Environments

■ Protection from Failures

■ Best Practices for Streams High Availability Environments
nments 10-1

Overview of Streams High Availability Environments
Overview of Streams High Availability Environments
Configuring a high availability solution requires careful planning and analysis of

failure scenarios. Database backups and physical standby databases provide

physical copies of a source database for failover protection. Data Guard, in SQL

apply mode, implements a logical standby database in a high availability

environment. Because Data Guard is designed for a high availability environment,

it handles most failure scenarios. However, some environments may require the

flexibility available in Oracle Streams, so that they can take advantage of the

extended feature set offered by Streams.

This chapter discusses some of the scenarios that may benefit from a Streams-based

solution and explains Streams-specific issues that arise in high availability

environments. It also contains information about best practices for deploying

Streams in a high availability environment, including hardware failover within a

cluster, instance failover within an Oracle Real Application Clusters cluster, and

failover and switchover between replicas.

Protection from Failures
Oracle Real Application Clusters is the preferred method for protecting from an

instance or system failure. After a failure, services are provided by a surviving node

in the cluster. However, clustering does not protect from user error, media failure, or

disasters. These types of failures require redundant copies of the database. You can

make both physical and logical copies of a database.

Physical copies are identical, block for block, with the source database, and are the

preferred means of protecting data. There are three types of physical copies:

database backup, mirrored or multiplexed database files, and a physical standby

database.

Logical copies contain the same information as the source database, but the

information may be stored differently within the database. Creating a logical copy

of your database offers many advantages. However, you should always create a

logical copy in addition to a physical copy, not instead of physical copy.

See Also:

■ Oracle9i Data Guard Concepts and Administration for more

information about Data Guard

■ Oracle9i Real Application Clusters Concepts
10-2 Oracle9i Streams

Protection from Failures
Some of the benefits of a logical standby include the following:

■ A logical copy can be open while being updated. This ability makes the logical

copy useful for near real time reporting.

■ A logical copy can have a different physical layout that is optimized for its own

purpose. For example, it can contain additional indexes, and thereby improve

the performance of reporting applications that utilize the logical copy.

■ A logical copy provides better protection from corruptions. Because data is

logically captured and applied, it is very unlikely a physical corruption can

propagate to the logical copy of the database.

There are three types of logical copies of a database:

■ Logical standby databases

■ Streams replica databases

■ Application maintained copies

Logical standby databases are best maintained using Oracle Data Guard in SQL

apply mode. The rest of this chapter discusses Streams replica databases and

application maintained copies.

Streams Replica Database
Like Oracle Data Guard in SQL apply mode, Oracle Streams can capture database

changes, propagate them to destinations, and apply the changes at these

destinations. Streams is optimized for replicating data. Streams can locally capture

changes in the online redo log as it is written, and the captured changes can be

propagated asynchronously to replica databases. This optimization can reduce the

latency and can enable the replicas to lag the primary database by no more than a

few seconds. However, there is the possibility for a small window of data loss in the

event of a catastrophic failure, which can be avoided by the use of a companion

physical standby database.

See Also:

■ Oracle9i Backup and Recovery Concepts for more information

about database backups and mirroring or multiplexing

database files

■ Oracle9i Data Guard Concepts and Administration for more

information about physical standby databases and logical

standby databases
Streams High Availability Environments 10-3

Protection from Failures
Nevertheless, you may choose to use Streams to configure and maintain a logical

copy of your production database. Although using Streams may require additional

work, it offers increased flexibility that may be required to meet specific business

requirements. A logical copy configured and maintained using Streams is called a

replica, not a logical standby, because it provides many capabilities that are beyond

the scope of the normal definition of a standby database. Some of the requirements

that can best be met using an Oracle Streams replica are listed in the following

sections.

Updates at the Replica Database
The greatest difference between a replica database and a standby database is that a

replica database can be updated and a standby database cannot. Applications that

must update data can run against the replica, including job queues and reporting

applications that log reporting activity. Replica databases also allow local

applications to operate autonomously, protecting local applications from WAN

failures and reducing latency for database operations.

Heterogeneous Platform Support
The production and the replica need not be running on the exact same platform.

This gives more flexibility in using computing assets, and facilitates migration

between platforms.

Multiple Character Sets
Streams replicas can use different character sets than the production database. Data

is automatically converted from one character set to another before being applied.

This ability is extremely important if you have global operations and you must

distribute data in multiple countries.

Mining the Online Redo Logs To Minimize Latency
If the replica is used for near real-time reporting, Streams can lag the production

database by no more than a few seconds, providing up-to-date and accurate

queries. Changes can be read from the online redo logs as the logs are written,

rather than from the redo logs after archiving.
10-4 Oracle9i Streams

Protection from Failures
Greater Than Ten Copies Of Data
Streams supports unlimited numbers of replicas. Its flexible routing architecture

allows for hub and spoke configurations that can efficiently propagate data to

hundreds of replicas. This ability may be important if you must provide

autonomous operation to many local offices in your organization. In contrast,

because standby databases configured with Data Guard use the

LOG_ARCHIVE_DEST_n initialization parameter to specify destinations, there is a

limit of ten copies when you use Data Guard.

Fast Failover
Streams replicas can be open to read/write operations at all times. If a primary

database fails, Streams replicas are able to instantly resume processing. A small

window of data may be left at the primary database, but this data will be

automatically applied when the primary recovers. This ability may be important if

you value fast recovery time over no lost data. Assuming the primary database can

eventually be recovered, the data is only temporarily lost.

Single Capture for Multiple Destinations
In a complex environment, changes need only be captured once. These changes can

then be sent to multiple destinations. This ability enables more efficient use of the

resources needed to mine the redo logs for changes.

Coexistence with Streams
If you wish to have a logical standby database, but are also using Streams on the

primary database, you must use Streams APIs to create and maintain the logical

copy of the database. Data Guard SQL apply mode and Streams are not supported

on the same database.

When Not to Use Streams
As mentioned previously, there are scenarios where customers may choose to use

Streams to meet some of their high availability requirements. One of the rules of

high availability is to keep it simple. Oracle Data Guard is designed for high

availability and is easier to implement than a Streams-based high availability

solution. Customers who decide to leverage the flexibility offered by Streams must

be prepared to invest in the expertise and planning required to make a

Streams-based solution robust. This means writing scripts to implement much of

the automation and management tools provided out-of-the-box with Oracle Data

Guard.
Streams High Availability Environments 10-5

Protection from Failures
Also, because Streams was designed for data integration, not high availability, it

does not provide a zero data loss mode of operation, as does Oracle Data Guard.

Customers who cannot afford to lose transactions in the event of a failure should

either use Data Guard rather than Streams, or complement their Streams-based

solution with a zero data loss physical standby maintained by Data Guard. Data

Guard also provides a delayed apply option to protect from human errors. Again, a

complimentary physical standby can provide such protection.

Application Maintained Copies
The best availability can be achieved by designing the maintenance of logical copies

of data directly into an application. The application knows what data is valuable

and must be immediately moved off-site to guarantee no data loss. It can also

synchronously replicate truly critical data, while asynchronously replicating less

critical data. Applications maintain copies of data by either synchronously or

asynchronously sending data to other applications that manage another logical

copy of the data. Synchronous operations are performed using the distributed SQL

or remote procedure features of the database. Asynchronous operations are

performed using Advanced Queuing. Advanced Queuing is a database integrated

message queuing feature built on top of the infrastructure of Oracle Streams.

Although the highest levels of availability can be achieved with application

maintained copies of data, great care is required to realize these results. Typically, a

great amount of custom development is required. Many of the difficult boundary

conditions that have been analyzed and solved with solutions such as Data Guard

and Streams replication must be re-analyzed and solved by the custom application

developers. In addition, standard solutions like Data Guard and Streams replication

undergo stringent testing both by Oracle and its customers. It will take a great deal

of effort before a custom-developed solution can exhibit the same degree of

maturity. For these reasons, only organizations with substantial patience and

expertise should attempt to build a high availability solution with application

maintained copies.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about developing applications with

Advanced Queuing
10-6 Oracle9i Streams

Best Practices for Streams High Availability Environments
Best Practices for Streams High Availability Environments
Implementing Streams in a high availability environment requires consideration of

possible failure and recovery scenarios, and the implementation of procedures to

ensure Streams continues to capture, propagate, and apply changes after a failure.

Some of the issues that must be examined include the following:

■ Configuring Streams for High Availability

■ Directly Connecting Every Database to Every Other Database

■ Creating Hub and Spoke Configurations

■ Configuring Oracle Real Application Clusters with Streams

■ Recovering from Failures

■ Reestablishing Database Links After a Failover

■ Restarting Capture After a Failover

■ Restarting Propagation After a Failover

■ Restarting Apply After a Failover

The following sections discuss these issues in detail.

Configuring Streams for High Availability
When configuring a solution using Streams, it is important to anticipate failures and

design availability into the architecture. You must examine every database in the

distributed system, and design a recovery plan in case of failure of that database. In

some situations, failure of a database affects only services accessing data on that

database. In other situations, a failure is multiplied, because it may affect other

databases.

Directly Connecting Every Database to Every Other Database
A configuration where each database is directly connected to every other database

in the distributed system is the most resilient to failures, because a failure of one

database will not prevent any other databases from operating or communicating.

Assuming all data is replicated, services that were using the failed database can

connect to surviving replicas.
Streams High Availability Environments 10-7

Best Practices for Streams High Availability Environments
Creating Hub and Spoke Configurations
Although configurations where each database is directly connected to every other

database provide the best high availability characteristics, they can become

unmanageable when the number of databases becomes large. Hub and spoke

configurations solve this manageability issue by funneling changes from many

databases into a hub database, and then to other hub databases, or to other spoke

databases. To add a new source or destination you simply connect it to a hub

database, rather than establishing connections to every other database.

A hub, however, becomes a very important node in your distributed environment.

Should it fail, all communications flowing through the hub will fail. Due to the

asynchronous nature of the events propagating through the hub, it can be very

difficult to redirect a stream from one hub to another. A better approach is to make

the hub resilient to failures.

The same techniques used to make a single database resilient from failures also

apply to distributed hub databases. Oracle Corporation recommends Oracle Real

Application Clusters to provide protection from instance and node failures. This

configuration should be combined with a "no loss" physical standby database, to

protect from disasters and data errors. Oracle Corporation does not recommend

using a Streams replica as the only means to protect from disasters or data errors.

Configuring Oracle Real Application Clusters with Streams
Using Oracle Real Application Clusters with Streams introduces some important

considerations. Capturing changes from the online redo log as it is written is not

supported with Oracle Real Application Clusters. Rather, changes are captured

from the archived redo log. Capturing from the archived redo logs introduces

additional latency between the time a change is made at the production database

and the time it appears at the replica.

See Also:

■ "Each Databases Is a Source and Destination Database for

Shared Data" on page 8-8 and Chapter 23, "Multiple Source

Replication Example" for a detailed example of such an

environment

■ "Queue Forwarding and Apply Forwarding" on page 3-8

See Also: "Primary Database Sharing Data with Several

Secondary Databases" on page 8-12 for a detailed example of such

an environment
10-8 Oracle9i Streams

Best Practices for Streams High Availability Environments
If low latency is important, a cold failover cluster should be used to protect from

system failure rather than Oracle Real Application Clusters. A cold failover cluster

is not an Oracle Real Application Cluster. Instead, a cold failover cluster uses a

secondary node to mount and recover the database when the first node fails.

When running in an Oracle Real Application Clusters cluster, a capture process

runs on the instance that owns the queue that is receiving the captured logical

change records (LCRs). Job queues should be running on all instances where

propagation is enabled. Assuming propagation is enabled for an instance, a

propagation job running on that instance will propagate LCRs from any queue

owned by that instance to destination queues. An apply process runs on the

instance that owns the queue from which the apply process dequeues its events.

That may or may not be the same queue on which capture runs.

Any propagation to the database running Oracle Real Application Clusters is made

over database links. The database links must be configured to connect to the

destination instance that owns the queue that will receive the events.

Recovering from Failures
The following sections provide best practices for recovering from failures.

Reestablishing Database Links After a Failover
It is important to ensure that propagation continues to function after a failure of a

destination database instance. A propagation job will retry (with increasing delay

between retries) the database link continually after a failure until the connection is

reestablished. In the event the database is restarted on the same node, or on a

different node in a cold failover cluster, the connection should be reestablished once

the database instance is restarted. In some circumstances, the database link may be

waiting on a read or write, and will not detect the failure until a lengthy timeout,

controlled by the TCP_KEEPALIVE_INTERVAL TCP/IP parameter, expires. In such

See Also:

■ "Streams Capture Processes and Oracle Real Application

Clusters" on page 2-17

■ "Streams Queues and Oracle Real Application Clusters" on

page 3-18

■ "Streams Apply Processes and Oracle Real Application

Clusters" on page 4-29
Streams High Availability Environments 10-9

Best Practices for Streams High Availability Environments
circumstances, the database link should be dropped and re-created to ensure that

communication is reestablished quickly.

When an instance in an Oracle Real Application Clusters cluster fails, the instance is

recovered by another node in the cluster. Each queue that was previously owned by

the failed instance is assigned to a new instance. Any inbound database links must

be dropped and reestablished to point to the new instance that owns the destination

queue. In a high availability environment, you can prepare scripts that will drop

and re-create all necessary database links. Once a failed instance has been

recovered, you can execute these scripts so that Streams can resume propagation.

Restarting Capture After a Failover
After a failure and restart of a single node database, or a failure and restart of a

database on another node in a cold failover cluster, the capture process will

automatically return to the state it was in at the time of the failure. That is, if it was

running at the time of the failure, there is no need to restart the capture process.

For a capture process running in an Oracle Real Application Clusters environment,

if an instance running the capture process fails, then the queue that receives the

captured LCRs will be assigned to another node in the cluster. You must determine

which instance now owns the queue used by the capture process by querying the

DBA_QUEUE_TABLES data dictionary view, and then restart the capture process on

that node. If the failed instance is brought back online subsequently, it will not

restart the capture process, even though it was running the capture process at the

time of failure, because it is no longer the owner of the queue used by the capture

process.

See Also: "Configuring Network Connectivity and Database

Links" on page 11-14 for information about creating database links

in a Streams environment

See Also:

■ "Streams Capture Processes and Oracle Real Application

Clusters" on page 2-17

■ "Starting a Capture Process" on page 12-5
10-10 Oracle9i Streams

Best Practices for Streams High Availability Environments
Restarting Propagation After a Failover
For events to be propagated from a source queue to a destination queue, a

propagation job must run on the instance owning the source queue. In a single node

database, or cold failover cluster, propagation will resume when the single database

instance is restarted.

When running in a Real Application Cluster environment, care must be taken to

ensure the propagation jobs are enabled on the correct instance. A propagation job

should run on the instance that owns the source queues from which the

propagation job sends events to destination queues. An instance affinity parameter

can be specified for the propagation job that will force the job to run on a particular

instance. If the instance fails, and the queue ownership migrates to another

instance, then the propagation job affinity must be reset to this other instance. Also,

for any jobs to run on an instance, the dynamic initialization parameter

JOB_QUEUE_PROCESSES must be greater than zero for that instance.

Restarting Apply After a Failover
After a failure and restart of a single node database, or a failure and restart of a

database on another node in a cold failover cluster, the apply process will

automatically return to the state it was in at the time of the failure. That is, if it was

running at the time of the failure, then there is no need to restart the apply process.

In an Oracle Real Application Clusters cluster, if an instance hosting the apply

process fails, the queue from which the apply process dequeues the events will be

assigned to another node in the cluster. You need to determine which instance now

owns the queue used by the apply process by querying the DBA_QUEUE_TABLES
data dictionary view, and then restart the apply process on that node. If the failed

instance is brought back online subsequently, it will not restart the apply process,

even though it was running the apply process at the time of failure, because it is no

longer the owner of the queue used by the apply process.

See Also: "Streams Queues and Oracle Real Application Clusters"

on page 3-18

See Also:

■ "Streams Apply Processes and Oracle Real Application

Clusters" on page 4-29

■ "Starting an Apply Process" on page 14-7
Streams High Availability Environments 10-11

Best Practices for Streams High Availability Environments
10-12 Oracle9i Streams

Part II

 Streams Administration

This part describes managing a Streams environment, including step-by-step

instructions for configuring, administering, monitoring and troubleshooting. This

part contains the following chapters:

■ Chapter 11, "Configuring a Streams Environment"

■ Chapter 12, "Managing a Capture Process"

■ Chapter 13, "Managing Staging and Propagation"

■ Chapter 14, "Managing an Apply Process"

■ Chapter 15, "Managing Rules and Rule-Based Transformations"

■ Chapter 16, "Other Streams Management Tasks"

■ Chapter 17, "Monitoring a Streams Environment"

■ Chapter 18, "Troubleshooting a Streams Environment"

Configuring a Streams Enviro
11

Configuring a Streams Environment

This chapter provides instructions for preparing a database or a distributed

database environment to use Streams and for configuring a Streams environment.

This chapter contains these topics:

■ Configuring a Streams Administrator

■ Setting Initialization Parameters Relevant to Streams

■ Setting Export and Import Parameters Relevant to Streams

■ Configuring a Database to Run a Streams Capture Process

■ Configuring Network Connectivity and Database Links

■ Configuring a Capture-Based Streams Environment
nment 11-1

Configuring a Streams Administrator
Configuring a Streams Administrator
To manage a Streams environment, either create a new user with the appropriate

privileges or grant these privileges to an existing user. You should not use the SYS
or SYSTEM user as a Streams administrator, and the Streams administrator should

not use the SYSTEM tablespace as its default tablespace.

Complete the following steps to configure a Streams administrator at each database

in the environment that will use Streams:

1. Connect as an administrative user who can create users, grant privileges, create

tablespaces, and alter users.

2. Create a new user to act as the Streams administrator or use an existing user.

For example, to create a new user named strmadmin , run the following

statement:

CREATE USER strmadmin IDENTIFIED BY strmadminpw;

3. Grant the Streams administrator at least the following privileges:

GRANT CONNECT, RESOURCE TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

Note: To ensure security, use a password other than

strmadminpw for the Streams administrator.
11-2 Oracle9i Streams

Configuring a Streams Administrator
4. If necessary, grant the Streams administrator the following privileges:

■ EXECUTE privilege on the DBMS_APPLY_ADM package if the Streams

administrator will manage one or more apply processes on the database.

The Streams administrator also must have EXECUTE privilege on any apply

handlers and error handlers configured using the subprograms in the

DBMS_APPLY_ADM package.

■ EXECUTE privilege on the DBMS_CAPTURE_ADM package if the Streams

administrator will manage one or more capture processes on the database

■ EXECUTE privilege on the DBMS_PROPAGATION_ADM package if the

Streams administrator will manage one or more propagations on the

database

■ EXECUTE privilege on the DBMS_FLASHBACK package if the Streams

administrator will need to obtain the current SCN for a database. Typically,

the Streams administrator must determine the current SCN to set an

instantiation SCN using the SET_TABLE_INSTANTIATION_SCN,

SET_SCHEMA_INSTANTIATION_SCN, or

SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package.

■ SELECT_CATALOG_ROLE if you want to enable the Streams administrator

to monitor the environment easily

■ SELECT ANY DICTIONARY privilege if you plan to use the Streams tool in

Oracle Enterprise Manager

■ SELECT privilege on the DBA_APPLY_ERROR data dictionary view if you

want the Streams administrator to be able to select from this view within a

PL/SQL subprogram. See "Displaying Detailed Information About Apply

Errors" on page 17-37 for an example of such a PL/SQL subprogram.

■ If no apply user is specified for an apply process, then the necessary

privileges to perform DML and DDL changes on the apply objects owned

by another user. If an apply user is specified, then the apply user must have

these privileges.

■ If no apply user is specified for an apply process, then EXECUTE privilege

on any PL/SQL procedure owned by another user that is executed by a

Streams apply process. These procedures may be used in apply handlers or

error handlers. If an apply user is specified, then the apply user must have

these privileges.
Configuring a Streams Environment 11-3

Setting Initialization Parameters Relevant to Streams
■ EXECUTE privilege on any PL/SQL function owned by another user that is

specified in a rule-based transformation for a rule used by a Streams

capture process, propagation, or apply process. For an apply process, if an

apply user is specified, then the apply user must have these privileges.

■ If the Streams administrator does not own the queue used by a Streams

capture process, propagation, or apply process, and is not specified as the

queue user for the queue when the queue is created, then the Streams

administrator must be configured as a secure queue user of the queue if you

want the Streams administrator to be able to enqueue events into or

dequeue events from the queue. The Streams administrator may also need

ENQUEUE or DEQUEUE privileges on the queue, or both. See "Enabling a

User to Perform Operations on a Secure Queue" on page 13-3 for

instructions.

5. Either create a tablespace for the Streams administrator or use an existing

tablespace. For example, the following statement creates a new tablespace for

the Streams administrator:

CREATE TABLESPACE streams_tbs DATAFILE '/usr/oracle/dbs/streams_tbs.dbf'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

6. Specify the tablespace for the Streams administrator:

ALTER USER strmadmin DEFAULT TABLESPACE streams_tbs
 QUOTA UNLIMITED ON streams_tbs;

7. Repeat all of the previous steps at each database in the environment that will

use Streams.

Setting Initialization Parameters Relevant to Streams
Table 11–1 lists initialization parameters that are important for the operation,

reliability, and performance of a Streams environment. Set these parameters

appropriately for your Streams environment.

See Also: Oracle9i Database Reference for more information about

these initialization parameters
11-4 Oracle9i Streams

Setting Initialization Parameters Relevant to Streams
Table 11–1 Initialization Parameters Relevant to Streams (Page 1 of 4)

Parameter Values Description

AQ_TM_PROCESSES Default: 0

Range: 0 to 10

Establishes queue monitor processes.
Setting the parameter to 1 or more starts
the specified number of queue monitor
processes. These queue monitor
processes are responsible for managing
time-based operations of messages such
as delay and expiration, cleaning up
retained messages after the specified
retention time, and cleaning up
consumed messages if the retention time
is zero.

If you want to enqueue user events into a
Streams queue, then set this parameter to
1 or higher. User events are those created
by users and applications, not by a
Streams capture process.

ARCHIVE_LAG_TARGET Default: 0

Range: 0 or any integer in [60 , 7200]

Limits the amount of data that can be lost
and effectively increases the availability
of the standby database by forcing a log
switch after a user-specified time period
elapses.

If you are using Streams in a Real
Application Clusters environment, then
set this parameter to a value greater than
zero to switch the log files automatically.

See Also: "Streams Capture Processes
and Oracle Real Application Clusters" on
page 2-17

COMPATIBLE Default: 8.1.0

Range: 8.1.0 to Current Release
Number

This parameter specifies the release with
which the Oracle server must maintain
compatibility. Oracle servers with
different compatibility levels can
interoperate.

To use Streams, this parameter must be
set to 9.2.0 or higher.

GLOBAL_NAMES Default: false

Range: true or false

Specifies whether a database link is
required to have the same name as the
database to which it connects.

If you want to use Streams to share
information between databases, then set
this parameter to true at each database
that is participating in your Streams
environment.
Configuring a Streams Environment 11-5

Setting Initialization Parameters Relevant to Streams
JOB_QUEUE_PROCESSES Default: 0

Range: 0 to 1000

Specifies the number of Jn job queue
processes for each instance (J000 ...
J999). Job queue processes handle
requests created by DBMS_JOB.

You can change the setting for
JOB_QUEUE_PROCESSES dynamically
by using the ALTER SYSTEM statement.

This parameter must be set to at least 2
at each database that is propagating
events in your Streams environment, and
should be set to the same value as the
maximum number of jobs that can run
simultaneously plus two.

LOG_PARALLELISM Default: 1

Range: 1 to 255

Specifies the level of concurrency for
redo allocation within Oracle.

If you plan to run one or more capture
processes on a database, then this
parameter must be set to 1.

Setting this parameter to 1 does not
affect the parallelism of capture. You can
set parallelism for a capture process
using the SET_PARAMETER procedure in
the DBMS_CAPTURE_ADM package.

LOGMNR_MAX_PERSISTENT_SESSIONSDefault: 1

Range: 1 to
LICENSE_MAX_SESSIONS

Specifies the maximum number of
persistent LogMiner mining sessions that
are concurrently active when all sessions
are mining redo logs generated by
instances.

If you plan to run multiple Streams
capture processes on a single database,
then set this parameter equal to or higher
than the number of planned capture
processes.

OPEN_LINKS Default: 4

Range: 0 to 255

Specifies the maximum number of
concurrent open connections to remote
databases in one session. These
connections include database links, as
well as external procedures and
cartridges, each of which uses a separate
process.

In a Streams environment, make sure this
parameter is set to the default value of 4
or higher.

Table 11–1 Initialization Parameters Relevant to Streams (Page 2 of 4)

Parameter Values Description
11-6 Oracle9i Streams

Setting Initialization Parameters Relevant to Streams
PARALLEL_MAX_SERVERS Default: Derived from the values of
the following parameters:

CPU_COUNT

PARALLEL_ADAPTIVE_MULTI_USER

PARALLEL_AUTOMATIC_TUNING

Range: 0 to 3599

Specifies the maximum number of
parallel execution processes and parallel
recovery processes for an instance. As
demand increases, Oracle will increase
the number of processes from the
number created at instance startup up to
this value.

In a Streams environment, each capture
process and apply process may use
multiple parallel execution servers. Set
this initialization parameter to an
appropriate value to ensure that there are
enough parallel execution servers.

PROCESSES Default: Derived from
PARALLEL_MAX_SERVERS

Range: 6 to operating system
dependent limit

Specifies the maximum number of
operating system user processes that can
simultaneously connect to Oracle.

Make sure the value of this parameter
allows for all background processes, such
as locks, job queue processes, and
parallel execution processes. In Streams,
capture processes and apply processes
use background processes and parallel
execution processes, and propagation
jobs use job queue processes.

SESSIONS Default: Derived from:

 (1.1 * PROCESSES) + 5

Range: 1 to 231

Specifies the maximum number of
sessions that can be created in the
system.

If you plan to run one or more capture
processes or apply processes in a
database, then you may need to increase
the size of this parameter. Each
background process in a database
requires a session.

SGA_MAX_SIZE Default: Initial size of SGA at startup

Range: 0 to operating system
dependent limit

Specifies the maximum size of SGA for
the lifetime of a database instance.

If you plan to run multiple capture
processes on a single database, then you
may need to increase the size of this
parameter.

Table 11–1 Initialization Parameters Relevant to Streams (Page 3 of 4)

Parameter Values Description
Configuring a Streams Environment 11-7

Setting Export and Import Parameters Relevant to Streams
Setting Export and Import Parameters Relevant to Streams
This section describes Export and Import utility parameters that are relevant

to Streams.

SHARED_POOL_SIZE Default:

32-bit platforms: 8 MB, rounded up to
the nearest granule size

64-bit platforms: 64 MB, rounded up
to the nearest granule size

Range:

Minimum: the granule size

Maximum: operating
system-dependent

Specifies (in bytes) the size of the shared
pool. The shared pool contains shared
cursors, stored procedures, control
structures, and other structures.

You should increase the size of the
shared pool by 10 MB for each capture
process on a database.

TIMED_STATISTICS Default:

If STATISTICS_LEVEL is set to
TYPICAL or ALL, then true

If STATISTICS_LEVEL is set to
BASIC, then false

The default for STATISTICS_LEVEL
is TYPICAL.

Range: true or false

Specifies whether or not statistics related
to time are collected.

If you want to collect elapsed time
statistics in the data dictionary views
related to Streams, then set this
parameter to true . The views that
include elapsed time statistics include:
V$STREAMS_CAPTURE,
V$STREAMS_APPLY_COORDINATOR,
V$STREAMS_APPLY_READER,
V$STREAMS_APPLY_SERVER.

See Also:

■ "Instantiation" on page 2-13

■ "Performing Full Database Export/Import on a Database Using

Streams" on page 16-35

■ Oracle9i Database Utilities for information about performing a

exports and imports

Table 11–1 Initialization Parameters Relevant to Streams (Page 4 of 4)

Parameter Values Description
11-8 Oracle9i Streams

Setting Export and Import Parameters Relevant to Streams
Export Utility Parameters Relevant to Streams
The following Export utility parameter is relevant to Streams.

The OBJECT_CONSISTENT Export Utility Parameter and Streams
The OBJECT_CONSISTENT Export utility parameter specifies whether or not the

Export utility repeatedly uses the SET TRANSACTION READ ONLY statement to

ensure that the exported data and the exported procedural actions for each object

are consistent to a single point in time. If OBJECT_CONSISTENT is set to y, then

each object is exported in its own read-only transaction, even if it is partitioned. In

contrast, if you use the CONSISTENTExport utility parameter, then there is only one

read-only transaction.

When you perform an instantiation in a Streams environment, some degree of

consistency is required in the export dump file. The OBJECT_CONSISTENT Export

utility parameter is sufficient to ensure this consistency for Streams instantiations. If

you are using an export dump file for other purposes in addition to a Streams

instantiation, and these other purposes have more stringent consistency

requirements than that provided by OBJECT_CONSISTENT, then you can use

Export utility parameters CONSISTENT, FLASHBACK_SCN, or FLASHBACK_TIME
for Streams instantiations.

By default the OBJECT_CONSISTENT Export utility parameter is set to n. Specify y
when an export is performed as part of a Streams instantiation and no more

stringent Export utility parameter is needed.

Attention:

■ During an export for a Streams instantiation, make sure no

DDL changes are made to objects being exported.

■ When you export a database or schema that contains rules with

non-NULL action contexts, then the database or the default

tablespace of the schema that owns the rules must be writeable.

If the database or tablespace is read-only, then export errors

result.
Configuring a Streams Environment 11-9

Setting Export and Import Parameters Relevant to Streams
Import Utility Parameters Relevant to Streams
The following Import utility parameters are relevant to Streams.

The STREAMS_INSTANTIATION Import Utility Parameter and Streams
The STREAMS_INSTANTIATION Import utility parameter specifies whether to

import Streams instantiation metadata that may be present in the export dump file.

When this parameter is set to y, the import session sets its Streams tag to the

hexadecimal equivalent of '00' to avoid cycling the changes made by the import.

Redo entries resulting from the import have this tag value. By default the

STREAMS_INSTANTIATION Import utility parameter is set to n. Specify y when an

import is performed as part of a Streams instantiation.

The STREAMS_CONFIGURATION Import Utility Parameter and Streams
The STREAMS_CONFIGURATION Import utility parameter specifies whether to

import any general Streams metadata that may be present in the export dump file.

This import parameter is relevant only if you are performing a full database import.

By default the STREAMS_CONFIGURATION Import utility parameter is set to y.

Typically, specify y if an import is part of a backup or restore operation.

The following objects are imported regardless of the STREAMS_CONFIGURATION
setting:

■ Streams queues and their queue tables (if STREAMS_CONFIGURATION is set

to n, then these queues are not started when they are imported)

■ Queue subscribers

■ Advanced queuing agents

■ Job queue processes related to Streams propagations

■ Rules, including their rule sets and evaluation contexts. All rules are imported,

including Streams rules and non-Streams rules. Streams rules are rules

generated by the system when certain procedures in the DBMS_STREAMS_ADM
package are run, while non-Streams rules are rules created using the

DBMS_RULE_ADM package.

If the STREAMS_CONFIGURATIONparameter is set to n, then information about

Streams rules is not imported into the following data dictionary views:

ALL_STREAMS_GLOBAL_RULES, ALL_STREAMS_SCHEMA_RULES,

ALL_STREAMS_TABLE_RULES, DBA_STREAMS_GLOBAL_RULES,

See Also: Chapter 8, "Streams Tags"
11-10 Oracle9i Streams

Setting Export and Import Parameters Relevant to Streams
DBA_STREAMS_SCHEMA_RULES, and DBA_STREAMS_TABLE_RULES.

However, regardless of the STREAMS_CONFIGURATION parameter setting,

information about these rules is imported into the ALL_RULES,

ALL_RULE_SETS, ALL_RULE_SET_RULES, DBA_RULES, DBA_RULE_SETS,
DBA_RULE_SET_RULES, USER_RULES, USER_RULE_SETS, and

USER_RULE_SET_RULES data dictionary views.

When the STREAMS_CONFIGURATION Import utility parameter is set to y, the

import includes the following information; when the STREAMS_CONFIGURATION
Import utility parameter is set to n, the import does not include the following

information:

■ Capture processes, including the following information for each capture

process:

■ Name of the capture process

■ State of the capture process

■ Capture process parameter settings

■ Queue owner and queue name of the queue used by the capture process

■ Rule set owner and rule set name of the rule set used by the capture process

■ If any tables have been prepared for instantiation at the export database, then

these tables are prepared for instantiation at the import database.

■ If any schemas have been prepared for instantiation at the export database, then

these schemas are prepared for instantiation at the import database.

■ If the export database has been prepared for instantiation, then the import

database is prepared for instantiation.

■ The state of each Streams queue, either started or stopped (Streams queues

themselves are imported regardless of the parameter setting)

■ Propagations, including the following information for each propagation:

■ Name of the propagation

■ Queue owner and queue name of the source queue

■ Queue owner and queue name of the destination queue

■ Destination database link

■ Rule set owner and rule set name of the rule set used by the propagation
Configuring a Streams Environment 11-11

Setting Export and Import Parameters Relevant to Streams
■ Apply processes, including the following information for each apply process:

■ Name of the apply process

■ State of the apply process

■ Apply process parameter settings

■ Queue owner and queue name of the queue used by the apply process

■ Rule set owner and rule set name of the rule set used by the apply process

■ Whether the apply process applies captured or user-enqueued events

■ Apply user for the apply process, if one exists

■ Message handler used by the apply process, if one exists

■ DDL handler used by the apply process, if one exists

■ Tag generated in the redo log for changes made by the apply process

■ Apply database link, if one exists

■ Source database for the apply process

■ The information about apply progress in the DBA_APPLY_PROGRESS data

dictionary view, including applied message number, oldest message

number, apply time, and applied message create time

■ Apply errors

■ DML handlers

■ Error handlers

■ Update conflict handlers

■ Substitute key columns for apply tables

■ Instantiation SCN for each apply object

■ Ignore SCN for each apply object

■ Some data dictionary information about Streams rules. The rules themselves are

imported regardless of the setting for the STREAMS_CONFIGURATION
parameter.
11-12 Oracle9i Streams

Configuring a Database to Run a Streams Capture Process
Configuring a Database to Run a Streams Capture Process
The following sections describe database requirements for running a Streams

capture process:

■ Configuring the Database to Run in ARCHIVELOG Mode

■ Specifying an Alternate Tablespace for LogMiner

In addition to these tasks, make sure the initialization parameters are set properly

on any database that will run a capture process.

Configuring the Database to Run in ARCHIVELOG Mode
Any database where changes are captured by a capture process must be running in

ARCHIVELOG mode.

Specifying an Alternate Tablespace for LogMiner
By default, the LogMiner tables are in the SYSTEM tablespace, but the SYSTEM
tablespace may not have enough space for these tables once a capture process starts

to capture changes. Therefore, you must create an alternate tablespace for the

LogMiner tables.

The following example creates a tablespace named logmnrts for use by LogMiner:

1. Connect as an administrative user who has privileges to create tablespaces and

execute subprograms in the DBMS_LOGMNR_D package.

2. Either create an alternate tablespace for the LogMiner tables or use an existing

tablespace. For example, the following statement creates an alternate tablespace

for the LogMiner tables:

CREATE TABLESPACE logmnrts DATAFILE '/usr/oracle/dbs/logmnrts.dbf'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

See Also: "Setting Initialization Parameters Relevant to Streams"

on page 11-4

See Also:

■ "ARCHIVELOG Mode and a Capture Process" on page 2-25

■ Oracle9i Database Administrator’s Guide for information about

running a database in ARCHIVELOG mode
Configuring a Streams Environment 11-13

Configuring Network Connectivity and Database Links
3. Run the SET_TABLESPACE procedure in the DBMS_LOGMNR_D package to set

the alternate tablespace for LogMiner. For example, to specify a tablespace

named logmnrts , run the following procedure:

EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE('logmnrts');

Configuring Network Connectivity and Database Links
If you plan to use Streams to share information between databases, then configure

network connectivity and database links between these databases:

■ For Oracle databases, configure your network and Oracle Net so that the

databases can communicate with each other.

■ For non-Oracle databases, configure an Oracle gateway for communication

between the Oracle database and the non-Oracle database.

■ If you plan to propagate events from a source queue at a database to a

destination queue at another database, then create a private database link

between the database containing the source queue and the database containing

the destination queue. Each database link should use a CONNECT TO clause for

the user propagating events between databases.

For example, to create a database link to a database named dbs2.net
connecting as a Streams administrator named strmadmin , run the following

statement:

CREATE DATABASE LINK dbs2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'dbs2.net';

See Also: Oracle9i Net Services Administrator’s Guide

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide

See Also: Oracle9i Database Administrator’s Guide for more

information about creating database links
11-14 Oracle9i Streams

Configuring a Capture-Based Streams Environment
Configuring a Capture-Based Streams Environment
This section describes the general steps for performing the following tasks:

■ Creating a New Streams Single Source Environment

■ Adding Shared Objects to an Existing Single Source Environment

■ Adding a New Destination Database to an Existing Single Source Environment

■ Creating a New Multiple Source Environment

■ Adding Shared Objects to an Existing Multiple Source Environment

■ Adding a New Database to an Existing Multiple Source Environment

Creating a New Streams Single Source Environment
This section lists the general steps to perform when creating a new single source

Streams environment. A single source environment is one in which there is only one

source database for shared data. There may be more than one source database in a

single source environment, but in this case no two source databases capture any of

the same data.

Before starting capture processes and configuring propagations in a new Streams

environment, make sure any propagations or apply processes that will receive

events are configured to handle these events. That is, the propagations or apply

processes should exist, and each one should be associated with a rule set that

Note: The instructions in the following sections assume you will

use the DBMS_STREAMS_ADM package to configure your Streams

environment. If you use other packages, then extra steps may be

necessary for each task.

See Also: The following chapters for detailed examples of

configuring Streams capture-based environments:

■ Chapter 20, "Single Database Capture and Apply Example"

■ Chapter 21, "Simple Single Source Replication Example"

■ Chapter 22, "Single Source Heterogeneous

Replication Example"

■ Chapter 23, "Multiple Source Replication Example"
Configuring a Streams Environment 11-15

Configuring a Capture-Based Streams Environment
handles the events appropriately. If these propagations and apply processes are not

configured properly to handle these events, then events may be lost.

In general, if you are configuring a new Streams environment in which changes for

shared objects are captured at one database and then propagated and applied at

remote databases, then you should configure the environment in the following

order:

1. Complete the necessary tasks described previously in this chapter to prepare

each database in your environment for Streams:

■ "Configuring a Streams Administrator" on page 11-2

■ "Setting Initialization Parameters Relevant to Streams" on page 11-4

■ "Configuring a Database to Run a Streams Capture Process" on page 11-13

■ "Configuring Network Connectivity and Database Links" on page 11-14

Some of these tasks may not be required at certain databases.

2. Create any necessary Streams queues that do not already exist. When you create

a capture process or apply process, you associate the process with a specific

Streams queue. When you create a propagation, you associate it with a specific

source queue and destination queue. See "Creating a Streams Queue" on

page 13-2 for instructions.

3. Specify supplemental logging at each source database for any shared object. See

"Specifying Supplemental Logging at a Source Database" on page 12-9 for

instructions.

4. At each database, create the required capture processes, propagations, and

apply processes for your environment. You can create them in any order.

■ Create one or more capture processes at each database that will capture

changes. Make sure each capture process uses a rule set that is appropriate

for capturing changes. Do not start the capture processes you create. See

"Creating a Capture Process" on page 12-2 for instructions.

When you use the DBMS_STREAMS_ADMpackage to add the capture rules, it

automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or

PREPARE_GLOBAL_INSTANTIATION procedure in the

DBMS_CAPTURE_ADM package for the specified table, specified schema, or

entire database, respectively.
11-16 Oracle9i Streams

Configuring a Capture-Based Streams Environment
You must run the appropriate procedure to prepare for instantiation

manually if any of the following conditions is true:

– You use the DBMS_RULE_ADM package to add or modify capture rules.

– You use an existing capture process and do not add capture rules for

any shared object.

If you must prepare for instantiation manually, then see "Preparing

Database Objects for Instantiation at a Source Database" on page 12-11 for

instructions.

■ Create all propagations that propagate the captured events from a source

queue to a destination queue. Make sure each propagation uses a rule set

that is appropriate for propagating changes. See "Creating a Propagation"

on page 13-8 for instructions.

■ Create one or more apply processes at each database that will apply

changes. Make sure each apply process uses a rule set that is appropriate

for applying changes. Do not start the apply processes you create. See

"Creating an Apply Process" on page 14-2 for instructions.

5. Either instantiate, or set the instantiation SCN for, each database object for

which changes are applied by an apply process. If a database object does not

exist at a destination database, then instantiate it using Export/Import. If a

database object already exists at a destination database, then set the

instantiation SCN for it manually.

■ To instantiate database objects using Export/Import, first export them at the

source database with the OBJECT_CONSISTENT export parameter set to y,

or use a more stringent degree of consistency. Then, import them at the

destination database with the STREAMS_INSTANTIATION import

parameter set to y. See "Setting Instantiation SCNs Using Export/Import"

on page 14-36 for information.

■ To set the instantiation SCN for a table, schema, or database manually, run

the appropriate procedure or procedures in the DBMS_APPLY_ADM package

at the destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN
Configuring a Streams Environment 11-17

Configuring a Capture-Based Streams Environment
When you run one of these procedures, you must ensure that the shared

objects at the destination database are consistent with the source database

as of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database,

then you must also run SET_SCHEMA_INSTANTIATION_SCN for each

existing schema in the source database whose DDL changes you are

applying, and you must run SET_TABLE_INSTANTIATION_SCN for each

existing table in the source database whose DML or DDL changes you are

applying.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database,

then you must also run SET_TABLE_INSTANTIATION_SCN for each

existing source database table in the schema whose DML or DDL changes

you are applying.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package"

on page 14-38 for instructions.

Alternatively, you can perform a metadata export/import to set the

instantiation SCNs for existing database objects. If you choose this option,

then make sure no rows are imported. Also, make sure the shared objects at

all of the destination databases are consistent with the source database that

performed the export at the time of the export. If you are sharing DML

changes only, then table level export/import is sufficient. If you are sharing

DDL changes also, then additional considerations apply. See "Setting

Instantiation SCNs Using Export/Import" on page 14-36 for more

information about performing a metadata export/import.

6. Start each apply process you created in Step 4. See "Starting an Apply Process"

on page 14-7 for instructions.

7. Start each capture process you created in Step 4. See "Starting a Capture

Process" on page 12-5 for instructions.

When you are configuring the environment, remember that capture processes and

apply processes are stopped when they are created, but propagations are scheduled

to propagate events immediately when they are created. The capture process must

be created before the relevant objects are instantiated at a remote destination

database. You must create the propagations and apply processes before starting the

capture process, and you must instantiate the objects before running the

whole stream.
11-18 Oracle9i Streams

Configuring a Capture-Based Streams Environment
Adding Shared Objects to an Existing Single Source Environment
You add existing database objects to an existing single source environment by

adding the necessary rules to the appropriate capture processes, propagations, and

apply processes. Before creating or altering capture or propagation rules in a

running Streams environment, make sure any propagations or apply processes that

will receive events as a result of the new or altered rules are configured to handle

these events. That is, the propagations or apply processes should exist, and each

one should be associated with a rule set that handles the events appropriately. If

these propagations and apply processes are not configured properly to handle these

events, then events may be lost.

For example, suppose you want to add a table to a Streams environment that

already captures, propagates, and applies changes to other tables. Assume only one

capture process will capture changes to this table, and only one apply process will

apply changes to this table. In this case, you must add one or more table-level rules

to the following rule sets:

■ The rule set for the capture process that will capture changes to the table

■ The rule set for each propagation that will propagate changes to the table

■ The rule set for the apply process that will apply changes to the table

If you perform administrative steps in the wrong order, you may lose events. For

example, if you add the rule to the capture rule set first, without stopping the

capture process, then the propagation will not propagate the changes if it does not

have a rule that instructs it to do so, and the changes may be lost.

To avoid losing events, you should complete the configuration in the following

order:

1. Either stop the capture process, disable one of the propagation jobs, or stop the

apply processes. See one of the following sections for instructions:

■ "Stopping a Capture Process" on page 12-14

■ "Disabling a Propagation Job" on page 13-17

■ "Stopping an Apply Process" on page 14-7

See Also: Chapter 21, "Simple Single Source Replication

Example" and Chapter 22, "Single Source Heterogeneous

Replication Example" for detailed examples that set up single

source environments
Configuring a Streams Environment 11-19

Configuring a Capture-Based Streams Environment
2. Add the relevant rules to the rule sets for the propagations and the apply

processes. See the following sections for instructions:

■ "Adding Rules to the Rule Set for a Propagation" on page 13-14

■ "Adding Rules to the Rule Set for an Apply Process" on page 14-8

3. Add the relevant rules to the rule set used by the capture process. See "Adding

Rules to the Rule Set for a Capture Process" on page 12-5 for instructions.

When you use the DBMS_STREAMS_ADM package to add the capture rules, it

automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADMpackage for the specified table, specified

schema, or entire database, respectively.

You must run the appropriate procedure to prepare for instantiation manually if

any of the following conditions is true:

■ You use DBMS_RULE_ADM to create or modify rules in the capture process

rule set.

■ You do not add rules for the added objects to the capture process rule set,

because the capture process already captures changes to these objects. In

this case, rules for the objects may be added to propagations and apply

processes in the environment, but not to the capture process.

If you must prepare for instantiation manually, then see "Preparing Database

Objects for Instantiation at a Source Database" on page 12-11 for instructions.

4. At each destination database, either instantiate, or set the instantiation SCN for,

each database object you are adding to the Streams environment. If a database

object does not exist at a destination database, then instantiate it using

Export/Import. If a database object exists at a destination database, then set the

instantiation SCN for it.

■ To instantiate database objects using Export/Import, first export them at the

source database with the OBJECT_CONSISTENT export parameter set to y,

or use a more stringent degree of consistency. Then, import them at the

destination database with the STREAMS_INSTANTIATION import

parameter set to y. See "Setting Instantiation SCNs Using Export/Import"

on page 14-36 for information.
11-20 Oracle9i Streams

Configuring a Capture-Based Streams Environment
■ To set the instantiation SCN for a table, schema, or database manually, run

the appropriate procedure or procedures in the DBMS_APPLY_ADM package

at a destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN

When you run one of these procedures at a destination database, you must

ensure that every added object at the destination database is consistent with

the source database as of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database,

then you must also run SET_SCHEMA_INSTANTIATION_SCN for each

existing source database schema whose changes you are applying and

SET_TABLE_INSTANTIATION_SCNfor each existing source database table

whose changes you are applying.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database,

then you must also run SET_TABLE_INSTANTIATION_SCN for each

existing source database table in the schema whose DML or DDL changes

you are applying.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package"

on page 14-38 for instructions.

Alternatively, you can perform a metadata export/import to set the

instantiation SCNs for existing database objects. If you choose this option,

then make sure no rows are imported. Also, make sure every added object

at the importing destination database is consistent with the source database

that performed the export at the time of the export. If you are sharing DML

changes only, then table level export/import is sufficient. If you are sharing

DDL changes also, then additional considerations apply. See "Setting

Instantiation SCNs Using Export/Import" on page 14-36 for more

information about performing a metadata export/import.

5. Start any process you stopped in Step 1 or enable any propagation job you

disabled in Step 1. See one of the following sections for instructions:

■ "Starting a Capture Process" on page 12-5

■ "Enabling a Propagation Job" on page 13-11

■ "Starting an Apply Process" on page 14-7
Configuring a Streams Environment 11-21

Configuring a Capture-Based Streams Environment
You must stop the capture process, disable one of the propagation jobs, or stop the

apply process in Step 1 to ensure that the table or schema is instantiated before the

first LCR resulting from the added rule(s) reaches the apply process. Otherwise,

events could be lost or could result in apply errors, depending on whether the

apply rule(s) have been added.

If you are certain that the added table is not being modified at the source database

during this procedure, and that there are no LCRs for the table already in the stream

or waiting to be captured, then you can perform Step 5 before Step 4 to reduce the

amount of time that a process or propagation job is stopped.

Adding a New Destination Database to an Existing Single Source Environment
You add a destination database to an existing single source environment by creating

one or more new apply processes at the new destination database and, if necessary,

configuring one or more propagations to propagate changes to the new destination

database. You may also need to add rules to existing propagations in the stream that

propagates to the new destination database.

As in the example that describes "Adding Shared Objects to an Existing Single

Source Environment" on page 11-19, before creating or altering propagation rules in

a running Streams environment, make sure any propagations or apply processes

that will receive events as a result of the new or altered rules are configured to

handle these events. Otherwise, events may be lost.

To avoid losing events, you should complete the configuration in the following

order:

1. Complete the necessary tasks described previously in this chapter to prepare

the new destination database for Streams:

■ "Configuring a Streams Administrator" on page 11-2

■ "Setting Initialization Parameters Relevant to Streams" on page 11-4

■ "Configuring Network Connectivity and Database Links" on page 11-14

Some of these tasks may not be required at the new database.

See Also: "Add Objects to an Existing Streams Replication

Environment" on page 22-64 for a detailed example that adds

objects to an existing single source environment
11-22 Oracle9i Streams

Configuring a Capture-Based Streams Environment
2. Create any necessary Streams queues that do not already exist at the destination

database. When you create an apply process, you associate the apply process

with a specific Streams queue. See "Creating a Streams Queue" on page 13-2 for

instructions.

3. Create one or more apply processes at the new destination database to apply

the changes from its source databases. Make sure each apply process uses a rule

set that is appropriate for applying changes. Do not start any of the apply

processes at the new database. See "Creating an Apply Process" on page 14-2 for

instructions.

Keeping the apply processes stopped prevents changes made at the source

databases from being applied before the instantiation of the new database is

completed, which would otherwise lead to incorrect data and errors.

4. Configure any necessary propagations to propagate changes from the source

databases to the new destination database. Make sure each propagation uses a

rule set that is appropriate for propagating changes. See "Creating a

Propagation" on page 13-8.

5. At the source database, prepare for instantiation each database object for which

changes will be applied by an apply process at the new destination database.

Run either the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADMpackage for the specified table, specified

schema, or entire database, respectively. See "Preparing Database Objects for

Instantiation at a Source Database" on page 12-11 for instructions.

6. At the new destination database, either instantiate, or set the instantiation SCNs

for, each database object for which changes will be applied by an apply process.

If the database objects do not already exist at the new destination database, then

instantiate them using Export/Import. If the database objects exist at the new

destination database, then set the instantiation SCN for them.

■ To instantiate database objects using Export/Import, first export them at the

source database with the OBJECT_CONSISTENT export parameter set to y,

or use a more stringent degree of consistency. Then, import them at the new

destination database with the STREAMS_INSTANTIATION import

parameter set to y. See "Setting Instantiation SCNs Using Export/Import"

on page 14-36 for information.
Configuring a Streams Environment 11-23

Configuring a Capture-Based Streams Environment
■ To set the instantiation SCN for a table, schema, or database manually, run

the appropriate procedure or procedures in the DBMS_APPLY_ADM package

at the new destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN

When you run one of these procedures, you must ensure that the shared

objects at the new destination database are consistent with the source

database as of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database,

then you must also run SET_SCHEMA_INSTANTIATION_SCN for each

existing schema in the source database whose DDL changes you are

applying, and you must run SET_TABLE_INSTANTIATION_SCN for each

existing table in the source database whose DML or DDL changes you are

applying.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database,

then you must also run SET_TABLE_INSTANTIATION_SCN for each

existing source database table in the schema whose DML or DDL changes

you are applying.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package"

on page 14-38 for instructions.

Alternatively, you can perform a metadata export/import to set the

instantiation SCNs for existing database objects. If you choose this option,

then make sure no rows are imported. Also, make sure the shared objects at

the importing destination database are consistent with the source database

that performed the export at the time of the export. If you are sharing DML

changes only, then table level export/import is sufficient. If you are sharing

DDL changes also, then additional considerations apply. See "Setting

Instantiation SCNs Using Export/Import" on page 14-36 for more

information about performing a metadata export/import.

7. Start the apply processes you created in Step 3. See "Starting an Apply Process"

on page 14-7 for instructions.

See Also: "Add a Database to an Existing Streams Replication

Environment" on page 22-76 for detailed example that adds a

database to an existing single source environment
11-24 Oracle9i Streams

Configuring a Capture-Based Streams Environment
Creating a New Multiple Source Environment
This section lists the general steps to perform when creating a new multiple source

Streams environment. A multiple source environment is one in which there is more

than one source database for any of the shared data.

This example uses the following terms:

■ Populated database: A database that already contains the shared database

objects before you create the new multiple source environment. You must have

at least one populated database to create the new Streams environment.

■ Export database: A populated database on which you perform an export of the

shared database objects. This export is used to instantiate the shared database

objects at the import databases. You may not have an export database if all of

the databases in the environment are populated databases.

■ Import database: A database that does not contain the shared database objects

before you create the new multiple source environment. You instantiate the

shared database objects at an import database using the export dump file from

the export database. You may not have any import databases if all of the

databases in the environment are populated databases.

Complete the following steps to create a new multiple source environment:

1. Complete the necessary tasks described previously in this chapter to prepare

each database in the environment for Streams:

■ "Configuring a Streams Administrator" on page 11-2

■ "Setting Initialization Parameters Relevant to Streams" on page 11-4

■ "Configuring a Database to Run a Streams Capture Process" on page 11-13

■ "Configuring Network Connectivity and Database Links" on page 11-14

Some of these tasks may not be required at certain databases.

2. At each populated database, specify any necessary supplemental logging for

the shared objects. See "Specifying Supplemental Logging at a Source Database"

on page 12-9 for instructions.

Note: Make sure no changes are made to the objects being shared

at a database you are adding to the Streams environment until the

instantiation at the database is complete.
Configuring a Streams Environment 11-25

Configuring a Capture-Based Streams Environment
3. Create any necessary Streams queues that do not already exist. When you create

a capture process or apply process, you associate the process with a specific

Streams queue. When you create a propagation, you associate it with a specific

source queue and destination queue. See "Creating a Streams Queue" on

page 13-2 for instructions.

4. At each database, create the required capture processes, propagations, and

apply processes for your environment. You can create them in any order.

■ Create one or more capture processes at each database that will capture

changes. Make sure each capture process uses a rule set that is appropriate

for capturing changes. Do not start the capture processes you create. See

"Creating a Capture Process" on page 12-2 for instructions.

When you use the DBMS_STREAMS_ADMpackage to add the capture rules, it

automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or

PREPARE_GLOBAL_INSTANTIATION procedure in the

DBMS_CAPTURE_ADM package for the specified table, specified schema, or

entire database, respectively.

You must run the appropriate procedure to prepare for instantiation

manually if any of the following conditions is true:

– You use the DBMS_RULE_ADM package to add or modify capture rules.

– You use an existing capture process and do not add capture rules for

any shared object.

If you must prepare for instantiation manually, then see "Preparing

Database Objects for Instantiation at a Source Database" on page 12-11 for

instructions.

■ Create all propagations that propagate the captured events from a source

queue to a destination queue. Make sure each propagation uses a rule set

that is appropriate for propagating changes. See "Creating a Propagation"

on page 13-8 for instructions.

■ Create one or more apply processes at each database that will apply

changes. Make sure each apply process uses a rule set that is appropriate

for applying changes. Do not start the apply processes you create. See

"Creating an Apply Process" on page 14-2 for instructions.
11-26 Oracle9i Streams

Configuring a Capture-Based Streams Environment
After completing these steps, complete the steps in each of the following sections

that apply to your environment. You may need to complete the steps in only one of

these sections or in both of these sections:

■ For each populated database, complete the steps in "Configuring Populated

Databases When Creating a Multiple Source Environment" on page 11-27.

■ For each import database, complete the steps in "Adding Shared Objects to

Import Databases When Creating a New Environment" on page 11-28.

Configuring Populated Databases When Creating a Multiple Source Environment
After completing the steps in "Creating a New Multiple Source Environment" on

page 11-25, complete the following steps for the populated databases if your

environment has more than one populated database:

1. For each populated database, set the instantiation SCN at each of the other

populated databases in the environment that will be a destination database of

the populated source database. These instantiation SCNs must be set, and only

the changes made at a particular populated database that are committed after

the corresponding SCN for that database will be applied at another populated

database.

For each populated database, you can set these instantiation SCNs in one of the

following ways:

a. Perform a metadata only export of the shared objects at the populated

database and import the metadata at each of the other populated databases.

Such an import sets the required instantiation SCNs for the populated

database at the other populated databases. Make sure no rows are

imported. Also, make sure the shared objects at each populated database

performing a metadata import are consistent with the populated database

that performed the metadata export at the time of the export.

If you are sharing DML changes only, then table level export/import is

sufficient. If you are sharing DDL changes also, then additional

considerations apply. See "Setting Instantiation SCNs Using

Export/Import" on page 14-36 for more information about performing a

metadata export/import.

b. Set the instantiation SCNs manually at each of the other populated

databases. Do this for each of the shared objects. Make sure the shared

objects at each populated database are consistent with the instantiation

SCNs you set at that database. See "Setting Instantiation SCNs Using the

DBMS_APPLY_ADM Package" on page 14-38 for instructions.
Configuring a Streams Environment 11-27

Configuring a Capture-Based Streams Environment
Adding Shared Objects to Import Databases When Creating a New Environment
After completing the steps in "Creating a New Multiple Source Environment" on

page 11-25, complete the following steps for the import databases:

1. Pick the populated database that you will use as the export database. Do not

perform the instantiations yet.

2. For each import database, set the instantiation SCNs at all of the other

databases in the environment that will be a destination database of the import

database. The databases where you set the instantiation SCNs may include

populated databases and other import databases.

a. If one or more schemas will be created at an import database during

instantiation or by a subsequent shared DDL change, then run the

SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package for this import database at all of the other databases in the

environment.

b. If a schema exists at an import database, and one or more tables will be

created in the schema during instantiation or by a subsequent shared DDL

change, then run the SET_SCHEMA_INSTANTIATION_SCN procedure in

the DBMS_APPLY_ADM package for the schema at all of the other databases

in the environment for the import database. Do this for each such schema.

See "Setting Instantiation SCNs at a Destination Database" on page 14-35 for

instructions.

Because you are running these procedures before any tables are instantiated at

the import databases, and because the local capture processes are configured

already for these import databases, you will not need to run the

SET_TABLE_INSTANTIATION_SCN for each table created during the

instantiation.

3. At the export database you chose in Step 1, perform an export of the shared

data with the OBJECT_CONSISTENT export parameter set to y, or use a more

stringent degree of consistency. Then, perform an import with the

STREAMS_INSTANTIATIONimport parameter set to y at each import database.

See "Setting Export and Import Parameters Relevant to Streams" on page 11-8

and Oracle9i Database Utilities for information about using Export/Import.

4. For each populated database, except for the export database, set the

instantiation SCNs at each import database that will be a destination database

of the populated source database. These instantiation SCNs must be set, and

only the changes made at a populated database that are committed after the

corresponding SCN for that database will be applied at an import database.
11-28 Oracle9i Streams

Configuring a Capture-Based Streams Environment
You can set these instantiation SCNs in one of the following ways:

a. Perform a metadata only export at each populated database and import the

metadata at each import database. Each import sets the required

instantiation SCNs for the populated database at the import database. In

this case, ensure that the shared objects at the import database are

consistent with the populated database at the time of the export.

If you are sharing DML changes only, then table level export/import is

sufficient. If you are sharing DDL changes also, then additional

considerations apply. See "Setting Instantiation SCNs Using

Export/Import" on page 14-36 for more information about performing a

metadata export/import.

b. For each populated database, set the instantiation SCN manually for each

shared object at each import database. Make sure the shared objects at each

import database are consistent with the populated database as of the

corresponding instantiation SCN. See "Setting Instantiation SCNs Using the

DBMS_APPLY_ADM Package" on page 14-38 for instructions.

Complete the Multiple Source Environment Configuration
Before completing the steps in this section, you should have completed the

following tasks:

■ "Creating a New Multiple Source Environment" on page 11-25

■ "Configuring Populated Databases When Creating a Multiple Source

Environment" on page 11-27, if your environment has more than one populated

database

■ "Adding Shared Objects to Import Databases When Creating a New

Environment" on page 11-28, if your environment has one or more import

databases

When all of the previous configuration steps are finished, complete the following

steps:

1. Start each apply process in the environment. See "Starting an Apply Process" on

page 14-7 for instructions.

2. Start each capture process the environment. See "Starting a Capture Process" on

page 12-5 for instructions.

See Also: Chapter 23, "Multiple Source Replication Example" for

a detailed example that creates a multiple source environment
Configuring a Streams Environment 11-29

Configuring a Capture-Based Streams Environment
Adding Shared Objects to an Existing Multiple Source Environment
You add existing database objects to an existing multiple source environment by

adding the necessary rules to the appropriate capture processes, propagations, and

apply processes.

This example uses the following terms:

■ Populated database: A database that already contains the shared database

objects being added to the multiple source environment. You must have at least

one populated database to add the objects to the environment.

■ Export database: A populated database on which you perform an export of the

database objects you are adding to the environment. This export is used to

instantiate the added database objects at the import databases. You may not

have an export database if all of the databases in the environment are populated

databases.

■ Import database: A database that does not contain the shared database objects

before they are added to the multiple source environment. You instantiate the

added database objects at an import database using the export dump file from

the export database. You may not have any import databases if all of the

databases in the environment are populated databases.

Before creating or altering capture or propagation rules in a running Streams

environment, make sure any propagations or apply processes that will receive

events as a result of the new or altered rules are configured to handle these events.

That is, the propagations or apply processes should exist, and each one should be

associated with a rule set that handles the events appropriately. If these

propagations and apply processes are not configured properly to handle these

events, then events may be lost.

For example, suppose you want to add a new table to a Streams environment that

already captures, propagates, and applies changes to other tables. Assume multiple

capture processes in the environment will capture changes to this table, and

multiple apply processes will apply changes to this table. In this case, you must add

one or more table-level rules to the following rule sets:

■ The rule set for each capture process that will capture changes to the table

■ The rule set for each propagation that will propagate changes to the table

■ The rule set for each apply process that will apply changes to the table.
11-30 Oracle9i Streams

Configuring a Capture-Based Streams Environment
If you perform administrative steps in the wrong order, you may lose events. For

example, if you add the rule to the capture rule set first, without stopping the

capture process, then the propagation will not propagate the changes if it does not

have a rule that instructs it to do so, and the changes may be lost.

To avoid losing events, you should complete the configuration in the following

order:

1. At each populated database, specify any necessary supplemental logging for

the objects being added to the environment. See "Specifying Supplemental

Logging at a Source Database" on page 12-9 for instructions.

2. Either stop all of the capture processes that will capture changes to the added

objects, disable all of the propagation jobs that will propagate changes to the

added objects, or stop all of the apply process that will apply changes to the

added objects. See one of the following sections for instructions:

■ "Stopping a Capture Process" on page 12-14

■ "Disabling a Propagation Job" on page 13-17

■ "Stopping an Apply Process" on page 14-7

3. Add the relevant rules to the rule sets for the propagations and the apply

processes that will propagate or apply changes to the added objects. See the

following sections for instructions:

■ "Adding Rules to the Rule Set for a Propagation" on page 13-14

■ "Adding Rules to the Rule Set for an Apply Process" on page 14-8

4. Add the relevant rules to the rule set used by each capture process that will

capture changes to the added objects. See "Adding Rules to the Rule Set for a

Capture Process" on page 12-5 for instructions.

When you use the DBMS_STREAMS_ADM package to add the capture rules, it

automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADMpackage for the specified table, specified

schema, or entire database, respectively.
Configuring a Streams Environment 11-31

Configuring a Capture-Based Streams Environment
You must run the appropriate procedure to prepare for instantiation manually if

any of the following conditions is true:

■ You use DBMS_RULE_ADM to create or modify rules in a capture process

rule set.

■ You do not add rules for the added objects to a capture process rule set,

because the capture process already captures changes to these objects. In

this case, rules for the objects may be added to propagations and apply

processes in the environment, but not to the capture process.

If you must prepare for instantiation manually, then see "Preparing Database

Objects for Instantiation at a Source Database" on page 12-11 for instructions.

After completing these steps, complete the steps in each of the following sections

that apply to your environment. You may need to complete the steps in only one of

these sections or in both of these sections:

■ For each populated database, complete the steps in "Configuring Populated

Databases When Adding Shared Objects" on page 11-32.

■ For each import database, complete the steps in "Adding Shared Objects to

Import Databases in an Existing Environment" on page 11-33.

Configuring Populated Databases When Adding Shared Objects
After completing the steps in "Adding Shared Objects to an Existing Multiple

Source Environment" on page 11-30, complete the following steps for each

populated database:

1. For each populated database, set the instantiation SCN for each added object at

the other populated databases in the environment. These instantiation SCNs

must be set, and only the changes made at a particular populated database that

are committed after the corresponding SCN for that database will be applied at

another populated database.

For each populated database, you can set these instantiation SCNs for each

added object in one of the following ways:

a. Perform a metadata only export of the added objects at the populated

database and import the metadata at each of the other populated databases.

Such an import sets the required instantiation SCNs for the database at the

other databases. Make sure no rows are imported. Also, make sure the

shared objects at each of the other populated databases are consistent with

the populated database that performed the export at the time of the export.
11-32 Oracle9i Streams

Configuring a Capture-Based Streams Environment
If you are sharing DML changes only, then table level export/import is

sufficient. If you are sharing DDL changes also, then additional

considerations apply. See "Setting Instantiation SCNs Using

Export/Import" on page 14-36 for more information about performing a

metadata export/import.

b. Set the instantiation SCNs manually for the added objects at each of the

other populated databases. Make sure every added object at each populated

database is consistent with the instantiation SCNs you set at that database.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package"

on page 14-38 for instructions.

Adding Shared Objects to Import Databases in an Existing Environment
After completing the steps in "Adding Shared Objects to an Existing Multiple

Source Environment" on page 11-30, complete the following steps for the import

databases:

1. Pick the populated database that you will use as the export database. Do not

perform the instantiations yet.

2. For each import database, set the instantiation SCNs for the added objects at all

of the other databases in the environment that will be a destination database of

the import database. The databases where you set the instantiation SCNs may

be populated databases and other import databases.

a. If one or more schemas will be created at an import database during

instantiation or by a subsequent shared DDL change, then run the

SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package for this import database at all of the other databases in the

environment.

b. If a schema exists at an import database, and one or more tables will be

created in the schema during instantiation or by a subsequent shared DDL

change, then run the SET_SCHEMA_INSTANTIATION_SCN procedure in

the DBMS_APPLY_ADM package for the schema for this import database at

each of the other databases in the environment. Do this for each such

schema.

See "Setting Instantiation SCNs at a Destination Database" on page 14-35 for

instructions.
Configuring a Streams Environment 11-33

Configuring a Capture-Based Streams Environment
Because you are running these procedures before any tables are instantiated at

the import databases, and because the local capture processes are configured

already for these import databases, you will not need to run the

SET_TABLE_INSTANTIATION_SCN for each table created during instantiation.

3. At the export database you chose in Step 1, perform an export of the added

objects with the OBJECT_CONSISTENT export parameter set to y, or use a more

stringent degree of consistency. Then, perform an import of the added objects at

each import database with the STREAMS_INSTANTIATION import parameter

set to y. See "Setting Export and Import Parameters Relevant to Streams" on

page 11-8 and Oracle9i Database Utilities for information about using

Export/Import.

4. For each populated database, except for the export database, set the

instantiation SCNs for the added objects at each import database that will be a

destination database of the populated source database. These instantiation

SCNs must be set, and only the changes made at a populated database that are

committed after the corresponding SCN for that database will be applied at an

import database.

For each populated database, you can set these instantiation SCNs for the

added objects in one of the following ways:

a. Perform a metadata only export of the added objects at the populated

database and import the metadata at each import database. Each import

sets the required instantiation SCNs for the populated database at the

import database. In this case, ensure that every added object at the import

database is consistent with the populated database at the time of the export.

If you are sharing DML changes only, then table level export/import is

sufficient. If you are sharing DDL changes also, then additional

considerations apply. See "Setting Instantiation SCNs Using

Export/Import" on page 14-36 for more information about performing a

metadata export/import.

b. Set the instantiation SCNs manually for the added objects at each import

database. Make sure every added object at each import database is

consistent with the populated database as of the corresponding

instantiation SCN. See "Setting Instantiation SCNs Using the

DBMS_APPLY_ADM Package" on page 14-38 for instructions.
11-34 Oracle9i Streams

Configuring a Capture-Based Streams Environment
Complete the Adding Objects to a Multiple Source Environment Configuration
Before completing the configuration, you should have completed the following

tasks:

■ "Adding Shared Objects to an Existing Multiple Source Environment" on

page 11-30

■ "Configuring Populated Databases When Adding Shared Objects" on

page 11-32, if your environment had populated databases

■ "Adding Shared Objects to Import Databases in an Existing Environment" on

page 11-33, if your environment had import databases

When all of the previous configuration steps are finished, start each process you

stopped and enable each propagation job you disabled in Step 2 on page 11-31 in

"Adding Shared Objects to an Existing Multiple Source Environment". See one of

the following sections for instructions:

■ "Starting a Capture Process" on page 12-5

■ "Enabling a Propagation Job" on page 13-11

■ "Starting an Apply Process" on page 14-7

Adding a New Database to an Existing Multiple Source Environment
Complete the following steps to add a new database to an existing multiple source

Streams environment:

1. Complete the necessary tasks described previously in this chapter to prepare

the new database for Streams:

■ "Configuring a Streams Administrator" on page 11-2

■ "Setting Initialization Parameters Relevant to Streams" on page 11-4

■ "Configuring a Database to Run a Streams Capture Process" on page 11-13

■ "Configuring Network Connectivity and Database Links" on page 11-14

Some of these tasks may not be required at the new database.

Note: Make sure no changes are made to the objects being shared

at the database you are adding to the Streams environment until

the instantiation at the database is complete.
Configuring a Streams Environment 11-35

Configuring a Capture-Based Streams Environment
2. Create any necessary Streams queues that do not already exist. When you create

a capture process or apply process, you associate the process with a specific

Streams queue. When you create a propagation, you associate it with a specific

source queue and destination queue. See "Creating a Streams Queue" on

page 13-2 for instructions.

3. Create one or more apply processes at the new database to apply the changes

from its source databases. Make sure each apply process uses a rule set that is

appropriate for applying changes. Do not start any apply process at the new

database. See "Creating an Apply Process" on page 14-2 for instructions.

Keeping the apply processes stopped prevents changes made at the source

databases from being applied before the instantiation of the new database is

completed, which would otherwise lead to incorrect data and errors.

4. If the new database will be a source database, then, at all databases that will be

destination databases for the changes made at the new database, create one or

more apply processes to apply changes from the new database. Make sure each

apply process uses a rule set that is appropriate for applying changes. Do not

start any of these new apply processes. See "Creating an Apply Process" on

page 14-2 for instructions.

5. Configure propagations at the databases that will be source databases of the

new database to send changes to the new database. Make sure each

propagation uses a rule set that is appropriate for propagating changes. See

"Creating a Propagation" on page 13-8.

6. If the new database will be a source database, then configure propagations at

the new database to send changes from the new database to each of its

destination databases. Make sure each propagation uses a rule set that is

appropriate for propagating changes. See "Creating a Propagation" on

page 13-8.

7. If the new database will be a source database, and the shared objects already

exist at the new database, then specify any necessary supplemental logging for

the shared objects at the new database. See "Specifying Supplemental Logging

at a Source Database" on page 12-9 for instructions.

8. At each source database for the new database, prepare for instantiation each

database object for which changes will be applied by an apply process at the

new database. Run either the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADMpackage for the specified table, specified

schema, or entire database, respectively. See "Preparing Database Objects for

Instantiation at a Source Database" on page 12-11 for instructions.
11-36 Oracle9i Streams

Configuring a Capture-Based Streams Environment
9. If the new database will be a source database, then create one or more capture

processes to capture the relevant changes. See "Creating a Capture Process" on

page 12-2 for instructions.

When you use the DBMS_STREAMS_ADM package to add the capture rules, it

automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADMpackage for the specified table, specified

schema, or entire database, respectively.

You must run the appropriate procedure to prepare for instantiation manually if

any of the following conditions is true:

■ You use the DBMS_RULE_ADM package to add or modify capture rules.

■ You use an existing capture process and do not add capture rules for any

shared object.

If you must prepare for instantiation manually, then see "Preparing Database

Objects for Instantiation at a Source Database" on page 12-11 for instructions.

10. If the new database will be a source database, then start any capture processes

you created in Step 9. See "Starting a Capture Process" on page 12-5 for

instructions.

After completing these steps, complete the steps in the appropriate section:

■ If the objects that are to be shared with the new database already exist at the

new database, then complete the steps in "Configuring Databases If the Shared

Objects Already Exist at the New Database" on page 11-38.

■ If the objects that are to be shared with the new database do not already exist at

the new database, complete the steps in "Adding Shared Objects to a New

Database" on page 11-39.
Configuring a Streams Environment 11-37

Configuring a Capture-Based Streams Environment
Configuring Databases If the Shared Objects Already Exist at the New Database
After completing the steps in "Adding a New Database to an Existing Multiple

Source Environment" on page 11-35, complete the following steps if the objects that

are to be shared with the new database already exist at the new database:

1. For each source database of the new database, set the instantiation SCNs at the

new database. These instantiation SCNs must be set, and only the changes

made at a source database that are committed after the corresponding SCN for

that database will be applied at the new database.

For each source database of the new database, you can set these instantiation

SCNs in one of the following ways:

a. Perform a metadata only export of the shared objects at the source database

and import the metadata at the new database. The import sets the required

instantiation SCNs for the source database at the new database. Make sure

no rows are imported. In this case, ensure that the shared objects at the new

database are consistent with the source database at the time of the export.

If you are sharing DML changes only, then table level export/import is

sufficient. If you are sharing DDL changes also, then additional

considerations apply. See "Setting Instantiation SCNs Using

Export/Import" on page 14-36 for more information about performing a

metadata export/import.

b. Set the instantiation SCNs manually at the new database for the shared

objects. Make sure the shared objects at the new database are consistent

with the source database as of the corresponding instantiation SCN. See

"Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" on

page 14-38 for instructions.

2. For the new database, set the instantiation SCNs at each destination database of

the new database. These instantiation SCNs must be set, and only the changes

made at the new source database that are committed after the corresponding

SCN will be applied at a destination database. If the new database is not a

source database, then do not complete this step.
11-38 Oracle9i Streams

Configuring a Capture-Based Streams Environment
You can set these instantiation SCNs for the new database in one of the

following ways:

a. Perform a metadata only export at the new database and import the

metadata at each destination database. Make sure no rows are imported.

The import sets the required instantiation SCNs for the new database at

each destination database. In this case, ensure that the shared objects at

each destination database are consistent with the new database at the time

of the export.

If you are sharing DML changes only, then table level export/import is

sufficient. If you are sharing DDL changes also, then additional

considerations apply. See "Setting Instantiation SCNs Using

Export/Import" on page 14-36 for more information about performing a

metadata export/import.

b. Set the instantiation SCNs manually at each destination database for the

shared objects. Make sure the shared objects at each destination database

are consistent with the new database as of the corresponding instantiation

SCN. See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM

Package" on page 14-38 for instructions.

3. Start the apply processes that you created at the new database in Step 3 on

page 11-36. See "Starting an Apply Process" on page 14-7 for instructions.

4. Start the apply processes that you created at each of the other destination

databases in Step 4 on page 11-36. See "Starting an Apply Process" on page 14-7

for instructions. If the new database is not a source database, then do not

complete this step.

Adding Shared Objects to a New Database
After completing the steps in "Adding a New Database to an Existing Multiple

Source Environment" on page 11-35, complete the following steps if the objects that

are to be shared with the new database do not already exist at the new database:

1. If the new database is a source database for other databases, then, at each

destination database of the new source database, set the instantiation SCNs for

the new database.

a. If one or more schemas will be created at the new database during

instantiation or by a subsequent shared DDL change, then run the

SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package for the new database at each destination database of the new

database.
Configuring a Streams Environment 11-39

Configuring a Capture-Based Streams Environment
b. If a schema exists at the new database, and one or more tables will be

created in the schema during instantiation or by a subsequent shared DDL

change, then run the SET_SCHEMA_INSTANTIATION_SCN procedure in

the DBMS_APPLY_ADM package for the schema at each destination database

of the new database. Do this for each such schema.

See "Setting Instantiation SCNs at a Destination Database" on page 14-35 for

instructions.

Because you are running these procedures before any tables are instantiated at

the new database, and because the local capture processes are configured

already at the new database, you will not need to run the

SET_TABLE_INSTANTIATION_SCN for each table created during instantiation.

If the new database will not be a source database, then do not complete this

step, and continue with the next step.

2. Pick one source database from which to instantiate the shared objects at the new

database using Export/Import. First, perform the export at the source database

with the OBJECT_CONSISTENT export parameter set to y, or use a more

stringent degree of consistency. Then, perform the import at the new database

with the STREAMS_INSTANTIATION import parameter set to y. See "Setting

Export and Import Parameters Relevant to Streams" on page 11-8 and Oracle9i
Database Utilities for information about using Export/Import.

3. For each source database of the new database, except for the source database

that performed the export for instantiation in Step 2, set the instantiation SCNs

at the new database. These instantiation SCNs must be set, and only the

changes made at a source database that are committed after the corresponding

SCN for that database will be applied at the new database.

For each source database, you can set these instantiation SCNs in one of the

following ways:

a. Perform a metadata only export at the source database and import the

metadata at the new database. The import sets the required instantiation

SCNs for the source database at the new database. In this case, ensure that

the shared objects at the new database are consistent with the source

database at the time of the export.

If you are sharing DML changes only, then table level export/import is

sufficient. If you are sharing DDL changes also, then additional

considerations apply. See "Setting Instantiation SCNs Using

Export/Import" on page 14-36 for more information about performing a

metadata export/import.
11-40 Oracle9i Streams

Configuring a Capture-Based Streams Environment
b. Set the instantiation SCNs manually at the new database for the shared

objects. Make sure the shared objects at the new database are consistent

with the source database as of the corresponding instantiation SCN. See

"Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" on

page 14-38 for instructions.

4. Start the apply processes at the new database that you created in Step 3 on

page 11-36. See "Starting an Apply Process" on page 14-7 for instructions.

5. Start the apply processes at each of the other destination databases that you

created in Step 4 on page 11-36. See "Starting an Apply Process" on page 14-7 for

instructions. If the new database is not a source database, then do not complete

this step.
Configuring a Streams Environment 11-41

Configuring a Capture-Based Streams Environment
11-42 Oracle9i Streams

Managing a Capture P
12

Managing a Capture Process

A capture process captures changes in a redo log, reformats the captured changes

into logical change records (LCRs), and enqueues the LCRs into a Streams queue.

This chapter contains these topics:

■ Creating a Capture Process

■ Starting a Capture Process

■ Specifying the Rule Set for a Capture Process

■ Adding Rules to the Rule Set for a Capture Process

■ Removing a Rule from the Rule Set for a Capture Process

■ Removing the Rule Set for a Capture Process

■ Setting a Capture Process Parameter

■ Specifying Supplemental Logging at a Source Database

■ Setting the Start SCN for a Capture Process

■ Preparing Database Objects for Instantiation at a Source Database

■ Aborting Preparation for Instantiation at a Source Database

■ Changing the DBID of a Database Where Changes Are Captured

■ Resetting the Log Sequence Number Where Changes Are Captured

■ Stopping a Capture Process

■ Dropping a Capture Process

Each task described in this section should be completed by a Streams administrator

that has been granted the appropriate privileges, unless specified otherwise.
rocess 12-1

Creating a Capture Process
Creating a Capture Process
You can use any of the following procedures to create a capture process:

■ DBMS_STREAMS_ADM.ADD_TABLE_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

■ DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

■ DBMS_CAPTURE_ADM.CREATE_CAPTURE

Each of the procedures in the DBMS_STREAMS_ADM package creates a capture

process with the specified name if it does not already exist, creates a rule set for the

capture process if the capture process does not have a rule set, and may add table,

schema, or global rules to the rule set.

The CREATE_CAPTURE procedure creates a capture process, but does not create a

rule set or rules for the capture process. However, the CREATE_CAPTUREprocedure

enables you to specify an existing rule set to associate with the capture process and

a start SCN for the capture process.

The following tasks must be completed before you create a capture process:

■ Complete the tasks described in "Configuring a Database to Run a Streams

Capture Process" on page 11-13.

■ Create a Streams queue to associate with the capture process, if one does not

exist. See "Creating a Streams Queue" on page 13-2 for instructions.

See Also:

■ Chapter 2, "Streams Capture Process"

■ "Configuring a Streams Administrator" on page 11-2

Note: Creation of the first capture process in a database may take

some time because the data dictionary is duplicated during this

creation.
12-2 Oracle9i Streams

Creating a Capture Process
Example of Creating a Capture Process Using DBMS_STREAMS_ADM
The following is an example that runs the ADD_TABLE_RULES procedure in the

DBMS_STREAMS_ADM package to create a capture process:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strm01_queue',
 include_dml => true,
 include_ddl => true,
 include_tagged_lcr => false);
END;
/

Running this procedure performs the following actions:

■ Creates a capture process named strm01_capture . The capture process is

created only if it does not already exist. If a new capture process is created, then

this procedure also sets the start SCN to the point in time of creation.

■ Associates the capture process with an existing queue named strm01_queue

■ Creates a rule set and associates it with the capture process, if the capture

process does not have a rule set. The rule set uses the

SYS.STREAMS$_EVALUATION_CONTEXTevaluation context. The rule set name

is specified by the system.

■ Creates two rules. One rule specifies that the capture process captures DML

changes to the hr.employees table, and the other rule specifies that the

capture process captures DDL changes to the hr.employees table. The rule

names are specified by the system.

■ Adds the two rules to the rule set associated with the capture process

■ Specifies that the capture process captures a change in the redo log only if the

change has a NULL tag, because the include_tagged_lcr parameter is set

to false . This behavior is accomplished through the system-created rules for

the capture process.
Managing a Capture Process 12-3

Creating a Capture Process
Example of Creating a Capture Process Using DBMS_CAPTURE_ADM
The following is an example that runs the CREATE_CAPTURE procedure in the

DBMS_CAPTURE_ADM package to create a capture process:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'strm01_queue',
 capture_name => 'strm02_capture',
 rule_set_name => 'strmadmin.strm01_rule_set',
 start_scn => 829381993);
END;
/

Running this procedure performs the following actions:

■ Creates a capture process named strm02_capture . A capture process with

the same name must not exist.

■ Associates the capture process with an existing queue named strm01_queue

■ Associates the capture process with an existing rule set named

strm01_rule_set

■ Specifies 829381993 as the start SCN for the capture process.

See Also:

■ "Capture Process Creation" on page 2-21

■ "System-Created Rules" on page 6-3

■ "Tags and Rules Created by the DBMS_STREAMS_ADM

Package" on page 8-3

See Also:

■ "Capture Process Creation" on page 2-21

■ "The Start SCN, Captured SCN, and Applied SCN for a

Capture Process" on page 2-15
12-4 Oracle9i Streams

Adding Rules to the Rule Set for a Capture Process
Starting a Capture Process
You run the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to

start an existing capture process. For example, the following procedure starts a

capture process named strm01_capture :

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(

capture_name => 'strm01_capture');
END;
/

Specifying the Rule Set for a Capture Process
You specify an existing rule set that you want to associate with an existing capture

process using the rule_set_name parameter in the ALTER_CAPTURE procedure

in the DBMS_CAPTURE_ADMpackage. For example, the following procedure sets the

rule set for a capture process named strm01_capture to strm02_rule_set .

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

Adding Rules to the Rule Set for a Capture Process
To add rules to the rule set for an existing capture process, you can run one of the

following procedures and specify the existing capture process:

■ DBMS_STREAMS_ADM.ADD_TABLE_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

■ DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"
Managing a Capture Process 12-5

Removing a Rule from the Rule Set for a Capture Process
The following is an example that runs the ADD_TABLE_RULES procedure in the

DBMS_STREAMS_ADM package to add rules to the rule set of a capture process

named strm01_capture :

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

table_name => 'hr.departments',
streams_type => 'capture',
streams_name => 'strm01_capture',
queue_name => 'strm01_queue',
include_dml => true,
include_ddl => true);

END;
/

Running this procedure performs the following actions:

■ Creates two rules. One rule specifies that the capture process captures DML

changes to the hr.departments table, and the other rule specifies that the

capture process captures DDL changes to the hr.departments table. The rule

names are specified by the system.

■ Adds the two rules to the rule set associated with the capture process

Removing a Rule from the Rule Set for a Capture Process
You specify that you want to remove a rule from the rule set for an existing capture

process by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM
package. For example, the following procedure removes a rule named

DEPARTMENTS3 from the rule set of a capture process named strm01_capture .

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(

rule_name => 'DEPARTMENTS3',
 streams_type => 'capture',
streams_name => 'strm01_capture',

 drop_unused_rule => true);
END;
/

See Also: "System-Created Rules" on page 6-3
12-6 Oracle9i Streams

Removing the Rule Set for a Capture Process
In this example, the drop_unused_rule parameter in the REMOVE_RULE
procedure is set to true , which is the default setting. Therefore, if the rule being

removed is not in any other rule set, then it will be dropped from the database. If

the drop_unused_rule parameter is set to false , then the rule is removed from

the rule set, but it is not dropped from the database.

