Oracle9i

Database Concepts

Release 2 (9.2)

March 2002
Part No. A96524-01

ORACLE

Oracle9i Database Concepts, Release 2 (9.2)

Part No. A96524-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.
Primary Author: Michele Cyran

Contributors: Lance Ashdown, Cathy Baird, Sandeepan Banerjee, Mark Bauer, Ruth Baylis, Pradeep
Bhanot, Janet Blowney, Allen Brumm, Ted Burroughs, Larry Carpenter, Donna Carver, Chandra
Chandrasekar, Gary Chen, Amit Ganesh, Tom Grant, Mike Hartstein, John Haydu, Susan Hillson,
Dominique Jeunot, Archna Kalra Johnson, Vishy Karra, Alex Keh, Susan Kotsovolos, Sushil Kumar,
Tirthankar Lahiri, Paul Lane, Simon Law, Jeff Levinger, Yunrui Li, Bryn Llewellyn, Diana Lorentz, Lenore
Luscher, Sheryl Maring, Ben Meng, Kuassi Mensah, Tony Morales, Ari Mozes, Subramanian Muralidhar,
Ravi Murthy, Sujatha Muthulingam, Gary Ngai, Kant Patel, Ananth Raghavan, Jack Raitto, Beck
Reitmeyer, Ann Rhee, Kathy Rich, John Russell, Vivian Schupmann, Ravi Shankar, Mark Smith, Richard
Smith, EKkrem Soylemez, Marie St. Gelais, Debbie Steiner, Bob Thome, Anh-Tuan Tran, Randy Urbano,
Stephen Vivian, Daniel Wong, Wanli Yang, Ruiling Zhang, Zulaikha

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle7, Oracle Store, Oracle Transparent
Gateway, PL/SQL, Pro*C, Pro*Cobol, Pro*C/C++, Express, SQL*Net, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

SENA US YOUT COMMEINTS ...ttt eeeee ettt ettt ee et ee e a et ee et en s e e XXXi
P I A C ..ottt ettt ettt ettt ettt ettt XXXiii
YN8 [[1=1 T IR XXXIV
L@ o T- T T2 1 o] o [OSSR XXXIV
Related DOCUMENTATIONcocviiiiii ettt et sttt st e e st e e sbb e s bessbessbaeesbeesabeeses XXXVii
(000] LV/=T 1 1 T0] o 1T S TTT TR UPRTTTR XXXIX
Documentation ACCESSIDIIITYcvcv i et es xlii

Part| What Is Oracle?

Introduction to the Oracle Server

Database Structure and Space Management OVEIVIEWcccvcevvreieeeieeeeesinsese e seie s 1-2
Logical Database StrUCTUIES..........ccviiiiiieie ettt sttt st ae st resnesae e s 1-2
Schemas and SChemMa ODBJECTSciiiiiiieee e e eae e 1-2

Data Blocks, EXtents, and SEgMENTSccvcveiiiiiieiiie et 1-3

QLI L] LoTY o Uot T SRS 1-5
Physical Database StIUCTUIESccui ittt ettt ettt 1-6
DALATIIES ...ttt b bR bbbt b e nes 1-7

[(=0 [38 oo N] SRS 1-7
100] a1 (o] I 1 OSSR 1-8

DAta ULHITIESooveieeece ettt bbbt bbbt nes 1-8

Data DICIONArY OVEIVIEWccccviieiiiiiiieiesieiese e e e e ste e sesae e st st ssesaese e esestastesaessessesaessensessnses 1-9
Data ACCESS OVEIVIBW ...ttt sttt ettt be st e stesbesbeseese e b es e e e ebeeseebesbesaesbenbesaeneeneas 1-10

SQL OVEIVIBW ...ttt ettt sttt ettt et e bt e e be e et e sbeebesbeestesbeestestsesbeebeebeabseebesnsennesnneseens 1-10

SQL STATEMIEBNTSeii ittt s e e s e e e s ba e e sb e e sreeabeestbeanaeesbeeans 1-10

(@ o110 S5 @ A =T T SR 1-12
Advantages Of ODJECESccviviiiiiecce e e 1-12
PLZSQL OVEIVIBW ...ttt ettt st et et be e ae e s he e e s be e te s ba e seesteesbesteenbeareenee 1-13
PLZSQL Program UNITScccciiiiiiirieicie e ie st se st ste e saesassaesa et ssessessesensensesenseens 1-13
JAVA OVEIVIBWeiit ettt bbb et b et bbb e bt bt e bt e b et sh et e b e e b en e e e e 1-14
XIMIL OVEIVIBW ...ttt bttt b s et s bt bt bt bt b b ee e e st e st et et e ebesneenenen 1-15
TraNSACTIONS OVEIVIBWVc.oviiiiieiiieeieiieie sttt ettt b et bbbt sb et nne e ene e 1-17
Commit and Roll Back TranSaCtioNS..........cuoeiueieiiiieieesiieie e 1-18
LAY LT 0 [0 0| USSR UTSTRUSSOPTRIN 1-19
Data Consistency Using TranSaCtiONSccceveviivieieieiesese e seesieeseesesesesresee s 1-19
Data INTEGIitY OVEIVIBWoiiiiiiie ittt sttt eb et st sbe e et e e e neenenneene 1-19
INtEGIitY CONSIIAINTS ...oeiitiiiiiitiee ettt sttt st e e e 1-20
=Y £ 1-20
SQLFPIUS OVEIVIEW ...ttt ettt st se e st et e s be st e st e e st e s be e e e saeeaeesaaestesbaestesraens 1-21
Memory Structure and ProCeSSES OVEIVIEWccoiiiiiiiierie et 1-21
AN OFACIE INSTANCE.....cviiteiiitiiie ettt ettt s b bbb bbb bt e e s e ebe e 1-24
Real Application Clusters: Multiple Instance SyStemsccocooeveieneieeincse e, 1-24
IMEIMOTY STFUCTUIES ...ttt ettt ettt bt e bbb e st ettt beeb e et e sbe e e aeannas 1-25
Y =] o] o T AN T U 1-25
Program GIODAl ATBacoi i e 1-26
ProCESS ATCHITECTUIE ...ttt bbbttt re e e 1-26
(O RCT (O 1=) d o Lot S 1-26
OFACIE PrOCESSES. . .titeteeeiteee ettt sttt et es et s et e st bt st et b et e s be e et ese e e aseeneebeaneseea 1-27
The Program Interface MeChaniSm ..ot e e 1-30
Communications Software and Oracle Net SErviCes.........ocoovrviriiiriinsie i 1-30

An Example of HOW Oracle WOIKS.........cooiiiiiee e 1-31
Application ArchiteCture OVEIVIBWoouiiiiiiiiiie ettt sbe e 1-32
ClieNt/Server ArCNITECTUIE. ..ottt 1-32
I LS O 1= o USSP 1-32
T SEIVEL ...ttt et e et e et e et bt b e be b e ebeebe st ne e beneenes 1-32
Multitier Architecture: APPlICatioN SEIVETScccveviiciiece e 1-32
Distributed Databases OVEIVIEW...........coiiuiiiieieiiee ettt ettt e e 1-33
LOCAtION TrANSPAIEINCYecuiiiiieitiiteeieeiesteste et e et e ettt beatesbesbesee e e bes e e s eneeseebeaneaneareneeees 1-34

Y1 C=3 AN U] (o (o3 1)Y/ 1-34

Distributed Data Manipulation ...t 1-34
TWO-Phase COMMUT......cciiriiiiiireces e 1-34

[o] HTor=Vd o] g @ V=T 1= S P 1-35
Table REPIICALION ..o bbb 1-35
Multitier MaterialiZed VIBWS..........cccoriiriiiirrcerse s 1-35
STFEAMS OVEIVIBWW ...ttt ettt ettt e ettt b e bttt bt bt s b sb e e b et sa e e et e s e et eneeb e b ee 1-36
Advanced QUEUING OVEIVIBW.cou ittt sttt ettt st st see b ee e e aneeseenes 1-38
Heterogeneous SErVICES OVEIVIEWcccvcieiiiiiiiesesesiesie e seeee e e ste st stesresseserassesesressesnens 1-39
Data Concurrency and CONSIStENCY OVEIVIEWccoiiieiiieieeiieieeese et 1-40
LO70] o (ol U] ¢ £=] 0103 YA TP ST URO YRR 1-40
[T (o J 00 g 3 15 1= Y2 TSRS 1-40
Read Consistency, Undo Records, and Transactions...........ccccoveiinenenenenesieseeneeene 1-41
Read-ONIY TraNSACTIONScc.oiiieieiiieie ettt b bbb e e e 1-41
LOCKING MECNANISIS......ecviciiiiiiie sttt sr et se e eteeseetesraetessesaesteeenaeneeneas 1-42
AUTOMATIC LOCKING ..ttt et ettt et eb e e e ens 1-42
MANUAT LOCKING ... vttt sttt bbb et et e e e e 1-42
QUIESCE DAtADASEvi ittt ettt ettt e e ettt be et e et e ebaenbeenas 1-42
Database SECUTTLY OVEIVIBWcoiiiiieiie ettt sttt s et se b e saesbe b saenee e 1-43
SECUTNITY IMECNANISIMS ...ttt ettt be e ae b e e s 1-44
Database Users and SCheMAES.........c.ociiiiiiiseeee s 1-45
PIIVIIEOES ..ottt sttt b ettt b ettt e e e bbb et eneenas 1-45

ROIES ..ottt bttt b e bttt b s e et n e st eb et b e b e e b be e 1-46
Storage Settings and QUOTASccvveriirieieieeee e er e 1-47
Profiles and RESOUICE LIMITSc.ooiiiiiiiiiii e e 1-47
Selective Auditing Of USer ACLIONS.........cooiiiiiieieene e s 1-48
FiNe-Grained AUAITING ...cccooeieeecee et s 1-49
Database AdMINIStration OVEIVIEWcccouiiiiiiiaiiiii ettt s 1-49
ENterprise Manager OVEIVIBW ...ttt e se et sae bt sae e e 1-49
Database Backup and RECOVEINY OVEIVIEW...........covcveiiiiveese e siesieseee s e s se e ssense e 1-50
Why ReCOVEry IS IMPOITANT.........cooiiiiiii ettt s 1-50

TYPES OF FAIIUIES.....ceieiee ettt e ae e 1-50
Structures USed fOr RECOVEIYoviviiciiisic sttt sttt sn e 1-52

Data WarehoUSING OVEIVIBWc.oiiiiieieiiee ettt b e sae b b e e e 1-53
Differences Between Data Warehouse and OLTP SyStemS.........ccoccoiirininienenenene e 1-54

LYY 0] 4 Lo Y= (o 1-54

Data MOAIfICALIONS ..o ettt bbb 1-54
3ol g 1= T BT T | o SRR 1-54
TYPICAI OPEIALIONSvvveiiieceie ettt e se e s e e e e e s e etesrenre e 1-54