In addition, if you want to remove all of the rules in the rule set for the capture

process, then specify NULL for the rule_name parameter when you run the

REMOVE_RULE procedure.

Removing the Rule Set for a Capture Process
You specify that you want to remove the rule set from an existing capture process

by setting the remove_rule_set parameter to true in the ALTER_CAPTURE
procedure in the DBMS_CAPTURE_ADM package. For example, the following

procedure removes the rule set from a capture process named strm01_capture .

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 remove_rule_set => true);
END;
/

Note: If you drop all of the rules in the rule set for a capture

process, then the capture process captures no events.

Note: If you remove a rule set for a capture process, then the

capture process captures all supported changes to all objects in the

database, excluding database objects in the SYS and SYSTEM
schemas.
Managing a Capture Process 12-7

Setting a Capture Process Parameter
Setting a Capture Process Parameter
You set a capture process parameter using the SET_PARAMETER procedure in the

DBMS_CAPTURE_ADM package. Capture process parameters control the way a

capture process operates.

For example, the following procedure sets the parallelism parameter for a

capture process named strm01_capture to 3.

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'strm01_capture',
 parameter => 'parallelism',
 value => '3');
END;
/

Note:

■ Setting the parallelism parameter automatically stops and

restarts a capture process.

■ The value parameter is always entered as a VARCHAR2, even if

the parameter value is a number.

See Also:

■ "Capture Process Parameters" on page 2-25

■ The DBMS_CAPTURE_ADM.SET_PARAMETER procedure in the

Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed information about the capture process parameters
12-8 Oracle9i Streams

Specifying Supplemental Logging at a Source Database
Specifying Supplemental Logging at a Source Database
Supplemental logging must be specified for certain columns at a source database for

changes to the columns to be applied successfully at a destination database. This

section illustrates how to specify supplemental logging at a source database.

Specifying Table Supplemental Logging Using Unconditional Log Groups
To specify an unconditional supplemental log group, you must create redo log

groups that include the necessary columns using the ADD SUPPLEMENTAL LOG
GROUP clause and the ALWAYS specification in an ALTER TABLE statement. These

redo log groups can include key columns, if necessary.

For example, the following statement adds the primary key column of the

hr.departments table to an unconditional log group named

log_group_dep_pk :

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG GROUP log_group_dep_pk
 (department_id) ALWAYS;

The ALWAYS specification makes this log group an unconditional log group.

Specifying Table Supplemental Logging Using Conditional Log Groups
To specify a conditional supplemental log group, you must create redo log groups

that include the necessary columns using the ADD SUPPLEMENTAL LOG GROUP
clause in the ALTER TABLE statement. To make the log group condition, do not

include the ALWAYS specification.

For example, suppose the min_salary and max_salary columns in the hr.jobs
table are included in a column list for conflict resolution at a destination database.

The following statement adds the min_salary and max_salary columns to a log

conditional group named log_group_jobs_cr :

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP log_group_jobs_cr
 (min_salary, max_salary);

Note: LOBs, LONGs, and user-defined types cannot be part of a

supplemental log group

See Also: "Supplemental Logging in a Streams Environment" on

page 2-11 for information about when supplemental logging is

required
Managing a Capture Process 12-9

Specifying Supplemental Logging at a Source Database
Dropping a Supplemental Log Group
To drop a conditional or unconditional supplemental log group, use the DROP
SUPPLEMENTAL LOG GROUP clause in the ALTER TABLE statement. For example, to

drop a supplemental log group named log_group_jobs_cr , run the following

statement:

ALTER TABLE hr.jobs DROP SUPPLEMENTAL LOG GROUP log_group_jobs_cr;

Specifying Database Supplemental Logging of Key Columns
You also have the option of specifying supplemental logging for all primary key

and unique key columns in a source database. You may choose this option if you

configure a capture process to capture changes to an entire database. To specify

supplemental logging for all primary key and unique key columns in a source

database, issue the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE INDEX) COLUMNS;

If your primary and unique key columns are the same at all source and destination

databases, then running this command at the source database provides the

supplemental logging needed for primary and unique key columns at all

destination databases.

Dropping Database Supplemental Logging of Key Columns
To drop supplemental logging for all primary key and unique key columns in a

source database, issue the following SQL statement:

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

Note: Dropping database supplemental logging of key columns

does not affect any existing table-level supplemental log groups.
12-10 Oracle9i Streams

Preparing Database Objects for Instantiation at a Source Database
Setting the Start SCN for a Capture Process
You specify the start SCN for an existing capture process using the start_scn
parameter in the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

The SCN value specified must be from a point in time after the first capture process

was created for the database. The first capture process for the database may or may

not be the capture process being altered. An error is returned if an invalid SCN is

specified. Typically, you reset a start SCN for a capture process if point-in-time

recovery must be performed on one of the destination databases for changes from

the capture process.

For example, the following procedure sets the start SCN for a capture process

named strm01_capture to 750338948 .

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 start_scn => 750338948);
END;
/

Preparing Database Objects for Instantiation at a Source Database
The following procedures in the DBMS_CAPTURE_ADM package prepare database

objects for instantiation:

■ PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.

■ PREPARE_SCHEMA_INSTANTIATION prepares for instantiation all of the

database objects in a schema and all database objects added to the schema in

the future.

■ PREPARE_GLOBAL_INSTANTIATION prepares for instantiation all of the

objects in a database and all objects added to the database in the future.

If you run one of these procedures while a long running transaction is modifying

one or more database objects being prepared for instantiation, then the procedure

See Also:

■ "The Start SCN, Captured SCN, and Applied SCN for a

Capture Process" on page 2-15

■ "Performing Database Point-in-Time Recovery on a Destination

Database" on page 16-29
Managing a Capture Process 12-11

Aborting Preparation for Instantiation at a Source Database
will wait until the long running transaction is complete before it records the

lowest SCN.

For example, to prepare the hr.regions table for instantiation, run the following

procedure:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.regions');
END;
/

Aborting Preparation for Instantiation at a Source Database
The following procedures in the DBMS_CAPTURE_ADM package abort preparation

for instantiation:

■ ABORT_TABLE_INSTANTIATION reverses the effects of

PREPARE_TABLE_INSTANTIATION.

■ ABORT_SCHEMA_INSTANTIATION reverses the effects of

PREPARE_SCHEMA_INSTANTIATION.

■ ABORT_GLOBAL_INSTANTIATION reverses the effects of

PREPARE_GLOBAL_INSTANTIATION.

These procedures remove data dictionary information related to the potential

instantiation of the relevant database objects.

For example, to abort the preparation for instantiation of the hr.regions table,

run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.ABORT_TABLE_INSTANTIATION(
 table_name => 'hr.regions');
END;
/

See Also:

■ "Instantiation" on page 2-13

■ "Streams Data Dictionary for Propagations" on page 3-25

■ "Streams Data Dictionary for an Apply Process" on page 4-33

■ "Configuring a Capture-Based Streams Environment" on

page 11-15
12-12 Oracle9i Streams

Resetting the Log Sequence Number Where Changes Are Captured
Changing the DBID of a Database Where Changes Are Captured
Typically, database administrators change the DBID of a database when it is a clone

of another database. You can view the DBID for a database by querying the DBID
column in the V$DATABASE dynamic performance view.

If a capture process is capturing changes generated by a database for which you

have changed the DBID, then complete the following steps:

1. Shut down the database.

2. Restart the database with RESTRICTED SESSION enabled using STARTUP
RESTRICT.

3. Drop the capture process.

4. Run the ALTER SYSTEM SWITCH LOGFILE statement on the database.

5. If the database has captured any changes, then manually resynchronize the data

at all destination databases that apply changes originating at this source

database. If the database never captured any changes, then this step is not

necessary.

6. Recreate the capture process, if necessary.

7. Disable the restricted session using the ALTER SYSTEM DISABLE RESTRICTED
SESSION statement.

Resetting the Log Sequence Number Where Changes Are Captured
Typically, database administrators reset the log sequence number of a database

during point-in-time recovery. The ALTER DATABASE OPEN RESETLOGS statement

is an example of a statement that resets the log sequence number. When you reset

the log sequence number of a database, any existing local capture processes become

unusable.

See Also: Oracle9i Database Utilities for more information about

changing the DBID of a database using the DBNEWID utility
Managing a Capture Process 12-13

Stopping a Capture Process
If a capture process is capturing changes generated by a database for which you

have reset the log sequence number, then complete the following steps:

1. Drop the capture process.

2. Manually resynchronize the data at all destination databases that apply changes

originating at this source database.

3. Recreate the capture process, if necessary.

Stopping a Capture Process
You run the STOP_CAPTUREprocedure in the DBMS_CAPTURE_ADMpackage to stop

an existing capture process. For example, the following procedure stops a capture

process named strm01_capture :

BEGIN
 DBMS_CAPTURE_ADM.STOP_CAPTURE(

capture_name => 'strm01_capture');
END;
/

Dropping a Capture Process
You run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to

drop an existing capture process. For example, the following procedure drops a

capture process named strm01_capture :

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(

capture_name => 'strm01_capture');
END;
/

A capture process must be stopped before it can be dropped.

See Also: Oracle9i Backup and Recovery Concepts for more

information about point-in-time recovery
12-14 Oracle9i Streams

Managing Staging and Prop
13

Managing Staging and Propagation

This chapter provides instructions for managing Streams queues, propagations, and

messaging environments.

This chapter contains these topics:

■ Managing Streams Queues

■ Managing Streams Propagations and Propagation Jobs

■ Managing a Streams Messaging Environment

Each task described in this section should be completed by a Streams administrator

that has been granted the appropriate privileges, unless specified otherwise.

See Also:

■ Chapter 3, "Streams Staging and Propagation"

■ "Configuring a Streams Administrator" on page 11-2
agation 13-1

Managing Streams Queues
Managing Streams Queues
A Streams queue stages events whose payloads are of SYS.AnyData type.

Therefore, a Streams queue can stage an event with payload of nearly any type, if

the payload is wrapped in a SYS.AnyData wrapper. Each Streams capture process

and apply process is associated with one Streams queue, and each Streams

propagation is associated with one Streams source queue and one Streams

destination queue.

This section provides instructions for completing the following tasks related to

Streams queues:

■ Creating a Streams Queue

■ Enabling a User to Perform Operations on a Secure Queue

■ Disabling a User from Performing Operations on a Secure Queue

■ Dropping a Streams Queue

Creating a Streams Queue
You use the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to

create a Streams queue. This procedure enables you to specify the following for the

Streams queue it creates:

■ The queue table for the queue

■ A storage clause for the queue table

■ The queue name

■ A queue user that will be configured as a secure queue user of the queue and

granted ENQUEUE and DEQUEUE privileges on the queue

■ A comment for the queue

This procedure creates a queue that is both a secure queue and a transactional

queue and starts the newly created queue.
13-2 Oracle9i Streams

Managing Streams Queues
For example, to create a Streams queue named strm01_queue with a queue table

named strm01_queue_table and grant the hr user the privileges necessary to

enqueue events into and dequeue events from the queue, run the following

procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strm01_queue_table',

 queue_name => 'strm01_queue',
queue_user => 'hr');

END;
/

You can also use procedures in the DBMS_AQADM package to create a SYS.AnyData
queue.

Enabling a User to Perform Operations on a Secure Queue
For a user to perform queue operations, such as enqueue and dequeue, on a secure

queue, the user must be configured as a secure queue user of the queue. If you use

the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to create the

secure queue, then the queue owner and the user specified by the queue_user
parameter are configured as secure users of the queue automatically. If you want to

enable other users to perform operations on the queue, then you can configure these

users in one of the following ways:

■ Run SET_UP_QUEUE and specify a queue_user . Queue creation is skipped if

the queue already exists, but a new queue user is configured if one is specified.

■ Associate the users with an agent manually

See Also:

■ "Wrapping User Message Payloads in a SYS.AnyData Wrapper"

on page 13-19 for an example that creates a SYS.AnyData
queue using procedures in the DBMS_AQADM package

■ "Secure Queues" on page 3-22

■ "Transactional and Nontransactional Queues" on page 3-24
Managing Staging and Propagation 13-3

Managing Streams Queues
The following example illustrates associating a user with an agent manually.

Suppose you want to enable the oe user to perform queue operations on the

strm01_queue created in "Creating a Streams Queue" on page 13-2. The following

steps configure the oe user as a secure queue user of strm01_queue :

1. Connect as an administrative user who can create agents and alter users.

2. Create an agent:

EXEC DBMS_AQADM.CREATE_AQ_AGENT(agent_name => 'strm01_queue_agent');

3. If the user must be able to dequeue events from queue, then make the agent a

subscriber of the secure queue:

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT('strm01_queue_agent', NULL, NULL);
 SYS.DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.strm01_queue',
 subscriber => subscriber,
 rule => NULL,
 transformation => NULL);
END;
/

4. Associate the user with the agent:

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'strm01_queue_agent',
 db_username => 'oe');
END;
/

5. Grant the user EXECUTE privilege on the DBMS_AQ package, if the user is not

already granted this privilege.

GRANT EXECUTE ON DBMS_AQ TO oe;

When these steps are complete, the oe user is a secure user of the strm01_queue
queue and can perform operations on the queue. You still must grant the user

specific privileges to perform queue operations, such as enqueue and dequeue

privileges.
13-4 Oracle9i Streams

Managing Streams Queues
Disabling a User from Performing Operations on a Secure Queue
You may want to disable a user from performing queue operations on a secure

queue for the following reasons:

■ You dropped a capture process, but you did not drop the queue that was used

by the capture process, and you do not want the user who was the capture user

to be able to perform operations on the remaining secure queue.

■ You dropped an apply process, but you did not drop the queue that was used

by the apply process, and you do not want the user who was the apply user to

be able to perform operations on the remaining secure queue.

■ You used the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to

change the apply_user for an apply process, and you do not want the old

apply_user to be able to perform operations on the apply process queue.

■ You enabled a user to perform operations on a secure queue by completing the

steps described in Enabling a User to Perform Operations on a Secure Queue on

page 13-3, but you no longer want this user to be able to perform operations on

the secure queue.

To disable a secure queue user, you can revoke ENQUEUEand DEQUEUEprivilege on

the queue from the user, or you can run the DISABLE_DB_ACCESSprocedure in the

DBMS_AQADM package. For example, suppose you want to disable the oe user from

performing queue operations on the strm01_queue created in "Creating a Streams

Queue" on page 13-2.

See Also:

■ "Secure Queues" on page 3-22

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about AQ agents and using the DBMS_AQADM
package

Attention: If an agent is used for multiple secure queues, then

running DISABLE_DB_ACCESS for the agent prevents the user

from performing operations on all of these queues.
Managing Staging and Propagation 13-5

Managing Streams Queues
1. Run the following procedure to disable the oe user from performing queue

operations on the secure queue strm01_queue :

BEGIN
 DBMS_AQADM.DISABLE_DB_ACCESS(
 agent_name => 'strm01_queue_agent',
 db_username => 'oe');
END;
/

2. If the agent is no longer needed, you can drop the agent:

BEGIN
 DBMS_AQADM.DROP_AQ_AGENT(
 agent_name => 'strm01_queue_agent');
END;
/

3. Revoke privileges on the queue from the user, if the user no longer needs these

privileges.

BEGIN
 DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
 privilege => 'ALL',
 queue_name => 'strmadmin.strm01_queue',
 grantee => 'oe');
END;
/

See Also:

■ "Secure Queues" on page 3-22

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about AQ agents and using the DBMS_AQADM
package
13-6 Oracle9i Streams

Managing Streams Propagations and Propagation Jobs
Dropping a Streams Queue
To drop an existing Streams queue, perform the same actions that you would to

drop a typed queue. A Streams queue may be dropped in the following ways:

■ Explicitly, either by using the STOP_QUEUE, DROP_QUEUE, and

DROP_QUEUE_TABLE procedures in the DBMS_AQADM package, or by using

only the DROP_QUEUE_TABLE procedure on the queue table containing the

Streams queue with the force parameter set to true

■ Dropping the user who owns the queue with the CASCADE option

When you drop a Streams queue, all of the error transactions that were moved to

the exception queue from the Streams queue are deleted automatically.

Managing Streams Propagations and Propagation Jobs
A propagation propagates events from a Streams source queue to a Streams

destination queue. This section provides instructions for completing the following

tasks:

■ Creating a Propagation

■ Enabling a Propagation Job

■ Scheduling a Propagation Job

■ Altering the Schedule of a Propagation Job

■ Unscheduling a Propagation Job

■ Specifying the Rule Set for a Propagation

■ Adding Rules to the Rule Set for a Propagation

■ Removing a Rule from the Rule Set for a Propagation

■ Removing the Rule Set for a Propagation

■ Disabling a Propagation Job

■ Dropping a Propagation

In addition, you can use the features of Oracle Advanced Queuing (AQ) to manage

Streams propagations.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about dropping queues
Managing Staging and Propagation 13-7

Managing Streams Propagations and Propagation Jobs
Creating a Propagation
You can use any of the following procedures to create a propagation:

■ DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

■ DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

■ DBMS_PROPAGATION_ADM.CREATE_PROPAGATION

Each of the procedures in the DBMS_STREAMS_ADM package creates a propagation

with the specified name if it does not already exist, creates a rule set for the

propagation if the propagation does not have a rule set, and may add table, schema,

or global rules to the rule set. The CREATE_PROPAGATION procedure creates a

propagation, but does not create a rule set or rules for the propagation. All

propagations are started automatically upon creation.

The following tasks must be completed before you create a propagation:

■ Create a source queue and a destination queue for the propagation, if they do

not exist. See "Creating a Streams Queue" on page 13-2 for instructions.

■ Create a database link between the database containing the source queue and

the database containing the destination queue. See "Configuring Network

Connectivity and Database Links" on page 11-14 for information.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about managing propagations with

the features of AQ
13-8 Oracle9i Streams

Managing Streams Propagations and Propagation Jobs
Example of Creating a Propagation Using DBMS_STREAMS_ADM
The following is an example that runs the ADD_TABLE_RULES procedure in the

DBMS_STREAMS_ADM package to create a propagation:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(

table_name => 'hr.departments',
streams_name => 'strm01_propagation',
source_queue_name => 'strmadmin.strm01_queue',
destination_queue_name => 'strmadmin.strm02_queue@dbs2.net',
include_dml => true,
include_ddl => true,
include_tagged_lcr => false,

 source_database => 'dbs1.net');
END;
/

Running this procedure performs the following actions:

■ Creates a propagation named strm01_propagation . The propagation is

created only if it does not already exist.

■ Specifies that the propagation propagates LCRs from strm01_queue in the

current database to strm02_queue in the dbs2.net database

■ Specifies that the propagation uses the dbs2.net database link to propagate

the LCRs, because the destination_queue_name parameter contains

@dbs2.net

■ Creates a rule set and associates it with the propagation, if the propagation does

not have a rule set. The rule set uses the evaluation context

SYS.STREAMS$_EVALUATION_CONTEXT. The rule set name is specified by the

system.

■ Creates two rules. One rule specifies that the propagation propagates row LCRs

that contain the results of DML changes to the hr.departments table, and the

other rule specifies that the propagation propagates DDL LCRs that contain

changes to the hr.departments table. The rule names are specified by the

system.

■ Adds the two rules to the rule set associated with the propagation

■ Specifies that the propagation propagates an LCR only if it has a NULL tag,

because the include_tagged_lcr parameter is set to false . This behavior is

accomplished through the system-created rules for the propagation.
Managing Staging and Propagation 13-9

Managing Streams Propagations and Propagation Jobs
■ Specifies that the source database of the LCRs to be propagated is dbs1.net ,

which may or may not be the current database

■ Creates a propagation job, if one does not exist for the specified database link

Example of Creating a Propagation Using DBMS_PROPAGATION_ADM
The following is an example that runs the CREATE_PROPAGATION procedure in the

DBMS_PROPAGATION_ADM package to create a propagation:

BEGIN
 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name => 'strm02_propagation',
 source_queue => 'strmadmin.strm03_queue',
 destination_queue => 'strmadmin.strm04_queue',
 destination_dblink => 'dbs2.net',
 rule_set_name => 'strmadmin.strm01_rule_set');
END;
/

Running this procedure performs the following actions:

■ Creates a propagation named strm02_propagation . A propagation with the

same name must not exist.

■ Specifies that the propagation propagates events from strm03_queue in the

current database to strm04_queue in the dbs2.net database. Depending on

the rules in the rule set, the propagated events may be captured events or

user-enqueued events, or both.

■ Specifies that the propagation uses the dbs2.net database link to propagate

the events

■ Associates the propagation with an existing rule set named strm01_rule_set

■ Creates a propagation job, if one does not exist for the specified database link

See Also:

■ "Event Propagation Between Queues" on page 3-4

■ "System-Created Rules" on page 6-3

■ "Tags and Rules Created by the DBMS_STREAMS_ADM

Package" on page 8-3
13-10 Oracle9i Streams

Managing Streams Propagations and Propagation Jobs
Enabling a Propagation Job
By default, propagation jobs are enabled upon creation. If you disable a propagation

job and want to enable it, then use the ENABLE_PROPAGATION_SCHEDULE
procedure in the DBMS_AQADM package.

For example, to enable a propagation job that propagates events from the

strmadmin.strm01_queue source queue using the dbs2.net database link, run

the following procedure:

BEGIN
 DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name => 'strmadmin.strm01_queue',
 destination => 'dbs2.net');
END;
/

Scheduling a Propagation Job
You can schedule a propagation job using the SCHEDULE_PROPAGATIONprocedure

in the DBMS_AQADM package. If there is a problem with a propagation job, then

unscheduling and scheduling the propagation job may correct the problem.

For example, the following procedure schedules a propagation job that propagates

events from the strmadmin.strm01_queue source queue using the dbs2.net
database link:

See Also:

■ "Captured and User-Enqueued Events" on page 3-3

■ "Event Propagation Between Queues" on page 3-4

Note: Completing this task affects all propagations that propagate

events from the source queue to all destination queues that use the

dbs2.net database link.

See Also:

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about using the

ENABLE_PROPAGATION_SCHEDULE procedure

■ "Propagation Jobs" on page 3-20
Managing Staging and Propagation 13-11

Managing Streams Propagations and Propagation Jobs
BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'strmadmin.strm01_queue',
 destination => 'dbs2.net');
END;
/

Altering the Schedule of a Propagation Job
You can alter the schedule of an existing propagation job using the

ALTER_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package.

For example, suppose you want to alter the schedule of a propagation job that

propagates events from the strmadmin.strm01_queue source queue using the

dbs2.net database link. The following procedure sets the propagation job to

propagate events every 15 minutes (900 seconds), with each propagation lasting 300

seconds, and a 25 second wait before new events in a completely propagated queue

are propagated.

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'strmadmin.strm01_queue',
 destination => 'dbs2.net',
 duration => 300,
 next_time => 'SYSDATE + 900/86400',
 latency => 25);
END;
/

Note: Completing this task affects all propagations that propagate

events from the source queue to all destination queues that use the

dbs2.net database link.

See Also:

■ "Unscheduling a Propagation Job" on page 13-13

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about using the SCHEDULE_PROPAGATION
procedure

■ "Propagation Jobs" on page 3-20
13-12 Oracle9i Streams

Managing Streams Propagations and Propagation Jobs
Unscheduling a Propagation Job
You can unschedule a propagation job using the UNSCHEDULE_PROPAGATION
procedure in the DBMS_AQADM package. If there is a problem with a propagation

job, then unscheduling and scheduling the propagation job may correct the

problem.

For example, the following procedure unschedules a propagation job that

propagates events from the strmadmin.strm01_queue source queue using the

dbs2.net database link:

BEGIN
 DBMS_AQADM.UNSCHEDULE_PROPAGATION(
 queue_name => 'strmadmin.strm01_queue',
 destination => 'dbs2.net');
END;
/

Note: Completing this task affects all propagations that propagate

events from the source queue to all destination queues that use the

dbs2.net database link.

See Also:

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about using the

ALTER_PROPAGATION_SCHEDULE procedure

■ "Propagation Jobs" on page 3-20

Note: Completing this task affects all propagations that propagate

events from the source queue to all destination queues that use the

dbs2.net database link.
Managing Staging and Propagation 13-13

Managing Streams Propagations and Propagation Jobs
Specifying the Rule Set for a Propagation
You specify the rule set that you want to associate with a propagation using the

rule_set_name parameter in the ALTER_PROPAGATION procedure in the

DBMS_PROPAGATION_ADM package. For example, the following procedure sets the

rule set for a propagation named strm01_propagation to strm02_rule_set .

BEGIN
 DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
 propagation_name => 'strm01_propagation',
 rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

Adding Rules to the Rule Set for a Propagation
You add rules to the rule set of a propagation, you can run one of the following

procedures:

■ DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

■ DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

See Also:

■ "Scheduling a Propagation Job" on page 13-11

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about using the SCHEDULE_PROPAGATION
procedure

■ "Propagation Jobs" on page 3-20

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"
13-14 Oracle9i Streams

Managing Streams Propagations and Propagation Jobs
The following is an example that runs the ADD_TABLE_RULES procedure in the

DBMS_STREAMS_ADM package to add rules to the rule set of a propagation named

strm01_propagation :

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.locations',
 streams_name => 'strm01_propagation',
 source_queue_name => 'strmadmin.strm01_queue',
 destination_queue_name => 'strmadmin.strm02_queue@dbs2.net',
 include_dml => true,
 include_ddl => true,
 source_database => 'dbs1.net');
END;
/

Running this procedure performs the following actions:

■ Creates a propagation named strm01_propagation . The propagation is

created only if it does not already exist.

■ Specifies that the propagation propagates LCRs from strm01_queue in the

current database to strm02_queue in the dbs2.net database

■ Specifies that the propagation uses the dbs2.net database link to propagate

the LCRs, because the destination_queue_name parameter contains

@dbs2.net

■ Creates two rules. One rule specifies that the propagation propagates row LCRs

that contain the results of DML changes to the hr.locations table, and the

other rule specifies that the propagation propagates DDL LCRs that contain

changes to the hr.locations table. The rule names are specified by the

system.

■ Adds the two rules to the rule set associated with the propagation

■ Specifies that the source database of the LCRs to be propagated is dbs1.net ,

which may or may not be the current database

See Also:

■ "Event Propagation Between Queues" on page 3-4

■ "System-Created Rules" on page 6-3
Managing Staging and Propagation 13-15

Managing Streams Propagations and Propagation Jobs
Removing a Rule from the Rule Set for a Propagation
You specify that you want to remove a rule from the rule set for an existing

propagation by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM
package. For example, the following procedure removes a rule named

DEPARTMENTS3 from the rule set of a propagation named strm01_propagation .

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'DEPARTMENTS3',
 streams_type => 'propagation',
 streams_name => 'strm01_propagation',

 drop_unused_rule => true);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE
procedure is set to true , which is the default setting. Therefore, if the rule being

removed is not in any other rule set, then it will be dropped from the database. If

the drop_unused_rule parameter is set to false , then the rule is removed from

the rule set, but it is not dropped from the database.

In addition, if you want to remove all of the rules in the rule set for the propagation,

then specify NULL for the rule_name parameter when you run the REMOVE_RULE
procedure.

Removing the Rule Set for a Propagation
You specify that you want to remove the rule set from a propagation by setting the

rule_set_name parameter to NULLin the ALTER_PROPAGATIONprocedure in the

DBMS_PROPAGATION_ADMpackage. For example, the following procedure removes

the rule set from a propagation named strm01_propagation .

BEGIN
 DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
 propagation_name => 'strm01_propagation',
 rule_set_name => NULL);
END;
/

Note: If you drop all of the rules in the rule set for a propagation,

then the propagation propagations no events in the source queue to

the destination queue.
13-16 Oracle9i Streams

Managing Streams Propagations and Propagation Jobs
Disabling a Propagation Job
To stop a propagation job, use the DISABLE_PROPAGATION_SCHEDULE procedure

in the DBMS_AQADM package.

For example, to stop a propagation job that propagates events from the

strmadmin.strm01_queue source queue using the dbs2.net database link, run

the following procedure:

BEGIN
 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name => 'strmadmin.strm01_queue',
 destination => 'dbs2.net');
END;
/

Note: If you remove a rule set for a propagation, then the

propagation propagates all events in the source queue to the

destination queue.

Note:

■ Completing this task affects all propagations that propagate

events from the source queue to all destination queues that use

the dbs2.net database link.

■ The DISABLE_PROPAGATION_SCHEDULE disables the

propagation job immediately. It does not wait for the current

duration to end.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about using the

DISABLE_PROPAGATION_SCHEDULE procedure
Managing Staging and Propagation 13-17

Managing a Streams Messaging Environment
Dropping a Propagation
You run the DROP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM
package to drop an existing propagation. For example, the following procedure

drops a propagation named strm01_propagation :

BEGIN
 DBMS_PROPAGATION_ADM.DROP_PROPAGATION(

propagation_name => 'strm01_propagation');
END;
/

Managing a Streams Messaging Environment
Streams enables messaging with queues of type SYS.AnyData . These queues stage

user messages whose payloads are of SYS.AnyData type, and a SYS.AnyData
payload can be a wrapper for payloads of different datatypes.

This section provides instructions for completing the following tasks:

■ Wrapping User Message Payloads in a SYS.AnyData Wrapper

■ Propagating Messages Between a SYS.AnyData Queue and a Typed Queue

Note: When you drop a propagation, the propagation job used by

the propagation is dropped automatically, if no other propagations

are using the propagation job.

Note: The examples in this section assume that you have

configured a Streams administrator at each database.
13-18 Oracle9i Streams

Managing a Streams Messaging Environment
Wrapping User Message Payloads in a SYS.AnyData Wrapper
You can wrap almost any type of payload in a SYS.AnyData payload. The

following sections provide examples of enqueuing messages into, and dequeuing

messages from, a SYS.AnyData queue.

Example of Wrapping a Payload in a SYS.AnyData Payload and Enqueuing It
The following steps illustrate how to wrap payloads of various types in a

SYS.AnyData payload.

1. Connect as an administrative user who can create users, grant privileges, create

tablespaces, and alter users at the dbs1.net database.

2. Grant EXECUTE privilege on the DBMS_AQ package to the oe user so that this

user can run the ENQUEUE and DEQUEUE procedures in that package:

GRANT EXECUTE ON DBMS_AQ TO oe;

3. Connect as the Streams administrator, as in the following example:

CONNECT strmadmin/strmadminpw@dbs1.net

See Also:

■ "SYS.AnyData Queues and User Messages" on page 3-11 for

conceptual information about messaging in Streams

■ "Configuring a Streams Administrator" on page 11-2

■ Chapter 19, "Streams Messaging Example"

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

more information about AQ

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the SYS.AnyData type
Managing Staging and Propagation 13-19

Managing a Streams Messaging Environment
4. Create a SYS.AnyData queue if one does not already exist.

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'oe_q_table_any',
 queue_name => 'oe_q_any',
 queue_user => 'oe');
END;
/

The oe user is configured automatically as a secure queue user of the

oe_q_any queue and is given ENQUEUE and DEQUEUE privileges on the queue.

5. Create an agent:

EXEC DBMS_AQADM.CREATE_AQ_AGENT(agent_name => 'local_agent');

6. Add a subscriber to the oe_q_any queue. This subscriber will perform explicit

dequeues of events.

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT('LOCAL_AGENT', NULL, NULL);
 SYS.DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.oe_q_any',
 subscriber => subscriber);
END;
/

7. Associate the oe user with the local_agent agent:

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'local_agent',
 db_username => 'oe');
END;
/

8. Connect as the oe user.

CONNECT oe/oe@dbs1.net
13-20 Oracle9i Streams

Managing a Streams Messaging Environment
9. Create a procedure that takes as an input parameter an object of SYS.AnyData
type and enqueues a message containing the payload into an existing

SYS.AnyData queue.

CREATE OR REPLACE PROCEDURE oe.enq_proc (payload SYS.AnyData)
IS
 enqopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_msgid RAW(16);
BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT('LOCAL_AGENT', NULL, NULL);
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.oe_q_any',
 enqueue_options => enqopt,
 message_properties => mprop,
 payload => payload,
 msgid => enq_msgid);
END;
/

10. Run the procedure you created in Step 9 by specifying the appropriate

Convert data_type function. The following commands enqueue messages of

various types.

VARCHAR2 type:

EXEC oe.enq_proc(SYS.AnyData.ConvertVarchar2('Chemicals - SW'));
COMMIT;

NUMBER type:

EXEC oe.enq_proc(SYS.AnyData.ConvertNumber('16'));
COMMIT;

User-defined type:

BEGIN
 oe.enq_proc(SYS.AnyData.ConvertObject(oe.cust_address_typ(
 '1646 Brazil Blvd','361168','Chennai','Tam', 'IN')));
END;
/
COMMIT;

See Also: "Viewing the Contents of User-Enqueued Events in a

Queue" on page 17-13 for information about viewing the contents

of these enqueued messages
Managing Staging and Propagation 13-21

Managing a Streams Messaging Environment
Example of Dequeuing a Payload That Is Wrapped in a SYS.AnyData Payload
The following steps illustrate how to dequeue a payload wrapped in a

SYS.AnyData payload. This example assumes that you have completed the steps

in "Example of Wrapping a Payload in a SYS.AnyData Payload and Enqueuing It"

on page 13-19.

To dequeue messages, you must know the consumer of the messages. To find the

consumer for the messages in a queue, connect as the owner of the queue and query

the AQ$queue_table_name , where queue_table_name is the name of the queue

table. For example, to find the consumers of the messages in the oe_q_any queue,

run the following query:

CONNECT strmadmin/strmadminpw@dbs1.net

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_Q_TABLE_ANY;

1. Connect as the oe user:

CONNECT oe/oe@dbs1.net

2. Create a procedure that takes as an input the consumer of the messages you

want to dequeue. The following example procedure dequeues messages of

oe.cust_address_typ and prints the contents of the messages.

CREATE OR REPLACE PROCEDURE oe.get_cust_address (
consumer IN VARCHAR2) AS
 address OE.CUST_ADDRESS_TYP;
 deq_address SYS.AnyData;
 msgid RAW(16);
 deqopt DBMS_AQ.DEQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 new_addresses BOOLEAN := TRUE;
 next_trans EXCEPTION;
 no_messages EXCEPTION;
 pragma exception_init (next_trans, -25235);
 pragma exception_init (no_messages, -25228);
 num_var pls_integer;
13-22 Oracle9i Streams

Managing a Streams Messaging Environment
BEGIN
 deqopt.consumer_name := consumer;
 deqopt.wait := 1;
 WHILE (new_addresses) LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'strmadmin.oe_q_any',
 dequeue_options => deqopt,
 message_properties => mprop,
 payload => deq_address,
 msgid => msgid);

 deqopt.navigation := DBMS_AQ.NEXT;
 DBMS_OUTPUT.PUT_LINE('****');
 IF (deq_address.GetTypeName() = 'OE.CUST_ADDRESS_TYP') THEN
 DBMS_OUTPUT.PUT_LINE('Message TYPE is: ' ||
 deq_address.GetTypeName());
 num_var := deq_address.GetObject(address);
 DBMS_OUTPUT.PUT_LINE(' **** CUSTOMER ADDRESS **** ');
 DBMS_OUTPUT.PUT_LINE(address.street_address);
 DBMS_OUTPUT.PUT_LINE(address.postal_code);
 DBMS_OUTPUT.PUT_LINE(address.city);
 DBMS_OUTPUT.PUT_LINE(address.state_province);
 DBMS_OUTPUT.PUT_LINE(address.country_id);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Message TYPE is: ' ||
 deq_address.GetTypeName());
 END IF;
 COMMIT;
 EXCEPTION
 WHEN next_trans THEN
 deqopt.navigation := DBMS_AQ.NEXT_TRANSACTION;
 WHEN no_messages THEN
 new_addresses := FALSE;
 DBMS_OUTPUT.PUT_LINE('No more messages');
 END;
 END LOOP;
END;
/

3. Run the procedure you created in Step 1 and specify the consumer of the

messages you want to dequeue, as in the following example:

SET SERVEROUTPUT ON SIZE 100000
EXEC oe.get_cust_address('LOCAL_AGENT');
Managing Staging and Propagation 13-23

Managing a Streams Messaging Environment
Propagating Messages Between a SYS.AnyData Queue and a Typed Queue
SYS.AnyData queues can interoperate with typed queues in a Streams

environment. A typed queue is a queue that can stage messages of a particular type

only. To propagate a message from a SYS.AnyData queue to a typed queue, the

message must be transformed to match the type of the typed queue. The following

sections provide examples of propagating non-LCR user messages and LCRs

between a SYS.AnyData queue and a typed queue.

Example of Propagating Non-LCR User Messages to a Typed Queue
The following steps set up propagation from a SYS.AnyData queue named

oe_q_any to a typed queue of type oe.cust_address_typ named

oe_q_address . The source queue oe_q_any is at the dbs1.net database, and

the destination queue oe_q_address is at the dbs2.net database. Both queues

are owned by strmadmin .

1. Connect as an administrative user who can grant privileges at dbs1.net .

2. Grant the following privilege to strmadmin , if it was not already granted.

GRANT EXECUTE ON DBMS_TRANSFORM TO strmadmin;

3. Grant strmadmin EXECUTE privilege on oe.cust_address_typ at

dbs1.net and dbs2.net .

CONNECT oe/oe@dbs1.net

GRANT EXECUTE ON oe.cust_address_typ TO strmadmin;

CONNECT oe/oe@dbs2.net

GRANT EXECUTE ON oe.cust_address_typ TO strmadmin;

Note: The examples in this section assume that you have

completed the examples in "Wrapping User Message Payloads in a

SYS.AnyData Wrapper" on page 13-19.

See Also: "Message Propagation and SYS.AnyData Queues" on

page 3-16 for more information about propagation between

SYS.AnyData and typed queues
13-24 Oracle9i Streams

Managing a Streams Messaging Environment
4. Create a typed queue at dbs2.net , if one does not already exist.

CONNECT strmadmin/strmadminpw@dbs2.net

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'strmadmin.oe_q_table_address',
 queue_payload_type => 'oe.cust_address_typ',
 multiple_consumers => true);
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'strmadmin.oe_q_address',
 queue_table => 'strmadmin.oe_q_table_address');
 DBMS_AQADM.START_QUEUE(
 queue_name => 'strmadmin.oe_q_address');
END;
/

5. Create a database link between dbs1.net and dbs2.net if one does not

already exist.

CONNECT strmadmin/strmadminpw@dbs1.net

CREATE DATABASE LINK dbs2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'DBS2.NET';

6. Create a function called any_to_cust_address_typ in the strmadmin
schema at dbs1.net that takes a SYS.AnyData payload containing a

oe.cust_address_typ object and returns the oe.cust_address_typ
object.

CREATE OR REPLACE FUNCTION strmadmin.any_to_cust_address_typ(
 in_any IN SYS.AnyData)
RETURN OE.CUST_ADDRESS_TYP
AS
 address OE.CUST_ADDRESS_TYP;
 num_var NUMBER;
 type_name VARCHAR2(100);
BEGIN
 -- Get the type of object
 type_name := in_any.GetTypeName();
 -- Check if the object type is OE.CUST_ADDRESS_TYP
 IF (type_name = 'OE.CUST_ADDRESS_TYP') THEN
 -- Put the address in the message into the address variable
 num_var := in_any.GetObject(address);
 RETURN address;
Managing Staging and Propagation 13-25

Managing a Streams Messaging Environment
 ELSE
 raise_application_error(-20101, 'Conversion failed - ' || type_name);
 END IF;
END;
/

7. Create a transformation at dbs1.net using the DBMS_TRANSFORM package.

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'strmadmin',
 name => 'anytoaddress',
 from_schema => 'SYS',
 from_type => 'ANYDATA',
 to_schema => 'oe',
 to_type => 'cust_address_typ',

transformation => 'strmadmin.any_to_cust_address_typ(source.user_data)');
END;
/

8. Create a subscriber for the typed queue if one does not already exist. The

subscriber must contain a rule that ensures that only messages of the

appropriate type are propagated to the destination queue.

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT ('ADDRESS_AGENT_REMOTE',
 'STRMADMIN.OE_Q_ADDRESS@DBS2.NET',
 0);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.oe_q_any',
 subscriber => subscriber,
 rule =>
 'TAB.USER_DATA.GetTypeName()=''OE.CUST_ADDRESS_TYP''',
 transformation => 'strmadmin.anytoaddress');
END;
/

13-26 Oracle9i Streams

Managing a Streams Messaging Environment
9. Schedule propagation between the SYS.AnyData queue at dbs1.net and the

typed queue at dbs2.net .

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'strmadmin.oe_q_any',
 destination => 'dbs2.net');
END;
/

10. Enqueue a message of oe.cust_address_typ type wrapped in a

SYS.AnyData wrapper:

CONNECT oe/oe@dbs1.net

BEGIN
 oe.enq_proc(SYS.AnyData.ConvertObject(oe.cust_address_typ(
 '1668 Chong Tao','111181','Beijing',NULL, 'CN')));
END;
/
COMMIT;

11. After allowing some time for propagation, query the queue table at dbs2.net
to view the propagated message:

CONNECT strmadmin/strmadminpw@dbs2.net

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_Q_TABLE_ADDRESS;

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about transformations during

propagation
Managing Staging and Propagation 13-27

Managing a Streams Messaging Environment
Example of Propagating LCRs to a Typed Queue
To propagate LCRs from a SYS.AnyData queue to a typed queue, you complete

the same steps as you do for non-LCR events, but Oracle supplies the

transformation functions. You can use the following functions in the

DBMS_STREAMS package to transform LCRs in SYS.AnyData queues to messages

in typed queues:

■ The CONVERT_ANYDATA_TO_LCR_ROW function transforms SYS.AnyData
payload containing a row LCR into SYS.LCR$_ROW_RECORD payload.

■ The CONVERT_ANYDATA_TO_LCR_DDL function transforms SYS.AnyData
payload containing a DDL LCR into SYS.LCR$_DDL_RECORD payload.

You can propagate user-enqueued LCRs to an appropriate typed queue, but

propagation of captured LCRs to a typed queue is not supported.

The following example sets up propagation of row LCRs from a SYS.AnyData
queue named oe_q_any to a typed queue of type SYS.LCR$_ROW_RECORDnamed

oe_q_lcr . The source queue oe_q_any is at the dbs1.net database, and the

destination queue oe_q_lcr is at the dbs3.net database.

1. Connect as an administrative user who can grant privileges at dbs1.net .

2. Grant the following privilege to strmadmin , if it was not already granted.

GRANT EXECUTE ON DBMS_TRANSFORM TO strmadmin;

3. Create a queue of the LCR type if one does not already exist.

CONNECT strmadmin/strmadminpw@dbs3.net

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'strmadmin.oe_q_table_lcr',
 queue_payload_type => 'SYS.LCR$_ROW_RECORD',
 multiple_consumers => true);
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'strmadmin.oe_q_lcr',
 queue_table => 'strmadmin.oe_q_table_lcr');
 DBMS_AQADM.START_QUEUE(
 queue_name => 'strmadmin.oe_q_lcr');
END;
/

13-28 Oracle9i Streams

Managing a Streams Messaging Environment
4. Create a database link between dbs1.net and dbs3.net if one does not

already exist.

CONNECT strmadmin/strmadminpw@dbs1.net

CREATE DATABASE LINK dbs3.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'DBS3.NET';

5. Create a transformation at dbs1.net using the DBMS_TRANSFORM package.

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'strmadmin',
 name => 'anytolcr',
 from_schema => 'SYS',
 from_type => 'ANYDATA',
 to_schema => 'SYS',
 to_type => 'LCR$_ROW_RECORD',
 transformation =>
 'SYS.DBMS_STREAMS.CONVERT_ANYDATA_TO_LCR_ROW(source.user_data)');
END;
/

6. Create a subscriber at the typed queue if one does not already exist. The

subscriber specifies the CONVERT_ANYDATA_TO_LCR_ROW function for the

transformation parameter.

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT (
 'ROW_LCR_AGENT_REMOTE',
 'STRMADMIN.OE_Q_LCR@DBS3.NET',
 0);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.oe_q_any',
 subscriber => subscriber,
 rule => 'TAB.USER_DATA.GetTypeName()=''SYS.LCR$_ROW_RECORD''',
 transformation => 'strmadmin.anytolcr');
END;
/

Managing Staging and Propagation 13-29

Managing a Streams Messaging Environment
7. Schedule propagation between the SYS.AnyData queue at dbs1.net and the

LCR queue at dbs3.net .

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'strmadmin.oe_q_any',
 destination => 'dbs3.net');
END;
/

8. Create a procedure to construct and enqueue a row LCR into the

strmadmin.oe_q_any queue:

CONNECT oe/oe@dbs1.net

CREATE OR REPLACE PROCEDURE oe.enq_row_lcr_proc(
 source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST) AS
 eopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_msgid RAW(16);
 row_lcr SYS.LCR$_ROW_RECORD;
BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT('LOCAL_AGENT', NULL, NULL);
 -- Construct the LCR based on information passed to procedure
 row_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
 -- Enqueue the created row LCR
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.oe_q_any',
 enqueue_options => eopt,
 message_properties => mprop,
 payload => SYS.AnyData.ConvertObject(row_lcr),
 msgid => enq_msgid);
END enq_row_lcr_proc;
/

13-30 Oracle9i Streams

Managing a Streams Messaging Environment
9. Create a row LCR that inserts a row into the oe.inventories table and

enqueue the row LCR into the strmadmin.oe_q_any queue.

DECLARE
 newunit1 SYS.LCR$_ROW_UNIT;
 newunit2 SYS.LCR$_ROW_UNIT;
 newunit3 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 newunit1 := SYS.LCR$_ROW_UNIT(
 'PRODUCT_ID',
 SYS.AnyData.ConvertNumber(3503),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit2 := SYS.LCR$_ROW_UNIT(
 'WAREHOUSE_ID',
 SYS.AnyData.ConvertNumber(1),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit3 := SYS.LCR$_ROW_UNIT(
 'QUANTITY_ON_HAND',
 SYS.AnyData.ConvertNumber(157),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1,newunit2,newunit3);
oe.enq_row_lcr_proc(
 source_dbname => 'DBS1.NET',
 cmd_type => 'INSERT',
 obj_owner => 'OE',
 obj_name => 'INVENTORIES',
 old_vals => NULL,
 new_vals => newvals);
END;
/
COMMIT;
Managing Staging and Propagation 13-31

Managing a Streams Messaging Environment
10. After allowing some time for propagation, query the queue table at dbs3.net
to view the propagated message:

CONNECT strmadmin/strmadminpw@dbs3.net

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_Q_TABLE_LCR;

See Also: The DBMS_STREAMS package in the Oracle9i Supplied
PL/SQL Packages and Types Reference for more information about the

row LCR and DDL LCR conversion functions
13-32 Oracle9i Streams

Managing an Apply P
14

Managing an Apply Process

A Streams apply process dequeues logical change records (LCRs) and user

messages from a specific queue and either applies each one directly or passes it as a

parameter to a user-defined procedure.

This chapter contains these topics:

■ Creating, Starting, Stopping, and Dropping an Apply Process

■ Managing the Rule Set for an Apply Process

■ Setting an Apply Process Parameter

■ Setting the Apply User for an Apply Process

■ Managing the Message Handler for an Apply Process

■ Managing a DML Handler

■ Managing the DDL Handler for an Apply Process

■ Managing an Error Handler

■ Managing the Substitute Key Columns for a Table

■ Managing Streams Conflict Resolution

■ Managing Apply Errors

■ Setting Instantiation SCNs at a Destination Database

Each task described in this section should be completed by a Streams administrator

that has been granted the appropriate privileges, unless specified otherwise.
rocess 14-1

Creating, Starting, Stopping, and Dropping an Apply Process
Creating, Starting, Stopping, and Dropping an Apply Process
This section contains instructions for creating, starting, stopping and dropping an

apply process.

Creating an Apply Process
You can use any of the following procedures to create an apply process:

■ DBMS_STREAMS_ADM.ADD_TABLE_RULES

■ DBMS_STREAMS_ADM.ADD_SUBSET_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

■ DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

■ DBMS_APPLY_ADM.CREATE_APPLY

Each of the procedures in the DBMS_STREAMS_ADM package creates an apply

process with the specified name if it does not already exist, creates a rule set for the

apply process if the apply process does not have a rule set, and may add table,

schema, or global rules to the rule set.

The CREATE_APPLY procedure creates an apply process, but does not create a rule

set or rules for the apply process. However, the CREATE_APPLY procedure enables

you to specify an existing rule set to associate with the apply process and a number

of other options, such as event handlers, an apply user, an apply tag, and whether

to apply captured or user-enqueued events.

Before you create an apply process, create a Streams queue to associate with the

apply process, if one does not exist.

See Also:

■ Chapter 4, "Streams Apply Process"

■ "Configuring a Streams Administrator" on page 11-2

■ "Managing Streams Tags for an Apply Process" on page 16-27

Note: Depending on the configuration of the apply process you

create, supplemental logging may be required at the source

database on columns in the tables for which an apply process

applies changes.
14-2 Oracle9i Streams

Creating, Starting, Stopping, and Dropping an Apply Process
Example of Creating an Apply Process Using DBMS_STREAMS_ADM
The following is an example that runs the ADD_SCHEMA_RULES procedure in the

DBMS_STREAMS_ADM package to create an apply process:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(

schema_name => 'hr',
streams_type => 'apply',
streams_name => 'strm01_apply',
queue_name => 'strm01_queue',
include_dml => true,
include_ddl => false,
include_tagged_lcr => false,

 source_database => 'dbs1.net');
END;
/

Running this procedure performs the following actions:

■ Creates an apply process named strm01_apply that applies captured events

to the local database. The apply process is created only if it does not already

exist.

■ Associates the apply process with an existing queue named strm01_queue

■ Creates a rule set and associates it with the apply process, if the apply process

does not have a rule set. The rule set uses the

SYS.STREAMS$_EVALUATION_CONTEXTevaluation context. The rule set name

is specified by the system.

■ Creates one rule that specifies that the apply process applies row LCRs that

contain the results of DML changes to database objects in the hr schema. The

rule name is specified by the system.

See Also:

■ "Creating a Streams Queue" on page 13-2

■ "Supplemental Logging in a Streams Environment" on

page 2-11 for information about when supplemental logging is

required

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9
Managing an Apply Process 14-3

Creating, Starting, Stopping, and Dropping an Apply Process
■ Adds the rule to the rule set associated with the apply process

■ Sets the apply_tag for the apply process to a value that is the hexadecimal

equivalent of '00' (double zero). Redo entries generated by the apply process

have a tag with this value.

■ Specifies that the apply process applies a row LCR only if it has a NULL tag,

because the include_tagged_lcr parameter is set to false . This behavior is

accomplished through the system-created rule for the apply process.

Examples of Creating an Apply Process Using DBMS_APPLY_ADM
The first example in this section creates an apply process that applies captured

events, and the second example in this section creates an apply process that applies

user-enqueued events. A single apply process cannot apply both captured and

user-enqueued events.

See Also:

■ "Apply Process Creation" on page 4-32

■ "System-Created Rules" on page 6-3

■ "Tags and Rules Created by the DBMS_STREAMS_ADM

Package" on page 8-3

See Also:

■ "Apply Process Creation" on page 4-32

■ "Event Processing Options" on page 4-4 for more information

about event handlers

■ "Tags and an Apply Process" on page 8-6

■ "Oracle to Non-Oracle Data Sharing with Streams" on page 9-2

for information about configuring an apply process to apply

events to a non-Oracle database using the

apply_database_link parameter
14-4 Oracle9i Streams

Creating, Starting, Stopping, and Dropping an Apply Process
Example of Creating an Apply Process to Apply Captured Events The following is an

example that runs the CREATE_APPLYprocedure in the DBMS_APPLY_ADMpackage

to create an apply process that applies captured events:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strm02_queue',
 apply_name => 'strm02_apply',
 rule_set_name => 'strmadmin.strm01_rule_set',
 message_handler => NULL,
 ddl_handler => 'hr.ddl_handler',
 apply_user => 'hr',
 apply_database_link => NULL,
 apply_tag => HEXTORAW('5'),
 apply_captured => true);
END;
/

Running this procedure performs the following actions:

■ Creates an apply process named strm02_apply . An apply process with the

same name must not exist.

■ Associates the apply process with an existing queue named strm02_queue

■ Associates the apply process with an existing rule set named

strm01_rule_set

■ Specifies that the apply process does not use a message handler.

■ Specifies that the DDL handler is the ddl_handler PL/SQL procedure in the

hr schema. The user who runs the CREATE_APPLY procedure must have

EXECUTE privilege on the ddl_handler PL/SQL procedure.

■ Specifies that the user who applies the changes is hr , and not the user who is

running the CREATE_APPLY procedure (the Streams administrator).

■ Specifies that the apply process applies changes to the local database because

the apply_database_link parameter is set to NULL.

■ Specifies that each redo entry generated by the apply process has a tag that is

the hexadecimal equivalent of '5' .

■ Specifies that the apply process applies captured LCRs, and not user-enqueued

events. Therefore, if an LCR that was constructed by a user application, not by

by the capture process, is staged in the queue for the apply process, then this

apply process does not apply the LCR.
Managing an Apply Process 14-5

Creating, Starting, Stopping, and Dropping an Apply Process
Example of Creating an Apply Process to Apply User-Enqueued Events The following is an

example that runs the CREATE_APPLYprocedure in the DBMS_APPLY_ADMpackage

to create an apply process that applies user-enqueued events:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strm01_queue',
 apply_name => 'strm03_apply',
 rule_set_name => 'strmadmin.strm02_rule_set',
 message_handler => 'strmadmin.mes_handler',
 ddl_handler => NULL,
 apply_user => NULL,
 apply_database_link => NULL,
 apply_tag => NULL,
 apply_captured => false);
END;
/

Running this procedure performs the following actions:

■ Creates an apply process named strm03_apply . An apply process with the

same name must not exist.

■ Associates the apply process with an existing queue named strm01_queue

■ Associates the apply process with an existing rule set named

strm02_rule_set

■ Specifies that the message handler is the mes_handler PL/SQL procedure in

the strmadmin schema. The user who runs the CREATE_APPLY procedure

must have EXECUTE privilege on the mes_handler PL/SQL procedure.

■ Specifies that the apply process does not use a DDL handler.

■ Specifies that the user who applies the changes is the user who runs the

CREATE_APPLY procedure, because the apply_user parameter is NULL.

■ Specifies that the apply process applies changes to the local database, because

the apply_database_link parameter is set to NULL.

■ Specifies that each redo entry generated by the apply process has a NULL tag.

■ Specifies that the apply process applies user-enqueued events, and not captured

events.
14-6 Oracle9i Streams

Creating, Starting, Stopping, and Dropping an Apply Process
Starting an Apply Process
You run the START_APPLY procedure in the DBMS_APPLY_ADM package to start an

existing apply process. For example, the following procedure starts an apply

process named strm01_apply :

BEGIN
 DBMS_APPLY_ADM.START_APPLY(

apply_name => 'strm01_apply');
END;
/

Stopping an Apply Process
You run the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop an

existing apply process. For example, the following procedure stops an apply

process named strm01_apply :

BEGIN
 DBMS_APPLY_ADM.STOP_APPLY(

apply_name => 'strm01_apply');
END;
/

Dropping an Apply Process
You run the DROP_APPLY procedure in the DBMS_APPLY_ADM package to drop an

existing apply process. For example, the following procedure drops an apply

process named strm02_apply :

BEGIN
 DBMS_APPLY_ADM.DROP_APPLY(

apply_name => 'strm02_apply');
END;
/

An error is raised if you try to drop an apply process and there are errors in the

exception queue for the specified apply process. Therefore, if there are errors in the

exception queue for an apply process, delete the errors before dropping the apply

process.

See Also: "Managing Apply Errors" on page 14-33
Managing an Apply Process 14-7

Managing the Rule Set for an Apply Process
Managing the Rule Set for an Apply Process
This section contains instructions for completing the following tasks:

■ Specifying the Rule Set for an Apply Process

■ Adding Rules to the Rule Set for an Apply Process

■ Removing a Rule from the Rule Set for an Apply Process

■ Removing the Rule Set for an Apply Process

Specifying the Rule Set for an Apply Process
You specify the rule set that you want to associate with an apply process using the

rule_set_name parameter in the ALTER_APPLY procedure in the

DBMS_APPLY_ADM package. For example, the following procedure sets the rule set

for an apply process named strm01_apply to strm02_rule_set .

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

Adding Rules to the Rule Set for an Apply Process
To add rules to the rule set for an apply process, you can run one of the following

procedures:

■ DBMS_STREAMS_ADM.ADD_TABLE_RULES

■ DBMS_STREAMS_ADM.ADD_SUBSET_RULES

■ DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

■ DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"
14-8 Oracle9i Streams

Managing the Rule Set for an Apply Process
The following is an example that runs the ADD_TABLE_RULES procedure in the

DBMS_STREAMS_ADM package to add rules to the rule set of an apply process

named strm01_apply :

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

table_name => 'hr.departments',
streams_type => 'apply',
streams_name => 'strm01_apply',
queue_name => 'strm01_queue',
include_dml => true,
include_ddl => true,

 source_database => 'dbs1.net');
END;
/

Running this procedure performs the following actions:

■ Creates one rule that specifies that the apply process applies row LCRs that

contain the results of DML changes to the hr.departments table. The rule

name is specified by the system.

■ Creates one rule that specifies that the apply process applies DDL LCRs that

contain the results of DDL changes to the hr.departments table. The rule

name is specified by the system.

■ Adds the rule to the rule set associated with the apply process

■ Specifies that the apply process applies LCRs only from the dbs1.net source

database.

Removing a Rule from the Rule Set for an Apply Process
You specify that you want to remove a rule from the rule set for an existing apply

process by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM
package. For example, the following procedure removes a rule named

DEPARTMENTS3 from the rule set of a apply process named strm01_apply .

See Also: "System-Created Rules" on page 6-3
Managing an Apply Process 14-9

Managing the Rule Set for an Apply Process
BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(

rule_name => 'DEPARTMENTS3',
 streams_type => 'apply',
streams_name => 'strm01_apply',

 drop_unused_rule => true);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE
procedure is set to true , which is the default setting. Therefore, if the rule being

removed is not in any other rule set, then it will be dropped from the database. If

the drop_unused_rule parameter is set to false , then the rule is removed from

the rule set, but it is not dropped from the database.

In addition, if you want to remove all of the rules in the rule set for the apply

process, then specify NULL for the rule_name parameter when you run the

REMOVE_RULE procedure.

Removing the Rule Set for an Apply Process
You specify that you want to remove the rule set from an apply process by setting

the remove_rule_set parameter to true in the ALTER_APPLY procedure in the

DBMS_APPLY_ADMpackage. For example, the following procedure removes the rule

set from an apply process named strm01_apply .

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 remove_rule_set => true);
END;
/

Note: If you drop all of the rules in the rule set for an apply

process that applies captured events, then the apply process does

not apply any captured events in its queue. Similarly, if you drop

all of the rules in the rule set for an apply process that applies

user-enqueued events, then the apply process does not apply any

user-enqueued events in its queue.
14-10 Oracle9i Streams

Setting an Apply Process Parameter
Setting an Apply Process Parameter
You set an apply process parameter using the SET_PARAMETER procedure in the

DBMS_APPLY_ADM package. Apply process parameters control the way an apply

process operates.

For example, the following procedure sets the commit_serialization
parameter for an apply process named strm01_apply to none . This setting for the

commit_serialization parameter enables the apply process to commit

transactions in any order.

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'strm01_apply',
 parameter => 'commit_serialization',
 value => 'none');
END;
/

Note: If you remove a rule set for an apply process that applies

captured events, then the apply process applies all captured events

in its queue. Similarly, if you remove a rule set for an apply process

that applies user-enqueued events, then the apply process applies

all user-enqueued events in its queue.

Note:

■ The value parameter is always entered as a VARCHAR2, even if

the parameter value is a number.

■ If you set the parallelism apply process parameter to a

value greater than 1, then you must specify a conditional

supplemental log group at the source database for all of the

unique and foreign key columns in the tables for which an

apply process applies changes. Supplemental logging may be

required for other columns in these tables as well, depending

on your configuration.
Managing an Apply Process 14-11

Setting the Apply User for an Apply Process
Setting the Apply User for an Apply Process
The apply user is the user who applies all DML statements and DDL statements

and who runs user-defined apply handlers. You set the apply user for an apply

process using the apply_user parameter in the ALTER_APPLY procedure in the

DBMS_APPLY_ADM package. For example, the following procedure sets the apply

user for an apply process named strm03_apply to hr .

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm03_apply',
 apply_user => 'hr');
END;
/

The user specified by the apply_user parameter must have the necessary

privileges to perform DML and DDL changes on the apply objects and to run any

apply handlers. The specified user must also have dequeue privileges on the queue

used by the apply process and privileges to execute the rule set and transformation

functions used by the apply process. These privileges must be granted directly to

the apply user; they cannot be granted through roles.

See Also:

■ "Apply Process Parameters" on page 4-34

■ The DBMS_APPLY_ADM.SET_PARAMETER procedure in the

Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed information about the apply process parameters

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9
14-12 Oracle9i Streams

Managing the Message Handler for an Apply Process
Managing the Message Handler for an Apply Process
This section contains instructions for setting and removing the message handler for

an apply process.

Setting the Message Handler for an Apply Process
You set the message handler for an apply process using the message_handler
parameter in the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. For

example, the following procedure sets the message handler for an apply process

named strm03_apply to the mes_proc procedure in the hr schema.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm03_apply',
 message_handler => 'hr.mes_proc');
END;
/

The user who runs the ALTER_APPLY procedure must have EXECUTE privilege on

the specified message handler.

Removing the Message Handler for an Apply Process
You remove the message handler for an apply process by setting the

remove_message_handler parameter to true in the ALTER_APPLY procedure

in the DBMS_APPLY_ADM package. For example, the following procedure removes

the message handler from an apply process named strm03_apply .

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm03_apply',
 remove_message_handler => true);
END;
/

See Also:

■ "Event Processing with an Apply Process" on page 4-3

■ Chapter 19, "Streams Messaging Example" for an example of

creating a message handler
Managing an Apply Process 14-13

Managing a DML Handler
Managing a DML Handler
This section contains instructions for creating, setting, and removing a DML

handler.

Creating a DML Handler
A DML handler must have the following signature:

PROCEDUREuser_procedure (
parameter_name IN SYS.AnyData);

Here, user_procedure stands for the name of the procedure and

parameter_name stands for the name of the parameter passed to the procedure.

The parameter passed to the procedure is a SYS.AnyData encapsulation of a

row LCR.

The following restrictions apply to the user procedure:

■ Do not execute COMMIT or ROLLBACK statements. Doing so may endanger the

consistency of the transaction that contains the LCR.

■ If you are manipulating a row using the EXECUTE member procedure for the

row LCR, then do not attempt to manipulate more than one row in a row

operation. You must construct and execute manually any DML statements that

manipulate more than one row.

■ If the command type is UPDATE or DELETE, then row operations resubmitted

using the EXECUTE member procedure for the LCR must include the entire key

in the list of old values. The key is the primary key, unless a substitute key has

been specified by the SET_KEY_COLUMNS procedure.

■ If the command type is INSERT, then row operations resubmitted using the

EXECUTE member procedure for the LCR should include the entire key in the

list of new values. Otherwise, duplicate rows are possible. The key is the

primary key, unless a substitute key has been specified by the

SET_KEY_COLUMNS procedure.

See Also:

■ "Event Processing with an Apply Process" on page 4-3

■ Chapter 20, "Single Database Capture and Apply Example" for

a detailed example that uses a DML handler
14-14 Oracle9i Streams

Managing a DML Handler
A DML handler can be used for any customized processing of row LCRs. For

example, the handler may modify an LCR and then execute it using the EXECUTE
member procedure for the LCR. When you execute a row LCR in a DML handler,

the apply process applies the row LCR without calling any DML handler or error

handler for the row LCR.

You may also use a DML handler for recording the history of DML changes. For

example, a DML handler may insert information about an LCR it processes into a

table and then apply the LCR using the EXECUTE member procedure. To create

such a DML handler, first create a table to hold the history information:

CREATE TABLE strmadmin.history_row_lcrs(
 timestamp DATE,
 source_database_name VARCHAR2(128),

command_type VARCHAR2(30),
object_owner VARCHAR2(32),
object_name VARCHAR2(32),

 tag RAW(10),
 transaction_id VARCHAR2(10),
 scn NUMBER,

old_values SYS.LCR$_ROW_LIST,
 new_values SYS.LCR$_ROW_LIST)
 NESTED TABLE old_values STORE AS old_values_ntab
 NESTED TABLE new_values STORE AS new_values_ntab;

Then, create the procedure that inserts the information in the row LCR into the

history_row_lcrs table and executes the row LCR:

CREATE OR REPLACE PROCEDURE history_dml(in_any IN SYS.ANYDATA)
 IS
 lcr SYS.LCR$_ROW_RECORD;
 rc PLS_INTEGER;
 BEGIN
 -- Access the LCR
 rc := in_any.GETOBJECT(lcr);
 -- Insert information in the LCR into the history_row_lcrs table
 INSERT INTO strmadmin.history_row_lcrs VALUES
 (SYSDATE, lcr.GET_SOURCE_DATABASE_NAME(), lcr.GET_COMMAND_TYPE(),
 lcr.GET_OBJECT_OWNER(), lcr.GET_OBJECT_NAME(),
 lcr.GET_TAG(), lcr.GET_TRANSACTION_ID(), lcr.GET_SCN(),
 lcr.GET_VALUES('old'), lcr.GET_VALUES('new', 'n'));
 -- Apply row LCR
 lcr.EXECUTE(true);
END;
/

Managing an Apply Process 14-15

Managing a DML Handler
Setting a DML Handler
A DML handler processes each row LCR dequeued by any apply process that

contains a specific operation on a specific table. You can specify multiple DML

handlers on the same table, to handle different operations on the table. All apply

processes that apply changes to the specified table in the local database use the

specified DML handler.

You set the DML handler using the SET_DML_HANDLER procedure in the

DBMS_APPLY_ADM package. For example, the following procedure sets the DML

handler for UPDATE operations on the hr.locations table. Therefore, when any

apply process that applies changes locally dequeues a row LCR containing an

UPDATE operation on the hr.locations table, the apply process sends the row

LCR to the history_dml PL/SQL procedure in the strmadmin schema for

processing. The apply process does not apply a row LCR containing such a change

directly.

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.locations',
 object_type => 'TABLE',
 operation_name => 'UPDATE',
 error_handler => false,
 user_procedure => 'strmadmin.history_dml',
 apply_database_link => NULL);
END;
/

Note: You must specify an unconditional supplemental log group

at the source database for any columns needed by a DML handler

at the destination database. This example DML handler does not

require any additional supplemental logging because it simply

records information about the row LCR and does not manipulate

the row LCR in any other way.

See Also: "Specifying Supplemental Logging at a Source

Database" on page 12-9
14-16 Oracle9i Streams

Managing a DML Handler
Note:

■ If an apply process applies changes to a remote non-Oracle

database, then it may use a different DML handler for the same

table. You can run the SET_DML_HANDLER procedure in the

DBMS_APPLY_ADM package to specify a DML handler for

changes that will be applied to a remote non-Oracle database

by setting the apply_database_link parameter to a

non-NULL value.

■ When you run the SET_DML_HANDLER procedure, you specify

the object for which the handler is used, and Oracle checks to

ensure that the specified object exists in the local destination

database. If the object does not exist, then an error is raised.

Therefore, if name of the object is different at the source

database and destination database, then use a rule-based

transformation to convert the object name in the row LCR

before the row LCR is applied.

See Also:

■ "Apply Process Configuration in an Oracle to Non-Oracle

Environment" on page 9-4

■ "Rule-Based Transformations" on page 6-25
Managing an Apply Process 14-17

Managing the DDL Handler for an Apply Process
Removing a DML Handler
You remove a DML handler using the SET_DML_HANDLER procedure in the

DBMS_APPLY_ADM package. When you run that procedure, set the

user_procedure parameter to NULL for a specific operation on a specific table.

For example, the following procedure removes the DML handler for UPDATE
operations on the hr.locations table. After the DML handler is removed, any

apply process that applies changes locally will apply a row LCR containing such a

change directly.

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.locations',
 object_type => 'TABLE',
 operation_name => 'UPDATE',
 error_handler => false,
 user_procedure => NULL);
END;
/

Managing the DDL Handler for an Apply Process
This section contains instructions for creating, specifying, and removing the DDL

handler for an apply process.

Note: All applied DDL LCRs commit automatically. Therefore, if a

DDL handler calls the EXECUTE member procedure of a DDL LCR,

then a commit is performed automatically.

See Also:

■ "Event Processing with an Apply Process" on page 4-3

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the EXECUTE member procedure for LCR

types
14-18 Oracle9i Streams

Managing the DDL Handler for an Apply Process
Creating a DDL Handler for an Apply Process
A DDL handler must have the following signature:

PROCEDUREhandler_procedure (
parameter_name IN SYS.AnyData);

Here, handler_procedure stands for the name of the procedure and

parameter_name stands for the name of the parameter passed to the procedure.

The parameter passed to the procedure is a SYS.AnyData encapsulation of a

DDL LCR.

A DDL handler can be used for any customized processing of DDL LCRs. For

example, the handler may modify the LCR and then execute it using the EXECUTE
member procedure for the LCR. When you execute a DDL LCR in a DDL handler,

the apply process applies the LCR without calling the DDL handler again.

You may also use a DDL handler to record the history of DDL changes. For

example, a DDL handler may insert information about an LCR it processes into a

table and then apply the LCR using the EXECUTE member procedure.

To create such a DDL handler, first create a table to hold the history information:

CREATE TABLE strmadmin.history_ddl_lcrs(
 timestamp DATE,
 source_database_name VARCHAR2(128),

command_type VARCHAR2(30),
object_owner VARCHAR2(32),
object_name VARCHAR2(32),

 object_type VARCHAR2(18),
 ddl_text CLOB,
 logon_user VARCHAR2(32),
 current_schema VARCHAR2(32),
 base_table_owner VARCHAR2(32),
 base_table_name VARCHAR2(32),
 tag RAW(10),
 transaction_id VARCHAR2(10),
 scn NUMBER);
Managing an Apply Process 14-19

Managing the DDL Handler for an Apply Process
Then, create the procedure that inserts the information in the DDL LCR into the

history_ddl_lcrs table and executes the DDL LCR:

CREATE OR REPLACE procedure history_ddl(in_any IN SYS.ANYDATA)
 IS
 lcr SYS.LCR$_DDL_RECORD;
 rc PLS_INTEGER;
 ddl_text CLOB;
 BEGIN
 -- Access the LCR
 rc := in_any.GETOBJECT(lcr);
 DBMS_LOB.CREATETEMPORARY(ddl_text, TRUE);
 lcr.GET_DDL_TEXT(ddl_text);
 -- Insert DDL LCR information into history_ddl_lcrs table
 INSERT INTO strmadmin.history_ddl_lcrs VALUES(
 SYSDATE, lcr.GET_SOURCE_DATABASE_NAME(), lcr.GET_COMMAND_TYPE(),
 lcr.GET_OBJECT_OWNER(), lcr.GET_OBJECT_NAME(), lcr.GET_OBJECT_TYPE(),
 ddl_text, lcr.GET_LOGON_USER(), lcr.GET_CURRENT_SCHEMA(),
 lcr.GET_BASE_TABLE_OWNER(), lcr.GET_BASE_TABLE_NAME(), lcr.GET_TAG(),
 lcr.GET_TRANSACTION_ID(), lcr.GET_SCN());
 -- Apply DDL LCR
 lcr.EXECUTE();
 -- Free temporary LOB space
 DBMS_LOB.FREETEMPORARY(ddl_text);
END;
/

Setting the DDL Handler for an Apply Process
A DDL handler processes all DDL LCRs dequeued by an apply process. You set the

DDL handler for an apply process using the ddl_handler parameter in the

ALTER_APPLY procedure in the DBMS_APPLY_ADM package. For example, the

following procedure sets the DDL handler for an apply process named

strm01_apply to the history_ddl procedure in the strmadmin schema.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 ddl_handler => 'strmadmin.history_ddl');
END;
/

14-20 Oracle9i Streams

Managing an Error Handler
Removing the DDL Handler for an Apply Process
A DDL handler processes all DDL LCRs dequeued by an apply process. You

remove the DDL handler for an apply process by setting the

remove_ddl_handler parameter to true in the ALTER_APPLY procedure in the

DBMS_APPLY_ADM package. For example, the following procedure removes the

DDL handler from an apply process named strm01_apply .

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 remove_ddl_handler => true);
END;
/

Managing an Error Handler
This section contains instructions for creating, setting, and removing an error

handler.

Creating an Error Handler
You create an error handler by running the SET_DML_HANDLER procedure in the

DBMS_APPLY_ADM package and setting the error_handler parameter to true .

An error handler must have the following signature:

PROCEDUREuser_procedure (
 message IN SYS.AnyData,
 error_stack_depth IN NUMBER,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN emsg_array);

Here, user_procedure stands for the name of the procedure. Each parameter is

required and must have the specified datatype. However, you can change the

names of the parameters. The emsg_array parameter must be a user-defined array

that is a PL/SQL table of type VARCHAR2 with at least 76 characters.

See Also: "Event Processing with an Apply Process" on page 4-3
Managing an Apply Process 14-21

Managing an Error Handler
Running an error handler results in one of the following outcomes:

■ The error handler successfully resolves the error, applies the row LCR if

appropriate, and returns control back to the apply process.

■ The error handler fails to resolve the error, and the error is raised. The raised

error causes the transaction to be rolled back and placed in an exception queue.

If you want to retry the DML operation, then have the error handler procedure run

the EXECUTE member procedure for the LCR.

The following example creates an error handler named regions_pk_error that

resolves primary key violations for the hr.regions table. At a destination

database, assume users insert rows into the hr.regions table and an apply

process applies changes to the hr.regions table that originated from a capture

process at a remote source database. In this environment, there is a possibility of

errors resulting from users at the destination database inserting a row with the

same primary key value as an insert row LCR applied from the source database.

This example creates a table in the strmadmin schema called errorlog to record

the following information about each primary key violation error on the

hr.regions table:

■ The timestamp when the error occurred

■ The user who caused the error (sender), which is the capture process name for

captured LCRs or the name of the AQ agent for user-enqueued LCRs

■ The name of the object on which the DML operation was run, because errors for

other objects may be logged in the future

■ The type of command used in the DML operation

■ The name of the constraint violated

■ The error message

■ The LCR that caused the error

Note: Certain restrictions on the user procedure specified in

SET_DML_HANDLERmust be met for error handlers. See "Creating a

DML Handler" on page 14-14 for information about these

restrictions.
14-22 Oracle9i Streams

Managing an Error Handler
This error handler resolves only errors that are caused by a primary key violation

on the hr.regions table. To resolve this type of error, the error handler modifies

the region_id value in the row LCR using a sequence and then executes the row

LCR to apply it. If other types of errors occur, then you can use the row LCR you

stored in the errorlog table to resolve the error manually.

For example, the following error is resolved by the error handler:

1. At the destination database, a user inserts a row into the hr.regions table

with a region_id value of 6 and a region_name value of 'LILLIPUT' .

2. At the source database, a user inserts a row into the hr.regions table with a

region_id value of 6 and a region_name value of 'BROBDINGNAG'.

3. A capture process at the source database captures the change described in

Step 2.

4. A propagation propagates the LCR containing the change from a queue at the

source database to the queue used by the apply process at the destination

database.

5. When the apply process tries to apply the LCR, an error results because of a

primary key violation.

6. The apply process invokes the error handler to handle the error.

7. The error handler logs the error in the strmadmin.errorlog table.

8. The error handler modifies the region_id value in the LCR using a sequence

and executes the LCR to apply it.

Complete the following steps to create the regions_pk_error error handler:

1. Create the sequence used by the error handler to assign new primary key

values by connecting as hr user and running the following statement:

CONNECT hr/hr

CREATE SEQUENCE hr.reg_exception_s START WITH 9000;

This example assumes that users at the destination database will never insert a

row into the hr.regions table with a region_id greater than 8999 .

2. Grant the Streams administrator ALL privilege on the sequence:

GRANT ALL ON reg_exception_s TO strmadmin;
Managing an Apply Process 14-23

Managing an Error Handler
3. Create the errorlog table by connecting as the Streams administrator and

running the following statement:

CONNECT strmadmin/strmadminpw

CREATE TABLE strmadmin.errorlog(
 logdate DATE,
 sender VARCHAR2(100),
 object_name VARCHAR2(32),
 command_type VARCHAR2(30),
 errnum NUMBER,
 errmsg VARCHAR2(2000),
 text VARCHAR2(2000),
 lcr SYS.LCR$_ROW_RECORD);

4. Create a package that includes the regions_pk_error procedure:

CREATE OR REPLACE PACKAGE errors_pkg
AS
 TYPE emsg_array IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;
 PROCEDURE regions_pk_error(
 message IN SYS.ANYDATA ,
 error_stack_depth IN NUMBER ,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN EMSG_ARRAY);
END errors_pkg ;
/

5. Create the package body that includes the regions_pk_error procedure:

CREATE OR REPLACE PACKAGE BODY errors_pkg AS
 PROCEDURE regions_pk_error (
 message IN SYS.ANYDATA,
 error_stack_depth IN NUMBER,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN EMSG_ARRAY)
 IS
 reg_id NUMBER;
 ad SYS.ANYDATA;
 lcr SYS.LCR$_ROW_RECORD;
 ret PLS_INTEGER;
 vc VARCHAR2(30) ;
 errlog_rec errorlog%ROWTYPE ;
 ov2 SYS.LCR$_ROW_LIST;
14-24 Oracle9i Streams

Managing an Error Handler
 BEGIN
 -- Access the error number from the top of the stack.
 -- In case of check constraint violation,
 -- get the name of the constraint violated
 IF error_numbers(1) IN (1 , 2290) THEN
 ad := DBMS_STREAMS.GET_INFORMATION('CONSTRAINT_NAME');
 ret := ad.GetVarchar2(errlog_rec.text);
 ELSE
 errlog_rec.text := NULL ;
 END IF ;
 ad := DBMS_STREAMS.GET_INFORMATION('SENDER');
 ret := ad.GETVARCHAR2(errlog_rec.sender);
 -- Try to access the LCR
 ret := message.GETOBJECT(lcr);
 errlog_rec.object_name := lcr.GET_OBJECT_NAME() ;
 errlog_rec.command_type := lcr.GET_COMMAND_TYPE() ;
 errlog_rec.errnum := error_numbers(1) ;
 errlog_rec.errmsg := error_messages(1) ;
 INSERT INTO strmadmin.errorlog VALUES (SYSDATE, errlog_rec.sender,
 errlog_rec.object_name, errlog_rec.command_type,
 errlog_rec.errnum, errlog_rec.errmsg, errlog_rec.text, lcr);
 -- Add the logic to change the contents of LCR with correct values
 -- In this example, get a new region_id number
 -- from the hr.reg_exception_s sequence
 ov2 := lcr.GET_VALUES('new', 'n');
 FOR i IN 1 .. ov2.count
 LOOP
 IF ov2(i).column_name = 'REGION_ID' THEN
 SELECT hr.reg_exception_s.NEXTVAL INTO reg_id FROM DUAL;
 ov2(i).data := Sys.AnyData.ConvertNumber(reg_id) ;
 END IF ;
 END LOOP ;
 -- Set the NEW values in the LCR
 lcr.SET_VALUES(value_type => 'NEW', value_list => ov2);
 -- Execute the modified LCR to apply it
 lcr.EXECUTE(true);
 END regions_pk_error;
END errors_pkg;
/

Managing an Apply Process 14-25

Managing an Error Handler
Setting an Error Handler
An error handler handles errors resulting from a row LCR dequeued by any apply

process that contains a specific operation on a specific table. You can specify

multiple error handlers on the same table, to handle errors resulting from different

operations on the table. All apply processes that apply changes to the specified table

in the local database use the specified error handler.

You can set the error handler using the SET_DML_HANDLER procedure in the

DBMS_APPLY_ADM package. When you run this procedure to set an error handler,

set the error_handler parameter to true .

For example, the following procedure sets the error handler for INSERT operations

on the hr.regions table. Therefore, when any apply process dequeues a row LCR

containing an INSERT operation on the local hr.regions table, and the row LCR

results in an error, the apply process sends the row LCR to the

strmadmin.errors_pkg.regions_pk_error PL/SQL procedure for

processing. If the error handler cannot resolve the error, then the row LCR and all of

the other row LCRs in the same transaction are moved to an exception queue.

Note:

■ For subsequent changes to the modified row to be applied

successfully, you should converge the rows at the two

databases as quickly as possible. That is, you should make the

region_id for the row match at the source and destination

database. If you do not want these manual changes to be

recaptured at a database, then use the SET_TAG procedure in

the DBMS_STREAMS package to set the tag for the session in

which you make the change to a value that is not captured.

■ This example error handler illustrates the use of the

GET_VALUES member function and SET_VALUES member

procedure for the LCR. However, if you are modifying only one

value in the LCR, then the GET_VALUE member function and

SET_VALUE member procedure may be more convenient and

more efficient.

See Also: "Setting the Tag Values Generated by the Current

Session" on page 16-26
14-26 Oracle9i Streams

Managing the Substitute Key Columns for a Table
Run the following procedure to set the error handler:

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.regions',
 object_type => 'TABLE',
 operation_name => 'INSERT',
 error_handler => true,
 user_procedure => 'strmadmin.errors_pkg.regions_pk_error',
 apply_database_link => NULL);
END;
/

Removing an Error Handler
You remove an error handler using the SET_DML_HANDLER procedure in the

DBMS_APPLY_ADM package. When you run that procedure, set the

user_procedure parameter to NULL for a specific operation on a specific table.

For example, the following procedure removes the error handler for INSERT
operations on the hr.regions table:

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.regions',
 object_type => 'TABLE',
 operation_name => 'INSERT',
 user_procedure => NULL);
END;
/

Managing the Substitute Key Columns for a Table
This section contains instructions for setting and removing the substitute key

columns for a table.

Note: The error_handler parameter need not be specified.

See Also: "Substitute Key Columns" on page 4-11
Managing an Apply Process 14-27

Managing the Substitute Key Columns for a Table
Setting Substitute Key Columns for a Table
When an apply process applies changes to a table, substitute key columns can either

replace the primary key columns for a table that has a primary key or act as the

primary key columns for a table that does not have a primary key. You set the

substitute key columns for a table using the SET_KEY_COLUMNS procedure in the

DBMS_APPLY_ADM package. This setting applies to all of the apply processes that

apply local changes to the database.

For example, to set the substitute key columns for the hr.employees table to the

first_name , last_name , and hire_date columns, replacing the employee_id
column, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name => 'hr.employees',
 column_list => 'first_name,last_name,hire_date');
END;
/

Note:

■ You must specify an unconditional supplemental log group at

the source database for all of the columns specified as

substitute key columns in the column_list or

column_table parameter at the destination database. In this

example, you would specify an unconditional supplemental log

group including the first_name , last_name , and

hire_date columns in the hr.employees table.

■ If an apply process applies changes to a remote non-Oracle

database, then it may use different substitute key columns for

the same table. You can run the SET_KEY_COLUMNS procedure

in the DBMS_APPLY_ADM package to specify substitute key

columns for changes that will be applied to a remote

non-Oracle database by setting the apply_database_link
parameter to a non-NULL value.
14-28 Oracle9i Streams

Managing Streams Conflict Resolution
Removing the Substitute Key Columns for a Table
You remove the substitute key columns for a table by specifying NULL for the

column_list or column_table parameter in the SET_KEY_COLUMNS procedure

in the DBMS_APPLY_ADM package. If the table has a primary key, then the table’s

primary key is used by any apply process for local changes to the database after you

remove the substitute primary key.

For example, to remove the substitute key columns for the hr.employees table,

run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name => 'hr.employees',
 column_list => NULL);
END;
/

Managing Streams Conflict Resolution
This section contains instructions for creating, specifying, and removing update

conflict handlers a table. All apply processes running on a database that apply

changes to the specified table locally use the specified update conflict handler.

See Also:

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9

■ "Apply Process Configuration in an Oracle to Non-Oracle

Environment" on page 9-4

See Also: Chapter 7, "Streams Conflict Resolution"
Managing an Apply Process 14-29

Managing Streams Conflict Resolution
Setting an Update Conflict Handler
You set an update conflict handler using the SET_UPDATE_CONFLICT_HANDLER
procedure in the DBMS_APPLY_ADM package. You can use one of the following

prebuilt methods when you create an update conflict resolution handler:

■ OVERWRITE

■ DISCARD

■ MAXIMUM

■ MINIMUM

For example, suppose a Streams environment captures changes to the hr.jobs
table at dbs1.net and propagates these changes to the dbs2.net destination

database, where they are applied. In this environment, applications can perform

DML changes on the hr.jobs table at both databases, but, if there is a conflict for a

particular DML change, then the change at the dbs1.net database should always

overwrite the change at the dbs2.net database. In this environment, you can

accomplish this goal by specifying an OVERWRITE handler at the dbs2.net
database.

To specify an update conflict handler for the hr.jobs table in the hr schema at the

dbs2.net database, run the following procedure at dbs2.net :

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'OVERWRITE',
 resolution_column => 'job_title',
 column_list => cols);
END;
/

14-30 Oracle9i Streams

Managing Streams Conflict Resolution
Modifying an Existing Update Conflict Handler
You can modify an existing update conflict handler by running the

SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package.

To update an existing conflict handler, specify the same table and resolution column

as the existing conflict handler.

To modify the update conflict handler created in "Setting an Update Conflict

Handler" on page 14-30, you specify the hr.jobs table and the job_title
column as the resolution column. You can modify this update conflict handler by

specifying a different type of prebuilt method or a different column list, or both.

However, if you want to change the resolution column for an update conflict

handler, then you must remove and re-create the handler.

For example, suppose the environment changes, and you want changes from

dbs1.net to be discarded in the event of a conflict, whereas previously changes

Note:

■ The resolution_column is not used for OVERWRITE and

DISCARD methods, but one of the columns in the

column_list still must be specified.

■ You must specify a conditional supplemental log group at the

source database for all of the columns in the column_list at

the destination database. In this example, you would specify a

conditional supplemental log group including the job_title ,

min_salary , and max_salary columns in the hr.jobs table

at the dbs1.net database.

■ Conflict resolution does not support LOB columns. Therefore,

you should not include LOB columns in the column_list
parameter when running SET_UPDATE_CONFLICT_HANDLER.

See Also:

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9

■ Chapter 23, "Multiple Source Replication Example" for an

example Streams environment that illustrates using the

MAXIMUM prebuilt method for time-based conflict resolution
Managing an Apply Process 14-31

Managing Streams Conflict Resolution
from dbs1.net overwrote changes at dbs2.net . You can accomplish this goal by

specifying a DISCARD handler at the dbs2.net database.

To modify the existing update conflict handler for the hr.jobs table in the hr
schema at the dbs2.net database, run the following procedure:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'DISCARD',
 resolution_column => 'job_title',
 column_list => cols);
END;
/

Removing an Existing Update Conflict Handler
You can remove an existing update conflict handler by running the

SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package.

To remove a an existing conflict handler, specify NULL for the method, and specify

the same table, column list, and resolution column as the existing conflict handler.

For example, suppose you want to remove the update conflict handler created in

"Setting an Update Conflict Handler" on page 14-30 and then modified in

"Modifying an Existing Update Conflict Handler" on page 14-31. To remove this

update conflict handler, run the following procedure:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => NULL,
 resolution_column => 'job_title',
 column_list => cols);
END;
/

14-32 Oracle9i Streams

Managing Apply Errors
Managing Apply Errors
This section contains instructions for retrying and deleting apply errors.

Retrying Apply Error Transactions
The following sections describe how to retry a specific error transaction and how to

retry all error transactions for an apply process. You may need to make DML or

DDL changes to database objects to correct the conditions that caused one or more

apply errors before you retry apply error transactions. You may also have one or

more capture processes configured to capture changes to the same database objects.

However, you may not want the changes captured. In this case, you can set the tag

to a value that will not be captured for the session that makes the changes.

Retrying a Specific Apply Error Transaction
After you correct the conditions that caused an apply error, you can retry the

transaction by running the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM
package. For example, to retry a transaction with the transaction identifier

5.4.312 , run the following procedure:

BEGIN
 DBMS_APPLY_ADM.EXECUTE_ERROR(
 local_transaction_id => '5.4.312',
 execute_as_user => false);
END;
/

See Also:

■ "Exception Queues" on page 4-37

■ "Checking for Apply Errors" on page 17-36

■ "Displaying Detailed Information About Apply Errors" on

page 17-37

■ "Considerations for Applying DML Changes to Tables" on

page 4-10 for information about the possible causes of apply

errors

See Also: "Setting the Tag Values Generated by the Current

Session" on page 16-26
Managing an Apply Process 14-33

Managing Apply Errors
If execute_as_user is true , then the apply process reexecutes the transaction in

the security context of the current user. If execute_as_user is false , then the

apply process reexecutes the transaction in the security context of the original

receiver of the transaction. The original receiver is the user who was processing the

transaction when the error was raised.

In either case, the user who executes the transaction must have privileges to

perform DML and DDL changes on the apply objects and to run any apply

handlers. This user must also have dequeue privileges on the queue used by the

apply process.

Retrying All Error Transactions for an Apply Process
After you correct the conditions that caused all of the apply errors for an apply

process, you can retry all of the error transactions by running the

EXECUTE_ALL_ERRORSprocedure in the DBMS_APPLY_ADMpackage. For example,

to retry all of the error transactions for an apply process named strm01_apply ,

you can run the following procedure:

BEGIN
 DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(
 apply_name => 'strm01_apply',
 execute_as_user => false);
END;
/

Deleting Apply Error Transactions
The following sections describe how to delete a specific error transaction and how

to delete all error transactions for an apply process.

Deleting a Specific Apply Error Transaction
If an error transaction should not be applied, then you can delete the transaction

from its exception queue using the DELETE_ERROR procedure in the

DBMS_APPLY_ADM package. For example, a transaction with the transaction

identifier 5.4.312 , run the following procedure:

EXEC DBMS_APPLY_ADM.DELETE_ERROR(local_transaction_id => '5.4.312');

Note: If you specify NULL for the apply_name parameter, and

you have multiple apply processes, then all of the apply errors are

retried for all of the apply processes.
14-34 Oracle9i Streams

Setting Instantiation SCNs at a Destination Database
Deleting All Error Transactions for an Apply Process
If none of the error transactions should be applied, then you can delete all of the

error transactions by running the DELETE_ALL_ERRORS procedure in the

DBMS_APPLY_ADM package. For example, to delete all of the error transactions for

an apply process named strm01_apply , you can run the following procedure:

EXEC DBMS_APPLY_ADM.DELETE_ALL_ERRORS(apply_name => 'strm01_apply');

Setting Instantiation SCNs at a Destination Database
An instantiation SCN instructs an apply process at a destination database to apply

changes to a database object that committed after a specific SCN at a source

database. You can set instantiation SCNs in one of the following ways:

■ Perform instantiation of the relevant database objects by exporting them at the

source database and importing them into the destination database. In this case,

the instantiation creates the database objects at the destination database,

populates them with the data from the source database, and sets the relevant

instantiation SCNs.

■ Perform a metadata only export/import by setting the ROWS parameter to n
during export at the source database or import at the destination database, or

both. In this case, the database objects are instantiated, but no data is imported.

■ Set the instantiation SCN using the SET_TABLE_INSTANTIATION_SCN,

SET_SCHEMA_INSTANATIATION_SCN, and

SET_GLOBAL_INSTANTIATION_SCN procedures in the DBMS_APPLY_ADM
package.

Note: If you specify NULL for the apply_name parameter, and

you have multiple apply processes, then all of the apply errors are

deleted for all of the apply processes.

See Also:

■ "Instantiation" on page 2-13

■ "Instantiation SCN and Ignore SCN" on page 4-27
Managing an Apply Process 14-35

Setting Instantiation SCNs at a Destination Database
Setting Instantiation SCNs Using Export/Import
This section discusses setting instantiation SCNs by performing an export/import.

The information in this section applies to both metadata export/import operations

and to export/import operations that import rows.

To set instantiation SCNs for database objects using Export/Import, first export

them at the source database with the OBJECT_CONSISTENT export parameter set

to Y, or use a more stringent degree of consistency. Then, import them at the

destination database with the STREAMS_INSTANTIATION import parameter set

to Y.

The following sections describe the instantiation SCNs set for different types of

export/import operations. These sections refer to prepared tables. Prepared tables

are tables that have been prepared for instantiation using the

PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, or

PREPARE_GLOBAL_INSTANTIATION procedures in the DBMS_CAPTURE_ADM
package. A table must be a prepared table before export in order for an instantiation

SCN to be set for it during import. However, the database and schemas do not need

to be prepared before the export in order for their instantiation SCNs to be set

during import.

Note:

■ If a non-NULL instantiation SCN already exists for a database

object at a destination database that performs an import, then

the import does not update the instantiation SCN for that

database object.

■ During an export for a Streams instantiation, make sure no

DDL changes are made to objects being exported.

■ Any table supplemental logging specifications for the tables

exported from the export database are retained when the tables

are imported at the import database.
14-36 Oracle9i Streams

Setting Instantiation SCNs at a Destination Database
Full Database Export and Full Database Import
A full database export and full database import sets the following instantiation

SCNs at the import database:

■ The database, or global, instantiation SCN

■ The schema instantiation SCN for each imported user

■ The table instantiation SCNs for each prepared table that is imported

Full Database or User Export and User Import
A full database or user export and user import sets the following instantiation SCNs

at the import database:

■ The schema instantiation SCN for each imported user

■ The table instantiation SCN for each prepared tables that is imported

Full Database, User, or Table Export and Table Import
Any export that includes one or more tables and a table import sets the table

instantiation SCN for each prepared table that is imported at the import database.

See Also:

■ "Setting Export and Import Parameters Relevant to Streams" on

page 11-8 and Oracle9i Database Utilities for information about

using Export/Import

■ "Configuring a Capture-Based Streams Environment" on

page 11-15 for more information about performing

export/import operations to set instantiation SCNs when

configuring a Streams environment

■ "Preparing Database Objects for Instantiation at a Source

Database" on page 12-11
Managing an Apply Process 14-37

Setting Instantiation SCNs at a Destination Database
Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package
You can set an instantiation SCN at a destination database for a specified table, a

specified schema, or an entire database using one of the following procedures in the

DBMS_APPLY_ADM package:

■ SET_TABLE_INSTANTIATION_SCN

■ SET_SCHEMA_INSTANTIATION_SCN

■ SET_GLOBAL_INSTANTIATION_SCN

If you set the instantiation SCN for a schema using

SET_SCHEMA_INSTANTIATION_SCN, then you should set the instantiation SCN

for each table in the schema using SET_TABLE_INSTANTIATION_SCN. Similarly, if

you set the instantiation SCN for a database using

SET_GLOBAL_INSTANTIATION_SCN, then you should set the instantiation SCN

for each schema in the database using SET_SCHEMA_INSTANTIATION_SCN

Table 14–1 lists each procedure and the types of statements for which they set an

instantiation SCN.
14-38 Oracle9i Streams

Setting Instantiation SCNs at a Destination Database
The following example sets the instantiation SCN for the hr.departments table at

the hrdb2.net database to the current SCN by running the following procedure at

the source database hrdb1.net :

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@HRDB2.NET(
 source_object_name => 'hr.departments',
 source_database_name => 'hrdb1.net',
 instantiation_scn => iscn);
END;
/

Table 14–1 Set Instantiation SCN Procedures and the Statements They Cover

Procedure Sets Instantiation SCN for Examples

SET_TABLE_INSTANTIATION_SCN DML and DDL statements on
tables, except CREATE TABLE

DDL statements on table indexes
and table triggers

UPDATE

ALTER TABLE

DROP TABLE

CREATE, ALTER, or DROP INDEX
on a table

CREATE, ALTER, or DROP
TRIGGER on a table

SET_SCHEMA_INSTANTIATION_SCN DDL statements on users, except
CREATE USER

DDL statements on all database
objects that have a non-PUBLIC
owner, except for those DDL
statements handled by a
table-level instantiation SCN

CREATE TABLE

ALTER USER

DROP USER

CREATE PROCEDURE

SET_GLOBAL_INSTANTIATION_SCN DDL statements on database
objects other than users with no
owner

DDL statements on database
objects owned by public

CREATE USER statements

CREATE USER

CREATE TABLESPACE
Managing an Apply Process 14-39

Setting Instantiation SCNs at a Destination Database
Note:

■ If a relevant instantiation SCN is not present, then an error is

raised during apply.

■ The SET_SCHEMA_INSTANTIATION_SCN procedure does not

set the instantiation SCN for any of the tables in the schema.

■ The SET_GLOBAL_INSTANTIATION_SCN procedure does not

set the instantiation SCN for any of the schemas in the

database.

■ If an apply process applies changes to a remote non-Oracle

database, then set the apply_database_link parameter to

the database link used for remote apply when you set the

instantiation SCN.

See Also:

■ Chapter 11, "Configuring a Streams Environment" for more

information when to set instantiation SCNs when you are

configuring a Streams environment

■ Chapter 22, "Single Source Heterogeneous

Replication Example" for a detailed example that uses the

SET_TABLE_INSTANTIATION_SCN procedure

■ The information about the DBMS_APPLY_ADM package in the

Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about which instantiation SCN can be used for a

DDL LCR

■ "Instantiation in an Oracle to Non-Oracle Environment" on

page 9-7
14-40 Oracle9i Streams

Managing Rules and Rule-Based Transform
15

Managing Rules and Rule-Based

Transformations

A Streams environment uses rules to control the behavior of capture processes,

propagations, and apply processes. A Streams environment uses rule-based

transformations to modify an event that results when a rule evaluates to TRUE.
Transformations can occur during capture, propagation, or apply of an event. This

chapter contains instructions for managing rule sets, rules, and rule-based

transformations.

This chapter contains these topics:

■ Managing Rule Sets and Rules

■ Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

■ Managing Rule-Based Transformations

Each task described in this section should be completed by a Streams administrator

that has been granted the appropriate privileges, unless specified otherwise.

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"

■ "Rule-Based Transformations" on page 6-25

■ Chapter 24, "Rule-Based Application Example"

■ "Configuring a Streams Administrator" on page 11-2
ations 15-1

Managing Rule Sets and Rules
Managing Rule Sets and Rules
You can change a rule or rule set without stopping Streams capture processes,

propagations, and apply processes that use the rule or rule set. Streams will detect

the change immediately after it is committed. If you need precise control over

which events use the new version of a rule or rule set, then you should stop the

relevant capture processes and apply processes and disable the relevant

propagation jobs, change the rule or rule set, and then restart the stopped processes

and propagation jobs.

This section provides instructions for completing the following tasks:

■ Creating a Rule Set

■ Creating a Rule

■ Adding a Rule to a Rule Set

■ Altering a Rule

■ Modifying System-Created Rules

■ Removing a Rule from a Rule Set

■ Dropping a Rule

■ Dropping a Rule Set

Creating a Rule Set
The following is an example that runs the CREATE_RULE_SET procedure in the

DBMS_RULE_ADM package to create a rule set:

BEGIN
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.hr_capture_rules',

evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
END;
/

See Also:

■ "Stopping a Capture Process" on page 12-14

■ "Disabling a Propagation Job" on page 13-17

■ "Stopping an Apply Process" on page 14-7
15-2 Oracle9i Streams

Managing Rule Sets and Rules
Running this procedure performs the following actions:

■ Creates a rule set named hr_capture_rules in the strmadmin schema. A

rule set with the same name and owner must not exist.

■ Associates the rule set with the SYS.STREAMS$_EVALUATION_CONTEXT
evaluation context, which is the Oracle-supplied evaluation context for Streams

You can also use the following procedures in the DBMS_STREAMS_ADM package to

create a rule set automatically, if one does not exist for a Streams capture process,

propagation, or apply process:

■ ADD_GLOBAL_PROPAGATION_RULES

■ ADD_GLOBAL_RULES

■ ADD_SCHEMA_PROPAGATION_RULES

■ ADD_SCHEMA_RULES

■ ADD_SUBSET_RULES

■ ADD_TABLE_PROPAGATION_RULES

■ ADD_TABLE_RULES

Creating a Rule
The following is an example that runs the CREATE_RULE procedure in the

DBMS_RULE_ADM package to create a rule:

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.hr_dml',
 condition => ' :dml.get_object_owner() = ''HR'' ',
 evaluation_context => NULL);
END;
/

See Also:

■ "Example of Creating a Capture Process Using

DBMS_STREAMS_ADM" on page 12-3

■ "Example of Creating a Propagation Using

DBMS_STREAMS_ADM" on page 13-9

■ "Example of Creating an Apply Process Using

DBMS_STREAMS_ADM" on page 14-3
Managing Rules and Rule-Based Transformations 15-3

Managing Rule Sets and Rules
Running this procedure performs the following actions:

■ Creates a rule named hr_dml in the strmadmin schema. A rule with the same

name and owner must not exist.

■ Creates a condition that evaluates to TRUE for any DML change to a table in the

hr schema

In this example, no evaluation context is specified for the rule. Therefore, the rule

will either inherit the evaluation context of any rule set to which it is added, or it

will be assigned an evaluation context explicitly when the

DBMS_RULE_ADM.ADD_RULE procedure is run to add it to a rule set. At this point,

the rule cannot be evaluated because it is not part of any rule set.

You can also use the following procedures in the DBMS_STREAMS_ADM package to

create rules and add them to a rule set automatically:

■ ADD_GLOBAL_PROPAGATION_RULES

■ ADD_GLOBAL_RULES

■ ADD_SCHEMA_PROPAGATION_RULES

■ ADD_SCHEMA_RULES

■ ADD_SUBSET_RULES

■ ADD_TABLE_PROPAGATION_RULES

■ ADD_TABLE_RULES

See Also:

■ "Example of Creating a Capture Process Using

DBMS_STREAMS_ADM" on page 12-3

■ "Example of Creating a Propagation Using

DBMS_STREAMS_ADM" on page 13-9

■ "Example of Creating an Apply Process Using

DBMS_STREAMS_ADM" on page 14-3
15-4 Oracle9i Streams

Managing Rule Sets and Rules
Adding a Rule to a Rule Set
The following is an example that runs the ADD_RULE procedure in the

DBMS_RULE_ADM package to add the hr_dml rule to the hr_capture_rules rule

set:

BEGIN
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.hr_dml',
 rule_set_name => 'strmadmin.hr_capture_rules',
 evaluation_context => NULL);
END;
/

In this example, no evaluation context is specified when running the ADD_RULE
procedure. Therefore, if the rule does not have its own evaluation context, it will

inherit the evaluation context of the hr_capture_rules rule set. If you want a

rule to use an evaluation context other than the one specified for the rule set, then

you can set the evaluation_context parameter to this evaluation context when

you run the ADD_RULE procedure.

Altering a Rule
You can use the ALTER_RULE procedure in the DBMS_RULE_ADM package to alter

an existing rule. Specifically, you can use this procedure to do the following:

■ Change a rule’s condition

■ Change a rule’s evaluation context

■ Remove a rule’s evaluation context

■ Change a rule’s action context

■ Remove a rule’s action context

■ Change the comment for a rule

■ Remove the comment for a rule

For example, suppose you want to change the condition of the rule created in

"Creating a Rule" on page 15-3. The condition in the existing hr_dml rule evaluates

to TRUE for any DML change to any object in the hr schema. If you want to exclude

changes to the employees table in this schema, then you can alter the rule so that it

evaluates to FALSE for DML changes to the hr.employees table, but continues to

evaluate to TRUE for DML changes to any other table in this schema. The following

procedure alters the rule in this way:
Managing Rules and Rule-Based Transformations 15-5

Managing Rule Sets and Rules
BEGIN
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.hr_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND NOT ' ||
 ' :dml.get_object_name() = ''EMPLOYEES'' ',
 evaluation_context => NULL);
END;
/

Modifying System-Created Rules
System-created rules are rules created by running a procedure in the

DBMS_STREAMS_ADM package. If you want to use a rule-based transformation for a

system-created rule, then you can modify the rule’s action context to add the

rule-based transformation.

Also, if you cannot create a rule with the rule condition you need using the

DBMS_STREAMS_ADM package, then you can create a new rule with a condition

based on a system-created rule by following these general steps:

1. Copy the rule condition of the system-created rule. You can view the rule

condition of a system-created rule by querying the

DBA_STREAMS_TABLE_RULES, DBA_STREAMS_SCHEMA_RULES, or

DBA_STREAMS_GLOBAL_RULES data dictionary view.

2. Use the copied rule condition to create a new rule by modifying the condition.

3. Add the new rule to the rule set for the Streams capture process, propagation,

or apply process.

4. Remove the original rule if it is no longer needed using the REMOVE_RULE
procedure in the DBMS_STREAMS_ADM package.

Note:

■ Changing the condition of a rule affects all rule sets that contain

the rule.

■ If you want to alter a rule but retain the rule’s action context,

then specify NULL for action_context parameter in the

ALTER_RULE procedure. NULL is the default value for the

action_context parameter.
15-6 Oracle9i Streams

Managing Rule Sets and Rules
Removing a Rule from a Rule Set
The following is an example that runs the REMOVE_RULE procedure in the

DBMS_RULE_ADM package to remove the hr_dml rule from the

hr_capture_rules rule set:

BEGIN
 DBMS_RULE_ADM.REMOVE_RULE(
 rule_name => 'strmadmin.hr_dml',
 rule_set_name => 'strmadmin.hr_capture_rules');
END;
/

After running the REMOVE_RULEprocedure, the rule still exists in the database and,

if it was in any other rule sets, it remains in those rule sets.

Dropping a Rule
The following is an example that runs the DROP_RULE procedure in the

DBMS_RULE_ADM package to drop the hr_dml rule from the database:

BEGIN
 DBMS_RULE_ADM.DROP_RULE(
 rule_name => 'strmadmin.hr_dml',
 force => false);
END;
/

In this example, the force parameter in the DROP_RULEprocedure is set to false ,

which is the default setting. Therefore, the rule cannot be dropped if it is in one or

more rule sets. If the force parameter is set to true , then the rule is dropped from

the database and automatically removed from any rule sets that contain it.

See Also:

■ "Rule-Based Transformations" on page 6-25

■ Chapter 17, "Monitoring a Streams Environment" for more

information about the data dictionary views related to Streams
Managing Rules and Rule-Based Transformations 15-7

Managing Privileges on Evaluation Contexts, Rule Sets, and Rules
Dropping a Rule Set
The following is an example that runs the DROP_RULE_SET procedure in the

DBMS_RULE_ADM package to drop the hr_capture_rules rule set from the

database:

BEGIN
 DBMS_RULE_ADM.DROP_RULE_SET(
 rule_set_name => 'strmadmin.hr_capture_rules',
 delete_rules => false);
END;
/

In this example, the delete_rules parameter in the DROP_RULE_SET procedure

is set to false , which is the default setting. Therefore, if the rule set contains any

rules, then these rules are not dropped. If the delete_rules parameter is set to

true , then any rules in the rule set, which are not in another rule set, are dropped

from the database automatically. If some of the rules in the rule set are in one or

more other rule sets, then these rules are not dropped.

Managing Privileges on Evaluation Contexts, Rule Sets, and Rules
This section provides instructions for completing the following tasks:

■ Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules

■ Granting Object Privileges on an Evaluation Context, Rule Set, or Rule

■ Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules

■ Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule

See Also:

■ "Database Objects and Privileges Related to Rules" on page 5-15

■ The GRANT_SYSTEM_PRIVILEGE and

GRANT_OBJECT_PRIVILEGE procedures in the

DBMS_RULE_ADM package in Oracle9i Supplied PL/SQL Packages
and Types Reference
15-8 Oracle9i Streams

Managing Privileges on Evaluation Contexts, Rule Sets, and Rules
Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules
You can use the GRANT_SYSTEM_PRIVILEGE procedure in the DBMS_RULE_ADM
package to grant system privileges on evaluation contexts, rule sets, and rules to

users and roles. These privileges enable a user to create, alter, execute, or drop these

objects in the user’s own schema or, if the "ANY" version of the privilege is granted,

in any schema.

For example, to grant the strmadmin user the privilege to create an evaluation

context in the user’s own schema, enter the following while connected as a user

who can grant privileges and alter users:

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 grantee => 'strmadmin',
 grant_option => false);
END;
/

In this example, the grant_option parameter in the GRANT_SYSTEM_PRIVILEGE
procedure is set to false , which is the default setting. Therefore, the strmadmin
user cannot grant the CREATE_EVALUATION_CONTEXT_OBJ system privilege to

other users or roles. If the grant_option parameter were set to true , then the

strmadmin user could grant this system privilege to other users.

Granting Object Privileges on an Evaluation Context, Rule Set, or Rule
You can use the GRANT_OBJECT_PRIVILEGE procedure in the DBMS_RULE_ADM
package to grant object privileges on a specific evaluation context, rule set, or rule.

These privileges enable a user to alter or execute the specified object.

For example, to grant the hr user the privilege to both alter and execute a rule set

named hr_capture_rules in the strmadmin schema, enter the following:

BEGIN
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET,
 object_name => 'strmadmin.hr_capture_rules',
 grantee => 'hr',
 grant_option => false);
END;
/

Managing Rules and Rule-Based Transformations 15-9

Managing Privileges on Evaluation Contexts, Rule Sets, and Rules
In this example, the grant_option parameter in the GRANT_OBJECT_PRIVILEGE
procedure is set to false , which is the default setting. Therefore, the hr user

cannot grant the ALL_ON_RULE_SET object privilege for the specified rule set to

other users or roles. If the grant_option parameter were set to true , then the hr
user could grant this object privilege to other users.

Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules
You can use the REVOKE_SYSTEM_PRIVILEGE procedure in the DBMS_RULE_ADM
package to revoke system privileges on evaluation contexts, rule sets, and rules.

For example, to revoke from the strmadmin user the privilege to create an

evaluation context in the user’s own schema, enter the following while connected as

a user who can grant privileges and alter users:

BEGIN
 DBMS_RULE_ADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 revokee => 'strmadmin');
END;
/

Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule
You can use the REVOKE_OBJECT_PRIVILEGE procedure in the DBMS_RULE_ADM
package to revoke object privileges on a specific evaluation context, rule set, or rule.

For example, to revoke from the hr user the privilege to both alter and execute a

rule set named hr_capture_rules in the strmadmin schema, enter the

following:

BEGIN
 DBMS_RULE_ADM.REVOKE_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET,
 object_name => 'strmadmin.hr_capture_rules',
 revokee => 'hr');
END;
/

15-10 Oracle9i Streams

Managing Rule-Based Transformations
Managing Rule-Based Transformations
In Streams, a rule-based transformation is any modification to an event that results

when a rule evaluates to TRUE. You use a rule action context to specify a rule-based

transformation. In the name-value pair that specifies a rule-based transformation in

an action context, the name is STREAMS$_TRANSFORM_FUNCTION and the value is

a SYS.AnyData instance containing the name of the PL/SQL function that

performs the transformation.

This section provides instructions for completing the following tasks:

■ Creating a Rule-Based Transformation

■ Altering a Rule-Based Transformation

■ Removing a Rule-Based Transformation

Creating a Rule-Based Transformation
A function in a rule-based transformation must have the following signature:

FUNCTIONuser_function (
parameter_name IN SYS.AnyData)

RETURN SYS.AnyData;

Here, user_function stands for the name of the function and parameter_name
stands for the name of the parameter passed to the function. The parameter passed

to the function is a SYS.AnyData encapsulation of an LCR, and the function must

return a SYS.AnyData encapsulation of an LCR.

Note:

■ There is no automatic locking mechanism for a rule’s action

context. Therefore, make sure an action context is not updated

by two or more sessions at the same time.

■ When you perform rule-based transformations on DDL LCRs,

you probably need to modify the DDL text in the DDL LCR to

match any other modification. For example, if the rule-based

transformation changes the name of a table in the DDL LCR,

then the table name in the DDL text should be changed in the

same way.

See Also: "Rule-Based Transformations" on page 6-25
Managing Rules and Rule-Based Transformations 15-11

Managing Rule-Based Transformations
The following steps outline the general procedure for creating a rule-based

transformation:

1. Create a PL/SQL function that performs the transformation.

The following example creates a function called executive_to_management
in the hr schema that changes the value in the department_name column of

the departments table from Executive to Management . Such a

transformation may be necessary if one branch in a company uses a different

name for this department.

CONNECT hr/hr

CREATE OR REPLACE FUNCTION hr.executive_to_management(in_any IN SYS.AnyData)
RETURN SYS.AnyData
IS
 lcr SYS.LCR$_ROW_RECORD;
 rc NUMBER;
 ob_owner VARCHAR2(30);
 ob_name VARCHAR2(30);
 dep_value_anydata SYS.AnyData;
 dep_value_varchar2 VARCHAR2(30);
BEGIN
 -- Get the type of object
 -- Check if the object type is SYS.LCR$_ROW_RECORD
 IF in_any.GETTYPENAME='SYS.LCR$_ROW_RECORD' THEN
 -- Put the row LCR into lcr
 rc := in_any.GETOBJECT(lcr);
 -- Get the object owner and name
 ob_owner := lcr.GET_OBJECT_OWNER();
 ob_name := lcr.GET_OBJECT_NAME();

Caution: Make sure the transformation function does not raise

any exceptions. Exceptions may cause the capture process,

propagation, or apply process to become disabled, and you will

need to correct the transformation function before the capture

process, propagation, or apply process can proceed.
15-12 Oracle9i Streams

Managing Rule-Based Transformations
 -- Check for the hr.departments table
 IF ob_owner = 'HR' AND ob_name = 'DEPARTMENTS' THEN
 -- Get the old value of the department_name column in the LCR
 dep_value_anydata := lcr.GET_VALUE('old','DEPARTMENT_NAME');
 IF dep_value_anydata IS NOT NULL THEN
 -- Put the column value into dep_value_varchar2
 rc := dep_value_anydata.GETVARCHAR2(dep_value_varchar2);
 -- Change a value of Executive in the column to Management
 IF (dep_value_varchar2 = 'Executive') THEN
 lcr.SET_VALUE('OLD','DEPARTMENT_NAME',
 SYS.ANYDATA.CONVERTVARCHAR2('Management'));
 END IF;
 END IF;
 -- Get the new value of the department_name column in the LCR
 dep_value_anydata := lcr.GET_VALUE('new','DEPARTMENT_NAME');
 IF dep_value_anydata IS NOT NULL THEN
 -- Put the column value into dep_value_varchar2
 rc := dep_value_anydata.GETVARCHAR2(dep_value_varchar2);
 -- Change a value of Executive in the column to Management
 IF (dep_value_varchar2 = 'Executive') THEN
 lcr.SET_VALUE('new','DEPARTMENT_NAME',
 SYS.ANYDATA.CONVERTVARCHAR2('Management'));
 END IF;
 END IF;
 RETURN SYS.ANYDATA.CONVERTOBJECT(lcr);
 END IF;
 END IF;
RETURN in_any;
END;
/

2. Grant the Streams administrator EXECUTE privilege on the

hr.executive_to_management function.

GRANT EXECUTE ON hr.executive_to_management TO strmadmin;

3. Create subset rules for DML operations on the hr.departments table. The

subset rules will use the transformation created in Step 1.

Subset rules are not required to use rule-based transformations. This example

uses subset rules to illustrate an action context with more than one name-value

pair. You must use caution when altering an action context with more than one

name value pair, as described in "Altering a Rule-Based Transformation" on

page 15-18.
Managing Rules and Rule-Based Transformations 15-13

Managing Rule-Based Transformations
This example creates subset rules for an apply process on a database named

dbs1.net . These rules evaluate to TRUE when an LCR contains a DML change

to a row with a location_id of 1700 in the hr.departments table. This

example assumes that a SYS.AnyData queue named strm01_queue already

exists in the database.

To create these rules, connect as the Streams administrator and run the

following ADD_SUBSET_RULES procedure:

CONNECT strmadmin/strmadminpw

BEGIN
 DBMS_STREAMS_ADM.ADD_SUBSET_RULES(

table_name => 'hr.departments',
 dml_condition => 'location_id=1700',

streams_type => 'apply',
 streams_name => 'strm01_apply',
queue_name => 'strm01_queue',

 include_tagged_lcr => false,
 source_database => 'dbs1.net');
END;
/

Note:

■ To create the rule and the rule set, the Streams administrator

must have CREATE_RULE_SET_OBJ
(or CREATE_ANYRULE_SET_OBJ) and CREATE_RULE_OBJ
(or CREATE_ANY_RULE_OBJ) system privileges. You grant

these privileges using the GRANT_SYSTEM_PRIVILEGE
procedure in the DBMS_RULE_ADM package.

■ This example creates the rule using the DBMS_STREAMS_ADM
package. Alternatively, you can create a rule, add it to a rule set,

and specify a rule-based transformation using the

DBMS_RULE_ADM package. The "Flexible Configuration for

Sharing Data from a Single Database" on page 22-40 contains an

example of this.
15-14 Oracle9i Streams

Managing Rule-Based Transformations
4. Determine the names of the system-created rules by running the following

query:

SELECT RULE_NAME, SUBSETTING_OPERATION FROM DBA_STREAMS_TABLE_RULES
 WHERE TABLE_NAME='DEPARTMENTS' AND DML_CONDITION='location_id=1700';

This query displays output similar to the following:

RULE_NAME SUBSET
------------------------------ ------
DEPARTMENTS5 INSERT
DEPARTMENTS6 UPDATE
DEPARTMENTS7 DELETE

Because these are subset rules, two of them contain a non-NULL action context

that performs an internal transformation:

■ The rule with a subsetting condition of INSERT contains an internal

transformation that converts updates into inserts if the update changes the

value of the location_id column to 1700 from some other value. The

internal transformation does not affect inserts.

■ The rule with a subsetting condition of DELETE contains an internal

transformation that converts updates into deletes if the update changes the

value of the location_id column from 1700 to a different value. The

internal transformation does not affect deletes.

In this example, you can confirm that the rules DEPARTMENTS5 and

DEPARTMENTS7 have a non-NULL action context, and that the rule

DEPARTMENTS6 has a NULL action context, by running the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A13
COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A27
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action Context Value' FORMAT A26

Note: You can also obtain this information using the OUT
parameters when you run ADD_SUBSET_RULES.
Managing Rules and Rule-Based Transformations 15-15

Managing Rule-Based Transformations
SELECT
 RULE_NAME,
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME IN ('DEPARTMENTS5','DEPARTMENTS6','DEPARTMENTS7');

This query displays output similar to the following:

Rule Name Action Context Name Action Context Value
------------- --------------------------- --------------------------
DEPARTMENTS5 STREAMS$_ROW_SUBSET INSERT
DEPARTMENTS7 STREAMS$_ROW_SUBSET DELETE

The DEPARTMENTS6 rule does not appear in the output because its action

context is NULL.

5. Alter the action context of each subset rule to add the name-value pair for the

rule-based transformation. Make sure no other users are modifying the action

context at the same time. The name in the name-value pair must be

STREAMS$_TRANSFORM_FUNCTION.

Add the rule-based transformation to the DEPARTMENTS5 rule. The following

statement preserves the existing name-value pairs in the action context by

selecting the action context into a variable before adding the new pair.

DECLARE
 action_ctx SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'STREAMS$_TRANSFORM_FUNCTION';
BEGIN
 action_ctx := SYS.RE$NV_LIST(SYS.RE$NV_ARRAY());
 SELECT RULE_ACTION_CONTEXT
 INTO action_ctx
 FROM DBA_RULES R
 WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='DEPARTMENTS5';
 action_ctx.ADD_PAIR(ac_name,
 SYS.ANYDATA.CONVERTVARCHAR2('hr.executive_to_management'));
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.departments5',
 action_context => action_ctx);
END;
/

15-16 Oracle9i Streams

Managing Rule-Based Transformations
Add the rule-based transformation to the DEPARTMENTS6 rule. This statement

does not need to query for the action context because it is NULL for the

DEPARTMENTS6 rule.

DECLARE
 action_ctx SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'STREAMS$_TRANSFORM_FUNCTION';
BEGIN
 action_ctx := SYS.RE$NV_LIST(SYS.RE$NV_ARRAY());
 action_ctx.ADD_PAIR(ac_name,
 SYS.ANYDATA.CONVERTVARCHAR2('hr.executive_to_management'));
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.departments6',
 action_context => action_ctx);
END;
/

Add the rule-based transformation to the DEPARTMENTS7 rule. This statements

queries for the existing action context and inserts it into a variable before

adding a new name-value pair.

DECLARE
 action_ctx SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'STREAMS$_TRANSFORM_FUNCTION';
BEGIN
 action_ctx := SYS.RE$NV_LIST(SYS.RE$NV_ARRAY());
 SELECT RULE_ACTION_CONTEXT
 INTO action_ctx
 FROM DBA_RULES R
 WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='DEPARTMENTS7';
 action_ctx.ADD_PAIR(ac_name,
 SYS.ANYDATA.CONVERTVARCHAR2('hr.executive_to_management'));
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.departments7',
 action_context => action_ctx);
END;
/

Managing Rules and Rule-Based Transformations 15-17

Managing Rule-Based Transformations
Now, if you run the query that displays the name-value pairs in the action

context for these rules, each rule, including the DEPARTMENTS6 rule, shows the

name-value pair for the rule-based transformation:

SELECT
 RULE_NAME,
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME IN ('DEPARTMENTS5','DEPARTMENTS6','DEPARTMENTS7');

This query displays output similar to the following:

Rule Name Action Context Name Action Context Value
------------ --------------------------- --------------------------
DEPARTMENTS5 STREAMS$_ROW_SUBSET INSERT
DEPARTMENTS5 STREAMS$_TRANSFORM_FUNCTION hr.executive_to_management
DEPARTMENTS6 STREAMS$_TRANSFORM_FUNCTION hr.executive_to_management
DEPARTMENTS7 STREAMS$_ROW_SUBSET DELETE
DEPARTMENTS7 STREAMS$_TRANSFORM_FUNCTION hr.executive_to_management

Altering a Rule-Based Transformation
To alter a rule-based transformation, you either can edit the transformation function

or edit the action context to run a different transformation function. This example

edits the action context to run a different function. If you edit the function itself,

then you do not need to alter the action context.

This example alters a rule-based transformation for rule DEPARTMENTS5 by first

removing the name-value pair with the name STREAMS$_TRANSFORM_FUNCTION
from the rule’s action context and then adding a different name-value pair back to

the rule’s action context. This rule based transformation was added to the

DEPARTMENTS5 rule in the example in "Creating a Rule-Based Transformation" on

page 15-11.

If an action context contains name-value pairs in addition to the name-value pair

that specifies the transformation, then be cautious when you modify the action

context so that you do not change or remove any name-value pairs that are

unrelated to the transformation.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about the rule types used in this example
15-18 Oracle9i Streams

Managing Rule-Based Transformations
In Streams, subset rules use name-value pairs in an action context to perform

internal transformations that convert UPDATE operations into INSERT and DELETE
operations in certain situations. Such a conversion is called a row migration. If you

specify a new transformation or alter an existing transformation for a subset rule,

then make sure you preserve the name-value pairs that perform row migrations.

Complete the following steps to alter a rule-based transformation:

1. You can view all of the name-value pairs in the action context of a rule by

performing the following query:

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A30
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action Context Value' FORMAT A26

SELECT
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME = 'DEPARTMENTS5';

This query displays output similar to the following:

Action Context Name Action Context Value
------------------------------ --------------------------
STREAMS$_ROW_SUBSET INSERT
STREAMS$_TRANSFORM_FUNCTION hr.executive_to_management

See Also: "Row Migration" on page 4-12
Managing Rules and Rule-Based Transformations 15-19

Managing Rule-Based Transformations
2. For the DEPARTMENTS5 rule, the transformation function is

executive_to_management . To alter the transformation function, this step

first removes the name-value pair containing the function name from the action

context for the DEPARTMENTS5 rule. Then, this step adds a name-value pair

containing the new function name to the rule’s action context. In this example,

it is assumed that the new transformation function is

hr.executive_to_lead and that the strmadmin user has EXECUTE
privilege on it.

To preserve any existing name-value pairs in the rule’s action context, this

example selects for the rule’s action context into a variable before altering it:

DECLARE
 action_ctx SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'STREAMS$_TRANSFORM_FUNCTION';
BEGIN
 SELECT RULE_ACTION_CONTEXT
 INTO action_ctx
 FROM DBA_RULES R
 WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='DEPARTMENTS5';
 action_ctx.REMOVE_PAIR(ac_name);
 action_ctx.ADD_PAIR(ac_name,
 SYS.ANYDATA.CONVERTVARCHAR2('hr.executive_to_lead'));
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.departments5',
 action_context => action_ctx);
END;
/

To ensure that the transformation function was altered properly, you can rerun

the query in Step 1. You should alter the action context for the DEPARTMENTS6
and DEPARTMENTS7 rules in a similar way to keep the three subset rules

consistent.
15-20 Oracle9i Streams

Managing Rule-Based Transformations
Removing a Rule-Based Transformation
To remove a rule-based transformation from a rule, you remove the name-value

pair with the name STREAMS$_TRANSFORM_FUNCTION from the rule’s action. This

example removes a rule-based transformation for rule DEPARTMENTS5. This rule

based transformation was added to the DEPARTMENTS5 rule in the example in

"Creating a Rule-Based Transformation" on page 15-11.

Removing a rule-based transformation means altering the action context of a rule. If

an action context contains name-value pairs in addition to the name-value pair that

specifies the transformation, then be cautious when you modify the action context

so that you do not change or remove any name-value pairs that are unrelated to the

transformation.

In Streams, subset rules use name-value pairs in an action context to perform

internal transformations that convert UPDATE operations into INSERT and DELETE
operations in certain situations. Such a conversion is called a row migration. If you

specify a new transformation or alter an existing transformation for a subset rule,

then make sure you preserve the name-value pairs that perform row migrations.

This example queries for the rule’s action context and places it in a variable before

removing the name-value pair for the rule-based transformation:

DECLARE
 action_ctx SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'STREAMS$_TRANSFORM_FUNCTION';
BEGIN
 SELECT RULE_ACTION_CONTEXT
 INTO action_ctx
 FROM DBA_RULES R
 WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='DEPARTMENTS5';
 action_ctx.REMOVE_PAIR(ac_name);
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.departments5',
 action_context => action_ctx);
END;
/

To ensure that the transformation function was removed, you can run the query in

Step 1 on page 15-19. You should alter the action context for the DEPARTMENTS6
and DEPARTMENTS7 rules in a similar way to keep the three subset rules consistent.

See Also: "Row Migration" on page 4-12
Managing Rules and Rule-Based Transformations 15-21

Managing Rule-Based Transformations
15-22 Oracle9i Streams

Other Streams Managemen
16

Other Streams Management Tasks

This chapter provides instructions for managing logical change records (LCRs) and

Streams tags, as well as instructions for performing a full database export/import in

a Streams environment.

This chapter contains these topics:

■ Managing Logical Change Records (LCRs)

■ Managing Streams Tags

■ Performing Database Point-in-Time Recovery on a Destination Database

■ Performing Full Database Export/Import on a Database Using Streams

Each task described in this chapter should be completed by a Streams administrator

that has been granted the appropriate privileges, unless specified otherwise.

See Also: "Configuring a Streams Administrator" on page 11-2
t Tasks 16-1

Managing Logical Change Records (LCRs)
Managing Logical Change Records (LCRs)
This section describes managing logical change records (LCRs). Make sure you meet

the following requirements when you create or modify an LCR:

■ If you create or modify a row LCR, then make sure the command_type
attribute is consistent with the presence or absence of old column values and

the presence or absence of new column values.

■ If you create or modify a DDL LCR, then make sure the ddl_text is consistent

with the base_table_name , base_table_owner , object_type ,

object_owner , object_name , and command_type attributes.

Constructing and Enqueuing LCRs
Use the following LCR constructors to create LCRs:

■ To create a row LCR that contains a change to a row that resulted from a data

manipulation language (DML) statement, use the SYS.LCR$_ROW_RECORD
constructor.

■ To create a DDL LCR that contains a data definition language change, use the

SYS.LCR$_DDL_RECORD constructor. Make sure the DDL text specified in the

ddl_text attribute of each DDL LCR conforms to Oracle SQL syntax.

The following example creates a queue in an Oracle database and an apply process

associated with the queue. Then, it creates a PL/SQL procedure that constructs a

row LCR based on information passed to it and enqueues the row LCR into the

queue:

1. Create a Streams queue in an Oracle database. This example assumes that the

Streams administrator is strmadmin user.

CONNECT strmadmin/strmadminpw

BEGIN DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strm04_queue_table',

storage_clause => NULL,
queue_name => 'strm04_queue');

END;
/

16-2 Oracle9i Streams

Managing Logical Change Records (LCRs)
2. Create an apply process at the Oracle database to receive messages in the

queue. Make sure the apply_captured parameter is set to false when you

create the apply process, because the apply process will be applying

user-enqueued events, not events captured by a capture process. Also, make

sure the apply_user parameter is set to hr , because changes will be applied in

to the hr.regions table, and the apply user must have privileges to make

DML changes to this table.

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strm04_queue',
 apply_name => 'strm04_apply',
 apply_captured => false,
 apply_user => 'hr');
END;
/

3. Create a rule set for the apply process and add a rule that applies DML changes

to the hr.regions table made at the dbs1.net source database.

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.regions',
 streams_type => 'apply',
 streams_name => 'strm04_apply',
 queue_name => 'strm04_queue',
 include_dml => true,
 include_ddl => false,
 include_tagged_lcr => false,
 source_database => 'dbs1.net');
END;
/

4. Set the disable_on_error parameter for the apply process to n.

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'strm04_apply',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

Other Streams Management Tasks 16-3

Managing Logical Change Records (LCRs)
5. Start the apply process.

EXEC DBMS_APPLY_ADM.START_APPLY('strm04_apply');

6. Create a procedure called construct_row_lcr that constructs a row LCR and

then enqueues it into the queue created in Step 1.

CREATE OR REPLACE PROCEDURE construct_row_lcr(
 source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST) AS
 eopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_msgid RAW(16);
 row_lcr SYS.LCR$_ROW_RECORD;
BEGIN

 mprop.SENDER_ID := SYS.AQ$_AGENT('strmadmin', NULL, NULL);
 -- Construct the LCR based on information passed to procedure
 row_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
 -- Enqueue the created row LCR
 DBMS_AQ.ENQUEUE(
 queue_name => 'strm04_queue',
 enqueue_options => eopt,
 message_properties => mprop,
 payload => SYS.AnyData.ConvertObject(row_lcr),
 msgid => enq_msgid);
END construct_row_lcr;
/

Note: The application does not need to specify a transaction

identifier or SCN when it creates an LCR because the apply process

generates these values and stores them in memory. If a transaction

identifier or SCN is specified in the LCR, then the apply process

ignores it and assigns a new value.
16-4 Oracle9i Streams

Managing Logical Change Records (LCRs)
7. Create and enqueue LCRs using the construct_row_lcr procedure created

in Step 2.

a. Create a row LCR that inserts a row into the hr.regions table.

CONNECT strmadmin/strmadminpw

DECLARE
 newunit1 SYS.LCR$_ROW_UNIT;
 newunit2 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 newunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',
 SYS.AnyData.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 SYS.AnyData.ConvertVarchar2('Moon'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1,newunit2);
construct_row_lcr(
 source_dbname => 'dbs1.net',
 cmd_type => 'INSERT',
 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => NULL,
 new_vals => newvals);
END;
/
COMMIT;

You can connect as the hr user and query the hr.regions table to view

the applied row change:

CONNECT hr/hr

SELECT * FROM hr.regions;

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about LCR constructors
Other Streams Management Tasks 16-5

Managing Logical Change Records (LCRs)
The row with a region_id of 5 should have Moon for the region_name .

b. Create a row LCR that updates a row from the hr.regions table.

CONNECT strmadmin/strmadminpw

DECLARE
 oldunit1 SYS.LCR$_ROW_UNIT;
 oldunit2 SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
 newunit1 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 oldunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',
 SYS.AnyData.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 SYS.AnyData.ConvertVarchar2('Moon'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldunit1,oldunit2);
 newunit1 := SYS.LCR$_ROW_UNIT(
 'region_name',
 SYS.AnyData.ConvertVarchar2('Mars'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1);
construct_row_lcr(
 source_dbname => 'dbs1.net',
 cmd_type => 'UPDATE',
 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => oldvals,
 new_vals => newvals);
END;
/
COMMIT;
16-6 Oracle9i Streams

Managing Logical Change Records (LCRs)
You can connect as the hr user and query the hr.regions table to view

the applied row change:

CONNECT hr/hr

SELECT * FROM hr.regions;

The row with a region_id of 5 should have Mars for the region_name .

c. Create a row LCR that deletes a row from the hr.regions table.

CONNECT strmadmin/strmadminpw

DECLARE
 oldunit1 SYS.LCR$_ROW_UNIT;
 oldunit2 SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
BEGIN
 oldunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',
 SYS.AnyData.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 SYS.AnyData.ConvertVarchar2('Mars'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldunit1,oldunit2);
construct_row_lcr(
 source_dbname => 'dbs1.net',
 cmd_type => 'DELETE',
 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => oldvals,
 new_vals => NULL);
END;
/
COMMIT;
Other Streams Management Tasks 16-7

Managing Logical Change Records (LCRs)
You can connect as the hr user and query the hr.regions table to view

the applied row change:

CONNECT hr/hr

SELECT * FROM hr.regions;

The row with a region_id of 5 should have been deleted.

The use_old Parameter in Some Row LCR Member Functions
Release 9.2.0.2 introduces a new parameter, use_old , in the following member

functions for the SYS.LCR$_ROW_RECORD type:

■ GET_LOB_INFORMATION Member Function

■ GET_VALUE Member Function

■ GET_VALUES Member Function

Currently, the use_old parameter is not documented in the Oracle9i Supplied
PL/SQL Packages and Types Reference. The following sections replace the sections for

these member functions in the Oracle9i Supplied PL/SQL Packages and Types Reference.

GET_LOB_INFORMATION Member Function
Gets the LOB information for the column.

The return value can be one of the following:

DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

Returns NULL if the specified column does not exist.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the

use_old parameter is a convenient way to get the value of the columns.
16-8 Oracle9i Streams

Managing Logical Change Records (LCRs)
Syntax
MEMBER FUNCTION GET_LOB_INFORMATION(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN NUMBER;

Parameters

GET_VALUE Member Function
Returns the old or new value for the specified column, depending on the value type

specified.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the

use_old parameter is a convenient way to get the value of a column.

Syntax
MEMBER FUNCTION GET_VALUE(
 value_type IN VARCHAR2,
 column_name IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN SYS.AnyData;

Table 16–1 GET_LOB_INFORMATION Function Parameters

Parameter Description

value_type The type of value to return for the column, either old or new

column_name The name of the column

use_old If Y and value_type is new, and no new value exists, then
returns the corresponding old value. If N and value_type is
new, then does not return the old value if no new value exists.

If value_type is old or if the command_type of the row
LCR is not UPDATE, then the value of the use_old parameter
is ignored.

NULL is not a valid specification for the use_old parameter.
Other Streams Management Tasks 16-9

Managing Logical Change Records (LCRs)
Parameters

GET_VALUES Member Function
Returns a list of old or new values, depending on the value type specified.

If the command type of the row LCR is UPDATE, then specifying 'Y' for the

use_old parameter is a convenient way to get the values of all columns.

Syntax
MEMBER FUNCTION GET_VALUES(
 value_type IN VARCHAR2,
 use_old IN VARCHAR2 DEFAULT 'Y')
RETURN SYS.LCR$_ROW_LIST;

Table 16–2 GET_VALUE Procedure Parameters

Parameter Description

value_type The type of value to return for the column. Specify old to get
the old value for the column. Specify new to get the new value
for the column.

column_name The column name. If the column is present and has a NULL
value, returns a SYS.AnyData instance containing a NULL
value. If the column value is absent, returns a NULL.

use_old If Y and value_type is new, and no new value exists, then
returns the corresponding old value.

If N and value_type is new, then returns NULL if no new
value exists.

If value_type is old or if the command_type of the row
LCR is not UPDATE, then the value of the use_old parameter
is ignored.

NULL is not a valid specification for the use_old parameter.
16-10 Oracle9i Streams

Managing Logical Change Records (LCRs)
Parameters

Constructing and Processing LCRs Containing LOB Columns
The following are general considerations for row changes involving LOBs in a

Streams environment:

■ A row change involving a LOB may be captured, propagated, and applied as

several LCRs.

■ Rules used to evaluate these LCRs must be deterministic, so that either all of the

LCRs corresponding to the row change cause a rule in a rule set to evaluate to

true, or none of them do.

■ Transformations on these LCRs must be deterministic, so that all LCRs

corresponding to the row change are transformed in the same way.

■ If a user transformation reduces the size of LOB chunks in the LCRs

corresponding to a LOB insert without changing the offsets in the LCRs, the

resulting LOB will have zero-byte fillers or spaces as documented in the

DBMS_LOB.WRITE procedure.

The following sections contain information about the requirements you must meet

when constructing or processing LOBs and about apply process behavior for LCRs

containing LOBs. This section also includes an example that constructs and

enqueues LCRs containing LOBs.

Table 16–3 GET_VALUES Procedure Parameters

Parameter Description

value_type The type of values to return. Specify old to return a list of old
values. Specify new to return a list of new values.

use_old If Y and value_type is new, then returns a list of all new
values in the LCR. If a new value does not exist in the list, then
returns the corresponding old value. Therefore, the returned
list contains all existing new values and old values for the new
values that do not exist.

If N and value_type is new, then returns a list of all new
values in the LCR without returning any old values.

If value_type is old or if the command_type of the row
LCR is not UPDATE, then the value of the use_old parameter
is ignored.

NULL is not a valid specification for the use_old parameter.
Other Streams Management Tasks 16-11

Managing Logical Change Records (LCRs)
Requirements for Constructing and Processing LCRs Containing LOBs
If your environment uses LCRs that contain LOB columns, then you must meet the

following requirements when you construct these LCRs or process them with an

apply handler or a rule-based transformation:

■ The data portion of the LCR LOB column must by of type VARCHAR2 or RAW. A
VARCHAR2 is interpreted as a CLOB, and a RAW is interpreted as a BLOB.

■ LOB WRITE, LOB ERASE, and LOB TRIM are the only valid command types for

out-of-line LOBs.

■ For LOB WRITE, LOB ERASE, and LOB TRIM LCRs, the old_values collection

should be empty or NULL and new_values should not be empty.

■ The lob_offset should be a valid value for LOB WRITE and LOB ERASE
LCRs. For all other command types, lob_offset should be NULL, under the

assumption that LOB chunks for that column will follow.

■ The lob_operation_size should be a valid value for LOB ERASE and

LOB TRIM LCRs. For all other command types, lob_operation_size should

be NULL.

■ LOB TRIM and LOB ERASE are valid command types only for an LCR

containing a LOB column with lob_information set to LAST_LOB_CHUNK.

■ LOB WRITE is a valid command type only for an LCR containing a LOB column

with lob_information set to LAST_LOB_CHUNK or LOB_CHUNK.

■ For LOBs with lob_information set to NULL_LOB, the data portion of the

column should be a NULLof VARCHAR2type (for a CLOB) or a NULLof RAWtype

(for a BLOB). Otherwise, it is interpreted as a non-NULL inline LOB column.

■ Only one LOB column reference with one new chunk is allowed for each LOB
WRITE, LOB ERASE, and LOB TRIM LCR.

■ The new LOB chunk for a LOB ERASE and a LOB TRIM LCR should be a NULL
value encapsulated in a SYS.AnyData .
16-12 Oracle9i Streams

Managing Logical Change Records (LCRs)
All validation of these requirements is done by an apply process. If these

requirements are not met, then an LCR containing a LOB column cannot be applied

by an apply process nor processed by an apply handler. In this case, the LCR is

moved to an exception queue with the rest of the LCRs in the same transaction.

Apply Process Behavior for LCRs Containing LOBs
An apply process behaves in the following way when it encounters an LCR that

contains a LOB:

■ If an LCR whose command type is INSERT or UPDATE has a new LOB that

contains data and the lob_information is not DBMS_LCR.LOB_CHUNK or

DBMS_LCR.LAST_LOB_CHUNK, then the data is applied.

■ If an LCR whose command type is INSERT or UPDATE has a new LOB that

contains no data, and the lob_information is DBMS_LCR.EMPTY_LOB, then

it is applied as an empty LOB.

■ If an LCR whose command type is INSERT or UPDATE has a new LOB that

contains no data, and the lob_information is DBMS_LCR.NULL_LOB or

DBMS_LCR.INLINE_LOB, then it is applied as a NULL.

■ If an LCR whose command type is INSERT or UPDATE has a new LOB and the

lob_information is DBMS_LCR.LOB_CHUNK or

DBMS_LCR.LAST_LOB_CHUNK, then any LOB value is ignored. If the command

type is INSERT, then an empty LOB is inserted into the column under the

assumption that LOB chunks will follow. If the command type is UPDATE, then

the column value is ignored under the assumption that LOB chunks will follow.

■ If all of the new columns in an LCR whose command type is UPDATE are LOBs

whose lob_information is DBMS_LCR.LOB_CHUNK or

DBMS_LCR.LAST_LOB_CHUNK, then the update is skipped under the

assumption that LOB chunks will follow.

■ For any LCR whose command type is UPDATE or DELETE, old LOB values are

ignored.

See Also:

■ "Constructing and Enqueuing LCRs" on page 16-2

■ "Event Processing with an Apply Process" on page 4-3 for more

information about apply handlers

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for

more information about LOBs
Other Streams Management Tasks 16-13

Managing Logical Change Records (LCRs)
Example Script for Constructing and Enqueuing LCRs Containing LOBs
The following example illustrates creating a PL/SQL procedure for constructing

and enqueuing LCRs containing LOBs. This example assumes that you have

prepared your database for Streams by completing the necessary actions in

Chapter 11, "Configuring a Streams Environment". Make sure the Streams

administrator who runs this script has EXECUTE privilege on the DBMS_AQ and

DBMS_APPLY_ADM packages.

1. Show Output and Spool Results

2. Connect as the Streams Administrator

3. Create a Streams Queue

4. Create and Start an Apply Process

5. Create a Schema with Tables Containing LOB Columns

6. Grant the Streams Administrator Necessary Privileges on the Tables

7. Create a PL/SQL Procedure to Enqueue LCRs Containing LOBs

8. Create the do_enq_clob Function to Enqueue CLOBs

9. Enqueue CLOBs Using the do_enq_clob Function

10. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 16-25 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
16-14 Oracle9i Streams

Managing Logical Change Records (LCRs)
Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL lob_construct.out

/*

Step 2 Connect as the Streams Administrator
*/

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON SIZE 100000

CONNECT strmadmin/strmadminpw

/*

Step 3 Create a Streams Queue
*/

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'lobex_queue_table',
 queue_name => 'lobex_queue');
END;
/

/*
Other Streams Management Tasks 16-15

Managing Logical Change Records (LCRs)
Step 4 Create and Start an Apply Process
*/

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.lobex_queue',
 apply_name => 'apply_lob',
 apply_captured => false);
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_lob',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 'apply_lob');
END;
/

/*

Step 5 Create a Schema with Tables Containing LOB Columns
*/

CONNECT sys/change_on_install AS SYSDBA

CREATE USER lob_user IDENTIFIED BY Lob_user_pw;
GRANT CONNECT,RESOURCE TO lob_user;

CONNECT lob_user/lob_user_pw

CREATE TABLE with_clob (a NUMBER PRIMARY KEY,
 c1 CLOB,
 c2 CLOB,
 c3 CLOB);

CREATE TABLE with_blob (a NUMBER PRIMARY KEY,
 b BLOB);
16-16 Oracle9i Streams

Managing Logical Change Records (LCRs)
/*

Step 6 Grant the Streams Administrator Necessary Privileges on the Tables
Granting these privileges enables the Streams administrator to get the LOB length

for offset and to perform DML operations on the tables.

*/

GRANT ALL ON with_clob TO strmadmin;
GRANT ALL ON with_blob TO strmadmin;
COMMIT;

/*

Step 7 Create a PL/SQL Procedure to Enqueue LCRs Containing LOBs
*/

CONNECT strmadmin/strmadminpw

CREATE OR REPLACE PROCEDURE enq_row_lcr(source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST) AS
 eopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_msgid RAW(16);
 xr_lcr SYS.LCR$_ROW_RECORD;
BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT('strmadmin', NULL, NULL);
 xr_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
Other Streams Management Tasks 16-17

Managing Logical Change Records (LCRs)
 -- Enqueue a row lcr
 DBMS_AQ.ENQUEUE(
 queue_name => 'lobex_queue',
 enqueue_options => eopt,
 message_properties => mprop,
 payload => SYS.AnyData.ConvertObject(xr_lcr),
 msgid => enq_msgid);
END enq_row_lcr;
/
SHOW ERRORS

/*

Step 8 Create the do_enq_clob Function to Enqueue CLOBs
*/

-- Description of each variable:
-- src_dbname : Source database name
-- tab_owner : Table owner
-- tab_name : Table name
-- col_name : Name of the CLOB column
-- new_vals : SYS.LCR$_ROW_LIST containing primary key and supplementally
-- logged colums
-- clob_data : CLOB that contains data to be sent
-- offset : Offset from which data should be sent, default is 1
-- lsize : Size of data to be sent, default is 0
-- chunk_size : Size used for creating LOB chunks, default is 2048

CREATE OR REPLACE FUNCTION do_enq_clob(src_dbname VARCHAR2,
 tab_owner VARCHAR2,
 tab_name VARCHAR2,
 col_name VARCHAR2,
 new_vals SYS.LCR$_ROW_LIST,
 clob_data CLOB,
 offset NUMBER default 1,
 lsize NUMBER default 0,
 chunk_size NUMBER default 2048)
RETURN NUMBER IS
16-18 Oracle9i Streams

Managing Logical Change Records (LCRs)
 lob_offset NUMBER; -- maintain lob offset
 newunit SYS.LCR$_ROW_UNIT;
 tnewvals SYS.LCR$_ROW_LIST;
 lob_flag NUMBER;
 lob_data VARCHAR2(32767);
 lob_size NUMBER;
 unit_pos NUMBER;
 final_size NUMBER;
 exit_flg BOOLEAN;
 c_size NUMBER;
 i NUMBER;
BEGIN
 lob_size := DBMS_LOB.GETLENGTH(clob_data);
 unit_pos := new_vals.count + 1;
 tnewvals := new_vals;
 c_size := chunk_size;
 i := 0;
 -- validate parameters
 IF (unit_pos <= 1) THEN
 DBMS_OUTPUT.PUT_LINE('Invalid new_vals list');
 RETURN 1;
 END IF;

 IF (c_size < 1) THEN
 DBMS_OUTPUT.PUT_LINE('Invalid LOB chunk size');
 RETURN 1;
 END IF;

 IF (lsize < 0 OR lsize > lob_size) THEN
 DBMS_OUTPUT.PUT_LINE('Invalid LOB size');
 RETURN 1;
 END IF;

 IF (offset < 1 OR offset >= lob_size) THEN
 DBMS_OUTPUT.PUT_LINE('Invalid lob offset');
 RETURN 1;
 ELSE
 lob_offset := offset;
 END IF;
Other Streams Management Tasks 16-19

Managing Logical Change Records (LCRs)
 -- calculate final size
 IF (lsize = 0) THEN
 final_size := lob_size;
 ELSE
 final_size := lob_offset + lsize;
 END IF;

 -- The following output lines are for debugging purposes only.
 -- DBMS_OUTPUT.PUT_LINE('Final size: ' || final_size);
 -- DBMS_OUTPUT.PUT_LINE('Lob size: ' || lob_size);

 IF (final_size < 1 OR final_size > lob_size) THEN
 DBMS_OUTPUT.PUT_LINE('Invalid lob size');
 RETURN 1;
 END IF;

 -- expand new_vals list for LOB column
 tnewvals.extend();

 exit_flg := FALSE;

 -- Enqueue all LOB chunks
 LOOP
 -- The following output line is for debugging purposes only.
 DBMS_OUTPUT.PUT_LINE('About to write chunk#' || i);
 i := i + 1;

 -- check if last LOB chunk
 IF ((lob_offset + c_size) < final_size) THEN
 lob_flag := DBMS_LCR.LOB_CHUNK;
 ELSE
 lob_flag := DBMS_LCR.LAST_LOB_CHUNK;
 exit_flg := TRUE;
 -- The following output line is for debugging purposes only.
 DBMS_OUTPUT.PUT_LINE('Last LOB chunk');
 END IF;

 -- The following output lines are for debugging purposes only.
 DBMS_OUTPUT.PUT_LINE('lob offset: ' || lob_offset);
 DBMS_OUTPUT.PUT_LINE('Chunk size: ' || to_char(c_size));

 lob_data := DBMS_LOB.SUBSTR(clob_data, c_size, lob_offset);
16-20 Oracle9i Streams

Managing Logical Change Records (LCRs)
 -- create row unit for clob
 newunit := SYS.LCR$_ROW_UNIT(col_name,
 SYS.AnyData.ConvertVarChar2(lob_data),
 lob_flag,
 lob_offset,
 NULL);

 -- insert new LCR$_ROW_UNIT
 tnewvals(unit_pos) := newunit;

 -- enqueue lcr
 enq_row_lcr(
 source_dbname => src_dbname,
 cmd_type => 'LOB WRITE',
 obj_owner => tab_owner,
 obj_name => tab_name,
 old_vals => NULL,
 new_vals => tnewvals);

 -- calculate next chunk size
 lob_offset := lob_offset + c_size;

 IF ((final_size - lob_offset) < c_size) THEN
 c_size := final_size - lob_offset + 1;
 END IF;

 -- The following output line is for debugging purposes only.
 DBMS_OUTPUT.PUT_LINE('Next chunk size : ' || TO_CHAR(c_size));

 IF (c_size < 1) THEN
 exit_flg := TRUE;
 END IF;

 EXIT WHEN exit_flg;

 END LOOP;

 RETURN 0;
END do_enq_clob;
/

SHOW ERRORS

/*
Other Streams Management Tasks 16-21

Managing Logical Change Records (LCRs)
Step 9 Enqueue CLOBs Using the do_enq_clob Function
The DBMS_OUTPUT lines in the following example can be used for debugging

purposes if necessary. If they are not needed, then they can be commented out or

deleted.

*/

SET SERVEROUTPUT ON SIZE 100000
DECLARE
 c1_data CLOB;
 c2_data CLOB;
 c3_data CLOB;
 newunit1 SYS.LCR$_ROW_UNIT;
 newunit2 SYS.LCR$_ROW_UNIT;
 newunit3 SYS.LCR$_ROW_UNIT;
 newunit4 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
 big_data VARCHAR(22000);
 n NUMBER;
BEGIN
 -- Create primary key for LCR$_ROW_UNIT
 newunit1 := SYS.LCR$_ROW_UNIT('A',
 Sys.AnyData.ConvertNumber(3),
 NULL,
 NULL,
 NULL);
 -- Create empty CLOBs
 newunit2 := sys.lcr$_row_unit('C1',
 Sys.AnyData.ConvertVarChar2(NULL),
 DBMS_LCR.EMPTY_LOB,
 NULL,
 NULL);
 newunit3 := SYS.LCR$_ROW_UNIT('C2',
 Sys.AnyData.ConvertVarChar2(NULL),
 DBMS_LCR.EMPTY_LOB,
 NULL,
 NULL);
 newunit4 := SYS.LCR$_ROW_UNIT('C3',
 Sys.AnyData.ConvertVarChar2(NULL),
 DBMS_LCR.EMPTY_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1,newunit2,newunit3,newunit4);
16-22 Oracle9i Streams

Managing Logical Change Records (LCRs)
 -- Perform an insert
 enq_row_lcr(
 source_dbname => 'MYDB.NET',
 cmd_type => 'INSERT',
 obj_owner => 'LOB_USER',
 obj_name => 'WITH_CLOB',
 old_vals => NULL,
 new_vals => newvals);

 -- construct clobs
 big_data := RPAD('Hello World', 1000, '_');
 big_data := big_data || '#';
 big_data := big_data || big_data || big_data || big_data || big_data;
 DBMS_LOB.CREATETEMPORARY(
 lob_loc => c1_data,
 cache => TRUE);
 DBMS_LOB.WRITEAPPEND(
 lob_loc => c1_data,
 amount => length(big_data),
 buffer => big_data);

 big_data := RPAD('1234567890#', 1000, '_');
 big_data := big_data || big_data || big_data || big_data;
 DBMS_LOB.CREATETEMPORARY(
 lob_loc => c2_data,
 cache => TRUE);
 DBMS_LOB.WRITEAPPEND(
 lob_loc => c2_data,
 amount => length(big_data),
 buffer => big_data);

 big_data := RPAD('ASDFGHJKLQW', 2000, '_');
 big_data := big_data || '#';
 big_data := big_data || big_data || big_data || big_data || big_data;
 DBMS_LOB.CREATETEMPORARY(
 lob_loc => c3_data,
 cache => TRUE);
 DBMS_LOB.WRITEAPPEND(
 lob_loc => c3_data,
 amount => length(big_data),
 buffer => big_data);
Other Streams Management Tasks 16-23

Managing Logical Change Records (LCRs)
 -- pk info
 newunit1 := SYS.LCR$_ROW_UNIT('A',
 SYS.AnyData.ConvertNumber(3),
 NULL,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1);

 -- write c1 clob
 n := do_enq_clob(
 src_dbname => 'MYDB.NET',
 tab_owner => 'LOB_USER',
 tab_name => 'WITH_CLOB',
 col_name => 'C1',
 new_vals => newvals,
 clob_data => c1_data,
 offset => 1,
 chunk_size => 1024);
 DBMS_OUTPUT.PUT_LINE('n=' || n);

 -- write c2 clob
 newvals := SYS.LCR$_ROW_LIST(newunit1);
 n := do_enq_clob(
 src_dbname => 'MYDB.NET',
 tab_owner => 'LOB_USER',
 tab_name => 'WITH_CLOB',
 col_name => 'C2',
 new_vals => newvals,
 clob_data => c2_data,
 offset => 1,
 chunk_size => 2000);
 DBMS_OUTPUT.PUT_LINE('n=' || n);

 -- write c3 clob
 newvals := SYS.LCR$_ROW_LIST(newunit1);
 n := do_enq_clob(src_dbname=>'MYDB.NET',
 tab_owner => 'LOB_USER',
 tab_name => 'WITH_CLOB',
 col_name => 'C3',
 new_vals => newvals,
 clob_data => c3_data,
 offset => 1,
 chunk_size => 500);
 DBMS_OUTPUT.PUT_LINE('n=' || n);
16-24 Oracle9i Streams

Managing Logical Change Records (LCRs)
 COMMIT;

END;
/

/*

Step 10 Check the Spool Results
Check the lob_construct.out spool file to ensure that all actions completed

successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/

After you run the script, you can check the lob_user.with_clob table to list the

rows applied by the apply process. The DBMS_LOCK.SLEEP statement is used to

give the apply process time to apply the enqueued rows.

CONNECT lob_user/lob_user_pw

EXECUTE DBMS_LOCK.SLEEP(10);

SELECT a, c1, c2, c3 FROM with_clob ORDER BY a;

SELECT a, LENGTH(c1), LENGTH(c2), LENGTH(c3) FROM with_clob ORDER BY a;
Other Streams Management Tasks 16-25

Managing Streams Tags
Managing Streams Tags
You can set or get the value of the tags generated by the current session or by an

apply process. The following sections describe how to set and get tag values.

■ Managing Streams Tags for the Current Session

■ Managing Streams Tags for an Apply Process

Managing Streams Tags for the Current Session
This section contains instructions for setting and getting the tag for the current

session.

Setting the Tag Values Generated by the Current Session
You can set the tag for all redo entries generated by the current session using the

SET_TAG procedure in the DBMS_STREAMS package. For example, to set the tag to

the hexadecimal value of '1D' in the current session, run the following procedure:

BEGIN
 DBMS_STREAMS.SET_TAG(
 tag => HEXTORAW('1D'));
END;
/

After running this procedure, each redo entry generated by DML or DDL

statements in the current session will have a tag value of 1D. Running this

procedure affects only the current session.

See Also:

■ Chapter 8, "Streams Tags"

■ "Monitoring Streams Tags" on page 17-50
16-26 Oracle9i Streams

Managing Streams Tags
Getting the Tag Value for the Current Session
You can get the tag for all redo entries generated by the current session using the

GET_TAG procedure in the DBMS_STREAMS package. For example, to get the

hexadecimal value of the tags generated in the redo entries for the current session,

run the following procedure:

SET SERVEROUTPUT ON
DECLARE
 raw_tag RAW(2048);
BEGIN
 raw_tag := DBMS_STREAMS.GET_TAG();
 DBMS_OUTPUT.PUT_LINE('Tag Value = ' || RAWTOHEX(raw_tag));
END;
/

You can also display the tag value for the current session by querying the DUAL
view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

Managing Streams Tags for an Apply Process
This section contains instructions for setting and removing the tag for an apply

process.

See Also:

■ "Tags and an Apply Process" on page 8-6 for conceptual

information about how tags are used by an apply process and

apply handlers

■ Chapter 4, "Streams Apply Process"

■ Chapter 14, "Managing an Apply Process"
Other Streams Management Tasks 16-27

Managing Streams Tags
Setting the Tag Values Generated by an Apply Process
An apply process generates redo entries when it applies changes to a database or

invokes handlers. You can set the default tag for all redo entries generated by an

apply process when you create the apply process using the CREATE_APPLY
procedure in the DBMS_APPLY_ADM package, or when you alter an existing apply

process using the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. In

both of these procedures, set the apply_tag parameter to the value you want to

specify for the tags generated by the apply process.

For example, to set the value of the tags generated in the redo log by an existing

apply process named strm01_apply to the hexadecimal value of '7' , run the

following procedure:

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 apply_tag => HEXTORAW('7'));
END;
/

After running this procedure, each redo entry generated by the apply process will

have a tag value of 7.

Removing the Apply Tag for an Apply Process
You remove the apply tag for an apply process by setting the remove_apply_tag
parameter to true in the ALTER_APPLY procedure in the DBMS_APPLY_ADM
package. Removing the apply tag means that each redo entry generated by the

apply process has a NULL tag. For example, the following procedure removes the

apply tag from an apply process named strm02_apply .

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm02_apply',
 remove_apply_tag => true);
END;
/

16-28 Oracle9i Streams

Performing Database Point-in-Time Recovery on a Destination Database
Performing Database Point-in-Time Recovery on a Destination Database
Point-in-time recovery is the recovery of a database to a specified noncurrent time,

SCN, or log sequence number. If point-in-time recovery is required at a destination

database in a Streams environment, then you must reapply the captured changes

that had already been applied after the point-in-time of the recovery.

For each relevant capture process, you can choose either of the following methods

to perform point-in-time recovery at a destination database in a Streams

environment

■ Reset the start SCN for the existing capture process that captures the changes

that are applied at the destination database.

■ Create a new capture process to capture the changes that must be reapplied at

the destination database.

Resetting the start SCN for the capture process is simpler than creating a new

capture process. However, if the capture process captures changes that are applied

at multiple destination databases, then the changes are resent to all the destination

databases, including the ones that did not perform point-in-time recovery. If a

change is already applied at a destination database, then it is discarded by the apply

process, but you may not want to use the network and computer resources required

to resend the changes to multiple destination databases. In this case, you can create

and temporarily use a new capture process and a new propagation that propagates

changes only to the destination database that was recovered.

The following sections provide instructions for each task:

■ Resetting the Start SCN for the Existing Capture Process to Perform Recovery

■ Creating a New Capture Process to Perform Recovery

If there are multiple apply processes at the destination database where you

performed point-in-time recovery, then complete one of the tasks in this section for

each apply process.

Neither of these methods should be used if any of the following conditions are true

regarding the destination database you are recovering:

■ A propagation propagates user-enqueued messages to the destination database.

Both of these methods reapply only captured events at the destination database,

not user-enqueued events.

■ The destination database is also a source database.
Other Streams Management Tasks 16-29

Performing Database Point-in-Time Recovery on a Destination Database
■ In a directed networks configuration, the destination database is used to

propagate events from a capture process to other databases, but the destination

database does not apply events from this capture process.

If any of these conditions are true in your environment, then you cannot use the

methods described in this section. Instead, you must manually resynchronize the

data at all destination databases.

Resetting the Start SCN for the Existing Capture Process to Perform Recovery
If you decide to reset the start SCN for the existing capture process to perform

point-in-time recovery, then complete the following steps:

1. If you are not using directed networks between the source database and

destination database, then drop the propagation that propagates changes from

the source queue at the source database to the destination queue at the

destination database. Use the DROP_PROPAGATION procedure in the

DBMS_PROPAGATION_ADM package to drop the propagation.

If you are using directed networks, and there are intermediate databases

between the source database and destination database, then drop the

propagation at each intermediate database in the path to the destination

database, including the propagation at the source database.

See Also:

■ Oracle9i Backup and Recovery Concepts for more information

about point-in-time recovery

■ "The Start SCN, Captured SCN, and Applied SCN for a

Capture Process" on page 2-15

■ "Resetting the Log Sequence Number Where Changes Are

Captured" on page 12-13

■ "Directed Networks" on page 3-7

Note: You must drop the appropriate propagation(s). Disabling

them is not sufficient. You will re-create the propagation(s) in Step

6, and dropping them now ensures that only events created after

resetting the start SCN for the capture process are propagated.

See Also: "Directed Networks" on page 3-7
16-30 Oracle9i Streams

Performing Database Point-in-Time Recovery on a Destination Database
2. Perform the point-in-time recovery at the destination database.

3. Query for the oldest message number from the source database for the apply

process at the destination database. Then, make a note of the results of the

query. The oldest message number is the earliest system change number (SCN)

that may need to be applied.

The following statement is an example of the query to perform:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

4. Stop the existing capture process using the STOP_CAPTURE procedure in the

DBMS_CAPTURE_ADM package.

5. Reset the start SCN of the existing capture process.

To reset the start SCN for an existing capture process, run the ALTER_CAPTURE
procedure in the DBMS_CAPTURE_ADM package and set the start_scn
parameter to the value you recorded from the query in Step 3. For example, to

reset the start SCN for a capture process named strm01_capture to the value

829381993 , run the following ALTER_CAPTURE procedure:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 start_scn => 829381993);
END;
/

6. If you are not using directed networks between the source database and

destination database, then create a new propagation to propagate changes from

the source queue to the destination queue using the CREATE_PROPAGATION
procedure in the DBMS_PROPAGATION_ADM package. Specify the rule set used

by the original propagation for the rule_set_name parameter when you

create the propagation.

If you are using directed networks, and there are intermediate databases

between the source database and destination database, then create a new

propagation at each intermediate database in the path to the destination

database, including the propagation at the source database.

7. Start the existing capture process using the START_CAPTURE procedure in the

DBMS_CAPTURE_ADM package.
Other Streams Management Tasks 16-31

Performing Database Point-in-Time Recovery on a Destination Database
Creating a New Capture Process to Perform Recovery
If you decide to create a new capture process to perform point-in-time recovery,

then complete the following steps:

1. If you are not using directed networks between the source database and

destination database, then drop the propagation that propagates changes from

the source queue at the source database to the destination queue at the

destination database. Use the DROP_PROPAGATION procedure in the

DBMS_PROPAGATION_ADM package to drop the propagation.

If you are using directed networks, and there are intermediate databases

between the source database and destination database, then drop the

propagation that propagates events between the last intermediate database and

the destination database. You do not need to drop the propagations at the other

intermediate databases nor at the source database.

2. Perform the point-in-time recovery at the destination database.

3. Query for the oldest message number from the source database for the apply

process at the destination database. Then, make a note of the results of the

query. The oldest message number is the earliest system change number (SCN)

that may need to be applied.

The following statement is an example of the query to perform:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

4. Create a queue at the source database to be used by the capture process using

the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package.

If you are using directed networks, and there are intermediate databases

between the source database and destination database, then create a queue at

each intermediate database in the path to the destination database, including

the new queue at the source database. Do not create a new queue at the

destination database.

Note: You must drop the appropriate propagation. Disabling it is

not sufficient.

See Also: "Directed Networks" on page 3-7
16-32 Oracle9i Streams

Performing Database Point-in-Time Recovery on a Destination Database
5. If you are not using directed networks between the source database and

destination database, then create a new propagation to propagate changes from

the source queue created in Step 4 to the destination queue using the

CREATE_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package.

Specify the rule set used by the original propagation for the rule_set_name
parameter when you create the propagation.

If you are using directed networks, and there are intermediate databases

between the source database and destination database, then create a

propagation at each intermediate database in the path to the destination

database, including the propagation from the source database to the first

intermediate database. These propagations propagate changes captured by the

capture process you will create in Step 6 between the queues created in Step 4.

6. Create a new capture process at the source database using the

CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package. Set the

source_queue parameter to the local queue you created in Step 4, the

rule_set_name parameter to the rule set used by the original capture process,

and the start_scn parameter to the value you recorded from the query in

Step 3. If the rule set used by the original capture process captures events that

should not be sent to the destination database that was recovered, then you can

create and use a smaller, customized rule set that shares some rules with the

original rule set.

7. Start the capture process you created in Step 6 using the START_CAPTURE
procedure in the DBMS_CAPTURE_ADM package.

8. When the oldest message number of the apply process at the recovered

database is approaching the capture number of the original capture process at

the source database, stop the original capture process using the STOP_CAPTURE
procedure in the DBMS_CAPTURE_ADM package.

At the destination database, you can use the following query to determine the

oldest message number from the source database for the apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

At the source database, you can use the following query to determine the

capture number of the original capture process:

SELECT CAPTURE_NAME, CAPTURE_MESSAGE_NUMBER FROM V$STREAMS_CAPTURE;
Other Streams Management Tasks 16-33

Performing Database Point-in-Time Recovery on a Destination Database
9. When the oldest message number of the apply process at the recovered

database is beyond the capture number of the original capture process at the

source database, drop the new capture process created in Step 6.

10. If you are not using directed networks between the source database and

destination database, then drop the new propagation created in Step 5.

If you are using directed networks, and there are intermediate databases

between the source database and destination database, then drop the new

propagation at each intermediate database in the path to the destination

database, including the new propagation at the source database.

11. If you are not using directed networks between the source database and

destination database, then remove the queue created in Step 4.

If you are using directed networks, and there are intermediate databases

between the source database and destination database, then drop the new

queue at each intermediate database in the path to the destination database,

including the new queue at the source database. Do not drop the queue at the

destination database.

12. If you are not using directed networks between the source database and

destination database, then create a propagation that propagates changes from

the original source queue at the source database to the destination queue at the

destination database. Use the CREATE_PROPAGATION procedure in the

DBMS_PROPAGATION_ADM package to create the propagation. Specify the rule

set used by the original propagation for the rule_set_name parameter when

you create the propagation.

If you are using directed networks, and there are intermediate databases

between the source database and destination database, then re-create the

propagation from the last intermediate database to the destination database.

You dropped this propagation in Step 1.

13. Start the capture process you stopped in Step 8.

All of the steps after Step 7 can be deferred to a later time, or they can be done as

soon as the condition described in Step 8 is met.
16-34 Oracle9i Streams

Performing Full Database Export/Import on a Database Using Streams
Performing Full Database Export/Import on a Database Using Streams
This section describes how to perform a full database export/import on a database

that is running one or more Streams capture processes, propagations, or apply

processes. These instructions pertain to a full database export/import where the

import database and export database are running on different computers, and the

import database replaces the export database. The global name of the import

database and the global name of the export database must match.

Complete the following steps to perform a full database export/import on a

database that is using Streams:

1. If the export database contains any destination queues for propagations from

other databases, then disable each propagation job that propagates events to the

export database. You can disable a propagation job using the

DISABLE_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package.

2. Make the necessary changes to your network configuration so that the database

links used by the propagation jobs you disabled in Step 1 point to the computer

running the import database.

To complete this step, you may need to re-create the database links used by

these propagation jobs or modify your Oracle networking files at the databases

that contain the source queues.

3. Notify all users to stop making data manipulation language (DML) and data

definition language (DDL) changes to the export database, and wait until these

changes have stopped.

Note: If you want to add a database to an existing Streams

environment, then do not use the instructions in this section.

Instead, see "Configuring a Capture-Based Streams Environment"

on page 11-15.

See Also:

■ "Setting Export and Import Parameters Relevant to Streams" on

page 11-8

■ Oracle9i Database Utilities for more information about

performing a full database export/import
Other Streams Management Tasks 16-35

Performing Full Database Export/Import on a Database Using Streams
4. Make a note of the current export database system change number (SCN). You

can determine the current SCN using the GET_SYSTEM_CHANGE_NUMBER
function in the DBMS_FLASHBACK package.

After completing this step, do not stop any capture process running on the

export database. Step 10 instructs you to use the V$STREAMS_CAPTURE
dynamic performance view to ensure that no DML or DDL changes were made

to the database after Step 3. The information about a capture process in this

view is reset if the capture process is stopped and restarted.

For the check in Step 10 to be valid, this information should not be reset for any

capture process. To prevent a capture process from stopping automatically, you

may need to set the message_limit and time_limit capture process

parameters to infinite if these parameters are set to another value for any

capture process.

5. If the export database is not running any apply processes, and is not

propagating user-enqueued events, then start the full database export now.

Make sure that the FULL export parameter is set to y so that the required

Streams metadata is exported.

If the export database is running one or more apply processes or is propagating

user-enqueued events, then do not start the export and proceed to the next step.

6. If the export database is running one or more capture processes, then wait until

the applied SCN of each capture process has reached or exceeded the SCN

determined in Step 4.

You can view the applied SCN for each capture process by querying the

APPLIED_SCN column in the DBA_CAPTURE data dictionary view.

7. If the export database has any propagation jobs that are propagating

user-enqueued events, then disable these propagation jobs using the

DISABLE_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package.

8. If the export database is running one or more apply processes, or is propagating

user-enqueued events, then start the full database export now. Make sure that

the FULL export parameter is set to y so that the required Streams metadata is

exported. If you already started the export in Step 5, then proceed to Step 9.

9. When the export is complete, transfer the export dump file to the computer

running the import database.
16-36 Oracle9i Streams

Performing Full Database Export/Import on a Database Using Streams
10. If the export database is running one or more capture processes, then ensure

that all DML and DDL changes on the export database were stopped before the

SCN determined in Step 4 by completing the following steps:

a. Get the current SCN using the GET_SYSTEM_CHANGE_NUMBER function in

the DBMS_FLASHBACK package. This SCN will be called the new SCN.

b. Wait until the capture message number of each capture process has reached

or exceeded the new SCN determined in Step a. You can view the capture

message number for each capture process by querying the

CAPTURE_MESSAGE_NUMBER column in the V$STREAMS_CAPTURE
dynamic performance view.

c. Verify that the enqueue message number of each capture process is less

than or equal to the SCN determined in Step 4. You can view the enqueue

message number for each capture process by querying the

ENQUEUE_MESSAGE_NUMBER column in the V$STREAMS_CAPTURE
dynamic performance view.