[LTS (o g [or= 1l B - - RSSO 1-55
Data Warehouse ArChitECUIE............coo ittt 1-55
Data Warehouse Architecture (BaSiC).......ccccuriiriiniiiiie et 1-55
Data Warehouse Architecture (with a Staging Area)..........ccocovevereirneiieene e 1-56
Data Warehouse Architecture (with a Staging Area and Data Marts)c...cce...... 1-57
MALEFTAIIZEA VIBWVS ... ettt ettt s s e neer e e 1-58
OLAP OVEIVIBW. ...ttt ettt ettt sttt ettt e sttt et st e et sbesbesbesbe b e sbe s et ane et eneeneebeebesaeenenen 1-58
Change Data Capture OVEIVIBWcccivieiirierierieseie s aste e se et sresse e see e s esassesssesenses 1-59
High Availability OVEIVIEWcoiiiiiiiiic e 1-60
Transparent ApPlication FAITOVET ... e 1-61
Elements Affected by Transparent Application Failovercccccocoeveviiiiescnecenne, 1-61
Online Reorganization ArChItECIUIEccoi i 1-62
Data GUAIT OVEIVIBWVcuiuiiiieieieieeiete ettt ettt beebe st e e b s e e eneene et e eneebeebeebeeee 1-63
Data Guard ConfigUIratioNsccccciiiieiesee e 1-63
Data GUArd COMPONENTSc.oiuiiiieiieiiietieere ettt sttt re et ebesbeebesbesbesee e e sbenee s 1-63
LOGMINET OVEIVIBWV ...ttt ettt sttt b e be bt ebe sttt e sb e st e ene e e ebeeneenearenbeaee 1-65
(R CT LA o] o] [Tor: U o] @ [1) 1= -SSR 1-65
Real Application CIUSIErS GUAIc.coiiiiiiiiiieie et 1-66
Content ManagemeENt OVEIVIEWccooi ittt st e et s e ere b e seesee e 1-67
Oracle Internet File SYStEM OVEINVIEWccccuiiiiiiiicceeie ettt re s 1-68

Part II Database Structures

2 Data Blocks, Extents, and Segments

Introduction to Data Blocks, Extents, and SEgMENTS..........cccvvviieveriineciee e 2-2
Data BIOCKS OVEIVIBW..........ciuiiiiiiiiie ettt ettt bt bbb bt nee b e e 2-3
Data BIOCK FOIMAL ...ttt b e b b e e e e 2-4
Header (Common and Variable) ... 2-4

LI L] Lol B IT ¢=To! (o] oYUV 2-5

ROW DIFECTOIY ...ttt ettt ettt b e ettt e et a et e be bt abesbeneesaenneneas 2-5

L@ YT =T Vo OSSPSR PRPRRRN 2-5

Vi

3

[0 1YY DT | - 2-5

FrBE SPACE ...ttt bbb a bt b e Rt e b e b be e e benteenrean 2-5
Free SPace ManagEMIENT.........oiiiiiie ettt et ste e te e stesraenaeen e teeneenneanes 2-6
Availability and Compression of Free Space in a Data BlocK...........cccccooveeviviciiiieienns 2-6
Row Chaining and Migrating..........ccooioiiiiiiee e 2-7
PCTFREE, PCTUSED, and ROW Chaining.........cccccoiviiviiiiiiiccsie e 2-7
EXEENTS OVEIVIBWV ...ttt et b bbb b e bkt s b sb e e be b sb et e st e e et et e ebenneane s 2-8
When EXtents Are AHOCAEA ..o 2-8
Determine the Number and Size of EXTENTSccoovoiiiiiiciiees e 2-8
HOW EXLENtS Are AHOCALEA.c.oiiiiieiie e 2-9
When Extents Are DealloCated............ccooo i e 2-10
Extents in Nonclustered Tables..........ccoiiiiiiii s 2-10
Extents in Clustered Tables...... .o e 2-11
Extents in Materialized Views and Their LOQScccooiiiiiiiiniiiieceisescc e 2-11
EXEENTS TN INOEXES ... ettt ettt en et 2-11
Extents in TeMPOrary SEOMENTSccoiciiiiiii ettt 2-11
Extents in ROIDACK SEGMENTSoiiiiii it 2-12
SEOMENTS OVEIVIBW. ...ocviiieiiiese sttt s sttt s b b e be s te st e st e tese e e et e e seaneanestestesaesseseesnensens 2-12
INtroduction t0 DAt SEOMENTS ..ottt ettt 2-12
INtroduction t0 INAEX SEGMENTSc..oiiiiiiie e e 2-13
Introduction to TEMPOrary SEGMENTSccivciierieriereie et e e eens 2-13
Operations that Require Temporary SEgMENTScccooeieiirieiieeine e 2-14
Segments in Temporary Tables and Their INAEXEeS ... 2-14
How Temporary Segments Are Allocatedccccooceveviiiiieiincincce s 2-14
Automatic UNdo ManagemenT..........c.oii et s 2-16
UNAO IMOAE ...ttt ettt se e bt sttt b e b be s ae e neas 2-16

(0] aTe (oI @ 1N Lo} - N OSSPSR 2-17
UNdo Retention CONIOLcc.oiiiiiee et e 2-17
EXEEINAL VIBWVS ...ttt ettt st e ettt see e 2-18

Tablespaces, Datafiles, and Control Files

Introduction to Tablespaces, Datafiles, and Control Files...........ccocoooniiiiiiiiiiiiiceces 3-2
Oracle-Managed FileScviiiiece e nenren 3-3
Allocate More Space fOr @ Databasecccoceeiieiiiii e 3-3

TaDIESPACES OVEIVIBW. ..ottt sttt ettt s et e sttt st e b sbe st e sbe s e sbeneeseenes 3-7

vii

The SYSTEM TablESPACE.cccviiiiieiiiie ettt et ne e ene e e e 3-7

The Data DICLIONAIYc.ooiiiiieeeie ettt bbb ettt 3-8
PL/SQL Program UNitS DESCrIPLIONccccevicieiiieise e seseseeee sttt senne s 3-8
(010 o T Ir=T o] LTS o Lot SRS 3-8
Creation of UNdO TableSPaCEScc.ciiiiiiicieeie e e 3-9
Assignment of UNdo TableSPaCES.........cccvvviiieiiieceee e 3-9
Default TemMporary TabIESPACE........ccuiiiiiiiie e 3-10
How to Specify a Default Temporary Tablespace ... 3-10
Using MUltiple TabIESPACEScecviiciie s sn e 3-10
Managing Space iN TabIESPACEScoiiiiieiee e e 3-11
Locally Managed TableSPaceScccoiriiiiiiiie et 3-11
Segment Space Management in Locally Managed Tablespaces...........cccceveveivreriennn, 3-12
Dictionary Managed TableSPaCEScccviiiirire et 3-13
MUILIPIE BIOCK SIZES ...ttt ettt e s e e 3-13
Online and Offling TabIESPACES........cvciiiieiie e 3-13
When a Tablespace G0es OffliNe.........ccooiiiii s 3-14
Use of Tablespaces for Special ProCcedUrescoooiiiiiiiiciieeesee e 3-14
REAA-ONIY TADIESPACES.....c.eii i siese ettt st e e e seesesreanesresresrens 3-15
Temporary Tablespaces for SOrt OPerationsccoccooieieriienenee s 3-16
RTo] R TTo] o g 1< o £ TP UT PR PUTU SR 3-16
Creation of Temporary TableSPaCESccccvcvviiiicicise e 3-16
Transport of Tablespaces Between Databases...........cocvireiiriiiiiicneeeeee e 3-17
How to Move or Copy a Tablespace to Another Databasecccccooeoiiniincienne 3-17
DAtafileS OVEIVIEW ..ot 3-18
DAtafile CONTENESooiiiie ettt et a et eb e b e b e e 3-18
SHZE OF DALATIIES ... ettt 3-19
OFfliNE DALAFTIES ... e 3-19
TempPOorary Datafiles..... ..o e 3-19
CONTIOL FIlES OVEIVIBW ...ttt bbbt b et neebe e seesee e 3-20
CONrol FIle CONTENTScooviiiciceie e 3-20
Multiplexed CONTIOL FIlES ..ottt 3-22

4 The Data Dictionary

Introduction to the Data DICLIONAIYcccoiiiiiiie bbb 4-2
Structure of the Data DICLIONAIYccoooiiiiii e 4-2

viii

ST YT 1= 1 o] [4-3

USEr-ACCESSIDIE VIBWS ...ttt ettt bbb e b 4-3

SYS, Owner of the Data DICIONAIYccccvviiiieriieeee s sre e nnens 4-3
How the Data Dictionary IS USEA..........ccccveiiiiiiiiiie et 4-3
How Oracle Uses the Data DICLIONAIYccccooiiiiiiiiie e 4-3
Public Synonyms for Data Dictionary VIEWS........cccccvevvviininienescesese e 4-4

Cache the Data Dictionary fOr FASt ACCESSciiriiiieiiieire sttt 4-4

Other Programs and the Data DICIONArY ..o 4-4

How to Use the Data DICLIONAIYccccccoeieiiieicieese ettt 4-5
Views With the PrefiX USER ..ot 4-5

VIeWS With the PrefiX ALL ... s 4-6

Views With the PrefiX DBA ...t st s 4-6

THE DUAL TaADIE....oiiciiicice sttt st sttt sttt enns 4-6
Dynamic Performance TabIes ... 4-7
Database ObjJECt MELATALAccceiiiiiiie ettt sr et eaenes 4-7

Part Il The Oracle Instance

5 Database and Instance Startup and Shutdown

Introduction to an Oracle INSTANCE ... 5-2
The Instance and the Databaseccoo i 5-3
Connection with AdmINiStrator PrivIlEgES. ..o 5-3
Initialization Parameter FilES ..o 5-4

How Parameter Values Are Changedccoeoiiiieiiiiieie e 5-4

Instance and Database STartUpP....... ..o eeneas 5-5

HOW an INStanCe IS STAMTEd..........oiriiiiciee e 5-5
Restricted Mode of INStaNCe STArtUPoovieiiiie e 5-6
Forced Startup in Abnormal SItuationsccccoiiiiiiiiii e 5-6

How a Database IS MOUNTE............ccoiiiiirces e 5-6
How a Database Is Mounted with Real Application CIUSters.........c.ccocooeviiinicienennnn. 5-6
How a Standby Database IS MOUNTEd ... e 5-7
How a Clone Database IS MOUNTEAcoveiiiiiiireeee s 5-8

What Happens When You Open @ Database. ..o 5-8
INSTANCE RECOVEIY ...ttt ettt bt b et bbb e e b b e e be e b e e b e sbe e b naes 5-8
Undo Space Acquisition and ManagemeNt............cccoveveieiieeenene e 5-8

6

7

Resolution of In-Doubt Distributed Transactioncccccveveiviiiccee e 5-9

Open a Database in Read-Only MOEccocoiiiiiiiii i 5-9
Database and INStance SNHUTAOWN ..ot 5-10
ClOSE @ DAADASEo.veveeeciiciceee sttt sttt te et nnen 5-10
Close the Database by Terminating the INStanCe ... 5-10
UNMOUNT 8 DALADASEcvveiieeciieiese sttt sttt s b et e st e neeesneenesresnenreas 5-11
SHUt DOWN @N TNSTANCEc.viiiciccice ettt st e et be e e saeenee s e sresbaesrenraens 5-11
Abnormal Instance SHULAOWN ..o e s 5-11

Application Architecture

ClIENt/SErVEr ATCRITECTUNE........cuiiiiicie ettt ettt e be s re e sae s e sreereeste e 6-2
MUIIEIET AFCRITECTUIE ...ttt sb e e sb e bt eb e enes 6-5
L0 11T o =SSOSR 6-6
APPLHICALION SEIVEIS ...t ettt bbb se b es e e eaeeseebeasesaesbenbeaaens 6-6
DALADASE SEIVEIS ...ttt ettt ettt bbb s bt b et b et b et bbbt et n s 6-7

(@ = Tod [T N =T ST oV ot ST USRRS 6-7
(0] 01 0 1=To LAV £ SOOI 6-8
V=TT Vo == oL 1) Y2 OSSPSR 6-8
INtErNEt SCAIADTIITYo e 6-8
INTEINET SECUTTLY ...ttt ettt et b et st se e e e nnenes 6-8

HOw Oracle Net SErVICES WOIKSccoiiiiiiiieeeeee e 6-8

B I (T TS =] 1= SO STOP PRSP 6-9
Service Information REQISTratioN.coiiiiiiiiiiiece e 6-9

Memory Architecture

Introduction to Oracle MEemOrY STFUCTUIES.........cccoiiiiiiiie ettt 7-2
System Global Area (SGA) OVEIVIEWccviueiviieieeeiise e sie et stes e e e sesree e sse e stessessesseseenes 7-3
DYNAMIC SGA ... ettt bbbt bbbt b e s b e st e e e et e Rt ek e e bt e b e ebeebesbe b e s b e bans 7-4
DYNAMIC SGA GraNUIES.c.eeiiiiiieiiee ettt ettt sb et e e s e e sneane s 7-5
Database BUTfEr CaChe ... s 7-7
Organization of the Database Buffer Cache ..., 7-7

The LRU Algorithm and FUll Table SCaNScccooieiiiiiiieie e 7-8

Size of the Database BUFfer CaChe..........cccoeiiiciinnecc s 7-8
MUItiple BUTFEE POOIS ... 7-10

REAO LOG BUTTEE ...ttt sne s 7-11

oY A F= V=T 120 Yo 7-11

LIDIary CACh@ottt b e naen 7-12

Shared SQL Areas and Private SQL ATEAScccccveiveeiiiteeireireesre et sre e sre e sre e 7-12
PL/SQL Program Units and the Shared POOIccccveiiviciecc e 7-12
DiICtioNary CACREc..o ottt ee e 7-13
Allocation and Reuse of Memory in the Shared Pool ..., 7-13

LArGE POOL ...t bttt et b e bbbttt e bt n e enen 7-15
Control of the SGA’S USe OFf MEIMOIY ...t 7-16
Other SGA Initialization Parameters ..o 7-16
PRYSICAI MEBIMOIY ...ttt et b et b et sb et et e e 7-16

SGA SEArtiNG AGUIESS....ceeieiiie ettt ettt be bbb e e e e s 7-16
Extended Buffer Cache MechaniSm...........ccocooiiiiiiniinc e 7-17
Program Global Areas (PGA) OVEIVIBWc..oo ittt 7-17
CoNtENT OF ThE PGA . ettt sbe e e 7-17
Private SQL ATc.cccviitictiietieie ettt sttt s te ettt e et be et e s baebe s aeebesbaesbesbeesbesbsenbeenas 7-17

RIS o] T 1Y/ 1=] 0 g o] Y 2RSSR 7-19

SQL WOTK ATEBS ..ottt ettt e ettt e e e e besae e s ae e stesteesaesbeesbesraenbeanas 7-19
PGA Memory Management for Dedicated MOdEc.ccocvevvieiiriene i 7-20
Dedicated and SNAred SEIVELSccoiiiiiiiee ettt sae b b e e e 7-22
SOTEWAIE COUE ATBAS ... ettt ettt ettt bt bt be st e b e et e s e et eb e et eaearesbeseesbeeeeebe e e e e 7-22

Process Architecture

INTrOAUCTION 10 PrOCESSESuviiieetieieeie sttt ettt bbbttt e et be et e b bbb e beneas 8-2
Multiple-Process Oracle SYSIEMSccviiv i 8-2
TYPES OF PrOCESSES ...ttt sttt ettt bbb b e bt et b et b e e b et e sbesbe b et neebeneas 8-2

USEI PrOCESSES OVEIVIBW......ciiitiiiitiiie ittt ettt ettt ettt sb e et s et s et st e st et e e aesbeebesbesaenbeneenee e e 8-4
CONNECLIONS AN SESSIONS ..ottt bbbt bbb e 8-4

Oracle ProCESSES OVEIVIEWc.oiiiiiieiieiiite ittt sttt ettt ettt b be st e e sbese e eeseeneebeeneenesrenas 8-5
GBIV BT PIrOCESSESutiteitee ittt ettt ettt he bkttt bttt et bt eb e e e b e eh bt e bt e Rt e eb e e ke eae e eeeeheeabeeneenbenbee e e 8-5
2o To] o (o 10 L o B 0 Tot oty TS 8-5

Database Writer Process (DBWN) ..ot s neneas 8-8
Log Writer Process (LGWR) ..ottt st neneas 8-9
Checkpoint ProCess (CKPT) ..ttt sttt e e e e sre s 8-11
System Monitor Process (SMOND) ...ttt 8-11
Process Monitor Process (PIMOND)cocoiiiiiiiiie e 8-12

Xi

Xii

Recoverer Process (RECO)cci i se st sttt ene st aesa e e srasse e snesee e snensens 8-12

JOD QUEUE PIrOCESSES ... uiiiiiiteiieite e ite st tie sttt e s e et e ste e ste s e e te s e e s beeteestesasesbeenbeteeseesteereesnenseens 8-12
ATFChIVEr Processes (ARCN)iiiiiiiieiiecetee s e sttt e st e e s e e e snesneseesresre e 8-13

Lock Manager Server Process (LIMS) ...t 8-14

Queue Monitor Processes (QMNN) ..ot 8-14

Trace Files and the AlSIT LOQcvcv e st ere e 8-14
Shared Server ArCHITECTUIE ..ot ettt sbe e 8-15
SCAIADTIILY ...ttt ettt ae e e e 8-16
Dispatcher Request and ReSPONSE QUEUES.........ccvevveiereiiereeseseste e seesseseesaeseesesesessessensenns 8-16
Dispatcher Processes (DNNN)... ..ottt eae e e e e e s 8-19

Shared Server ProCeSSES (SNMM)coiiiieieiiieieiese ettt sttt seesee e e 8-19
Restricted Operations of the Shared SErVEr ... 8-20
Dedicated Server CONFIQUIALIONooiiiiiiiie et e 8-21
The Program INTEITACE.co ittt ettt et ae b e s 8-22
Program INterface StrUCTUIEoie it neeneas 8-23
Program INTErfaCe DIIVELS ..ottt sttt sne s 8-23
Communications Software for the Operating SYyStem..........cccooiiiiiiiiieneii e, 8-24

Database Resource Management

Introduction to the Database Resource Manager ... e 9-2
Database Resource Manager OVEIVIEWccccccerverieiiieieeiesieseesieseseseesesessessessessessessessessensns 9-3
Example of @ SImple RESOUICE PlaN ..ottt 9-4

How the Database Resource Manager WOTKSccooi i 9-5
RESOUICE CONLIOL.......cviiiicicice et 9-5

Example of ReSOUICe CONTIOIcoi i 9-5
Effectiveness of the Database Resource Managercoccverereienneenesi e 9-6
Database INtEGrationcoeviiiiiicee st r et r e a e e e ens 9-6
Performance OVEINEAA ...t see e e 9-7

Resource Plans and Resource CONSUMET GIOUPS.......ccuiirueruerueriereenieseeseseeessessesaessesseseessesesseenes 9-7

Activation of @ RESOUICE PlaN ..o 9-8
T ST ES] =] o | ST 9-8
)Y/ T 1o 0 [OOSR 9-8

Groups Of RESOUICE PIANS.......cccoiiiiiiecicieice sttt sneneenes 9-9

Resource Allocation Methods and Resource Plan DireCtives........ccocooeoeiiecniiincsese e, 9-11
RESOUICE PlaN DIFECLIVESotiiiiiiieiieieei ettt ettt bttt eesne e 9-11

(01 =L U1V, 1= 1 o o Lo 9-12

Active Session Pool With QUEUING. ... 9-12

Degree of Parallelism Limitcccoooioiiiin e 9-12
Automatic Consumer Group SWItChINGccceveieieieiicise e 9-12
EXECULION TIME LIMIT..ceiiiiie et s 9-13

L8 Lo Te [o N =To o ISR 9-13

CPU ReSOUICE ATOCALIONeiiiiiiieeiceeieeie sttt st bbb e 9-13
CPU AIOCALION RUIES ...ttt 9-15

LeVelS @Nd PrIOFTHIES.c..oi et s 9-16
Interaction with Operating-System Resource CONtrol ..o, 9-17
Dynamic RECONTIGUIATIONc.oiiiiiiiie ettt 9-18

Part IV Data

10 Schema Objects

Introduction to SChema ODJECLS ... e 10-2
L= o 1= SRS 10-5
HOW Table Data IS SLOFEd........cc.ooiieiiicceceee ettt ettt sr e st re e 10-6
ROW FOIrmMat @nd SIZE.......ccoooiiiiie ettt sttt s sre s 10-6

ROWIAS Of ROW PIECESuviviitiiiiie ittt ettt naete st te st sae e 10-9
(070] 18] 0 0T a @] o [-] S OSSR UTRUSRPRPR 10-9

Nulls Indicate ADSENCE OF VAlUE ..o 10-10
Default Values for COIUMNS..........ccociiieceec e 10-10
Default Value Insertion and Integrity Constraint Checking...........cccccociiiiiciinn 10-11
PartitionNed TabIES........coi it sttt re s 10-12
=TSy (=T I - o] 1= SRS 10-13
TEMPOTFArY TADIESottt eneer e 10-13
SEgMENT AIOCALION ...ttt e ene s 10-14

Parent and Child TranSaCtiONSccccvvieviiveie v e 10-14
EXEEINaAl TaDIESot st ettt e re s 10-14
THE ACCESS DIIVEN ...ttt sttt et st e erb e s ra s e ereenes 10-15

Data Loading with External Tablesccccvoviiiiiiiiieiccese e 10-15

Parallel Access to EXternal Tables........ccov i 10-16

VHBWVS ..ottt ettt ettt ettt e e te e e s bt et e e e ke e eR b e e e Rt e e a b e e R b e oAt e e eh e e e Rt e RaeeR bt et e e e te e Rt e e anaeenbeeren 10-16
HOW VIEWS @€ STOTEAocveiiiiiiiieees ettt sttt ne et neenesne s 10-17

Xiii

Xiv

HOW VIBWS ATE USEA......c.viiieiiiceee ettt ettt sttt st bt s ssae s sae s s be s sbessnte s sbassneeenbee e 10-18

MECNANICS OF VIBWS ...ttt et bbbt 10-19
Globalization Support Parameters in VIEWSccccvvieveiernn e 10-19

Use of INdeXES AQAINST VIBWScciiieiiiciececei et 10-19
DependenCies ANA VIBWWS.......cc.oiiiiieeiieee ettt sttt ettt b e e et ere e neerenas 10-20
UPAatable JOIN VIBWS.....c.oiiiceice ettt st sa e re e 10-20
ODJECT WIBWVS ...ttt ettt bbbt bbbt b b e bt bt e bbb et st e e et et e e 10-21
INTINE WIBWS ...ttt et b e et h et e e eb et e bt se et e e e e et eneebeeneeneas 10-21
MaALEFTAIIZEA VIBWScoiiiieie e ettt sttt 10-22
Define CONSLIaiNTS ON VIBWUS. ..ottt s 10-23
Refresh MaterialiZEd VIBWS ..ottt 10-24
MaALerialiZEd VIBW LOGSviviiviieiieieieie ettt sttt ettt sttt er e sesneenens 10-24