If the enqueue message number of each capture process is less than or equal

to the SCN determined in Step 4, then proceed to Step 11.

However, if the enqueue message number of any capture process is higher

than the SCN determined in Step 4, then one or more DML or DDL changes

were made after the SCN determined in Step 4, and these changes were

captured and enqueued by a capture process. In this case, perform all of the

steps in this section again, starting with Step 1 on page 16-35.

11. Perform the full database import. Make sure that the

STREAMS_CONFIGURATION and FULL import parameters are both set to y so

that the required Streams metadata is imported. The default setting is y for the

STREAMS_CONFIGURATION import parameter. Also, make sure no DML or

DDL changes are made to the import database during the import.

12. Let users access the import database, and shut down the export database.

13. Enable any propagation jobs you disabled in Steps 1 and 7.

If you reset the value of a message_limit or time_limit capture process
parameter in Step 4, then reset these parameters to their original settings.

Note: For this verification to be valid, each capture process must

have been running uninterrupted since Step 4.
Other Streams Management Tasks 16-37

Performing Full Database Export/Import on a Database Using Streams
16-38 Oracle9i Streams

Monitoring a Streams Enviro
17

Monitoring a Streams Environment

This chapter provides information about the static data dictionary views and

dynamic performance views related to Streams. You can use these views to monitor

your Streams environment. This chapter also illustrates example queries that you

may want to use to monitor your Streams environment.

This chapter contains these topics:

■ Summary of Streams Static Data Dictionary Views

■ Summary of Streams Dynamic Performance Views

■ Monitoring a Streams Capture Process

■ Monitoring a Streams Queue

■ Monitoring Streams Propagations and Propagation Jobs

■ Monitoring a Streams Apply Process

■ Monitoring Rules and Rule-Based Transformations

■ Monitoring Streams Tags

Note: The Streams tool in Oracle Enterprise Manager is also an

excellent way to monitor a Streams environment. See the online

help for the Streams tool for more information.

See Also: Oracle9i Database Reference for information about the

data dictionary views described in this chapter
nment 17-1

Summary of Streams Static Data Dictionary Views

ES

S

Summary of Streams Static Data Dictionary Views
The following table lists the Streams static data dictionary views.

Table 17–1 Streams Static Data Dictionary Views

ALL_ Views DBA_ Views USER_ Views

ALL_APPLY DBA_APPLY No USER_ view

ALL_APPLY_CONFLICT_COLUMNS DBA_APPLY_CONFLICT_COLUMNS No USER_ view

ALL_APPLY_DML_HANDLERS DBA_APPLY_DML_HANDLERS No USER_ view

ALL_APPLY_ERROR DBA_APPLY_ERROR No USER_ view

No ALL_ view DBA_APPLY_INSTANTIATED_OBJECTS No USER_ view

ALL_APPLY_KEY_COLUMNS DBA_APPLY_KEY_COLUMNS No USER_ view

ALL_APPLY_PARAMETERS DBA_APPLY_PARAMETERS No USER_ view

ALL_APPLY_PROGRESS DBA_APPLY_PROGRESS No USER_ view

ALL_CAPTURE DBA_CAPTURE No USER_ view

ALL_CAPTURE_PARAMETERS DBA_CAPTURE_PARAMETERS No USER_ view

ALL_CAPTURE_PREPARED_DATABASE DBA_CAPTURE_PREPARED_DATABASENo USER_ view

ALL_CAPTURE_PREPARED_SCHEMAS DBA_CAPTURE_PREPARED_SCHEMASNo USER_ view

ALL_CAPTURE_PREPARED_TABLES DBA_CAPTURE_PREPARED_TABLES No USER_ view

ALL_EVALUATION_CONTEXT_TABLES DBA_EVALUATION_CONTEXT_TABLES USER_EVALUATION_CONTEXT_TABL

ALL_EVALUATION_CONTEXT_VARS DBA_EVALUATION_CONTEXT_VARS USER_EVALUATION_CONTEXT_VAR

ALL_EVALUATION_CONTEXTS DBA_EVALUATION_CONTEXTS USER_EVALUATION_CONTEXTS

ALL_PROPAGATION DBA_PROPAGATION No USER_ view

ALL_RULE_SET_RULES DBA_RULE_SET_RULES USER_RULE_SET_RULES

ALL_RULE_SETS DBA_RULE_SETS USER_RULE_SETS

ALL_RULES DBA_RULES USER_RULES

ALL_STREAMS_GLOBAL_RULES DBA_STREAMS_GLOBAL_RULES No USER_ view

ALL_STREAMS_SCHEMA_RULES DBA_STREAMS_SCHEMA_RULES No USER_ view

ALL_STREAMS_TABLE_RULES DBA_STREAMS_TABLE_RULES No USER_ view
17-2 Oracle9i Streams

Monitoring a Streams Capture Process
Summary of Streams Dynamic Performance Views
The following list includes the Streams dynamic performance views

■ V$STREAMS_APPLY_COORDINATOR

■ V$STREAMS_APPLY_READER

■ V$STREAMS_APPLY_SERVER

■ V$STREAMS_CAPTURE

Monitoring a Streams Capture Process
The following sections contain queries that you can run to display information

about a capture process:

■ Displaying the Queue, Rule Set, and Status of Each Capture Process

■ Displaying General Information About a Capture Process

■ Listing the Parameter Settings for a Capture Process

■ Determining the Applied SCN for All Capture Processes in a Database

■ Determining Redo Log Scanning Latency for a Capture Process

■ Determining Event Enqueuing Latency for a Capture Process

■ Determining Which Database Objects Are Prepared for Instantiation

■ Displaying Supplemental Log Groups at a Source Database

Displaying the Queue, Rule Set, and Status of Each Capture Process
You can display the following general information about each capture process in a

database by running the query in this section:

■ The capture process name

■ The name of the queue used by the capture process

See Also:

■ Chapter 2, "Streams Capture Process"

■ Chapter 12, "Managing a Capture Process"
Monitoring a Streams Environment 17-3

Monitoring a Streams Capture Process
■ The name of the rule set used by the capture process

■ The status of the capture process, which may be ENABLE, DISABLED, or

ABORTED

To display this general information about each capture process in a database, run

the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A20
COLUMN RULE_SET_NAME HEADING 'Capture|Process|Rule Set' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15

SELECT CAPTURE_NAME, QUEUE_NAME, RULE_SET_NAME, STATUS FROM DBA_CAPTURE;

Your output looks similar to the following:

Capture Capture Capture Capture
Process Process Process Process
Name Queue Rule Set Status
--------------- -------------------- --------------- ---------------
CAPTURE STREAMS_QUEUE RULESET$_6 ENABLED

Displaying General Information About a Capture Process
The query in this section displays the following general information about a

particular capture process:

■ The process number (cp nn)

■ The session identifier

■ The serial number of the session

■ The current state of the capture process, either INITIALIZING , CAPTURING
CHANGES, EVALUATING RULE, ENQUEUING MESSAGE, SHUTTING DOWN, or

CREATING LCR

■ The total number of redo entries scanned

■ The total number LCRs enqueued
17-4 Oracle9i Streams

Monitoring a Streams Capture Process
For example, to display this information for a capture process named capture , run

the following query:

COLUMN PROCESS_NAME HEADING 'Capture|Process|Number' FORMAT A7
COLUMN SID HEADING 'Session|ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999
COLUMN STATE HEADING 'State' FORMAT A17
COLUMN TOTAL_MESSAGES_CAPTURED HEADING 'Redo Entries|Scanned' FORMAT 9999999
COLUMN TOTAL_MESSAGES_ENQUEUED HEADING 'Total|LCRs|Enqueued' FORMAT 999999

SELECT SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME,
 c.SID,
 c.SERIAL#,
 c.STATE,
 c.TOTAL_MESSAGES_CAPTURED,
 c.TOTAL_MESSAGES_ENQUEUED
 FROM V$STREAMS_CAPTURE c, V$SESSION s
 WHERE c.CAPTURE_NAME = 'CAPTURE' AND
 c.SID = s.SID AND
 c.SERIAL# = s.SERIAL#;

Your output looks similar to the following:

Capture Session Total
Process Session Serial Redo Entries LCRs
Number ID Number State Scanned Enqueued
------- ------- ------- ----------------- ------------ --------
CP01 18 150 CAPTURING CHANGES 56900 7

The number of redo entries scanned may be higher than the number of DML and

DDL redo entries that evaluate to TRUE for a capture process rule set. Only DML

and DDL redo entries that evaluate to TRUE for a capture process rule set are

enqueued into the capture process queue. Also, the total LCRs enqueued includes

LCRs that contain transaction control statements. These row LCRs contain

directives such as COMMIT and ROLLBACK. Therefore, the total LCRs enqueued is a

number higher than the number of row changes and DDL changes enqueued by a

capture process.

See Also: "Row LCRs" on page 2-3 for more information about

transaction control statements
Monitoring a Streams Environment 17-5

Monitoring a Streams Capture Process
Listing the Parameter Settings for a Capture Process
The query in this section displays the current setting for each capture process

parameter for a particular capture process.

For example, to display the settings for the capture process parameters of a capture

process named capture , run the following query:

COLUMN PARAMETER HEADING 'Parameter' FORMAT A20
COLUMN VALUE HEADING 'Value' FORMAT A20
COLUMN SET_BY_USER HEADING 'Set by User?' FORMAT A20

SELECT PARAMETER,
 VALUE,
 SET_BY_USER
 FROM DBA_CAPTURE_PARAMETERS
 WHERE CAPTURE_NAME = 'CAPTURE';

Your output looks similar to the following:

Parameter Value Set by User?
-------------------- -------------------- --------------------
DISABLE_ON_LIMIT N NO
MAXIMUM_SCN INFINITE NO
MESSAGE_LIMIT INFINITE NO
PARALLELISM 3 YES
STARTUP_SECONDS 0 NO
TIME_LIMIT INFINITE NO
TRACE_LEVEL 0 NO
WRITE_ALERT_LOG Y NO

Note: If the Set by User? column is NO for a parameter, then the

parameter is set to its default value. If the Set by User? column is

YES for a parameter, then the parameter may or may not be set to

its default value.

See Also:

■ "Capture Process Parameters" on page 2-25

■ "Setting a Capture Process Parameter" on page 12-8
17-6 Oracle9i Streams

Monitoring a Streams Capture Process
Determining the Applied SCN for All Capture Processes in a Database
The applied system change number (SCN) for a capture process is the SCN of the

most recent event dequeued by the relevant apply processes. All changes below this

applied SCN have been dequeued by all apply processes that apply changes

captured by the capture process. This SCN is important because all redo logs must

be kept available to a capture process until all transactions within the redo logs

have been applied at all downstream databases.

To display the applied SCN for all of the capture processes in a database, run the

following query:

COLUMN CAPTURE_NAME HEADING 'Capture Process Name' FORMAT A30
COLUMN APPLIED_SCN HEADING 'Applied SCN' FORMAT 999999

SELECT CAPTURE_NAME, APPLIED_SCN FROM DBA_CAPTURE;

Your output looks similar to the following:

Capture Process Name Applied SCN
------------------------------ -----------
CAPTURE_EMP 177154

Determining Redo Log Scanning Latency for a Capture Process
You can find the following information about a capture process by running the

query in this section:

■ The redo log scanning latency, which specifies the number of seconds between

the creation time of the most recent redo log event scanned by a capture process

and the current time. This number may be relatively large immediately after

you start a capture process.

■ The seconds since last recorded status, which is the number of seconds since a

capture process last recorded its status

■ The current capture process time, which is the latest time when the capture

process recorded its status

■ The event creation time, which is the time when the data manipulation

language (DML) or data definition language (DDL) change generated the redo

information for the most recently captured event

The information displayed by this query is valid only for an enabled capture

process.
Monitoring a Streams Environment 17-7

Monitoring a Streams Capture Process
Run the following query to determine the redo scanning latency for a capture

process named capture :

COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN LAST_STATUS HEADING 'Seconds Since|Last Status' FORMAT 999999
COLUMN CAPTURE_TIME HEADING 'Current|Process|Time'
COLUMN CREATE_TIME HEADING 'Event|Creation Time' FORMAT 999999

SELECT ((SYSDATE - CAPTURE_MESSAGE_CREATE_TIME)*86400) LATENCY_SECONDS,
 ((SYSDATE - CAPTURE_TIME)*86400) LAST_STATUS,
 TO_CHAR(CAPTURE_TIME, 'HH24:MI:SS MM/DD/YY') CAPTURE_TIME,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME
 FROM V$STREAMS_CAPTURE
 WHERE CAPTURE_NAME = 'CAPTURE';

Your output looks similar to the following:

Latency Current
 in Seconds Since Process Event
Seconds Last Status Time Creation Time
------- ------------- ----------------- -----------------
 4 4 12:04:13 03/01/02 12:04:13 03/01/02

The "Latency in Seconds" returned by this query is the difference between the

current time (SYSDATE) and the "Event Creation Time." The "Seconds Since
Last Status" returned by this query is the difference between the current time

(SYSDATE) and the "Current Process Time."

Determining Event Enqueuing Latency for a Capture Process
You can find the following information about a capture process by running the

query in this section:

■ The event enqueuing latency, which specifies the number of seconds between

when an event was recorded in the redo log and when the event was enqueued

by the capture process

■ The event creation time, which is the time when the data manipulation

language (DML) or data definition language (DDL) change generated the redo

information for the most recently enqueued event

■ The enqueue time, which is when the capture process enqueued the event into

its queue

■ The message number of the enqueued event
17-8 Oracle9i Streams

Monitoring a Streams Capture Process
The information displayed by this query is valid only for an enabled capture

process.

Run the following query to determine the event capturing latency for a capture

process named capture :

COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN CREATE_TIME HEADING 'Event Creation|Time' FORMAT A20
COLUMN ENQUEUE_TIME HEADING 'Enqueue Time' FORMAT A20
COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Message|Number' FORMAT 999999

SELECT (ENQUEUE_TIME-ENQUEUE_MESSAGE_CREATE_TIME)*86400 LATENCY_SECONDS,
 TO_CHAR(ENQUEUE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME,
 TO_CHAR(ENQUEUE_TIME, 'HH24:MI:SS MM/DD/YY') ENQUEUE_TIME,
 ENQUEUE_MESSAGE_NUMBER
 FROM V$STREAMS_CAPTURE
 WHERE CAPTURE_NAME = 'CAPTURE';

Your output looks similar to the following:

Latency
 in Event Creation Message
Seconds Time Enqueue Time Number
------- -------------------- -------------------- -------
 0 10:56:51 03/01/02 10:56:51 03/01/02 253962

The "Latency in Seconds" returned by this query is the difference between the

"Enqueue Time" and the "Event Creation Time."

Determining Which Database Objects Are Prepared for Instantiation
You prepare a database object for instantiation using one of the following

procedures in the DBMS_CAPTURE_ADM package:

■ PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.

■ PREPARE_SCHEMA_INSTANTIATION prepares all of the database objects in a

schema for instantiation.

■ PREPARE_GLOBAL_INSTANTIATION prepares all of the database objects in a

database for instantiation.
Monitoring a Streams Environment 17-9

Monitoring a Streams Capture Process
To determine which database objects have been prepared for instantiation, query

the following corresponding data dictionary views:

■ DBA_CAPTURE_PREPARED_TABLES

■ DBA_CAPTURE_PREPARED_SCHEMAS

■ DBA_CAPTURE_PREPARED_DATABASE

For example, to list all of the tables that have been prepared for instantiation, the

SCN for the time when each table was prepared, and the time when each table was

prepared, run the following query:

COLUMN TABLE_OWNER HEADING 'Table Owner' FORMAT A15
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN SCN HEADING 'Instantiation SCN' FORMAT 999999
COLUMN TIMESTAMP HEADING 'Time Ready for|Instantiation'

SELECT TABLE_OWNER,
 TABLE_NAME,
 SCN,
 TO_CHAR(TIMESTAMP, 'HH24:MI:SS MM/DD/YY') TIMESTAMP
 FROM DBA_CAPTURE_PREPARED_TABLES;

Your output looks similar to the following:

 Time Ready for
Table Owner Table Name Instantiation SCN Instantiation
--------------- --------------- ----------------- -----------------
HR COUNTRIES 196655 12:59:30 02/28/02
HR DEPARTMENTS 196658 12:59:30 02/28/02
HR EMPLOYEES 196659 12:59:30 02/28/02
HR JOBS 196660 12:59:30 02/28/02
HR JOB_HISTORY 196661 12:59:30 02/28/02
HR LOCATIONS 196662 12:59:30 02/28/02
HR REGIONS 196664 12:59:30 02/28/02

See Also: "Preparing Database Objects for Instantiation at a

Source Database" on page 12-11
17-10 Oracle9i Streams

Monitoring a Streams Capture Process

S

Displaying Supplemental Log Groups at a Source Database
Supplemental logging places additional column data into a redo log whenever an

UPDATE operation is performed. The capture process captures this additional

information and places it in LCRs. An apply process that applies captured LCRs

may need this additional information to schedule or apply changes correctly.

To check whether one or more log groups are specified for the table at the source

database, run the following query:

COLUMN LOG_GROUP_NAME HEADING 'Log Group' FORMAT A20
COLUMN TABLE_NAME HEADING 'Table' FORMAT A20
COLUMN ALWAYS HEADING 'Type of Log Group' FORMAT A30

SELECT
 LOG_GROUP_NAME,
 TABLE_NAME,
 DECODE(ALWAYS,
 'ALWAYS', 'Unconditional',
 NULL, 'Conditional') ALWAYS
 FROM DBA_LOG_GROUPS;

Your output looks similar to the following:

Log Group Table Type of Log Group
-------------------- -------------------- ------------------------------
LOG_GROUP_DEP_PK DEPARTMENTS Unconditional
LOG_GROUP_JOBS_CR JOBS Conditional

To list the columns in a particular log group, query the DBA_LOG_GROUP_COLUMN
data dictionary view. You can also query the V$DATABASE dynamic performance

view to display supplemental logging specified at the database level.

See Also:

■ "Supplemental Logging in a Streams Environment" on

page 2-11

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9
Monitoring a Streams Environment 17-11

Monitoring a Streams Queue
Monitoring a Streams Queue
The following sections contain queries that you can run to display information

about a Streams queue:

■ Displaying the Streams Queues in a Database

■ Determining the Consumer of Each User-Enqueued Event in a Queue

■ Viewing the Contents of User-Enqueued Events in a Queue

Displaying the Streams Queues in a Database
Streams queues are of object type SYS.AnyData . To display all of the Streams

queues in a database, run the following query:

COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN NAME HEADING 'Queue Name' FORMAT A25
COLUMN QUEUE_TABLE HEADING 'Queue Table' FORMAT A20
COLUMN USER_COMMENT HEADING 'Comment' FORMAT A20

SELECT q.OWNER, q.NAME, t.QUEUE_TABLE, q.USER_COMMENT
 FROM DBA_QUEUES q, DBA_QUEUE_TABLES t
 WHERE t.OBJECT_TYPE = 'SYS.ANYDATA' AND
 q.QUEUE_TABLE = t.QUEUE_TABLE AND
 q.OWNER = t.OWNER;

Your output looks similar to the following:

Owner Queue Name Queue Table Comment
---------- ------------------------- -------------------- --------------------
STRMADMIN AQ$_STREAMS_QUEUE_TABLE_E STREAMS_QUEUE_TABLE exception queue
STRMADMIN STREAMS_QUEUE STREAMS_QUEUE_TABLE

An exception queue is created automatically when you create a Streams queue.

See Also:

■ Chapter 3, "Streams Staging and Propagation"

■ Chapter 13, "Managing Staging and Propagation"

See Also: "Managing Streams Queues" on page 13-2
17-12 Oracle9i Streams

Monitoring a Streams Queue
Determining the Consumer of Each User-Enqueued Event in a Queue
To determine the consumer for each user-enqueued event in a queue, query

AQ$queue_table_name in the queue owner’s schema, where

queue_table_name is the name of the queue table. For example, to find the

consumers of the user-enqueued events in the oe_queue_table queue table, run

the following query:

COLUMN MSG_ID HEADING 'Message ID' FORMAT 9999
COLUMN MSG_STATE HEADING 'Message State' FORMAT A13
COLUMN CONSUMER_NAME HEADING 'Consumer' FORMAT A30

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_QUEUE_TABLE;

Your output looks similar to the following:

Message ID Message State Consumer
-------------------------------- ------------- ------------------------------
99315B276CFA1872E034080020AE3E0A PROCESSED APPLY_OE
99315B276CFB1872E034080020AE3E0A PROCESSED APPLY_OE
99315B276CFA1872E034080020AE3E0A READY EXPLICIT_DQ
99315B276CFB1872E034080020AE3E0A READY EXPLICIT_DQ

Viewing the Contents of User-Enqueued Events in a Queue
In a Streams queue, to view the contents of a payload that is encapsulated within a

SYS.AnyData payload, you query the queue table using the Access data_type
static functions of the SYS.AnyData type, where data_type is the type of

payload to view.

Note: This query lists only user-enqueued events, not captured

events.

See Also: Chapter 19, "Streams Messaging Example" for an

example that enqueues the events shown in this example into a

Streams queue

See Also: "Wrapping User Message Payloads in a SYS.AnyData

Wrapper" on page 13-19 for an example that enqueues the events

shown in the queries in this section into a Streams queue
Monitoring a Streams Environment 17-13

Monitoring a Streams Queue
For example, to view the contents of payload of type NUMBER in a queue with a

queue table named oe_queue_table , run the following query as the queue

owner:

SELECT qt.user_data.AccessNumber() "Numbers in Queue"
 FROM strmadmin.oe_q_table_any qt;

Your output looks similar to the following:

Numbers in Queue

 16

Similarly, to view the contents of a payload of type VARCHAR2 in a queue with a

queue table named oe_q_table_any , run the following query:

SELECT qt.user_data.AccessVarchar2() "Varchar2s in Queue"
 FROM strmadmin.oe_q_table_any qt;

Your output looks similar to the following:

Varchar2s in Queue
--
Chemicals - SW

To view the contents of a user-defined datatype, you query the queue table using a

custom function that you create. For example, to view the contents of a payload of

oe.cust_address_typ , connect as the Streams administrator and create a

function similar to the following:

CONNECT oe/oe

CREATE OR REPLACE FUNCTION oe.view_cust_address_typ(
in_any IN SYS.AnyData)
RETURN oe.cust_address_typ
IS
 address oe.cust_address_typ;
 num_var NUMBER;
BEGIN
 IF (in_any.GetTypeName() = 'OE.CUST_ADDRESS_TYP') THEN
 num_var := in_any.GetObject(address);
 RETURN address;
 ELSE RETURN NULL;
 END IF;
END;
/

17-14 Oracle9i Streams

Monitoring Streams Propagations and Propagation Jobs
GRANT EXECUTE ON oe.view_cust_address_typ TO STRMADMIN;

GRANT EXECUTE ON oe.cust_address_typ TO STRMADMIN;

Then, query the queue table using the function, as in the following example:

CONNECT strmadmin/strmadminpw

SELECT oe.view_cust_address_typ(qt.user_data) "Customer Addresses"
 FROM strmadmin.oe_q_table_any qt
 WHERE qt.user_data.GetTypeName() = 'OE.CUST_ADDRESS_TYP';

Your output looks similar to the following:

Customer Addresses(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID
--
CUST_ADDRESS_TYP('1646 Brazil Blvd', '361168', 'Chennai', 'Tam', 'IN')

Monitoring Streams Propagations and Propagation Jobs
The following sections contain queries that you can run to display information

about propagations and propagation jobs:

■ Determining the Source Queue and Destination Queue for a Propagation

■ Determining the Rule Set for a Propagation

■ Displaying the Schedule for a Propagation Job

■ Determining the Total Number of Events and Bytes Propagated

Determining the Source Queue and Destination Queue for a Propagation
You can determine the source queue and destination queue for a propagation by

querying the DBA_PROPAGATIONdata dictionary view at the database that contains

the source queue.

See Also:

■ Chapter 3, "Streams Staging and Propagation"

■ "Managing Streams Propagations and Propagation Jobs" on

page 13-7
Monitoring a Streams Environment 17-15

Monitoring Streams Propagations and Propagation Jobs
For example, the following query displays the following information for a

propagation named dbs1_to_dbs2 :

■ The source queue owner

■ The source queue name

■ The database that contains the source queue

■ The destination queue owner

■ The destination queue name

■ The database link used by the propagation

COLUMN 'Source Queue' FORMAT A35
COLUMN 'Destination Queue' FORMAT A35

SELECT p.SOURCE_QUEUE_OWNER ||'.'||
 p.SOURCE_QUEUE_NAME ||'@'||
 g.GLOBAL_NAME "Source Queue",
 p.DESTINATION_QUEUE_OWNER ||'.'||
 p.DESTINATION_QUEUE_NAME ||'@'||
 p.DESTINATION_DBLINK "Destination Queue"
 FROM DBA_PROPAGATION p, GLOBAL_NAME g
 WHERE PROPAGATION_NAME = 'DBS1_TO_DBS2';

Your output looks similar to the following:

Source Queue Destination Queue
----------------------------------- -----------------------------------
STRMADMIN.STREAMS_QUEUE@DBS1.NET STRMADMIN.STREAMS_QUEUE@DBS2.NET

Determining the Rule Set for a Propagation
The following query displays the owner and name of a rule set used by a

propagation named dbs1_to_dbs2 :

COLUMN RULE_SET_OWNER HEADING 'Rule Set Owner' FORMAT A35
COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A35

SELECT RULE_SET_OWNER, RULE_SET_NAME
 FROM DBA_PROPAGATION
 WHERE PROPAGATION_NAME = 'DBS1_TO_DBS2';
17-16 Oracle9i Streams

Monitoring Streams Propagations and Propagation Jobs
Your output looks similar to the following:

Rule Set Owner Rule Set Name
----------------------------------- -----------------------------------
STRMADMIN RULESET$_3

Displaying the Schedule for a Propagation Job
The query in this section displays the following information about the propagation

schedule for a propagation job used by a propagation named dbs1_to_dbs2 :

■ The date and time when the propagation schedule started (or will start)

■ The duration of the propagation job, which is the amount of time the job

propagates events before restarting

■ The latency of the propagation job, which is the maximum wait time to

propagate a new message during the duration, when all other messages in the

queue to the relevant destination have been propagated

■ Whether or not the propagation job is enabled

■ The name of the process that most recently executed the schedule

■ The number of consecutive times schedule execution has failed, if any. After 16

consecutive failures, a propagation job becomes disabled automatically.

Run this query at the database that contains the source queue:

COLUMN START_DATE HEADING 'Start Date'
COLUMN PROPAGATION_WINDOW HEADING 'Duration|in Seconds' FORMAT 99999
COLUMN NEXT_TIME HEADING 'Next|Time' FORMAT A8
COLUMN LATENCY HEADING 'Latency|in Seconds' FORMAT 99999
COLUMN SCHEDULE_DISABLED HEADING 'Status' FORMAT A8
COLUMN PROCESS_NAME HEADING 'Process' FORMAT A8
COLUMN FAILURES HEADING 'Number of|Failures' FORMAT 99
Monitoring a Streams Environment 17-17

Monitoring Streams Propagations and Propagation Jobs
SELECT TO_CHAR(s.START_DATE, 'HH24:MI:SS MM/DD/YY') START_DATE,
 s.PROPAGATION_WINDOW,
 s.NEXT_TIME,
 s.LATENCY,
 DECODE(s.SCHEDULE_DISABLED,
 'Y', 'Disabled',
 'N', 'Enabled') SCHEDULE_DISABLED,
 s.PROCESS_NAME,
 s.FAILURES
 FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
 WHERE p.PROPAGATION_NAME = 'DBS1_TO_DBS2'
 AND p.DESTINATION_DBLINK = s.DESTINATION
 AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
 AND s.QNAME = p.SOURCE_QUEUE_NAME;

Your output looks similar to the following:

 Duration Next Latency Number of
Start Date in Seconds Time in Seconds Status Process Failures
----------------- ---------- -------- ---------- -------- -------- ---------
15:23:40 03/02/02 5 Enabled J002 0

This propagation job uses the default schedule for a Streams propagation job. That

is, the duration and next time are both NULL, and the latency is five seconds. When

the duration is NULL, the job propagates changes without restarting automatically.

When the next time is NULL, the propagation job is running currently.

See Also:

■ "Propagation Scheduling and Streams Propagations" on

page 3-21 for more information about the default propagation

schedule for a Streams propagation job

■ "Is the Propagation Job Used by a Propagation Enabled?" on

page 18-6 if the propagation job is disabled

■ Oracle9i Application Developer’s Guide - Advanced Queuing and

Oracle9i Database Reference for more information about the

DBA_QUEUE_SCHEDULES data dictionary view
17-18 Oracle9i Streams

Monitoring Streams Propagations and Propagation Jobs
Determining the Total Number of Events and Bytes Propagated
All propagation jobs from a source queue that share the same database link have a

single propagation schedule. The query in this section displays the following

information for a propagation schedule associated with a particular propagation

job:

■ The total time spent by the system executing the propagation schedule

■ The total number of events propagated by the propagation schedule

■ The total number of bytes propagated by the propagation schedule

For example, to display this information for a propagation job used by a

propagation named dbs1_to_dbs2 , run the following query at the database that

contains the source queue:

COLUMN TOTAL_TIME HEADING 'Total Time Executing|in Seconds' FORMAT 999999
COLUMN TOTAL_NUMBER HEADING 'Total Events Propagated' FORMAT 999999999
COLUMN TOTAL_BYTES HEADING 'Total Bytes Propagated' FORMAT 9999999999999

SELECT s.TOTAL_TIME, s.TOTAL_NUMBER, s.TOTAL_BYTES
 FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
 WHERE p.PROPAGATION_NAME = 'DBS1_TO_DBS2'
 AND p.DESTINATION_DBLINK = s.DESTINATION
 AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
 AND s.QNAME = p.SOURCE_QUEUE_NAME;

Your output looks similar to the following:

Total Time Executing
 in Seconds Total Events Propagated Total Bytes Propagated
-------------------- ----------------------- ----------------------
 65 71 46536

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing and Oracle9i Database Reference for more information about

the DBA_QUEUE_SCHEDULES data dictionary view
Monitoring a Streams Environment 17-19

Monitoring a Streams Apply Process
Monitoring a Streams Apply Process
The following sections contain queries that you can run to display information

about an apply process:

■ Displaying General Information About Each Apply Process

■ Listing the Parameter Settings for an Apply Process

■ Displaying Information About Apply Handlers

■ Displaying the Substitute Key Columns Specified at a Destination Database

■ Displaying Information About Update Conflict Handlers for a Destination

Database

■ Determining the Tables for Which an Instantiation SCN Has Been Set

■ Displaying Information About the Reader Server for an Apply Process

■ Determining Capture to Dequeue Latency for an Event

■ Displaying Information About the Coordinator Process

■ Determining the Capture to Apply Latency for an Event

■ Displaying Information About the Apply Servers for an Apply Process

■ Displaying Effective Apply Parallelism for an Apply Process

■ Checking for Apply Errors

■ Displaying Detailed Information About Apply Errors

See Also:

■ Chapter 4, "Streams Apply Process"

■ Chapter 14, "Managing an Apply Process"
17-20 Oracle9i Streams

Monitoring a Streams Apply Process
Displaying General Information About Each Apply Process
You can display the following general information about each apply process in a

database by running the query in this section:

■ The apply process name

■ The name of the queue used by the apply process

■ The name of the rule set used by the apply process

■ The type of events applied by the apply process. An apply process may apply

either events that were captured by a capture process or events that were

enqueued by a user or application.

■ The status of the apply process, which may be ENABLED, DISABLED, or

ABORTED

To display this general information about each apply process in a database, run the

following query:

COLUMN APPLY_NAME HEADING 'Apply|Process|Name' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Apply|Process|Queue' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Apply|Process|Rule Set' FORMAT A15
COLUMN APPLY_CAPTURED HEADING 'Type of|Events|Applied' FORMAT A15
COLUMN STATUS HEADING 'Apply|Process|Status' FORMAT A8

SELECT APPLY_NAME,
 QUEUE_NAME,
 RULE_SET_NAME,
 DECODE(APPLY_CAPTURED,
 'YES', 'Captured',
 'NO', 'User-Enqueued') APPLY_CAPTURED,
 STATUS
FROM DBA_APPLY;

Your output looks similar to the following:

Apply Apply Apply Type of Apply
Process Process Process Events Process
Name Queue Rule Set Applied Status
--------------- --------------- --------------- --------------- --------
APPLY_OE OE_QUEUE APPLY_OE_RS User-Enqueued ENABLED
APPLY OE_QUEUE RULESET$_4 Captured DISABLED
Monitoring a Streams Environment 17-21

Monitoring a Streams Apply Process
Listing the Parameter Settings for an Apply Process
The query in this section displays the current setting for each apply process

parameter for a particular apply process.

For example, to display the settings for the apply process parameters of an apply

process named strm01_apply , run the following query:

COLUMN PARAMETER HEADING 'Parameter' FORMAT A20
COLUMN VALUE HEADING 'Value' FORMAT A20
COLUMN SET_BY_USER HEADING 'Set by User?' FORMAT A20

SELECT PARAMETER,
 VALUE,
 SET_BY_USER
 FROM DBA_APPLY_PARAMETERS
 WHERE APPLY_NAME = 'STRM01_APPLY';

Your output looks similar to the following:

Parameter Value Set by User?
-------------------- -------------------- --------------------
COMMIT_SERIALIZATION FULL NO
DISABLE_ON_ERROR Y YES
DISABLE_ON_LIMIT N NO
MAXIMUM_SCN INFINITE NO
PARALLELISM 1 NO
STARTUP_SECONDS 0 NO
TIME_LIMIT INFINITE NO
TRACE_LEVEL 0 NO
TRANSACTION_LIMIT INFINITE NO
WRITE_ALERT_LOG Y NO

Note: If the Set by User? column is NO for a parameter, then the

parameter is set to its default value. If the Set by User? column is

YES for a parameter, then the parameter may or may not be set to

its default value.

See Also:

■ "Apply Process Parameters" on page 4-34

■ "Setting an Apply Process Parameter" on page 14-11
17-22 Oracle9i Streams

Monitoring a Streams Apply Process
Displaying Information About Apply Handlers
This section contains queries that display information about apply process DML

handlers, DDL handlers, and error handlers.

Displaying All of the DML and Error Handlers for Local Apply
When you specify a local DML or error handler using the SET_DML_HANDLER
procedure in the DBMS_APPLY_ADM package at a destination database, the handler

is run for all apply processes in the database that apply changes locally, when

appropriate. DML and error handlers are run for a specified operation on a specific

table.

To display the DML or error handler for each apply process that applies changes

locally in a database, run the following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A5
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A10
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A9
COLUMN USER_PROCEDURE HEADING 'Handler Procedure' FORMAT A40
COLUMN ERROR_HANDLER HEADING 'Type of|Handler' FORMAT A10

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 OPERATION_NAME,
 USER_PROCEDURE,
 DECODE(ERROR_HANDLER,
 'Y', 'Error',
 'N', 'DML') ERROR_HANDLER
 FROM DBA_APPLY_DML_HANDLERS
 WHERE APPLY_DATABASE_LINK IS NULL
 ORDER BY OBJECT_OWNER, OBJECT_NAME, ERROR_HANDLER;

Your output looks similar to the following:

Table Type of
Owner Table Name Operation Handler Procedure Handler
----- ---------- --------- -- ----------
HR LOCATIONS UPDATE STRMADMIN.HISTORY_DML DML
HR REGIONS INSERT STRMADMIN.ERRORS_PKG.REGIONS_PK_ERROR Error

See Also: "Event Processing with an Apply Process" on page 4-3
Monitoring a Streams Environment 17-23

Monitoring a Streams Apply Process
Displaying the DDL Handler and Message Handler for Each Apply Process
To display the DDL handler and message handler for each apply process in a

database, run the following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN DDL_HANDLER HEADING 'DDL Handler' FORMAT A20
COLUMN MESSAGE_HANDLER HEADING 'Message Handler' FORMAT A20

SELECT APPLY_NAME, DDL_HANDLER, MESSAGE_HANDLER FROM DBA_APPLY;

Your output looks similar to the following:

Apply Process Name DDL Handler Message Handler
-------------------- -------------------- --------------------
APPLY oe.ddl_handler
APPLY_OE oe.msg_handler

Note: You can also specify DML handlers to process changes for

remote non-Oracle databases. This query does not display such

DML handlers because it lists a DML handler only if the

APPLY_DATABASE_LINK column is NULL for a DML handler.

See Also:

■ "Managing a DML Handler" on page 14-14

■ "Managing an Error Handler" on page 14-21

See Also:

■ "Managing the DDL Handler for an Apply Process" on

page 14-18

■ "Managing the Message Handler for an Apply Process" on

page 14-13
17-24 Oracle9i Streams

Monitoring a Streams Apply Process
Displaying the Substitute Key Columns Specified at a Destination Database
You can designate a substitute key at a destination database, which is a column or

set of columns that Oracle can use to identify rows in the table during apply.

Substitute key columns can be used to specify key columns for a table that has no

primary key, or they can be used instead of a table’s primary key when the table is

processed by any apply process at a destination database.

To display all of the substitute key columns specified at a destination database, run

the following query:

COLUMN OBJECT_OWNER HEADING 'Table Owner' FORMAT A20
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A20
COLUMN COLUMN_NAME HEADING 'Substitute Key Name' FORMAT A20
COLUMN APPLY_DATABASE_LINK HEADING 'Database Link|for Remote|Apply' FORMAT A15

SELECT OBJECT_OWNER, OBJECT_NAME, COLUMN_NAME, APPLY_DATABASE_LINK
 FROM DBA_APPLY_KEY_COLUMNS
 ORDER BY APPLY_DATABASE_LINK, OBJECT_OWNER, OBJECT_NAME;

Your output looks similar to the following:

 Database Link
 for Remote
Table Owner Table Name Substitute Key Name Apply
-------------------- -------------------- -------------------- ---------------
HR DEPARTMENTS DEPARTMENT_NAME
HR DEPARTMENTS LOCATION_ID
HR EMPLOYEES FIRST_NAME
HR EMPLOYEES LAST_NAME
HR EMPLOYEES HIRE_DATE

Note: This query shows the database link in the last column if the

substitute key columns are for a remote non-Oracle database. The

last column is NULL if a substitute key column is specified for the

local destination database.

See Also:

■ "Substitute Key Columns" on page 4-11

■ "Managing the Substitute Key Columns for a Table" on

page 14-27
Monitoring a Streams Environment 17-25

Monitoring a Streams Apply Process
Displaying Information About Update Conflict Handlers for a Destination Database
When you specify an update conflict handler using the

SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package,

the update conflict handler is run for all apply processes in the database, when a

relevant conflict occurs.

The query in this section displays all of the columns for which conflict resolution

has been specified using a prebuilt update conflict handler. That is, it shows the

columns in all of the column lists specified in the database. This query also shows

the type of prebuilt conflict handler specified and the resolution column specified

for the column list.

To display information about all of the update conflict handlers in a database, run

the following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A5
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A12
COLUMN METHOD_NAME HEADING 'Method' FORMAT A12
COLUMN RESOLUTION_COLUMN HEADING 'Resolution|Column' FORMAT A13
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A30

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 METHOD_NAME,
 RESOLUTION_COLUMN,
 COLUMN_NAME
 FROM DBA_APPLY_CONFLICT_COLUMNS
 ORDER BY OBJECT_OWNER, OBJECT_NAME, RESOLUTION_COLUMN;

Your output looks similar to the following:

Table Resolution
Owner Table Name Method Column Column Name
----- ------------ ------------ ------------- ------------------------------
HR COUNTRIES MAXIMUM TIME COUNTRY_NAME
HR COUNTRIES MAXIMUM TIME REGION_ID
HR COUNTRIES MAXIMUM TIME TIME
HR DEPARTMENTS MAXIMUM TIME DEPARTMENT_NAME
HR DEPARTMENTS MAXIMUM TIME LOCATION_ID
HR DEPARTMENTS MAXIMUM TIME MANAGER_ID
HR DEPARTMENTS MAXIMUM TIME TIME
17-26 Oracle9i Streams

Monitoring a Streams Apply Process
Determining the Tables for Which an Instantiation SCN Has Been Set
An instantiation SCN is set at a destination database. It controls which captured

LCRs for a table are ignored by an apply process and which captured LCRs for a

database object are applied by an apply process. If the commit SCN of an LCR for a

table from a source database is less than or equal to the instantiation SCN for that

table at a destination database, then the apply process at the destination database

discards the LCR. Otherwise, the apply process applies the LCR.

The following query lists each table for which an instantiation SCN has been set at a

destination database and the instantiation SCN for each table:

COLUMN SOURCE_DATABASE HEADING 'Source Database' FORMAT A15
COLUMN SOURCE_OBJECT_OWNER HEADING 'Object Owner' FORMAT A15
COLUMN SOURCE_OBJECT_NAME HEADING 'Object Name' FORMAT A15
COLUMN INSTANTIATION_SCN HEADING 'Instantiation SCN' FORMAT 999999

SELECT SOURCE_DATABASE,
 SOURCE_OBJECT_OWNER,
 SOURCE_OBJECT_NAME,
 INSTANTIATION_SCN
 FROM DBA_APPLY_INSTANTIATED_OBJECTS;

Your output looks similar to the following:

Source Database Object Owner Object Name Instantiation SCN
--------------- --------------- --------------- -----------------
DBS1.NET HR REGIONS 196660
DBS1.NET HR COUNTRIES 196660
DBS1.NET HR LOCATIONS 196660

See Also:

■ Chapter 7, "Streams Conflict Resolution"

■ "Managing Streams Conflict Resolution" on page 14-29

See Also: "Setting Instantiation SCNs at a Destination Database"

on page 14-35
Monitoring a Streams Environment 17-27

Monitoring a Streams Apply Process
Displaying Information About the Reader Server for an Apply Process
The reader server for an apply process dequeues events from the queue. The reader

server is a parallel execution server that computes dependencies between LCRs and

assembles events into transactions. The reader server then returns the assembled

transactions to the coordinator, which assigns them to idle apply servers.

The query in this section displays the following information about the reader server

for a particular apply process:

■ The type of events dequeued by the reader server, either captured LCRs or

user-enqueued messages

■ The name of the parallel execution server used by the reader server

■ The current state of the reader server, either IDLE , DEQUEUE MESSAGES, or

SCHEDULE MESSAGES

■ The total number of events dequeued by the reader server since the last time

the apply process was started

The information displayed by this query is valid only for an enabled apply process.

For example, to display this information for an apply process named apply , run the

following query:

COLUMN APPLY_CAPTURED HEADING 'Apply Type' FORMAT A22
COLUMN PROCESS_NAME HEADING 'Process Name' FORMAT A12
COLUMN STATE HEADING 'State' FORMAT A17
COLUMN TOTAL_MESSAGES_DEQUEUED HEADING 'Total Events Dequeued' FORMAT 99999999

SELECT DECODE(ap.APPLY_CAPTURED,
 'YES','Captured LCRS',
 'NO','User-enqueued messages','UNKNOWN') APPLY_CAPTURED,
 SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME,
 r.STATE,
 r.TOTAL_MESSAGES_DEQUEUED
 FROM V$STREAMS_APPLY_READER r, V$SESSION s, DBA_APPLY ap
 WHERE r.APPLY_NAME = 'APPLY' AND
 r.SID = s.SID AND
 r.SERIAL# = s.SERIAL# AND
 r.APPLY_NAME = ap.APPLY_NAME;

Your output looks similar to the following:

Apply Type Process Name State Total Events Dequeued
---------------------- ------------ ----------------- ---------------------
Captured LCRS P000 DEQUEUE MESSAGES 3803
17-28 Oracle9i Streams

Monitoring a Streams Apply Process
Determining Capture to Dequeue Latency for an Event
The query in this section displays the following information about the last event

dequeued by a particular apply process:

■ The latency. For captured events, the latency is the amount of time between

when the event was created at a source database and when the event was

dequeued by the apply process. For user-enqueued events, the latency is the

amount of time between when the event enqueued at the local database and

when the event was dequeued by the apply process.

■ The event creation time. For captured events, the event creation time is the time

when the data manipulation language (DML) or data definition language

(DDL) change generated the redo information at the source database for the

event. For user-enqueued events, the event creation time is the last time the

event was enqueued. A user-enqueued event may be enqueued one or more

additional times by propagation before it reaches an apply process.

■ The time when the event was dequeued by the apply process

■ The message number of the event that was last dequeued by the apply process

The information displayed by this query is valid only for an enabled apply process.

For example, to display the capture and propagation latency for the last captured

event dequeued by an apply process named apply , run the following query:

COLUMN LATENCY HEADING 'Latency|in|Seconds' FORMAT 9999
COLUMN CREATION HEADING 'Event Creation' FORMAT A17
COLUMN LAST_DEQUEUE HEADING 'Last Dequeue Time' FORMAT A20
COLUMN DEQUEUED_MESSAGE_NUMBER HEADING 'Dequeued|Message Number' FORMAT 999999

SELECT (DEQUEUE_TIME-DEQUEUED_MESSAGE_CREATE_TIME)*86400 LATENCY,
 TO_CHAR(DEQUEUED_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY') CREATION,
 TO_CHAR(DEQUEUE_TIME,'HH24:MI:SS MM/DD/YY') LAST_DEQUEUE,
 DEQUEUED_MESSAGE_NUMBER
 FROM V$STREAMS_APPLY_READER
 WHERE APPLY_NAME = 'APPLY';

Your output looks similar to the following:

Latency
 in Dequeued
Seconds Event Creation Last Dequeue Time Message Number
------- ----------------- -------------------- --------------
 36 10:56:51 03/01/02 10:57:27 03/01/02 253962
Monitoring a Streams Environment 17-29

Monitoring a Streams Apply Process
Displaying Information About the Coordinator Process
A coordinator process gets transactions from the reader server and passes these

transactions to apply servers. The coordinator process name is apnn , where nn is a

coordinator process number.

The query in this section displays the following information about the coordinator

process for a particular apply process:

■ The number of the coordinator in the process name (apnn)

■ The session identifier of the coordinator’s session

■ The serial number of the coordinator’s session

■ The current state of the coordinator, either INITIALIZING , APPLYING,

SHUTTING DOWN CLEANLY, or ABORTING

■ The total number of transactions received by the coordinator process since the

apply process was last started

■ The total number of transactions successfully applied by the apply process since

the apply process was last started

■ The number of transactions applied by the apply process that resulted in an

apply error since the apply process was last started

The information displayed by this query is valid only for an enabled apply process.

For example, to display this information for an apply process named apply , run the

following query:

COLUMN PROCESS_NAME HEADING 'Coordinator|Process|Name' FORMAT A11
COLUMN SID HEADING 'Session|ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999
COLUMN STATE HEADING 'State' FORMAT A21
COLUMN TOTAL_RECEIVED HEADING 'Total|Trans|Received' FORMAT 99999999
COLUMN TOTAL_APPLIED HEADING 'Total|Trans|Applied' FORMAT 99999999
COLUMN TOTAL_ERRORS HEADING 'Total|Apply|Errors' FORMAT 9999
17-30 Oracle9i Streams

Monitoring a Streams Apply Process
SELECT SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME,
 c.SID,
 c.SERIAL#,
 c.STATE,
 c.TOTAL_RECEIVED,
 c.TOTAL_APPLIED,
 c.TOTAL_ERRORS
 FROM V$STREAMS_APPLY_COORDINATOR c, V$SESSION s
 WHERE c.APPLY_NAME = 'APPLY' AND
 c.SID = s.SID AND
 c.SERIAL# = s.SERIAL#;

Your output looks similar to the following:

Coordinator Session Total Total Total
Process Session Serial Trans Trans Apply
Name ID Number State Received Applied Errors
----------- ------- ------- --------------------- --------- --------- ------
AP01 11 40 APPLYING 78 73 2

Determining the Capture to Apply Latency for an Event
This section contains two different queries that show the capture to apply latency

for a particular event. That is, for captured events, these queries show the amount

of time between when the event was created at a source database and when the

event was applied by the apply process. One query uses the

V$STREAMS_APPLY_COORDINATOR dynamic performance view, while the other

uses the DBA_APPLY_PROGRESS static data dictionary view.

The following are the major differences between these two queries:

■ The apply process must be enabled when you run the query on the

V$STREAMS_APPLY_COORDINATOR view, while the apply process can be

enabled or disabled when you run the query on the DBA_APPLY_PROGRESS
view.

■ The query on the V$STREAMS_APPLY_COORDINATOR view may show the

latency for a more recent transaction than the query on the

DBA_APPLY_PROGRESS view.

Note: These queries assume that the apply process applies

captured events, not user-enqueued events.
Monitoring a Streams Environment 17-31

Monitoring a Streams Apply Process
Both queries display the following information about an event applied by a

particular apply process:

■ The capture to apply latency for the event

■ The event creation time. For captured events, the event creation time is the time

when the data manipulation language (DML) or data definition language

(DDL) change generated the redo information at the source database for the

event.

■ The time when the event was applied by the apply process

■ The message number of the event

Example V$STREAMS_APPLY_COORDINATOR Query for Latency
To display the capture to apply latency using the

V$STREAMS_APPLY_COORDINATOR view for an event applied by an apply process

named apply , run the following query:

COLUMN 'Latency in Seconds' FORMAT 999999
COLUMN 'Event Creation' FORMAT A17
COLUMN 'Apply Time' FORMAT A17
COLUMN 'Applied Message Number' FORMAT 999999

SELECT (HWM_TIME-HWM_MESSAGE_CREATE_TIME)*86400 "Latency in Seconds",
 TO_CHAR(HWM_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY')
 "Event Creation",
 TO_CHAR(HWM_TIME,'HH24:MI:SS MM/DD/YY') "Apply Time",
 HWM_MESSAGE_NUMBER "Applied Message Number"
 FROM V$STREAMS_APPLY_COORDINATOR
 WHERE APPLY_NAME = 'APPLY';

Your output looks similar to the following:

Latency in Seconds Event Creation Apply Time Applied Message Number
------------------ ----------------- ----------------- ----------------------
 36 10:56:51 03/01/02 10:57:27 03/01/02 253962
17-32 Oracle9i Streams

Monitoring a Streams Apply Process
Example DBA_APPLY_PROGRESS Query for Latency
To display the capture to apply latency using the DBA_APPLY_PROGRESS view for

an event applied by an apply process named apply , run the following query:

COLUMN 'Latency in Seconds' FORMAT 999999
COLUMN 'Event Creation' FORMAT A17
COLUMN 'Apply Time' FORMAT A17
COLUMN 'Applied Message Number' FORMAT 999999

SELECT (APPLY_TIME-APPLIED_MESSAGE_CREATE_TIME)*86400 "Latency in Seconds",
 TO_CHAR(APPLIED_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY')
 "Event Creation",
 TO_CHAR(APPLY_TIME,'HH24:MI:SS MM/DD/YY') "Apply Time",
 APPLIED_MESSAGE_NUMBER "Applied Message Number"
 FROM DBA_APPLY_PROGRESS
 WHERE APPLY_NAME = 'APPLY';

Your output looks similar to the following:

Latency in Seconds Event Creation Apply Time Applied Message Number
------------------ ----------------- ----------------- ----------------------
 38 10:50:09 03/01/02 10:50:47 03/01/02 253678

Displaying Information About the Apply Servers for an Apply Process
An apply process can use one or more apply servers that apply LCRs to database

objects as DML statements or DDL statements or pass the LCRs to their appropriate

handlers. For non-LCR messages, the apply servers pass the events to the message

handler. Each apply server is a parallel execution server.

The query in this section displays the following information about the apply servers

for a particular apply process:

■ The type of events applied by each apply server, either captured LCRs or

user-enqueued messages

■ The process names of the parallel execution servers, in order

■ The current state of each apply server, either IDLE , RECORD LOW-WATERMARK,

ADD PARTITION, DROP PARTITION, EXECUTE TRANSACTION, WAIT COMMIT,
WAIT DEPENDENCY, or WAIT FOR NEXT CHUNK. See

V$STREAMS_APPLY_SERVER in the Oracle9i Database Reference for more

information about these states.
Monitoring a Streams Environment 17-33

Monitoring a Streams Apply Process
■ The total number of transactions assigned to each apply server since the last

time the apply process was started. A transaction may contain more than one

event.

■ The total number of events applied by each apply server since the last time the

apply process was started

The information displayed by this query is valid only for an enabled apply process.

For example, to display this information for an apply process named apply , run the

following query:

COLUMN APPLY_CAPTURED HEADING 'Apply Type' FORMAT A22
COLUMN PROCESS_NAME HEADING 'Process Name' FORMAT A12
COLUMN STATE HEADING 'State' FORMAT A17
COLUMN TOTAL_ASSIGNED HEADING 'Total|Transactions|Assigned' FORMAT 99999999
COLUMN TOTAL_MESSAGES_APPLIED HEADING 'Total|Events|Applied' FORMAT 99999999

SELECT DECODE(ap.APPLY_CAPTURED,
 'YES','Captured LCRS',
 'NO','User-enqueued messages','UNKNOWN') APPLY_CAPTURED,
 SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME,
 r.STATE,
 r.TOTAL_ASSIGNED,
 r.TOTAL_MESSAGES_APPLIED
 FROM V$STREAMS_APPLY_SERVER R, V$SESSION S, DBA_APPLY AP
 WHERE r.APPLY_NAME = 'APPLY' AND
 r.SID = s.SID AND
 r.SERIAL# = s.SERIAL# AND
 r.APPLY_NAME = ap.APPLY_NAME
 ORDER BY r.SERVER_ID;

Your output looks similar to the following:

 Total Total
 Transactions Events
Apply Type Process Name State Assigned Applied
---------------------- ------------ ----------------- ------------ ---------
Captured LCRs P001 IDLE 94 2141
Captured LCRs P002 IDLE 12 276
Captured LCRs P003 IDLE 0 0
17-34 Oracle9i Streams

Monitoring a Streams Apply Process
Displaying Effective Apply Parallelism for an Apply Process
In some environments, an apply process may not use all of the apply servers

available to it. For example, apply process parallelism may be set to five, but only

three apply servers are ever used by the apply process. In this case, the effective

apply parallelism is three.

The following query displays the effective apply parallelism for an apply process

named apply :

SELECT COUNT(SERVER_ID) "Effective Parallelism"
 FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'APPLY' AND
 TOTAL_MESSAGES_APPLIED > 0;

Your output looks similar to the following:

Effective Parallelism

 2

This query returned two for the effective parallelism. If parallelism is set to three for

the apply process named apply , then one apply server has not been used since the

last time the apply process was started.

You can display the total number of events applied by each apply server by running

the following query:

COLUMN SERVER_ID HEADING 'Apply Server ID' FORMAT 99
COLUMN TOTAL_MESSAGES_APPLIED HEADING 'Total Events Applied' FORMAT 999999

SELECT SERVER_ID, TOTAL_MESSAGES_APPLIED
 FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'APPLY'
 ORDER BY SERVER_ID;

Your output looks similar to the following:

Apply Server ID Total Events Applied
--------------- --------------------
 1 2141
 2 276
 3 0

In this case, apply server 3 has not been used by the apply process since it was last

restarted. If the parallelism setting for an apply process is higher than the
Monitoring a Streams Environment 17-35

Monitoring a Streams Apply Process
effective parallelism for the apply process, then consider lowering the

parallelism setting.

Checking for Apply Errors
To check for apply errors, run the following query:

COLUMN APPLY_NAME HEADING 'Apply|Process|Name' FORMAT A8
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A8
COLUMN LOCAL_TRANSACTION_ID HEADING 'Local|Transaction|ID' FORMAT A11
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A50

SELECT APPLY_NAME, SOURCE_DATABASE, LOCAL_TRANSACTION_ID, ERROR_MESSAGE
 FROM DBA_APPLY_ERROR;

If there are any apply errors, then your output looks similar to the following:

Apply Local
Process Source Transaction
Name Database ID Error Message
-------- -------- ----------- --
APPLY DBS1.NET 5.4.312 ORA-00001: unique constraint (HR.JOB_ID_PK)
 violated

If there are apply errors, then you can either try to reexecute the transactions that

encountered the errors, or you can delete the transactions. If you want to reexecute

a transaction that encountered an error, then first correct the condition that caused

the transaction to raise an error.

If you want to delete a transaction that encountered an error, then you may need to

resynchronize data manually if you are sharing data between multiple databases.

Remember to set an appropriate session tag, if necessary, when you resynchronize

data manually.

See Also:

■ "Exception Queues" on page 4-37

■ "Managing Apply Errors" on page 14-33

■ "Considerations for Applying DML Changes to Tables" on

page 4-10 for information about the possible causes of apply

errors

■ "Managing Streams Tags for the Current Session" on page 16-26
17-36 Oracle9i Streams

Monitoring a Streams Apply Process
Displaying Detailed Information About Apply Errors
This section contains SQL scripts that you can use to display detailed information

about the error transactions in the exception queues in a database. These scripts are

designed to display information about LCR events, but you can extend them to

display information about any non-LCR events used in your environment as well.

To use these scripts, complete the following steps:

1. Grant Explicit SELECT Privilege on the DBA_APPLY_ERROR View

2. Create a Procedure That Prints the Value in a SYS.AnyData Object

3. Create a Procedure That Prints a Specified LCR

4. Create a Procedure That Prints All the LCRs in All Exception Queues

5. Create a Procedure that Prints All the Error LCRs for a Transaction

Step 1 Grant Explicit SELECT Privilege on the DBA_APPLY_ERROR View
The user who creates and runs the print_errors and print_transaction
procedures described in the following sections must be granted explicit SELECT
privilege on the DBA_APPLY_ERROR data dictionary view. This privilege cannot be

granted through a role.

1. Connect as an administrative user who can grant privileges.

2. Grant SELECT privilege on the DBA_APPLY_ERROR data dictionary view to the

appropriate user. For example, to grant this privilege to the strmadmin user,

run the following statement:

GRANT SELECT ON DBA_APPLY_ERROR TO strmadmin;

3. Connect to the database as the user to whom you granted the privilege in

Step 2.

Note: These scripts display only the first 255 characters for

VARCHAR2 values in LCR events.
Monitoring a Streams Environment 17-37

Monitoring a Streams Apply Process
Step 2 Create a Procedure That Prints the Value in a SYS.AnyData Object
The following procedure prints the value in a specified SYS.AnyData object for

some selected value types.

CREATE OR REPLACE PROCEDURE print_any(data IN SYS.AnyData) IS
 tn VARCHAR2(61);
 str VARCHAR2(255);
 chr CHAR(255);
 num NUMBER;
 dat DATE;
 rw RAW(4000);
 res NUMBER;
BEGIN
 IF data IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('NULL value');
 RETURN;
 END IF;
 tn := data.GETTYPENAME();
 IF tn = 'SYS.VARCHAR2' THEN
 res := data.GETVARCHAR2(str);
 DBMS_OUTPUT.PUT_LINE(str);
 ELSIF tn = 'SYS.CHAR' then
 res := data.GETCHAR(chr);
 DBMS_OUTPUT.PUT_LINE(chr);
 ELSIF tn = 'SYS.VARCHAR' THEN
 res := data.GETVARCHAR(chr);
 DBMS_OUTPUT.PUT_LINE(chr);
 ELSIF tn = 'SYS.NUMBER' THEN
 res := data.GETNUMBER(num);
 DBMS_OUTPUT.PUT_LINE(num);
 ELSIF tn = 'SYS.DATE' THEN
 res := data.GETDATE(dat);
 DBMS_OUTPUT.PUT_LINE(dat);
 ELSIF tn = 'SYS.RAW' THEN
 res := data.GETRAW(rw);
 DBMS_OUTPUT.PUT_LINE(RAWTOHEX(rw));
 ELSE
 DBMS_OUTPUT.PUT_LINE('typename is ' || tn);
 END IF;
END print_any;
/

17-38 Oracle9i Streams

Monitoring a Streams Apply Process
Step 3 Create a Procedure That Prints a Specified LCR
The following procedure prints a specified LCR. It calls the print_any procedure

created in "Create a Procedure That Prints the Value in a SYS.AnyData Object" on

page 17-38.

CREATE OR REPLACE PROCEDURE print_lcr(lcr IN SYS.ANYDATA) IS
 typenm VARCHAR2(61);
 ddllcr SYS.LCR$_DDL_RECORD;
 proclcr SYS.LCR$_PROCEDURE_RECORD;
 rowlcr SYS.LCR$_ROW_RECORD;
 res NUMBER;
 newlist SYS.LCR$_ROW_LIST;
 oldlist SYS.LCR$_ROW_LIST;
 ddl_text CLOB;
BEGIN
 typenm := lcr.GETTYPENAME();
 DBMS_OUTPUT.PUT_LINE('type name: ' || typenm);
 IF (typenm = 'SYS.LCR$_DDL_RECORD') THEN
 res := lcr.GETOBJECT(ddllcr);
 DBMS_OUTPUT.PUT_LINE('source database: ' ||
 ddllcr.GET_SOURCE_DATABASE_NAME);
 DBMS_OUTPUT.PUT_LINE('owner: ' || ddllcr.GET_OBJECT_OWNER);
 DBMS_OUTPUT.PUT_LINE('object: ' || ddllcr.GET_OBJECT_NAME);
 DBMS_OUTPUT.PUT_LINE('is tag null: ' || ddllcr.IS_NULL_TAG);
 DBMS_LOB.CREATETEMPORARY(ddl_text, TRUE);
 ddllcr.GET_DDL_TEXT(ddl_text);
 DBMS_OUTPUT.PUT_LINE('ddl: ' || ddl_text);
 DBMS_LOB.FREETEMPORARY(ddl_text);
 ELSIF (typenm = 'SYS.LCR$_ROW_RECORD') THEN
 res := lcr.GETOBJECT(rowlcr);
 DBMS_OUTPUT.PUT_LINE('source database: ' ||
 rowlcr.GET_SOURCE_DATABASE_NAME);
 DBMS_OUTPUT.PUT_LINE('owner: ' || rowlcr.GET_OBJECT_OWNER);
 DBMS_OUTPUT.PUT_LINE('object: ' || rowlcr.GET_OBJECT_NAME);
 DBMS_OUTPUT.PUT_LINE('is tag null: ' || rowlcr.IS_NULL_TAG);
 DBMS_OUTPUT.PUT_LINE('command_type: ' || rowlcr.GET_COMMAND_TYPE);
 oldlist := rowlcr.GET_VALUES('old');
 FOR i IN 1..oldlist.COUNT LOOP
 IF oldlist(i) IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('old(' || i || '): ' || oldlist(i).column_name);
 print_any(oldlist(i).data);
 END IF;
 END LOOP;
Monitoring a Streams Environment 17-39

Monitoring a Streams Apply Process
 newlist := rowlcr.GET_VALUES('new', 'n');
 FOR i in 1..newlist.count LOOP
 IF newlist(i) IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('new(' || i || '): ' || newlist(i).column_name);
 print_any(newlist(i).data);
 END IF;
 END LOOP;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Non-LCR Message with type ' || typenm);
 END IF;
END print_lcr;
/

Step 4 Create a Procedure That Prints All the LCRs in All Exception Queues
The following procedure prints all of the LCRs in all of the exception queues in the

database. It calls the print_lcr procedure created in "Create a Procedure That

Prints a Specified LCR" on page 17-39.

CREATE OR REPLACE PROCEDURE print_errors IS
 CURSOR c IS
 SELECT LOCAL_TRANSACTION_ID,
 SOURCE_DATABASE,
 MESSAGE_COUNT,
 ERROR_NUMBER,
 ERROR_MESSAGE
 FROM DBA_APPLY_ERROR
 ORDER BY SOURCE_DATABASE, SOURCE_COMMIT_SCN;
 i NUMBER;
 txnid VARCHAR2(30);
 source VARCHAR2(128);
 msgcnt NUMBER;
 errnum NUMBER := 0;
 errno NUMBER;
 errmsg VARCHAR2(128);
 lcr SYS.AnyData;
 r NUMBER;
BEGIN
 FOR r IN c LOOP
 errnum := errnum + 1;
 msgcnt := r.MESSAGE_COUNT;
 txnid := r.LOCAL_TRANSACTION_ID;
 source := r.SOURCE_DATABASE;
 errmsg := r.ERROR_MESSAGE;
 errno := r.ERROR_NUMBER;
17-40 Oracle9i Streams

Monitoring a Streams Apply Process
 DBMS_OUTPUT.PUT_LINE('***');
 DBMS_OUTPUT.PUT_LINE('----- ERROR #' || errnum);
 DBMS_OUTPUT.PUT_LINE('----- Local Transaction ID: ' || txnid);
 DBMS_OUTPUT.PUT_LINE('----- Source Database: ' || source);
 DBMS_OUTPUT.PUT_LINE('----Error Number: '||errno);
 DBMS_OUTPUT.PUT_LINE('----Message Text: '||errmsg);
 FOR i IN 1..msgcnt LOOP
 DBMS_OUTPUT.PUT_LINE('--message: ' || i);
 lcr := DBMS_APPLY_ADM.GET_ERROR_MESSAGE(i, txnid);
 print_lcr(lcr);
 END LOOP;
 END LOOP;
END print_errors;
/

To run this procedure after you create it, enter the following:

SET SERVEROUTPUT ON SIZE 1000000

EXEC print_errors

Step 5 Create a Procedure that Prints All the Error LCRs for a Transaction
The following procedure prints all the LCRs in an exception queue for a particular

transaction. It calls the print_lcr procedure created in "Create a Procedure That

Prints a Specified LCR" on page 17-39.

CREATE OR REPLACE PROCEDURE print_transaction(ltxnid IN VARCHAR2) IS
 i NUMBER;
 txnid VARCHAR2(30);
 source VARCHAR2(128);
 msgcnt NUMBER;
 errno NUMBER;
 errmsg VARCHAR2(128);
 lcr SYS.ANYDATA;
BEGIN
 SELECT LOCAL_TRANSACTION_ID,
 SOURCE_DATABASE,
 MESSAGE_COUNT,
 ERROR_NUMBER,
 ERROR_MESSAGE
 INTO txnid, source, msgcnt, errno, errmsg
 FROM DBA_APPLY_ERROR
 WHERE LOCAL_TRANSACTION_ID = ltxnid;
Monitoring a Streams Environment 17-41

Monitoring Rules and Rule-Based Transformations
 DBMS_OUTPUT.PUT_LINE('----- Local Transaction ID: ' || txnid);
 DBMS_OUTPUT.PUT_LINE('----- Source Database: ' || source);
 DBMS_OUTPUT.PUT_LINE('----Error Number: '||errno);
 DBMS_OUTPUT.PUT_LINE('----Message Text: '||errmsg);
 FOR i IN 1..msgcnt LOOP
 DBMS_OUTPUT.PUT_LINE('--message: ' || i);
 lcr := DBMS_APPLY_ADM.GET_ERROR_MESSAGE(i, txnid); -- gets the LCR
 print_lcr(lcr);
 END LOOP;
END print_transaction;
/

To run this procedure after you create it, pass it the local transaction identifier of a

error transaction. For example, if the local transaction identifier is 1.17.2485 , then

enter the following:

SET SERVEROUTPUT ON SIZE 1000000

EXEC print_transaction('1.17.2485')

Monitoring Rules and Rule-Based Transformations
The following sections contain queries that you can run to display information

about rules and rule-based transformations:

■ Displaying the Streams Rules Used by a Streams Process or Propagation

■ Displaying the Condition for a Streams Rule

■ Displaying the Evaluation Context for Each Rule Set

■ Displaying Information About the Tables Used by an Evaluation Context

■ Displaying Information About the Variables Used in an Evaluation Context

■ Displaying All of the Rules in a Rule Set

■ Displaying the Condition for Each Rule in a Rule Set

■ Listing Each Rule that Contains a Specified Pattern in Its Condition

■ Displaying the Rule-Based Transformations in a Rule Set
17-42 Oracle9i Streams

Monitoring Rules and Rule-Based Transformations
Displaying the Streams Rules Used by a Streams Process or Propagation
Streams rules are rules created using the DBMS_STREAMS_ADM package for a

capture process, propagation, or apply process. These rules determine behavior of

the capture process, propagation, or apply process. For example, if a capture rule

evaluates to TRUE for DML changes to the hr.employees table, then the capture

process captures DML changes to this table.

You query the following data dictionary views to display Streams rules:

■ ALL_STREAMS_GLOBAL_RULES

■ DBA_STREAMS_GLOBAL_RULES

■ ALL_STREAMS_SCHEMA_RULES

■ DBA_STREAMS_SCHEMA_RULES

■ ALL_STREAMS_TABLE_RULES

■ DBA_STREAMS_TABLE_RULES

For example, the following query displays all of the schema rules for an apply

process named strm01_apply :

COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A10
COLUMN SOURCE_DATABASE HEADING 'Source' FORMAT A10
COLUMN RULE_TYPE HEADING 'Rule Type' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A10
COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN INCLUDE_TAGGED_LCR HEADING 'Apply|Tagged|LCRs?' FORMAT A15

See Also:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"

■ Chapter 15, "Managing Rules and Rule-Based Transformations"

Note: These views display only rules created using the

DBMS_STREAMS_ADM package or the Streams tool in Oracle

Enterprise Manager. These views do not display any manual

modifications to these rules made by the DBMS_RULE_ADM
package, nor do they display rules created using the

DBMS_RULE_ADM package.
Monitoring a Streams Environment 17-43

Monitoring Rules and Rule-Based Transformations
SELECT SCHEMA_NAME, SOURCE_DATABASE, RULE_TYPE,
 RULE_NAME, RULE_OWNER, INCLUDE_TAGGED_LCR
 FROM DBA_STREAMS_SCHEMA_RULES
 WHERE STREAMS_NAME = 'STRM01_APPLY' AND STREAMS_TYPE = 'APPLY';

Your output looks similar to the following:

 Apply
Schema Tagged
Name Source Rule Type Rule Name Rule Owner LCRs?
---------- ---------- ---------- ---------- ---------- ---------------
HR DBS1.NET DML HR1 STRMADMIN NO

These results show that the apply process applies LCRs containing DML changes to

the hr schema that originated at the dbs1.net database. The rule in the apply

process rule set that instructs the apply process to apply these changes is owned by

the strmadmin user and is named hr1 . Also, the apply process applies these

changes only if the tag in the LCR is NULL.

Displaying the Condition for a Streams Rule
If you know the name and level of a Streams rule, then you can display its rule

condition. The level is either global, schema, or table.

For example, consider the rule returned by the query in "Displaying the Streams

Rules Used by a Streams Process or Propagation" on page 17-43. The name of the

Streams schema rule is hr1 , and you can display its condition by running the

following query:

SELECT RULE_CONDITION "Schema Rule Condition"
 FROM DBA_STREAMS_SCHEMA_RULES
 WHERE RULE_NAME = 'HR1' AND
 RULE_OWNER = 'STRMADMIN';

Your output looks similar to the following:

Schema Rule Condition

(:dml.get_object_owner() = 'HR' and :dml.is_null_tag() = 'Y' and
:dml.get_source_database_name() = 'DBS1.NET')

See Also: "System-Created Rules" on page 6-3
17-44 Oracle9i Streams

Monitoring Rules and Rule-Based Transformations
Displaying the Evaluation Context for Each Rule Set
The following query displays the default evaluation context for each rule set in a

database:

COLUMN RULE_SET_OWNER HEADING 'Rule Set|Owner' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A15
COLUMN RULE_SET_EVAL_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A12
COLUMN RULE_SET_EVAL_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A27

SELECT RULE_SET_OWNER,
 RULE_SET_NAME,
 RULE_SET_EVAL_CONTEXT_OWNER,
 RULE_SET_EVAL_CONTEXT_NAME
 FROM DBA_RULE_SETS;

Your output looks similar to the following:

Rule Set Eval Context
Owner Rule Set Name Owner Eval Context Name
--------------- --------------- ------------ ---------------------------
STRMADMIN RULESET$_2 SYS STREAMS$_EVALUATION_CONTEXT
STRMADMIN STRM02_QUEUE_R STRMADMIN AQ$_STRM02_QUEUE_TABLE_V
STRMADMIN APPLY_OE_RS STRMADMIN OE_EVAL_CONTEXT
STRMADMIN OE_QUEUE_R STRMADMIN AQ$_OE_QUEUE_TABLE_V
STRMADMIN AQ$_1_RE STRMADMIN AQ$_OE_QUEUE_TABLE_V
SUPPORT RS SUPPORT EVALCTX

Displaying Information About the Tables Used by an Evaluation Context
The following query displays information about the tables used by an evaluation

context named evalctx , which is owned by the support user:

COLUMN TABLE_ALIAS HEADING 'Table Alias' FORMAT A20
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A40

See Also:

■ "Rule Condition" on page 5-2

■ "System-Created Rules" on page 6-3

See Also: "Rule Evaluation Context" on page 5-5
Monitoring a Streams Environment 17-45

Monitoring Rules and Rule-Based Transformations
SELECT TABLE_ALIAS,
 TABLE_NAME
 FROM DBA_EVALUATION_CONTEXT_TABLES
 WHERE EVALUATION_CONTEXT_OWNER = 'SUPPORT' AND
 EVALUATION_CONTEXT_NAME = 'EVALCTX';

Your output looks similar to the following:

Table Alias Table Name
-------------------- --
PROB problems

Displaying Information About the Variables Used in an Evaluation Context
The following query displays information about the variables used by an evaluation

context named evalctx , which is owned by the support user:

COLUMN VARIABLE_NAME HEADING 'Variable Name' FORMAT A15
COLUMN VARIABLE_TYPE HEADING 'Variable Type' FORMAT A15
COLUMN VARIABLE_VALUE_FUNCTION HEADING 'Variable Value|Function' FORMAT A20
COLUMN VARIABLE_METHOD_FUNCTION HEADING 'Variable Method|Function' FORMAT A20

SELECT VARIABLE_NAME,
 VARIABLE_TYPE,
 VARIABLE_VALUE_FUNCTION,
 VARIABLE_METHOD_FUNCTION
 FROM DBA_EVALUATION_CONTEXT_VARS
 WHERE EVALUATION_CONTEXT_OWNER = 'SUPPORT' AND
 EVALUATION_CONTEXT_NAME = 'EVALCTX';

Your output looks similar to the following:

 Variable Value Variable Method
Variable Name Variable Type Function Function
--------------- --------------- -------------------- --------------------
CURRENT_TIME DATE timefunc

See Also: "Rule Evaluation Context" on page 5-5

See Also: "Rule Evaluation Context" on page 5-5
17-46 Oracle9i Streams

Monitoring Rules and Rule-Based Transformations
Displaying All of the Rules in a Rule Set
The query in this section displays the following information about all of the rules in

a rule set:

■ The owner of the rule

■ The name of the rule

■ The evaluation context for the rule, if any. If a rule does not have an evaluation

context, and no evaluation context is specified in the ADD_RULE procedure

when the rule is added to a rule set, then it inherits the evaluation context of the

rule set

■ The evaluation context owner, if the rule has an evaluation context

For example, to display this information for each rule in a rule set named

oe_queue_r that is owned by the user strmadmin , run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN RULE_EVALUATION_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A27
COLUMN RULE_EVALUATION_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A11

SELECT R.RULE_OWNER,
 R.RULE_NAME,
 R.RULE_EVALUATION_CONTEXT_NAME,
 R.RULE_EVALUATION_CONTEXT_OWNER
 FROM DBA_RULES R, DBA_RULE_SET_RULES RS
 WHERE RS.RULE_SET_OWNER = 'STRMADMIN' AND

RS.RULE_SET_NAME = 'OE_QUEUE_R' AND
 RS.RULE_NAME = R.RULE_NAME AND
 RS.RULE_OWNER = R.RULE_OWNER;

Your output looks similar to the following:

 Eval Contex
Rule Owner Rule Name Eval Context Name Owner
---------- -------------------- --------------------------- -----------
STRMADMIN HR1 STREAMS$_EVALUATION_CONTEXT SYS
STRMADMIN APPLY_LCRS STREAMS$_EVALUATION_CONTEXT SYS
STRMADMIN OE_QUEUE$3
STRMADMIN APPLY_ACTION
Monitoring a Streams Environment 17-47

Monitoring Rules and Rule-Based Transformations
Displaying the Condition for Each Rule in a Rule Set
The following query displays the condition for each rule in a rule set named

hr_queue_r that is owned by the user strmadmin :

SET LONGCHUNKSIZE 4000
SET LONG 4000
COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A45

SELECT R.RULE_OWNER,
 R.RULE_NAME,
 R.RULE_CONDITION
 FROM DBA_RULES R, DBA_RULE_SET_RULES RS
 WHERE RS.RULE_SET_OWNER = 'STRMADMIN' AND

RS.RULE_SET_NAME = 'HR_QUEUE_R' AND
 RS.RULE_NAME = R.RULE_NAME AND
 RS.RULE_OWNER = R.RULE_OWNER;

Your output looks similar to the following:

Rule Owner Rule Name Rule Condition
--------------- --------------- ---
STRMADMIN APPLY_ACTION hr.get_hr_action(tab.user_data) = 'APPLY'
STRMADMIN APPLY_LCRS :dml.get_object_owner() = 'HR' AND (:dml.get
 _object_name() = 'DEPARTMENTS' OR
 :dml.get_object_name() = 'EMPLOYEES')

STRMADMIN HR_QUEUE$3 hr.get_hr_action(tab.user_data) != 'APPLY'

See Also:

■ "Rule Condition" on page 5-2

■ "System-Created Rules" on page 6-3
17-48 Oracle9i Streams

Monitoring Rules and Rule-Based Transformations
Listing Each Rule that Contains a Specified Pattern in Its Condition
To list each rule in a database that contains a specified pattern in its condition, you

can query the DBMS_RULES data dictionary view and use the DBMS_LOB.INSTR
function to search for the pattern in the rule conditions. For example, the following

query lists each rule that contains the pattern 'HR' in its condition:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A30
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A30

SELECT RULE_OWNER, RULE_NAME FROM DBA_RULES
 WHERE DBMS_LOB.INSTR(RULE_CONDITION, 'HR', 1, 1) > 0;

Your output looks similar to the following:

Rule Owner Rule Name
------------------------------ ------------------------------
STRMADMIN DEPARTMENTS4
STRMADMIN DEPARTMENTS5
STRMADMIN DEPARTMENTS6

Displaying the Rule-Based Transformations in a Rule Set
In Streams, a rule-based transformation is specified in a rule action context that has

the name STREAMS$_TRANSFORM_FUNCTION in the name-value pair. The value in

the name-value pair is the name of the PL/SQL procedure that performs the

transformation.

The following query displays all of the rule-based transformations specified for

rules in a rule set named RULESET$_4:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN ACTION_CONTEXT_VALUE HEADING 'Transformation Procedure' FORMAT A40

SELECT
 r.RULE_NAME,
 ac.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
 FROM DBA_RULES r,
 TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) ac,
 DBA_RULE_SET_RULES s
 WHERE ac.NVN_NAME = 'STREAMS$_TRANSFORM_FUNCTION' AND
 s.RULE_SET_NAME = 'RULESET$_4' AND
 s.RULE_SET_OWNER = 'STRMADMIN' AND
 r.RULE_NAME = s.RULE_NAME AND
 r.RULE_OWNER = s.RULE_OWNER;
Monitoring a Streams Environment 17-49

Monitoring Streams Tags
If there rule-based transformations specified for rules in the rule set, then your

output looks similar to the following:

Rule Name Transformation Procedure
-------------------- --
DEPARTMENTS7 hr.executive_to_management
DEPARTMENTS6 hr.executive_to_management
DEPARTMENTS5 hr.executive_to_management

Monitoring Streams Tags
The following sections contain queries that you can run to display the Streams tag

for the current session and for an apply process:

■ Displaying the Tag Value for the Current Session

■ Displaying the Tag Value for an Apply Process

Displaying the Tag Value for the Current Session
You can display the tag value generated in all redo entries for the current session by

querying the DUAL view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

Your output looks similar to the following:

GET_TAG
--
1D

See Also:

■ "Rule-Based Transformations" on page 6-25

■ "Managing Rule-Based Transformations" on page 15-11

See Also:

■ Chapter 8, "Streams Tags"

■ "Managing Streams Tags" on page 16-26

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_STREAMS package
17-50 Oracle9i Streams

Monitoring Streams Tags
You can also determine the tag for a session by calling the

DBMS_STREAMS.GET_TAG function.

Displaying the Tag Value for an Apply Process
You can get the default tag for all redo entries generated by an apply process by

querying for the APPLY_TAG value in the DBA_APPLY data dictionary view. For

example, to get the hexadecimal value of the tags generated in the redo entries by

an apply process named strm01_apply , run the following query:

SELECT APPLY_TAG "Tag Value for strm01_apply"
 FROM DBA_APPLY WHERE APPLY_NAME = 'STRM01_APPLY';

Your output looks similar to the following:

Tag Value for strm01_apply
--
00

A handler or transformation function associated with an apply process can get the

tag by calling the DBMS_STREAMS.GET_TAG function.
Monitoring a Streams Environment 17-51

Monitoring Streams Tags
17-52 Oracle9i Streams

Troubleshooting a Streams Enviro
18

Troubleshooting a Streams Environment

This chapter contains information about identifying and resolving common

problems in a Streams environment.

This chapter contains these topics:

■ Troubleshooting Capture Problems

■ Troubleshooting Propagation Problems

■ Troubleshooting Apply Problems

■ Troubleshooting Problems with Rules and Rule-Based Transformations

■ Checking the Trace Files and Alert Log for Problems
nment 18-1

Troubleshooting Capture Problems
Troubleshooting Capture Problems
If a capture process is not capturing changes as expected or if you are having other

problems with a capture process, then use the following checklist to identify and

resolve capture problems:

■ Is the Capture Process Enabled?

■ Is the Capture Process Current?

■ Is LOG_PARALLELISM Set to 1?

■ Is LOGMNR_MAX_PERSISTENT_SESSIONS Set High Enough?

Is the Capture Process Enabled?
A capture process captures changes only when it is enabled. You can check whether

a capture process is enabled, disabled, or aborted by querying the DBA_CAPTURE
data dictionary view.

For example, to check whether a capture process named CAPTURE is enabled, run

the following query:

SELECT STATUS FROM DBA_CAPTURE WHERE CAPTURE_NAME = 'CAPTURE';

If the capture process is disabled, then your output looks similar to the following:

STATUS

DISABLED

If the capture process is disabled or aborted, then try restarting it. If you do not

know why the capture process was disabled or aborted, then check the trace file for

the capture process.

See Also:

■ Chapter 2, "Streams Capture Process"

■ Chapter 12, "Managing a Capture Process"

■ "Monitoring a Streams Capture Process" on page 17-3
18-2 Oracle9i Streams

Troubleshooting Capture Problems
Is the Capture Process Current?
If a capture process has not captured recent changes, then the cause may be that the

capture process has fallen behind. To check, you can query the

V$STREAMS_CAPTURE dynamic performance view. If capture process latency is

high, then you may be able to improve performance by adjusting the setting of the

parallelism capture process parameter.

Is LOG_PARALLELISM Set to 1?
The LOG_PARALLELISM initialization parameter specifies the level of concurrency

for redo allocation within Oracle. If you plan to run one or more capture processes

on a database, then this parameter must be set to 1. If this initialization parameter is

set higher than one, you may encounter error ORA-01374 .

Setting this parameter to 1 does not affect the parallelism of capture. You can set

parallelism for a capture process using the SET_PARAMETER procedure in the

DBMS_CAPTURE_ADM package.

See Also:

■ "Starting a Capture Process" on page 12-5

■ "Checking the Trace Files and Alert Log for Problems" on

page 18-24

■ "Streams Capture Processes and Oracle Real Application

Clusters" on page 2-17 for information about restarting a

capture process in an Oracle Real Application Clusters

environment

See Also:

■ "Determining Redo Log Scanning Latency for a Capture

Process" on page 17-7

■ "Determining Event Enqueuing Latency for a Capture Process"

on page 17-8

■ "Capture Process Parallelism" on page 2-26

■ "Setting a Capture Process Parameter" on page 12-8
Troubleshooting a Streams Environment 18-3

Troubleshooting Propagation Problems
Is LOGMNR_MAX_PERSISTENT_SESSIONS Set High Enough?
The LOGMNR_MAX_PERSISTENT_SESSIONS initialization parameter specifies the

maximum number of persistent LogMiner mining sessions that are concurrently

active when all sessions are mining redo logs generated by instances. If you plan to

run multiple Streams capture processes on a single database, then set this parameter

equal to or higher than the number of planned capture processes.

If you cannot drop a capture process, and you are using multiple capture processes,

then it may be because the LOGMNR_MAX_PERSISTENT_SESSIONS initialization

parameter is not set high enough. Try increasing this initialization parameter and

retrying the drop capture process operation.

Alternatively, if you do not want to increase the size of this initialization parameter,

try stopping at least one of the running capture processes and then retrying the

drop capture process operation. If the drop operation succeeds, then restart any

capture process you stopped.

Troubleshooting Propagation Problems
If a propagation is not propagating changes as expected, then use the following

checklist to identify and resolve propagation problems:

■ Does the Propagation Use the Correct Source and Destination Queue?

■ Is the Propagation Job Used by a Propagation Enabled?

■ Are There Enough Job Queue Processes?

■ Is Security Configured Properly for the Streams Queue?

See Also:

■ Chapter 3, "Streams Staging and Propagation"

■ Chapter 13, "Managing Staging and Propagation"

■ "Monitoring Streams Propagations and Propagation Jobs" on

page 17-15
18-4 Oracle9i Streams

Troubleshooting Propagation Problems
Does the Propagation Use the Correct Source and Destination Queue?
If events are not appearing in the destination queue for a propagation as expected,

then the propagation may not be configured to propagate events from the correct

source queue to the correct destination queue.