[100 1= o YT o] o SO 10-25
The SEQUENCE GENEIALOLcueiiiiieetietiite ettt ettt ettt bt sae s be e e b eneeseeneeneebeenesneereneas 10-25
ISV 11607 1.0 1TSS 10-27
g L0 (=3 TSSOSO USSP 10-28
Unique and NONUNIQUE TNAEXESoiiuiiiiiie ettt st 10-30
COMPOSITE INAEXES ..ottt ettt e s e be e saesbe st e saeneeneareene e 10-30
INAEXES ANA KBYS ...ttt ettt et eb et e be e e nbesee e et ensebeaneanens 10-31
INAEXES ANA NUIIS ... et b et seeneas 10-31
FUNCLION-BASEA INUEXESoviviiiiiiiiteie ettt 10-32
Uses of FUNCLION-BASed INAEXES........ccuiiiiiiiiiiie et 10-32
Optimization with Function-Based INAEXES...........ccoirireieieiienese e 10-33
Dependencies of FUNCtion-Based INAEXEScccccvvivveviiciciecec e 10-33

HOW INAEXES ATE STOFEA......ceiitiiiieeie ettt st 10-34
FOrmat Of INAEX BIOCKSc.oiueiiiiiicieee et e 10-34

The Internal Structure Of INAEXEScooiiiiiiee e 10-35

INAEX PrOPEITIES ...ttt b et e et neebesne e 10-36
Advantages Of B-tree StIUCTUIEcocooi i e 10-37

HOW INAEXES AFe SEAICHEdcocviiiiiee et 10-38
INAEX UNIQUE SCAN......eiieiieieie ettt sttt e e e b ebesre e 10-38

INAEX RANGE SCAN......cniiieiieie ettt bbb et beebesre e 10-40

Index Range SCan DESCENUINGc.couiviiiiiire ittt se e aereeeeneas 10-43

NGV 0] 1 0] o (=117 o] o FO OSSR 10-45
Prefix and SUTFIX ENTFIES ..o 10-45

11

Performance and Storage Considerationscccoveiveieieneeiesinne e 10-46

USeS Of KeY COMIPIESSIONcueiiiiiiiiiiie ittt st b e 10-46
REVEISE KEY INAEXES . vvuviiiiiieiie ittt sttt sttt et testeste st stese e aeseenseneesesseanesaesneneens 10-47
2T A=Y o T [(=TSRSS 10-48
Benefits for Data Warehousing ApplicatioNns.coeeiiiiiiinc e 10-48
(0= T o [T 1] 1Y TSRS 10-49
Bitmap INdeX EXAMIPIE ..ottt 10-50
Bitmap INdexes and NUIIS ..o e 10-52
Bitmap Indexes on Partitioned Tables...........ccccccvvviiiiiciiic e 10-53
BItmMap JOIN INAEXES......cuiiiieiiee ettt bbb s b es e e e enenbesne e 10-53
FOUT JOIN IMOEIS ...ttt e 10-53
Creation of a Bitmap JOIN INAEXcccceiiiiiiiiii e 10-56
INdex-Organized TabIEs 10-57
Benefits of Index-Organized TabIes. ... 10-58
Index-Organized Tables with Row Overflow Area..........ccccovvveiiiicninse s 10-59
Secondary Indexes on Index-Organized Tables..........cccooiiiiiie e 10-60
Bitmap Indexes on Index-Organized Tables ... 10-61
1V F=T o] oY L T N IF- Lo | -SSRSO 10-61
Partitioned Index-Organized TabIesS...........oo ot 10-62
B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables 10-62
Index-Organized Table APPHCALIONScceiiiiiieer e 10-62
APPLIcation DOMAIN TNAEXESoviiiiiiiieitese ettt ettt e e bese e e sseesesreaaesnens 10-62
(O 111 (] TSSOSOV 10-63
HASN CHUSTEIS ...ttt 10-65
Partitioned Tables and Indexes
INtroduction t0 PartitioNiNg.........ccciviiiiiiiiie ettt srenne e eens 11-2
PartitioN KEY ... ettt b et e bt a e bbb bbb b e 11-4
PartitionNed TaADIES ...ttt sttt 11-4
Partitioned INdex-Organized TabIeS.........ccccoviiiiiiiiie i e 11-5
PartitioNing IMETNOGAS ...ttt ae s 11-5
RANGE PArtitIONINGc ittt bbb s et n et e e sbe e 11-7
Range Partitioning EXamMPIEcccvciiiiiiiiiieeseeee et s 11-8
IE o= o (] A To] YT o [P RUSRURRPRPTR 11-8
List Partitioning EXAmMPIE......cc.o i 11-8

XV

[Fo TS T =V] o] 1 o TS 11-9

Hash Partitioning EXamMPIEcccooiiiie e e 11-10

(00 0 g o T2 | (=T 2=V 11 € o] o 1 o PSS 11-10
Composite Partitioning Range-Hash EXample ... 11-11
Composite Partitioning Range-List EXamPIeccocooiiiieiiiiicie e 11-12
When to Partition @ TabIe ... 11-13
PartitioNed INAEXES......couiiiiei ettt bbbttt st 11-13
Local PartitioNed INAEXEScoi ittt ettt s 11-14
Global PartitioNed INAEXES ... 11-15
Maintenance of Global Partitioned INAeXescccooiiiiiiiiiii e 11-16
Global Nonpartitioned INAEXEScoo i e 11-17
Partitioned INAeX EXAMPIESccccoviiiiiciceccc et 11-18
Example of Index Creation: Starting Table Used for Examplesccccooeverniennne. 11-18
Example of @ Local INdeX Creation ..ot 11-18
Example of a Global Index Creation............ccccvevviveneneicecee e 11-18
Example of a Global Partitioned Index Creationccocoeiiiiiiins i 11-18
Example of a Partitioned Index-Organized Table Creation...........cccocvcvvvneiiicnnnn. 11-19
Miscellaneous Information about Creating Indexes on Partitioned Tables..................... 11-19
Using Partitioned Indexes in OLTP Applications..........ccocoiiiiiiiiiniieeee e 11-19
Using Partitioned Indexes in Data Warehousing and DSS Applications............cccccce...... 11-19
Partitioned Indexes on Composite Partitions...........cccccvvvvrineieise s 11-20
Partitioning to IMpProve PerfOrmance ..o e 11-20
Partition PrUMING ..ottt bbb e b 11-20
Partition Pruning EXamMPIe........cccciiieiie st 11-21
PartitioN-WiSE JOINS.......ciiiiiii ittt bttt ettt ne b e 11-21
PAFAITEI DIMIL ...ttt ettt b bbb b be e e b s e e e e ne b e ne e 11-22

12 Native Datatypes

XVi

INtroduction t0 Oracle DAtatyPeScccoiiiiieiiiieiieie et et sa e ee s 12-2
(O Fo T =T (=T BT L LY o 1= OSSP 12-3
CHAR DalALYPE ... ettt ettt sttt b s e bt s bt sb e e bt s be e e e eaeeeesaeenbesbeenbenbeens 12-3
VARCHAR2 and VARCHAR DatatyPescceoeeeiaieeirieeiese ettt s es 12-4
VARCHAR DalalyYPeooeeieeiieeie ettt ste ettt se et e s este e e sseaseessesneeseeaneenneens 12-4

Length Semantics for Character DatatyPes........ccovveieririnieice e e 12-4
NCHAR and NVARCHAR2 DatatyPescccoeereririeiie ettt 12-5

NVARCHARZ ..ottt ettt sttt sttt be st et renbenens 12-6

Use of Unicode Data in an Oracle Database.........ccoovviiiiiiic i 12-6
IMPLCIt TYPE CONVEISION.....cciiiieicieeeete ettt s sr s e es 12-7

L OB CharaCter DatatyPeS.coeeueruererierieieieeeeieeieae sttt see e e et ebe s e sseeseetesbessesbessesaeneeeas 12-7
(IO] N[-1 -1 1 o 1< SR 12-7
NUMBER DAAYPEcueitiitieitietie ettt ettt sttt sttt e e bt be e sbe e e b e e besbeennesbeenbeenas 12-8
INternal NUMEIIC FOIMIAL... ..ottt enesr e e 12-9
(D) D - = 1Y/ o 1= RS 12-10
USE OF JUTIAN DALES ...ttt b bt e e b e e et e ane s 12-11
DAte AFTTNMIETIC.ottt bt et b et eae et e b 12-11
Centuries and the YEar 2000ccviieiiiiieieiseeee ettt s se e sr e sneneas 12-12
Daylight SAVINGS SUPPOITc..ouiiiiie ittt sttt st be b e b e 12-12

B L0 (=T o] o =T TSROSO 12-12
DLz 10 0] o TSRS 12-13

LOB DALALYIES ... eoueiuiiiieeteitie ittt ettt ettt sae sttt s e e be e te s ke eb b e sb e ea b e ebeeabeebeebesbe e aeeshe e beaneenbenbeens 12-13
BLOB DALALYIE .. .ottt sttt b ettt e b b e e s be R e e bt e n b et et bt ebe e b e ene e b 12-14
CLOB and NCLOB DAtatyPBSccciverveieieieieiseeisiesesiesestessessessessessessessessssssssssessessessenseses 12-15
BEILE DAY .. .coeetiiiee ittt ettt bbbttt be et ae b b e e b et e besbeenbenheenbeebe e 12-15
RAW and LONG RAW DALAYPEScoueiiriirieiiireeieiieieeieeiiete ettt st seeseeee s e e sse e snesnesees 12-15
ROWID and UROWID DatatyPeS......cecceiuirieriirieierieeeseerietesessesessessessesesaessessesassssssssessessessesses 12-16
The ROWID PSEUAOCOIUMIN ...ttt ettt e 12-17
PRYSICAI ROWIAS ...ttt bbb ne b sae s 12-17
EXTENAEA ROWIAS.ceiiiiiiiiieiie ettt ebe b 12-18
RESTIICIEA ROWIAS.......eieieiiieie ettt et nb e sae s 12-19
EXampPles Of ROWI USE......ccoiiiiiiiie ettt 12-19

HOW ROWIAS ArE USEA.....c.oiiiiiieieiieieee e et 12-21

LOGICAI ROWIAS.......ceiieie ettt ettt s b e e ettt ene b e b 12-21
Comparison of Logical Rowids with Physical ROWidS............cccccooviiiiiiinniciics 12-22
GUESSES IN LOGICAl ROWIAS.cviiiiiiciie st nne s 12-22
Rowids in NON-Oracle Databhasescccceriieiiiie et s 12-23
ANSI, DB2, and SQL/DS DatatyPeSccueeererieiiireeieieeieeeieste et sieseesiebesaeeesbeseesesseasessesnesnens 12-23
DL B - = 1Y/ o 1= PSSR 12-25
XIMILT Y8 DALALY IR ..ttt ettt sttt sttt sttt et be e he et e b b e e be st e sb e eb et e eaeebesbeesbesenas 12-25
URI DATALY[ES ...ttt ettt ettt bbbt s ettt e s bt e ne e bt s e e s bt et e ek e e ke sb e e ebesbbenbeereenbeeaeesbeannas 12-26

XVii

(D F 1= W OX 0] 1 V7T] 0] o 12-26

13 Object Datatypes and Object Views

INtroduction t0 ODJECt DAtatYPESccveiirierieiiieie ettt nae e ne s 13-2
CoMPIEX DAA MOAEIS.........oeiiiiee bbb e ettt ebe s 13-2
Complex Data Model EXAMPIE.........coviiiiiiiiiee e ane 13-2
MUItIMEAIA DALALYPESeiveieitiie ettt ettt bbb bbbt b bbb e 13-3
Object DatatyPe CAtEUOIIESc.oiiiiieieieeeeee ettt ettt et be et e sbeseesbeseeseeneenseseanes 13-3
L@ o] 1= A 4 0TSSR 13-4
Purchase Order EXAMPIE.......ooi et s 13-4

TYPES OF MELNOAS ...ttt e 13-5

(@] o] 1= A -1 o] 1= SRRSO 13-8

ODJECT THBNTITIES. ...ttt bbbt eae 13-9

ODbject VIeWS DESCIIPTIONoiiiiiiiieie ittt e et ene 13-9

RE RS .t 13-9
(0] [=Tex A To] o T 1Y o 1= F SO UPRURTRPR 13-11

W ARRALY'S ..ttt bbbtk ek bbb e bbb e bbbkt en e 13-11

Nested Tables DESCHIPLIONccciiiiie e sn et ene s 13-12

TYPE INNEIITANCE. ...ttt b bbbt b e e b ene e e st en et e e neenesreeas 13-13
FINAL and NOT FINAL TYPESctiiuiiriiiiririeene sttt sttt sesiebe sttt s es 13-13
Example of Creating a NOT FINAL ODjJECt TYPE ...occvvveveieieieece s 13-14

NOT INSTANTIABLE Types and Methods ..o 13-14
User-Defined Aggregate FUNCLIONS ..ottt 13-15
Why Have User-Defined Aggregate FUNCLIONS?........c.covvviiiiiiniinicsees e 13-15
Creation and USE OF UDAGScc.oiieiieieie ettt see e 13-15
How Do Aggregate FUNCLIONS WOIK?cooiiiiiiieeceee e e s 13-16

VAN o] o] FToz-1d [0 o I Fa] =T =TT = TSRS 13-17
31O OO OO TR PR 13-17
PLZSQL ittt bbb e bR bbbt bbbttt b e 13-18
PrOXC/CA oottt 13-18
Dynamic Creation and Access of Type DesCriptionsccoccoeviiiieninsieneeieeseeiens 13-19

L@ O TSSOSO 13-20
L TSRS PO TSP PPP 13-20
JPUDBTISIIET L.ttt ettt st sb et s e neene e 13-21
IDBC ettt h bR b bR b bR £ e b bRt e b bRt e bbb b e bea 13-21

XViii

1@ TN @] o] [=To! A Y/ o =T SRR 13-21
DatatyPe EVOIULION ..ottt st ena e neenenresnenre s 13-22
INtroduction 10 ODJECT VIBWSc.v it sttt et n e ne e 13-23

Advantages Of ODJECT VIBWSciiiieiiieiii ettt e 13-23
How Object VIeEWS Are DEfiNedcooiiiiiiiie et 13-24
USE OF ODJECT VIBWWS. ...ttt sttt bbb s e et et sbe s 13-25
UpPdates OF ODJECT VIBWVS ..ottt sttt sbe e nne 13-26
Updates of Nested Table COlUMNS iN VIBWS.......cccccviiiiniiiiie s 13-26
VIBW HIBFAICNIES ...ttt et e et ene b e b e 13-27

Part V Data Access

14 SQL, PL/SQL, and Java

SQL OVEIVIBW ...ttt sttt ettt s be e st e s he e ae s ae e beebe e s be et e e sbeesbenteeaeeabeeseesbeaseestaeseesteeeenteens 14-2
1@] IS = 10 0 4 T o1 OSSPSR 14-2
Data Manipulation Language StatemMeNtsScccevevveeeieiiesiese v 14-3
Data Definition Language Statements..........ccoco oo 14-4
Transaction CoNtrol StAtEMENTSoooiiiiiie e e 14-5
SeSSION CONrol SEAtEMENTS.......oiiiiiieeee e 14-5
System Control StAtEMENTSoiiiiee e 14-5
Embedded SQL StAtEMENTScccooiiiiie et 14-5
Identification of Nonstandard SQLc.ccovviiiiieiic e e 14-6
RECUISIVE SQL ...ttt ettt et ettt e e st e st e e ae s teebeesbeesbesbeenbesbeenbesreenreannas 14-6
(01U 0] £ J TP URTRTPR 14-6
SCIrOIADIE CUISOIS. ...ttt ettt sttt st 14-7
SRAFEA SQL ..o et r e e e e besre e ebe e reaanas 14-7
ooV 5] T TSSOSO 14-7
K1 I (0 TolcTS] T o T S 14-8
SQL Statement EXECULIONcuiiieiiciccc ettt ere et 14-8
DML StatemMent PrOCESSINGcoeiuiiierieitiie ittt st ene e e e 14-10
DDL StatemMeNnt PrOCESSING....ccvcviiieiestiriesiestesesesaee et e et sesae st st s seenaera e e eresrense e 14-14
CoNtrol Of TraNSACTIONSc.oiii ittt sae s 14-14
The OPLIMIZEN OVEIVIBW ...ttt et ettt ettt sbe e 14-14
EXECULION PIANS......c.iiiiiiiici ettt snene 14-15

XiX

PL/SQL OVEIVIBW ...ttt ettt ettt sttt e et be bt e s ba et e sbeeabeebeebesbeereesbeestesaeesbebeebe e 14-16

HOW PLZSQL RURNS ..ottt sttt et esbe et s ra e sne s e beeneens 14-17
NALIVE EXECULION.....c.iiiiiiiiiicicrct ettt ettt et nenes 14-17
INErPreted EXECULIONocuvciiiie ettt ettt sa e st se e ene e e ene s 14-17

Language Constructs fOr PLASQL.......c.oiiiiiiiiie et 14-19
Variables aNd CONSLANTSooviiiiiiiriec et enenes 14-19
L1 B[0] £ J TP U TR UPTUPTOPRUPOTRTN 14-19
(=] o [LSOO 14-20
DyNamic SQL iN PLZSQL ..ottt st ne e era e ene s 14-20

PLZSQL Program URNILSccooiiiiiiieeie ettt s e e sne e e 14-21
Stored Procedures and FUNCLIONSooiiiiiiiiicee e e 14-21
PLZSQL PACKAGES......eiiieiiiiiieie ettt sttt ettt sve st sttt enassenresnees 14-27

PL/SQL Collections and RECOIUS........ccciiiiiiiie ettt 14-30
(0] | [=Tox A To] o 13PTSR 14-30
RECOIAS ...t bbb bbbt b et b ettt ettt 14-30

PLZSQL SEIVEE PAUES.....cueiieiiiiieiiet ettt ettt sttt ettt be bbb be s be e e sbese et neeneereane e 14-30

JAVA OVEIVIBW ...ttt ettt b ettt e bt b e beeb e eb e ke ee e e b ene e e eneene et e anesneerenas 14-31

Java and Object-Oriented Programming Terminologyccccocveveniveiinienieseseseiesiennas 14-32
(O 1= TIPSR 14-32

ClaSS HIBIAICRY ...ttt ettt b et b e b se et eb e s 14-34

L1 (=T o = o= OO PPN 14-35

o]0 0T] o] 0111 o [OOSR 14-36

The Java Virtual Maching (JVIM).........c e e 14-37

WhY USE JAVA IN OFACIE?......cuiciii ettt ettt sa e aenes 14-39
MUIEIENFEAAING ...ttt se e eb e ene s 14-40
Automated Storage ManagemMENTcocoooiiiiiiiiee et 14-41
0011 o 1 | TSRS 14-41
PEITOIMANCE.ttt ettt eb ettt e et et en e e neeneeas 14-42
DyNamic Class LOAOINGccuiiiiiiieie ettt s n s 14-43

Oracle’s Java ApPlIication Strategyccccviviiiiiiiieieieeee s 14-44
JaVA SOred PrOCEAUIESc.oiiiecie ettt ettt 14-45
PL/SQL Integration and Oracle RDBMS Functionalitycccoooiiiiiininiicnnnn, 14-45

15 Dependencies Among Schema Objects

INtroduction t0 DePeNdENCY ISSUEScciiiiiieieiicee ettt ettt sae e 15-2

XX

Resolution of Schema Object DEPENUENCIEScccccvcvieieiiresie e s 15-4

Compilation of Views and PL/SQL Program URNItS ... 15-5
Views and Base TabIES........ccooiiiiicie s 15-5
Program Units and Referenced ODJECEScoccvviieviiiecieicce e 15-6
Data Warehousing ConSiderations.........ccoccoe e 15-7
Session State and Referenced Packagescccvvvvveieeiiiie s 15-7
SECUTNItY AULNOFIZALIONS.......coiiiiiie et s 15-7

Function-Based INAeX DePeNUENCIES.........ooiiriiiiieiiee ettt 15-8
[CTo LU T (=T 0 =T | £ TSP 15-8
DETERMINISTIC FUNCLIONS ..ottt 15-8
Privileges on the Defining FUNCLIONooiiiiiiiiii s 15-8
Resolve Dependencies of Function-Based INAEXEScccovevveririirevisieeise e 15-9

ODbject NamMe RESOIULIONooiiiiiii ettt et e e 15-9
Shared SQL Dependency ManagemENtcccciiiiiiiiinienene e e eere s 15-10
Local and Remote Dependency Management...........cccovvevveeeieieeiesieseseseseeesiesse e eesese e 15-10

Management of Local DePeNUENCIES.cceiiiiieieeeie et 15-10

Management of Remote DEPENTENCIES.........cii i 15-11
Dependencies Among Local and Remote Database Procedures...........ccccoevvvveinene. 15-11
Dependencies Among Other Remote Schema ObjJectSccocooceiiveiiniciniccee 15-13
Dependencies of APPIICALIONS. ... 15-13

16 Transaction Management

INtroduction tO TraNSACTIONS..........cciii et be e a e re e sbeereesreas 16-2
Statement Execution and Transaction CONtrol...........ccccocvviieiiine e 16-3
Statement-Level ROHDACK ..o e 16-4
Resumable Space ANOCALIONcc.o i s 16-5

Transaction ManagemMeNnt OVEIVIEWcccviiieieeeieeeiesesesesteste e saesaesaesessessessessessessesaessens 16-5
COMMUL TrANSACTIONSeeiviiiiiiieiicte ettt e et e s be st et e e st e ese e ebeebesbeestesreetaesanas 16-6
ROIIDACK Of TranSACHIONS.ccciiiicii et be e ere e 16-7
SaVEPOINES IN TraNSACTIONS.......cceieeeeeiee et eere e sresre e e 16-8
TranSACTION NANMNG ..ottt et ettt ettt et e besbesbeseesbeseeneaseenesneaneas 16-9

How Transactions Are NamMEd...........cccocviiiiiiie et 16-9

(00T 0210 0 T3 O 0] o 0] .4 T-1 o | P 16-9

The Two-Phase Commit MeChaniSmMi.........ccccooiiiiiiiiice s 16-10
Discrete Transaction ManagemMENTcoeii ittt see s 16-11

XXi

P AU (o] 0] g (o U TR L =1 @ - (01 £ 10 1 16-12
AULoNOMOUS PLZSQL BIOCKS ..ottt s st 16-12
Transaction Control Statements in AutonomMOouUS BIOCKSccovvvieiiiiiie v 16-13