For example, to check the source queue and destination queue for a propagation

named dbs1_to_dbs2 , run the following query:

COLUMN SOURCE_QUEUE HEADING 'Source Queue' FORMAT A35
COLUMN DESTINATION_QUEUE HEADING 'Destination Queue' FORMAT A35

SELECT
 p.SOURCE_QUEUE_OWNER||'.'||
 p.SOURCE_QUEUE_NAME||'@'||
 g.GLOBAL_NAME SOURCE_QUEUE,
 p.DESTINATION_QUEUE_OWNER||'.'||
 p.DESTINATION_QUEUE_NAME||'@'||
 p.DESTINATION_DBLINK DESTINATION_QUEUE
 FROM DBA_PROPAGATION p, GLOBAL_NAME g
 WHERE p.PROPAGATION_NAME = 'DBS1_TO_DBS2';

Your output looks similar to the following:

Source Queue Destination Queue
----------------------------------- -----------------------------------
STRMADMIN.STREAMS_QUEUE@DBS1.NET STRMADMIN.STREAMS_QUEUE@DBS2.NET

If the propagation is not using the correct queues, then create a new propagation.

You may need to remove the existing propagation if it is not appropriate for your

environment.
Troubleshooting a Streams Environment 18-5

Troubleshooting Propagation Problems
Is the Propagation Job Used by a Propagation Enabled?
For a propagation job to propagate events, the propagation schedule for the

propagation job must be enabled. If events are not being propagated by a

propagation as expected, then the propagation’s propagation job schedule may not

be enabled.

You can find the following information about the schedule for a propagation job by

running the query in this section:

■ The database link used to propagate events from the source queue to the

destination queue

■ Whether the propagation schedule is enabled or disabled

■ The job queue process used to propagate the last event

■ The number of consecutive failures when execution of the propagation schedule

was attempted. The schedule is disabled automatically if this number

reaches 16.

■ If there are any propagation errors, then the time of the last error

■ If there are any propagation errors, then the error message of the last error

For example, to check whether a propagation job used by a propagation named

dbs1_to_dbs2 is enabled, run the following query:

COLUMN DESTINATION_DBLINK HEADING 'Destination|DB Link' FORMAT A15
COLUMN SCHEDULE_DISABLED HEADING 'Schedule' FORMAT A8
COLUMN PROCESS_NAME HEADING 'Process' FORMAT A7
COLUMN FAILURES HEADING 'Number of|Failures' FORMAT 9999
COLUMN LAST_ERROR_TIME HEADING 'Last Error Time' FORMAT A15
COLUMN LAST_ERROR_MSG HEADING 'Last Error Message' FORMAT A18

SELECT p.DESTINATION_DBLINK,
 DECODE(s.SCHEDULE_DISABLED,
 'Y', 'Disabled',
 'N', 'Enabled') SCHEDULE_DISABLED,
 s.PROCESS_NAME,
 s.FAILURES,
 s.LAST_ERROR_TIME,
 s.LAST_ERROR_MSG
 FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
 WHERE p.PROPAGATION_NAME = 'DBS1_TO_DBS2'
 AND p.DESTINATION_DBLINK = s.DESTINATION
 AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
 AND s.QNAME = p.SOURCE_QUEUE_NAME;
18-6 Oracle9i Streams

Troubleshooting Propagation Problems
If the schedule is enabled currently for the propagation job, then your output looks

similar to the following:

Destination Number of
DB Link Schedule Process Failures Last Error Time Last Error Message
--------------- -------- ------- --------- --------------- ------------------
DBS2.NET Enabled J001 0

Try the following actions to correct a problem:

■ If a propagation job is disabled, then you can enable it using the

ENABLE_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package, if

you have not done so already.

■ If the propagation job is disabled, and you do not know why, then check the

trace file for the process that last propagated an event. In the previous output,

the process is J001 .

■ If the propagation job is enabled, but is not propagating events, then try

unscheduling and scheduling the propagation job.

Are There Enough Job Queue Processes?
Propagation jobs use job queue processes to propagate events. Make sure the

JOB_QUEUE_PROCESSES initialization parameter is set to 2 or higher in each

database instance that does propagation. It should be set to a value that is high

enough to accommodate all of the jobs that run simultaneously.

See Also:

■ "Enabling a Propagation Job" on page 13-11

■ "Checking the Trace Files and Alert Log for Problems" on

page 18-24

■ "Unscheduling a Propagation Job" on page 13-13

■ "Scheduling a Propagation Job" on page 13-11

■ "Displaying the Schedule for a Propagation Job" on page 17-17
Troubleshooting a Streams Environment 18-7

Troubleshooting Propagation Problems
Is Security Configured Properly for the Streams Queue?
Streams queues are secure queues, and security must be configured properly for

users to be able to perform operations on them. You may encounter one of the

following errors if security is not configured properly for a Streams queue:

■ ORA-24093 AQ Agent not granted privileges of database user

■ ORA-25224 Sender name must be specified for enqueue into secure queues

ORA-24093 AQ Agent not granted privileges of database user
Secure queue access must be granted to an agent explicitly for both enqueue and

dequeue operations. You grant the agent these privileges using the

ENABLE_DB_ACCESS procedure in the DBMS_AQADM package.

For example, to grant an agent named explicit_dq privileges of the database

user oe , run the following procedure:

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'explicit_dq',
 db_username => 'oe');
END;
/

To check the privileges of the agents in a database, run the following query:

SELECT AGENT_NAME "Agent", DB_USERNAME "User" FROM DBA_AQ_AGENT_PRIVS;

See Also:

■ "Setting Initialization Parameters Relevant to Streams" on

page 11-4

■ The description of propagation features in Oracle9i Application
Developer’s Guide - Advanced Queuing for more information

about setting the JOB_QUEUE_PROCESSES initialization

parameter when you use propagation jobs

■ Oracle9i Database Reference for more information about the

JOB_QUEUE_PROCESSES initialization parameter

■ Oracle9i Database Administrator’s Guide for more information

about job queues

See Also: "Secure Queues" on page 3-22
18-8 Oracle9i Streams

Troubleshooting Apply Problems
Your output looks similar to the following:

Agent User
------------------------------ ------------------------------
EXPLICIT_ENQ OE
APPLY_OE OE
EXPLICIT_DQ OE

ORA-25224 Sender name must be specified for enqueue into secure queues
To enqueue into a secure queue, the SENDER_IDmust be set to an agent with secure

queue privileges for the queue in the message properties.

Troubleshooting Apply Problems
If an apply process is not applying changes as expected, then use the following

checklist to identify and resolve apply problems:

■ Is the Apply Process Enabled?

■ Is the Apply Process Current?

■ Does the Apply Process Apply Captured Events or User-Enqueued Events?

■ Is a Custom Apply Handler Specified?

■ Is the Apply Process Waiting for a Dependent Transaction?

■ Are There Any Apply Errors in the Exception Queue?

See Also: "Enabling a User to Perform Operations on a Secure

Queue" on page 13-3 for a detailed example that grants privileges

to an agent

See Also: "Create the Procedure to Enqueue Non-LCR Events" on

page 19-12 for an example that sets the SENDER_ID for enqueue

See Also:

■ Chapter 4, "Streams Apply Process"

■ Chapter 14, "Managing an Apply Process"

■ "Monitoring a Streams Apply Process" on page 17-20
Troubleshooting a Streams Environment 18-9

Troubleshooting Apply Problems
Is the Apply Process Enabled?
An apply process applies changes only when it is enabled. You can check whether

an apply process is enabled, disabled, or aborted by querying the DBA_APPLY data

dictionary view.

For example, to check whether an apply process named APPLY is enabled, run the

following query:

SELECT STATUS FROM DBA_APPLY WHERE APPLY_NAME = 'APPLY';

If the apply process is disabled, then your output looks similar to the following:

STATUS

DISABLED

If the apply process is disabled or aborted, then try restarting it. If you do not know

why the apply process was disabled or aborted, then check the trace file for the

apply process.

Is the Apply Process Current?
If an apply process has not applied recent changes, then the cause may be that the

apply process has fallen behind. You can check apply process latency by querying

the V$STREAMS_APPLY_COORDINATOR dynamic performance view. If apply

process latency is high, then you may be able to improve performance by adjusting

the setting of the parallelism apply process parameter.

See Also:

■ "Starting an Apply Process" on page 14-7

■ "Checking the Trace Files and Alert Log for Problems" on

page 18-24

■ "Streams Apply Processes and Oracle Real Application

Clusters" on page 4-29 for information about restarting an

apply process in an Oracle Real Application Clusters

environment
18-10 Oracle9i Streams

Troubleshooting Apply Problems
Does the Apply Process Apply Captured Events or User-Enqueued Events?
An apply process can apply either captured events or user-enqueued events, but

not both types of events. If an apply process is not applying events of a certain type,

then it may be because the apply process was configured to apply the other type of

events. You can check the type of events applied by an apply process by querying

the DBA_APPLY data dictionary view.

For example, to check whether an apply process named APPLY applies captured or

user-enqueued events, run the following query:

COLUMN APPLY_CAPTURED HEADING 'Type of Events Applied' FORMAT A25

SELECT DECODE(APPLY_CAPTURED,
 'YES', 'Captured',
 'NO', 'User-Enqueued') APPLY_CAPTURED
 FROM DBA_APPLY
 WHERE APPLY_NAME = 'APPLY';

If the apply process applies captured events, then your output looks similar to the

following:

Type of Events Applied

Captured

If an apply process is not applying the expected type of events, then you may need

to create a new apply process to apply the events.

See Also:

■ "Determining the Capture to Apply Latency for an Event" on

page 17-31

■ "Apply Process Parallelism" on page 4-34

■ "Setting an Apply Process Parameter" on page 14-11

See Also:

■ "Captured and User-Enqueued Events" on page 3-3

■ "Creating a Capture Process" on page 12-2
Troubleshooting a Streams Environment 18-11

Troubleshooting Apply Problems
Is a Custom Apply Handler Specified?
You can use PL/SQL procedures to handle events dequeued by an apply process in

a customized way. These handlers include DML handlers, DDL handlers, and

message handlers. If an apply process is not behaving as expected, then check the

handler procedures used by the apply process, and correct any flaws. You can find

the names of these procedures by querying the DBA_APPLY_DML_HANDLERS and

DBA_APPLYdata dictionary views. You may need to modify a handler procedure or

remove it to correct an apply problem.

Is the Apply Process Waiting for a Dependent Transaction?
If you set the parallelism parameter for an apply process to a value greater

than 1 and you set the commit_serialization parameter of the apply process to

full , then the apply process may detect interested transaction list (ITL) contention

if there is a transaction that is dependent on another transaction with a higher SCN.

ITL contention occurs if the session that created the transaction waited for an ITL

slot in a block. This happens when the session wants to lock a row in the block but

one or more other sessions have rows locked in the same block, and there is no free

ITL slot in the block.

ITL contention is also possible if the session is waiting due to shared bitmap index

fragment. Bitmap indexes index key values and a range of rowids. Each 'entry' in a

bitmap index can cover many rows in the actual table. If two sessions want to

update rows covered by the same bitmap index fragment, then the second session

waits for the first transaction to either COMMIT or ROLLBACK.

When an apply process detects such a dependency, it resolves the ITL contention

automatically and records information about it in the alert log and apply process

trace file for the database. ITL contention may negatively affect the performance of

an apply process because there may not be any progress while it is detecting the

deadlock.

See Also:

■ "Event Processing Options" on page 4-4 for general information

about apply handlers

■ Chapter 14, "Managing an Apply Process" for information

about managing apply handlers

■ "Displaying Information About Apply Handlers" on page 17-23

for queries that display information about apply handlers
18-12 Oracle9i Streams

Troubleshooting Apply Problems
To avoid the problem in the future, perform one of the following actions:

■ Increase the number of ITLs available. You can do so by changing the

INITRANS or MAXTRANS settings for the table using the ALTER TABLE
statement.

■ Set the commit_serialization parameter to none for the apply process.

■ Set the parallelism apply process parameter to 1 for the apply process.

Are There Any Apply Errors in the Exception Queue?
When an apply process cannot apply an event, it moves the event and all of the

other events in the same transaction into its queue’s exception queue. You should

check the for apply errors periodically to see if there are any transactions that could

not be applied. You can check for apply errors by querying the DBA_APPLY_ERROR
data dictionary view.

You may encounter the following types of apply process errors for LCR events:

■ ORA-01403 No Data Found

■ ORA-26687 Instantiation SCN Not Set

■ ORA-26688 Metadata Mismatch

■ ORA-26689 Column Type Mismatch

See Also:

■ "Apply Process Parameters" on page 4-34

■ "Checking the Trace Files and Alert Log for Problems" on

page 18-24

■ Oracle9i Database Administrator’s Guide and Oracle9i SQL
Reference for more information about INITRANS and

MAXTRANS

See Also:

■ "Checking for Apply Errors" on page 17-36

■ "Managing Apply Errors" on page 14-33
Troubleshooting a Streams Environment 18-13

Troubleshooting Apply Problems
ORA-01403 No Data Found
Typically, this error occurs when an update is attempted on an existing row and the

OLD_VALUES in the row LCR do not match the current values at this target site.

To correct this problem, you can update the current values in the row so that the

row LCR can be applied successfully. If changes to the row are captured by a

capture process at the destination database, then you probably do not want apply

this manual change at destination sites. In this case, complete the following steps:

1. Set an apply tag in the session that corrects the row. Make sure you set the tag

to a value that prevents the manual change from being applied at some of all

destination databases.

EXEC DBMS_STREAMS.SET_TAG(tag => HEXTORAW('17'));

2. Update the row to correct the old values.

3. Reexecute the error or reexecute all errors. To reexecute an error, run the

EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package, and specify the

transaction identifier for the transaction that caused the error.

EXEC DBMS_APPLY_ADM.EXECUTE_ERROR(local_transaction_id => '5.4.312');

Or, execute all errors for the apply process by running the

EXECUTE_ALL_ERRORS procedure:

EXEC DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(apply_name => 'APPLY');

4. If you are going to make other changes in the current session that you want to

apply at destination databases, then reset the tag for the session to an

appropriate value, as in the following example:

EXEC DBMS_STREAMS.SET_TAG(tag => NULL);
18-14 Oracle9i Streams

Troubleshooting Apply Problems
ORA-26687 Instantiation SCN Not Set
Typically, this error occurs because the instantiation SCN is not set on an object for

which an apply process is attempting to apply changes. You can query the

DBA_APPLY_INSTANTIATED_OBJECTSdata dictionary view to list the objects that

have an instantiation SCN.

You can set an instantiation SCN for one or more objects by exporting the objects at

the source database, and then importing them at the destination database. If you do

not want to use Export/Import, then you can run one or more of the following

procedures in the DBMS_APPLY_ADM package:

■ SET_TABLE_INSTANTIATION_SCN

■ SET_SCHEMA_INSTANTIATION_SCN

■ SET_GLOBAL_INSTANTIATION_SCN

ORA-26688 Metadata Mismatch
Typically, this error occurs because of one of the following conditions:

■ The object for which an LCR is applying a change does not exist in the

destination database. In this case, check to see if the object exists. Also, make

sure you use the correct character case in rule conditions and apply handlers.

For example, if a column name has all uppercase characters in the data

dictionary, then you should specify the column name with all uppercase

characters in rule conditions and in apply handlers.

■ There is a problem with the primary key in the table for which an LCR is

applying a change. In this case, make sure the primary key is enabled by

querying the DBA_CONSTRAINTSdata dictionary view. If no primary key exists

for the table, then specify substitute key columns using the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package. You may also encounter error

ORA-23416 if a table being applied does not have a primary key.

See Also: "Setting Instantiation SCNs at a Destination Database"

on page 14-35

See Also:

■ "Considerations for Applying DML Changes to Tables" on

page 4-10

■ "Managing the Substitute Key Columns for a Table" on

page 14-27
Troubleshooting a Streams Environment 18-15

Troubleshooting Apply Problems
■ Supplemental logging is not specified for columns that require supplemental

logging at the source database. In this case, LCRs from the source database may

not contain values for key columns.

ORA-26689 Column Type Mismatch
Typically, this error occurs because one or more columns at a table in the source

database do not match the corresponding columns at the destination database. The

LCRs from the source database may contain more columns than the table at the

destination database, or there may be a type mismatch for one or more columns. If

the columns differ at the databases, you can use rule-based transformations to avoid

errors.

This error may also occur because supplemental logging is not specified where it is

required for nonkey columns at the source database. In this case, LCRs from the

source database may not contain needed values for these nonkey columns.

See Also:

■ "Displaying Supplemental Log Groups at a Source Database"

on page 17-11

■ "Supplemental Logging in a Streams Environment" on

page 2-11

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9

See Also:

■ "Considerations for Applying DML Changes to Tables" on

page 4-10

■ Rule-Based Transformations on page 6-25

■ "Managing Rule-Based Transformations" on page 15-11

■ "Supplemental Logging in a Streams Environment" on

page 2-11
18-16 Oracle9i Streams

Troubleshooting Problems with Rules and Rule-Based Transformations
Troubleshooting Problems with Rules and Rule-Based Transformations
If a capture process, a propagation, or an apply process is not behaving as expected,

then the problem may be that rules or rule-based transformations for the capture

process, propagation, or apply process are not configured properly. Use the

following checklist to identify and resolve problems with rules and rule-based

transformations:

■ Are Rules Configured Properly for the Streams Process or Propagation?

■ Are the Rule-Based Transformations Configured Properly?

Are Rules Configured Properly for the Streams Process or Propagation?
If a Streams capture process, propagation, or apply process is behaving in an

unexpected way, then the problem may be that the rules in the rule set for the

capture process, propagation, or apply process are not configured properly. For

example, if you expect a capture process to capture changes made to a particular

table, but the capture process is not capturing these changes, then the cause may be

that the rule set for the capture process does not contain a rule that evaluates to

TRUE when a change is made to the object.

You can check the rules for a particular Streams capture process, propagation, or

apply process by querying the following data dictionary views:

■ DBA_STREAMS_TABLE_RULES

■ DBA_STREAMS_SCHEMA_RULES

■ DBA_STREAMS_GLOBAL_RULES

Note:

■ Chapter 5, "Rules"

■ Chapter 6, "How Rules Are Used In Streams"

■ Chapter 15, "Managing Rules and Rule-Based Transformations"
Troubleshooting a Streams Environment 18-17

Troubleshooting Problems with Rules and Rule-Based Transformations
A rule set with no rules is not the same as no rule set. For example, if you use a rule

set with no rules for a propagation, then the propagation will not propagate

anything. If you do not use a rule set at all for a propagation, then the propagation

propagates everything in its source queue.

This section includes the following subsections:

■ Example That Checks for Capture Process Rules on a Table

■ Example That Checks for Apply Process Rules on a Table

■ Checking for Schema and Global Rules

■ Resolving Problems with Rules

Example That Checks for Capture Process Rules on a Table
For example, suppose a database is running a capture process named CAPTURE,
and you want to check for table rules that evaluate to TRUE for this capture process

when there are changes to the hr.departments table. To determine whether there

are any such rules in the rule set for the capture process, run the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A30
COLUMN RULE_TYPE HEADING 'Rule Type' FORMAT A30

SELECT RULE_NAME, RULE_TYPE
 FROM DBA_STREAMS_TABLE_RULES
 WHERE STREAMS_NAME = 'CAPTURE' AND
 STREAMS_TYPE = 'CAPTURE' AND
 TABLE_OWNER = 'HR' AND
 TABLE_NAME = 'DEPARTMENTS';

Note: These data dictionary views contain information about

rules created using the DBMS_STREAMS_ADM package or the

Streams tool in Oracle Enterprise Manager. They do not contain

information about rules created using the DBMS_RULE_ADM
package. To view information about rules created with the

DBMS_RULE_ADM package, query the DBA_RULES data

dictionary view.

See Also: "Monitoring Rules and Rule-Based Transformations" on

page 17-42
18-18 Oracle9i Streams

Troubleshooting Problems with Rules and Rule-Based Transformations
Your output looks similar to the following:

Rule Name Rule Type
------------------------------ ------------------------------
DEPARTMENTS1 DML

Based on these results, the capture process named CAPTURE should capture DML

changes to the hr.departments table. In other words, a rule exists in the capture

process rule set that evaluates to TRUE when the capture process finds a DML

change to the hr.departments table in the redo log.

A rule of type DDL for the table in the query results means that the capture process

should capture DDL changes to the table. If a capture process should capture both

DML and DDL changes to the table, then a rule of each type would appear for the

table in the query results.

Example That Checks for Apply Process Rules on a Table
If you expect an apply process to apply changes to a particular table, but the apply

process is not applying these changes, then the cause may be that the rule set for the

apply process does not contain a rule that evaluates to TRUE when an LCR is in the

apply process queue. As with capture rules and propagation rules, you can check

the rules that were created using the procedures in the DBMS_STREAMS_ADM
package by querying the following data dictionary views:

■ DBA_STREAMS_TABLE_RULES

■ DBA_STREAMS_SCHEMA_RULES

■ DBA_STREAMS_GLOBAL_RULES

In addition, an apply process must receive events in its queue before it can apply

these events. Therefore, if an apply process is applying captured events, then the

rule set for the capture process that captures these events must be configured

properly. Similarly, if events are propagated from one or more databases before

reaching the apply process, then the rules for each propagation must be configured

properly. If the rules for a capture process or a propagation on which the apply

process depends are not configured properly, then the events may never reach the

apply process queue.
Troubleshooting a Streams Environment 18-19

Troubleshooting Problems with Rules and Rule-Based Transformations
In an environment where a capture process captures changes that are propagated

and applied at multiple databases, you can use the following guidelines to

determine whether a problem is caused by the capture process or propagations on

which an apply process depends, or a problem is caused by the apply process itself:

■ If no other destination databases of the capture process are applying changes

from the capture process, then the problem is most likely caused by the capture

process or a propagation near the capture process. In this case, first make sure

the rules for the capture process are configured properly, and then check the

rules for the propagations nearest the capture process.

■ If other destination databases of the capture process are applying changes from

the capture process, then the problem is most likely caused by the apply

process itself or a propagation near the apply process. In this case, first make

sure the rules for the apply process are configured properly, and then check the

rules for the propagations nearest the apply process.

Also, when you are checking for apply rules, there is the possibility that subset

rules exist for one or more tables. A subset rules evaluates to TRUE only if an LCR

contains a change to a particular subset of rows in the table. For example, to check

for table rules that evaluate to TRUE for an apply process named APPLY when there

are changes to the hr.departments table, run the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN RULE_TYPE HEADING 'Rule Type' FORMAT A20
COLUMN DML_CONDITION HEADING 'Subset Condition' FORMAT A30

SELECT RULE_NAME, RULE_TYPE, DML_CONDITION
 FROM DBA_STREAMS_TABLE_RULES
 WHERE STREAMS_NAME = 'APPLY' AND
 STREAMS_TYPE = 'APPLY' AND
 TABLE_OWNER = 'HR' AND
 TABLE_NAME = 'DEPARTMENTS';

Rule Name Rule Type Subset Condition
-------------------- -------------------- ------------------------------
DEPARTMENTS5 DML location_id=1700
DEPARTMENTS6 DML location_id=1700
DEPARTMENTS7 DML location_id=1700

Notice that this query returns any subset condition for the table in the

DML_CONDITION column. In this example, subset rules are specified for the

hr.departments table. These subset rules evaluate to TRUE only if an LCR contains a

change that involves a row where the location_id is 1700 . So, if you expected
18-20 Oracle9i Streams

Troubleshooting Problems with Rules and Rule-Based Transformations
the apply process to apply all changes to the table, then the subset rules cause the

apply process to discard changes that involve rows where the location_id
is not 1700 .

Checking for Schema and Global Rules
Schema rules or global rules may also be used to capture changes to all of the

database objects in a particular schema or database, respectively. For example, to

check for schema rules that evaluate to TRUE for a capture process named CAPTURE
when there are changes to the hr schema, run the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN RULE_TYPE HEADING 'Rule Type' FORMAT A20

SELECT RULE_NAME, RULE_TYPE
 FROM DBA_STREAMS_SCHEMA_RULES
 WHERE STREAMS_NAME = 'CAPTURE' AND
 SCHEMA_NAME = 'HR';

Your output looks similar to the following:

Rule Name Rule Type
------------------------------ ------------------------------
HR7 DML
HR8 DDL

Based on these results, the capture process named CAPTURE should capture DML

and DDL changes to all objects in the hr schema.

If the DBA_STREAMS_GLOBAL_RULES data dictionary view returns any rows when

you query it for a capture process, then the capture process captures all changes in

the database, except for unsupported changes and changes made to the SYS and

SYSTEM schemas.

See Also:

■ "Row Subsetting Using Streams Rules" on page 4-12 for

conceptual information about subset rules

■ "Table-Level Rules Example" on page 6-7 for more information

about specifying subset rules
Troubleshooting a Streams Environment 18-21

Troubleshooting Problems with Rules and Rule-Based Transformations
Resolving Problems with Rules
If you determine that a Streams capture process, propagation, or apply process is

not behaving as expected because one or more rules must be added to the rule set

for the capture process, propagation, or apply process, then you can use one of the

following procedures in the DBMS_STREAMS_ADM package to add appropriate

rules:

■ ADD_GLOBAL_PROPAGATION_RULES

■ ADD_GLOBAL_RULES

■ ADD_SCHEMA_PROPAGATION_RULES

■ ADD_SCHEMA_RULES

■ ADD_SUBSET_RULES

■ ADD_TABLE_PROPAGATION_RULES

■ ADD_TABLE_RULES

You can use the DBMS_RULE_ADM package to add customized rules, if necessary.

It is also possible that the Streams capture process, propagation, or apply process is

not behaving as expected because one or more rules should be altered or removed

from a rule set.

If you have the correct rules, and the changes for the relevant objects are still

filtered out by a Streams capture process, propagation, or apply process, then check

your trace files and alert log for a warning about a missing "multi-version data

dictionary", which is a Streams data dictionary. The following information may be

included in such messages:

■ gdbnm: Global Name of the source database of the missing object

■ scn : SCN for the transaction that has been missed

See Also: "Datatypes Captured" on page 2-6 and "Types of

Changes Captured" on page 2-7 for information about the types of

changes that are captured and are not captured by a capture

process
18-22 Oracle9i Streams

Troubleshooting Problems with Rules and Rule-Based Transformations
If you find such messages and you are using custom capture rules or reusing

existing capture rules for a new destination database, then make sure you run the

appropriate procedure to prepare for instantiation:

■ PREPARE_TABLE_INSTANTIATION

■ PREPARE_SCHEMA_INSTANTIATION

■ PREPARE_GLOBAL_INSTANTIATION

Are the Rule-Based Transformations Configured Properly?
A rule-based transformation is any modification to an event that results when a rule

evaluates to TRUE. A rule-based transformation is specified in the action context of

a rule, and these action contexts contain a name-value pair with

STREAMS$_TRANSFORM_FUNCTION for the name and a user-created procedure for

the value. This user-created procedure performs the transformation. If the

user-defined procedure contains any flaws, then unexpected behavior may result.

If a Streams capture process, propagation, or apply process is not behaving as

expected, then check the rule-based transformation procedures specified for the

capture process, propagation, or apply process, and correct any flaws. You can find

the names of these procedures by querying the action context of the rules in the rule

set used by the Streams capture process, propagation, or apply process. You may

need to modify a transformation procedure or remove a rule-based transformation

to correct the problem. Make sure the name portion of the name-value pair in the

action context is spelled correctly.

Rule evaluation is done before a rule-based transformation. For example, if you

have a transformation that changes the name of a table from emps to employees ,

then make sure each rule using the transformation specifies the table name emps
rather than employees , in its rule condition.

See Also:

■ "Altering a Rule" on page 15-5

■ "Removing a Rule from a Rule Set" on page 15-7

■ "Preparing Database Objects for Instantiation at a Source

Database" on page 12-11

■ "Data Dictionary Duplication During Capture Process Creation"

on page 2-22 for more information about the Streams data

dictionary
Troubleshooting a Streams Environment 18-23

Checking the Trace Files and Alert Log for Problems
Checking the Trace Files and Alert Log for Problems
Messages about each capture process, propagation job, and apply process are

recorded in trace files for the database in which the process or propagation job is

running. A capture process runs on a source database, a propagation job runs on the

database containing the source queue in the propagation, and an apply process runs

on a destination database. These trace file messages can help you to identify and

resolve problems in a Streams environment.

All trace files for background processes are written to the destination directory

specified by the initialization parameter BACKGROUND_DUMP_DEST. The names of

trace files are operating system specific, but each file usually includes the name of

the process writing the file.

For example, on some operating systems, the trace file name for a process is

sid_xxxxx_iiiii .trc , where:

■ sid is the system identifier for the database

■ xxxxx is the name of the process

■ iiiii is the operating system process number

Also, you can set the write_alert_log parameter to y for both the capture

process and apply process. When this parameter is set to y, which is the default

setting, the alert log for the database contains messages about why the capture

process or apply process stopped.

You can control the information in the trace files by setting the trace_file
capture process or apply process parameter using the SET_PARAMETER procedure

in the DBMS_CAPTURE_ADM and DBMS_APPLY_ADM packages.

See Also:

■ "Displaying the Queue, Rule Set, and Status of Each Capture

Process" on page 17-3 for a query that displays the rule set used

by a capture process

■ "Displaying the Rule-Based Transformations in a Rule Set" on

page 17-49 for a query that displays the rule-based

transformation procedures specified for the rules in a rule set

■ "Managing Rule-Based Transformations" on page 15-11 for

information about modifying or removing rule-based

transformations
18-24 Oracle9i Streams

Checking the Trace Files and Alert Log for Problems
Use the following checklist to check the trace files related to Streams:

■ Does a Capture Process Trace File Contain Messages About Capture Problems?

■ Do the Trace Files Related to Propagation Jobs Contain Messages About

Problems?

■ Does an Apply Process Trace File Contain Messages About Apply Problems?

Does a Capture Process Trace File Contain Messages About Capture Problems?
A capture process is an Oracle background process named cp nn , where nn is the

capture process number. For example, on some operating systems, if the system

identifier for a database running a capture process is hqdb and the capture process

number is 01 , then the trace file for the capture process starts with hqdb_cp01 .

Do the Trace Files Related to Propagation Jobs Contain Messages About Problems?
Each propagation uses a propagation job that depends on the job queue coordinator

process and a job queue process. The job queue coordinator process is named

cjq nn , where nn is the job queue coordinator process number, and a job queue

process is named j nnn , where nnn is the job queue process number.

For example, on some operating systems, if the system identifier for a database

running a propagation job is hqdb and the job queue coordinator process is 01 , then

the trace file for the job queue coordinator process starts with hqdb_cjq01 .

Similarly, on the same database, if a job queue process is 001 , then the trace file for

the job queue process starts with hqdb_j001 . You can check the process name by

See Also:

■ Oracle9i Database Administrator’s Guide for more information

about trace files and the alert log, and for more information

about their names and locations

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about setting the trace_file capture process

parameter and the trace_file apply process parameter

■ Your operating system specific Oracle documentation for more

information about the names and locations of trace files

See Also: "Displaying General Information About a Capture

Process" on page 17-4 for a query that displays the capture process

number of a capture process
Troubleshooting a Streams Environment 18-25

Checking the Trace Files and Alert Log for Problems
querying the PROCESS_NAME column in the DBA_QUEUE_SCHEDULES data

dictionary view.

Does an Apply Process Trace File Contain Messages About Apply Problems?
An apply process is an Oracle background process named apnn , where nn is the

apply process number. For example, on some operating systems, if the system

identifier for a database running an apply process is hqdb and the apply process

number is 01 , then the trace file for the apply process starts with hqdb_ap01 .

An apply process also uses parallel execution servers. Information about an apply

process may be recorded in the trace file for one or more parallel execution servers.

The process name of a parallel execution server is pnnn , where nnn is the process

number. So, on some operating systems, if the system identifier for a database

running an apply process is hqdb and the process number is 001 , then the trace file

that may contain information about an apply process starts with hqdb_p001 .

See Also: "Is the Propagation Job Used by a Propagation

Enabled?" on page 18-6 for a query that displays the job queue

process used by a propagation job

See Also:

■ "Displaying Information About the Coordinator Process" on

page 17-30 for a query that displays the apply process number

of an apply process

■ "Displaying Information About the Reader Server for an Apply

Process" on page 17-28 for a query that displays the parallel

execution server used by the reader server of an apply process

■ "Displaying Information About the Apply Servers for an Apply

Process" on page 17-30 for a query that displays the parallel

execution servers used by the apply servers of an apply process
18-26 Oracle9i Streams

Part III

Example Environments and Applications

This part includes the following detailed examples:

■ Chapter 19, "Streams Messaging Example"

■ Chapter 20, "Single Database Capture and Apply Example"

■ Chapter 21, "Simple Single Source Replication Example"

■ Chapter 22, "Single Source Heterogeneous Replication Example"

■ Chapter 23, "Multiple Source Replication Example"

■ Chapter 24, "Rule-Based Application Example"

Streams Messaging
19

Streams Messaging Example

This chapter illustrates a messaging environment that can be constructed using

Streams.

 This chapter contains these topics:

■ Overview of Messaging Example

■ Prerequisites

■ Set Up Users and Create a Streams Queue

■ Create the Enqueue Procedures

■ Configure an Apply Process

■ Configure Explicit Dequeue

■ Enqueue Events

■ Dequeue Events Explicitly and Query for Applied Events

■ Enqueue and Dequeue Events Using JMS

See Also:

■ Chapter 3, "Streams Staging and Propagation"

■ Chapter 13, "Managing Staging and Propagation"

■ "Monitoring a Streams Queue" on page 17-12
Example 19-1

Overview of Messaging Example
Overview of Messaging Example
This example illustrates using a single SYS.AnyData queue at a database called

oedb.net to create a Streams messaging environment in which events containing

message payloads of different types are stored in the same queue. Specifically, this

example illustrates the following messaging features of Streams:

■ Enqueuing messages containing order payload and customer payload as

SYS.Anydata events into the queue

■ Enqueuing messages containing row LCR payload as SYS.Anydata events

into the queue

■ Creating a rule set for applying the events

■ Creating an evaluation context used by the rule set

■ Creating a Streams apply process to dequeue and process the events based on

rules

■ Creating a message handler and associating it with the apply process

■ Explicitly dequeuing and processing events based on rules without using the

apply process
19-2 Oracle9i Streams

Overview of Messaging Example
Figure 19–1 provides an overview of this environment.

Figure 19–1 Example Streams Messaging Environment

oe.enq_row_lcr
PL/SQL Procedure

strmadmin.oe_queue

customer_event_typ payload event
LCR$_ROW_RECORD payload event
order_event_typ payload event
.
.
.
.
.
.
.
.

Oracle
Database
oedb.net

Enqueue
Events

oe.enq_proc
PL/SQL Procedure

Enqueue
Events

Apply Process

apply_oe

Tables

hr.customers
hr.orders

Apply Changes oe.mes_handler
PL/SQL Procedure

Explicit Dequeue
 by Application oe.explicit_dq

PL/SQL Procedure

Send Non-LCR Events to Message Handler

Apply
LCR Events
Directly
Streams Messaging Example 19-3

Prerequisites
Prerequisites
The following are prerequisites that must be completed before you begin the

example in this section.

■ Set the following initialization parameters to the values indicated for all

databases in the environment:

– AQ_TM_PROCESSES: This parameter establishes queue monitor processes.

Values from 1 to 10 specify the number of queue monitor processes created

to monitor the messages. If AQ_TM_PROCESSES is not specified or is set

to 0, then the queue monitor processes are not created. In this example,

AQ_TM_PROCESSES should be set to at least 1.

Setting the parameter to 1 or more starts the specified number of queue

monitor processes. These queue monitor processes are responsible for

managing time-based operations of messages such as delay and expiration,

cleaning up retained messages after the specified retention time, and

cleaning up consumed messages if the retention time is 0.

– COMPATIBLE: This parameter must be set to 9.2.0 or higher.

■ Configure your network and Oracle Net so that you can access the oedb.net
database from the client where you run these scripts.

■ This examples creates a new user to function as the Streams administrator

(strmadmin) and prompts you for the tablespace you want to use for this

user’s data. Before you start this example, either create a new tablespace or

identify an existing tablespace for the Streams administrator to use. The

Streams administrator should not use the SYSTEM tablespace.

See Also: Oracle9i Net Services Administrator’s Guide
19-4 Oracle9i Streams

Set Up Users and Create a Streams Queue
Set Up Users and Create a Streams Queue
Complete the following steps to set up users and create a Streams queue for a

Streams messaging environment.

1. Show Output and Spool Results

2. Set Up Users

3. Create the Streams Queue

4. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_setup_message.out

/*

Step 2 Set Up Users
Connect to oedb.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@oedb.net AS SYSDBA

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 19-9 into a text editor and then

edit the text to create a script for your environment. Run the script

with SQL*Plus on a computer that can connect to the database.
Streams Messaging Example 19-5

Set Up Users and Create a Streams Queue
This example uses the oe sample schema. For this example to work properly, the oe
user must have privileges to execute the subprograms in the DBMS_AQpackage. The

oe user will be specified as the queue user when the Streams queue is created in

Step 3. The SET_UP_QUEUE procedure will grant the oe user ENQUEUE and

DEQUEUE privileges on the queue, but the oe user also needs EXECUTE privilege on

the DBMS_AQ package to enqueue events into and dequeue events from the queue.

Also, most of the configuration and administration actions illustrated in this

example are performed by the Streams administrator. In this step, create the

Streams administrator named strmadmin and grant this user the necessary

privileges. These privileges enable the user to execute subprograms in packages

related to Streams, create rule sets, create rules, and monitor the Streams

environment by querying data dictionary views. You may choose a different name

for this user.

*/

GRANT EXECUTE ON DBMS_AQ TO oe;

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter the tablespace for the Streams administrator: '

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.
19-6 Oracle9i Streams

Set Up Users and Create a Streams Queue
GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQ TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 3 Create the Streams Queue
Connect as the Streams administrator.

*/

CONNECT strmadmin/strmadminpw@oedb.net

/*

Run the SET_UP_QUEUE procedure to create a queue named oe_queue at

oedb.net . This queue will function as the Streams queue by holding events used

in the messaging environment.
Streams Messaging Example 19-7

Set Up Users and Create a Streams Queue
Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named oe_queue_table . This queue table is owned by

the Streams administrator (strmadmin) and uses the default storage of this

user.

■ Creates a queue named oe_queue owned by the Streams administrator

(strmadmin)

■ Starts the queue

*/

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'oe_queue_table',
 queue_name => 'oe_queue');
END;
/

/*

Step 4 Grant the oe User Privileges on the Queue
*/

BEGIN
 SYS.DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
 privilege => 'ALL',
 queue_name => 'strmadmin.oe_queue',
 grantee => 'oe');
END;
/

/*
19-8 Oracle9i Streams

Set Up Users and Create a Streams Queue
Step 5 Create an Agent for Explicit Enqueue
Create an agent that will be used to perform explicit enqueue operations on the

oe_queue queue.

*/

BEGIN
 SYS.DBMS_AQADM.CREATE_AQ_AGENT(
 agent_name => 'explicit_enq');
END;
/

/*

Step 6 Associate the oe User with the explicit_enq Agent
For a user to perform queue operations, such as enqueue and dequeue, on a secure

queue, the user must be configured as a secure queue user of the queue. The

oe_queue queue is a secure queue because it was created using SET_UP_QUEUE.
This step enables the oe user to perform enqueue operations on this queue.

*/

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'explicit_enq',

db_username => 'oe');
END;
/

/*

Step 7 Check the Spool Results
Check the streams_setup_message.out spool file to ensure that all actions

completed successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
Streams Messaging Example 19-9

Create the Enqueue Procedures
Create the Enqueue Procedures
Complete the following steps to create one PL/SQL procedure that enqueues

non-LCR events into the Streams queue and one PL/SQL procedure that enqueues

row LCR events into the Streams queue.

1. Show Output and Spool Results

2. Create a Type to Represent Orders

3. Create a Type to Represent Customers

4. Create the Procedure to Enqueue Non-LCR Events

5. Create a Procedure to Construct and Enqueue Row LCR Events

6. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_enqprocs_message.out

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 19-14 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to the

database.
19-10 Oracle9i Streams

Create the Enqueue Procedures
Step 2 Create a Type to Represent Orders
Connect as oe .

*/

CONNECT oe/oe@oedb.net

/*

Create a type to represent orders based on the columns in the oe.orders table.

The type attributes include the columns in the oe.orders table, along with one

extra attribute named action . The value of the action attribute for instances of

this type will be used to determine correct action to perform on the instance (either

apply process dequeue or explicit dequeue). This type will be used for events that

will be enqueued into the Streams queue.

*/

CREATE OR REPLACE TYPE order_event_typ AS OBJECT (
 order_id NUMBER(12),
 order_date TIMESTAMP(6) WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6),
 action VARCHAR(7));
/

/*
Streams Messaging Example 19-11

Create the Enqueue Procedures
Step 3 Create a Type to Represent Customers
Create a type to represent customers based on the columns in the oe.customers
table. The type attributes include the columns in the oe.customers table, along

with one extra attribute named action . The value of the action attribute for

instances of this type will be used to determine correct action to perform on the

instance (either apply process dequeue or explicit dequeue). This type will be used

for events that will be enqueued into the Streams queue.

*/

CREATE OR REPLACE TYPE customer_event_typ AS OBJECT (
 customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address CUST_ADDRESS_TYP,
 phone_numbers PHONE_LIST_TYP,
 nls_language VARCHAR2(3),
 nls_territory VARCHAR2(30),
 credit_limit NUMBER(9,2),
 cust_email VARCHAR2(30),
 account_mgr_id NUMBER(6),
 cust_geo_location MDSYS.SDO_GEOMETRY,
 action VARCHAR(7));
/

/*

Step 4 Create the Procedure to Enqueue Non-LCR Events
Create a PL/SQL procedure called enq_proc to enqueue events into the Streams

queue.

Note: A single enqueued message can be dequeued by an apply

process and by an explicit dequeue, but this example does not

illustrate this capability.
19-12 Oracle9i Streams

Create the Enqueue Procedures
*/

CREATE OR REPLACE PROCEDURE oe.enq_proc (event IN SYS.Anydata) IS
 enqopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_eventid RAW(16);
 BEGIN

mprop.SENDER_ID := SYS.AQ$_AGENT('explicit_enq', NULL, NULL);
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.oe_queue',
 enqueue_options => enqopt,
 message_properties => mprop,
 payload => event,
 msgid => enq_eventid);
END;
/

/*

Step 5 Create a Procedure to Construct and Enqueue Row LCR Events
Create a procedure called enq_row_lcr that constructs a row LCR and then

enqueues the row LCR into the queue.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information about LCR constructors
Streams Messaging Example 19-13

Create the Enqueue Procedures
*/

CREATE OR REPLACE PROCEDURE oe.enq_row_lcr(
 source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST) AS
 eopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 enq_msgid RAW(16);
 row_lcr SYS.LCR$_ROW_RECORD;
BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT('explicit_enq', NULL, NULL);
 -- Construct the LCR based on information passed to procedure
 row_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
 -- Enqueue the created row LCR
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.oe_queue',
 enqueue_options => eopt,
 message_properties => mprop,
 payload => SYS.AnyData.ConvertObject(row_lcr),
 msgid => enq_msgid);
END enq_row_lcr;
/

/*

Step 6 Check the Spool Results
Check the streams_enqprocs_message.out spool file to ensure that all actions

completed successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
19-14 Oracle9i Streams

Configure an Apply Process
Configure an Apply Process
Complete the following steps to configure an apply process to apply the

user-enqueued events in the Streams queue.

1. Show Output and Spool Results

2. Create a Function to Determine the Value of the action Attribute

3. Create a Message Handler

4. Grant strmadmin EXECUTE Privilege on the Procedures

5. Create the Evaluation Context for the Rule Set

6. Create a Rule Set for the Apply Process

7. Create a Rule that Evaluates to TRUE if the Event Action Is apply

8. Create a Rule that Evaluates to TRUE for the Row LCR Events

9. Add the Rules to the Rule Set

10. Create an Apply Process

11. Grant EXECUTE Privilege on the Rule Set To oe User

12. Start the Apply Process

13. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 19-23 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to the

database.
Streams Messaging Example 19-15

Configure an Apply Process
Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_apply_message.out

/*

Step 2 Create a Function to Determine the Value of the action Attribute
Connect as oe .

*/

CONNECT oe/oe@oedb.net

/*

Create a function called get_oe_action to determine the value of the action
attribute in the events in the queue. This function is used in rules later in this

example to determine the value of the action attribute for an event. Then, the

clients of the rules engine perform the appropriate action for the event (either

dequeue by apply process or explicit dequeue). In this example, the clients of the

rules engine are the apply process and the oe.explicit_dq PL/SQL procedure.
19-16 Oracle9i Streams

Configure an Apply Process
*/

CREATE OR REPLACE FUNCTION oe.get_oe_action (event IN SYS.Anydata)
RETURN VARCHAR2
IS
 ord oe.order_event_typ;
 cust oe.customer_event_typ;
 num NUMBER;
 type_name VARCHAR2(61);
BEGIN
 type_name := event.GETTYPENAME;
 IF type_name = 'OE.ORDER_EVENT_TYP' THEN
 num := event.GETOBJECT(ord);
 RETURN ord.action;
 ELSIF type_name = 'OE.CUSTOMER_EVENT_TYP' THEN
 num := event.GETOBJECT(cust);
 RETURN cust.action;
 ELSE
 RETURN NULL;
 END IF;
END;
/

/*

Step 3 Create a Message Handler
Create a message handler called mes_handler that will be used as a message

handler by the apply process. This procedure takes the payload in a user-enqueued

event of type oe.order_event_typ or oe.customer_event_typ and inserts it

as a row in the oe.orders table and oe.customers table, respectively.
Streams Messaging Example 19-17

Configure an Apply Process
*/

CREATE OR REPLACE PROCEDURE oe.mes_handler (event SYS.AnyData)
IS
 ord oe.order_event_typ;
 cust oe.customer_event_typ;
 num NUMBER;
 type_name VARCHAR2(61);
BEGIN
 type_name := event.GETTYPENAME;
 IF type_name = 'OE.ORDER_EVENT_TYP' THEN
 num := event.GETOBJECT(ord);
 INSERT INTO oe.orders VALUES (ord.order_id, ord.order_date,
 ord.order_mode, ord.customer_id, ord.order_status, ord.order_total,
 ord.sales_rep_id, ord.promotion_id);
 ELSIF type_name = 'OE.CUSTOMER_EVENT_TYP' THEN
 num := event.GETOBJECT(cust);
 INSERT INTO oe.customers VALUES (cust.customer_id, cust.cust_first_name,
 cust.cust_last_name, cust.cust_address, cust.phone_numbers,

cust.nls_language, cust.nls_territory, cust.credit_limit, cust.cust_email,
 cust.account_mgr_id, cust.cust_geo_location);
 END IF;
END;
/

/*

Step 4 Grant strmadmin EXECUTE Privilege on the Procedures
*/

GRANT EXECUTE ON get_oe_action TO strmadmin;

GRANT EXECUTE ON mes_handler TO strmadmin;

/*
19-18 Oracle9i Streams

Configure an Apply Process
Step 5 Create the Evaluation Context for the Rule Set
Connect as the Streams administrator.

*/

CONNECT strmadmin/strmadminpw@oedb.net

/*

Create the evaluation context for the rule set. The table alias is tab in this example,

but you can use a different table alias name if you wish.

*/

DECLARE
 table_alias SYS.RE$TABLE_ALIAS_LIST;
 BEGIN
 table_alias := SYS.RE$TABLE_ALIAS_LIST(SYS.RE$TABLE_ALIAS(
 'tab',
 'strmadmin.oe_queue_table'));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'oe_eval_context',
 table_aliases => table_alias);
END;
/

/*

Step 6 Create a Rule Set for the Apply Process
Create the rule set for the apply process.

*/

BEGIN
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'apply_oe_rs',
 evaluation_context => 'strmadmin.oe_eval_context');
END;
/

/*
Streams Messaging Example 19-19

Configure an Apply Process
Step 7 Create a Rule that Evaluates to TRUE if the Event Action Is apply
Create a rule that evaluates to TRUE if the action value of an event is apply .

Notice that tab.user_data is passed to the oe.get_oe_action function. The

tab.user_data column holds the event payload in a queue table. The table alias

for the queue table was specified as tab in Step 5 on page 19-19.

*/

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.apply_action',
 condition => ' oe.get_oe_action(tab.user_data) = ''APPLY'' ');
END;
/

/*

Step 8 Create a Rule that Evaluates to TRUE for the Row LCR Events
Create a rule that evaluates to TRUE if the event in the queue is a row LCR that

changes either the oe.orders table or the oe.customers table. This rule will

enable the apply process to apply user-enqueued changes to the tables directly. For

convenience, this rule uses the Oracle-supplied evaluation context

SYS.STREAMS$_EVALUATION_CONTEXT because the rule is used to evaluate

LCRs. When this rule is added to the rule set, this evaluation context is used for the

rule during evaluation instead of the rule set’s evaluation context.

*/

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'apply_lcrs',
 condition => ':dml.GET_OBJECT_OWNER() = ''OE'' AND ' ||
 ' (:dml.GET_OBJECT_NAME() = ''ORDERS'' OR ' ||
 ':dml.GET_OBJECT_NAME() = ''CUSTOMERS'') ',
 evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
END;
/

/*
19-20 Oracle9i Streams

Configure an Apply Process
Step 9 Add the Rules to the Rule Set
Add the rules created in Step 7 and Step 8 to the rule set created in Step 6 on

page 19-19.

*/

BEGIN
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'apply_action',
 rule_set_name => 'apply_oe_rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'apply_lcrs',
 rule_set_name => 'apply_oe_rs');
END;
/

/*

Step 10 Create an Apply Process
Create an apply process that is associated with the oe_queue , that uses the

apply_oe_rs rule set, and that uses the mes_handler procedure as a message

handler.

*/

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.oe_queue',
 apply_name => 'apply_oe',
 rule_set_name => 'strmadmin.apply_oe_rs',
 message_handler => 'oe.mes_handler',
 apply_user => 'oe',
 apply_captured => false);
END;
/

/*
Streams Messaging Example 19-21

Configure an Apply Process
Step 11 Grant EXECUTE Privilege on the Rule Set To oe User
Grant EXECUTE privilege on the strmadmin.apply_oe_rs rule set. Because oe
was specified as the apply user when the apply process was created in Step 10, oe
needs execute privilege on the rule set used by the apply process.

*/

BEGIN
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => 'strmadmin.apply_oe_rs',
 grantee => 'oe',
 grant_option => FALSE);
END;
/

/*

Step 12 Start the Apply Process
Set the disable_on_error parameter to n so that the apply process is not

disabled if it encounters an error, and start the apply process at oedb.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_oe',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_oe');
END;
/

/*
19-22 Oracle9i Streams

Configure Explicit Dequeue
Step 13 Check the Spool Results
Check the streams_apply_message.out spool file to ensure that all actions

completed successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/

Configure Explicit Dequeue
Complete the following steps to configure explicit dequeue of messages based on

message contents.

1. Show Output and Spool Results

2. Create an Agent for Explicit Dequeue

3. Associate the oe User with the explicit_dq Agent

4. Add a Subscriber to the oe_queue Queue

5. Create a Procedure to Dequeue Events Explicitly

6. Check Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 19-28 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to the

database.
Streams Messaging Example 19-23

Configure Explicit Dequeue
Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_explicit_dq.out

/*

Step 2 Create an Agent for Explicit Dequeue
Connect as the Streams administrator.

*/

CONNECT strmadmin/strmadminpw@oedb.net

/*

Create an agent that will be used to perform explicit dequeue operations on the

oe_queue queue.

*/

BEGIN
 SYS.DBMS_AQADM.CREATE_AQ_AGENT(
 agent_name => 'explicit_dq');
END;
/

/*

Step 3 Associate the oe User with the explicit_dq Agent
For a user to perform queue operations, such as enqueue and dequeue, on a secure

queue, the user must be configured as a secure queue user of the queue. The

oe_queue queue is a secure queue because it was created using SET_UP_QUEUE.
The oe user will be able to perform dequeue operations on this queue when the

agent is used to create a subscriber to the queue in the next step.
19-24 Oracle9i Streams

Configure Explicit Dequeue
*/

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'explicit_dq',

db_username => 'oe');
END;
/

/*

Step 4 Add a Subscriber to the oe_queue Queue
Add a subscriber to the oe_queue queue. This subscriber will perform explicit

dequeues of events. A subscriber rule is used to dequeue any events where the

action value is not apply . If the action value is apply for an event, then the event

is ignored by the subscriber. Such events are dequeued and processed by the apply

process.

*/

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT('explicit_dq', NULL, NULL);
 SYS.DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.oe_queue',
 subscriber => subscriber,
 rule => 'oe.get_oe_action(tab.user_data) != ''APPLY''');
END;
/

/*

Step 5 Create a Procedure to Dequeue Events Explicitly
Connect as oe .

*/

CONNECT oe/oe@oedb.net

/*

Create a PL/SQL procedure called explicit_dq to dequeue events explicitly

using the subscriber created in Step 4 on page 19-25.
Streams Messaging Example 19-25

Configure Explicit Dequeue
*/

CREATE OR REPLACE PROCEDURE oe.explicit_dq (consumer IN VARCHAR2) AS
 deqopt DBMS_AQ.DEQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 msgid RAW(16);
 payload SYS.AnyData;
 new_messages BOOLEAN := TRUE;
 ord oe.order_event_typ;
 cust oe.customer_event_typ;
 tc pls_integer;
 next_trans EXCEPTION;
 no_messages EXCEPTION;
 pragma exception_init (next_trans, -25235);
 pragma exception_init (no_messages, -25228);
BEGIN
 deqopt.consumer_name := consumer;
 deqopt.wait := 1;
 WHILE (new_messages) LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'strmadmin.oe_queue',
 dequeue_options => deqopt,
 message_properties => mprop,
 payload => payload,
 msgid => msgid);
 COMMIT;
 deqopt.navigation := DBMS_AQ.NEXT;
 DBMS_OUTPUT.PUT_LINE('Event Dequeued');
 DBMS_OUTPUT.PUT_LINE('Type Name := ' || payload.GetTypeName);

Note:

■ This procedure commits after the dequeue of the events. The

commit informs the queue that the dequeued messages have

been consumed successfully by this subscriber.

■ This procedure can process multiple transactions and uses two

exception handlers. The first exception handler next_trans
moves to the next transaction while the second exception

handler no_messages exits the loop when there are no more

messages.
19-26 Oracle9i Streams

Configure Explicit Dequeue
 IF (payload.GetTypeName = 'OE.ORDER_EVENT_TYP') THEN
 tc := payload.GetObject(ord);
 DBMS_OUTPUT.PUT_LINE('order_id - ' || ord.order_id);
 DBMS_OUTPUT.PUT_LINE('order_date - ' || ord.order_date);
 DBMS_OUTPUT.PUT_LINE('order_mode - ' || ord.order_mode);
 DBMS_OUTPUT.PUT_LINE('customer_id - ' || ord.customer_id);
 DBMS_OUTPUT.PUT_LINE('order_status - ' || ord.order_status);
 DBMS_OUTPUT.PUT_LINE('order_total - ' || ord.order_total);
 DBMS_OUTPUT.PUT_LINE('sales_rep_id - ' || ord.sales_rep_id);
 DBMS_OUTPUT.PUT_LINE('promotion_id - ' || ord.promotion_id);
 END IF;
 IF (payload.GetTypeName = 'OE.CUSTOMER_EVENT_TYP') THEN
 tc := payload.GetObject(cust);
 DBMS_OUTPUT.PUT_LINE('customer_id - ' || cust.customer_id);
 DBMS_OUTPUT.PUT_LINE('cust_first_name - ' || cust.cust_first_name);
 DBMS_OUTPUT.PUT_LINE('cust_last_name - ' || cust.cust_last_name);
 DBMS_OUTPUT.PUT_LINE('street_address - ' ||
 cust.cust_address.street_address);
 DBMS_OUTPUT.PUT_LINE('postal_code - ' ||
 cust.cust_address.postal_code);
 DBMS_OUTPUT.PUT_LINE('city - ' || cust.cust_address.city);
 DBMS_OUTPUT.PUT_LINE('state_province - ' ||
 cust.cust_address.state_province);
 DBMS_OUTPUT.PUT_LINE('country_id - ' ||
 cust.cust_address.country_id);
 DBMS_OUTPUT.PUT_LINE('phone_number1 - ' || cust.phone_numbers(1));
 DBMS_OUTPUT.PUT_LINE('phone_number2 - ' || cust.phone_numbers(2));
 DBMS_OUTPUT.PUT_LINE('phone_number3 - ' || cust.phone_numbers(3));
 DBMS_OUTPUT.PUT_LINE('nls_language - ' || cust.nls_language);
 DBMS_OUTPUT.PUT_LINE('nls_territory - ' || cust.nls_territory);
 DBMS_OUTPUT.PUT_LINE('credit_limit - ' || cust.credit_limit);
 DBMS_OUTPUT.PUT_LINE('cust_email - ' || cust.cust_email);
 DBMS_OUTPUT.PUT_LINE('account_mgr_id - ' || cust.account_mgr_id);
 END IF;
 EXCEPTION
 WHEN next_trans THEN
 deqopt.navigation := DBMS_AQ.NEXT_TRANSACTION;
 WHEN no_messages THEN
 new_messages := FALSE;
 DBMS_OUTPUT.PUT_LINE('No more events');
 END;
 END LOOP;
END;
/

Streams Messaging Example 19-27

Enqueue Events
/*

Step 6 Check Spool Results
Check the streams_explicit_dq.out spool file to ensure that all actions

completed successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/

Enqueue Events
Complete the following steps to enqueue non-LCR events and row LCR events into

the queue.

1. Show Output and Spool Results

2. Enqueue Non-LCR Events to be Dequeued by the Apply Process

3. Enqueue Non-LCR Events to be Dequeued Explicitly

4. Enqueue Row LCR Events to be Dequeued by the Apply Process

5. Check Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Note:

■ It is possible to dequeue user-enqueued LCRs explicitly, but

this example does not illustrate this capability.

■ If you are viewing this document online, then you can copy the

text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 19-34 into a text editor and

then edit the text to create a script for your environment. Run

the script with SQL*Plus on a computer that can connect to the

database.
19-28 Oracle9i Streams

Enqueue Events
Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_enq_deq.out

/*

Step 2 Enqueue Non-LCR Events to be Dequeued by the Apply Process
Connect as oe .

*/

CONNECT oe/oe@oedb.net

/*

Enqueue events with apply for the action value. Based on the apply process

rules, the apply process will dequeue and process these events with the

oe.mes_handler message handler procedure created in "Create a Message

Handler" on page 19-17. The COMMIT after the enqueues makes these two enqueues

part of the same transaction. An enqueued message is not visible until the session

that enqueued it commits the enqueue.

*/

BEGIN
 oe.enq_proc(SYS.AnyData.convertobject(oe.order_event_typ(
 2500,'05-MAY-01','online',117,3,44699,161,NULL,'APPLY')));
END;
/

Streams Messaging Example 19-29

Enqueue Events
BEGIN
 oe.enq_proc(SYS.AnyData.convertobject(oe.customer_event_typ(
 990,'Hester','Prynne',oe.cust_address_typ('555 Beacon Street','Boston',
 'MA',02109,'US'),oe.phone_list_typ('+1 617 123 4104', '+1 617 083 4381',
 '+1 617 742 5813'),'i','AMERICA',5000,'a@scarlet_letter.com',145,
 NULL,'APPLY')));
END;
/

COMMIT;

/*

Step 3 Enqueue Non-LCR Events to be Dequeued Explicitly
Enqueue events with dequeue for the action value. The oe.explicit_dq
procedure created in "Create a Procedure to Dequeue Events Explicitly" on

page 19-25 will dequeue these events because the action is not apply . Based on

the apply process rules, the apply process will ignore these events. The COMMIT
after the enqueues makes these two enqueues part of the same transaction.

*/

BEGIN
 oe.enq_proc(SYS.AnyData.convertobject(oe.order_event_typ(
 2501,'22-JAN-00','direct',117,3,22788,161,NULL,'DEQUEUE')));
END;
/

BEGIN
 oe.enq_proc(SYS.AnyData.convertobject(oe.customer_event_typ(
 991,'Nick','Carraway',oe.cust_address_typ('10th Street',
 11101,'Long Island','NY','US'),oe.phone_list_typ('+1 718 786 2287',
 '+1 718 511 9114', '+1 718 888 4832'),'i','AMERICA',3000,
 'nick@great_gatsby.com',149,NULL,'DEQUEUE')));
END;
/

COMMIT;

/*
19-30 Oracle9i Streams

Enqueue Events
Step 4 Enqueue Row LCR Events to be Dequeued by the Apply Process
Enqueue row LCR events. The apply process will apply these events directly.

Enqueued LCRs should commit at transaction boundaries. In this step, a COMMIT
statement is run after each enqueue, making each enqueue a separate transaction.

However, you can perform multiple LCR enqueues before a commit if there is more

than one LCR in a transaction.

Create a row LCR that inserts a row into the oe.orders table.

*/

DECLARE
 newunit1 SYS.LCR$_ROW_UNIT;
 newunit2 SYS.LCR$_ROW_UNIT;
 newunit3 SYS.LCR$_ROW_UNIT;
 newunit4 SYS.LCR$_ROW_UNIT;
 newunit5 SYS.LCR$_ROW_UNIT;
 newunit6 SYS.LCR$_ROW_UNIT;
 newunit7 SYS.LCR$_ROW_UNIT;
 newunit8 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 newunit1 := SYS.LCR$_ROW_UNIT(
 'ORDER_ID',
 SYS.AnyData.ConvertNumber(2502),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit2 := SYS.LCR$_ROW_UNIT(
 'ORDER_DATE',
 SYS.AnyData.ConvertTimestampLTZ('04-NOV-00'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit3 := SYS.LCR$_ROW_UNIT(
 'ORDER_MODE',
 SYS.AnyData.ConvertVarchar2('online'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
Streams Messaging Example 19-31

Enqueue Events
 newunit4 := SYS.LCR$_ROW_UNIT(
 'CUSTOMER_ID',
 SYS.AnyData.ConvertNumber(145),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit5 := SYS.LCR$_ROW_UNIT(
 'ORDER_STATUS',
 SYS.AnyData.ConvertNumber(3),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit6 := SYS.LCR$_ROW_UNIT(
 'ORDER_TOTAL',
 SYS.AnyData.ConvertNumber(35199),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit7 := SYS.LCR$_ROW_UNIT(
 'SALES_REP_ID',
 SYS.AnyData.ConvertNumber(160),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit8 := SYS.LCR$_ROW_UNIT(
 'PROMOTION_ID',
 SYS.AnyData.ConvertNumber(1),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1,newunit2,newunit3,newunit4,
 newunit5,newunit6,newunit7,newunit8);
oe.enq_row_lcr(
 source_dbname => 'OEDB.NET',
 cmd_type => 'INSERT',
 obj_owner => 'OE',
 obj_name => 'ORDERS',
 old_vals => NULL,
 new_vals => newvals);
END;
/
COMMIT;

/*
19-32 Oracle9i Streams

Enqueue Events
Create a row LCR that updates the row inserted into the oe.orders table

previously.

*/

DECLARE
 oldunit1 SYS.LCR$_ROW_UNIT;
 oldunit2 SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
 newunit1 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 oldunit1 := SYS.LCR$_ROW_UNIT(
 'ORDER_ID',
 SYS.AnyData.ConvertNumber(2502),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldunit2 := SYS.LCR$_ROW_UNIT(
 'ORDER_TOTAL',
 SYS.AnyData.ConvertNumber(35199),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldunit1,oldunit2);
 newunit1 := SYS.LCR$_ROW_UNIT(
 'ORDER_TOTAL',
 SYS.AnyData.ConvertNumber(5235),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1);
oe.enq_row_lcr(
 source_dbname => 'OEDB.NET',
 cmd_type => 'UPDATE',
 obj_owner => 'OE',
 obj_name => 'ORDERS',
 old_vals => oldvals,
 new_vals => newvals);
END;
/
COMMIT;

/*
Streams Messaging Example 19-33

Dequeue Events Explicitly and Query for Applied Events
Step 5 Check Spool Results
Check the streams_enq_deq.out spool file to ensure that all actions completed

successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/

Dequeue Events Explicitly and Query for Applied Events
Complete the following steps to dequeue the events explicitly and query the events

that were applied by the apply process. These events were enqueued in the

"Enqueue Events" on page 19-28.

Step 1 Run the Procedure to Dequeue Events Explicitly
Run the procedure you created in "Create a Procedure to Dequeue Events

Explicitly" on page 19-25 and specify the consumer of the events you want to

dequeue. In this case, the consumer is the subscriber you added in "Add a

Subscriber to the oe_queue Queue" on page 19-25. In this example, events that are

not dequeued explicitly by this procedure are dequeued by the apply process.

CONNECT oe/oe@oedb.net

SET SERVEROUTPUT ON SIZE 100000

EXEC oe.explicit_dq('explicit_dq');

You should see the non-LCR events that were enqueued in "Enqueue Non-LCR

Events to be Dequeued Explicitly" on page 19-30.

Step 2 Query for Applied Events
Query the oe.orders and oe.customers table to see the rows corresponding to

the events applied by the apply process:

SELECT * FROM oe.orders WHERE order_id = 2500;

SELECT cust_first_name, cust_last_name, cust_email
 FROM oe.customers WHERE customer_id = 990;

SELECT * FROM oe.orders WHERE order_id = 2502;
19-34 Oracle9i Streams

Enqueue and Dequeue Events Using JMS
You should see the non-LCR event that was enqueued in "Enqueue Non-LCR

Events to be Dequeued by the Apply Process" on page 19-29 and the row LCR

events that were enqueued in "Enqueue Row LCR Events to be Dequeued by the

Apply Process" on page 19-31.

Enqueue and Dequeue Events Using JMS
This example enqueues non-LCR events and row LCR events into the queue using

JMS. Then, this example dequeues these events from the queue using JMS.

Complete the following steps:

1. Run the catxlcr.sql Script

2. Create the Types for User Events

3. Set the CLASSPATH

4. Create Java Classes that Map to the Oracle Object Types

5. Create a Java Code for Enqueuing Messages

6. Create a Java Code for Dequeuing Messages

7. Compile the Scripts

8. Run the Enqueue Program

9. Run the Dequeue Program

Step 1 Run the catxlcr.sql Script
For this example to complete successfully, the LCR schema must be loaded into the

SYS schema using the catxlcr.sql script in Oracle home in the rdbms/admin/
directory. Run this script now if it has not been run already.

For example, if your Oracle home directory is /usr/oracle , then enter the

following to run the script:

CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA

@/usr/oracle/rdbms/admin/catxlcr.sql
Streams Messaging Example 19-35

Enqueue and Dequeue Events Using JMS
Step 2 Create the Types for User Events
CONNECT oe/oe

CREATE TYPE address AS OBJECT (street VARCHAR (30), num NUMBER)
/

CREATE TYPE person AS OBJECT (name VARCHAR (30), home ADDRESS)
/

Step 3 Set the CLASSPATH
The following jar and zip files should be in the CLASSPATH based on the release of

JDK you are using.

Also, make sure LD_LIBRARY_PATH (Solaris) or PATH (Windows NT) has

$ORACLE_HOME/lib set.

-- For JDK1.3.x
$ORACLE_HOME/jdbc/lib/classes12.zip
$ORACLE_HOME/rdbms/jlib/aqapi13.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/xdk/lib/xmlparserv2.jar
$ORACLE_HOME/jlib/jndi.jar

-- For JDK1.2.x
$ORACLE_HOME/jdbc/lib/classes12.zip
$ORACLE_HOME/rdbms/jlib/aqapi12.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/xdk/lib/xmlparserv2.jar
$ORACLE_HOME/jlib/jndi.jar

-- For JDK1.1.x
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/rdbms/jlib/aqapi11.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/xdk/lib/xmlparserv2.jar
$ORACLE_HOME/jlib/jndi.jar
19-36 Oracle9i Streams

Enqueue and Dequeue Events Using JMS
Step 4 Create Java Classes that Map to the Oracle Object Types
First, create a file input.typ with the following lines:

SQL PERSON AS JPerson
SQL ADDRESS AS JAddress

Then, run Jpublisher.

jpub -input=input.typ -user=OE/OE

Completing these actions generates two Java classes named JPerson and

JAddress for the person and address types, respectively.

Step 5 Create a Java Code for Enqueuing Messages
This program uses the Oracle JMS API to publish messages into a Streams topic.

This program does the following:

■ Publishes a non-LCR based ADT message to the topic

■ Publishes a JMS text message to a topic

■ Publish an LCR based message to the topic

import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import oracle.xdb.*;

public class StreamsEnq
{
 public static void main (String args [])
 throws java.sql.SQLException, ClassNotFoundException, JMSException
 {
 TopicConnectionFactory tc_fact= null;
 TopicConnection t_conn = null;
 TopicSession t_sess = null;

 try
 {
 if (args.length < 3)
 System.out.println("Usage:java filename [SID] [HOST] [PORT]");
 else
 {
 /* Create the TopicConnectionFactory
Streams Messaging Example 19-37

Enqueue and Dequeue Events Using JMS
 * Only the JDBC OCI driver can be used to access Streams through JMS
 */
 tc_fact = AQjmsFactory.getTopicConnectionFactory(
 args[1], args[0], Integer.parseInt(args[2]), "oci8");

 t_conn = tc_fact.createTopicConnection("OE","OE");

 /* Create a Topic Session */
 t_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

 /* Start the connection */
 t_conn.start() ;

 /* Publish non-LCR based messages */
 publishUserMessages(t_sess);

 /* Publish LCR based messages */
 publishLcrMessages(t_sess);

 t_sess.close() ;
 t_conn.close() ;
 System.out.println("End of StreamsEnq Demo") ;
 }
 }
 catch (Exception ex)
 {
 System.out.println("Exception-1: " + ex);
 ex.printStackTrace();
 }
 }

 /*
 * publishUserMessages - this method publishes an ADT message and a
 * JMS text message to a streams topic
 */
 public static void publishUserMessages(TopicSession t_sess) throws Exception
 {
 Topic topic = null;
 TopicPublisher t_pub = null;
 JPerson pers = null;
 JAddress addr = null;
 TextMessage t_msg = null;
 AdtMessage adt_msg = null;
 AQjmsAgent agent = null;
 AQjmsAgent[] recipList = null;
19-38 Oracle9i Streams

Enqueue and Dequeue Events Using JMS
 try
 {
 /* Get the topic */
 topic = ((AQjmsSession)t_sess).getTopic("strmadmin", "oe_queue");

 /* Create a publisher */
 t_pub = t_sess.createPublisher(topic);

 /* Agent to access oe_queue */
 agent = new AQjmsAgent("explicit_enq", null);

 /* Create a PERSON adt message */
 adt_msg = ((AQjmsSession)t_sess).createAdtMessage();

 pers = new JPerson();
 addr = new JAddress();

 addr.setNum(new java.math.BigDecimal(500));
 addr.setStreet("Oracle Pkwy");

 pers.setName("Mark");
 pers.setHome(addr);

 /* Set the payload in the message */
 adt_msg.setAdtPayload(pers);

 ((AQjmsMessage)adt_msg).setSenderID(agent);

 System.out.println("Publish message 1 -type PERSON\n");

 /* Create the recipient list */
 recipList = new AQjmsAgent[1];
 recipList[0] = new AQjmsAgent("explicit_dq", null);

 /* Publish the message */
 ((AQjmsTopicPublisher)t_pub).publish(topic, adt_msg, recipList);

 t_sess.commit();

 t_msg = t_sess.createTextMessage();

 t_msg.setText("Test message");
Streams Messaging Example 19-39

Enqueue and Dequeue Events Using JMS
 t_msg.setStringProperty("color", "BLUE");
 t_msg.setIntProperty("year", 1999);

 ((AQjmsMessage)t_msg).setSenderID(agent);

 System.out.println("Publish message 2 -type JMS TextMessage\n");

 /* Publish the message */
 ((AQjmsTopicPublisher)t_pub).publish(topic, t_msg, recipList);

 t_sess.commit();

 }
 catch (JMSException jms_ex)
 {
 System.out.println("JMS Exception: " + jms_ex);

 if(jms_ex.getLinkedException() != null)
 System.out.println("Linked Exception: " + jms_ex.getLinkedException());
 }
 }

 /*
 * publishLcrMessages - this method publishes an XML LCR message to a
 * streams topic
 */
 public static void publishLcrMessages(TopicSession t_sess) throws Exception
 {
 Topic topic = null;
 TopicPublisher t_pub = null;
 XMLType xml_lcr = null;
 AdtMessage adt_msg = null;
 AQjmsAgent agent = null;
 StringBuffer lcr_data = null;
 AQjmsAgent[] recipList = null;
 java.sql.Connection db_conn = null;

 try
 {
 /* Get the topic */
 topic = ((AQjmsSession)t_sess).getTopic("strmadmin", "oe_queue");
19-40 Oracle9i Streams

Enqueue and Dequeue Events Using JMS
 /* Create a publisher */
 t_pub = t_sess.createPublisher(topic);

 /* Get the JDBC connection */
 db_conn = ((AQjmsSession)t_sess).getDBConnection();

 /* Agent to access oe_queue */
 agent = new AQjmsAgent("explicit_enq", null);

 /* Create a adt message */
 adt_msg = ((AQjmsSession)t_sess).createAdtMessage();

 /* Create the LCR representation in XML */
 lcr_data = new StringBuffer();

 lcr_data.append("<ROW_LCR ");
 lcr_data.append("xmlns='http://xmlns.oracle.com/streams/schemas/lcr' \n");
 lcr_data.append("xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' \n");
 lcr_data.append("xsi:schemaLocation='http://xmlns.oracle.com/streams/schemas/lcr
http://xmlns.oracle.com/streams/schemas/lcr/streamslcr.xsd'");
 lcr_data.append("> \n");

lcr_data.append("<source_database_name>source_dbname</source_database_name> \n");
 lcr_data.append("<command_type>INSERT</command_type> \n");
 lcr_data.append("<object_owner>Ram</object_owner> \n");
 lcr_data.append("<object_name>Emp</object_name> \n");
 lcr_data.append("<tag>0ABC</tag> \n");
 lcr_data.append("<transaction_id>0.0.0</transaction_id> \n");
 lcr_data.append("<scn>0</scn> \n");
 lcr_data.append("<old_values> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C01</column_name> \n");
 lcr_data.append("<data><varchar2>Clob old</varchar2></data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C02</column_name> \n");
 lcr_data.append("<data><varchar2>A123FF</varchar2></data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C03</column_name> \n");
 lcr_data.append("<data> \n");
 lcr_data.append("<date><value>1997-11-24</value><format>SYYYY-MM-DD</format></date> \n");
 lcr_data.append("</data> \n");
 lcr_data.append("</old_value> \n");
Streams Messaging Example 19-41

Enqueue and Dequeue Events Using JMS
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C04</column_name> \n");
 lcr_data.append("<data> \n");

lcr_data.append("<timestamp><value>1999-05-31T13:20:00.000</value><format>SYYYY-MM-DD'T'HH24:MI:
SS.FF</format></timestamp> \n");
 lcr_data.append("</data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("<old_value> \n");
 lcr_data.append("<column_name>C05</column_name> \n");
 lcr_data.append("<data><raw>ABCDE</raw></data> \n");
 lcr_data.append("</old_value> \n");
 lcr_data.append("</old_values> \n");
 lcr_data.append("<new_values> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C01</column_name> \n");
 lcr_data.append("<data><varchar2>A123FF</varchar2></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C02</column_name> \n");
 lcr_data.append("<data><number>35.23</number></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C03</column_name> \n");
 lcr_data.append("<data><number>-100000</number></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C04</column_name> \n");
 lcr_data.append("<data><varchar>Hel lo</varchar></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("<new_value> \n");
 lcr_data.append("<column_name>C05</column_name> \n");
 lcr_data.append("<data><char>wor ld</char></data> \n");
 lcr_data.append("</new_value> \n");
 lcr_data.append("</new_values> \n");
 lcr_data.append("</ROW_LCR>");

 /* Create the XMLType containing the LCR */
 xml_lcr = oracle.xdb.XMLType.createXML(db_conn, lcr_data.toString());

 /* Set the payload in the message */
 adt_msg.setAdtPayload(xml_lcr);

 ((AQjmsMessage)adt_msg).setSenderID(agent);
19-42 Oracle9i Streams

Enqueue and Dequeue Events Using JMS
 System.out.println("Publish message 3 - XMLType containing LCR ROW\n");

 /* Create the recipient list */
 recipList = new AQjmsAgent[1];
 recipList[0] = new AQjmsAgent("explicit_dq", null);

 /* Publish the message */
 ((AQjmsTopicPublisher)t_pub).publish(topic, adt_msg, recipList);

 t_sess.commit();

 }
 catch (JMSException jms_ex)
 {
 System.out.println("JMS Exception: " + jms_ex);

 if(jms_ex.getLinkedException() != null)
 System.out.println("Linked Exception: " + jms_ex.getLinkedException());
 }
 }

}

Step 6 Create a Java Code for Dequeuing Messages
This program uses Oracle JMS API to receive messages from a Streams topic.

 This program does the following:

■ Registers mappings for person , address and XMLType in JMS typemap

■ Receives LCR messages from a streams topic

■ Receives user ADT messages from a streams topic

import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import oracle.xdb.*;
import java.sql.SQLException;
Streams Messaging Example 19-43

Enqueue and Dequeue Events Using JMS
public class StreamsDeq
{
 public static void main (String args [])
 throws java.sql.SQLException, ClassNotFoundException, JMSException
 {
 TopicConnectionFactory tc_fact= null;
 TopicConnection t_conn = null;
 TopicSession t_sess = null;

 try
 {
 if (args.length < 3)
 System.out.println("Usage:java filename [SID] [HOST] [PORT]");
 else
 {
 /* Create the TopicConnectionFactory
 * Only the JDBC OCI driver can be used to access Streams through JMS
 */
 tc_fact = AQjmsFactory.getTopicConnectionFactory(
 args[1], args[0], Integer.parseInt(args[2]), "oci8");

 t_conn = tc_fact.createTopicConnection("OE","OE");

 /* Create a Topic Session */
 t_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

 /* Start the connection */
 t_conn.start() ;

 receiveMessages(t_sess);

 t_sess.close() ;
 t_conn.close() ;
 System.out.println("\nEnd of StreamsDeq Demo") ;
 }
 }
 catch (Exception ex)
 {
 System.out.println("Exception-1: " + ex);
 ex.printStackTrace();
 }
 }
19-44 Oracle9i Streams

Enqueue and Dequeue Events Using JMS
 /*
 * receiveMessages -This method receives messages from the Streams queue
 */
 public static void receiveMessages(TopicSession t_sess) throws Exception
 {
 Topic topic = null;
 JPerson pers = null;
 JAddress addr = null;
 XMLType xtype = null;
 TextMessage t_msg = null;
 AdtMessage adt_msg = null;
 Message jms_msg = null;
 TopicReceiver t_recv = null;
 int i = 0;
 java.util.Dictionary map= null;

 try
 {
 /* Get the topic */
 topic = ((AQjmsSession)t_sess).getTopic("strmadmin", "oe_queue");

 /* Create a TopicReceiver to receive messages for consumer "jms_recv */
 t_recv = ((AQjmsSession)t_sess).createTopicReceiver(topic,
 "jms_recv", null);

 map = ((AQjmsSession)t_sess).getTypeMap();

 /* Register mappings for ADDRESS and PERSON in the JMS typemap */
 map.put("OE.PERSON", Class.forName("JPerson"));
 map.put("OE.ADDRESS", Class.forName("JAddress"));

 /* Register mapping for XMLType in the TypeMap - required for LCRs */
 map.put("SYS.XMLTYPE", Class.forName("oracle.xdb.XMLTypeFactory"));

 System.out.println("Receive messages ...\n");

 do
 {
 try
 {
 jms_msg = (t_recv.receive(10));

 i++;
Streams Messaging Example 19-45

Enqueue and Dequeue Events Using JMS
 /* Set navigation mode to NEXT_MESSAGE */

((AQjmsTopicReceiver)t_recv).setNavigationMode(AQjmsConstants.NAVIGATION_NEXT_MESSAGE);
 }
 catch (JMSException jms_ex2)
 {
 if((jms_ex2.getLinkedException() != null) &&
 (jms_ex2.getLinkedException() instanceof SQLException))
 {
 SQLException sql_ex2 =(SQLException)(jms_ex2.getLinkedException());

 /* End of current transaction group
 * Use NEXT_TRANSACTION navigation mode
 */
 if(sql_ex2.getErrorCode() == 25235)
 {

((AQjmsTopicReceiver)t_recv).setNavigationMode(AQjmsConstants.NAVIGATION_NEXT_TRANSACTION);

 continue;
 }
 else
 throw jms_ex2;
 }
 else
 throw jms_ex2;
 }

 if(jms_msg == null)
 {
 System.out.println("\nNo more messages");
 }
 else
 {
 if(jms_msg instanceof AdtMessage)
 {
 adt_msg = (AdtMessage)jms_msg;

 System.out.println("Retrieved message " + i + ": " +
 adt_msg.getAdtPayload());
19-46 Oracle9i Streams

Enqueue and Dequeue Events Using JMS
 if(adt_msg.getAdtPayload() instanceof JPerson)
 {
 pers =(JPerson)(adt_msg.getAdtPayload());

 System.out.println("PERSON: Name: " + pers.getName());
 }
 else if(adt_msg.getAdtPayload() instanceof JAddress)
 {
 addr =(JAddress)(adt_msg.getAdtPayload());

 System.out.println("ADDRESS: Street" + addr.getStreet());
 }
 else if(adt_msg.getAdtPayload() instanceof oracle.xdb.XMLType)
 {
 xtype = (XMLType)adt_msg.getAdtPayload();

 System.out.println("XMLType: Data: \n" + xtype.getStringVal());

 }
 System.out.println("Msg id: " + adt_msg.getJMSMessageID());
 System.out.println();

 }
 else if(jms_msg instanceof TextMessage)
 {
 t_msg = (TextMessage)jms_msg;

 System.out.println("Retrieved message " + i + ": " +
 t_msg.getText());

 System.out.println("Msg id: " + t_msg.getJMSMessageID());
 System.out.println();
 }
 else
 System.out.println("Invalid message type");
 }
 } while (jms_msg != null);

 t_sess.commit();
 }
 catch (JMSException jms_ex)
 {
 System.out.println("JMS Exception: " + jms_ex);
Streams Messaging Example 19-47

Enqueue and Dequeue Events Using JMS
 if(jms_ex.getLinkedException() != null)
 System.out.println("Linked Exception: " + jms_ex.getLinkedException());

 t_sess.rollback();
 }
 catch (java.sql.SQLException sql_ex)
 {
 System.out.println("SQL Exception: " + sql_ex);
 sql_ex.printStackTrace();

 t_sess.rollback();
 }
 }
}

Step 7 Compile the Scripts
javac StreamsEnq.java StreamsDeq.java JPerson.java JAddress.java

Step 8 Run the Enqueue Program
java StreamsEnq ORACLE_SID HOST PORT

For example, if your Oracle SID is orc182 , your host is hq_server , and your port

is 1521 , then enter the following:

java StreamsEnq orcl82 hq_server 1521

Step 9 Run the Dequeue Program
java StreamsDeq ORACLE_SID HOST PORT

For example, if your Oracle SID is orc182 , your host is hq_server , and your port

is 1520 , then enter the following:

java StreamsDeq orcl82 hq_server 1521
19-48 Oracle9i Streams

Single Database Capture and Apply
20

Single Database Capture and

Apply Example

This chapter illustrates an example of a single database that captures changes to a

table, uses a DML handler during apply to re-enqueue the captured changes into a

queue, and then applies a subset of the changes to a different table.

 This chapter contains these topics:

■ Overview of the Single Database Capture and Apply Example

■ Prerequisites

■ Set Up the Environment

■ Configure Capture and Apply

■ Make DML Changes, Query for Results, and Dequeue Events
Example 20-1

Overview of the Single Database Capture and Apply Example
Overview of the Single Database Capture and Apply Example
The example in this chapter illustrates using Streams to capture and apply data

manipulation language (DML) changes at a single database named cpap.net .

Specifically, this example captures DML changes to the employees table in the hr
schema, placing row logical change records (LCRs) into a queue named

streams_queue . Then, an apply process dequeues these row LCRs from the same

queue and sends them to a DML handler. The DML handler performs the following

actions on the captured row LCRs:

■ Re-enqueues all captured row LCRs back into the queue. When the row LCRs

are captured, they reside in the buffer queue and cannot be dequeued explicitly.

After the row LCRs are re-enqueued during by the DML handler, they are

available for explicit dequeue by an application. This example does not create

the application that dequeues these row LCRs.

■ Inserts records of deleted employees into a emp_del table in the hr schema.

This example assumes that the emp_del table is used to retain the records of all

deleted employees. The DML handler is used to determine if each row LCR

contains a DELETE statement. When the DML handler finds a row LCR

containing a DELETE statement, it converts the DELETE into an INSERT on the

emp_del table.

Figure 20–1 provides an overview of the environment.
20-2 Oracle9i Streams

Overview of the Single Database Capture and Apply Example
Figure 20–1 Single Database Capture and Apply Example

See Also:

■ Chapter 2, "Streams Capture Process"

■ "LCR Event Processing" on page 4-4 for more information

about DML handlers

strmadmin.streams_queue

Capture Process

capture_emp

Oracle
Database
cpap.net Dequeue Row LCRs with

DML Changes to the
hr.employees Table

Enqueue DML
changes to
hr.employees
Table

Apply Process

apply_emp

hr.emp_del Table

Send row LCRs
to DML Handler

Insert Records for
Employees Deleted
from the hr.employees
Table

emp_dml_handler
PL/SQL Procedure

Re-enqueue All Events
Single Database Capture and Apply Example 20-3

Prerequisites
Prerequisites
The following prerequisites must be completed before you begin the example in this

chapter.

■ Set the following initialization parameters to the values indicated for the

database:

– AQ_TM_PROCESSES: This parameter establishes queue monitor processes.

Values from 1 to 10 specify the number of queue monitor processes created

to monitor the messages. If AQ_TM_PROCESSES is not specified or is set

to 0, then the queue monitor processes are not created. In this example,

AQ_TM_PROCESSES should be set to at least 1.

Setting the parameter to 1 or more starts the specified number of queue

monitor processes. These queue monitor processes are responsible for

managing time-based operations of messages such as delay and expiration,

cleaning up retained messages after the specified retention time, and

cleaning up consumed messages if the retention time is 0.

– COMPATIBLE: This parameter must be set to 9.2.0 or higher.

– LOG_PARALLELISM: This parameter must be set to 1 because the database

will capture events.

■ Set the database to run in ARCHIVELOG mode. Any database producing

changes that will be captured must run in ARCHIVELOG mode.

■ This example creates a new user to function as the Streams administrator

(strmadmin) and prompts you for the tablespace you want to use for this

user’s data. Before you start this example, either create a new tablespace or

identify an existing tablespace for the Streams administrator to use. The

Streams administrator should not use the SYSTEM tablespace.

See Also: "Setting Initialization Parameters Relevant to Streams"

on page 11-4 for information about other initialization parameters

that are important in a Streams environment

See Also: Oracle9i Database Administrator’s Guide for information

about running a database in ARCHIVELOG mode
20-4 Oracle9i Streams

Set Up the Environment
Set Up the Environment
Complete the following steps to create the hr.emp_del table, set up Streams

administrator, and create the queue.

1. Show Output and Spool Results

2. Create the hr.emp_del Table

3. Set Up Users at cpap.net

4. Create the Streams Queue at cpap.net

5. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_setup_catapp.out

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 20-9 into a text editor and then

edit the text to create a script for your environment. Run the script

with SQL*Plus on a computer that can connect to all of the

databases in the environment.
Single Database Capture and Apply Example 20-5

Set Up the Environment
Step 2 Create the hr.emp_del Table
Connect to cpap.net as the hr user.

*/

CONNECT hr/hr@cpap.net

/*

Create the hr.emp_del table. The shape of the emp_del table is the same as the

employees table, except for one added timestamp column that will record the

date when a row is inserted into the emp_del table.

*/

CREATE TABLE emp_del(
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE,
 job_id VARCHAR2(10),
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4),
 timestamp DATE);

CREATE UNIQUE INDEX emp_del_id_pk ON emp_del (employee_id);

ALTER TABLE emp_del ADD (CONSTRAINT emp_del_id_pk PRIMARY KEY (employee_id));

/*
20-6 Oracle9i Streams

Set Up the Environment
Step 3 Set Up Users at cpap.net
Connect to cpap.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@cpap.net AS SYSDBA

/*

Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.

In this example, the Streams administrator will be the apply user for the apply

process and must be able to apply changes to the hr.emp_del table. Therefore, the

Streams administrator is granted ALL privileges on this table.

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.

See Also: "Configuring a Streams Administrator" on page 11-2
Single Database Capture and Apply Example 20-7

Set Up the Environment
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on cpap.net: '

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT ALL ON hr.emp_del TO strmadmin;

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQ TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_CAPTURE_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_FLASHBACK TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*
20-8 Oracle9i Streams

Set Up the Environment
Step 4 Create the Streams Queue at cpap.net
Connect to cpap.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@cpap.net

/*

Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

cpap.net . This queue will function as the Streams queue by holding the captured

changes that will be dequeued by an apply process.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.

*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*

Step 5 Check the Spool Results
Check the streams_setup_catapp.out spool file to ensure that all actions

finished successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
Single Database Capture and Apply Example 20-9

Configure Capture and Apply
Configure Capture and Apply
Complete the following steps to capture changes to the hr.employees table and

apply these changes on single database in a customized way using a DML handler.

1. Show Output and Spool Results

2. Create an Alternate Tablespace for the LogMiner Tables at cpap.net

3. Specify Supplemental Logging at cpap.net

4. Configure the Capture Process at cpap.net

5. Set the Instantiation SCN for the hr.employees Table

6. Create an Agent Named emp_agent

7. Create a Queue Subscriber

8. Create a Procedure to Enqueue Row LCRs

9. Create the DML Handler Procedure

10. Set the DML Handler for the hr.employees Table

11. Create a Procedure to Dequeue the Re-enqueued Events

12. Configure the Apply Process at cpap.net

13. Start the Apply Process at cpap.net

14. Start the Capture Process at cpap.net

15. Check the Spool Results
20-10 Oracle9i Streams

Configure Capture and Apply
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_config_capapp.out

/*

Step 2 Create an Alternate Tablespace for the LogMiner Tables at cpap.net
By default, the LogMiner tables are in the SYSTEM tablespace, but the SYSTEM
tablespace may not have enough space for these tables once a capture process starts

to capture changes. Therefore, you must create an alternate tablespace for the

LogMiner tables.

Connect to cpap.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@cpap.net AS SYSDBA

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 20-21 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.

See Also: "Alternate Tablespace for LogMiner Tables" on

page 2-20
Single Database Capture and Apply Example 20-11

Configure Capture and Apply
Create an alternate tablespace for the LogMiner tables.

*/

ACCEPT tspace_name DEFAULT 'logmnrts' PROMPT 'Enter tablespace name (for
example, logmnrts): '

ACCEPT db_file_directory DEFAULT '' PROMPT 'Enter the complete path to the
datafile directory (for example, /usr/oracle/dbs): '

ACCEPT db_file_name DEFAULT 'logmnrts.dbf' PROMPT 'Enter the name of the
datafile (for example, logmnrts.dbf): '

CREATE TABLESPACE &tspace_name DATAFILE '&db_file_directory/&db_file_name'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE('&tspace_name');

/*

Step 3 Specify Supplemental Logging at cpap.net
Supplemental logging places additional information in the redo log for changes

made to tables. The apply process needs this extra information to perform certain

operations, such as unique row identification.

The following statement specifies an unconditional supplemental log group for the

primary key column in the hr.employees table.

Note: Each ACCEPT command must appear on a single line in the

script.

See Also:

■ "Supplemental Logging in a Streams Environment" on

page 2-11

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9
20-12 Oracle9i Streams

Configure Capture and Apply
*/

ALTER TABLE hr.employees ADD SUPPLEMENTAL LOG GROUP log_group_employees_pk
 (employee_id) ALWAYS;

/*

Step 4 Configure the Capture Process at cpap.net
Connect to cpap.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@cpap.net

/*

Configure the capture process to capture DML changes to the hr.employees table

at cpap.net . This step specifies that DML changes to this table are captured by the

capture process and enqueued into the specified queue.

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',
 streams_type => 'capture',
 streams_name => 'capture_emp',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => false);

END;
/

/*
Single Database Capture and Apply Example 20-13

Configure Capture and Apply
Step 5 Set the Instantiation SCN for the hr.employees Table
Because this example captures and applies changes in a single database, no

instantiation is necessary. However, the apply process at the cpap.net database

still must be instructed to apply changes that were made to the hr.employees
table after a certain system change number (SCN).

This example uses the GET_SYSTEM_CHANGE_NUMBER function in the

DBMS_FLASHBACK package to obtain the current SCN for the database. This SCN is

used to run the SET_TABLE_INSTANTIATION_SCN procedure in the

DBMS_APPLY_ADM package.

The SET_TABLE_INSTANTIATION_SCNprocedure controls which LCRs for a table

are ignored by an apply process and which LCRs for a table are applied by an apply

process. If the commit SCN of an LCR for a table from a source database is less than

or equal to the instantiation SCN for that table at a destination database, then the

apply process at the destination database discards the LCR. Otherwise, the apply

process applies the LCR. In this example, the cpap.net database is both the source

database and the destination database.

The apply process will apply transactions to the hr.employees table with SCNs

that were committed after SCN obtained in this step.

*/

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.employees',
 source_database_name => 'cpap.net',
 instantiation_scn => iscn);
END;
/

/*

Note: The hr.employees table must also be prepared for

instantiation. This preparation was done automatically when the

the capture process was configured with a rule to capture DML

changes to the hr.employees table in Step 4.
20-14 Oracle9i Streams

Configure Capture and Apply
Step 6 Create an Agent Named emp_agent
This example uses an agent named emp_agent for explicit enqueue into and

dequeue from the streams_queue . Because the strmadmin user owns the queue

table for this queue, the strmadmin user is a secure user of the queue. This step

creates the agent named emp_agent and associates this agent with the strmadmin
user, which allows the agent to be used for enqueues into and dequeues from the

secure queue.

*/

BEGIN
 DBMS_AQADM.CREATE_AQ_AGENT(
 agent_name => 'emp_agent');
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'emp_agent',
 db_username => 'strmadmin');
END;
/

/*

Step 7 Create a Queue Subscriber
Create a subscriber that can be used by an application to dequeue the re-enqueued

events. At least one subscriber must be specified before the events can be

re-enqueued into the queue.

*/

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT('emp_agent', NULL, NULL);
 SYS.DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.streams_queue',
 subscriber => subscriber,
 rule => NULL,
 transformation => NULL);
END;
/

/*
Single Database Capture and Apply Example 20-15

Configure Capture and Apply
Step 8 Create a Procedure to Enqueue Row LCRs
This step creates the enq_row_lcr procedure. This procedure will be used in the

DML handler procedure created in Step 9 to enqueue row LCRs that contain

changes to the hr.employees table.

*/

CREATE OR REPLACE PROCEDURE enq_row_lcr(in_any IN SYS.ANYDATA) IS
 enqopt DBMS_AQ.ENQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 recipients DBMS_AQ.AQ$_RECIPIENT_LIST_T;
 enq_eventid RAW(16);
BEGIN
 mprop.SENDER_ID := SYS.AQ$_AGENT(
 name => 'emp_agent',
 address => NULL,
 protocol => NULL);
 recipients(1) := SYS.AQ$_AGENT(
 name => 'emp_agent',
 address => NULL,
 protocol => NULL);
 mprop.RECIPIENT_LIST := recipients;
 DBMS_AQ.ENQUEUE(
 queue_name => 'strmadmin.streams_queue',
 enqueue_options => enqopt,
 message_properties => mprop,
 payload => in_any,
 msgid => enq_eventid);
END;
/

/*

Step 9 Create the DML Handler Procedure
This step creates the emp_dml_handler procedure. This procedure will be the

DML handler for DML changes to the hr.employees table. It performs the

following actions:

■ Re-enqueues all row LCRs back into streams_queue using the enq_row_lcr
procedure created in Step 8.

■ Converts any row LCR containing a DELETE command type into an INSERT
row LCR and then inserts the converted row LCR into the hr.emp_del table

by executing the row LCR.
20-16 Oracle9i Streams

Configure Capture and Apply
*/

CREATE OR REPLACE PROCEDURE emp_dml_handler(in_any IN SYS.ANYDATA) IS
 lcr SYS.LCR$_ROW_RECORD;
 rc PLS_INTEGER;
 command VARCHAR2(10);
 old_values SYS.LCR$_ROW_LIST;
BEGIN
 -- Re-enqueue the row LCR for explicit dequeue by another application
 enq_row_lcr(in_any);
 -- Access the LCR
 rc := in_any.GETOBJECT(lcr);
 -- Get the object command type
 command := lcr.GET_COMMAND_TYPE();
 -- Check for DELETE command on the hr.employees table
 IF command = 'DELETE' THEN
 -- Set the command_type in the row LCR to INSERT
 lcr.SET_COMMAND_TYPE('INSERT');
 -- Set the object_name in the row LCR to EMP_DEL
 lcr.SET_OBJECT_NAME('EMP_DEL');
 -- Get the old values in the row LCR
 old_values := lcr.GET_VALUES('old');
 -- Set the old values in the row LCR to the new values in the row LCR
 lcr.SET_VALUES('new', old_values);
 -- Set the old values in the row LCR to NULL
 lcr.SET_VALUES('old', NULL);
 -- Add a SYSDATE value for the timestamp column
 lcr.ADD_COLUMN('new', 'TIMESTAMP', SYS.AnyData.ConvertDate(SYSDATE));
 -- Apply the row LCR as an INSERT into the EMP_DEL table
 lcr.EXECUTE(true);
 END IF;
END;
/

/*

Step 10 Set the DML Handler for the hr.employees Table
Set the DML handler for the hr.employees table to the procedure created in

Step 9. Notice that the DML handler must be set separately for each possible

operation on the table: INSERT, UPDATE, and DELETE.
Single Database Capture and Apply Example 20-17

Configure Capture and Apply
*/

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.employees',
 object_type => 'TABLE',
 operation_name => 'INSERT',
 error_handler => false,
 user_procedure => 'strmadmin.emp_dml_handler',
 apply_database_link => NULL);
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.employees',
 object_type => 'TABLE',
 operation_name => 'UPDATE',
 error_handler => false,
 user_procedure => 'strmadmin.emp_dml_handler',
 apply_database_link => NULL);
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.employees',
 object_type => 'TABLE',
 operation_name => 'DELETE',
 error_handler => false,
 user_procedure => 'strmadmin.emp_dml_handler',
 apply_database_link => NULL);
END;
/

/*

Step 11 Create a Procedure to Dequeue the Re-enqueued Events
The emp_dq procedure creates in this step can be used to dequeue the events that

are re-enqueued by the DML handler created in Step 9. When the emp_dq
procedure is executed, it dequeues each row LCR in the queue and displays the

type of command in the row LCR, either INSERT, UPDATE, or DELETE. Any

information in the row LCRs can be accessed and displayed, not just the command

type.
20-18 Oracle9i Streams

Configure Capture and Apply
*/

CREATE OR REPLACE PROCEDURE emp_dq (consumer IN VARCHAR2) AS
 deqopt DBMS_AQ.DEQUEUE_OPTIONS_T;
 mprop DBMS_AQ.MESSAGE_PROPERTIES_T;
 msgid RAW(16);
 payload SYS.AnyData;
 new_messages BOOLEAN := TRUE;
 row_lcr SYS.LCR$_ROW_RECORD;
 tc pls_integer;
 next_trans EXCEPTION;
 no_messages EXCEPTION;
 pragma exception_init (next_trans, -25235);
 pragma exception_init (no_messages, -25228);
BEGIN
 deqopt.consumer_name := consumer;
 deqopt.wait := 1;
 WHILE (new_messages) LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => ’strmadmin.streams_queue’,
 dequeue_options => deqopt,
 message_properties => mprop,
 payload => payload,
 msgid => msgid);
 COMMIT;
 deqopt.navigation := DBMS_AQ.NEXT;
 IF (payload.GetTypeName = ’SYS.LCR$_ROW_RECORD’) THEN
 tc := payload.GetObject(row_lcr);
 DBMS_OUTPUT.PUT_LINE(row_lcr.GET_COMMAND_TYPE || ’ row LCR dequeued’);
 END IF;
 EXCEPTION
 WHEN next_trans THEN
 deqopt.navigation := DBMS_AQ.NEXT_TRANSACTION;
 WHEN no_messages THEN
 new_messages := FALSE;
 DBMS_OUTPUT.PUT_LINE(’No more events’);
 END;
 END LOOP;
END;

See Also: "Displaying Detailed Information About Apply Errors"

on page 17-37 for more information about displaying information

in LCRs
Single Database Capture and Apply Example 20-19

Configure Capture and Apply
/

/*

Step 12 Configure the Apply Process at cpap.net
Configure an apply process to apply DML changes to the hr.employees table.

Although the DML handler for the apply process causes deleted employees to be

inserted into the emp_del table, this rule specifies the employees table, because

the row LCRs in the queue contain changes to the employees table, not the

emp_del table.

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',

streams_type => 'apply',
 streams_name => 'apply_emp',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => false,
 source_database => 'cpap.net');
END;
/

/*

Step 13 Start the Apply Process at cpap.net
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start the apply process at cpap.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_emp',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

20-20 Oracle9i Streams

Configure Capture and Apply
BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_emp');
END;
/

/*

Step 14 Start the Capture Process at cpap.net
Start the capture process at cpap.net .

*/

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_emp');
END;
/

/*

Step 15 Check the Spool Results
Check the streams_config_catapp.out spool file to ensure that all actions

finished successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
Single Database Capture and Apply Example 20-21

Make DML Changes, Query for Results, and Dequeue Events
Make DML Changes, Query for Results, and Dequeue Events
Complete the following steps to make DML changes to the hr.employees table,

query for the resulting inserts into the hr.emp_del table and the re-enqueued

events in the streams_queue_table , and dequeue the events that were

re-enqueued by the DML handler.

Step 1 Perform an INSERT, UPDATE, and DELETE on hr.employees
Make the following DML changes to the hr.employees table.

CONNECT hr/hr@cpap.net

INSERT INTO hr.employees values(207, 'JOHN', 'SMITH', 'JSMITH@MYCOMPANY.COM',
 NULL, '07-JUN-94', 'AC_ACCOUNT', 777, NULL, NULL, 110);
COMMIT;

UPDATE hr.employees SET salary=5999 WHERE employee_id=206;
COMMIT;

DELETE FROM hr.employees WHERE employee_id=207;
COMMIT;

Step 2 Query the hr.emp_del Table and the streams_queue_table
After some time passes to allow for capture and apply of the changes performed in

the previous step, run the following queries to see the results:

CONNECT strmadmin/strmadminpw@cpap.net

SELECT * FROM hr.emp_del;

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$STREAMS_QUEUE_TABLE;

When you run the first query, you should see a record for the employee with an

employee_id of 207 . This employee was deleted in the previous step. When you

run the second query, you should see the re-enqueued events resulting from all of

the changes in the previous step, and the MSG_STATE should be READY for these

events.
20-22 Oracle9i Streams

Make DML Changes, Query for Results, and Dequeue Events
Step 3 Dequeue Events Re-enqueued by the DML Handler
Use the emp_dq procedure to dequeue the events that were re-enqueued by the

DML handler.

SET SERVEROUTPUT ON SIZE 100000

EXEC emp_dq('emp_agent');

For each row changed by a DML statement, one line is returned, and each line states

the command type of the change (either INSERT, UPDATE, or DELETE). If you

repeat the query on the queue table in Step 2 after the events are dequeued, then the

dequeued events should have been consumed. That is, the MSG_STATE should be

PROCESSED for these events.

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$STREAMS_QUEUE_TABLE;
Single Database Capture and Apply Example 20-23

Make DML Changes, Query for Results, and Dequeue Events
20-24 Oracle9i Streams

Simple Single Source Replication
21

Simple Single Source Replication Example

This chapter illustrates an example of a simple single source replication

environment that can be constructed using Streams.

 This chapter contains these topics:

■ Overview of the Simple Single Source Replication Example

■ Prerequisites

■ Set Up Users and Create Queues and Database Links

■ Configure Capture, Propagation, and Apply for Changes to One Table

■ Make Changes to the hr.jobs Table and View Results
Example 21-1

Overview of the Simple Single Source Replication Example
Overview of the Simple Single Source Replication Example
The example in this chapter illustrates using Streams to replicate data in one table

between two databases. A capture process captures data manipulation language

(DML) and data definition language (DDL) changes made to the jobs table in the

hr schema at the str1.net Oracle database, and a propagation propagates these

changes to the str2.net Oracle database. Then, an apply process applies these

changes at the str2.net database. This example assumes that the hr.jobs table

is read-only at the str2.net database.

Figure 21–1 provides an overview of the environment.

Figure 21–1 Simple Example That Shares Data From a Single Source Database

strmadmin.streams_queue

Capture Process

capture_simp

Oracle
Database
str1.net str1_to_str2

Propagate
Changes

Enqueue DML and DDL
Changes to hr.jobs Table

strmadmin.streams_queue Apply Process

apply_simp

Dequeue
Changes

hr.jobs Table

Oracle
Database
str2.net

Apply
Changes
21-2 Oracle9i Streams

Prerequisites
Prerequisites
The following prerequisites must be completed before you begin the example in this

chapter.

■ Set the following initialization parameters to the values indicated:

– AQ_TM_PROCESSES: This parameter establishes queue monitor processes.

Values from 1 to 10 specify the number of queue monitor processes created

to monitor the messages. If AQ_TM_PROCESSES is not specified or is set

to 0, then the queue monitor processes are not created. In this example,

AQ_TM_PROCESSES should be set to at least 1 at each database.

Setting the parameter to 1 or more starts the specified number of queue

monitor processes. These queue monitor processes are responsible for

managing time-based operations of messages such as delay and expiration,

cleaning up retained messages after the specified retention time, and

cleaning up consumed messages if the retention time is 0.

– GLOBAL_NAMES: This parameter must be set to true at each database that

is participating in your Streams environment.

– JOB_QUEUE_PROCESSES: This parameter must be set to at least 2 at each

database that is propagating events in your Streams environment. It should

be set to the same value as the maximum number of jobs that can run

simultaneously plus one. In this example, str1.net propagates events. So,

JOB_QUEUE_PROCESSES must be set to at least 2 at str1.net .

– COMPATIBLE: This parameter must be set to 9.2.0 or higher at each

database that is participating in your Streams environment.

– LOG_PARALLELISM: This parameter must be set to 1 at each database that

captures events. In this example, this parameter must be set to 1 at

str1.net .

■ Any database producing changes that will be captured must be running in

ARCHIVELOG mode. In this example, changes are produced at str1.net , and

so str1.net must be running in ARCHIVELOG mode.

See Also: "Setting Initialization Parameters Relevant to Streams"

on page 11-4 for information about other initialization parameters

that are important in a Streams environment

See Also: Oracle9i Database Administrator’s Guide for information

about running a database in ARCHIVELOG mode
Simple Single Source Replication Example 21-3

Set Up Users and Create Queues and Database Links
■ Configure your network and Oracle Net so that the str1.net database can

communicate with the str2.net database.

■ This example creates a new user to function as the Streams administrator

(strmadmin) at each database and prompts you for the tablespace you want to

use for this user’s data. Before you start this example, either create a new

tablespace or identify an existing tablespace for the Streams administrator to

use at each database. The Streams administrator should not use the SYSTEM
tablespace.

Set Up Users and Create Queues and Database Links
Complete the following steps to set up users and create queues and database links

for a Streams replication environment that includes two Oracle databases.

1. Show Output and Spool Results

2. Set Up Users at str1.net

3. Create the Streams Queue at str1.net

4. Create the Database Link at str1.net

5. Set Up Users at str2.net

6. Set Up the Streams Queue at str2.net

7. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

See Also: Oracle9i Net Services Administrator’s Guide

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 21-10 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
21-4 Oracle9i Streams

Set Up Users and Create Queues and Database Links
Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_setup_simple.out

/*

Step 2 Set Up Users at str1.net
Connect to str1.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@str1.net AS SYSDBA

/*

Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.
Simple Single Source Replication Example 21-5

Set Up Users and Create Queues and Database Links
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on str1.net: '

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_CAPTURE_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_PROPAGATION_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 3 Create the Streams Queue at str1.net
Connect as the Streams administrator at the database where you want to capture

changes. In this example, that database is str1.net .

*/

CONNECT strmadmin/strmadminpw@str1.net

/*

See Also: "Configuring a Streams Administrator" on page 11-2
21-6 Oracle9i Streams

Set Up Users and Create Queues and Database Links
Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

str1.net . This queue will function as the Streams queue by holding the captured

changes that will be propagated to other databases.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.

*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*

Step 4 Create the Database Link at str1.net
Create the database link from the database where changes are captured to the

database where changes are propagated. In this example, the database where

changes are captured is str1.net , and these changes are propagated

to str2.net .

*/

CREATE DATABASE LINK str2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'str2.net';

/*

Step 5 Set Up Users at str2.net
Connect to str2.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@str2.net AS SYSDBA

/*
Simple Single Source Replication Example 21-7

Set Up Users and Create Queues and Database Links
Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. In this example, the Streams administrator will be the apply user for the

apply process and must be able to apply changes to the hr.jobs table at

str2.net . Therefore, the Streams administrator is granted ALL privileges on this

table. You may choose a different name for the Streams administrator.

*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

GRANT ALL ON hr.jobs TO strmadmin;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on str2.net: '

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.

See Also: "Configuring a Streams Administrator" on page 11-2
21-8 Oracle9i Streams

Set Up Users and Create Queues and Database Links
BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 6 Set Up the Streams Queue at str2.net
Connect as the Streams administrator at str2.net .

*/

CONNECT strmadmin/strmadminpw@str2.net

/*

Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

str2.net . This queue will function as the Streams queue by holding the changes

that will be applied at this database.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.
Simple Single Source Replication Example 21-9

Configure Capture, Propagation, and Apply for Changes to One Table
*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*

Step 7 Check the Spool Results
Check the streams_setup_simple.out spool file to ensure that all actions

finished successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/

Configure Capture, Propagation, and Apply for Changes to One Table
Complete the following steps to specify the capture, propagation, and apply

definitions for the hr.jobs table using the DBMS_STEAMS_ADM package.

1. Show Output and Spool Results

2. Create an Alternate Tablespace for the LogMiner Tables at str1.net

3. Specify Supplemental Logging at str1.net

4. Configure Propagation at str1.net

5. Configure the Capture Process at str1.net

6. Instantiate the hr.jobs Table at str2.net

7. Drop the Supplemental Log Group for hr.jobs at str2.net

8. Configure the Apply Process at str2.net

9. Start the Apply Process at str2.net

10. Start the Capture Process at str1.net

11. Check the Spool Results
21-10 Oracle9i Streams

Configure Capture, Propagation, and Apply for Changes to One Table
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_share_jobs.out

/*

Step 2 Create an Alternate Tablespace for the LogMiner Tables at str1.net
By default, the LogMiner tables are in the SYSTEM tablespace, but the SYSTEM
tablespace may not have enough space for these tables once a capture process starts

to capture changes. Therefore, you must create an alternate tablespace for the

LogMiner tables.

Connect to str1.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@str1.net AS SYSDBA

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 21-18 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.

See Also: "Alternate Tablespace for LogMiner Tables" on

page 2-20
Simple Single Source Replication Example 21-11

Configure Capture, Propagation, and Apply for Changes to One Table
Create an alternate tablespace for the LogMiner tables.

*/

ACCEPT tspace_name DEFAULT 'logmnrts' PROMPT 'Enter tablespace name (for
example, logmnrts): '

ACCEPT db_file_directory DEFAULT '' PROMPT 'Enter the complete path to the
datafile directory (for example, /usr/oracle/dbs): '

ACCEPT db_file_name DEFAULT 'logmnrts.dbf' PROMPT 'Enter the name of the
datafile (for example, logmnrts.dbf): '

CREATE TABLESPACE &tspace_name DATAFILE '&db_file_directory/&db_file_name'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE('&tspace_name');

/*

Step 3 Specify Supplemental Logging at str1.net
Supplemental logging places additional information in the redo log for changes

made to tables. The apply process needs this extra information to perform certain

operations, such as unique row identification and conflict resolution. Because

str1.net is the only database where changes are captured in this environment, it

is the only database where you must specify supplemental logging for the hr.jobs
table.

The following statement specifies an unconditional supplemental log group for the

primary key column in the hr.jobs table.

Note: Each ACCEPT command must appear on a single line in the

script.

See Also:

■ "Supplemental Logging in a Streams Environment" on

page 2-11

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9
21-12 Oracle9i Streams

Configure Capture, Propagation, and Apply for Changes to One Table
*/

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP log_group_jobs_pk
 (job_id) ALWAYS;

/*

Step 4 Configure Propagation at str1.net
Connect to str1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@str1.net

/*

Configure and schedule propagation of DML and DDL changes to the hr.jobs
table from the queue at str1.net to the queue at str2.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(

 table_name => 'hr.jobs',
streams_name => 'str1_to_str2',
source_queue_name => 'strmadmin.streams_queue',

 destination_queue_name => 'strmadmin.streams_queue@str2.net',
 include_dml => true,

 include_ddl => true,
 source_database => 'str1.net');

END;
/

/*
Simple Single Source Replication Example 21-13

Configure Capture, Propagation, and Apply for Changes to One Table
Step 5 Configure the Capture Process at str1.net
Configure the capture process to capture changes to the hr.jobs table at

str1.net . This step specifies that changes to this table are captured by the capture

process and enqueued into the specified queue.

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.jobs',
 streams_type => 'capture',
 streams_name => 'capture_simp',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true);

END;
/

/*

Step 6 Instantiate the hr.jobs Table at str2.net
This example assumes that the hr.jobs table exists at both the str1.net
database and the str2.net database, and that this table is identical at both

databases. In this case, you can instantiate the table at the str2.net database by

performing a metadata only export of the table at str1.net and then importing

the resulting export dump file at str2.net . Performing this metadata only

export/import records the instantiation SCN for the hr.jobs table at str2.net ,

which is required before an apply process at str2.net can apply changes to the

table.

Open a different window and export the hr.jobs table at str1.net that will be

instantiated at str2.net . Make sure you set the OBJECT_CONSISTENT export

parameter to y and the ROWS export parameter to n when you run the export

command. Also, make sure no DML or DDL changes are made to the hr.jobs
table during the export.

The following is an example export command:

exp userid=hr/hr FILE=jobs_instant.dmp TABLES=jobs OBJECT_CONSISTENT=y ROWS=n

See Also: Oracle9i Database Utilities for information about

performing an export
21-14 Oracle9i Streams

Configure Capture, Propagation, and Apply for Changes to One Table
*/

PAUSE Press <RETURN> to continue when the export is complete in the other window
that you opened.

/*

Transfer the export dump file jobs_instant.dmp to the destination database. In

this example, the destination database is str2.net .

You can use binary FTP or some other method to transfer the export dump file to

the destination database. You may need to open a different window to transfer the

file.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

/*

In a different window, connect to the computer that runs the str2.net database

and import the export dump file jobs_instant.dmp to instantiate the jobs table

in the str2.net database. You can use telnet or remote login to connect to the

computer that runs str2.net .

When you run the import command, make sure you set the

STREAMS_INSTANTIATIONimport parameter to y. This parameter ensures that the

import records export SCN information for each object imported.

The following is an example import command:

imp userid=hr/hr FILE=jobs_instant.dmp IGNORE=y COMMIT=y LOG=import.log
STREAMS_INSTANTIATION=y

*/

PAUSE Press <RETURN> to continue after the import is complete at str2.net.

/*

See Also: Oracle9i Database Utilities for information about

performing an import
Simple Single Source Replication Example 21-15

Configure Capture, Propagation, and Apply for Changes to One Table
Step 7 Drop the Supplemental Log Group for hr.jobs at str2.net
When you instantiated that hr.jobs table at str2.net , the supplemental log

group from str1.net for the table was retained. This log group is not needed at

str2.net because no capture process captures changes to this table at str2.net .

You can remove the log group to avoid extraneous information in the redo log at

str2.net . Connect to str2.net as the hr user.

*/

CONNECT hr/hr@str2.net

/*

Drop the supplemental log group at str2.net .

*/

ALTER TABLE hr.jobs DROP SUPPLEMENTAL LOG GROUP log_group_jobs_pk;

/*

Step 8 Configure the Apply Process at str2.net
Connect to str2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@str2.net

/*

Configure str2.net to apply changes to the hr.jobs table.

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.jobs',

streams_type => 'apply',
 streams_name => 'apply_simp',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => true,
 source_database => 'str1.net');
END;
/

21-16 Oracle9i Streams

Configure Capture, Propagation, and Apply for Changes to One Table
/*

Step 9 Start the Apply Process at str2.net
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start the apply process at str2.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_simp',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_simp');
END;
/

/*

Step 10 Start the Capture Process at str1.net
Connect to str1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@str1.net

/*

Start the capture process at str1.net .

*/

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_simp');
END;
/

/*
Simple Single Source Replication Example 21-17

Make Changes to the hr.jobs Table and View Results
Step 11 Check the Spool Results
Check the streams_share_jobs.out spool file to ensure that all actions finished

successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/

Make Changes to the hr.jobs Table and View Results
Complete the following steps to make DML and DDL changes to the hr.jobs table

at str1.net and then confirm that the changes were captured at str1.net ,

propagated from str1.net to str2.net , and applied to the hr.jobs table

at str2.net .

Step 1 Make Changes to hr.jobs at str1.net
Make the following changes to the hr.jobs table.

CONNECT hr/hr@str1.net

UPDATE hr.jobs SET max_salary=9545 WHERE job_id='PR_REP';
COMMIT;

ALTER TABLE hr.jobs ADD(duties VARCHAR2(4000));

Step 2 Query and Describe the hr.jobs Table at str2.net
After some time passes to allow for capture, propagation, and apply of the changes

performed in the previous step, run the following query to confirm that the UPDATE
change was propagated and applied at str2.net :

CONNECT hr/hr@str2.net

SELECT * FROM hr.jobs WHERE job_id='PR_REP';

The value in the max_salary column should be 9545 .
21-18 Oracle9i Streams

Make Changes to the hr.jobs Table and View Results
Next, describe the hr.jobs table to confirm that the ALTER TABLE change was

propagated and applied at str2.net :

DESC hr.jobs

The duties column should be the last column.
Simple Single Source Replication Example 21-19

Make Changes to the hr.jobs Table and View Results
21-20 Oracle9i Streams

Single Source Heterogeneous Replication
22

Single Source Heterogeneous

Replication Example

This chapter illustrates an example of a single source heterogeneous replication

environment that can be constructed using Streams, as well as the tasks required to

add new objects and databases to such an environment.

This chapter contains these topics:

■ Overview of the Single Source Heterogeneous Replication Example

■ Prerequisites

■ Set Up Users and Create Queues and Database Links

■ Example Scripts for Sharing Data from One Database

■ Make DML and DDL Changes to Tables in the hr Schema

■ Add Objects to an Existing Streams Replication Environment

■ Make a DML Change to the hr.employees Table

■ Add a Database to an Existing Streams Replication Environment

■ Make a DML Change to the hr.departments Table
Example 22-1

Overview of the Single Source Heterogeneous Replication Example
Overview of the Single Source Heterogeneous Replication Example
This example illustrates using Streams to replicate data between four databases. The

environment is heterogeneous because three of the databases are Oracle databases

and one is a Sybase database. DML and DDL changes made to tables in the hr
schema at the dbs1.net Oracle database are captured and propagated to the other

two Oracle databases. Only DML changes are captured and propagated to the

dbs4.net database, because an apply process cannot apply DDL changes to a

non-Oracle database. Changes to the hr schema occur only at dbs1.net . The hr
schema is read-only at the other databases in the environment.

Figure 22–1 provides an overview of the environment.
22-2 Oracle9i Streams

Overview of the Single Source Heterogeneous Replication Example
Figure 22–1 Example Environment That Shares Data from a Single Source Database

strmadmin.streams_queue
Capture Process

capture

Enqueue DML
and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs1.net

strmadmin.streams_queue
Apply Process

apply

Dequeue
Changes

Tables

hr.countries
hr.locations
hr.regions

Oracle
Database
dbs3.net

dbs1_to_dbs2
Propagate Changes Originating at dbs1.net

Apply Process

apply_dbs4

Start Dequeue
of Changes

Finish Dequeue
of Changes

Dequeue
Changes

Table

hr.assignments

Oracle
Database
dbs2.net

dbs2_to_dbs3
Propagate changes originating
at dbs1.net Propagate and apply

changes originating
at dbs1.net

Apply
Changes

Apply Process

apply_dbs2

User Transformation
Function to_assignments:
hr.jobs to hr.assignments

Gateway

Table

hr.jobs

Sybase
Database
dbs4.net

Apply
Changes

strmadmin.streams_queue
Single Source Heterogeneous Replication Example 22-3

Overview of the Single Source Heterogeneous Replication Example
As illustrated in Figure 22–1, dbs1.net contains the following tables in the hr
schema:

■ countries

■ departments

■ employees

■ job_history

■ jobs

■ locations

■ regions

This example uses directed networks, which means that captured changes at a

source database are propagated to another database through one or more

intermediate databases. Here, the dbs1.net database propagates changes to the

dbs3.net database through the intermediate database dbs2.net . Also, the

dbs1.net database propagates changes to the dbs2.net database, which applies

the changes directly to the dbs4.net database through a gateway.

Some of the databases in the environment do not have certain tables. If the database

is not an intermediate database for a table and the database does not contain the

table, then changes to the table do not need to be propagated to that database. For

example, the departments , employees , job_history , and jobs tables do not

exist at dbs3.net . Therefore, dbs2.net does not propagate changes to these

tables to dbs3.net .

In this example, Streams is used to perform the following series of actions:

1. The capture process captures DML and DDL changes for all of the tables in the

hr schema and enqueues them into a queue at the dbs1.net database. In this

example, changes to only four of the seven tables are propagated to destination

databases, but in the example that illustrates "Add Objects to an Existing

Streams Replication Environment" on page 22-64, the remaining tables in the hr
schema are added to a destination database.

2. The dbs1.net database propagates these changes in the form of messages to a

queue at dbs2.net .

3. At dbs2.net , DML changes to the jobs table are transformed into DML

changes for the assignments table (which is a direct mapping of jobs) and

then applied. Changes to other tables in the hr schema are not applied

at dbs2.net .
22-4 Oracle9i Streams

Prerequisites
4. Because the queue at dbs3.net receives changes from the queue at dbs2.net
that originated in countries , locations , and regions tables at dbs1.net ,

these changes are propagated from dbs2.net to dbs3.net . This configuration

is an example of directed networks.

5. The apply process at dbs3.net applies changes to the countries ,

locations , and regions tables.

6. Because dbs4.net , a Sybase database, receives changes from the queue at

dbs2.net to the jobs table that originated at dbs1.net , these changes are

applied remotely from dbs2.net using the dbs4.net database link through a

gateway. This configuration is an example of heterogeneous support.

Prerequisites
The following prerequisites must be completed before you begin the example in this

chapter.

■ Set the following initialization parameters to the values indicated for all

databases in the environment:

– AQ_TM_PROCESSES: This parameter establishes queue monitor processes.

Values from 1 to 10 specify the number of queue monitor processes created

to monitor the messages. If AQ_TM_PROCESSES is not specified or is set

to 0, then the queue monitor processes are not created. In this example,

AQ_TM_PROCESSES should be set to at least 1 at each database.

Setting the parameter to 1 or more starts the specified number of queue

monitor processes. These queue monitor processes are responsible for

managing time-based operations of messages such as delay and expiration,

cleaning up retained messages after the specified retention time, and

cleaning up consumed messages if the retention time is 0.

– GLOBAL_NAMES: This parameter must be set to true at each database that

is participating in your Streams environment.

– JOB_QUEUE_PROCESSES: This parameter must be set to at least 2 at each

database that is propagating events in your Streams environment. It should

be set to the same value as the maximum number of jobs that can run

simultaneously plus one. In this example, dbs1.net and dbs2.net
propagate events. So, JOB_QUEUE_PROCESSES must be set to at least 2 at

these databases.
Single Source Heterogeneous Replication Example 22-5

Prerequisites
– COMPATIBLE: This parameter must be set to 9.2.0 or higher.

– LOG_PARALLELISM: This parameter must be set to 1 at each database that

captures events. In this example, this parameter must be set to 1 at

dbs1.net .

■ Any database producing changes that will be captured must be running in

ARCHIVELOG mode. In this example, changes are produced at dbs1.net , and

so dbs1.net must be running in ARCHIVELOG mode.

■ Configure an Oracle gateway on dbs2.net to communicate with the Sybase

database dbs4.net .

■ At the Sybase database dbs4.net , set up the hr user.

■ Instantiate the hr.jobs table from the dbs1.net Oracle database at the

dbs4.net Sybase database.

■ Configure your network and Oracle Net so that the following databases can

communicate with each other:

– dbs1.net and dbs2.net

– dbs2.net and dbs3.net

– dbs2.net and dbs4.net

See Also: "Setting Initialization Parameters Relevant to Streams"

on page 11-4 for information about other initialization parameters

that are important in a Streams environment

See Also: Oracle9i Database Administrator’s Guide for information

about running a database in ARCHIVELOG mode

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide

See Also: Your Sybase documentation for information about

creating users and tables in your Sybase database

See Also: "Instantiation in an Oracle to Non-Oracle Environment"

on page 9-7

See Also: Oracle9i Net Services Administrator’s Guide
22-6 Oracle9i Streams

Set Up Users and Create Queues and Database Links
■ This examples creates a new user to function as the Streams administrator

(strmadmin) at each database and prompts you for the tablespace you want to

use for this user’s data. Before you start this example, either create a new

tablespace or identify an existing tablespace for the Streams administrator to

use at each database. The Streams administrator should not use the SYSTEM
tablespace.

Set Up Users and Create Queues and Database Links
Complete the following steps to set up users and create queues and database links

for a Streams replication environment that includes three Oracle databases and one

Sybase database.

1. Show Output and Spool Results

2. Alter the hr.countries Table at dbs1.net

3. Set Up Users at dbs1.net

4. Create the Streams Queue at dbs1.net

5. Create the Database Link at dbs1.net

6. Set Up Users at dbs2.net

7. Create the Streams Queue at dbs2.net

8. Create the Database Links at dbs2.net

9. Create the hr.assignments Table at dbs2.net

10. Set Up Users at dbs3.net

11. Create the Streams Queue at dbs3.net

12. Drop All of the Tables in the hr Schema at dbs3.net

13. Check the Spool Results
Single Source Heterogeneous Replication Example 22-7

Set Up Users and Create Queues and Database Links
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_setup_single.out

/*

Step 2 Alter the hr.countries Table at dbs1.net
Connect to dbs1.net as the hr user.

*/

CONNECT hr/hr@dbs1.net

/*

Convert the hr.countries table from an index-organized table to a regular table.

Currently, the capture process cannot capture changes to index-organized tables.

*/

ALTER TABLE countries RENAME TO countries_orig;

CREATE TABLE hr.countries(
 country_id CHAR(2) CONSTRAINT country_id_nn_noiot NOT NULL,
 country_name VARCHAR2(40),
 region_id NUMBER,
 CONSTRAINT country_c_id_pk_noiot PRIMARY KEY (country_id));

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 22-19 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
22-8 Oracle9i Streams

Set Up Users and Create Queues and Database Links
ALTER TABLE hr.countries
ADD (CONSTRAINT countr_reg_fk_noiot
 FOREIGN KEY (region_id)
 REFERENCES regions(region_id)) ;

INSERT INTO hr.countries (SELECT * FROM hr.countries_orig);

DROP TABLE hr.countries_orig CASCADE CONSTRAINTS;

ALTER TABLE locations
 ADD (CONSTRAINT loc_c_id_fk
 FOREIGN KEY (country_id)
 REFERENCES countries(country_id));

/*

Step 3 Set Up Users at dbs1.net
Connect to dbs1.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@dbs1.net AS SYSDBA

/*

Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.
Single Source Heterogeneous Replication Example 22-9

Set Up Users and Create Queues and Database Links
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on dbs1.net: '

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_CAPTURE_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_FLASHBACK TO strmadmin;
GRANT EXECUTE ON DBMS_PROPAGATION_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.

See Also: "Configuring a Streams Administrator" on page 11-2
22-10 Oracle9i Streams

Set Up Users and Create Queues and Database Links
BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 4 Create the Streams Queue at dbs1.net
Connect as the Streams administrator at the database where you want to capture

changes. In this example, that database is dbs1.net .

*/

CONNECT strmadmin/strmadminpw@dbs1.net

/*

Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

dbs1.net . This queue will function as the Streams queue by holding the captured

changes that will be propagated to other databases.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.
Single Source Heterogeneous Replication Example 22-11

Set Up Users and Create Queues and Database Links
*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*

Step 5 Create the Database Link at dbs1.net
Create the database link from the database where changes are captured to the

database where changes are propagated. In this example, the database where

changes are captured is dbs1.net , and these changes are propagated

to dbs2.net .

*/

CREATE DATABASE LINK dbs2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'dbs2.net';

/*

Step 6 Set Up Users at dbs2.net
Connect to dbs2.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@dbs2.net AS SYSDBA

/*

Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.
22-12 Oracle9i Streams

Set Up Users and Create Queues and Database Links
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on dbs2.net: '

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_PROPAGATION_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.

See Also: "Configuring a Streams Administrator" on page 11-2
Single Source Heterogeneous Replication Example 22-13

Set Up Users and Create Queues and Database Links
BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 7 Create the Streams Queue at dbs2.net
Connect as the Streams administrator at dbs2.net .

*/

CONNECT strmadmin/strmadminpw@dbs2.net

/*

Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

dbs2.net . This queue will function as the Streams queue by holding the changes

that will be applied at this database and the changes that will be propagated to

other databases.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.

*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*
22-14 Oracle9i Streams

Set Up Users and Create Queues and Database Links
Step 8 Create the Database Links at dbs2.net
Create the database links to the databases where changes are propagated. In this

example, database dbs2.net propagates changes to dbs3.net , which is another

Oracle database, and to dbs4.net , which is a Sybase database. Notice that the

database link to the Sybase database connects to the owner of the tables, not to the

Streams administrator. This database link can connect to any user at dbs4.net that

has privileges to change the hr.jobs table at that database.

*/

CREATE DATABASE LINK dbs3.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'dbs3.net';

CREATE DATABASE LINK dbs4.net CONNECT TO "hr" IDENTIFIED BY "hrpass"
 USING 'dbs4.net';

/*

Step 9 Create the hr.assignments Table at dbs2.net
This example illustrates a rule-based transformation in which changes to the

hr.jobs table at dbs1.net are transformed into changes to the

hr.assignments table at dbs2.net . You must create the hr.assignments table

on dbs2.net for the transformation portion of this example to work properly.

Connect as hr at dbs2.net .

*/

CONNECT hr/hr@dbs2.net

/*

Note: On some non-Oracle databases, including Sybase, you must

ensure that the characters in the username and password are in the

correct case. Therefore, double quotation marks are specified for the

username and password at the Sybase database.
Single Source Heterogeneous Replication Example 22-15

Set Up Users and Create Queues and Database Links
Create the hr.assignments table in the dbs2.net database.

*/

CREATE TABLE hr.assignments AS SELECT * FROM hr.jobs;

ALTER TABLE hr.assignments ADD PRIMARY KEY (job_id);

/*

Step 10 Set Up Users at dbs3.net
Connect to dbs3.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@dbs3.net AS SYSDBA

/*

Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.

See Also: "Configuring a Streams Administrator" on page 11-2
22-16 Oracle9i Streams

Set Up Users and Create Queues and Database Links
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on dbs3.net: '

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 11 Create the Streams Queue at dbs3.net
Connect as the Streams administrator at dbs3.net .

*/

CONNECT strmadmin/strmadminpw@dbs3.net

/*

Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

dbs3.net . This queue will function as the Streams queue by holding the changes

that will be applied at this database.
Single Source Heterogeneous Replication Example 22-17

Set Up Users and Create Queues and Database Links
Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.

*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*

Step 12 Drop All of the Tables in the hr Schema at dbs3.net
This example illustrates instantiating tables in the hr schema by exporting them

from dbs1.net and importing them into dbs3.net . You must delete these tables

at dbs3.net for the instantiation portion of this example to work properly.

Connect as hr at dbs3.net .

*/

CONNECT hr/hr@dbs3.net

/*

Drop all tables in the hr schema in the dbs3.net database.

Attention: If you complete this step and drop all of the tables in

the hr schema, then you should complete the remaining sections of

this example to reinstantiate the hr schema at dbs3.net . If the hr
schema does not exist in an Oracle database, then some examples in

the Oracle documentation set may fail.
22-18 Oracle9i Streams

Set Up Users and Create Queues and Database Links
*/

DROP TABLE hr.countries CASCADE CONSTRAINTS;
DROP TABLE hr.departments CASCADE CONSTRAINTS;
DROP TABLE hr.employees CASCADE CONSTRAINTS;
DROP TABLE hr.job_history CASCADE CONSTRAINTS;
DROP TABLE hr.jobs CASCADE CONSTRAINTS;
DROP TABLE hr.locations CASCADE CONSTRAINTS;
DROP TABLE hr.regions CASCADE CONSTRAINTS;

/*

Step 13 Check the Spool Results
Check the streams_setup_single.out spool file to ensure that all actions

finished successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
Single Source Heterogeneous Replication Example 22-19

Example Scripts for Sharing Data from One Database
Example Scripts for Sharing Data from One Database
This example illustrates two ways to accomplish the replication of the tables in the

hr schema using Streams.

■ "Simple Configuration for Sharing Data from a Single Database" on page 22-21

demonstrates a simple way to configure the environment. This example uses

the DBMS_STREAMS_ADM package to create a capture process, propagations,

and apply processes, as well as the rule sets associated with them. Using the

DBMS_STREAMS_ADM package is the simplest way to configure a Streams

environment.

■ "Flexible Configuration for Sharing Data from a Single Database" on page 22-40

demonstrates a more flexible way to configure this environment. This example

uses the DBMS_CAPTURE_ADM package to create a capture process, the

DBMS_PROPAGATION_ADM package to create propagations, and the

DBMS_APPLY_ADM package to create apply processes. Also, this example uses

the DBMS_RULES_ADM package to create and populate the rule sets associated

with these capture processes, propagations, and apply processes. Using these

packages, instead of the DBMS_STREAMS_ADM package, provides more

configuration options and flexibility.

Note: These examples illustrate two different ways to configure

the same Streams environment. Therefore, you should run only one

of the examples for a particular distributed database system.

Otherwise, errors stating that objects already exist will result.
22-20 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Simple Configuration for Sharing Data from a Single Database
Complete the following steps to specify the capture, propagation, and apply

definitions using primarily the DBMS_STEAMS_ADM package.

1. Show Output and Spool Results

2. Create an Alternate Tablespace for the LogMiner Tables at dbs1.net

3. Specify Supplemental Logging at dbs1.net

4. Configure Propagation at dbs1.net

5. Configure the Capture Process at dbs1.net

6. Set the Instantiation SCN for the Existing Tables at Other Databases

7. Instantiate the dbs1.net Tables at dbs3.net

8. Drop the Supplemental Log Groups at dbs3.net

9. Configure the Apply Process at dbs3.net

10. Specify hr as the Apply User for the Apply Process at dbs3.net

11. Grant the hr User Execute Privilege on the Apply Process Rule Set

12. Start the Apply Process at dbs3.net

13. Configure Propagation at dbs2.net

14. Create the Rule-Based Transformation for Row LCRs at dbs2.net

15. Configure the Apply Process for Local Apply at dbs2.net

16. Specify hr as the Apply User for the Apply Process at dbs2.net

17. Grant the hr User Execute Privilege on the Apply Process Rule Set

18. Start the Apply Process at dbs2.net for Local Apply

19. Configure the Apply Process at dbs2.net for Apply at dbs4.net

20. Start the Apply Process at dbs2.net for Apply at dbs4.net

21. Start the Capture Process at dbs1.net

22. Check the Spool Results
Single Source Heterogeneous Replication Example 22-21

Example Scripts for Sharing Data from One Database
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_share_schema1.out

/*

Step 2 Create an Alternate Tablespace for the LogMiner Tables at dbs1.net
By default, the LogMiner tables are in the SYSTEM tablespace, but the SYSTEM
tablespace may not have enough space for these tables once a capture process starts

to capture changes. Therefore, you must create an alternate tablespace for the

LogMiner tables.

Connect to dbs1.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@dbs1.net AS SYSDBA

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 22-40 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.

See Also: "Alternate Tablespace for LogMiner Tables" on

page 2-20
22-22 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Create an alternate tablespace for the LogMiner tables.

*/

ACCEPT tspace_name DEFAULT 'logmnrts' PROMPT 'Enter the name of the tablespace
(for example, logmnrts): '

ACCEPT db_file_directory DEFAULT '' PROMPT 'Enter the complete path to the
datafile directory (for example, /usr/oracle/dbs): '

ACCEPT db_file_name DEFAULT 'logmnrts.dbf' PROMPT 'Enter the name of the
datafile (for example, logmnrts.dbf): '

CREATE TABLESPACE &tspace_name DATAFILE '&db_file_directory/&db_file_name'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE('&tspace_name');

/*

Step 3 Specify Supplemental Logging at dbs1.net
Supplemental logging places additional information in the redo log for changes

made to tables. The apply process needs this extra information to perform certain

operations, such as unique row identification and conflict resolution. Because

dbs1.net is the only database where changes are captured in this environment, it

is the only database where you must specify supplemental logging for the tables in

the hr schema.

Specify an unconditional supplemental log group for all primary key columns in

the hr schema.

Note: Each ACCEPT command must appear on a single line in the

script.

See Also:

■ "Supplemental Logging in a Streams Environment" on

page 2-11

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9
Single Source Heterogeneous Replication Example 22-23

Example Scripts for Sharing Data from One Database
*/

ALTER TABLE hr.countries ADD SUPPLEMENTAL LOG GROUP log_group_countries_pk
 (country_id) ALWAYS;

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG GROUP log_group_departments_pk
 (department_id) ALWAYS;

ALTER TABLE hr.employees ADD SUPPLEMENTAL LOG GROUP log_group_employees_pk
 (employee_id) ALWAYS;

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP log_group_jobs_pk
 (job_id) ALWAYS;

ALTER TABLE hr.job_history ADD SUPPLEMENTAL LOG GROUP log_group_job_history_pk
 (employee_id, start_date) ALWAYS;

ALTER TABLE hr.locations ADD SUPPLEMENTAL LOG GROUP log_group_locations_pk
 (location_id) ALWAYS;

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG GROUP log_group_regions_pk
 (region_id) ALWAYS;

/*

Step 4 Configure Propagation at dbs1.net
Connect to dbs1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs1.net

/*
22-24 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Configure and schedule propagation of DML and DDL changes in the hr schema

from the queue at dbs1.net to the queue at dbs2.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(

 schema_name => 'hr',
streams_name => 'dbs1_to_dbs2',
source_queue_name => 'strmadmin.streams_queue',

 destination_queue_name => 'strmadmin.streams_queue@dbs2.net',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');

END;
/

/*

Step 5 Configure the Capture Process at dbs1.net
Configure the capture process to capture changes to the entire hr schema at

dbs1.net . This step specifies that changes to the tables in the specified schema are

captured by the capture process and enqueued into the specified queue.

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true);

END;
/

/*
Single Source Heterogeneous Replication Example 22-25

Example Scripts for Sharing Data from One Database
Step 6 Set the Instantiation SCN for the Existing Tables at Other Databases
In this example, the hr.jobs table already exists at dbs2.net and dbs4.net . At

dbs2.net , this table is named assignments , but it has the same shape and data

as the jobs table at dbs1.net . Also, in this example, dbs4.net is a Sybase

database. All of the other tables in the Streams environment are instantiated at the

other databases using Export/Import.

Because the hr.jobs table already exists at dbs2.net and dbs4.net , this

example uses the GET_SYSTEM_CHANGE_NUMBER function in the

DBMS_FLASHBACK package at dbs1.net to obtain the current SCN for the

database. This SCN is used at dbs2.net to run the

SET_TABLE_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package.

Running this procedure twice sets the instantiation SCN for the hr.jobs table at

dbs2.net and dbs4.net .

The SET_TABLE_INSTANTIATION_SCNprocedure controls which LCRs for a table

are ignored by an apply process and which LCRs for a table are applied by an apply

process. If the commit SCN of an LCR for a table from a source database is less than

or equal to the instantiation SCN for that table at a destination database, then the

apply process at the destination database discards the LCR. Otherwise, the apply

process applies the LCR.

In this example, both of the apply processes at dbs2.net will apply transactions to

the hr.jobs table with SCNs that were committed after SCN obtained in this step.

Note: This example assumes that the contents of the hr.jobs
table at dbs1.net , dbs2.net (as hr.assignments), and

dbs4.net are consistent when you complete this step. You may

want to lock the table at each database while you complete this step

to ensure consistency.
22-26 Oracle9i Streams

Example Scripts for Sharing Data from One Database
*/

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DBS2.NET(
 source_object_name => 'hr.jobs',
 source_database_name => 'dbs1.net',
 instantiation_scn => iscn);
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DBS2.NET(
 source_object_name => 'hr.jobs',
 source_database_name => 'dbs1.net',
 instantiation_scn => iscn,
 apply_database_link => 'dbs4.net');
END;
/

/*

Step 7 Instantiate the dbs1.net Tables at dbs3.net
Open a different window and export the tables at dbs1.net that will be

instantiated at dbs3.net . Make sure you set the OBJECT_CONSISTENT export

parameter to y when you run the export command. Also, make sure no DDL

changes are made to the objects being exported during the export.

The following is an example export command:

exp userid=hr/hr FILE=hr_instant1.dmp TABLES=countries,locations,regions
OBJECT_CONSISTENT=y

*/

PAUSE Press <RETURN> to continue when the export is complete in the other window
that you opened.

/*

Transfer the export dump file hr_instant1.dmp to the destination database. In

this example, the destination database is dbs3.net .

See Also: Oracle9i Database Utilities for information about

performing an export
Single Source Heterogeneous Replication Example 22-27

Example Scripts for Sharing Data from One Database
You can use binary FTP or some other method to transfer the export dump file to

the destination database. You may need to open a different window to transfer the

file.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

/*

In a different window, connect to the computer that runs the dbs3.net database

and import the export dump file hr_instant1.dmp to instantiate the countries ,

locations , and regions tables in the dbs3.net database. You can use telnet or

remote login to connect to the computer that runs dbs3.net .

When you run the import command, make sure you set the

STREAMS_INSTANTIATIONimport parameter to y. This parameter ensures that the

import records export SCN information for each object imported.

The following is an example import command:

imp userid=hr/hr FILE=hr_instant1.dmp IGNORE=y FULL=y COMMIT=y LOG=import.log
STREAMS_INSTANTIATION=y

*/

PAUSE Press <RETURN> to continue after the import is complete at dbs3.net.

/*

Step 8 Drop the Supplemental Log Groups at dbs3.net
When you instantiated the hr schema at dbs3.net , the supplemental log groups

from dbs1.net were retained. These log groups are not needed at dbs3.net
because no capture process captures changes to the tables in the hr schema at

dbs3.net . You can remove the log groups to avoid extraneous information in the

redo log at dbs3.net .

See Also: Oracle9i Database Utilities for information about

performing an import
22-28 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Connect to dbs3.net as the hr user.

*/

CONNECT hr/hr@dbs3.net

/*

Drop the supplemental log groups at dbs3.net .

*/

ALTER TABLE hr.countries DROP SUPPLEMENTAL LOG GROUP log_group_countries_pk;

ALTER TABLE hr.locations DROP SUPPLEMENTAL LOG GROUP log_group_locations_pk;

ALTER TABLE hr.regions DROP SUPPLEMENTAL LOG GROUP log_group_regions_pk;

/*

Step 9 Configure the Apply Process at dbs3.net
Connect to dbs3.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs3.net

/*

Configure dbs3.net to apply changes to the countries table, locations table,

and regions table.

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.countries',

streams_type => 'apply',
 streams_name => 'apply',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');
END;
/

Single Source Heterogeneous Replication Example 22-29

Example Scripts for Sharing Data from One Database
BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.locations',

streams_type => 'apply',
 streams_name => 'apply',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');
END;
/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.regions',

streams_type => 'apply',
 streams_name => 'apply',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');
END;
/

/*

Step 10 Specify hr as the Apply User for the Apply Process at dbs3.net
In this example, the hr user owns all of the database objects for which changes are

applied by the apply process at this database. Therefore, hr already has the

necessary privileges to change these database objects, and it is convenient to make

hr the apply user.

When the apply process was created in the previous step, the Streams administrator

strmadmin was specified as the apply user by default, because strmadmin ran the

procedure that created the apply process. Instead of specifying hr as the apply user,

you could retain strmadmin as the apply user, but then you must grant

strmadmin privileges on all of the database objects for which changes are applied

and privileges to execute all user procedures used by the apply process. In an

environment where an apply process applies changes to database objects in

multiple schemas, it may be more convenient to use the Streams administrator as

the apply user.
22-30 Oracle9i Streams

Example Scripts for Sharing Data from One Database
*/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply',
 apply_user => 'hr');
END;
/

/*

Step 11 Grant the hr User Execute Privilege on the Apply Process Rule Set
Because the hr user was specified as the apply user in the previous step, the hr user

requires execute privilege on the rule set used by the apply process

*/

DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

/*

See Also: "Configuring a Streams Administrator" on page 11-2
Single Source Heterogeneous Replication Example 22-31

Example Scripts for Sharing Data from One Database
Step 12 Start the Apply Process at dbs3.net
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start the apply process at dbs3.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply');
END;
/

/*

Step 13 Configure Propagation at dbs2.net
Connect to dbs2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs2.net

/*

Configure and schedule propagation from the queue at dbs2.net to the queue at

dbs3.net . You must specify this propagation for each table that will apply changes

at dbs3.net . This configuration is an example of directed networks because the

changes at dbs2.net originated at dbs1.net .
22-32 Oracle9i Streams

Example Scripts for Sharing Data from One Database
*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.countries',

streams_name => 'dbs2_to_dbs3',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@dbs3.net',

 include_dml => true,
 include_ddl => true,

source_database => 'dbs1.net');
END;
/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.locations',

streams_name => 'dbs2_to_dbs3',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@dbs3.net',

 include_dml => true,
 include_ddl => true,

source_database => 'dbs1.net');
END;
/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.regions',

streams_name => 'dbs2_to_dbs3',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@dbs3.net',

 include_dml => true,
 include_ddl => true,

source_database => 'dbs1.net');
END;
/

/*
Single Source Heterogeneous Replication Example 22-33

Example Scripts for Sharing Data from One Database
Step 14 Create the Rule-Based Transformation for Row LCRs at dbs2.net
Connect to dbs2.net as the hr user.

*/

CONNECT hr/hr@dbs2.net

/*

Create the rule-based transformation function that transforms row changes

resulting from DML statements to the jobs table from dbs1.net into row changes

to the assignments table on dbs2.net .

The following function transforms every row LCR for the jobs table into a row

LCR for the assignments table.

*/

CREATE OR REPLACE FUNCTION hr.to_assignments_trans_dml(
 p_in_data in SYS.AnyData)
 RETURN SYS.AnyData IS out_data SYS.LCR$_ROW_RECORD;
 tc pls_integer;
BEGIN
 -- Typecast AnyData to LCR$_ROW_RECORD
 tc := p_in_data.GetObject(out_data);
 IF out_data.GET_OBJECT_NAME() = 'JOBS'
 THEN
 -- Transform the in_data into the out_data
 out_data.SET_OBJECT_NAME('ASSIGNMENTS');
 END IF;
 -- Convert to AnyData
 RETURN SYS.AnyData.ConvertObject(out_data);
END;
/

/*

Note: If DDL changes were also applied to the assignments
table, then another transformation would be required for the DDL

LCRs. This transformation would need to change the object name

and the DDL text.
22-34 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Step 15 Configure the Apply Process for Local Apply at dbs2.net
Connect to dbs2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs2.net

/*

Configure dbs2.net to apply changes to the assignments table. Remember that

the assignments table receives changes from the jobs table at dbs1.net .

*/

DECLARE
 to_assignments_rulename_dml VARCHAR2(30);
 dummy_rule VARCHAR2(30);
 action_ctx_dml SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'STREAMS$_TRANSFORM_FUNCTION';
BEGIN
-- DML changes to the jobs table from dbs1.net are applied to the assignments
-- table. The to_assignments_rulename_dml variable is an out parameter
-- in this call.

DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.jobs', -- jobs, not assignments, specified

streams_type => 'apply',
 streams_name => 'apply_dbs2',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => false,
 source_database => 'dbs1.net',
 dml_rule_name => to_assignments_rulename_dml,
 ddl_rule_name => dummy_rule);
-- Specify the name-value pair in the action context
 action_ctx_dml := SYS.RE$NV_LIST(SYS.RE$NV_ARRAY());
 action_ctx_dml.ADD_PAIR(
 ac_name,
 SYS.ANYDATA.CONVERTVARCHAR2('hr.to_assignments_trans_dml'));
-- Modify the rule for jobs to use the transformation.
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => to_assignments_rulename_dml,
 action_context => action_ctx_dml);
END;
/

Single Source Heterogeneous Replication Example 22-35

Example Scripts for Sharing Data from One Database
/*

Step 16 Specify hr as the Apply User for the Apply Process at dbs2.net
In this example, the hr user owns all of the database objects for which changes are

applied by the apply process at this database. Therefore, hr already has the

necessary privileges to change these database objects, and it is convenient to make

hr the apply user.

When the apply process was created in the previous step, the Streams administrator

strmadmin was specified as the apply user by default, because strmadmin ran the

procedure that created the apply process. Instead of specifying hr as the apply user,

you could retain strmadmin as the apply user, but then you must grant

strmadmin privileges on all of the database objects for which changes are applied

and privileges to execute all user procedures used by the apply process. In an

environment where an apply process applies changes to database objects in

multiple schemas, it may be more convenient to use the Streams administrator as

the apply user.

*/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply_dbs2',
 apply_user => 'hr');
END;
/

/*

Step 17 Grant the hr User Execute Privilege on the Apply Process Rule Set
Because the hr user was specified as the apply user in the previous step, the hr user

requires execute privilege on the rule set used by the apply process

See Also: "Configuring a Streams Administrator" on page 11-2
22-36 Oracle9i Streams

Example Scripts for Sharing Data from One Database
*/

DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY_DBS2';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

/*

Step 18 Start the Apply Process at dbs2.net for Local Apply
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start the apply process for local apply at

dbs2.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_dbs2',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_dbs2');
END;
/

/*
Single Source Heterogeneous Replication Example 22-37

Example Scripts for Sharing Data from One Database
Step 19 Configure the Apply Process at dbs2.net for Apply at dbs4.net
Configure the apply process for dbs4.net , which is a Sybase database. The

dbs2.net database is acting as a gateway to dbs4.net . Therefore, the apply

process for dbs4.net must be configured at dbs2.net . The apply process cannot

apply DDL changes to non-Oracle databases. Therefore, the include_ddl
parameter is set to false when the ADD_TABLE_RULES procedure is run.

*/

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'apply_dbs4',
 apply_database_link => 'dbs4.net',
 apply_captured => true);
END;
/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.jobs',

streams_type => 'apply',
 streams_name => 'apply_dbs4',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => false,
source_database => 'dbs1.net');

END;
/

/*

Step 20 Start the Apply Process at dbs2.net for Apply at dbs4.net
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start the remote apply for Sybase using

database link dbs4.net .
22-38 Oracle9i Streams

Example Scripts for Sharing Data from One Database
*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_dbs4',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_dbs4');
END;
/

/*

Step 21 Start the Capture Process at dbs1.net
Connect to dbs1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs1.net

/*

Start the capture process at dbs1.net .

*/

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture');
END;
/

/*
Single Source Heterogeneous Replication Example 22-39

Example Scripts for Sharing Data from One Database
Step 22 Check the Spool Results
Check the streams_share_schema1.out spool file to ensure that all actions

finished successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*

You can now make DML and DDL changes to specific tables at dbs1.net and see

these changes replicated to the other databases in the environment based on the

rules you configured for the Streams processes and propagations in this

environment.

/*************************** END OF SCRIPT ******************************/

Flexible Configuration for Sharing Data from a Single Database
Complete the following steps to use a more flexible approach for specifying the

capture, propagation, and apply definitions. This approach does not use the

DBMS_STREAMS_ADM package. Instead, it uses the following packages:

■ The DBMS_CAPTURE_ADM package to configure capture processes

■ The DBMS_PROPAGATION_ADM package to configure propagations

■ The DBMS_APPLY_ADM package to configure apply processes

■ The DBMS_RULES_ADM package to specify capture, propagation, and apply

rules and rule sets

See Also: "Make DML and DDL Changes to Tables in the hr

Schema" on page 22-62 for examples of changes that are replicated

in this environment

Note: Neither the ALL_STREAMS_TABLE_RULES nor the

DBA_STREAMS_TABLE_RULES data dictionary view is populated

by the rules created in this example. To view the rules created in

this example, you must query the ALL_RULES, DBA_RULES, or

USER_RULES data dictionary view.
22-40 Oracle9i Streams

Example Scripts for Sharing Data from One Database
This example includes the following steps:

1. Show Output and Spool Results

2. Create an Alternate Tablespace for the LogMiner Tables at dbs1.net

3. Specify Supplemental Logging at dbs1.net

4. Configure Propagation at dbs1.net

5. Configure the Capture Process at dbs1.net

6. Prepare the hr Schema at dbs1.net for Instantiation

7. Set the Instantiation SCN for the Existing Tables at Other Databases

8. Instantiate the dbs1.net Tables at dbs3.net

9. Drop the Supplemental Log Groups at dbs3.net

10. Configure the Apply Process at dbs3.net

11. Grant the hr User Execute Privilege on the Apply Process Rule Set

12. Start the Apply Process at dbs3.net

13. Configure Propagation at dbs2.net

14. Create the Rule-Based Transformation for Row LCRs at dbs2.net

15. Configure the Apply Process for Local Apply at dbs2.net

16. Grant the hr User Execute Privilege on the Apply Process Rule Set

17. Start the Apply Process at dbs2.net for Local Apply

18. Configure the Apply Process at dbs2.net for Apply at dbs4.net

19. Start the Apply Process at dbs2.net for Apply at dbs4.net

20. Start the Capture Process at dbs1.net

21. Check the Spool Results
Single Source Heterogeneous Replication Example 22-41

Example Scripts for Sharing Data from One Database
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_share_schema2.out

/*

Step 2 Create an Alternate Tablespace for the LogMiner Tables at dbs1.net
By default, the LogMiner tables are in the SYSTEM tablespace, but the SYSTEM
tablespace may not have enough space for these tables once a capture process starts

to capture changes. Therefore, you must create an alternate tablespace for the

LogMiner tables.

Connect to dbs1.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@dbs1.net AS SYSDBA

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 22-61 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.

See Also: "Alternate Tablespace for LogMiner Tables" on

page 2-20
22-42 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Create an alternate tablespace for the LogMiner tables.

*/

ACCEPT tspace_name DEFAULT 'logmnrts' PROMPT 'Enter the name of the tablespace
(for example, logmnrts): '

ACCEPT db_file_directory DEFAULT '' PROMPT 'Enter the complete path to the
datafile directory (for example, /usr/oracle/dbs): '

ACCEPT db_file_name DEFAULT 'logmnrts.dbf' PROMPT 'Enter the name of the
datafile (for example, logmnrts.dbf): '

CREATE TABLESPACE &tspace_name DATAFILE '&db_file_directory/&db_file_name'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE('&tspace_name');

/*

Step 3 Specify Supplemental Logging at dbs1.net
Supplemental logging places additional information in the redo log for changes

made to tables. The apply process needs this extra information to perform certain

operations, such as unique row identification and conflict resolution. Because

dbs1.net is the only database where changes are captured in this environment, it

is the only database where you must specify supplemental logging for the tables in

the hr schema.

Specify an unconditional supplemental log group for all primary key columns in

the hr schema.

Note: Each ACCEPT command must appear on a single line in the

script.

See Also:

■ "Supplemental Logging in a Streams Environment" on

page 2-11

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9
Single Source Heterogeneous Replication Example 22-43

Example Scripts for Sharing Data from One Database
*/

ALTER TABLE hr.countries ADD SUPPLEMENTAL LOG GROUP log_group_countries_pk
 (country_id) ALWAYS;

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG GROUP log_group_departments_pk
 (department_id) ALWAYS;

ALTER TABLE hr.employees ADD SUPPLEMENTAL LOG GROUP log_group_employees_pk
 (employee_id) ALWAYS;

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP log_group_jobs_pk
 (job_id) ALWAYS;

ALTER TABLE hr.job_history ADD SUPPLEMENTAL LOG GROUP log_group_job_history_pk
 (employee_id, start_date) ALWAYS;

ALTER TABLE hr.locations ADD SUPPLEMENTAL LOG GROUP log_group_locations_pk
 (location_id) ALWAYS;

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG GROUP log_group_regions_pk
 (region_id) ALWAYS;

/*

Step 4 Configure Propagation at dbs1.net
Connect to dbs1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs1.net

/*
22-44 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Configure and schedule propagation from the queue at dbs1.net to the queue at

dbs2.net . This configuration specifies that the propagation propagates all changes

to the hr schema. You have the option of omitting the rule set specification, but then

everything in the queue will be propagated, which may not be desired if, in the

future, multiple capture processes will use the streams_queue .

*/

BEGIN
 -- Create the rule set
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.propagation_dbs1_rules',

evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
 -- Create rules for all modifications to the hr schema
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_hr_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_hr_ddl',
 condition => ' :ddl.get_object_owner() = ''HR'' AND ' ||
 ' :ddl.is_null_tag() = ''Y'' AND ' ||
 ' :ddl.get_source_database_name() = ''DBS1.NET'' ');
 -- Add rules to rule set
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_hr_dml',
 rule_set_name => 'strmadmin.propagation_dbs1_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_hr_ddl',
 rule_set_name => 'strmadmin.propagation_dbs1_rules');
 -- Create the propagation
 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name => 'dbs1_to_dbs2',
 source_queue => 'strmadmin.streams_queue',
 destination_queue => 'strmadmin.streams_queue',
 destination_dblink => 'dbs2.net',
 rule_set_name => 'strmadmin.propagation_dbs1_rules');
END;
/

/*
Single Source Heterogeneous Replication Example 22-45

Example Scripts for Sharing Data from One Database
Step 5 Configure the Capture Process at dbs1.net
Create a capture process and rules to capture the entire hr schema at dbs1.net .

*/

BEGIN
 -- Create the rule set
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.demo_rules',

 evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
 -- Create rules that specify the entire hr schema
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.schema_hr_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.schema_hr_ddl',
 condition => ' :ddl.get_object_owner() = ''HR'' AND ' ||
 ' :ddl.is_null_tag() = ''Y'' AND ' ||
 ' :ddl.get_source_database_name() = ''DBS1.NET'' ');
 -- Add the rules to the rule set
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.schema_hr_dml',
 rule_set_name => 'strmadmin.demo_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.schema_hr_ddl',
 rule_set_name => 'strmadmin.demo_rules');
 -- Create a capture process that uses the rule set
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'strmadmin.streams_queue',
 capture_name => 'capture',
 rule_set_name => 'strmadmin.demo_rules');
END;
/

/*

Step 6 Prepare the hr Schema at dbs1.net for Instantiation
While still connected as the Streams administrator at dbs1.net , prepare the hr
schema at dbs1.net for instantiation at dbs3.net . This step marks the lowest

SCN of the tables in the schema for instantiation. SCNs subsequent to the lowest

SCN can be used for instantiation.
22-46 Oracle9i Streams

Example Scripts for Sharing Data from One Database
*/

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
 schema_name => 'hr');
END;
/

/*

Step 7 Set the Instantiation SCN for the Existing Tables at Other Databases
In this example, the hr.jobs table already exists at dbs2.net and dbs4.net . At

dbs2.net , this table is named assignments , but it has the same shape and data

as the jobs table at dbs1.net . Also, in this example, dbs4.net is a Sybase

database. All of the other tables in the Streams environment are instantiated at the

other databases using Export/Import.

Because the hr.jobs table already exists at dbs2.net and dbs4.net , this

example uses the GET_SYSTEM_CHANGE_NUMBER function in the

DBMS_FLASHBACK package at dbs1.net to obtain the current SCN for the

database. This SCN is used at dbs2.net to run the

SET_TABLE_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package.

Running this procedure twice sets the instantiation SCN for the hr.jobs table at

dbs2.net and dbs4.net .

The SET_TABLE_INSTANTIATION_SCNprocedure controls which LCRs for a table

are ignored by an apply process and which LCRs for a table are applied by an apply

process. If the commit SCN of an LCR for a table from a source database is less than

or equal to the instantiation SCN for that table at a destination database, then the

apply process at the destination database discards the LCR. Otherwise, the apply

process applies the LCR.

Note: This step is not required in the "Simple Configuration for

Sharing Data from a Single Database" on page 22-21. In that

example, when the ADD_SCHEMA_RULES procedure in the

DBMS_STREAMS_ADM package is run in Step 5, the

PREPARE_SCHEMA_INSTANTIATION procedure in the

DBMS_CAPTURE_ADM package is run automatically for the hr
schema.
Single Source Heterogeneous Replication Example 22-47

Example Scripts for Sharing Data from One Database
In this example, both of the apply processes at dbs2.net will apply transactions to

the hr.jobs table with SCNs that were committed after SCN obtained in this step.

*/

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DBS2.NET(
 source_object_name => 'hr.jobs',
 source_database_name => 'dbs1.net',
 instantiation_scn => iscn);
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DBS2.NET(
 source_object_name => 'hr.jobs',
 source_database_name => 'dbs1.net',
 instantiation_scn => iscn,
 apply_database_link => 'dbs4.net');
END;
/

/*

Step 8 Instantiate the dbs1.net Tables at dbs3.net
Open a different window and export the tables at dbs1.net that will be

instantiated at dbs3.net . Make sure you set the OBJECT_CONSISTENT export

parameter to y when you run the export command. Also, make sure no DDL

changes are made to the objects being exported during the export.

The following is an example export command:

exp userid=hr/hr FILE=hr_instant1.dmp TABLES=countries,locations,regions
OBJECT_CONSISTENT=y

Note: This example assumes that the contents of the hr.jobs
table at dbs1.net , dbs2.net (as hr.assignments), and

dbs4.net are consistent when you complete this step. You may

want to lock the table at each database while you complete this step

to ensure consistency.
22-48 Oracle9i Streams

Example Scripts for Sharing Data from One Database
*/

PAUSE Press <RETURN> to continue when the export is complete in the other window
that you opened.

/*

Transfer the export dump file hr_instant1.dmp to the destination database. In

this example, the destination database is dbs3.net .

You can use binary FTP or some other method to transfer the export dump file to

the destination database. You may need to open a different window to transfer the

file.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

/*

In a different window, connect to the computer that runs the dbs3.net database

and import the export dump file hr_instant1.dmp to instantiate the countries ,

locations , and regions tables in the dbs3.net database. You can use telnet or

remote login to connect to the computer that runs dbs3.net .

When you run the import command, make sure you set the

STREAMS_INSTANTIATIONimport parameter to y. This parameter ensures that the

import records export SCN information for each object imported.

The following is an example import command:

imp userid=hr/hr FILE=hr_instant1.dmp IGNORE=y FULL=y COMMIT=y LOG=import.log
STREAMS_INSTANTIATION=y

See Also: Oracle9i Database Utilities for information about

performing an export

See Also: Oracle9i Database Utilities for information about

performing an import
Single Source Heterogeneous Replication Example 22-49

Example Scripts for Sharing Data from One Database
*/

PAUSE Press <RETURN> to continue after the import is complete at dbs3.net.

/*

Step 9 Drop the Supplemental Log Groups at dbs3.net
When you instantiated the hr schema at dbs3.net , the supplemental log groups

from dbs1.net were retained. These log groups are not needed at dbs3.net
because no capture process captures changes to the tables in the hr schema at

dbs3.net . You can remove the log groups to avoid extraneous information in the

redo log at dbs3.net .

Connect to dbs3.net as the hr user.

*/

CONNECT hr/hr@dbs3.net

/*

Drop the supplemental log groups at dbs3.net .

*/

ALTER TABLE hr.countries DROP SUPPLEMENTAL LOG GROUP log_group_countries_pk;

ALTER TABLE hr.locations DROP SUPPLEMENTAL LOG GROUP log_group_locations_pk;

ALTER TABLE hr.regions DROP SUPPLEMENTAL LOG GROUP log_group_regions_pk;

/*

Step 10 Configure the Apply Process at dbs3.net
Connect to dbs3.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs3.net

/*

Configure dbs3.net to apply DML and DDL changes to the countries table,

locations table, and regions table.
22-50 Oracle9i Streams

Example Scripts for Sharing Data from One Database
*/

BEGIN
 -- Create the rule set
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.apply_rules',

 evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
 -- Rules for hr.countries
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_countries_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.get_object_name() = ''COUNTRIES'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_countries_ddl',
 condition => ' :ddl.get_object_owner() = ''HR'' AND ' ||
 ' :ddl.get_object_name() = ''COUNTRIES'' AND ' ||
 ' :ddl.is_null_tag() = ''Y'' AND ' ||
 ' :ddl.get_source_database_name() = ''DBS1.NET'' ');
 -- Rules for hr.locations
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_locations_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.get_object_name() = ''LOCATIONS'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_locations_ddl',
 condition => ' :ddl.get_object_owner() = ''HR'' AND ' ||
 ' :ddl.get_object_name() = ''LOCATIONS'' AND ' ||
 ' :ddl.is_null_tag() = ''Y'' AND ' ||
 ' :ddl.get_source_database_name() = ''DBS1.NET'' ');
 -- Rules for hr.regions
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_regions_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.get_object_name() = ''REGIONS'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
Single Source Heterogeneous Replication Example 22-51

Example Scripts for Sharing Data from One Database
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_regions_ddl',
 condition => ' :ddl.get_object_owner() = ''HR'' AND ' ||
 ' :ddl.get_object_name() = ''REGIONS'' AND ' ||
 ' :ddl.is_null_tag() = ''Y'' AND ' ||
 ' :ddl.get_source_database_name() = ''DBS1.NET'' ');
 -- Add rules to rule set
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_countries_dml',
 rule_set_name => 'strmadmin.apply_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_countries_ddl',
 rule_set_name => 'strmadmin.apply_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_locations_dml',
 rule_set_name => 'strmadmin.apply_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_locations_ddl',
 rule_set_name => 'strmadmin.apply_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_regions_dml',
 rule_set_name => 'strmadmin.apply_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_regions_ddl',
 rule_set_name => 'strmadmin.apply_rules');
 -- Create the apply process
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'apply',
 rule_set_name => 'strmadmin.apply_rules',
 apply_user => 'hr',
 apply_captured => true);
END;
/

/*
22-52 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Step 11 Grant the hr User Execute Privilege on the Apply Process Rule Set
Because the hr user was specified as the apply user in the previous step, the hr user

requires execute privilege on the rule set used by the apply process

*/

BEGIN
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => 'strmadmin.apply_rules',
 grantee => 'hr');
END;
/

/*

Step 12 Start the Apply Process at dbs3.net
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start the apply process at dbs3.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply');
END;
/

/*

Step 13 Configure Propagation at dbs2.net
Connect to dbs2.net as the strmadmin user.
Single Source Heterogeneous Replication Example 22-53

Example Scripts for Sharing Data from One Database
*/

CONNECT strmadmin/strmadminpw@dbs2.net

/*

Configure and schedule propagation from the queue at dbs2.net to the queue at

dbs3.net . This configuration is an example of directed networks because the

changes at dbs2.net originated at dbs1.net .

*/

BEGIN
 -- Create the rule set
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.propagation_dbs3_rules',

evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
 -- Create rules for all modifications to the countries table
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_countries_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.get_object_name() = ''COUNTRIES'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_countries_ddl',
 condition => ' :ddl.get_object_owner() = ''HR'' AND ' ||
 ' :ddl.get_object_name() = ''COUNTRIES'' AND ' ||
 ' :ddl.is_null_tag() = ''Y'' AND ' ||
 ' :ddl.get_source_database_name() = ''DBS1.NET'' ');
 -- Create rules for all modifications to the locations table
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_locations_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.get_object_name() = ''LOCATIONS'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_locations_ddl',
 condition => ' :ddl.get_object_owner() = ''HR'' AND ' ||
 ' :ddl.get_object_name() = ''LOCATIONS'' AND ' ||
 ' :ddl.is_null_tag() = ''Y'' AND ' ||
 ' :ddl.get_source_database_name() = ''DBS1.NET'' ');
22-54 Oracle9i Streams

Example Scripts for Sharing Data from One Database
 -- Create rules for all modifications to the regions table
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_regions_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.get_object_name() = ''REGIONS'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_regions_ddl',
 condition => ' :ddl.get_object_owner() = ''HR'' AND ' ||
 ' :ddl.get_object_name() = ''REGIONS'' AND ' ||
 ' :ddl.is_null_tag() = ''Y'' AND ' ||
 ' :ddl.get_source_database_name() = ''DBS1.NET'' ');
 -- Add rules to rule set
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_countries_dml',
 rule_set_name => 'strmadmin.propagation_dbs3_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_countries_ddl',
 rule_set_name => 'strmadmin.propagation_dbs3_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_locations_dml',
 rule_set_name => 'strmadmin.propagation_dbs3_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_locations_ddl',
 rule_set_name => 'strmadmin.propagation_dbs3_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_regions_dml',
 rule_set_name => 'strmadmin.propagation_dbs3_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_regions_ddl',
 rule_set_name => 'strmadmin.propagation_dbs3_rules');
 -- Create the propagation
 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name => 'dbs2_to_dbs3',
 source_queue => 'strmadmin.streams_queue',
 destination_queue => 'strmadmin.streams_queue',
 destination_dblink => 'dbs3.net',
 rule_set_name => 'strmadmin.propagation_dbs3_rules');
END;
/

/*
Single Source Heterogeneous Replication Example 22-55

Example Scripts for Sharing Data from One Database
Step 14 Create the Rule-Based Transformation for Row LCRs at dbs2.net
Connect to dbs2.net as the hr user.