17 Triggers

[FaNu oo [N ot q o) oIk (o TN I g [o o =] S 17-2
HOW TrigQers Are USEBAc..ouiiiiieiiiie ettt sttt bbb et nes 17-4
Some Cautionary NOtes abOUL THIGOEIS . .c.uciiiiiiire et 17-4
Triggers Compared with Declarative Integrity COnstraintsccocvevevviivicninsenns 17-5

oV ko) =T g [T 1= TSSOSO 17-6
The Triggering EVENt OF StatemMent..........cccooeiiiieiic et 17-7
TrIQOEr RESTIICHION ..ottt se e e e e neetenneerennes 17-8

I Lo o =T Nt 1 o o OSSOSO 17-8
TYPES OF THIGGBIS ettt b et e bt ee e e b et et e st e m e et e e s e ebe e b e ebesbeabenbeee s 17-9
Row Triggers and StatemMeNnt TIIGQEIScovuiuireieieriresire st e e ese ettt sneneenens 17-9
(01T I T T[T OSSPSR 17-9

] e LT 0 =T oL A N g o o [=] TSSO 17-9
BEFORE and AFTER TFIQOEIS ..c.viiiieieiecte st sesteste et a s ste st sresae e sae e s e eneasesneens 17-10
BEFORE THIQOEIS .ottt ettt sttt sttt s et et ebe st et sb et et eseentenessenneseeeas 17-10

Y I = I o o =T ST SORST USSR P 17-10
Trigger TyPe COmMDBINAtIONSccvcieiieiicc et eeneere e eee s 17-11
INSTEAD OF THIQOETS -ttt steeeiet ettt st sttt s ee et se et bt ebesbesaesbeseeseeneanseseaneaneas 17-12
IMOGITY WVIBWUS ...ttt bttt b e se e et b et ebesbenbeeeeeas 17-12

Views That Are Not Modifiable ... 17-13
INSTEAD OF Triggers on Nested Tablesccccoiiiiiieiiiiieeee e 17-13
Triggers on System Events and USer EVENTS ..o 17-14
EVENt PUBIICALION. ... 17-14

EVENT ATEFIDULES ...ttt bbb nees 17-15

SYSTEIM EVEINTS ...ttt et b e et s be e e s be e benneen 17-15

USEE EVENTS ..o 17-15

TrIQOEE EXECULION ..ottt ettt b et b e ea e b e e b en e e neen et e enesneereeas 17-17
The Execution Model for Triggers and Integrity Constraint Checking..........cc.cccceoeenees 17-18
(D = QAW =T I (0] g I o o =] SO 17-20
StOrage Of PL/ZSQL TrigOEIS .. ittt ettt sttt st se ettt e e saesaesee e 17-21
EXECULION OF THIQOEIS ..ottt bbbt nesbe e e 17-21

XXii

Dependency Maintenance fOr THQOEIS ..c..cuiiiiieieie et 17-21
Part VI Parallel SQL and Direct-Load INSERT

18 Parallel Execution of SQL Statements

Introduction to Parallel EXECULION ...t 18-2
When to Implement Parallel EXECULION...........cocoiiriiiiiiiiie e 18-2
When Not to Implement Parallel EXECULION..........ccov i 18-3

How Parallel EXECULION WOTKS ...ttt ettt s 18-4
Parallelized SQL StatemMENTSccoooiiiiie ettt sttt et be b reeaeesaeas 18-5

Parallelism Between OPEIatioNSc.covcveiiiieseiesiesie e ese e ens 18-6
Degree of ParalleliSIm ... e 18-8
Parallel Query Intra- and Inter-Operation EXample ... 18-9

SQL Operations That Can Be Parallelized ..o 18-12
Parallel QUETY ...ttt ettt ettt bt e st s b es e et eneebe e ane s 18-12
PAFAHIET DDLU ...ttt ettt ettt et be b e st e s e b es e et eneebeaneene s 18-12

DDL Statements that can be Parallelized............ccccooovviiiiiiiiice e 18-12
PAFAEI DIMIL ...ttt ettt ettt b et e be s e b es e et ensebeanesneas 18-13
1@ Il o - Lo (= PSRRI 18-13
How to Make a Statement Run in Parallel ... 18-14

Parallel QUETY ...ttt a et sttt b et et en et e see s 18-14

oo = 11 (=] 1 5] TSRS 18-14

PArallel DIMIL ..ot bbbt e sb e bbbt ebe e 18-14

19 Direct-Path INSERT

Introduction to DireCt-Path INSERT ..ot 19-2
Advantages Of DIrect-Path INSERT ..ot s 19-2
Serial and Parallel Direct-Path INSERT ..o 19-3
Direct-Path INSERT Into Partitioned and Nonpartitioned Tables............cccccceevvivviiiiennnnn, 19-4
Serial Direct-Path INSERT into Partitioned and Nonpartitioned Tables..............ccccce..... 19-4
Parallel Direct-Path INSERT into Partitioned Tables...........cocooiiiiiiiieeeee, 19-4
Parallel Direct-Path INSERT into Nonpartitioned Tables..........ccccccoovivviininiencneieecce e, 19-4
Direct-Path INSERT and LOgging MOGE............ccccooiiiiiiiiiiiie et s 19-4
Direct-Path INSERT With LOGQING......coiiiiiiieieiiieeiieieee et s 19-5

XXiii

Direct-Path INSERT WithOUL LOGQINGcciivieriirieiceieee e s eere e 19-5

Additional Considerations for Direct-Path INSERTc..ccccoo i 19-5
Index Maintenance with Direct-Path INSERTcocooiiiiiiiniiin e 19-5
Space Considerations with Direct-Path INSERTccccviiiiinieieicse e 19-6
Locking Considerations with Direct-Path INSERTccooiiiiiiiiinee e 19-6

Part VIl Data Protection

20 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistency in a Multiuser Environment.............. 20-2
Preventable Phenomena and Transaction Isolation LeVels ..., 20-2
Overview Of LOCKING MECNANISIMScuiiiiiiiii e e 20-3

How Oracle Manages Data Concurrency and CONSISIENCYcccooeieericiiineeinese e 20-4
Multiversion ConcurrenCy CONIOL........cccveiiiiiiiiiie e 20-4
Statermnent-Level Read CONSISTENCYoouiiiiiiiiiiiiiceere et 20-5
Transaction-Level Read CONSISLENCYcc.oiiiiiiieiieie ettt 20-6
Read Consistency with Real Application CIUSLErSccccecevviiiiiisire e, 20-6
Oracle 1SOIAtION LEVEIS ...ttt ettt 20-7

Set the 1SOIatioN LEVEN ... e e 20-7
Read Committed ISOIAtIONc..cviiiiiiic e 20-8
Serializable ISOIAtIONcooii e e 20-8
Comparison of Read Committed and Serializable Isolationc.cccooiiiiiniicinnn 20-10
Transaction SEt CONSISLENCYcviveiieiiiesise st sr e e e eresre e e 20-10
ROW-LEVEI LOCKING.......ciiiiiiieie ettt et 20-11
Referential INTEOIILYcooiii e s 20-12
Distributed TranSaCtIONSceiiiirieiieee ettt nenes 20-12
Choice Of ISOIatioN LEVEIccooiiii e e 20-13
Read Committed 1SOIAtIONoouoiiiiiii s 20-13
Serializable 1SOIALIONccoiiiiieie e 20-14
QUIESCE DAtADASE.........e it re e 20-15

HOW OFacle LOCKS DALaccuiiuiiiiieiiieiieii ettt eb et en e sne e 20-17

Transactions and Data CONCUITENCYcueuieariierieriesesieseeseesesessessessessessessessessessessssessessens 20-17
MOAES OF LOCKING ...ttt ettt bbb ene s 20-18
LOCK DUFALION ...ttt et ettt ettt se e e e e e e e e s ebesne e 20-18
Data Lock Conversion Versus Lock Escalation...........ccococveiriiniinnnninnccneens 20-18

XXiv

21

(DTS- Yo | [0 T0d & 20-19

DeadloCK DEIECTIONc.eiuiiiiiiiiie ettt bbb e 20-20
AVOIA DEAAIOCKS ...ttt 20-21

I8/ =0) 0 Tod <SPS 20-21
DIML LOCKS ...ttt ettt as ettt ettt bbbttt et s et e s te s et ens 20-22
ROW LOCKS (TX).eutirietitterisiesieste s e e st te et saest e e se e atastesteesestesaessenseaeseensesaenesneenessesseneens 20-22
TaADIE LOCKS (TIM) 1.ttt bbbt ettt sttt nbe e 20-23
DML Locks Automatically Acquired for DML Statementsccococvevinnccienenn 20-27
DIDL LOCKS ...ttt sttt bbb bbbt b et b 20-30
EXCIUSIVE DL LOCKS ...ttt sttt st es e ebe e sne s 20-30
SNAIE DL LOCKSeiiiiiiieeee ettt sttt en et sbe e nee s 20-30
Breakable Parse LOCKS ..ottt sne e 20-31
Duration 0f DDL LOCKScoiiiiiieee e s e 20-31
DDL LOCKS 8N CIUSTEIS. ...ttt 20-31
Latches and INtErN@l LOCKS. ..ot 20-31
LALCRIES ...ttt e bt e ettt eaeer e ne e 20-31
INTEINAL LOCKS. ...ttt ettt st bt et s e e ene e 20-32
Explicit (Manual) Data LOCKINGcccocviiiiiiieiiese st 20-32
Examples of Concurrency under Explicit LOCKING........ccccooiiiiiiiiiiiiicccec 20-33
Oracle Lock ManagemMent SEIVICEScciiiiiueieiiieieiesesie sttt see s 20-41
[TS o] o T Tod @ T 1= PSS 20-41
Flashback QUETY BeNETItScoi it 20-42
Some Uses Of FIashback QUETYcoiiiiiiiiiee et 20-43
SEIf-SEIVICE REPAIN.......eiiiitiieieiest ettt sttt ettt teste st et et a et eseeseeneeneeresrennens 20-43
E-Mail or Voice Mail APPLICALIONSccooiiiiiiiiiecee e 20-44
ACCOUNT BAIANCES ...ttt sttt ae et e 20-44

(2o To] 1 To [=To I AN o o] FTor= 1 [o] - PSSP 20-44

Data Integrity

INtroduction t0 Data INTEGIitYccocviieiiri et 21-2
TYPES OF DAtA INTEGIILY ..ot ettt ebe e b saen 21-3
INUTTRUIE ...t bbb e b et ee et es et nesbesbeneesaen 21-3
UNIiqUE COIUMN VAIUESocuviieece ettt e ns 21-3
Primary KEY VAIUEBScuiuiiiii ettt ettt s 21-3
Referential INtegrity RUIES ..o 21-3

XXV

Complex Integrity ChecKing ..o 21-4

How Oracle ENforces Data INTegrity ..ot 21-4
Integrity Constraints DESCIIPLION.........ccvviiie e 21-4
(D=L o T ST T I T [0 =] TSP 21-5
Introduction to INtegrity CONSTIAINTS........coici i e 21-5
Advantages of Integrity CONSIrAINTS........ccccvieiiriie it 21-5
DECIArAtIVE EASE......cuiieiieeiictieie ettt bbb e e et et 21-6
CeNtraliZed RUIES........oouiiee et e ettt 21-6
Maximum Application Development ProductiVitycccccovveininie e 21-6
Immediate USer FEEADACKoii i e 21-6
SUPEFIOF PEIFOIMANCEoiiiiieiiiieeeie ettt bbbt ere e ene s 21-6
Flexibility for Data Loads and Identification of Integrity Violations..............c.cc........ 21-7
The Performance Cost of Integrity CONStraiNtS.........c.coiiiiiiiiiii i 21-7
Types Of INtegrity CONSIIAINTScoiiiiiie et 21-7
NOT NULL Integrity CONSTIAINTSccveiviieiiieiesi e sttt es 21-7
UNIQUE Key Integrity CONSIIAINTSccooiiiiiieiiiiieiie ettt 21-8
UNIQUE KBYS .ottt bttt sttt e bt bt bt e e sb e et e neembeb e e e neerenbeee 21-9
UNIQUE Key Constraints and INAEXES........cccoevererierieieiiieese e sese e sesneesenes 21-10
Combine UNIQUE Key and NOT NULL Integrity Constraints...........cc.ccoeeveneeennn 21-11
PRIMARY KEY Integrity CONStFAINTS........cccoiiiiiiiiieriee e 21-11
PrIMATY KBYS ..ottt ettt sttt s e te et et e te st st ene et ena e st eneerenreenenren 21-12
PRIMARY KEY Constraints and INAEXEScccceveiiriairiiiiecnesie e 21-12
Referential Integrity CONSTIAINTScooiiiiiiii e 21-13
Self-Referential Integrity CONSIraiNtSccccovvreriiicicecce e 21-14
NUIIS aNd FOFEIgN KEYS ...ttt et s ene s 21-15
Actions Defined by Referential Integrity Constraints...........ccoceviiiienencieinceee, 21-16
Concurrency Control, Indexes, and FOreign Keys.........cccocevviviiniinienesiene s 21-17
CHECK Integrity CONSTIAINTSccoiiiiiiiiitcie ettt st 21-20
The CheCk CONAITION ..ot ee 21-21
Multiple CHECK CONSLIAINTSccviiieieie ettt eneas 21-21
The Mechanisms of Constraint CheCKiNg.........cccco i 21-21
Default Column Values and Integrity Constraint Checking............cccoocvvivniniiinncnn. 21-24
Deferred Constraint CRECKINGc.cociiiiicisese et ne e 21-24
COoNSLrAINT ALIIIDULES......oceee et s 21-24

SET CONSTRAINTS MOGEcoiuiiiiiieieiirisieees sttt sttt e 21-25

XXVi

Unique Constraints and INAEXESciveveeeiiiieiere et eseeese e neens 21-26
(O00] 15) (1T 0] B €= L (=TT TR 21-26
Constraint State MOdifiCatioNcccoeiiiiie et sre e sae e 21-27

22 Controlling Database Access

INtroduction t0 Database SECUNILY........cciviiiirie et 22-2
Schemas, Database Users, and Security DOMAINS..........ccocoieiiiiiiininiescse e 22-2
USEIr AULNENTICALIONeei ettt ettt et sbe e nee s 22-3
Authentication by the Operating SYStEM ..o 22-4
Authentication by the NETWOIK ..o 22-4
Third Party-Based Authentication TeChNOlOgIes..........ccocviiiiiiiinii e 22-4

Public Key Infrastructure-Based AuthentiCation.............ccccccovivrinirenisiesiese s 22-5
Remote AUNENTICALION ..o e 22-7
Authentication by the Oracle Database.............cooiriiiiiii e 22-8
Password Encryption While CONNECiNg.........ccccvveriiieieiiiicc e s 22-8
ACCOUNT LOCKING .ttt et ettt snesbeneenn 22-8
Password Lifetime and EXPIirationccooooiiiiriiiineccese e 22-9

e TSIV o] o Il o 1TS) (0] Y/ 22-9
Password Complexity VerifiCationcooiiiiiiiiiiiii e 22-9
Multitier Authentication and AUthOriZatioN ...t 22-10
Clients, Application Servers, and Database SErversccccooeiveiiivsinieseneseiesne e 22-10
Security Issues for Middle-Tier APPlICAtiONScociiiiiiiiie e 22-12
Identity Issues in a Multitier ENVIrONMENt ..o 22-12
Restricted Privileges in a Multitier ENVIroNmMEeNt..........c.cccovve e 22-12
Authentication by the Secure Socket Layer Protocol ... 22-12
Authentication of Database AdMINIStrAtOrS...........cooviiiiiieiiiee e 22-13
(@1 1ol [-l L] (=T g L= Al B T =T o] OSSR 22-14
User Tablespace Settings and QUOTAScoiuiiiiiiiiiieeie et 22-14
Default TableSpace OPLiONcoi ittt e see e 22-15
Temporary Tablespace OPLioNcccvvviiiiieiee e 22-15
Tablespace AcCCeSS aNA QUOTASciuiieriirieieieeieieiee ettt st sbe st e e e 22-15
The USer Group PUBLIC ...ttt sttt ene st e e 22-16
User Resource Limits and Profiles ... 22-17
Types of System Resources and LIScooiiiiiiiiiie e 22-17
CPU THIMIE .ottt bbbttt b bbbtk ea bbbt st eb et 22-18

XXVii

0T | 7= I = (=7 Lo [ST 22-18

ONEE RESOUICESc.uiiie ettt ettt te e te e te st tb e s ta e st e sre et e sbeesbesneesresneesraeeens 22-19
o (o) 1 =TSP 22-20
WHhEN 10 USE PrOfilES....c.eciciciie ettt 22-20
Determine Values for Resource Limits of a Profile ..., 22-20

23 Privileges, Roles, and Security Policies

INtrodUCtioN 10 PrIVIIEOES.ociii et be et 23-2
SYSEEM PrIVIIEOES ...ttt ettt re st e nrenre e 23-2
Grant and Revoke SyStem PriVIlEgES.cociiiiiiiiiie e 23-3
Who Can Grant or Revoke System Privileges? ... 23-3
SChemMa ODBJECT PriVIIEOES ..ottt srenen 23-3
Grant and Revoke Schema Object PriVIleges ... 23-4
Who Can Grant Schema ODbject Privileges?.......cocoo it 23-4

QLI L] LCT =T ol]) Y/ 23-5
Data Manipulation Language OPErationsccoeeeiiiieneneneneneeeeee e 23-5
Data Definition Language OPerationsc.ccoeiireiiiiieesene e 23-6

R A T=T YA 1= o 1) Y25 23-6
Privileges Required t0 Create VIBWScocoiiiiieiiieieie sttt 23-6
Increase Table Security With VIBWS ..o 23-7

g oot To (U I =TT |) Y2 23-8
Procedure Execution and Security DOMAINSccooiieiiriinieienieieene e 23-8
System Privileges Needed to Create or Alter a Procedure...........cccooeevviiieneneeenenn 23-10
Packages and Package ObjJECES. ..o 23-10
TYPE SECUITLY ..ttt ettt sttt e et s et et sb e e besbeee et e st e s et eneebeaneeneas 23-12
System Privileges for Named TYPES ...t e 23-12

(@ o] 1=T01 Al o 1V (=T 1= 23-12
Method EXeCUtion MOELcoiiiiiiiii s 23-13
Privileges Required to Create Types and Tables Using TYPEScccevvrvrereineeenen. 23-13
Privileges Required to Create Types and Tables Using Types Example................... 23-14
Privileges on Type Access and ODJECt ACCESSccviererierieiieieene e 23-15
TYPE DEPENUENCIEScviiiieiieiieeeie ettt ettt ettt ebesbesee e e e aseeseeneeneas 23-16
INErOAUCTION O ROIES. ... 23-17
ComMMON USES TOF ROIES........cuiiiiiiiiiicit b 23-18
APPHICALION ROIES ...ttt e e ae e 23-19

XXViii

24

L LY cT gl 0] [23-19

The Mechanisms Of ROIES ..o e 23-19
Grant aNd REVOKE ROIESoviiiiiiiiieese ettt sttt eb e ene e 23-20
Who Can Grant or REVOKE ROIES? ..o 23-20
ROIE INBIMES. ...t ettt ettt et e et e b sbene et e s e e e ebe e s e s beeneabeaneanens 23-21
Security Domains 0f ROIES @aNd USEIS........cccvviiiiiiiiiicic e 23-21
PL/SQL BIOCKS aNA ROIES ..ottt st na et re s 23-21
Named Blocks with Definer RIS ..o 23-21
Anonymous Blocks With INVOKEr RIGNtScccveieieiiice e 23-21

Data Definition Language Statements and ROIESccccooiriieiiiiie i 23-22
Predefined ROIES ..ottt bbbt s et n e nbe e sae s 23-23
The Operating System and ROIESc.ccvviiiiiiiie e 23-23
Roles in a Distributed ENVIFONMENT ..o 23-24
Fine-Grained ACCESS CONIOL........coiiiiiiiii et 23-24
DY T L gL Tol o = [Tor: (TSSO 23-25

PN o] o] [[or= 14 [o] g W @] o] {2 AU SRS 23-25
Secure APPLICAtION ROIESo e 23-26
Creation of Secure AppPlication ROIES..........ccociiiiiii i 23-26

Auditing

[Fahu oo [ot qTo) o TN 030N U o) A1 a o SRS 24-2
Features OF AUITING ...ttt se e 24-2
TYPES OF AUAITING.....eiieiieii et ettt b e sa e sb e e e e 24-2

FOCUS OF AUAITING ...viviieiecee et ere et sr et s e e 24-3

Audit Records and the Audit Trail ..o 24-3
MechaniSmS FOr AUAITING.ooiiiiieee et 24-4
When Are Audit Records GeNerated?.........coovervieieienieienieie e e 24-4

Events Always Audited to the Operating System Audit Trailccccociiiiiiiinns 24-5

When Do Audit Options Take EffeCt? ... 24-6

Audit in a Distributed Database ... 24-6

Audit to the Operating System Audit Trail..........ccccooiiiiiiiiii e 24-6
STALEMENT AUGITING -ttt b e sb e e e e et e e e 24-7
RV AT =To =R AN o [1 o [P 24-7
Schema ODBJECt AUAITINGco.oiiiiii ettt se et e e 24-8
Schema Object Audit Options for Views and Procedures............ccocoveeiieniieicnieneneneeees 24-8

XXiX

XXX

TR €T =T g T=To AN U o L) 1 oo 24-9

Focus Statement, Privilege, and Schema Object Auditingc.cccccviiiiiiiiiiiis e 24-10
Successful and Unsuccessful Statement Executions Auditing........ccccccevevvvivnevenecneennenn 24-10
BY SESSION and BY ACCESS Clauses of Audit Statement..............cccccvvvvinviennecccnnenn, 24-11
BY SESSION ...ttt bbbt bbbt et bbb 24-11
BY ACCESS.....c et 24-12
Defaults and EXcluded OPerationscccoeieiiriineiene et s 24-12
AUAIT BY USEBE ...ttt sttt st h b e bt b e s b et e b e be b e s et ene e e eneenenas 24-13
Audit in a MUltitier ENVIFONMENTcoiiiiiiiec e 24-13
A Operating System Specific Information
B Information on Deprecated Features
Allocating Extents in Dictionary Managed TableSpaces........c.ccocvvverineicesieein s B-2
Introduction to ROIIDACK SEGMENTS.........ccoiiiiii e B-3
Contents of a ROIDACK SEOMENT.........ocoiiii s B-4
How Rollback ENtries Are LOGQEdcoviiiiieiiireiece et B-4
When Rollback Information IS REQUITEd ...t B-5
Transactions and RoIIback SEgMENTS ..o s B-5
How Extents Are Deallocated from a Rollback Segmentccocvvvvieieiccceiinenne B-9
The Rollback SEgMENt SYSTEM ..ot e B-10
Oracle Instances and Types of Rollback Segments..........ccccooeiiiiiiiiiiic e B-10
ROIIDACK SEgMENT STALESc.eceiecce e B-12
Deferred ROIDACK SEGMENTSoiiiiiie e s B-14
High WaALEr MKottt ettt B-15
PCTFREE, PCTUSED, and ROW ChaiNiNg........cccoviiiiiiicicise s B-15
Glossary
Index

Send Us Your Comments

Oracle9i Database Concepts, Release 2 (9.2)
Part No. A96524-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally)
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXXi

XXXii

Preface

This manual describes all features of the Oracle server, an object-relational database
management system. It describes how the Oracle server functions and lays a
conceptual foundation for much of the practical information contained in other
Oracle server manuals. Information in this manual applies to the Oracle server
running on all operating systems.