*/

CONNECT hr/hr@dbs2.net

/*

Create the rule-based transformation function that transforms row changes

resulting from DML statements to the jobs table from dbs1.net into row changes

to the assignments table on dbs2.net .

The following function transforms every row LCR for the jobs table into a row

LCR for the assignments table.

*/

CREATE OR REPLACE FUNCTION hr.to_assignments_trans_dml(
 p_in_data in SYS.AnyData)
 RETURN SYS.AnyData IS out_data SYS.LCR$_ROW_RECORD;
 tc pls_integer;
BEGIN
 -- Typecast AnyData to LCR$_ROW_RECORD
 tc := p_in_data.GetObject(out_data);
 IF out_data.GET_OBJECT_NAME() = 'JOBS'
 THEN
 -- Transform the in_data into the out_data
 out_data.SET_OBJECT_NAME('ASSIGNMENTS');
 END IF;
 -- Convert to AnyData
 RETURN SYS.AnyData.ConvertObject(out_data);
END;
/

/*

Note: If DDL changes were also applied to the assignments
table, then another transformation would be required for the DDL

LCRs. This transformation would need to change the object name

and the DDL text.
22-56 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Step 15 Configure the Apply Process for Local Apply at dbs2.net
Connect to dbs2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs2.net

/*

Configure dbs2.net to apply changes to the local assignments table. Remember

that the assignments table receives changes from the jobs table at dbs1.net .

*/

DECLARE
 action_ctx_dml SYS.RE$NV_LIST;
 action_ctx_ddl SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'STREAMS$_TRANSFORM_FUNCTION';
BEGIN
 -- Specify the name-value pair in the action context
 action_ctx_dml := SYS.RE$NV_LIST(SYS.RE$NV_ARRAY());
 action_ctx_dml.ADD_PAIR(
 ac_name,
 SYS.ANYDATA.CONVERTVARCHAR2('hr.to_assignments_trans_dml'));
 -- Create the rule set strmadmin.apply_rules
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.apply_rules',
 evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
 -- Create a rule that transforms all DML changes to the jobs table into
 -- DML changes for assignments table
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_jobs_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.get_object_name() = ''JOBS'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ',

 action_context => action_ctx_dml);
 -- Add the rule to the rule set
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_jobs_dml',
 rule_set_name => 'strmadmin.apply_rules');
Single Source Heterogeneous Replication Example 22-57

Example Scripts for Sharing Data from One Database
 -- Create an apply process that uses the rule set
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'apply_dbs2',
 rule_set_name => 'strmadmin.apply_rules',
 apply_user => 'hr',
 apply_captured => true);
END;
/

/*

Step 16 Grant the hr User Execute Privilege on the Apply Process Rule Set
Because the hr user was specified as the apply user in the previous step, the hr user

requires execute privilege on the rule set used by the apply process

*/

BEGIN
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => 'strmadmin.apply_rules',
 grantee => 'hr');
END;
/

/*

Step 17 Start the Apply Process at dbs2.net for Local Apply
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start the apply process for local apply at

dbs2.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_dbs2',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

22-58 Oracle9i Streams

Example Scripts for Sharing Data from One Database
BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_dbs2');
END;
/

/*

Step 18 Configure the Apply Process at dbs2.net for Apply at dbs4.net
Configure dbs2.net to apply DML changes to the jobs table at dbs4.net , which

is a Sybase database. Remember that these changes originated at dbs1.net .

*/

BEGIN
 -- Create the rule set
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.apply_dbs4_rules',

evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
 -- Create rule strmadmin.all_jobs_remote for all modifications
 -- to the jobs table
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.all_jobs_remote',
 condition => ' :dml.get_object_owner() = ''HR'' AND ' ||
 ' :dml.get_object_name() = ''JOBS'' AND ' ||
 ' :dml.is_null_tag() = ''Y'' AND ' ||
 ' :dml.get_source_database_name() = ''DBS1.NET'' ');
 -- Add the rule to the rule set
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.all_jobs_remote',
 rule_set_name => 'strmadmin.apply_dbs4_rules');
 -- Create an apply process that uses the rule set
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'apply_dbs4',
 rule_set_name => 'strmadmin.apply_dbs4_rules',
 apply_database_link => 'dbs4.net',
 apply_captured => true);
END;
/

/*
Single Source Heterogeneous Replication Example 22-59

Example Scripts for Sharing Data from One Database
Step 19 Start the Apply Process at dbs2.net for Apply at dbs4.net
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start the remote apply for Sybase using

database link dbs4.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_dbs4',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_dbs4');
END;
/

/*

Step 20 Start the Capture Process at dbs1.net
Connect to dbs1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs1.net

/*

Start the capture process at dbs1.net .

*/

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture');
END;
/

/*
22-60 Oracle9i Streams

Example Scripts for Sharing Data from One Database
Step 21 Check the Spool Results
Check the streams_share_schema2.out spool file to ensure that all actions

finished successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*

You can now make DML and DDL changes to specific tables at dbs1.net and see

these changes replicated to the other databases in the environment based on the

rules you configured for the Streams processes and propagations in this

environment.

/*************************** END OF SCRIPT ******************************/

See Also: "Make DML and DDL Changes to Tables in the hr

Schema" on page 22-62 for examples of changes that are replicated

in this environment
Single Source Heterogeneous Replication Example 22-61

Make DML and DDL Changes to Tables in the hr Schema
Make DML and DDL Changes to Tables in the hr Schema
After completing either of the examples described in the "Example Scripts for

Sharing Data from One Database" section on page 22-20, you can make DML and

DDL changes to the tables in the hr schema at the dbs1.net database. These

changes will be replicated to the other databases in the environment based on the

rules you configured for Streams processes and propagations. You can check the

other databases to see that the changes have been replicated.

For example, complete the following steps to make DML changes to the hr.jobs
and hr.locations tables at dbs1.net . You can also make a DDL change to the

hr.locations table at dbs1.net .

After you make these changes, you can query the hr.assignments table at

dbs2.net to see that the DML change you made to this table at dbs1.net has

been replicated. Remember that a rule-based transformation configured for the

apply process at dbs2.net transforms DML changes to the hr.jobs table into

DML changes to the hr.assignments table. You can also query the

hr.locations table at dbs3.net to see that the DML and DDL changes you

made to this table at dbs1.net have been replicated.

Step 1 Make DML and DDL Changes to Tables in the hr Schema
Make the following changes:

CONNECT hr/hr@dbs1.net

UPDATE hr.jobs SET max_salary=10000 WHERE job_id='MK_REP';
COMMIT;

INSERT INTO hr.locations VALUES(
 3300, '521 Ralston Avenue', '94002', 'Belmont', 'CA', 'US');
COMMIT;

ALTER TABLE hr.locations RENAME COLUMN state_province TO state_or_province;
22-62 Oracle9i Streams

Make DML and DDL Changes to Tables in the hr Schema
Step 2 Query the hr.assignments Table at dbs2.net
After some time passes to allow for capture, propagation, and apply of the changes

performed the previous step, run the following query to confirm that the UPDATE
change made to the hr.jobs table at dbs1.net has been applied to the

hr.assignments table at dbs2.net .

CONNECT hr/hr@dbs2.net

SELECT max_salary FROM hr.assignments WHERE job_id='MK_REP';

You should see 10000 for the value of the max_salary .

Step 3 Query and Describe the hr.locations Table at dbs3.net
Run the following query to confirm that the INSERT change made to the

hr.locations table at dbs1.net has been applied at dbs3.net .

CONNECT hr/hr@dbs3.net

SELECT * FROM hr.locations WHERE location_id=3300;

You should see the row inserted into the hr.locations table at dbs1.net in the

previous step.

Next, describe the hr.locations table at to confirm that the ALTER TABLE
change was propagated and applied correctly.

DESC hr.locations

The fifth column in the table should be state_or_province .
Single Source Heterogeneous Replication Example 22-63

Add Objects to an Existing Streams Replication Environment
Add Objects to an Existing Streams Replication Environment
This example extends the Streams environment configured in the previous sections

by adding replicated objects to an existing database. To complete this example, you

must have completed the tasks in one of the previous examples in this chapter.

This example will add the following tables to the hr schema in the dbs3.net
database:

■ departments

■ employees

■ job_history

■ jobs

When you complete this example, Streams processes changes to these tables with

the following series of actions:

1. The capture process captures changes at dbs1.net and enqueues them at

dbs1.net .

2. A propagation propagates changes from the queue at dbs1.net to the queue at

dbs2.net .

3. A propagation propagates changes from the queue at dbs2.net to the queue at

dbs3.net .

4. The apply process at dbs3.net applies the changes at dbs3.net .

When you complete this example, the hr schema at the dbs3.net database will

have all of its original tables, because the countries , locations , and regions
tables were instantiated at dbs3.net in the previous section.

Figure 22–2 provides an overview of the environment with the added tables.
22-64 Oracle9i Streams

Add Objects to an Existing Streams Replication Environment
Figure 22–2 Adding Objects to dbs3.net in the Environment

strmadmin.streams_queue
Capture Process

capture

Enqueue DML
and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs1.net

strmadmin.streams_queue
Apply Process

apply

Dequeue
Changes

Tables

hr.countries
hr.locations
hr.regions

hr.departments
hr.employees
hr.job_history
hr.jobs

Oracle
Database
dbs3.net

dbs1_to_dbs2
Propagate Changes Originating at dbs1.net

Apply Process

apply_dbs4Dequeue
Changes

Table

hr.assignments

Oracle
Database
dbs2.net

dbs2_to_dbs3
Propagate changes originating
at dbs1.net Propagate and apply

changes originating
at dbs1.net

Apply
Changes

Gateway

Table

hr.jobs

Sybase
Database
dbs4.net

Apply
Changes

strmadmin.streams_queue

Added
Tables

Start Dequeue
of Changes

Finish Dequeue
of Changes Apply Process

apply_dbs2

User Transformation
Function to_assignments:
hr.jobs to hr.assignments
Single Source Heterogeneous Replication Example 22-65

Add Objects to an Existing Streams Replication Environment
Complete the following steps to replicate these tables to the dbs3.net database.

1. Show Output and Spool Results

2. Stop the Apply Process at dbs3.net

3. Configure the Apply Process for the Added Tables at dbs3.net

4. Specify the Table Propagation Rules for the Added Tables at dbs2.net

5. Prepare the Four Added Tables for Instantiation at dbs1.net

6. Instantiate the dbs1.net Tables at dbs3.net

7. Drop the Supplemental Log Groups at dbs3.net

8. Start the Apply Process at dbs3.net

9. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_addobjs.out

/*

Step 2 Stop the Apply Process at dbs3.net
Until you finish adding objects to dbs3.net , you must ensure that the apply

process that will apply changes for the added objects does not try to apply changes

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 22-74 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
22-66 Oracle9i Streams

Add Objects to an Existing Streams Replication Environment
for these objects. You can do this by stopping the capture process at the source

database. Or, you can do this by stopping propagation of changes from dbs2.net
to dbs3.net . Yet another alternative is to stop the apply process at dbs3.net .

This example stops the apply process at dbs3.net .

Connect to dbs3.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs3.net

/*

Stop the apply process at dbs3.net .

*/

BEGIN
 DBMS_APPLY_ADM.STOP_APPLY(
 apply_name => 'apply');
END;
/

/*

Step 3 Configure the Apply Process for the Added Tables at dbs3.net
Configure the apply process at dbs3.net to apply changes to the tables you are

adding.

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',

streams_type => 'apply',
 streams_name => 'apply',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');
END;
/

Single Source Heterogeneous Replication Example 22-67

Add Objects to an Existing Streams Replication Environment
BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',

streams_type => 'apply',
 streams_name => 'apply',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');
END;
/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.job_history',

streams_type => 'apply',
 streams_name => 'apply',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');
END;
/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.jobs',

streams_type => 'apply',
 streams_name => 'apply',

queue_name => 'strmadmin.streams_queue',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');
END;
/

/*
22-68 Oracle9i Streams

Add Objects to an Existing Streams Replication Environment
Step 4 Specify the Table Propagation Rules for the Added Tables at dbs2.net
Connect to dbs2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs2.net

/*

Add the tables to the rules for propagation from the queue at dbs2.net to the

queue at dbs3.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.departments',

streams_name => 'dbs2_to_dbs3',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@dbs3.net',

 include_dml => true,
 include_ddl => true,

source_database => 'dbs1.net');
END;
/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.employees',

streams_name => 'dbs2_to_dbs3',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@dbs3.net',

 include_dml => true,
 include_ddl => true,

source_database => 'dbs1.net');
END;
/

Single Source Heterogeneous Replication Example 22-69

Add Objects to an Existing Streams Replication Environment
BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.job_history',

streams_name => 'dbs2_to_dbs3',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@dbs3.net',

 include_dml => true,
 include_ddl => true,

source_database => 'dbs1.net');
END;
/

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.jobs',

streams_name => 'dbs2_to_dbs3',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@dbs3.net',

 include_dml => true,
 include_ddl => true,

source_database => 'dbs1.net');
END;
/

/*

Step 5 Prepare the Four Added Tables for Instantiation at dbs1.net
Connect to dbs1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs1.net

/*

Prepare the tables for instantiation. These tables will be instantiated at dbs3.net .

This step marks the lowest SCN of the tables for instantiation. SCNs subsequent to

the lowest SCN can be used for instantiation. Also, this preparation is necessary so

that the Streams data dictionary for the relevant propagations and the apply process

at dbs3.net contain information about these tables.
22-70 Oracle9i Streams

Add Objects to an Existing Streams Replication Environment
*/

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.departments');
END;
/

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.employees');
END;
/

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.job_history');
END;
/

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.jobs');
END;
/

/*

Step 6 Instantiate the dbs1.net Tables at dbs3.net
Open a different window and export the tables at dbs1.net that will be

instantiated at dbs3.net . Make sure you set the OBJECT_CONSISTENT export

parameter to y when you run the export command. Also, make sure no DDL

changes are made to the objects being exported during the export.

See Also:

■ "Preparing Database Objects for Instantiation at a Source

Database" on page 12-11

■ "Streams Data Dictionary for Propagations" on page 3-25

■ "Streams Data Dictionary for an Apply Process" on page 4-33
Single Source Heterogeneous Replication Example 22-71

Add Objects to an Existing Streams Replication Environment
The following is an example export command:

exp userid=hr/hr FILE=hr_instant2.dmp
TABLES=departments,employees,job_history,jobs OBJECT_CONSISTENT=y

*/

PAUSE Press <RETURN> to continue when the export is complete in the other window
that you opened.

/*

Transfer the export dump file hr_instant2.dmp to the destination database. In

this example, the destination database is dbs3.net .

You can use binary FTP or some other method to transfer the export dump file to

the destination database. You may need to open a different window to transfer the

file.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

/*

In a different window, connect to the computer that runs the dbs3.net database

and import the export dump file hr_instant2.dmp to instantiate the tables in the

dbs3.net database. You can use telnet or remote login to connect to the computer

that runs dbs3.net .

When you run the import command, make sure you set the

STREAMS_INSTANTIATIONimport parameter to y. This parameter ensures that the

import records export SCN information for each object imported.

The following is an example import command:

imp userid=hr/hr FILE=hr_instant2.dmp IGNORE=y FULL=y COMMIT=y LOG=import.log
STREAMS_INSTANTIATION=y

See Also: Oracle9i Database Utilities for information about

performing an export

See Also: Oracle9i Database Utilities for information about

performing an import
22-72 Oracle9i Streams

Add Objects to an Existing Streams Replication Environment
*/

PAUSE Press <RETURN> to continue after the import is complete at dbs3.net.

/*

Step 7 Drop the Supplemental Log Groups at dbs3.net
When you instantiated the hr schema at dbs3.net , the supplemental log groups

from dbs1.net were retained. These log groups are not needed at dbs3.net
because no capture process captures changes to the tables in the hr schema at

dbs3.net . You can remove the log groups to avoid extraneous information in the

redo log at dbs3.net .

Connect to dbs3.net as the hr user.

*/

CONNECT hr/hr@dbs3.net

/*

Drop the supplemental log groups at dbs3.net .

*/

ALTER TABLE hr.departments DROP SUPPLEMENTAL LOG GROUP log_group_departments_pk;

ALTER TABLE hr.employees DROP SUPPLEMENTAL LOG GROUP log_group_employees_pk;

ALTER TABLE hr.jobs DROP SUPPLEMENTAL LOG GROUP log_group_jobs_pk;

ALTER TABLE hr.job_history DROP SUPPLEMENTAL LOG GROUP log_group_job_history_pk;

/*

Step 8 Start the Apply Process at dbs3.net
Start the apply process at dbs3.net . This apply process was stopped in Step 2.

Connect to dbs3.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs3.net

/*
Single Source Heterogeneous Replication Example 22-73

Add Objects to an Existing Streams Replication Environment
Start the apply process at dbs3.net .

*/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply');
END;
/

/*

Step 9 Check the Spool Results
Check the streams_addobjs.out spool file to ensure that all actions finished

successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
22-74 Oracle9i Streams

Make a DML Change to the hr.employees Table
Make a DML Change to the hr.employees Table
After completing the examples described in the "Add Objects to an Existing Streams

Replication Environment" section on page 22-64, you can make DML and DDL

changes to the tables in the hr schema at the dbs1.net database. These changes

will be replicated to dbs3.net . You can check these tables at dbs3.net to see that

the changes have been replicated.

For example, complete the following steps to make a DML change to the

hr.employees table at dbs1.net . Then, query the hr.employees table at

dbs3.net to see that the change has been replicated.

Step 1 Make a DML Change to the hr.employees Table
Make the following change:

CONNECT hr/hr@dbs1.net

UPDATE hr.employees SET job_id='ST_MAN' WHERE employee_id=143;
COMMIT;

Step 2 Query the hr.employees Table at dbs3.net
After some time passes to allow for capture, propagation, and apply of the change

performed in the previous step, run the following query to confirm that the UPDATE
change made to the hr.employees table at dbs1.net has been applied to the

hr.employees table at dbs3.net .

CONNECT hr/hr@dbs3.net

SELECT job_id FROM hr.employees WHERE employee_id=143;

You should see ST_MAN for the value of the job_id .
Single Source Heterogeneous Replication Example 22-75

Add a Database to an Existing Streams Replication Environment
Add a Database to an Existing Streams Replication Environment
This example extends the Streams environment configured in the previous sections

by adding an additional database to the existing configuration. In this example, an

existing Oracle database named dbs5.net is added to receive changes to the entire

hr schema from the queue at dbs2.net .

Figure 22–3 provides an overview of the environment with the added database.
22-76 Oracle9i Streams

Add a Database to an Existing Streams Replication Environment
Figure 22–3 Adding the dbs5.net Oracle Database to the Environment

strmadmin.streams_queue
Capture Process

capture

Enqueue DML
and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs1.net

strmadmin.streams_queue
Apply Process

apply

Dequeue
Changes

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs3.net

dbs1_to_dbs2
Propagate Changes Originating at dbs1.net

Apply Process

apply_dbs4Dequeue
Changes

Table

hr.assignments

Oracle
Database
dbs2.net

dbs2_to_dbs3
Propagate changes originating
at dbs1.net

Apply
Changes

Gateway

Table

hr.jobs

Sybase
Database
dbs4.net

Apply
Changes

strmadmin.streams_queue
Apply Process

apply

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
dbs5.net

Apply Changes

dbs2_to_dbs5
Propagate changes originating
at dbs1.net

Dequeue
Changes

strmadmin.streams_queue

Start Dequeue
of Changes

Finish Dequeue
of Changes Apply Process

apply_dbs2

User Transformation
Function to_assignments:
hr.jobs to hr.assignments
Single Source Heterogeneous Replication Example 22-77

Add a Database to an Existing Streams Replication Environment
To complete this example, you must meet the following prerequisites:

■ The dbs5.net database must exist.

■ The dbs2.net and dbs5.net databases must be able to communicate with

each other through Oracle Net.

■ You must have completed the tasks in the previous examples in this chapter.

■ The "Prerequisites" on page 22-5 must be met if you want the entire Streams

environment to work properly.

■ This examples creates a new user to function as the Streams administrator

(strmadmin) at each database and prompts you for the tablespace you want to

use for this user’s data. Before you start this example, either create a new

tablespace or identify an existing tablespace for the Streams administrator to

use at each database. The Streams administrator should not use the SYSTEM
tablespace.

Complete the following steps to add dbs5.net to the Streams environment.

1. Show Output and Spool Results

2. Drop All of the Tables in the hr Schema at dbs5.net

3. Set Up Users at dbs5.net

4. Create the Streams Queue at dbs5.net

5. Configure the Apply Process at dbs5.net

6. Specify hr as the Apply User for the Apply Process at dbs5.net

7. Grant the hr User Execute Privilege on the Apply Process Rule Set

8. Create the Database Link Between dbs2.net and dbs5.net

9. Configure Propagation Between dbs2.net and dbs5.net

10. Prepare the hr Schema for Instantiation at dbs1.net

11. Instantiate the dbs1.net Tables at dbs5.net

12. Drop the Supplemental Log Groups at dbs5.net

13. Start the Apply Process at dbs5.net

14. Check the Spool Results
22-78 Oracle9i Streams

Add a Database to an Existing Streams Replication Environment
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_adddb.out

/*

Step 2 Drop All of the Tables in the hr Schema at dbs5.net
This example illustrates instantiating the tables in the hr schema by exporting them

from dbs1.net and importing them into dbs5.net . You must delete these tables

at dbs5.net for the instantiation portion of this example to work properly.

Connect as hr at dbs5.net .

*/

CONNECT hr/hr@dbs5.net

/*

Drop all tables in the hr schema in the dbs5.net database.

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 22-89 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.

Attention: If you complete this step and drop all of the tables in

the hr schema, then you should complete the remaining sections of

this example to reinstantiate the hr schema at dbs5.net . If the hr
schema does not exist in an Oracle database, then some examples in

the Oracle documentation set may fail.
Single Source Heterogeneous Replication Example 22-79

Add a Database to an Existing Streams Replication Environment
*/

DROP TABLE hr.countries CASCADE CONSTRAINTS;
DROP TABLE hr.departments CASCADE CONSTRAINTS;
DROP TABLE hr.employees CASCADE CONSTRAINTS;
DROP TABLE hr.job_history CASCADE CONSTRAINTS;
DROP TABLE hr.jobs CASCADE CONSTRAINTS;
DROP TABLE hr.locations CASCADE CONSTRAINTS;
DROP TABLE hr.regions CASCADE CONSTRAINTS;

/*

Step 3 Set Up Users at dbs5.net
Connect to dbs5.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@dbs5.net AS SYSDBA

/*

Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.
22-80 Oracle9i Streams

Add a Database to an Existing Streams Replication Environment
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on dbs5.net: '

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

See Also: "Configuring a Streams Administrator" on page 11-2
Single Source Heterogeneous Replication Example 22-81

Add a Database to an Existing Streams Replication Environment
Step 4 Create the Streams Queue at dbs5.net
Connect as the Streams administrator at the database you are adding. In this

example, that database is dbs5.net .

*/

CONNECT strmadmin/strmadminpw@dbs5.net

/*

Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

dbs5.net . This queue will function as the Streams queue by holding the changes

that will be applied at this database.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.

*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*
22-82 Oracle9i Streams

Add a Database to an Existing Streams Replication Environment
Step 5 Configure the Apply Process at dbs5.net
While still connected as the Streams administrator at dbs5.net , configure the

apply process to apply changes to the hr schema.

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'dbs1.net');
END;
/

/*

Step 6 Specify hr as the Apply User for the Apply Process at dbs5.net
In this example, the hr user owns all of the database objects for which changes are

applied by the apply process at this database. Therefore, hr already has the

necessary privileges to change these database objects, and it is convenient to make

hr the apply user.

When the apply process was created in the previous step, the Streams administrator

strmadmin was specified as the apply user by default, because strmadmin ran the

procedure that created the apply process. Instead of specifying hr as the apply user,

you could retain strmadmin as the apply user, but then you must grant

strmadmin privileges on all of the database objects for which changes are applied

and privileges to execute all user procedures used by the apply process. In an

environment where an apply process applies changes to database objects in

multiple schemas, it may be more convenient to use the Streams administrator as

the apply user.

See Also: "Configuring a Streams Administrator" on page 11-2
Single Source Heterogeneous Replication Example 22-83

Add a Database to an Existing Streams Replication Environment
*/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply',
 apply_user => 'hr');
END;
/

/*

Step 7 Grant the hr User Execute Privilege on the Apply Process Rule Set
Because the hr user was specified as the apply user in the previous step, the hr user

requires execute privilege on the rule set used by the apply process

*/

DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

/*

Step 8 Create the Database Link Between dbs2.net and dbs5.net
Connect to dbs2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs2.net

/*
22-84 Oracle9i Streams

Add a Database to an Existing Streams Replication Environment
Create the database links to the databases where changes are propagated. In this

example, database dbs2.net propagates changes to dbs5.net .

*/

CREATE DATABASE LINK dbs5.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
 USING 'dbs5.net';

/*

Step 9 Configure Propagation Between dbs2.net and dbs5.net
While still connected as the Streams administrator at dbs2.net , Configure and

schedule propagation from the queue at dbs2.net to the queue at dbs5.net .

Remember, changes to the hr schema originated at dbs1.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(

 schema_name => 'hr',
streams_name => 'dbs2_to_dbs5',
source_queue_name => 'strmadmin.streams_queue',

 destination_queue_name => 'strmadmin.streams_queue@dbs5.net',
 include_dml => true,

 include_ddl => true,
 source_database => 'dbs1.net');

END;
/

/*

Step 10 Prepare the hr Schema for Instantiation at dbs1.net
Connect to dbs1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@dbs1.net

/*

Prepare the hr schema for instantiation. These tables in this schema will be

instantiated at dbs5.net . This preparation is necessary so that the Streams data

dictionary for the relevant propagations and the apply process at dbs5.net
contain information about the hr schema and the objects in the schema.
Single Source Heterogeneous Replication Example 22-85

Add a Database to an Existing Streams Replication Environment
*/

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
 schema_name => 'hr');
END;
/

/*

Step 11 Instantiate the dbs1.net Tables at dbs5.net
Open a different window and export the schema at dbs1.net that will be

instantiated at dbs5.net . Make sure you set the OBJECT_CONSISTENT export

parameter to y when you run the export command. Also, make sure no DDL

changes are made to the objects being exported during the export.

The following is an example export command:

exp hr/hr FILE=hr_schema.dmp OWNER=hr OBJECT_CONSISTENT=y

*/

PAUSE Press <RETURN> to continue when the export is complete in the other window
that you opened.

/*

Transfer the export dump file hr_schema.dmp to the destination database. In this

example, the destination database is dbs5.net .

See Also:

■ "Preparing Database Objects for Instantiation at a Source

Database" on page 12-11

■ "Streams Data Dictionary for Propagations" on page 3-25

■ "Streams Data Dictionary for an Apply Process" on page 4-33

See Also: Oracle9i Database Utilities for information about

performing an export
22-86 Oracle9i Streams

Add a Database to an Existing Streams Replication Environment
You can use binary FTP or some other method to transfer the export dump file to

the destination database. You may need to open a different window to transfer the

file.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

/*

In a different window, connect to the computer that runs the dbs5.net database

and import the export dump file hr_schema.dmp to instantiate the tables in the

dbs5.net database. You can use telnet or remote login to connect to the computer

that runs dbs5.net .

When you run the import command, make sure you set the

STREAMS_INSTANTIATIONimport parameter to y. This parameter ensures that the

import records export SCN information for each object imported.

The following is an example import command:

imp hr/hr FILE=hr_schema.dmp FROMUSER=hr IGNORE=y COMMIT=y LOG=import.log
STREAMS_INSTANTIATION=y

*/

PAUSE Press <RETURN> to continue after the import is complete at dbs5.net.

/*

Step 12 Drop the Supplemental Log Groups at dbs5.net
When you instantiated the hr schema at dbs5.net , the supplemental log groups

from dbs1.net were retained. These log groups are not needed at dbs5.net
because no capture process captures changes to the tables in the hr schema at

dbs5.net . You can remove the log groups to avoid extraneous information in the

redo log at dbs5.net .

See Also: Oracle9i Database Utilities for information about

performing an import
Single Source Heterogeneous Replication Example 22-87

Add a Database to an Existing Streams Replication Environment
Connect to dbs5.net as the hr user.

*/

CONNECT hr/hr@dbs5.net

/*

Drop the supplemental log groups at dbs5.net .

*/

ALTER TABLE hr.countries DROP SUPPLEMENTAL LOG GROUP log_group_countries_pk;

ALTER TABLE hr.departments DROP SUPPLEMENTAL LOG GROUP log_group_departments_pk;

ALTER TABLE hr.employees DROP SUPPLEMENTAL LOG GROUP log_group_employees_pk;

ALTER TABLE hr.jobs DROP SUPPLEMENTAL LOG GROUP log_group_jobs_pk;

ALTER TABLE hr.job_history DROP SUPPLEMENTAL LOG GROUP log_group_job_history_pk;

ALTER TABLE hr.locations DROP SUPPLEMENTAL LOG GROUP log_group_locations_pk;

ALTER TABLE hr.regions DROP SUPPLEMENTAL LOG GROUP log_group_regions_pk;

/*

Step 13 Start the Apply Process at dbs5.net
Connect as the Streams administrator at dbs5.net .

*/

CONNECT strmadmin/strmadminpw@dbs5.net

/*
22-88 Oracle9i Streams

Add a Database to an Existing Streams Replication Environment
Set the disable_on_error parameter to n so that the apply process will not be

disabled if it encounters an error, and start apply process at dbs5.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply');
END;
/

/*

Step 14 Check the Spool Results
Check the streams_adddb.out spool file to ensure that all actions finished

successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
Single Source Heterogeneous Replication Example 22-89

Make a DML Change to the hr.departments Table
Make a DML Change to the hr.departments Table
After completing the examples described in the "Add a Database to an Existing

Streams Replication Environment" section on page 22-76, you can make DML and

DDL changes to the tables in the hr schema at the dbs1.net database. These

changes will be replicated to dbs5.net . You can check these tables at dbs5.net to

see that the changes have been replicated.

For example, complete the following steps to make a DML change to the

hr.departments table at dbs1.net . Then, query the hr.departments table at

dbs5.net to see that the change has been replicated.

Step 1 Make a DML Change to the hr.departments Table
Make the following change:

CONNECT hr/hr@dbs1.net

UPDATE hr.departments SET location_id=2400 WHERE department_id=270;
COMMIT;

Step 2 Query the hr.departments Table at dbs5.net
After some time passes to allow for capture, propagation, and apply of the change

performed in the previous step, run the following query to confirm that the UPDATE
change made to the hr.departments table at dbs1.net has been applied to the

hr.departments table at dbs5.net .

CONNECT hr/hr@dbs5.net

SELECT location_id FROM hr.departments WHERE department_id=270;

You should see 2400 for the value of the location_id .
22-90 Oracle9i Streams

Multiple Source Replication
23

Multiple Source Replication Example

This chapter illustrates an example of a multiple source replication environment

that can be constructed using Streams.

This chapter contains these topics:

■ Overview of the Multiple Source Databases Example

■ Prerequisites

■ Set Up Users and Create Queues and Database Links

■ Example Script for Sharing Data from Multiple Databases

■ Make DML and DDL Changes to Tables in the hr Schema
Example 23-1

Overview of the Multiple Source Databases Example
Overview of the Multiple Source Databases Example
This example illustrates using Streams to replicate data for a schema among three

Oracle databases. DML and DDL changes made to tables in the hr schema are

captured at all databases in the environment and propagated to each of the other

databases in the environment.

Figure 23–1 provides an overview of the environment.
23-2 Oracle9i Streams

Overview of the Multiple Source Databases Example
Figure 23–1 Example Environment That Shares Data from Multiple Databases

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
mult1.net

Capture_Process

capture_hr

Enqueue
DML and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
mult3.net

Capture Process

capture_hr

Enqueue
DML and DDL
Changes
to Tables

Tables

hr.countries
hr.departments
hr.employees
hr.job_history

hr.jobs
hr.locations
hr.regions

Oracle
Database
mult2.net

Capture_Process

capture_hr

Apply Process

apply_from_mult3

Apply Process

apply_from_mult1

Enqueue
DML and DDL
Changes
to Tables

mult1_to_mult3

mult3_to_mult1

mult2_to_mult1

mult1_to_mult2

mult2_to_mult3

mult3_to_mult2

strmadmin.streams_queue strmadmin.streams_queue

strmadmin.streams_queue

Apply Process

apply_from_mult3

Apply Process

apply_from_mult2

Apply Process

apply_from_mult2

Apply Process

apply_from_mult1

Dequeue changes

Apply changes

Dequeue changes

Apply changes

Dequeue changes

Apply changes
Multiple Source Replication Example 23-3

Overview of the Multiple Source Databases Example
As illustrated in Figure 23–1, all of the databases will contain the hr schema when

the example is complete. However, at the beginning of the example, the hr schema

exists only at mult1.net . During the example, you instantiate the hr schema at

mult2.net and mult3.net .

In this example, Streams is used to perform the following series of actions:

1. After instantiation, the capture process at each database captures DML and

DDL changes for all of the tables in the hr schema and enqueues them into a

local queue.

2. Each database propagates these changes to all of the other databases in the

environment.

3. The apply process at each database applies changes in the hr schema received

from the other databases in the environment.

This example uses only one queue for each database, but you can use multiple

queues for each database if you want to separate changes from different source

databases. In addition, this example avoids sending changes back to their source

database by using the default apply tag for the apply processes. When you create an

apply process, the changes applied by the apply process have redo entries with a

tag of '00' (double zero) by default. These changes are not recaptured because, by

default, rules created by the DBMS_STREAMS_ADM package have an

is_null_tag()='Y' condition by default, and this condition ensures that each

capture process captures a change in a redo entry only if the tag for the redo entry

is NULL.

See Also: Oracle9i Streams for more information about tags
23-4 Oracle9i Streams

Prerequisites
Prerequisites
The following prerequisites must be completed before you begin the example in this

chapter.

■ Set the following initialization parameters to the values indicated at each

database in the Streams environment:

– AQ_TM_PROCESSES: This parameter establishes queue monitor processes.

Values from 1 to 10 specify the number of queue monitor processes created

to monitor the messages. If AQ_TM_PROCESSES is not specified or is set

to 0, then the queue monitor processes are not created. In this example,

AQ_TM_PROCESSES should be set to at least 1.

Setting the parameter to 1 or more starts the specified number of queue

monitor processes. These queue monitor processes are responsible for

managing time-based operations of messages such as delay and expiration,

cleaning up retained messages after the specified retention time, and

cleaning up consumed messages if the retention time is 0.

– GLOBAL_NAMES: This parameter must be set to true . Make sure the global

names of the databases are mult1.net , mult2.net , and mult3.net .

– JOB_QUEUE_PROCESSES: This parameter must be set to at least 2 because

each database propagates events. It should be set to the same value as the

maximum number of jobs that can run simultaneously plus one.

– COMPATIBLE: This parameter must be set to 9.2.0 or higher.

– LOG_PARALLELISM: This parameter must be set to 1 because each database

that captures events.

Attention: You may need to modify other initialization parameter

settings for this example to run properly.

See Also: "Setting Initialization Parameters Relevant to Streams"

on page 11-4 for information about other initialization parameters

that are important in a Streams environment
Multiple Source Replication Example 23-5

Set Up Users and Create Queues and Database Links
■ Any database producing changes that will be captured must be running in

ARCHIVELOG mode. In this example, all databases are capturing changes, and

so all databases must be running in ARCHIVELOG mode.

■ Configure your network and Oracle Net so that all three databases can

communicate with each other.

Set Up Users and Create Queues and Database Links
This section illustrates how to set up users and create queues and database links for

a Streams replication environment that includes three Oracle databases. The

remaining parts of this example depend on the users and queues that you configure

in this section.

Complete the following steps to set up the users and to create the streams_queue
at all of the databases.

1. Show Output and Spool Results

2. Alter the hr.countries Table at mult1.net

3. Create an Alternate Tablespace for the LogMiner Tables at mult1.net

4. Set Up Users at mult1.net

5. Create the Streams Queue at mult1.net

6. Create the Database Links at mult1.net

7. Prepare the Tables at mult1.net for Latest Time Conflict Resolution

8. Create an Alternate Tablespace for the LogMiner Tables at mult2.net

9. Set Up Users at mult2.net

10. Create the Streams Queue at mult2.net

11. Create the Database Links at mult2.net

12. Drop All of the Tables in the hr Schema at mult2.net

13. Create an Alternate Tablespace for the LogMiner Tables at mult3.net

14. Set Up Users at mult3.net

See Also: Oracle9i Database Administrator’s Guide for information

about running a database in ARCHIVELOG mode

See Also: Oracle9i Net Services Administrator’s Guide
23-6 Oracle9i Streams

Set Up Users and Create Queues and Database Links
15. Create the Streams Queue at mult3.net

16. Create the Database Links at mult3.net

17. Drop All of the Tables in the hr Schema at mult3.net

18. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_setup_mult.out

/*

Step 2 Alter the hr.countries Table at mult1.net
Connect to mult1.net as the hr user.

*/

CONNECT hr/hr@mult1.net

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 23-24 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
Multiple Source Replication Example 23-7

Set Up Users and Create Queues and Database Links
Convert the hr.countries table from an index-organized table to a regular table.

Currently, the capture process cannot capture changes to index-organized tables.

*/

ALTER TABLE countries RENAME TO countries_orig;

CREATE TABLE hr.countries(
 country_id CHAR(2) CONSTRAINT country_id_nn_noiot NOT NULL,
 country_name VARCHAR2(40),
 region_id NUMBER,
 CONSTRAINT country_c_id_pk_noiot PRIMARY KEY (country_id));

ALTER TABLE hr.countries
ADD (CONSTRAINT countr_reg_fk_noiot

 FOREIGN KEY (region_id)
 REFERENCES regions(region_id));

INSERT INTO COUNTRIES (SELECT * FROM hr.countries_orig);

DROP TABLE hr.countries_orig CASCADE CONSTRAINTS;

ALTER TABLE locations
 ADD (CONSTRAINT loc_c_id_fk
 FOREIGN KEY (country_id)
 REFERENCES countries(country_id));

/*

Step 3 Create an Alternate Tablespace for the LogMiner Tables at mult1.net
By default, the LogMiner tables are in the SYSTEM tablespace, but the SYSTEM
tablespace may not have enough space for these tables once a capture process starts

to capture changes. Therefore, you must create an alternate tablespace for the

LogMiner tables.

See Also: "Alternate Tablespace for LogMiner Tables" on

page 2-20
23-8 Oracle9i Streams

Set Up Users and Create Queues and Database Links
Connect to mult1.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@mult1.net AS SYSDBA

/*

Create an alternate tablespace for the LogMiner tables.

*/

ACCEPT tspace_name DEFAULT 'logmnrts' PROMPT 'Enter the name of the tablespace
(for example, logmnrts): '

ACCEPT db_file_directory DEFAULT '' PROMPT 'Enter the complete path to the
datafile directory (for example, /usr/oracle/dbs): '

ACCEPT db_file_name DEFAULT 'logmnrts.dbf' PROMPT 'Enter the name of the
datafile (for example, logmnrts.dbf): '

CREATE TABLESPACE &tspace_name DATAFILE '&db_file_directory/&db_file_name'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE('&tspace_name');

/*

Step 4 Set Up Users at mult1.net
Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.

Note: Each ACCEPT command must appear on a single line in the

script.
Multiple Source Replication Example 23-9

Set Up Users and Create Queues and Database Links
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on mult1.net:
'

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_CAPTURE_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_PROPAGATION_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.

See Also: "Configuring a Streams Administrator" on page 11-2
23-10 Oracle9i Streams

Set Up Users and Create Queues and Database Links
BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 5 Create the Streams Queue at mult1.net
Connect as the Streams administrator at mult1.net .

*/

CONNECT strmadmin/strmadminpw@mult1.net

/*

Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

mult1.net . This queue will function as the Streams queue by holding the changes

that will be applied at this database and the changes that will be propagated to

other databases.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.

*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*
Multiple Source Replication Example 23-11

Set Up Users and Create Queues and Database Links
Step 6 Create the Database Links at mult1.net
Create database links from the current database to the other databases in the

environment.

*/

CREATE DATABASE LINK mult2.net CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'mult2.net';

CREATE DATABASE LINK mult3.net CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'mult3.net';

/*

Step 7 Prepare the Tables at mult1.net for Latest Time Conflict Resolution
This example will configure the tables in the hr schema for conflict resolution based

on the latest time for a transaction.

Connect to mult1.net as the hr user.

*/

CONNECT hr/hr@mult1.net

/*

Add a time column to each table in the hr schema.

*/

ALTER TABLE hr.countries ADD (time TIMESTAMP WITH TIME ZONE);
ALTER TABLE hr.departments ADD (time TIMESTAMP WITH TIME ZONE);
ALTER TABLE hr.employees ADD (time TIMESTAMP WITH TIME ZONE);
ALTER TABLE hr.job_history ADD (time TIMESTAMP WITH TIME ZONE);
ALTER TABLE hr.jobs ADD (time TIMESTAMP WITH TIME ZONE);
ALTER TABLE hr.locations ADD (time TIMESTAMP WITH TIME ZONE);
ALTER TABLE hr.regions ADD (time TIMESTAMP WITH TIME ZONE);

/*
23-12 Oracle9i Streams

Set Up Users and Create Queues and Database Links
Create a trigger for each table in the hr schema to insert the time of a transaction for

each row inserted or updated by the transaction.

*/

CREATE OR REPLACE TRIGGER hr.insert_time_countries
BEFORE
 INSERT OR UPDATE ON hr.countries FOR EACH ROW
BEGIN
 -- Consider time synchronization problems. The previous update to this
 -- row may have originated from a site with a clock time ahead of the
 -- local clock time.
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

CREATE OR REPLACE TRIGGER hr.insert_time_departments
BEFORE
 INSERT OR UPDATE ON hr.departments FOR EACH ROW
BEGIN
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

CREATE OR REPLACE TRIGGER hr.insert_time_employees
BEFORE
 INSERT OR UPDATE ON hr.employees FOR EACH ROW
BEGIN
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

Multiple Source Replication Example 23-13

Set Up Users and Create Queues and Database Links
CREATE OR REPLACE TRIGGER hr.insert_time_job_history
BEFORE
 INSERT OR UPDATE ON hr.job_history FOR EACH ROW
BEGIN
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

CREATE OR REPLACE TRIGGER hr.insert_time_jobs
BEFORE
 INSERT OR UPDATE ON hr.jobs FOR EACH ROW
BEGIN
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

CREATE OR REPLACE TRIGGER hr.insert_time_locations
BEFORE
 INSERT OR UPDATE ON hr.locations FOR EACH ROW
BEGIN
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

23-14 Oracle9i Streams

Set Up Users and Create Queues and Database Links
CREATE OR REPLACE TRIGGER hr.insert_time_regions
BEFORE
 INSERT OR UPDATE ON hr.regions FOR EACH ROW
BEGIN
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

/*

Step 8 Create an Alternate Tablespace for the LogMiner Tables at mult2.net
By default, the LogMiner tables are in the SYSTEM tablespace, but the SYSTEM
tablespace may not have enough space for these tables once a capture process starts

to capture changes. Therefore, you must create an alternate tablespace for the

LogMiner tables.

Connect to mult2.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@mult2.net AS SYSDBA

/*

Create an alternate tablespace for the LogMiner tables.

See Also: "Alternate Tablespace for LogMiner Tables" on

page 2-20

Note: Each ACCEPT command must appear on a single line in the

script.
Multiple Source Replication Example 23-15

Set Up Users and Create Queues and Database Links
*/

ACCEPT tspace_name DEFAULT 'logmnrts' PROMPT 'Enter the name of the tablespace
(for example, logmnrts): '

ACCEPT db_file_directory DEFAULT '' PROMPT 'Enter the complete path to the
datafile directory (for example, /usr/oracle/dbs): '

ACCEPT db_file_name DEFAULT 'logmnrts.dbf' PROMPT 'Enter the name of the
datafile (for example, logmnrts.dbf): '

CREATE TABLESPACE &tspace_name DATAFILE '&db_file_directory/&db_file_name'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE('&tspace_name');

/*

Step 9 Set Up Users at mult2.net
Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.

See Also: "Configuring a Streams Administrator" on page 11-2
23-16 Oracle9i Streams

Set Up Users and Create Queues and Database Links
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on mult2.net:
'

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_CAPTURE_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_FLASHBACK TO strmadmin;
GRANT EXECUTE ON DBMS_PROPAGATION_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 10 Create the Streams Queue at mult2.net
Connect as the Streams administrator at mult2.net .

*/

CONNECT strmadmin/strmadminpw@mult2.net

/*
Multiple Source Replication Example 23-17

Set Up Users and Create Queues and Database Links
Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

mult2.net . This queue will function as the Streams queue by holding the changes

that will be applied at this database and the changes that will be propagated to

other databases.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.

*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*

Step 11 Create the Database Links at mult2.net
Create database links from the current database to the other databases in the

environment.

*/

CREATE DATABASE LINK mult1.net CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'mult1.net';

CREATE DATABASE LINK mult3.net CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'mult3.net';

/*

Step 12 Drop All of the Tables in the hr Schema at mult2.net
This example illustrates instantiating the tables in the hr schema at mult2.net by

exporting these tables from mult1.net and importing them into mult2.net . You

must drop the tables in the hr schema at mult2.net for the instantiation portion

of this example to work properly.
23-18 Oracle9i Streams

Set Up Users and Create Queues and Database Links
Connect as hr at mult2.net .

*/

CONNECT hr/hr@mult2.net

/*

Drop all tables in the hr schema in the mult2.net database.

*/

DROP TABLE hr.countries CASCADE CONSTRAINTS;
DROP TABLE hr.departments CASCADE CONSTRAINTS;
DROP TABLE hr.employees CASCADE CONSTRAINTS;
DROP TABLE hr.job_history CASCADE CONSTRAINTS;
DROP TABLE hr.jobs CASCADE CONSTRAINTS;
DROP TABLE hr.locations CASCADE CONSTRAINTS;
DROP TABLE hr.regions CASCADE CONSTRAINTS;

/*

Step 13 Create an Alternate Tablespace for the LogMiner Tables at mult3.net
By default, the LogMiner tables are in the SYSTEM tablespace, but the SYSTEM
tablespace may not have enough space for these tables once a capture process starts

to capture changes. Therefore, you must create an alternate tablespace for the

LogMiner tables.

Attention: If you complete the following steps and drop the tables

in the hr schema at mult2.net , then you should complete the

remaining steps of this example to reinstantiate the hr schema. If

the hr schema does not exist in an Oracle database, then some

examples in the Oracle documentation set may fail.

See Also: "Alternate Tablespace for LogMiner Tables" on

page 2-20
Multiple Source Replication Example 23-19

Set Up Users and Create Queues and Database Links
Connect to mult3.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@mult3.net AS SYSDBA

/*

Create an alternate tablespace for the LogMiner tables.

*/

ACCEPT tspace_name DEFAULT 'logmnrts' PROMPT 'Enter the name of the tablespace
(for example, logmnrts): '

ACCEPT db_file_directory DEFAULT '' PROMPT 'Enter the complete path to the
datafile directory (for example, /usr/oracle/dbs): '

ACCEPT db_file_name DEFAULT 'logmnrts.dbf' PROMPT 'Enter the name of the
datafile (for example, logmnrts.dbf): '

CREATE TABLESPACE &tspace_name DATAFILE '&db_file_directory/&db_file_name'
 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE('&tspace_name');

/*

Step 14 Set Up Users at mult3.net
Create the Streams administrator named strmadmin and grant this user the

necessary privileges. These privileges enable the user to manage queues, execute

subprograms in packages related to Streams, create rule sets, create rules, and

monitor the Streams environment by querying data dictionary views and queue

tables. You may choose a different name for this user.

Note: Each ACCEPT command must appear on a single line in the

script.
23-20 Oracle9i Streams

Set Up Users and Create Queues and Database Links
*/

GRANT CONNECT, RESOURCE, SELECT_CATALOG_ROLE
 TO strmadmin IDENTIFIED BY strmadminpw;

ACCEPT streams_tbs PROMPT 'Enter Streams administrator tablespace on mult3.net:
'

ALTER USER strmadmin DEFAULT TABLESPACE &streams_tbs
 QUOTA UNLIMITED ON &streams_tbs;

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_AQADM TO strmadmin;
GRANT EXECUTE ON DBMS_CAPTURE_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_FLASHBACK TO strmadmin;
GRANT EXECUTE ON DBMS_PROPAGATION_ADM TO strmadmin;
GRANT EXECUTE ON DBMS_STREAMS_ADM TO strmadmin;

Note:

■ To ensure security, use a password other than strmadminpw
for the Streams administrator.

■ The SELECT_CATALOG_ROLE is not required for the Streams

administrator. It is granted in this example so that the Streams

administrator can monitor the environment easily.

■ If you plan to use the Streams tool in Oracle Enterprise

Manager, then grant the Streams administrator SELECT ANY
DICTIONARY privilege, in addition to the privileges shown in

this step.

■ The ACCEPT command must appear on a single line in the

script.

See Also: "Configuring a Streams Administrator" on page 11-2
Multiple Source Replication Example 23-21

Set Up Users and Create Queues and Database Links
BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'strmadmin',
 grant_option => FALSE);
END;
/

/*

Step 15 Create the Streams Queue at mult3.net
Connect as the Streams administrator at mult3.net .

*/

CONNECT strmadmin/strmadminpw@mult3.net

/*

Run the SET_UP_QUEUE procedure to create a queue named streams_queue at

mult3.net . This queue will function as the Streams queue by holding the changes

that will be applied at this database and the changes that will be propagated to

other databases.

Running the SET_UP_QUEUE procedure performs the following actions:

■ Creates a queue table named streams_queue_table . This queue table is

owned by the Streams administrator (strmadmin) and uses the default storage

of this user.

■ Creates a queue named streams_queue owned by the Streams administrator

(strmadmin).

■ Starts the queue.
23-22 Oracle9i Streams

Set Up Users and Create Queues and Database Links
*/

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

/*

Step 16 Create the Database Links at mult3.net
Create database links from the current database to the other databases in the

environment.

*/

CREATE DATABASE LINK mult1.net CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'mult1.net';

CREATE DATABASE LINK mult2.net CONNECT TO strmadmin
 IDENTIFIED BY strmadminpw USING 'mult2.net';

/*

Step 17 Drop All of the Tables in the hr Schema at mult3.net
This example illustrates instantiating the tables in the hr schema at mult3.net by

exporting these tables from mult1.net and importing them into mult3.net . You

must drop the tables in the hr schema at mult3.net for the instantiation portion

of this example to work properly.

Connect as hr at mult3.net .

*/

CONNECT hr/hr@mult3.net

/*

Attention: If you complete the following steps and drop the tables

in the hr schema at mult3.net , then you should complete the

remaining steps of this example to reinstantiate the hr schema. If

the hr schema does not exist in an Oracle database, then some

examples in the Oracle documentation set may fail.
Multiple Source Replication Example 23-23

Set Up Users and Create Queues and Database Links
Drop all tables in the hr schema in the mult3.net database.

*/

DROP TABLE hr.countries CASCADE CONSTRAINTS;
DROP TABLE hr.departments CASCADE CONSTRAINTS;
DROP TABLE hr.employees CASCADE CONSTRAINTS;
DROP TABLE hr.job_history CASCADE CONSTRAINTS;
DROP TABLE hr.jobs CASCADE CONSTRAINTS;
DROP TABLE hr.locations CASCADE CONSTRAINTS;
DROP TABLE hr.regions CASCADE CONSTRAINTS;

/*

Step 18 Check the Spool Results
Check the streams_setup_mult.out spool file to ensure that all actions finished

successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
23-24 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Example Script for Sharing Data from Multiple Databases
Complete the following steps to configure a Streams environment that shares

information from multiple databases.

1. Show Output and Spool Results

2. Specify Supplemental Logging at mult1.net

3. Create the Capture Process at mult1.net

4. Create One Apply Process at mult1.net for Each Source Database

5. Specify hr as the Apply User for Each Apply Process at mult1.net

6. Grant the hr User Execute Privilege on the Apply Process Rule Set

7. Configure Latest Time Conflict Resolution at mult1.net

8. Configure Propagation at mult1.net

9. Create the Capture Process at mult2.net.

10. Set the Instantiation SCN for mult2.net at the Other Databases

11. Create One Apply Process at mult2.net for Each Source Database

12. Specify hr as the Apply User for Each Apply Process at mult2.net

13. Grant the hr User Execute Privilege on the Apply Process Rule Set

14. Configure Propagation at mult2.net

15. Create the Capture Process at mult3.net

16. Set the Instantiation SCN for mult3.net at the Other Databases

17. Create One Apply Process at mult3.net for Each Source Database

18. Specify hr as the Apply User for Each Apply Process at mult3.net

19. Grant the hr User Execute Privilege on the Apply Process Rule Set

20. Configure Propagation at mult3.net

21. Instantiate the hr Schema at mult2.net and mult3.net

22. Configure Latest Time Conflict Resolution at mult2.net

23. Start the Apply Processes at mult2.net

24. Configure Latest Time Conflict Resolution at mult3.net

25. Start the Apply Processes at mult3.net
Multiple Source Replication Example 23-25

Example Script for Sharing Data from Multiple Databases
26. Start the Apply Processes at mult1.net

27. Start the Capture Process at mult1.net

28. Start the Capture Process at mult2.net

29. Start the Capture Process at mult3.net

30. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL streams_mult.out

/*

Step 2 Specify Supplemental Logging at mult1.net
Connect to mult1.net as SYS user.

*/

CONNECT SYS/CHANGE_ON_INSTALL@mult1.net AS SYSDBA

/*

Specify an unconditional supplemental log group that includes the primary key for

each table and the column list for each table, as specified in "Configure Latest Time

Conflict Resolution at mult1.net" on page 23-32.

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 23-61 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
23-26 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
*/

ALTER TABLE hr.countries ADD SUPPLEMENTAL LOG GROUP log_group_countries
 (country_id, country_name, region_id, time) ALWAYS;

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG GROUP log_group_departments
 (department_id, department_name, manager_id, location_id, time) ALWAYS;

ALTER TABLE hr.employees ADD SUPPLEMENTAL LOG GROUP log_group_employees
 (employee_id, first_name, last_name, email, phone_number, hire_date, job_id,
 salary, commission_pct, manager_id, department_id, time) ALWAYS;

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP log_group_jobs
 (job_id, job_title, min_salary, max_salary, time) ALWAYS;

ALTER TABLE hr.job_history ADD SUPPLEMENTAL LOG GROUP log_group_job_history
 (employee_id, start_date, end_date, job_id, department_id, time) ALWAYS;

Note:

■ For convenience, this example includes the primary key

column(s) for each table and the columns used for update

conflict resolution in a single unconditional log group. You may

choose to place the primary key column(s) for each table in an

unconditional log group and the columns used for update

conflict resolution in a conditional log group.

■ You do not need to specify supplemental logging explicitly at

mult2.net and mult3.net in this example. When you use

export/import to instantiate the tables in the hr schema at

these databases later in this example, the supplemental logging

specifications at mult1.net are retained at mult2.net and

mult3.net .

See Also:

■ "Supplemental Logging in a Streams Environment" on

page 2-11

■ "Specifying Supplemental Logging at a Source Database" on

page 12-9
Multiple Source Replication Example 23-27

Example Script for Sharing Data from Multiple Databases
ALTER TABLE hr.locations ADD SUPPLEMENTAL LOG GROUP log_group_locations
 (location_id, street_address, postal_code, city, state_province,
 country_id, time) ALWAYS;

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG GROUP log_group_regions
 (region_id, region_name, time) ALWAYS;

/*

Step 3 Create the Capture Process at mult1.net
Connect to mult1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@mult1.net

/*

Create the capture process to capture changes to the entire hr schema at

mult1.net . After this step is complete, users can modify tables in the hr schema at

mult1.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'capture_hr',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true);

END;
/

/*
23-28 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Step 4 Create One Apply Process at mult1.net for Each Source Database
Configure mult1.net to apply changes to the hr schema at mult2.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply_from_mult2',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'mult2.net');
END;
/

/*

Configure mult1.net to apply changes to the hr schema at mult3.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply_from_mult3',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'mult3.net');
END;
/

/*
Multiple Source Replication Example 23-29

Example Script for Sharing Data from Multiple Databases
Step 5 Specify hr as the Apply User for Each Apply Process at mult1.net
In this example, the hr user owns all of the database objects for which changes are

applied by the apply process at this database. Therefore, hr already has the

necessary privileges to change these database objects, and it is convenient to make

hr the apply user.

When the apply process was created in the previous step, the Streams administrator

strmadmin was specified as the apply user by default, because strmadmin ran the

procedure that created the apply process. Instead of specifying hr as the apply user,

you could retain strmadmin as the apply user, but then you must grant

strmadmin privileges on all of the database objects for which changes are applied

and privileges to execute all user procedures used by the apply process. In an

environment where an apply process applies changes to database objects in

multiple schemas, it may be more convenient to use the Streams administrator as

the apply user.

*/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply_from_mult2',
 apply_user => 'hr');
END;
/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply_from_mult3',
 apply_user => 'hr');
END;
/

/*

See Also: "Configuring a Streams Administrator" on page 11-2
23-30 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Step 6 Grant the hr User Execute Privilege on the Apply Process Rule Set
Because the hr user was specified as the apply user in the previous step, the hr user

requires execute privilege on the rule set used by each apply process

*/

DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY_FROM_MULT2';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY_FROM_MULT3';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

/*
Multiple Source Replication Example 23-31

Example Script for Sharing Data from Multiple Databases
Step 7 Configure Latest Time Conflict Resolution at mult1.net
Specify an update conflict handler for each table in the hr schema. For each table,

designate the time column as the resolution column for a MAXIMUM conflict

handler. When an update conflict occurs, such an update conflict handler applies

the transaction with the latest (or greater) time and discards the transaction with the

earlier (or lesser) time. The column lists for each table do not include the primary

key because this example assumes that primary key values are never updated.

*/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'country_name';
 cols(2) := 'region_id';
 cols(3) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.countries',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'department_name';
 cols(2) := 'manager_id';
 cols(3) := 'location_id';
 cols(4) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.departments',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

23-32 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 cols(9) := 'manager_id';
 cols(10) := 'department_id';
 cols(11) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.employees',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 cols(4) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

Multiple Source Replication Example 23-33

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'employee_id';
 cols(2) := 'start_date';
 cols(3) := 'end_date';
 cols(4) := 'job_id';
 cols(5) := 'department_id';
 cols(6) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.job_history',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'street_address';
 cols(2) := 'postal_code';
 cols(3) := 'city';
 cols(4) := 'state_province';
 cols(5) := 'country_id';
 cols(6) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.locations',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

23-34 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'region_name';
 cols(2) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.regions',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

/*

Step 8 Configure Propagation at mult1.net
Configure and schedule propagation of DML and DDL changes in the hr schema

from the queue at mult1.net to the queue at mult2.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(

 schema_name => 'hr',
 streams_name => 'mult1_to_mult2',
 source_queue_name => 'strmadmin.streams_queue',
 destination_queue_name => 'strmadmin.streams_queue@mult2.net',
 include_dml => true,

 include_ddl => true,
 source_database => 'mult1.net');

END;
/

/*
Multiple Source Replication Example 23-35

Example Script for Sharing Data from Multiple Databases
Configure and schedule propagation of DML and DDL changes in the hr schema

from the queue at mult1.net to the queue at mult3.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(

 schema_name => 'hr',
 streams_name => 'mult1_to_mult3',
 source_queue_name => 'strmadmin.streams_queue',
 destination_queue_name => 'strmadmin.streams_queue@mult3.net',
 include_dml => true,

 include_ddl => true,
 source_database => 'mult1.net');

END;
/

/*

Step 9 Create the Capture Process at mult2.net.
Connect to mult2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@mult2.net

/*

Create the capture process to capture changes to the entire hr schema at

mult2.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'capture_hr',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true);

END;
/

/*
23-36 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Step 10 Set the Instantiation SCN for mult2.net at the Other Databases
In this example, the hr schema already exists at all of the databases. The tables in

the schema exist only at mult1.net until they are instantiated at mult2.net and

mult3.net in Step 21. The instantiation is done using an export of the tables from

mult1.net . These export/import operations set the schema instantiation SCNs for

mult1.net at mult2.net and mult3.net automatically.

However, the instantiation SCNs for mult2.net and mult3.net are not set

automatically at the other sites in the environment. This step sets the schema

instantiation SCN for mult2.net manually at mult1.net and mult3.net . The

current SCN at mult2.net is obtained by using the

GET_SYSTEM_CHANGE_NUMBER function in the DBMS_FLASHBACK package at

mult2.net . This SCN is used at mult1.net and mult3.net to run the

SET_SCHEMA_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package.

The SET_SCHEMA_INSTANTIATION_SCN procedure controls which DDL LCRs for

a schema are ignored by an apply process and which DDL LCRs for a schema are

applied by an apply process. If the commit SCN of a DDL LCR for a database object

in a schema from a source database is less than or equal to the instantiation SCN for

that database object at some destination database, then the apply process at the

destination database disregards the DDL LCR. Otherwise, the apply process applies

the DDL LCR.

Because you are running the SET_SCHEMA_INSTANTIATION_SCN procedure

before the tables are instantiated at mult2.net , and because the local capture

process is configured already, you do not need to run the

SET_TABLE_INSTANTIATION_SCN for each table after the instantiation. In this

example, an apply process at both mult1.net and mult3.net will apply

transactions to the tables in the hr schema with SCNs that were committed after the

SCN obtained in this step.

Note:

■ In a case where you are instantiating a schema that does not

exist, you can set the global instantiation SCN instead of the

schema instantiation SCN.

■ In a case where the tables are instantiated before you set the

instantiation SCN, you must set the schema instantiation SCN

and the instantiation SCN for each table in the schema.
Multiple Source Replication Example 23-37

Example Script for Sharing Data from Multiple Databases
*/

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN@MULT1.NET(
 source_schema_name => 'hr',
 source_database_name => 'mult2.net',
 instantiation_scn => iscn);
 DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN@MULT3.NET(
 source_schema_name => 'hr',
 source_database_name => 'mult2.net',
 instantiation_scn => iscn);
END;
/

/*

Step 11 Create One Apply Process at mult2.net for Each Source Database
Configure mult2.net to apply changes to the hr schema at mult1.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply_from_mult1',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'mult1.net');
END;
/

/*
23-38 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Configure mult2.net to apply changes to the hr schema at mult3.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply_from_mult3',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'mult3.net');
END;
/

/*

Step 12 Specify hr as the Apply User for Each Apply Process at mult2.net
In this example, the hr user owns all of the database objects for which changes are

applied by the apply process at this database. Therefore, hr already has the

necessary privileges to change these database objects, and it is convenient to make

hr the apply user.

When the apply process was created in the previous step, the Streams administrator

strmadmin was specified as the apply user by default, because strmadmin ran the

procedure that created the apply process. Instead of specifying hr as the apply user,

you could retain strmadmin as the apply user, but then you must grant

strmadmin privileges on all of the database objects for which changes are applied

and privileges to execute all user procedures used by the apply process. In an

environment where an apply process applies changes to database objects in

multiple schemas, it may be more convenient to use the Streams administrator as

the apply user.

See Also: "Configuring a Streams Administrator" on page 11-2
Multiple Source Replication Example 23-39

Example Script for Sharing Data from Multiple Databases
*/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply_from_mult1',
 apply_user => 'hr');
END;
/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply_from_mult3',
 apply_user => 'hr');
END;
/

/*

Step 13 Grant the hr User Execute Privilege on the Apply Process Rule Set
Because the hr user was specified as the apply user in the previous step, the hr user

requires execute privilege on the rule set used by each apply process

*/

DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY_FROM_MULT1';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

23-40 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY_FROM_MULT3';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

/*

Step 14 Configure Propagation at mult2.net
Configure and schedule propagation of DML and DDL changes in the hr schema

from the queue at mult2.net to the queue at mult1.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name => 'hr',

streams_name => 'mult2_to_mult1',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@mult1.net',

 include_dml => true,
 include_ddl => true,

source_database => 'mult2.net');
END;
/

/*
Multiple Source Replication Example 23-41

Example Script for Sharing Data from Multiple Databases
Configure and schedule propagation of DML and DDL changes in the hr schema

from the queue at mult2.net to the queue at mult3.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name => 'hr',

streams_name => 'mult2_to_mult3',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@mult3.net',

 include_dml => true,
 include_ddl => true,

source_database => 'mult2.net');
END;
/

/*

Step 15 Create the Capture Process at mult3.net
Connect to mult3.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@mult3.net

/*

Create the capture process to capture changes to the entire hr schema at

mult3.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'capture_hr',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true);

END;
/

/*
23-42 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Step 16 Set the Instantiation SCN for mult3.net at the Other Databases
In this example, the hr schema already exists at all of the databases. The tables in

the schema exist only at mult1.net until they are instantiated at mult2.net and

mult3.net in Step 21. The instantiation is done using an export of the tables from

mult1.net . These export/import operations set the schema instantiation SCNs for

mult1.net at mult2.net and mult3.net automatically.

However, the instantiation SCNs for mult2.net and mult3.net are not set

automatically at the other sites in the environment. This step sets the schema

instantiation SCN for mult3.net manually at mult1.net and mult2.net . The

current SCN at mult3.net is obtained by using the

GET_SYSTEM_CHANGE_NUMBER function in the DBMS_FLASHBACK package at

mult3.net . This SCN is used at mult1.net and mult2.net to run the

SET_SCHEMA_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package.

The SET_SCHEMA_INSTANTIATION_SCN procedure controls which DDL LCRs for

a schema are ignored by an apply process and which DDL LCRs for a schema are

applied by an apply process. If the commit SCN of a DDL LCR for a database object

in a schema from a source database is less than or equal to the instantiation SCN for

that database object at some destination database, then the apply process at the

destination database disregards the DDL LCR. Otherwise, the apply process applies

the DDL LCR.

Because you are running the SET_SCHEMA_INSTANTIATION_SCN procedure

before the tables are instantiated at mult3.net , and because the local capture

process is configured already, you do not need to run the

SET_TABLE_INSTANTIATION_SCN for each table after the instantiation. In this

example, an apply process at both mult1.net and mult2.net will apply

transactions to the tables in the hr schema with SCNs that were committed after the

SCN obtained in this step.

Note:

■ In a case where you are instantiating a schema that does not

exist, you can set the global instantiation SCN instead of the

schema instantiation SCN.

■ In a case where the tables are instantiated before you set the

instantiation SCN, you must set the schema instantiation SCN

and the instantiation SCN for each table in the schema.
Multiple Source Replication Example 23-43

Example Script for Sharing Data from Multiple Databases
*/

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN@MULT1.NET(
 source_schema_name => 'hr',
 source_database_name => 'mult3.net',
 instantiation_scn => iscn);
 DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN@MULT2.NET(
 source_schema_name => 'hr',
 source_database_name => 'mult3.net',
 instantiation_scn => iscn);
END;
/

/*

Step 17 Create One Apply Process at mult3.net for Each Source Database
Configure mult3.net to apply changes to the hr schema at mult1.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply_from_mult1',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'mult1.net');
END;
/

/*
23-44 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Configure mult3.net to apply changes to the hr schema at mult2.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply_from_mult2',
 queue_name => 'strmadmin.streams_queue',

 include_dml => true,
 include_ddl => true,

 source_database => 'mult2.net');
END;
/

/*

Step 18 Specify hr as the Apply User for Each Apply Process at mult3.net
In this example, the hr user owns all of the database objects for which changes are

applied by the apply process at this database. Therefore, hr already has the

necessary privileges to change these database objects, and it is convenient to make

hr the apply user.

When the apply process was created in the previous step, the Streams administrator

strmadmin was specified as the apply user by default, because strmadmin ran the

procedure that created the apply process. Instead of specifying hr as the apply user,

you could retain strmadmin as the apply user, but then you must grant

strmadmin privileges on all of the database objects for which changes are applied

and privileges to execute all user procedures used by the apply process. In an

environment where an apply process applies changes to database objects in

multiple schemas, it may be more convenient to use the Streams administrator as

the apply user.

See Also: "Configuring a Streams Administrator" on page 11-2
Multiple Source Replication Example 23-45

Example Script for Sharing Data from Multiple Databases
*/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply_from_mult1',
 apply_user => 'hr');
END;
/

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'apply_from_mult2',
 apply_user => 'hr');
END;
/

/*

Step 19 Grant the hr User Execute Privilege on the Apply Process Rule Set
Because the hr user was specified as the apply user in the previous step, the hr user

requires execute privilege on the rule set used by each apply process

*/

DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY_FROM_MULT1';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

23-46 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
DECLARE
 rs_name VARCHAR2(64); -- Variable to hold rule set name
BEGIN
 SELECT RULE_SET_OWNER||'.'||RULE_SET_NAME
 INTO rs_name
 FROM DBA_APPLY
 WHERE APPLY_NAME='APPLY_FROM_MULT2';
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET,
 object_name => rs_name,
 grantee => 'hr');
END;
/

/*

Step 20 Configure Propagation at mult3.net
Configure and schedule propagation of DML and DDL changes in the hr schema

from the queue at mult3.net to the queue at mult1.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name => 'hr',

streams_name => 'mult3_to_mult1',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@mult1.net',

 include_dml => true,
 include_ddl => true,

source_database => 'mult3.net');
END;
/

/*
Multiple Source Replication Example 23-47

Example Script for Sharing Data from Multiple Databases
Configure and schedule propagation of DML and DDL changes in the hr schema

from the queue at mult3.net to the queue at mult2.net .

*/

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name => 'hr',

streams_name => 'mult3_to_mult2',
source_queue_name => 'strmadmin.streams_queue',
destination_queue_name => 'strmadmin.streams_queue@mult2.net',

 include_dml => true,
 include_ddl => true,

source_database => 'mult3.net');
END;
/

/*

Step 21 Instantiate the hr Schema at mult2.net and mult3.net
Open a different window and export the schema at mult1.net that will be

instantiated at mult2.net and mult3.net . Make sure you set the

OBJECT_CONSISTENT export parameter to y when you run the export command.

Also, make sure no DDL changes are made to the objects being exported during the

export.

The following is an example export command:

exp hr/hr FILE=hr_schema.dmp OWNER=hr OBJECT_CONSISTENT=y

*/

PAUSE Press <RETURN> to continue when the export is complete in the other window
that you opened.

/*

Transfer the export dump file hr_schema.dmp to the destination databases. In this

example, the destination databases are mult2.net and mult3.net .

See Also: Oracle9i Database Utilities for information about

performing an export
23-48 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
You can use binary FTP or some other method to transfer the export dump file to

the destination database. You may need to open a different window to transfer the

file.

*/

PAUSE Press <RETURN> to continue after transferring the dump file to all of the
other databases in the environment.

/*

In a different window, connect to the computer that runs the mult2.net database

and import the export dump file hr_schema.dmp to instantiate the tables in the

mult2.net database. You can use telnet or remote login to connect to the computer

that runs mult2.net .

When you run the import command, make sure you set the

STREAMS_INSTANTIATIONimport parameter to y. This parameter ensures that the

import records export SCN information for each object imported.

Also, make sure no changes are made to the tables in the schema being imported at

the destination database (mult2.net) until the import is complete and the capture

process is created.

The following is an example import command:

imp hr/hr FILE=hr_schema.dmp FROMUSER=hr IGNORE=y COMMIT=y LOG=import.log
STREAMS_INSTANTIATION=y

*/

PAUSE Press <RETURN> to continue after the import is complete at mult2.net.

/*

In a different window, connect to the computer that runs the mult3.net database

and import the export dump file hr_schema.dmp to instantiate the tables in the

mult3.net database.

See Also: Oracle9i Database Utilities for information about

performing an import
Multiple Source Replication Example 23-49

Example Script for Sharing Data from Multiple Databases
After you connect to mult3.net , perform the import in the same way that you did

for mult2.net .

*/

PAUSE Press <RETURN> to continue after the import is complete at mult3.net.

/*

Step 22 Configure Latest Time Conflict Resolution at mult2.net
Connect to mult2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@mult2.net

/*

Specify an update conflict handler for each table in the hr schema. For each table,

designate the time column as the resolution column for a MAXIMUM conflict

handler. When an update conflict occurs, such an update conflict handler applies

the transaction with the latest (or greater) time and discards the transaction with the

earlier (or lesser) time.

*/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'country_name';
 cols(2) := 'region_id';
 cols(3) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.countries',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

23-50 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'department_name';
 cols(2) := 'manager_id';
 cols(3) := 'location_id';
 cols(4) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.departments',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 cols(9) := 'manager_id';
 cols(10) := 'department_id';
 cols(11) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.employees',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

Multiple Source Replication Example 23-51

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 cols(4) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'employee_id';
 cols(2) := 'start_date';
 cols(3) := 'end_date';
 cols(4) := 'job_id';
 cols(5) := 'department_id';
 cols(6) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.job_history',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

23-52 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'street_address';
 cols(2) := 'postal_code';
 cols(3) := 'city';
 cols(4) := 'state_province';
 cols(5) := 'country_id';
 cols(6) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.locations',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'region_name';
 cols(2) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.regions',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

/*

Step 23 Start the Apply Processes at mult2.net
Set the disable_on_error parameter to n for both apply processes so that they

will not be not disabled if they encounter an error, and start both of the apply

processes at mult2.net .
Multiple Source Replication Example 23-53

Example Script for Sharing Data from Multiple Databases
*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_from_mult1',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_from_mult1');
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_from_mult3',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_from_mult3');
END;
/

/*

Step 24 Configure Latest Time Conflict Resolution at mult3.net
Connect to mult3.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@mult3.net

/*
23-54 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Specify an update conflict handler for each table in the hr schema. For each table,

designate the time column as the resolution column for a MAXIMUM conflict

handler. When an update conflict occurs, such an update conflict handler applies

the transaction with the latest (or greater) time and discards the transaction with the

earlier (or lesser) time.

*/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'country_name';
 cols(2) := 'region_id';
 cols(3) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.countries',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'department_name';
 cols(2) := 'manager_id';
 cols(3) := 'location_id';
 cols(4) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.departments',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

Multiple Source Replication Example 23-55

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 cols(9) := 'manager_id';
 cols(10) := 'department_id';
 cols(11) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.employees',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 cols(4) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

23-56 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'employee_id';
 cols(2) := 'start_date';
 cols(3) := 'end_date';
 cols(4) := 'job_id';
 cols(5) := 'department_id';
 cols(6) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.job_history',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'street_address';
 cols(2) := 'postal_code';
 cols(3) := 'city';
 cols(4) := 'state_province';
 cols(5) := 'country_id';
 cols(6) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.locations',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

Multiple Source Replication Example 23-57

Example Script for Sharing Data from Multiple Databases
DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'region_name';
 cols(2) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.regions',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

/*

Step 25 Start the Apply Processes at mult3.net
Set the disable_on_error parameter to n for both apply processes so that they

will not be disabled if they encounter an error, and start both of the apply processes

at mult3.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_from_mult1',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_from_mult1');
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_from_mult2',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

23-58 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_from_mult2');
END;
/

/*

Step 26 Start the Apply Processes at mult1.net
Connect to mult1.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@mult1.net

/*

Set the disable_on_error parameter to n for both apply processes so that they

will not be disabled if they encounter an error, and start both of the apply processes

at mult1.net .

*/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_from_mult2',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_from_mult2');
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_from_mult3',
 parameter => 'disable_on_error',
 value => 'n');
END;
/

Multiple Source Replication Example 23-59

Example Script for Sharing Data from Multiple Databases
BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_from_mult3');
END;
/

/*

Step 27 Start the Capture Process at mult1.net
Start the capture process at mult1.net .

*/

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_hr');
END;
/

/*

Step 28 Start the Capture Process at mult2.net
Connect to mult2.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@mult2.net

/*

Start the capture process at mult2.net .

*/

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_hr');
END;
/

/*
23-60 Oracle9i Streams

Example Script for Sharing Data from Multiple Databases
Step 29 Start the Capture Process at mult3.net
Connect to mult3.net as the strmadmin user.

*/

CONNECT strmadmin/strmadminpw@mult3.net

/*

Start the capture process at mult3.net .

*/

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_hr');
END;
/

SET ECHO OFF

/*

Step 30 Check the Spool Results
Check the streams_mult.out spool file to ensure that all actions finished

successfully after this script is completed.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
Multiple Source Replication Example 23-61

Make DML and DDL Changes to Tables in the hr Schema
Make DML and DDL Changes to Tables in the hr Schema
You can make DML and DDL changes to the tables in the hr schema at any of the

databases in the environment. These changes will be replicated to the other

databases in the environment, and you can run queries to view the replicated data.

For example, complete the following steps to make DML changes to the

hr.employees table at mult1.net and mult2.net . To see the update conflict

handler you configured earlier resolve an update conflict, you can make a change to

the same row in these two databases and commit the changes at nearly the same

time. Then, you can query the hr.employees table at each database in the

environment to confirm that the changes were captured, propagated, and applied

correctly.

You can also make a DDL change to the hr.jobs table at mult3.net and then

confirm that the change was captured at mult3.net , propagated to the other

databases in the environment, and applied at these databases.

Step 1 Make a DML Change to hr.employees at mult.net and mult2.net
Make the following changes. Try to commit them at nearly the same time, but

commit the change at mult2.net after you commit the change at mult1.net .

CONNECT hr/hr@mult1.net

UPDATE hr.employees SET salary=9000 WHERE employee_id=206;
COMMIT;

CONNECT hr/hr@mult2.net

UPDATE hr.employees SET salary=10000 WHERE employee_id=206;
COMMIT;

Step 2 Alter the hr.jobs Table at mult3.net
Alter the hr.jobs table by renaming the job_title column to job_name :

CONNECT hr/hr@mult3.net

ALTER TABLE hr.jobs RENAME COLUMN job_title TO job_name;
23-62 Oracle9i Streams

Make DML and DDL Changes to Tables in the hr Schema
Step 3 Query the hr.employees Table at Each Database
After some time passes to allow for capture, propagation, and apply of the changes

performed in Step 1, run the following query to confirm that the UPDATE changes

have been applied at each database.

CONNECT hr/hr@mult1.net

SELECT salary FROM hr.employees WHERE employee_id=206;

CONNECT hr/hr@mult2.net

SELECT salary FROM hr.employees WHERE employee_id=206;

CONNECT hr/hr@mult3.net

SELECT salary FROM hr.employees WHERE employee_id=206;

All of the queries should show 10000 for the value of the salary.

Step 4 Describe the hr.jobs Table at Each Database
After some time passes to allow for capture, propagation, and apply of the change

performed in Step 2, describe the hr.jobs table at each database to confirm that

the ALTER TABLE change was propagated and applied correctly.

CONNECT hr/hr@mult1.net

DESC hr.jobs

CONNECT hr/hr@mult2.net

DESC hr.jobs

CONNECT hr/hr@mult3.net

DESC hr.jobs

Each database should show job_name as the second column in the table.
Multiple Source Replication Example 23-63

Make DML and DDL Changes to Tables in the hr Schema
23-64 Oracle9i Streams

Rule-Based Application
24

Rule-Based Application Example

This chapter illustrates a rule-based application that uses the Oracle rules engine.

This chapter contains these topics:

■ Overview of the Rule-Based Application

■ Using Rules on Non-Table Data Stored in Explicit Variables

■ Using Rules on Data Stored in a Table

■ Using Rules on Both Explicit Variables and Table Data

■ Using Rules on Implicit Variables and Table Data

Note: The examples in this chapter are independent of Streams.

That is, no Streams capture processes, propagations, or apply

processes are clients of the rules engine in these examples, and no

queues are used.

See Also:

■ Chapter 5, "Rules"

■ Chapter 15, "Managing Rules and Rule-Based Transformations"

■ "Monitoring Rules and Rule-Based Transformations" on

page 17-42
Example 24-1

Overview of the Rule-Based Application
Overview of the Rule-Based Application
Each example in this chapter creates a rule-based application that handles customer

problems. The application uses rules to determine actions that must be completed

based on the problem priority when a new problem is reported. For example, the

application assigns each problem to a particular company center based on the

problem priority.

The application enforces these rules using the rules engine. An evaluation context

named evalctx is created to define the information surrounding a support

problem. Rules are created based on the requirements described previously, and

they are added to a rule set named rs .

The task of assigning problems is done by a user-defined procedure named

problem_dispatch , which calls the rules engine to evaluate rules in the rule set

rs and then takes appropriate action based on the rules that evaluate to TRUE.

Note: To complete these examples, the COMPATIBLE initialization

parameter must be set to 9.2.0 or higher.
24-2 Oracle9i Streams

Using Rules on Non-Table Data Stored in Explicit Variables
Using Rules on Non-Table Data Stored in Explicit Variables
This example illustrates using rules to evaluate data stored in explicit variables.

This example handles customer problems based on priority and uses the following

rules for handling customer problems:

■ Assign all problems with priority greater than 2 to the San Jose Center

■ Assign all problems with priority less than or equal to 2 to the New York Center

■ Send an alert to the vice president of support for a problem with priority

equal to 1

The evaluation context only contains one explicit variable named priority , which

refers to the priority of the problem being dispatched. The value for this variable is

passed to DBMS_RULE.EVALUATE procedure by the problem_dispatch
procedure.

Complete the following steps:

1. Show Output and Spool Results

2. Create the support User

3. Grant the support User the Necessary System Privileges on Rules

4. Create the evalctx Evaluation Context

5. Create the Rules that Correspond to Problem Priority

6. Create the rs Rule Set

7. Add the Rules to the Rule Set

8. Query the Data Dictionary

9. Create the problem_dispatch PL/SQL Procedure

10. Dispatch Sample Problems

11. Check the Spool Results
Rule-Based Application Example 24-3

Using Rules on Non-Table Data Stored in Explicit Variables
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL rules_stored_variables.out

/*

Step 2 Create the support User
*/

CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

GRANT CONNECT, RESOURCE TO support IDENTIFIED BY support;

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 24-9 into a text editor and then

edit the text to create a script for your environment. Run the script

with SQL*Plus on a computer that can connect to all of the

databases in the environment.
24-4 Oracle9i Streams

Using Rules on Non-Table Data Stored in Explicit Variables
Step 3 Grant the support User the Necessary System Privileges on Rules
*/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'support',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'support',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 grantee => 'support',
 grant_option => FALSE);
END;
/

/*

Step 4 Create the evalctx Evaluation Context
*/

CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON;
DECLARE
 vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
 vt := SYS.RE$VARIABLE_TYPE_LIST(
 SYS.RE$VARIABLE_TYPE('priority', 'NUMBER', NULL, NULL));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'evalctx',
 variable_types => vt,
 evaluation_context_comment => 'support problem definition');
END;
/

Rule-Based Application Example 24-5

Using Rules on Non-Table Data Stored in Explicit Variables
/*

Step 5 Create the Rules that Correspond to Problem Priority
The following code creates one action context for each rule, and one name-value

pair in each action context.

*/

DECLARE
 ac SYS.RE$NV_LIST;
BEGIN
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('San Jose'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r1',
 condition => ':priority > 2',
 action_context => ac,
 rule_comment => 'Low priority problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('New York'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r2',
 condition => ':priority <= 2',
 action_context => ac,
 rule_comment => 'High priority problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('ALERT', SYS.AnyData.CONVERTVARCHAR2('John Doe'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r3',
 condition => ':priority = 1',
 action_context => ac,
 rule_comment => 'Urgent problems');
END;
/

/*
24-6 Oracle9i Streams

Using Rules on Non-Table Data Stored in Explicit Variables
Step 6 Create the rs Rule Set
*/

BEGIN
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'rs',
 evaluation_context => 'evalctx',
 rule_set_comment => 'support rules');
END;
/

/*

Step 7 Add the Rules to the Rule Set
*/

BEGIN
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r1',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r2',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r3',
 rule_set_name => 'rs');
END;
/

/*

Step 8 Query the Data Dictionary
At this point, you can view the evaluation context, rules, and rule set you created in

the previous steps.

*/

SELECT * FROM USER_EVALUATION_CONTEXTS;

SELECT * FROM USER_RULES;

SELECT * FROM USER_RULE_SETS;

/*
Rule-Based Application Example 24-7

Using Rules on Non-Table Data Stored in Explicit Variables
Step 9 Create the problem_dispatch PL/SQL Procedure
*/

CREATE OR REPLACE PROCEDURE problem_dispatch (priority NUMBER)
IS
 vv SYS.RE$VARIABLE_VALUE;
 vvl SYS.RE$VARIABLE_VALUE_LIST;
 truehits SYS.RE$RULE_HIT_LIST;
 maybehits SYS.RE$RULE_HIT_LIST;
 ac SYS.RE$NV_LIST;
 namearray SYS.RE$NAME_ARRAY;
 name VARCHAR2(30);
 cval VARCHAR2(100);
 rnum INTEGER;
 i INTEGER;
 status PLS_INTEGER;
BEGIN
 vv := SYS.RE$VARIABLE_VALUE('priority',
 SYS.AnyData.CONVERTNUMBER(priority));
 vvl := SYS.RE$VARIABLE_VALUE_LIST(vv);
 truehits := SYS.RE$RULE_HIT_LIST();
 maybehits := SYS.RE$RULE_HIT_LIST();
 DBMS_RULE.EVALUATE(
 rule_set_name => 'support.rs',
 evaluation_context => 'evalctx',
 variable_values => vvl,
 true_rules => truehits,
 maybe_rules => maybehits);
 FOR rnum IN 1..truehits.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
 ac := truehits(rnum).rule_action_context;
 namearray := ac.GET_ALL_NAMES;
 FOR i IN 1..namearray.count loop
 name := namearray(i);
 status := ac.GET_VALUE(name).GETVARCHAR2(cval);
 IF (name = 'CENTER') then
 DBMS_OUTPUT.PUT_LINE('Assigning problem to ' || cval);
 ELSIF (name = 'ALERT') THEN
 DBMS_OUTPUT.PUT_LINE('Sending alert to: '|| cval);
 END IF;
 END LOOP;
 END LOOP;
END;
/

24-8 Oracle9i Streams

Using Rules on Data Stored in a Table
/*

Step 10 Dispatch Sample Problems
*/

EXECUTE problem_dispatch(1);
EXECUTE problem_dispatch(2);
EXECUTE problem_dispatch(3);
EXECUTE problem_dispatch(5);

/*

Step 11 Check the Spool Results
Check the rules_stored_variables.out spool file to ensure that all actions

completed successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/

Using Rules on Data Stored in a Table
This example illustrates using rules to evaluate data stored in a table. This example

is similar to the example described in "Using Rules on Non-Table Data Stored in

Explicit Variables" on page 24-3. In both examples, the application routes customer

problems based on priority. However, in this example, the problems are stored in a

table instead of variables.

The application uses problems table in the support schema, into which customer

problems are inserted. This example uses the following rules for handling customer

problems:

■ Assign all problems with priority greater than 2 to the San Jose Center

■ Assign all problems with priority less than or equal to 2 to the New York Center

■ Send an alert to the vice president of support for a problem with priority

equal to 1
Rule-Based Application Example 24-9

Using Rules on Data Stored in a Table
The evaluation context consists of the problems table. The relevant row of the

table, which corresponds to the problem being routed, is passed to the

DBMS_RULE.EVALUATE procedure as a table value.

Complete the following steps:

1. Show Output and Spool Results

2. Drop and Recreate the support User

3. Grant the support User the Necessary System Privileges on Rules

4. Create the problems Table

5. Create the evalctx Evaluation Context

6. Create the Rules that Correspond to Problem Priority

7. Create the rs Rule Set

8. Add the Rules to the Rule Set

9. Query the Data Dictionary

10. Create the problem_dispatch PL/SQL Procedure

11. Log Problems

12. List the Problems in the problems Table

13. Dispatch the Problems by Running the problem_dispatch Procedure

14. List the Problems in the problems Table

15. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 24-17 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
24-10 Oracle9i Streams

Using Rules on Data Stored in a Table
Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL rules_table.out

/*

Step 2 Drop and Recreate the support User
*/

CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

DROP USER support CASCADE;

GRANT CONNECT, RESOURCE TO support IDENTIFIED BY support;

/*

Step 3 Grant the support User the Necessary System Privileges on Rules
*/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'support',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'support',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 grantee => 'support',
 grant_option => FALSE);
END;
/

/*
Rule-Based Application Example 24-11

Using Rules on Data Stored in a Table
Step 4 Create the problems Table
*/

CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON;

CREATE TABLE problems(
 probid NUMBER PRIMARY KEY,
 custid NUMBER,
 priority NUMBER,
 description VARCHAR2(4000),
 center VARCHAR2(100));

/*

Step 5 Create the evalctx Evaluation Context
*/

DECLARE
 ta SYS.RE$TABLE_ALIAS_LIST;
BEGIN
 ta := SYS.RE$TABLE_ALIAS_LIST(SYS.RE$TABLE_ALIAS('prob', 'problems'));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'evalctx',
 table_aliases => ta,
 evaluation_context_comment => 'support problem definition');
END;
/

/*
24-12 Oracle9i Streams

Using Rules on Data Stored in a Table
Step 6 Create the Rules that Correspond to Problem Priority
The following code creates one action context for each rule, and one name-value

pair in each action context.

*/

DECLARE
 ac SYS.RE$NV_LIST;
BEGIN
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('San Jose'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r1',
 condition => 'prob.priority > 2',
 action_context => ac,
 rule_comment => 'Low priority problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('New York'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r2',
 condition => 'prob.priority <= 2',
 action_context => ac,
 rule_comment => 'High priority problems');
 ac := sys.RE$NV_LIST(NULL);
 ac.ADD_PAIR('ALERT', SYS.AnyData.CONVERTVARCHAR2('John Doe'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r3',
 condition => 'prob.priority = 1',
 action_context => ac,
 rule_comment => 'Urgent problems');
END;
/

/*

Step 7 Create the rs Rule Set
*/

BEGIN
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'rs',
 evaluation_context => 'evalctx',
 rule_set_comment => 'support rules');
END;
Rule-Based Application Example 24-13

Using Rules on Data Stored in a Table
/

/*

Step 8 Add the Rules to the Rule Set
*/

BEGIN
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r1',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r2',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r3',
 rule_set_name => 'rs');
END;
/

/*

Step 9 Query the Data Dictionary
At this point, you can view the evaluation context, rules, and rule set you created in

the previous steps.

*/

SELECT * FROM USER_EVALUATION_CONTEXTS;

SELECT * FROM USER_RULES;

SELECT * FROM USER_RULE_SETS;

/*

Step 10 Create the problem_dispatch PL/SQL Procedure
*/
24-14 Oracle9i Streams

Using Rules on Data Stored in a Table
CREATE OR REPLACE PROCEDURE problem_dispatch
IS
 cursor c IS SELECT probid, rowid FROM problems WHERE center IS NULL;
 tv SYS.RE$TABLE_VALUE;
 tvl SYS.RE$TABLE_VALUE_LIST;
 truehits SYS.RE$RULE_HIT_LIST;
 maybehits SYS.RE$RULE_HIT_LIST;
 ac SYS.RE$NV_LIST;
 namearray SYS.RE$NAME_ARRAY;
 name VARCHAR2(30);
 cval VARCHAR2(100);
 rnum INTEGER;
 i INTEGER;
 status PLS_INTEGER;
BEGIN
 FOR r IN c LOOP
 tv := SYS.RE$TABLE_VALUE('prob', rowidtochar(r.rowid));
 tvl := SYS.RE$TABLE_VALUE_LIST(tv);
 truehits := SYS.RE$RULE_HIT_LIST();
 maybehits := SYS.RE$RULE_HIT_LIST();
 DBMS_RULE.EVALUATE(
 rule_set_name => 'support.rs',
 evaluation_context => 'evalctx',
 table_values => tvl,
 true_rules => truehits,
 maybe_rules => maybehits);
 FOR rnum IN 1..truehits.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
 ac := truehits(rnum).rule_action_context;
 namearray := ac.GET_ALL_NAMES;
 FOR i IN 1..namearray.COUNT LOOP
 name := namearray(i);
 status := ac.GET_VALUE(name).GETVARCHAR2(cval);
 IF (name = 'CENTER') THEN
 UPDATE PROBLEMS SET center = cval WHERE rowid = r.rowid;
 DBMS_OUTPUT.PUT_LINE('Assigning '|| r.probid || ' to ' || cval);
 ELSIF (name = 'ALERT') THEN
 DBMS_OUTPUT.PUT_LINE('Alert: '|| cval || ' Problem:' || r.probid);
 END IF;
 END LOOP;
 END LOOP;
 END LOOP;
END;
/

Rule-Based Application Example 24-15

Using Rules on Data Stored in a Table
/*

Step 11 Log Problems
*/

INSERT INTO problems(probid, custid, priority, description)
 VALUES(10101, 11, 1, 'no dial tone');

INSERT INTO problems(probid, custid, priority, description)
 VALUES(10102, 21, 2, 'noise on local calls');

INSERT INTO problems(probid, custid, priority, description)
 VALUES(10103, 31, 3, 'noise on long distance calls');

COMMIT;

/*

Step 12 List the Problems in the problems Table
This SELECTstatement should show the problems logged in Step 11. Notice that the

center column is NULL for each new row inserted.

*/

SELECT * FROM problems;

/*

Step 13 Dispatch the Problems by Running the problem_dispatch Procedure
*/

EXECUTE problem_dispatch;

/*
24-16 Oracle9i Streams

Using Rules on Data Stored in a Table
Step 14 List the Problems in the problems Table
If the problems were dispatched successfully in Step 13, then this SELECTstatement

should show the center to which each problem was dispatched in the center
column.

*/

SELECT * FROM problems;

/*

Step 15 Check the Spool Results
Check the rules_table.out spool file to ensure that all actions completed

successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
Rule-Based Application Example 24-17

Using Rules on Both Explicit Variables and Table Data
Using Rules on Both Explicit Variables and Table Data
This example illustrates using rules to evaluate data stored in explicit variables and

in a table. The application uses problems table in the support schema, into which

customer problems are inserted. This example uses the following rules for handling

customer problems:

■ Assign all problems with priority greater than 2 to the San Jose Center

■ Assign all problems with priority equal to 2 to the New York Center

■ Assign all problems with priority equal to 1 to the Tampa Center from 8 AM to

8 PM

■ Assign all problems with priority equal to 1 to the Bangalore Center from 8 PM

to 8 AM

■ Send an alert to the vice president of support for a problem with priority

equal to 1

The evaluation context consists of the problems table. The relevant row of the

table, which corresponds to the problem being routed, is passed to the

DBMS_RULE.EVALUATE procedure as a table value.

Some of the rules in this example refer to the current time, which is represented as

an explicit variable named current_time . The current time is treated as

additional data in the evaluation context. It is represented as a variable for the

following reasons:

■ It is not practical to store the current time in a table since it would have to be

updated very often.

■ The current time can be accessed by inserting calls to SYSDATE in every rule

that requires it, but that would cause repeated invocations of the same SQL

function SYSDATE, which may slow down rule evaluation. Different values of

the current time in different rules may lead to incorrect behavior.

Complete the following steps:

1. Show Output and Spool Results

2. Drop and Recreate the support User

3. Grant the support User the Necessary System Privileges on Rules

4. Create the problems Table

5. Create the evalctx Evaluation Context
24-18 Oracle9i Streams

Using Rules on Both Explicit Variables and Table Data
6. Create the Rules that Correspond to Problem Priority

7. Create the rs Rule Set

8. Add the Rules to the Rule Set

9. Query the Data Dictionary

10. Create the problem_dispatch PL/SQL Procedure

11. Log Problems

12. List the Problems in the problems Table

13. Dispatch the Problems by Running the problem_dispatch Procedure

14. List the Problems in the problems Table

15. Check the Spool Results

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL rules_var_tab.out

/*

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 24-27 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
Rule-Based Application Example 24-19

Using Rules on Both Explicit Variables and Table Data
Step 2 Drop and Recreate the support User
*/

CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

DROP USER support CASCADE;

GRANT CONNECT, RESOURCE TO support IDENTIFIED BY support;

/*

Step 3 Grant the support User the Necessary System Privileges on Rules
*/

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'support',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'support',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 grantee => 'support',
 grant_option => FALSE);
END;
/

/*

Step 4 Create the problems Table
*/

CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON;
24-20 Oracle9i Streams

Using Rules on Both Explicit Variables and Table Data
CREATE TABLE problems(
 probid NUMBER PRIMARY KEY,
 custid NUMBER,
 priority NUMBER,
 description VARCHAR2(4000),
 center VARCHAR2(100));

/*

Step 5 Create the evalctx Evaluation Context
*/

DECLARE
 ta SYS.RE$TABLE_ALIAS_LIST;
 vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
 ta := SYS.RE$TABLE_ALIAS_LIST(SYS.RE$TABLE_ALIAS('prob', 'problems'));
 vt := SYS.RE$VARIABLE_TYPE_LIST(
 SYS.RE$VARIABLE_TYPE('current_time', 'DATE', NULL, NULL));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'evalctx',
 table_aliases => ta,
 variable_types => vt,
 evaluation_context_comment => 'support problem definition');
END;
/

/*

Step 6 Create the Rules that Correspond to Problem Priority
The following code creates one action context for each rule, and one name-value

pair in each action context.

*/
Rule-Based Application Example 24-21

Using Rules on Both Explicit Variables and Table Data
DECLARE
 ac SYS.RE$NV_LIST;
BEGIN
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('San Jose'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r1',
 condition => 'prob.priority > 2',
 action_context => ac,
 rule_comment => 'Low priority problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('New York'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r2',
 condition => 'prob.priority = 2',
 action_context => ac,
 rule_comment => 'High priority problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('ALERT', SYS.AnyData.CONVERTVARCHAR2('John Doe'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r3',
 condition => 'prob.priority = 1',
 action_context => ac,
 rule_comment => 'Urgent problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('Tampa'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r4',
 condition => '(prob.priority = 1) and ' ||
 '(TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) >= 8) and ' ||
 '(TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) <= 20)',
 action_context => ac,
 rule_comment => 'Urgent daytime problems');
 ac := sys.RE$NV_LIST(NULL);
 ac.add_pair('CENTER', SYS.Anydata.CONVERTVARCHAR2('Bangalore'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r5',
 condition => '(prob.priority = 1) and ' ||
 '((TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) < 8) or ' ||
 ' (TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) > 20))',
 action_context => ac,
 rule_comment => 'Urgent nighttime problems');
END;
/

24-22 Oracle9i Streams

Using Rules on Both Explicit Variables and Table Data
/*

Step 7 Create the rs Rule Set
*/

BEGIN
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'rs',
 evaluation_context => 'evalctx',
 rule_set_comment => 'support rules');
END;
/

/*

Step 8 Add the Rules to the Rule Set
*/

BEGIN
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r1',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r2',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r3',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r4',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r5',
 rule_set_name => 'rs');
END;
/

/*
Rule-Based Application Example 24-23

Using Rules on Both Explicit Variables and Table Data
Step 9 Query the Data Dictionary
At this point, you can view the evaluation context, rules, and rule set you created in

the previous steps.

*/

SELECT * FROM USER_EVALUATION_CONTEXTS;

SELECT * FROM USER_RULES;

SELECT * FROM USER_RULE_SETS;

/*

Step 10 Create the problem_dispatch PL/SQL Procedure
*/

CREATE OR REPLACE PROCEDURE problem_dispatch
IS
 cursor c is SELECT probid, rowid FROM PROBLEMS WHERE center IS NULL;
 tv SYS.RE$TABLE_VALUE;
 tvl SYS.RE$TABLE_VALUE_LIST;
 vv1 SYS.RE$VARIABLE_VALUE;
 vvl SYS.RE$VARIABLE_VALUE_LIST;
 truehits SYS.RE$RULE_HIT_LIST;
 maybehits SYS.RE$RULE_HIT_LIST;
 ac SYS.RE$NV_LIST;
 namearray SYS.RE$NAME_ARRAY;
 name VARCHAR2(30);
 cval VARCHAR2(100);
 rnum INTEGER;
 i INTEGER;
 status PLS_INTEGER;
24-24 Oracle9i Streams

Using Rules on Both Explicit Variables and Table Data
BEGIN
 FOR r IN c LOOP
 tv := sYS.RE$TABLE_VALUE('prob', ROWIDTOCHAR(r.rowid));
 tvl := SYS.RE$TABLE_VALUE_LIST(tv);
 vv1 := SYS.RE$VARIABLE_VALUE('current_time',
 SYS.AnyData.CONVERTDATE(SYSDATE));
 vvl := SYS.RE$VARIABLE_VALUE_LIST(vv1);
 truehits := SYS.RE$RULE_HIT_LIST();
 maybehits := SYS.RE$RULE_HIT_LIST();
 DBMS_RULE.EVALUATE(
 rule_set_name => 'support.rs',
 evaluation_context => 'evalctx',
 table_values => tvl,
 variable_values => vvl,
 true_rules => truehits,
 maybe_rules => maybehits);
 FOR rnum IN 1..truehits.COUNT loop
 DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
 ac := truehits(rnum).rule_action_context;
 namearray := ac.GET_ALL_NAMES;
 FOR i in 1..namearray.COUNT LOOP
 name := namearray(i);
 status := ac.GET_VALUE(name).GETVARCHAR2(cval);
 IF (name = 'CENTER') THEN
 UPDATE problems SET center = cval
 WHERE rowid = r.rowid;
 DBMS_OUTPUT.PUT_LINE('Assigning '|| r.probid || ' to ' || cval);
 ELSIF (name = 'ALERT') THEN
 DBMS_OUTPUT.PUT_LINE('Alert: '|| cval || ' Problem:' || r.probid);
 END IF;
 END LOOP;
 END LOOP;
 END LOOP;
END;
/

/*
Rule-Based Application Example 24-25

Using Rules on Both Explicit Variables and Table Data
Step 11 Log Problems
*/

INSERT INTO problems(probid, custid, priority, description)
 VALUES(10201, 12, 1, 'no dial tone');

INSERT INTO problems(probid, custid, priority, description)
 VALUES(10202, 22, 2, 'noise on local calls');

INSERT INTO PROBLEMS(probid, custid, priority, description)
 VALUES(10203, 32, 3, 'noise on long distance calls');

COMMIT;

/*

Step 12 List the Problems in the problems Table
This SELECTstatement should show the problems logged in Step 11. Notice that the

center column is NULL for each new row inserted.

*/

SELECT * FROM problems;

/*

Step 13 Dispatch the Problems by Running the problem_dispatch Procedure
*/

EXECUTE problem_dispatch;

/*

Step 14 List the Problems in the problems Table
If the problems were dispatched successfully in Step 13, then this SELECTstatement

should show the center to which each problem was dispatched in the center
column.

*/

SELECT * FROM problems;

/*
24-26 Oracle9i Streams

Using Rules on Implicit Variables and Table Data
Step 15 Check the Spool Results
Check the rules_var_tab.out spool file to ensure that all actions completed

successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/

Using Rules on Implicit Variables and Table Data
This example illustrates using rules to evaluate implicit variables and data stored in

a table. The application uses the problems table in the support schema, into

which customer problems are inserted. This example uses the following rules for

handling customer problems:

■ Assign all problems with priority greater than 2 to the San Jose Center

■ Assign all problems with priority equal to 2 to the New York Center

■ Assign all problems with priority equal to 1 to the Tampa Center from 8 AM to

8 PM

■ Assign all problems with priority equal to 1 to the Bangalore Center from 8 PM

to 8 AM

■ Send an alert to the vice president of support for a problem with priority

equal to 1

The evaluation context consists of the problems table. The relevant row of the

table, which corresponds to the problem being routed, is passed to the

DBMS_RULE.EVALUATE procedure as a table value.

As in the example illustrated in "Using Rules on Both Explicit Variables and Table

Data" on page 24-18, the current time is represented as a variable named

current_time . However, this variable’s value is not specified during evaluation

by the caller. That is, current_time is an implicit variable in this example. A

PL/SQL function named timefunc is specified for current_time , and this

function is invoked once during evaluation to get its value.
Rule-Based Application Example 24-27

Using Rules on Implicit Variables and Table Data
Using implicit variables can be useful in other cases if one of the following

conditions is true:

■ The caller does not have access to the variable value

■ The variable is referenced infrequently in rules. Because it is implicit, its value

can be retrieved only when necessary, and does not need to be passed in for

every evaluation.

Complete the following steps:

1. Show Output and Spool Results

2. Drop and Recreate the support User

3. Grant the support User the Necessary System Privileges on Rules

4. Create the problems Table

5. Create the timefunc Function to Return the Value of current_time

6. Create the evalctx Evaluation Context

7. Create the Rules that Correspond to Problem Priority

8. Create the rs Rule Set

9. Add the Rules to the Rule Set

10. Query the Data Dictionary

11. Create the problem_dispatch PL/SQL Procedure

12. Log Problems

13. List the Problems in the problems Table

14. Dispatch the Problems by Running the problem_dispatch Procedure

15. List the Problems in the problems Table

16. Check the Spool Results
24-28 Oracle9i Streams

Using Rules on Implicit Variables and Table Data
/************************* BEGINNING OF SCRIPT ******************************

Step 1 Show Output and Spool Results
Run SET ECHO ON and specify the spool file for the script. Check the spool file for

errors after you run this script.

*/

SET ECHO ON
SPOOL rules_implicit_var.out

/*

Step 2 Drop and Recreate the support User
*/

CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

DROP USER support CASCADE;

GRANT CONNECT, RESOURCE TO support IDENTIFIED BY support;

/*

Step 3 Grant the support User the Necessary System Privileges on Rules
*/

Note: If you are viewing this document online, then you can copy

the text from the "BEGINNING OF SCRIPT" line on this page to the

next "END OF SCRIPT" line on page 24-36 into a text editor and

then edit the text to create a script for your environment. Run the

script with SQL*Plus on a computer that can connect to all of the

databases in the environment.
Rule-Based Application Example 24-29

Using Rules on Implicit Variables and Table Data
BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ,
 grantee => 'support',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_RULE_OBJ,
 grantee => 'support',
 grant_option => FALSE);
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 grantee => 'support',
 grant_option => FALSE);
END;
/

/*

Step 4 Create the problems Table
*/

CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON;

CREATE TABLE problems(
 probid NUMBER PRIMARY KEY,
 custid NUMBER,
 priority NUMBER,
 description VARCHAR2(4000),
 center VARCHAR2(100));

/*

Step 5 Create the timefunc Function to Return the Value of current_time
*/
24-30 Oracle9i Streams

Using Rules on Implicit Variables and Table Data
CREATE OR REPLACE FUNCTION timefunc(
 eco VARCHAR2,
 ecn VARCHAR2,
 var VARCHAR2,
 evctx SYS.RE$NV_LIST)
RETURN SYS.RE$VARIABLE_VALUE
IS
BEGIN
 IF (var = 'CURRENT_TIME') THEN
 RETURN(SYS.RE$VARIABLE_VALUE('CURRENT_TIME',
 SYS.AnyData.CONVERTDATE(sysdate)));
 ELSE
 RETURN(NULL);
 END IF;
END;
/

/*

Step 6 Create the evalctx Evaluation Context
*/

DECLARE
 ta SYS.RE$TABLE_ALIAS_LIST;
 vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
 ta := SYS.RE$TABLE_ALIAS_LIST(SYS.RE$TABLE_ALIAS('prob', 'problems'));
 vt := SYS.RE$VARIABLE_TYPE_LIST(
 SYS.RE$VARIABLE_TYPE('current_time', 'DATE', 'timefunc', NULL));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'evalctx',
 table_aliases => ta,
 variable_types => vt,
 evaluation_context_comment => 'support problem definition');
END;
/

/*

Step 7 Create the Rules that Correspond to Problem Priority
The following code creates one action context for each rule, and one name-value

pair in each action context.

*/
Rule-Based Application Example 24-31

Using Rules on Implicit Variables and Table Data
DECLARE
 ac SYS.RE$NV_LIST;
BEGIN
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('San Jose'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r1',
 condition => 'prob.priority > 2',
 action_context => ac,
 rule_comment => 'Low priority problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('New York'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r2',
 condition => 'prob.priority = 2',
 action_context => ac,
 rule_comment => 'High priority problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('ALERT', SYS.AnyData.CONVERTVARCHAR2('John Doe'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r3',
 condition => 'prob.priority = 1',
 action_context => ac,
 rule_comment => 'Urgent problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('CENTER', SYS.AnyData.CONVERTVARCHAR2('Tampa'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r4',
 condition => '(prob.priority = 1) and ' ||
 '(TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) >= 8) and ' ||
 '(TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) <= 20)',
 action_context => ac,
 rule_comment => 'Urgent daytime problems');
 ac := SYS.RE$NV_LIST(NULL);
 ac.add_pair('CENTER', sys.anydata.convertvarchar2('Bangalore'));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'r5',
 condition => '(prob.priority = 1) and ' ||
 '((TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) < 8) or ' ||
 ' (TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) > 20))',
 action_context => ac,
 rule_comment => 'Urgent nighttime problems');
END;
/

24-32 Oracle9i Streams

Using Rules on Implicit Variables and Table Data
/*

Step 8 Create the rs Rule Set
*/

BEGIN
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'rs',
 evaluation_context => 'evalctx',
 rule_set_comment => 'support rules');
END;
/

/*

Step 9 Add the Rules to the Rule Set
*/

BEGIN
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r1',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r2',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r3',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r4',
 rule_set_name => 'rs');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'r5',
 rule_set_name => 'rs');
END;
/

/*
Rule-Based Application Example 24-33

Using Rules on Implicit Variables and Table Data
Step 10 Query the Data Dictionary
At this point, you can view the evaluation context, rules, and rule set you created in

the previous steps.

*/

SELECT * FROM USER_EVALUATION_CONTEXTS;

SELECT * FROM USER_RULES;

SELECT * FROM USER_RULE_SETS;

/*

Step 11 Create the problem_dispatch PL/SQL Procedure
*/

CREATE OR REPLACE PROCEDURE problem_dispatch
IS
 cursor c IS SELECT probid, rowid FROM problems WHERE center IS NULL;
 tv SYS.RE$TABLE_VALUE;
 tvl SYS.RE$TABLE_VALUE_LIST;
 truehits SYS.RE$RULE_HIT_LIST;
 maybehits SYS.RE$RULE_HIT_LIST;
 ac SYS.RE$NV_LIST;
 namearray SYS.RE$NAME_ARRAY;
 name VARCHAR2(30);
 cval VARCHAR2(100);
 rnum INTEGER;
 i INTEGER;
 status PLS_INTEGER;
BEGIN
 FOR r IN c LOOP
 tv := SYS.RE$TABLE_VALUE('prob', rowidtochar(r.rowid));
 tvl := SYS.RE$TABLE_VALUE_LIST(tv);
 truehits := SYS.RE$RULE_HIT_LIST();
 maybehits := SYS.RE$RULE_HIT_LIST();
 DBMS_RULE.EVALUATE(
 rule_set_name => 'support.rs',
 evaluation_context => 'evalctx',
 table_values => tvl,
 true_rules => truehits,
 maybe_rules => maybehits);
24-34 Oracle9i Streams

Using Rules on Implicit Variables and Table Data
 FOR rnum IN 1..truehits.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
 ac := truehits(rnum).rule_action_context;
 namearray := ac.GET_ALL_NAMES;
 FOR i IN 1..namearray.COUNT LOOP
 name := namearray(i);
 status := ac.GET_VALUE(name).GETVARCHAR2(cval);
 IF (name = 'CENTER') THEN
 UPDATE problems SET center = cval
 WHERE rowid = r.rowid;
 DBMS_OUTPUT.PUT_LINE('Assigning '|| r.probid || ' to ' || cval);
 ELSIF (name = 'ALERT') THEN
 DBMS_OUTPUT.PUT_LINE('Alert: '|| cval || ' Problem:' || r.probid);
 END IF;
 END LOOP;
 END LOOP;
 END LOOP;
END;
/

/*

Step 12 Log Problems
*/

INSERT INTO problems(probid, custid, priority, description)
 VALUES(10301, 13, 1, 'no dial tone');

INSERT INTO problems(probid, custid, priority, description)
 VALUES(10302, 23, 2, 'noise on local calls');

INSERT INTO problems(probid, custid, priority, description)
 VALUES(10303, 33, 3, 'noise on long distance calls');

COMMIT;

/*
Rule-Based Application Example 24-35

Using Rules on Implicit Variables and Table Data
Step 13 List the Problems in the problems Table
This SELECTstatement should show the problems logged in Step 12. Notice that the

center column is NULL for each new row inserted.

*/

SELECT * FROM problems;

/*

Step 14 Dispatch the Problems by Running the problem_dispatch Procedure
*/

EXECUTE problem_dispatch;

/*

Step 15 List the Problems in the problems Table
If the problems were dispatched successfully in Step 13, then this SELECTstatement

should show the center to which each problem was dispatched in the center
column.

*/

SELECT * FROM problems;

/*

Step 16 Check the Spool Results
Check the rules_implicit_var.out spool file to ensure that all actions

completed successfully after this script completes.

*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/
24-36 Oracle9i Streams

Part IV

 Appendixes

This part includes the following appendix:

■ Appendix A, "XML Schema for LCRs"

XML Schema for
A

XML Schema for LCRs

The XML schema described in this appendix defines the format of a logical change

record (LCR).

This appendix contains this topic:

■ Definition of the XML Schema for LCRs

The namespace for this schema is the following:

http://xmlns.oracle.com/streams/schemas/lcr

The schema is the following:

http://xmlns.oracle.com/streams/schemas/lcr/streamslcr.xsd

This schema definition can be loaded into the database by connecting as SYS in

SQL*Plus and executing the following file:

rdbms/admin/catxlcr.sql

The rdbms directory is in your Oracle home.
LCRs A-1

Definition of the XML Schema for LCRs
Definition of the XML Schema for LCRs
The following is the XML schema definition for LCRs:

'<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/streams/schemas/lcr"
 xmlns:lcr="http://xmlns.oracle.com/streams/schemas/lcr"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 version="1.0"
 elementFormDefault="qualified">

 <simpleType name = "short_name">
 <restriction base = "string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>

 <simpleType name = "long_name">
 <restriction base = "string">
 <maxLength value="4000"/>
 </restriction>
 </simpleType>

 <simpleType name = "db_name">
 <restriction base = "string">
 <maxLength value="128"/>
 </restriction>
 </simpleType>

 <!-- Default session parameter is used if format is not specified -->
 <complexType name="datetime_format">
 <sequence>
 <element name = "value" type = "string" nillable="true"/>
 <element name = "format" type = "string" minOccurs="0" nillable="true"/>
 </sequence>
 </complexType>

 <complexType name="anydata">
 <choice>
 <element name="varchar2" type = "string" xdb:SQLType="VARCHAR2"
 nillable="true"/>

 <!-- Represent char as varchar2. xdb:CHAR blank pads upto 2000 bytes! -->
 <element name="char" type = "string" xdb:SQLType="VARCHAR2"
 nillable="true"/>
A-2 Oracle9i Streams

Definition of the XML Schema for LCRs
 <element name="nchar" type = "string" xdb:SQLType="NVARCHAR2"
 nillable="true"/>
 <element name="nvarchar2" type = "string" xdb:SQLType="NVARCHAR2"
 nillable="true"/>
 <element name="number" type = "double" xdb:SQLType="NUMBER"
 nillable="true"/>
 <element name="raw" type = "hexBinary" xdb:SQLType="RAW"
 nillable="true"/>
 <element name="date" type = "lcr:datetime_format"/>
 <element name="timestamp" type = "lcr:datetime_format"/>
 <element name="timestamp_tz" type = "lcr:datetime_format"/>
 <element name="timestamp_ltz" type = "lcr:datetime_format"/>

 <!-- Interval YM should be as per format allowed by SQL -->
 <element name="interval_ym" type = "string" nillable="true"/>

 <!-- Interval DS should be as per format allowed by SQL -->
 <element name="interval_ds" type = "string" nillable="true"/>
 </choice>
 </complexType>

 <complexType name="column_value">
 <sequence>
 <element name = "column_name" type = "lcr:long_name" nillable="false"/>
 <element name = "data" type = "lcr:anydata" nillable="false"/>
 <element name = "lob_information" type = "string" minOccurs="0"
 nillable="true"/>
 <element name = "lob_offset" type = "nonNegativeInteger" minOccurs="0"
 nillable="true"/>
 <element name = "lob_operation_size" type = "nonNegativeInteger"
 minOccurs="0" nillable="true"/>
 </sequence>
 </complexType>

 <element name = "ROW_LCR">
 <complexType>
 <sequence>
 <element name = "source_database_name" type = "lcr:db_name"
 nillable="false"/>
 <element name = "command_type" type = "string" nillable="false"/>
 <element name = "object_owner" type = "lcr:short_name"
 nillable="false"/>
 <element name = "object_name" type = "lcr:short_name"
 nillable="false"/>
XML Schema for LCRs A-3

Definition of the XML Schema for LCRs
 <element name = "tag" type = "hexBinary" xdb:SQLType="RAW"
 minOccurs="0" nillable="true"/>
 <element name = "transaction_id" type = "string" minOccurs="0"
 nillable="true"/>
 <element name = "scn" type = "double" xdb:SQLType="NUMBER"
 minOccurs="0" nillable="true"/>
 <element name = "old_values" minOccurs = "0">
 <complexType>
 <sequence>
 <element name = "old_value" type="lcr:column_value"
 maxOccurs = "unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name = "new_values" minOccurs = "0">
 <complexType>
 <sequence>
 <element name = "new_value" type="lcr:column_value"
 maxOccurs = "unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>

 <element name = "DDL_LCR">
 <complexType>
 <sequence>
 <element name = "source_database_name" type = "lcr:db_name"
 nillable="false"/>
 <element name = "command_type" type = "string" nillable="false"/>
 <element name = "current_schema" type = "lcr:short_name"
 nillable="false"/>
 <element name = "ddl_text" type = "string" nillable="false"/>
 <element name = "object_type" type = "string"
 minOccurs = "0" nillable="true"/>
 <element name = "object_owner" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "object_name" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "logon_user" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "base_table_owner" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
A-4 Oracle9i Streams

Definition of the XML Schema for LCRs
 <element name = "base_table_name" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "tag" type = "hexBinary" xdb:SQLType="RAW"
 minOccurs = "0" nillable="true"/>
 <element name = "transaction_id" type = "string"
 minOccurs = "0" nillable="true"/>
 <element name = "scn" type = "double" xdb:SQLType="NUMBER"
 minOccurs = "0" nillable="true"/>
 </sequence>
 </complexType>
 </element>
</schema>';
XML Schema for LCRs A-5

Definition of the XML Schema for LCRs
A-6 Oracle9i Streams

Index

A
ABORT_GLOBAL_INSTANTIATION

procedure, 12-12

ABORT_SCHEMA_INSTANTIATION

procedure, 12-12

ABORT_TABLE_INSTANTIATION

procedure, 12-12

action contexts, 5-9

adding name-value pairs, 15-16, 15-20

creating

example, 22-35

querying, 15-15

removing name-value pairs, 15-20

system-created rules, 6-18

ADD SUPPLEMENTAL LOG DATA clause, 12-10

ADD SUPPLEMENTAL LOG GROUP clause, 12-9,

20-12, 21-12, 22-23, 23-26

ADD_COLUMN member procedure, 20-16

ADD_GLOBAL_RULES procedure, 6-14

ADD_PAIR member procedure, 15-16, 15-20,

22-35, 24-6, 24-13, 24-31

ADD_RULE procedure, 5-8, 15-5

ADD_SCHEMA_PROPAGATION_RULES

procedure, 6-12

ADD_SUBSCRIBER procedure, 13-3, 19-25, 20-15

ADD_SUBSET_RULES procedure, 4-12, 6-5, 6-6

row migration, 4-12

ADD_TABLE_RULES procedure, 6-6

alert log

Oracle Streams entries, 18-24

ALL_STREAMS_GLOBAL_RULES view, 17-44

ALL_STREAMS_SCHEMA_RULES view, 17-44

ALL_STREAMS_TABLE_RULES view, 17-44

ALTER DATABASE statement

ADD SUPPLEMENTAL LOG DATA

clause, 12-10

DROP SUPPLEMENTAL LOG DATA

clause, 12-10

ALTER TABLE statement

ADD SUPPLEMENTAL LOG GROUP

clause, 12-9, 20-12, 21-12, 22-23, 23-26

DROP SUPPLEMENTAL LOG GROUP

clause, 12-10

ALTER_APPLY procedure

removing the DDL handler, 14-21

removing the message handler, 14-13

removing the rule set, 14-10

removing the tag value, 16-28

setting an apply user, 14-12

setting the DDL handler, 14-20

setting the message handler, 14-13

setting the tag value, 8-2, 8-6, 16-28

specifying the rule set, 14-8

ALTER_CAPTURE procedure

removing the rule set, 12-7

setting the start SCN, 12-11

specifying a rule set, 12-5

ALTER_PROPAGATION procedure

removing the rule set, 13-16

specifying the rule set, 13-14

ALTER_PROPAGATION_SCHEDULE

procedure, 13-12

ALTER_RULE procedure, 15-5

AnyData datatype

message propagation, 3-16
Index-1

queues, 3-11, 13-18

creating, 13-2

dequeuing, 13-22

dropping, 13-7

enqueuing, 13-19

monitoring, 17-12

propagating to typed queues, 3-16

user-defined types, 3-17

wrapper for messages, 3-11, 13-19

applied SCN, 2-16, 4-28, 17-7

apply forwarding, 3-8

apply process, 4-1

applied SCN, 4-28

apply forwarding, 3-8

apply handlers, 4-16

apply servers, 4-31

apply user, 4-2

setting, 14-12

architecture, 4-30

automatic restart, 4-36

conflict handlers, 4-16

heterogeneous environments, 9-5

conflict resolution, 4-16, 7-1

constraints, 4-10

coordinator process, 4-31

creating, 14-2

creation, 4-32

datatypes applied, 4-9

heterogeneous environments, 9-6

DDL changes, 4-21

CREATE TABLE AS SELECT, 4-24

current schema, 4-23

data structures, 4-22

ignored, 4-21

system-generated names, 4-23

DDL handlers, 4-4

creating, 14-19

monitoring, 17-24

removing, 14-21

setting, 14-20

dependent transactions, 18-12

DML changes, 4-10

heterogeneous environments, 9-7

DML handlers, 4-4

creating, 14-14, 20-16

heterogeneous environments, 9-5

monitoring, 17-23

re-enqueue captured events, 20-1

setting, 14-16

dropping, 14-7

error handlers

creating, 14-21

heterogeneous environments, 9-5

monitoring, 17-23

setting, 14-26

events, 4-3

captured, 4-3

user-enqueued, 4-3

exception queue, 4-37

monitoring, 17-36, 17-37

heterogeneous environments, 9-3, 9-12

database links, 9-4

example, 22-38

high-watermark, 4-28

ignore SCN, 4-27

instantiation SCN, 4-27

key columns, 4-10

LOBs, 16-13

logical change records (LCRs), 4-4

low-watermark, 4-28

managing, 14-1

message handlers, 4-4

creating, 19-17

heterogeneous environments, 9-5

monitoring, 17-24

removing, 14-13

setting, 14-13

monitoring, 17-20

apply handlers, 17-23

latency, 17-29, 17-31

non-LCR events, 4-7

oldest SCN, 4-28

options, 4-4

Oracle Real Application Clusters, 4-29

parallelism, 17-35

parameters, 4-34

commit_serialization, 4-35, 18-12

disable_on_error, 4-36
Index-2

disable_on_limit, 4-36

heterogeneous environments, 9-5

parallelism, 4-34, 18-12

setting, 14-11

time_limit, 4-36

transaction_limit, 4-36

persistent state, 4-36

reader server, 4-31

RESTRICTED SESSION, 4-29

row migration, 4-12

row subsetting, 4-12, 6-5

supplemental logging, 4-14

rule set

removing, 14-10

specifying, 14-8

rules, 4-2, 6-2

adding, 14-8

removing, 14-9

starting, 14-7

stopping, 14-7

substitute key columns, 4-11

heterogeneous environments, 9-4, 9-5

removing, 14-29

setting, 14-28

tables, 4-10

apply handlers, 4-16

column discrepancies, 4-14

tags, 8-6

monitoring, 17-51

removing, 16-28

setting, 16-28

trace files, 18-26

transformations

rule-based, 6-32

triggers

firing property, 4-25

ON SCHEMA clause, 4-26

troubleshooting, 18-9

checking apply handlers, 18-12

checking event type, 18-11

checking status, 18-10

exception queue, 18-13

AQ_TM_PROCESSES initialization

parameter, 11-5, 21-3, 22-5

ARCHIVE_LAG_TARGET initialization

parameter, 11-5

ARCHIVELOG mode

capture process, 2-25, 11-13, 20-4, 21-3, 22-6

B
backups

online

Streams, 8-5

C
capture process, 2-1

applied SCN, 2-16, 17-7

architecture, 2-18

ARCHIVELOG mode, 2-25, 11-13, 20-4, 21-3,

22-6

automatic restart, 2-26

builder server, 2-19

captured events, 3-3

captured SCN, 2-16

changes captured, 2-7

DDL changes, 2-8

DML changes, 2-7

NOLOGGING keyword, 2-9

UNRECOVERABLE clause for

SQL*Loader, 2-10

UNRECOVERABLE keyword, 2-9

configuring, 11-13

creating, 12-2

creation, 2-21

data dictionary duplication, 2-22

datatypes captured, 2-6

DBID, 2-22, 12-13

DBNAME, 2-22

dropping, 12-14

heterogeneous environments, 9-3

log sequence number, 12-13

LogMiner, 2-20

alternate tablespace for, 2-20, 11-13

multiple sessions, 2-20

LOGMNR_MAX_PERSISTENT_SESSIONS

initialization parameter, 2-20

managing, 12-1
Index-3

monitoring, 17-3

applied SCN, 17-7

latency, 17-7, 17-8

Oracle Real Application Clusters, 2-17

parameters, 2-25

disable_on_limit, 2-26

message_limit, 2-26

parallelism, 2-26

setting, 12-8

time_limit, 2-26

persistent state, 2-30

preparer servers, 2-19

reader server, 2-19

redo logs, 2-2

re-enqueue events, 20-1

RESTRICTED SESSION, 2-16

rule evaluation, 2-27

rule set

removing, 12-7

specifying, 12-5

rules, 2-5, 6-2

adding, 12-5

removing, 12-6

start SCN, 2-15, 2-16

setting, 12-11

starting, 12-5

stopping, 12-14

supplemental logging, 2-11

specifying, 12-9

SYS schema, 2-6, 2-7

SYSTEM schema, 2-6, 2-7

trace files, 18-25

transformations

rule-based, 6-28

troubleshooting, 18-2

checking progress, 18-3

checking status, 18-2

log parallelism, 18-3

persistent sessions, 18-4

captured SCN, 2-16

change cycling

avoidance

tags, 8-8

column lists, 7-12

COMPATIBLE initialization parameter, 11-5, 19-4,

20-4, 21-3, 22-5

conditions

rules, 5-2

conflict resolution, 7-1

column lists, 7-12

conflict handlers, 7-4, 7-5, 7-6, 7-8

custom, 7-15

interaction with apply handlers, 4-16

modifying, 14-31

prebuilt, 7-8

removing, 14-32

setting, 14-30

data convergence, 7-15

DISCARD handler, 7-10

MAXIMUM handler, 7-10

example, 23-32

latest time, 7-11

MINIMUM handler, 7-12

OVERWRITE handler, 7-10

resolution columns, 7-14

time-based, 7-11

example, 23-32

preparing for, 23-12

conflicts

avoidance, 7-6

delete, 7-7

primary database ownership, 7-6

uniqueness, 7-6

update, 7-7

delete, 7-3

detection, 7-5

identifying rows, 7-5

DML conflicts, 7-2

foreign key, 7-3

transaction ordering, 7-4

types of, 7-2

uniqueness, 7-3

update, 7-3

CONVERT_ANYDATA_TO_LCR_DDL

function, 13-28

CONVERT_ANYDATA_TO_LCR_ROW

function, 13-28
Index-4

CREATE TABLE statement

AS SELECT

apply process, 4-24

CREATE_APPLY procedure, 4-32, 14-2

tags, 8-2, 8-6

CREATE_CAPTURE procedure, 2-21, 12-2, 12-4

CREATE_EVALUATION_CONTEXT

procedure, 24-5, 24-12, 24-21, 24-31

CREATE_PROPAGATION procedure, 13-8

CREATE_RULE procedure, 15-3

CREATE_RULE_SET procedure, 15-2

D
database links

Oracle Streams, 11-14

datatypes

applied, 4-9

captured, 2-6

heterogeneous environments, 9-6

DBA_APPLY view, 17-21, 17-24, 17-28, 17-33,

17-51, 18-10, 18-11

DBA_APPLY_CONFLICT_COLUMNS view, 17-26

DBA_APPLY_DML_HANDLERS view, 17-23

DBA_APPLY_ERROR view, 17-36, 17-37, 17-40,

17-41

DBA_APPLY_INSTANTIATED_OBJECTS

view, 17-27

DBA_APPLY_KEY_COLUMNS view, 17-25

DBA_APPLY_PARAMETERS view, 17-22

DBA_APPLY_PROGRESS view, 17-31

DBA_CAPTURE view, 17-3, 17-7, 18-2

DBA_CAPTURE_PARAMETERS view, 17-6

DBA_CAPTURE_PREPARED_DATABASE

view, 17-9

DBA_CAPTURE_PREPARED_SCHEMAS

view, 17-9

DBA_CAPTURE_PREPARED_TABLES view, 17-9

DBA_EVALUATION_CONTEXT_TABLES

view, 17-45

DBA_EVALUATION_CONTEXT_VARS

view, 17-46

DBA_LOG_GROUPS view, 17-11

DBA_PROPAGATION view, 17-15, 17-16, 17-17,

17-19, 18-5, 18-6

DBA_QUEUE_SCHEDULES view, 17-17, 17-19,

18-6

DBA_QUEUE_TABLES view, 17-12

DBA_QUEUES view, 17-12

DBA_RULE_SET_RULES view, 17-47, 17-48, 17-49

DBA_RULE_SETS view, 17-45

DBA_RULES view, 17-47, 17-48, 17-49

DBA_STREAMS_GLOBAL_RULES view, 17-44,

18-19

DBA_STREAMS_SCHEMA_RULES view, 17-44,

18-19, 18-21

DBA_STREAMS_TABLE_RULES view, 17-44,

18-18, 18-19

DBID (database identifier)

capture process, 2-22

DBMS_APPLY_ADM package, 14-1

DBMS_CAPTURE_ADM package, 12-1

DBMS_PROPAGATION_ADM package, 13-1

DBMS_RULE package, 5-12, 24-1

DBMS_RULE_ADM package, 15-2, 24-1

DBMS_STREAMS package, 16-26

DBMS_STREAMS_ADM package, 6-3, 12-1, 13-1,

14-1

apply process creation, 4-32

capture process creation, 2-21

creating a capture process, 12-2

creating a propagation, 13-8

creating an apply process, 14-2

tags, 8-3

DBMS_TRANSFORM package, 13-26, 13-29

DBNAME

capture process, 2-22

DDL handlers, 4-4

creating, 14-19

monitoring, 17-24

removing, 14-21

setting, 14-20

DELETE_ALL_ERRORS procedure, 14-35

DELETE_ERROR procedure, 4-37, 14-34

DEQUEUE procedure, 13-22

example, 19-25, 20-18

destination queue, 3-2

direct path load

capture processes, 2-10
Index-5

directed networks, 3-7

apply forwarding, 3-8

queue forwarding, 3-8

DISABLE_DB_ACCESS procedure, 13-5

DISABLE_PROPAGATION_SCHEDULE

procedure, 13-17

DISCARD conflict resolution handler, 7-10

DML handlers, 4-4, 4-16

creating, 14-14, 20-16

monitoring, 17-23

removing, 14-18

setting, 14-16

DROP SUPPLEMENTAL LOG DATA

clause, 12-10

DROP SUPPLEMENTAL LOG GROUP

clause, 12-10

DROP_APPLY procedure, 14-7

DROP_CAPTURE procedure, 12-14

DROP_PROPAGATION procedure, 13-18

DROP_RULE procedure, 15-7

DROP_RULE_SET procedure, 15-8

E
ENABLE_DB_ACCESS procedure, 13-3

ENABLE_PROPAGATION_SCHEDULE

procedure, 13-11

ENQUEUE procedure, 13-20, 16-4, 19-12, 20-16

error handlers, 4-16

creating, 14-21

monitoring, 17-23

removing, 14-27

setting, 14-26

EVALUATE procedure, 5-12, 24-8, 24-14, 24-24,

24-34

evaluation contexts, 5-5

association with rule sets, 5-8

association with rules, 5-8

creating, 19-19, 24-5, 24-12, 24-21, 24-31

evaluation function, 5-8

object privileges

granting, 15-9

revoking, 15-10

system privileges

granting, 15-9

revoking, 15-10

user-created, 6-19, 6-24

variables, 5-6

event contexts

system-created rules, 6-18

events

apply process, 4-3

captured, 3-3

propagating, 13-28

dequeue, 3-3

programmatic environments, 3-12

enqueue, 3-3

programmatic environments, 3-12

propagation, 3-4

user-enqueued, 3-3

propagating, 13-24

exception queues, 4-37

apply process, 18-13

deleting errors, 14-34

executing errors, 14-33

heterogeneous environments, 9-10

monitoring, 17-36, 17-37

EXECUTE member procedure, 14-15, 14-20, 14-24,

20-16

EXECUTE_ALL_ERRORS procedure, 14-34

EXECUTE_ERROR procedure, 4-37, 14-33

Export

OBJECT_CONSISTENT parameter, 11-9, 11-10,

21-14, 22-27, 23-48

Oracle Streams, 11-8, 14-36, 16-35

G
GET_ALL_NAMES member function, 24-8, 24-14,

24-24, 24-34

GET_BASE_TABLE_NAME member

function, 14-20

GET_BASE_TABLE_OWNER member

function, 14-20

GET_COMMAND_TYPE member function, 14-20,

14-24, 17-39, 20-16

GET_CURRENT_SCHEMA member

function, 14-20
Index-6

GET_DDL_TEXT member function, 17-39

GET_ERROR_MESSAGE function, 17-40, 17-41

GET_INFORMATION function, 14-24

GET_LOB_INFORMATION member

function, 16-8

use_old parameter, 16-8

GET_LOGON_USER member function, 14-20

GET_OBJECT_NAME member function, 14-15,

14-20, 14-24, 15-12, 17-39, 22-34

GET_OBJECT_OWNER member function, 14-15,

14-20, 15-12, 17-39

GET_SCN member function, 14-15, 14-20

GET_SOURCE_DATABASE_NAME member

function, 14-20, 17-39

GET_TAG function, 16-27, 17-50

GET_TAG member function, 14-15, 14-20

GET_TRANSACTION_ID member function, 14-15,

14-20

GET_VALUE member function

LCRs, 15-12, 16-9

use_old parameter, 16-8

rules, 24-8, 24-14, 24-24, 24-34

GET_VALUES member function, 14-15, 14-24,

16-10, 17-39, 20-16

use_old parameter, 16-8

GLOBAL_NAMES initialization parameter, 11-5,

19-4, 20-4, 21-3, 22-5

GLOBAL_NAMES view, 18-5

GRANT_OBJECT_PRIVILEGE procedure, 5-15

GRANT_SYSTEM_PRIVILEGE procedure, 5-15

H
heterogeneous information sharing, 9-1

non-Oracle to non-Oracle, 9-13

non-Oracle to Oracle, 9-10

apply process, 9-12

capturing changes, 9-11

instantiation, 9-12

user application, 9-11

Oracle to non-Oracle, 9-2

apply process, 9-3

capture process, 9-3

conflict handlers, 9-5

database links, 9-4

datatypes applied, 9-6

DML changes, 9-7

DML handlers, 9-5

error handlers, 9-5

errors, 9-10

instantiation, 9-7

message handlers, 9-5

parallelism, 9-5

staging, 9-3

substitute key columns, 9-4, 9-5

transformations, 9-9

high availability

Streams, 10-1

advantages, 10-3

apply, 10-11

best practices, 10-7

capture, 10-10

database links, 10-9

propagation, 10-11

high-watermark, 4-28

I
ignore SCN, 4-27

Import

Oracle Streams, 11-8, 14-36, 16-35

STREAMS_CONFIGURATION

parameter, 11-10

STREAMS_INSTANTIATION

parameter, 11-10, 21-15, 22-28, 23-49

initialization parameters

AQ_TM_PROCESSES, 11-5

ARCHIVE_LAG_TARGET, 11-5

COMPATIBLE, 11-5

GLOBAL_NAMES, 11-5

JOB_QUEUE_PROCESSES, 11-6

LOG_PARALLELISM, 11-6

LOGMNR_MAX_PERSISTENT_SESSIONS,

 11-6

OPEN_LINKS, 11-6

Oracle Streams, 11-4

PARALLEL_MAX_SERVERS, 11-7

PROCESSES, 11-7

SESSIONS, 11-7
Index-7

SGA_MAX_SIZE, 11-7

SHARED_POOL_SIZE, 11-8

instantiation

aborting preparation, 12-12

example, 21-14, 22-27, 22-48, 23-48

heterogeneous environments

non-Oracle to Oracle, 9-12

Oracle to non-Oracle, 9-7

Oracle Streams, 11-8, 14-36

preparing for, 2-13, 11-15, 12-11

setting an SCN, 11-15, 14-35

DDL LCRs, 14-38

export/import, 14-36

supplemental logging specifications, 2-15

instantiation SCN, 4-27

IS_NULL_TAG member function, 6-8, 17-39

IS_TRIGGER_FIRE_ONCE function, 4-25

J
JMS

Oracle Streams

example, 19-35

job queue processes

propagation jobs, 3-20

JOB_QUEUE_PROCESSES initialization

parameter, 11-6, 21-3, 22-5

propagation, 18-7

L
LCR$_ROW_UNIT type

GET_LOB_INFORMATION member

function, 16-8

LCRs. See logical change records

LOBs

Oracle Streams, 16-11

apply process, 16-13

constructing, 16-14

requirements, 16-12

LOG_PARALLELISM initialization

parameter, 11-6, 20-4, 21-3, 22-5

capture process, 18-3

logical change records (LCRs), 2-2

apply process, 4-4

constructing, 16-2

example, 19-13

DDL LCRs, 2-4

current_schema, 4-23

rules, 6-9

determining if tag is NULL, 6-8

enqueuing, 16-2

getting constraint, 14-24

getting information about, 14-15, 14-20, 15-12,

17-39

getting sender, 14-24

row LCRs, 2-3

getting column value, 16-9

getting list of column values, 14-24, 16-10

rules, 6-7

setting list of column values, 14-24

XML schema, A-1

LogMiner

alternate tablespace for, 2-20, 11-13

capture process, 2-20

multiple sessions, 2-20

LOGMNR_MAX_PERSISTENT_SESSIONS

initialization parameter, 2-20, 11-6

capture process, 18-4

low-watermark, 4-28

M
MAXIMUM conflict resolution handler, 7-10

latest time, 7-11

message handlers, 4-4

creating, 19-17

monitoring, 17-24

messaging

Oracle Streams, 19-1

propagation, 3-16

MINIMUM conflict resolution handler, 7-12

monitoring

AnyData datatype queues, 17-12

event consumers, 17-13

viewing event contents, 17-13
Index-8

apply process, 17-20

apply handlers, 17-23

DDL handlers, 17-24

error handlers, 17-23

exception queue, 17-36, 17-37

message handlers, 17-24

capture process, 17-3

applied SCN, 17-7

latency, 17-7, 17-8

DML handlers, 17-23

Oracle Streams, 17-1

propagation jobs, 17-15

propagations, 17-15

rule-based transformations

procedures, 17-49

rules, 17-42

tags, 17-50

apply process value, 17-51

current session value, 17-50

N
NOLOGGING mode

capture process, 2-9

O
OBJECT_CONSISTENT parameter

for Export utility, 11-9, 11-10, 21-14, 22-27, 23-48

oldest SCN, 4-28

ON SCHEMA clause

of CREATE TRIGGER

apply process, 4-26

OPEN_LINKS initialization parameter, 11-6

ORA-01403 error, 18-14

ORA-24093 error, 18-8

ORA-25224 error, 18-9

ORA-26687 error, 18-15

ORA-26688 error, 18-15

ORA-26689 error, 18-16

Oracle Enterprise Manager

Streams tool, 1-23

Oracle Real Application Clusters

interoperation with Oracle Streams, 2-17, 3-18,

4-29

Oracle Streams

adding databases, 11-22, 11-35, 22-76

adding objects, 11-19, 11-30, 22-64

administrator

creating, 11-2

alert log, 18-24

AnyData queues, 13-18

apply process, 4-1

capture process, 2-1

configuring, 11-15

conflict resolution, 7-1

data dictionary, 2-22, 3-25, 4-33

data dictionary views, 17-1

database links, 11-14

directed networks, 3-7

example environments

messaging, 19-1

replication, 21-1, 22-1, 23-1

single database, 20-1

Export utility, 11-8, 14-36, 16-35

heterogeneous information sharing, 9-1

high availability, 10-1

Import utility, 11-8, 14-36, 16-35

initialization parameters, 11-4, 19-4, 20-4, 21-3,

22-5

instantiation, 11-8, 14-36

JMS, 3-12

example, 19-35

LOBs, 16-11

logical change records (LCRs), 2-2

XML schema, A-1

messaging, 13-18

monitoring, 17-1

network connectivity, 11-14

OCI, 3-12

overview, 1-2

packages, 1-21

point-in-time recovery, 16-29

preparing for, 11-1

propagation, 3-1

Oracle Real Application Clusters, 3-18

rules, 6-1

action context, 6-18

evaluation context, 6-5, 6-15

event context, 6-18
Index-9

subset rules, 4-12, 6-5

system-created, 6-3

staging, 3-1

Oracle Real Application Clusters, 3-18

Streams tool, 1-23

supplemental logging, 2-11

tags, 8-1

trace files, 18-24

transformations

rule-based, 6-25

troubleshooting, 18-1

OVERWRITE conflict resolution handler, 7-10

P
PARALLEL_MAX_SERVERS initialization

parameter, 11-7

point-in-time recovery

Oracle Streams, 16-29

PREPARE_GLOBAL_INSTANTIATION

procedure, 2-13, 11-15, 12-11

PREPARE_SCHEMA_INSTANTIATION

procedure, 2-13, 11-15, 12-11

PREPARE_TABLE_INSTANTIATION

procedure, 2-13, 11-15, 12-11

privileges

Oracle Streams administrator, 11-2

rules, 5-15

PROCESSES initialization parameter, 11-7

propagation jobs, 3-20

altering, 13-12

disabling, 13-17

enabling, 13-11

job queue processes, 3-20

managing, 13-7

monitoring, 17-15

RESTRICTED SESSION, 3-22

scheduling, 3-21, 13-11

trace files, 18-25

troubleshooting, 18-4

checking status, 18-6

job queue processes, 18-7

unscheduling, 13-13

propagations, 3-1

architecture, 3-19

creating, 13-8

database links

creating, 21-7, 22-12

destination queue, 3-2

directed networks, 3-7

dropping, 13-18

ensured delivery, 3-6

managing, 13-7

monitoring, 17-15

queue buffers, 3-19

queues, 3-4

rule sets

removing, 13-16

specifying, 13-14

rules, 3-5, 6-2

adding, 13-14

removing, 13-16

source queue, 3-2

transformations

rule-based, 6-30

SYS.AnyData to typed queue, 13-24, 13-28

troubleshooting, 18-4

checking queues, 18-5

security, 18-8

Q
queue buffers, 3-19

queue forwarding, 3-8

queues

AnyData, 3-11, 13-18

creating, 13-2

dequeuing, 19-25, 20-18

dropping, 13-7

enqueuing, 19-12, 20-16

user-defined types, 3-17

nontransactional, 3-24

propagation, 3-16

secure, 3-22

disabling user access, 13-5

enabling user access, 13-3

transactional, 3-24
Index-10

R
RE$NAME_ARRAY type, 24-14, 24-24, 24-34

RE$NV_ARRAY type, 22-35

RE$NV_LIST type, 5-12, 22-35, 24-6, 24-13, 24-14,

24-24, 24-31, 24-34

ADD_PAIR member procedure, 15-16, 15-20

REMOVE_PAIR member procedure, 15-20,

15-21

RE$RULE_HIT_LIST type, 24-8, 24-14, 24-24, 24-34

RE$TABLE_ALIAS_LIST type, 24-12, 24-21, 24-31

RE$TABLE_VALUE type, 24-14, 24-24, 24-34

RE$TABLE_VALUE_LIST type, 24-14, 24-24, 24-34

RE$VARIABLE_TYPE_LIST type, 24-5, 24-21,

24-31

RE$VARIABLE_VALUE type, 24-8, 24-24

RE$VARIABLE_VALUE_LIST type, 24-8, 24-24

redo logs

capture process, 2-2

re-enqueue

captured events, 20-1

REMOVE_PAIR member procedure, 15-20, 15-21

REMOVE_RULE procedure, 12-6, 13-16, 14-9, 15-7

replication

Oracle Streams, 21-1, 22-1, 23-1

adding databases, 22-76

adding objects, 22-64

resolution columns, 7-14

RESTRICTED SESSION system privilege

apply processes, 4-29

capture processes, 2-16

propagation jobs, 3-22

REVOKE_OBJECT_PRIVILEGE procedure, 5-15

REVOKE_SYSTEM_PRIVILEGE procedure, 5-15

row migration, 4-12

rule sets, 5-2

adding rules to, 15-5

creating, 15-2

dropping, 15-8

evaluation, 5-12

partial, 5-14

object privileges

granting, 15-9

revoking, 15-10

removing rules from, 15-7

system privileges

granting, 15-9

revoking, 15-10

rule-based transformations, 6-25

rules, 5-1

action contexts, 5-9

adding name-value pairs, 15-16, 15-20

removing name-value pairs, 15-20, 15-21

transformations, 6-25

ADD_RULE procedure, 5-8

altering, 15-5

apply process, 4-2, 6-2

capture process, 2-5, 6-2

components, 5-2

creating, 15-3

DBMS_RULE package, 5-12

dropping, 15-7

EVALUATE procedure, 5-12

evaluation, 5-12

capture process, 2-27

partial, 5-14

evaluation contexts, 5-5

creating, 19-19, 24-5, 24-12, 24-21, 24-31

evaluation function, 5-8

user-created, 6-24

variables, 5-6

event context, 5-12

example applications, 24-1

explicit variables, 5-6

example, 24-3, 24-18

implicit variables, 5-6

example, 24-27

managing, 15-2

maybe_rules, 5-12

monitoring, 17-42

object privileges

granting, 15-9

revoking, 15-10

partial evaluation, 5-14

privileges, 5-15

managing, 15-8

propagations, 3-5, 6-2
Index-11

rule conditions, 5-2, 6-6

complex, 6-20

explicit variables, 5-6

finding patterns in, 17-49

implicit variables, 5-6

types of operations, 6-22

undefined variables, 6-22

using NOT, 6-20

variables, 6-7

rule_hits, 5-12

simple rules, 5-3

subset

querying for action context of, 15-15

querying for names of, 15-15

system privileges

granting, 15-9

revoking, 15-10

system-created, 6-1, 6-3

action context, 6-18

DDL rules, 6-9

DML rules, 6-7

evaluation context, 6-5, 6-15

event context, 6-18

global, 6-14

modifying, 15-6

schema, 6-12

STREAMS$EVALUATION_CONTEXT, 6-5,

6-15

subset rules, 4-12, 6-5, 6-6

table, 6-6

tags, 6-8, 8-3

table data

example, 24-9, 24-18, 24-27

troubleshooting, 18-17

user-created, 6-19

variables, 5-6

S
SCHEDULE_PROPAGATION procedure, 13-11

secure queues, 3-22

disabling user access, 13-5

enabling user access, 13-3

propagation, 18-8

SESSIONS initialization parameter, 11-7

SET_COMMAND_TYPE member procedure, 20-16

SET_DML_HANDLER procedure, 4-6, 7-15

removing a DML handler, 14-18

removing an error handler, 14-27

setting a DML handler, 14-16

setting an error handler, 14-26

SET_GLOBAL_INSTANTIATION_SCN

procedure, 11-15, 14-35, 14-38

SET_KEY_COLUMNS procedure, 4-11

removing substitute key columns, 14-29

setting substitute key columns, 14-28

SET_OBJECT_NAME member procedure, 20-16,

22-34

SET_PARAMETER procedure

apply process, 14-11, 18-12

capture process, 12-8

SET_SCHEMA_INSTANTIATION_SCN

procedure, 11-15, 14-35, 14-38

SET_TABLE_INSTANTIATION_SCN

procedure, 11-15, 14-35

SET_TAG procedure, 8-2, 16-26

SET_TRIGGER_FIRING_PROPERTY

procedure, 4-25

SET_UP_QUEUE procedure, 13-2

SET_UPDATE_CONFLICT_HANDLER

procedure, 7-8

modifying an update conflict handler, 14-31

removing an update conflict handler, 14-32

setting an update conflict handler, 14-30

SET_VALUE member procedure

LCRs, 15-12

SET_VALUES member procedure, 14-24, 20-16

SGA_MAX_SIZE initialization parameter, 11-7

SHARED_POOL_SIZE initialization

parameter, 11-8

SOAP

Streams queues, 3-16

source queue, 3-2

SQL*Loader

capture processes, 2-10

staging, 3-1

architecture, 3-19

events, 3-3

heterogeneous environments, 9-3
Index-12

management, 13-1

queue buffers, 3-19

secure queues, 3-22

disabling user access, 13-5

enabling user access, 13-3

start SCN, 2-15, 2-16

START_APPLY procedure, 14-7

START_CAPTURE procedure, 12-5

STOP_APPLY procedure, 14-7

STOP_CAPTURE procedure, 12-14

Streams. See Oracle Streams

Streams tool, 1-23

STREAMS$_EVALUATION_CONTEXT, 6-5, 6-15

STREAMS$_TRANSFORM_FUNCTION, 6-26

STREAMS_CONFIGURATION parameter

for Import utility, 11-10

STREAMS_INSTANTIATION parameter

for Import utility, 11-10, 21-15, 22-28, 23-49

supplemental logging

capture process, 2-11

column lists, 7-12

DBA_LOG_GROUPS view, 17-11

example, 20-12, 21-12, 22-23, 23-26

instantiation, 2-15

row subsetting, 4-14

specifying, 12-9

SYS.AnyData. See Also AnyData datatype

system change numbers (SCN)

applied SCN for a capture process, 2-16, 17-7

applied SCN for an apply process, 4-28

captured SCN for a capture process, 2-16

oldest SCN for an apply process, 4-28

start SCN for a capture process, 2-15, 2-16

system-generated names

apply process, 4-23

T
tags, 8-1

ALTER_APPLY procedure, 8-2, 8-6

apply process, 8-6

change cycling

avoidance, 8-8

CREATE_APPLY procedure, 8-2, 8-6

examples, 8-8

getting value for current session, 16-27

managing, 16-26

monitoring, 17-50

apply process value, 17-51

current session value, 17-50

online backups, 8-5

removing value for apply process, 16-28

rules, 6-8, 8-3

include_tagged_lcr parameter, 8-3

SET_TAG procedure, 8-2

setting value for apply process, 16-28

setting value for current session, 16-26

trace files

Oracle Streams, 18-24

transformations

heterogeneous environments

Oracle to non-Oracle, 9-9

Oracle Streams, 6-25

propagations, 13-24, 13-28

rule-based

action context, 6-25

altering, 15-18

apply errors, 6-34

apply process, 6-32

capture process, 6-28

creating, 15-11, 22-34

errors, 6-30, 6-32, 6-34

managing, 15-11

multiple, 6-34

propagations, 6-30

removing, 15-21

STREAMS$_TRANSFORM_FUNCTION,

 6-26

troubleshooting, 18-23

triggers

firing property, 4-25

system triggers

on SCHEMA, 4-26

troubleshooting

apply process, 18-9

checking apply handlers, 18-12

checking event type, 18-11

checking status, 18-10

exception queue, 18-13
Index-13

capture process, 18-2

checking progress, 18-3

checking status, 18-2

log parallelism, 18-3

persistent sessions, 18-4

Oracle Streams, 18-1

propagation jobs, 18-4

checking status, 18-6

job queue processes, 18-7

propagations, 18-4

checking queues, 18-5

security, 18-8

rule-based transformations, 18-23

rules, 18-17

U
UNRECOVERABLE

capture process, 2-9

UNRECOVERABLE clause

SQL*Loader

capture process, 2-10

UNSCHEDULE_PROPAGATION

procedure, 13-13

use_old parameter

in row LCR member functions, 16-8

user-defined datatypes

AnyData queues, 3-17

V
V$SESSION view, 17-4, 17-28, 17-29, 17-30, 17-33

V$STREAMS_APPLY_COORDINATOR

view, 17-30, 17-31

V$STREAMS_APPLY_READER view, 17-28, 17-29

V$STREAMS_APPLY_SERVER view, 17-33, 17-35

V$STREAMS_CAPTURE view, 17-4, 17-7, 17-8,

18-3

X
XML Schema

for LCRs, A-1
Index-14

	Contents
	Send Us Your Comments
	Preface
	1 Introduction to Streams
	Streams Overview
	What Can Streams Do?
	Why Use Streams?

	Capture Process Overview
	Event Staging and Propagation Overview
	Directed Networks Overview
	Explicit Enqueue and Dequeue of Events

	Apply Process Overview
	Automatic Conflict Detection and Resolution
	Rules Overview
	Table Rules Overview
	Schema Rules Overview
	Global Rules Overview

	Transformations Overview
	Heterogeneous Information Sharing Overview
	Oracle to Non-Oracle Data Sharing Overview
	Non-Oracle to Oracle Data Sharing Overview

	Example Streams Configurations
	Administration Tools for a Streams Environment
	Oracle-Supplied PL/SQL Packages
	Streams Data Dictionary Views
	Streams Tool in Oracle Enterprise Manager

	2 Streams Capture Process
	The Redo Log and the Capture Process
	Logical Change Records (LCRs)
	Row LCRs
	DDL LCRs

	Capture Rules
	Datatypes Captured
	Types of Changes Captured
	Types of DML Changes Captured
	Types of DDL Changes Ignored by a Capture Process
	Other Types of Changes Ignored by a Capture Process
	NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
	UNRECOVERABLE Clause for Direct Path Loads

	Supplemental Logging in a Streams Environment
	Instantiation
	The Start SCN, Captured SCN, and Applied SCN for a Capture Process
	Start SCN
	Captured SCN
	Applied SCN

	Streams Capture Processes and RESTRICTED SESSION
	Streams Capture Processes and Oracle Real Application Clusters
	Capture Process Architecture
	Capture Process Components
	LogMiner Configuration
	Capture Process Creation
	ARCHIVELOG Mode and a Capture Process
	Capture Process Parameters
	Capture Process Rule Evaluation
	The Persistent State of a Capture Process

	3 Streams Staging and Propagation
	Event Staging and Propagation Overview
	Captured and User-Enqueued Events
	Event Propagation Between Queues
	Propagation Rules
	Ensured Event Delivery
	Directed Networks

	SYS.AnyData Queues and User Messages
	SYS.AnyData Wrapper for User Messages Payloads
	Programmatic Environments for Enqueue and Dequeue of User Messages
	Message Propagation and SYS.AnyData Queues
	User-Defined Type Messages

	Streams Queues and Oracle Real Application Clusters
	Streams Staging and Propagation Architecture
	Queue Buffers
	Propagation Jobs
	Secure Queues
	Transactional and Nontransactional Queues
	Streams Data Dictionary for Propagations

	4 Streams Apply Process
	Apply Process Overview
	Apply Rules
	Event Processing with an Apply Process
	Processing Captured and User-Enqueued Events with an Apply Process
	Event Processing Options

	Datatypes Applied
	Considerations for Applying DML Changes to Tables
	Constraints
	Substitute Key Columns
	Row Subsetting Using Streams Rules
	Apply Process Behavior for Column Discrepancies
	Conflict Resolution and an Apply Process
	Handlers and Row LCR Processing

	Considerations for Applying DDL Changes
	Types of DDL Changes Ignored by an Apply Process
	Database Structures in a Streams Environment
	Current Schema User Must Exist at Destination Database
	System-Generated Names
	CREATE TABLE AS SELECT Statements

	Trigger Firing Property
	Instantiation SCN and Ignore SCN
	The Oldest SCN for an Apply Process
	Low-Watermark and High-Watermark for an Apply Process
	Streams Apply Processes and RESTRICTED SESSION
	Streams Apply Processes and Oracle Real Application Clusters
	Apply Process Architecture
	Apply Process Components
	Apply Process Creation
	Streams Data Dictionary for an Apply Process
	Apply Process Parameters
	The Persistent State of an Apply Process
	Exception Queues

	5 Rules
	The Components of a Rule
	Rule Condition
	Rule Evaluation Context
	Rule Action Context

	Rule Set Evaluation
	Rule Set Evaluation Process
	Partial Evaluation

	Database Objects and Privileges Related to Rules
	Privileges for Creating Database Objects Related to Rules
	Privileges for Altering Database Objects Related to Rules
	Privileges for Dropping Database Objects Related to Rules
	Privileges for Placing Rules in a Rule Set
	Privileges for Evaluating a Rule Set
	Privileges for Using an Evaluation Context

	6 How Rules Are Used In Streams
	Overview of How Rules Are Used In Streams
	System-Created Rules
	Table and Subset Rules
	Schema Rules
	Global Rules

	Streams Evaluation Context
	Streams and Event Contexts
	Streams and Action Contexts
	User-Created Rules, Rule Sets, and Evaluation Contexts
	Complex Rule Conditions
	Custom Evaluation Contexts

	Rule-Based Transformations
	Rule-Based Transformations and a Capture Process
	Rule-Based Transformations and a Propagation
	Rule-Based Transformations and an Apply Process
	Multiple Rule-Based Transformations

	7 Streams Conflict Resolution
	About DML Conflicts in a Streams Environment
	Conflict Types in a Streams Environment
	Conflicts and Transaction Ordering in a Streams Environment
	Conflict Detection in a Streams Environment
	Conflict Avoidance in a Streams Environment
	Use a Primary Database Ownership Model
	Avoid Specific Types of Conflicts

	Conflict Resolution in a Streams Environment
	Prebuilt Update Conflict Handlers
	Custom Conflict Handlers

	8 Streams Tags
	Introduction to Tags
	Tags and Rules Created by the DBMS_STREAMS_ADM Package
	Tags and an Apply Process
	Avoid Change Cycling with Tags
	Each Databases Is a Source and Destination Database for Shared Data
	Primary Database Sharing Data with Several Secondary Databases
	Primary Database Sharing Data with Several Extended Secondary Databases

	9 Streams Heterogeneous Information�Sharing
	Oracle to Non-Oracle Data Sharing with Streams
	Change Capture and Staging in an Oracle to Non-Oracle Environment
	Change Apply in an Oracle to Non-Oracle Environment
	Transformations in an Oracle to Non-Oracle Environment
	Messaging Gateway and Streams
	Error Handling in an Oracle to Non-Oracle Environment
	Example Oracle to Non-Oracle Streams Environment

	Non-Oracle to Oracle Data Sharing with Streams
	Change Capture and Staging in a Non-Oracle to Oracle Environment
	Change Apply in a Non-Oracle to Oracle Environment
	Instantiation from a Non-Oracle Database to an Oracle Database

	Non-Oracle to Non-Oracle Data Sharing with Streams

	10 Streams High Availability Environments
	Overview of Streams High Availability Environments
	Protection from Failures
	Streams Replica Database
	When Not to Use Streams
	Application Maintained Copies

	Best Practices for Streams High Availability Environments
	Configuring Streams for High Availability
	Recovering from Failures

	11 Configuring a Streams Environment
	Configuring a Streams Administrator
	Setting Initialization Parameters Relevant to Streams
	Setting Export and Import Parameters Relevant to Streams
	Export Utility Parameters Relevant to Streams
	Import Utility Parameters Relevant to Streams

	Configuring a Database to Run a Streams Capture Process
	Configuring the Database to Run in ARCHIVELOG Mode
	Specifying an Alternate Tablespace for LogMiner

	Configuring Network Connectivity and Database Links
	Configuring a Capture-Based Streams Environment
	Creating a New Streams Single Source Environment
	Adding Shared Objects to an Existing Single Source Environment
	Adding a New Destination Database to an Existing Single Source Environment
	Creating a New Multiple Source Environment
	Adding Shared Objects to an Existing Multiple Source Environment
	Adding a New Database to an Existing Multiple Source Environment

	12 Managing a Capture Process
	Creating a Capture Process
	Example of Creating a Capture Process Using DBMS_STREAMS_ADM
	Example of Creating a Capture Process Using DBMS_CAPTURE_ADM

	Starting a Capture Process
	Specifying the Rule Set for a Capture Process
	Adding Rules to the Rule Set for a Capture Process
	Removing a Rule from the Rule Set for a Capture Process
	Removing the Rule Set for a Capture Process
	Setting a Capture Process Parameter
	Specifying Supplemental Logging at a Source Database
	Specifying Table Supplemental Logging Using Unconditional Log Groups
	Specifying Table Supplemental Logging Using Conditional Log Groups
	Dropping a Supplemental Log Group
	Specifying Database Supplemental Logging of Key Columns
	Dropping Database Supplemental Logging of Key Columns

	Setting the Start SCN for a Capture Process
	Preparing Database Objects for Instantiation at a Source Database
	Aborting Preparation for Instantiation at a Source Database
	Changing the DBID of a Database Where Changes Are Captured
	Resetting the Log Sequence Number Where Changes Are Captured
	Stopping a Capture Process
	Dropping a Capture Process

	13 Managing Staging and Propagation
	Managing Streams Queues
	Creating a Streams Queue
	Enabling a User to Perform Operations on a Secure Queue
	Disabling a User from Performing Operations on a Secure Queue
	Dropping a Streams Queue

	Managing Streams Propagations and Propagation Jobs
	Creating a Propagation
	Enabling a Propagation Job
	Scheduling a Propagation Job
	Altering the Schedule of a Propagation Job
	Unscheduling a Propagation Job
	Specifying the Rule Set for a Propagation
	Adding Rules to the Rule Set for a Propagation
	Removing a Rule from the Rule Set for a Propagation
	Removing the Rule Set for a Propagation
	Disabling a Propagation Job
	Dropping a Propagation

	Managing a Streams Messaging Environment
	Wrapping User Message Payloads in a SYS.AnyData Wrapper
	Propagating Messages Between a SYS.AnyData Queue and a Typed Queue

	14 Managing an Apply Process
	Creating, Starting, Stopping, and Dropping an Apply Process
	Creating an Apply Process
	Starting an Apply Process
	Stopping an Apply Process
	Dropping an Apply Process

	Managing the Rule Set for an Apply Process
	Specifying the Rule Set for an Apply Process
	Adding Rules to the Rule Set for an Apply Process
	Removing a Rule from the Rule Set for an Apply Process
	Removing the Rule Set for an Apply Process

	Setting an Apply Process Parameter
	Setting the Apply User for an Apply Process
	Managing the Message Handler for an Apply Process
	Setting the Message Handler for an Apply Process
	Removing the Message Handler for an Apply Process

	Managing a DML Handler
	Creating a DML Handler
	Setting a DML Handler
	Removing a DML Handler

	Managing the DDL Handler for an Apply Process
	Creating a DDL Handler for an Apply Process
	Setting the DDL Handler for an Apply Process
	Removing the DDL Handler for an Apply Process

	Managing an Error Handler
	Creating an Error Handler
	Setting an Error Handler
	Removing an Error Handler

	Managing the Substitute Key Columns for a Table
	Setting Substitute Key Columns for a Table
	Removing the Substitute Key Columns for a Table

	Managing Streams Conflict Resolution
	Setting an Update Conflict Handler
	Modifying an Existing Update Conflict Handler
	Removing an Existing Update Conflict Handler

	Managing Apply Errors
	Retrying Apply Error Transactions
	Deleting Apply Error Transactions

	Setting Instantiation SCNs at a Destination Database
	Setting Instantiation SCNs Using Export/Import
	Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package

	15 Managing Rules and Rule-Based Transformations
	Managing Rule Sets and Rules
	Creating a Rule Set
	Creating a Rule
	Adding a Rule to a Rule Set
	Altering a Rule
	Modifying System-Created Rules
	Removing a Rule from a Rule Set
	Dropping a Rule
	Dropping a Rule Set

	Managing Privileges on Evaluation Contexts, Rule Sets, and Rules
	Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules
	Granting Object Privileges on an Evaluation Context, Rule Set, or Rule
	Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules
	Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule

	Managing Rule-Based Transformations
	Creating a Rule-Based Transformation
	Altering a Rule-Based Transformation
	Removing a Rule-Based Transformation

	16 Other Streams Management Tasks
	Managing Logical Change Records (LCRs)
	Constructing and Enqueuing LCRs
	The use_old Parameter in Some Row LCR Member Functions
	Constructing and Processing LCRs Containing LOB Columns

	Managing Streams Tags
	Managing Streams Tags for the Current Session
	Managing Streams Tags for an Apply Process

	Performing Database Point-in-Time Recovery on a Destination Database
	Resetting the Start SCN for the Existing Capture Process to Perform Recovery
	Creating a New Capture Process to Perform Recovery

	Performing Full Database Export/Import on a Database Using Streams

	17 Monitoring a Streams Environment
	Summary of Streams Static Data Dictionary Views
	Summary of Streams Dynamic Performance Views
	Monitoring a Streams Capture Process
	Displaying the Queue, Rule Set, and Status of Each Capture Process
	Displaying General Information About a Capture Process
	Listing the Parameter Settings for a Capture Process
	Determining the Applied SCN for All Capture Processes in a Database
	Determining Redo Log Scanning Latency for a Capture Process
	Determining Event Enqueuing Latency for a Capture Process
	Determining Which Database Objects Are Prepared for Instantiation
	Displaying Supplemental Log Groups at a Source Database

	Monitoring a Streams Queue
	Displaying the Streams Queues in a Database
	Determining the Consumer of Each User-Enqueued Event in a Queue
	Viewing the Contents of User-Enqueued Events in a Queue

	Monitoring Streams Propagations and Propagation Jobs
	Determining the Source Queue and Destination Queue for a Propagation
	Determining the Rule Set for a Propagation
	Displaying the Schedule for a Propagation Job
	Determining the Total Number of Events and Bytes Propagated

	Monitoring a Streams Apply Process
	Displaying General Information About Each Apply Process
	Listing the Parameter Settings for an Apply Process
	Displaying Information About Apply Handlers
	Displaying the Substitute Key Columns Specified at a Destination Database
	Displaying Information About Update Conflict Handlers for a Destination Database
	Determining the Tables for Which an Instantiation SCN Has Been Set
	Displaying Information About the Reader Server for an Apply Process
	Determining Capture to Dequeue Latency for an Event
	Displaying Information About the Coordinator Process
	Determining the Capture to Apply Latency for an Event
	Displaying Information About the Apply Servers for an Apply Process
	Displaying Effective Apply Parallelism for an Apply Process
	Checking for Apply Errors
	Displaying Detailed Information About Apply Errors

	Monitoring Rules and Rule-Based Transformations
	Displaying the Streams Rules Used by a Streams Process or Propagation
	Displaying the Condition for a Streams Rule
	Displaying the Evaluation Context for Each Rule Set
	Displaying Information About the Tables Used by an Evaluation Context
	Displaying Information About the Variables Used in an Evaluation Context
	Displaying All of the Rules in a Rule Set
	Displaying the Condition for Each Rule in a Rule Set
	Listing Each Rule that Contains a Specified Pattern in Its Condition
	Displaying the Rule-Based Transformations in a Rule Set

	Monitoring Streams Tags
	Displaying the Tag Value for the Current Session
	Displaying the Tag Value for an Apply Process

	18 Troubleshooting a Streams Environment
	Troubleshooting Capture Problems
	Is the Capture Process Enabled?
	Is the Capture Process Current?
	Is LOG_PARALLELISM Set to 1?
	Is LOGMNR_MAX_PERSISTENT_SESSIONS Set High Enough?

	Troubleshooting Propagation Problems
	Does the Propagation Use the Correct Source and Destination Queue?
	Is the Propagation Job Used by a Propagation Enabled?
	Are There Enough Job Queue Processes?
	Is Security Configured Properly for the Streams Queue?

	Troubleshooting Apply Problems
	Is the Apply Process Enabled?
	Is the Apply Process Current?
	Does the Apply Process Apply Captured Events or User-Enqueued Events?
	Is a Custom Apply Handler Specified?
	Is the Apply Process Waiting for a Dependent Transaction?
	Are There Any Apply Errors in the Exception Queue?

	Troubleshooting Problems with Rules and Rule-Based Transformations
	Are Rules Configured Properly for the Streams Process or Propagation?
	Are the Rule-Based Transformations Configured Properly?

	Checking the Trace Files and Alert Log for Problems
	Does a Capture Process Trace File Contain Messages About Capture Problems?
	Do the Trace Files Related to Propagation Jobs Contain Messages About Problems?
	Does an Apply Process Trace File Contain Messages About Apply Problems?

	19 Streams Messaging Example
	Overview of Messaging Example
	Prerequisites
	Set Up Users and Create a Streams Queue
	Create the Enqueue Procedures
	Configure an Apply Process
	Configure Explicit Dequeue
	Enqueue Events
	Dequeue Events Explicitly and Query for Applied Events
	Enqueue and Dequeue Events Using JMS

	20 Single Database Capture and Apply�Example
	Overview of the Single Database Capture and Apply Example
	Prerequisites
	Set Up the Environment
	Configure Capture and Apply
	Make DML Changes, Query for Results, and Dequeue Events

	21 Simple Single Source Replication Example
	Overview of the Simple Single Source Replication Example
	Prerequisites
	Set Up Users and Create Queues and Database Links
	Configure Capture, Propagation, and Apply for Changes to One Table
	Make Changes to the hr.jobs Table and View Results

	22 Single Source Heterogeneous Replication�Example
	Overview of the Single Source Heterogeneous Replication Example
	Prerequisites
	Set Up Users and Create Queues and Database Links
	Example Scripts for Sharing Data from One Database
	Simple Configuration for Sharing Data from a Single Database
	Flexible Configuration for Sharing Data from a Single Database

	Make DML and DDL Changes to Tables in the hr Schema
	Add Objects to an Existing Streams Replication Environment
	Make a DML Change to the hr.employees Table
	Add a Database to an Existing Streams Replication Environment
	Make a DML Change to the hr.departments Table

	23 Multiple Source Replication Example
	Overview of the Multiple Source Databases Example
	Prerequisites
	Set Up Users and Create Queues and Database Links
	Example Script for Sharing Data from Multiple Databases
	Make DML and DDL Changes to Tables in the hr Schema

	24 Rule-Based Application Example
	Overview of the Rule-Based Application
	Using Rules on Non-Table Data Stored in Explicit Variables
	Using Rules on Data Stored in a Table
	Using Rules on Both Explicit Variables and Table Data
	Using Rules on Implicit Variables and Table Data

	A XML Schema for LCRs
	Definition of the XML Schema for LCRs

	Index