This preface contains these topics:

Audience

Organization

Related Documentation
Conventions

Documentation Accessibility

XXXiii

Audience

Oracle9i Database Concepts is intended for database administrators, system
administrators, and database application developers.

To use this document, you need to know the following:
= Relational database concepts in general
= Concepts and terminology in Chapter 1, "Introduction to the Oracle Server"

= The operating system environment under which you are running Oracle

Organization

XXXV

This document contains:
Part I: What Is Oracle?

Chapter 1, "Introduction to the Oracle Server"

This chapter provides an overview of the concepts and features you need for
understanding the Oracle data server. You should read this overview before using
the detailed information in the remainder of this manual.

Part Il: Database Structures

Chapter 2, "Data Blocks, Extents, and Segments”

This chapter discusses how data is stored and how storage space is allocated for
and consumed by various objects within an Oracle database.

Chapter 3, "Tablespaces, Datafiles, and Control Files"

This chapter discusses how physical storage space in an Oracle database is divided
into logical divisions called tablespaces. It also discusses the physical operating
system files associated with tablespaces (datafiles) and files used in recovery
(control files).

Chapter 4, "The Data Dictionary"

This chapter describes the data dictionary, which is a set of reference tables and
views that contain read-only information about an Oracle database.

Part Ill: The Oracle Instance

Chapter 5, "Database and Instance Startup and Shutdown"

This chapter describes an Oracle instance and explains how the database
administrator can control the accessibility of an Oracle database system.

Chapter 6, "Application Architecture"

This chapter discusses distributed processing environments in which the Oracle
data server can operate.

Chapter 7, "Memory Architecture”
This chapter describes the memory structures used by an Oracle database system.

Chapter 8, "Process Architecture”

This chapter describes the process architecture of an Oracle instance and the
different process configurations available for Oracle.

Chapter 9, "Database Resource Management"

This chapter describes how the Database Resource Manager can be used to control
resource use.

Part IV: Data

Chapter 10, "Schema Objects"

This chapter describes the database objects that can be created in the domain of a
specific user (a schema), including tables, views, numeric sequences, and
synonyms. Optional structures that make data retrieval more efficient, including
indexes, materialized views, dimensions, and clusters, are also described.

Chapter 11, "Partitioned Tables and Indexes"

This chapter describes how partitioning can be used to split large tables and indexes
into more manageable pieces.

Chapter 12, "Native Datatypes"

This chapter describes the types of relational data that can be stored in an Oracle
database table, such as fixed- and variable-length character strings, numbers, dates,
and binary large objects (BLOBSs).

XXXV

XXXVi

Chapter 13, "Object Datatypes and Object Views"
This chapter gives an overview of the object extensions that Oracle provides.

Part V: Data Access

Chapter 14, "SQL, PL/SQL, and Java"

This chapter briefly describes SQL (Structured Query Language), the language used
to communicate with Oracle, as well as PL/SQL, the Oracle procedural language
extension to SQL. It also discusses the procedural language constructs called
procedures, functions, and packages, which are PL/SQL program units that are
stored in the database.

Chapter 15, "Dependencies Among Schema Objects"”

This chapter explains how Oracle manages the dependencies for objects such as
procedures, packages, triggers, and views.

Chapter 16, "Transaction Management"

This chapter defines the concept of transactions and explains the SQL statements
used to control them. Transactions are logical units of work that are run together as
a unit.

Chapter 17, "Triggers"

This chapter discusses triggers, which are procedures written in PL/SQL, Java, or C
that run implicitly whenever a table or view is modified or when some user actions
or database system actions occur.

Part VI: Parallel SQL and Direct-Path INSERT

Chapter 18, "Parallel Execution of SQL Statements”

This chapter describes parallel execution of SQL statements (queries, DML, and
DDL statements) and explains the rules for parallelizing SQL statements.

Chapter 19, "Direct-Path INSERT"

This chapter describes the Oracle direct-path | NSERT feature for serial or parallel
inserts, and the NOLOGA NGclause.

Part VII: Data Protection

Chapter 20, "Data Concurrency and Consistency"

This chapter explains how Oracle provides concurrent access to and maintains the
accuracy of shared information in a multiuser environment. It describes the
automatic mechanisms that Oracle uses to guarantee that the concurrent operations
of multiple users do not interfere with each other.

Chapter 21, "Data Integrity"

This chapter discusses data integrity and the declarative integrity constraints that
you can use to enforce data integrity.

Chapter 22, "Controlling Database Access"
This chapter describes how to control user access to data and database resources.

Chapter 23, "Privileges, Roles, and Security Policies"
This chapter discusses security at the system and schema object levels.

Chapter 24, "Auditing"
This chapter discusses how the Oracle auditing feature tracks database activity.

Appendix A, "Operating System Specific Information”
This appendix lists all the operating system specific references within this manual.

Appendix B, "Information on Deprecated Features"

This appendix contains conceptual information that might be of interest if you
created your database with an earlier version of Oracle.

Glossary
The glossary defines terms used in this manual.

Related Documentation
For more information, see these Oracle resources:

» Oracle9i Database Migration for information about upgrading a previous release
of Oracle

XXXVii

XXXViii

= Oracle9i Database Administrator’s Guide for information about how to administer
the Oracle server

= Oracle9i Application Developer’s Guide - Fundamentals for information about
developing Oracle database applications

= Oracle9i Database Performance Planning for information about optimizing
performance of an Oracle database

= Oracle9i Data Warehousing Guide for information about data warehousing and
business intelligence

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

ht t p: // waw or acl ebookshop. cond

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. cont adm n/ account / nenber shi p. ht ni

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. comt docs/ i ndex. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
s Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUVBER
nonospace elements supplied by the system. Such column.

(fixed-w dth)
font

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can back up the database by using the
BACKUP command.

Query the TABLE_NANME column in the USER _
TABLES data dictionary view.

Use the DBMS_STATS.CENERATE_STATS
procedure.

XXXIX

Convention Meaning Example
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names,

(fixed-wi dth)
f ont

| ower case
italic
nonospace
(fixed-wi dth)
font

and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart nment _i d, depar t nent _nane,
and | ocati on_i d columns are in the
hr . depart ment s table.

Set the QUERY_REWRI TE_ENABLED
initialization parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these
methods.

You can specify the paral | el _cl ause.

Run Uol d_r el ease. SQL where ol d_
r el ease refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SHLECT user nanme FROM dba_users WHERE user nane = ' M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional CEQMAL (digits [, precision])
items. Do not enter the brackets.

{1} Braces enclose two or more items, one of {ENABLE | D SABLE}

xl

which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | D SABLE}
[COMPRESS | NOOCMPRESS]

Convention

Meaning

Example

Other notation

Italics

| ower case

Horizontal ellipsis points indicate either:

= That we have omitted parts of the
code that are not directly related to
the example

= That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

CREATE TABLE ... AS subquery;

SHECT coll, col2, ...,
enpl oyees;

col n FRQM

SQA> SHECT NAME FRCM VBDATAH LE;

/fsl/dbs/tbs_01. dbf
/fs1/ dbs/ t bs_02. dbf

/fsl/dbs/tbs_09. dbf
9 rows sel ected.

NUMBER(11, 2) ;
QONSTANT NUMBER(4) @ = 3;

acct bal
acct

QO\NECT SYSTEM syst em passwor d
CB_NAME = dat abase_nane

SEHLECT | ast_nane, enpl oyee id FROM
enpl oyees;

SHECT * FRCOM USER TABLES,

CRCP TABLE hr. enpl oyees;

SELECT | ast_nane, enpl oyee id FROM

enpl oyees;

sql plus hr/hr

CREATE USER njones | CENTI FI ED BY t y3MWb;

xli

Documentation Accessibility

xlii

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

ht t p: // waw or acl e. cond accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Part |

What Is Oracle?

Part | provides an overview of Oracle server concepts and terminology. It contains
the following chapters:

= Chapter 1, "Introduction to the Oracle Server"

Oracle9i Database Concepts

1

Introduction to the Oracle Server

This chapter provides an overview of the Oracle server. The topics include:
= Database Structure and Space Management Overview
= Data Access Overview

= Memory Structure and Processes Overview

= Application Architecture Overview

= Distributed Databases Overview

= Data Concurrency and Consistency Overview

=« Database Security Overview

» Database Administration Overview

=« Data Warehousing Overview

= High Availability Overview

=« Content Management Overview

Note: This chapter contains information relating to both Oracle9i
Standard Edition and Oracle9i Enterprise Edition. Some of the
features and options documented in this chapter are available only
if you have purchased the Oracle9i Enterprise Edition. See Oracle9i
Database New Features for information about the differences
between Oracle9i Standard Edition and Oracle9i Enterprise Edition.

Introduction to the Oracle Server

1-1

Database Structure and Space Management Overview

Database Structure and Space Management Overview

An Oracle database is a collection of data treated as a unit. The purpose of a
database is to store and retrieve related information. A database server is the key to
solving the problems of information management. In general, a server reliably
manages a large amount of data in a multiuser environment so that many users can
concurrently access the same data. All this is accomplished while delivering high
performance. A database server also prevents unauthorized access and provides
efficient solutions for failure recovery.

The database has logical structures and physical structures. Because the physical
and logical structures are separate, the physical storage of data can be managed
without affecting the access to logical storage structures.

Logical Database Structures

The logical structures of an Oracle database include schema objects, data blocks,
extents, segments, and tablespaces.

Schemas and Schema Objects

A schema is a collection of database objects. A schema is owned by a database user
and has the same name as that user. Schema objects are the logical structures that
directly refer to the database’s data. Schema objects include structures like tables,
views, and indexes. (There is no relationship between a tablespace and a schema.
Objects in the same schema can be in different tablespaces, and a tablespace can
hold objects from different schemas.)

Some of the most common schema objects are defined in the following section.

See Also: Chapter 10, "Schema Objects” for detailed information
on these schema objects, and for information on other schema
objects, such as dimensions, the sequence generator, synonymes,
index-organized tables, domain indexes, clusters, and hash clusters

Tables Tables are the basic unit of data storage in an Oracle database. Database
tables hold all user-accessible data. Each table has columns and rows. Oracle stores
each row of a database table containing data for less than 256 columns as one or
more row pieces. A table that has an employee database, for example, can have a
column called employee number, and each row in that column is an employee’s
number.

1-2 Oracle9i Database Concepts

Database Structure and Space Management Overview

Views Views are customized presentations of data in one or more tables or other
views. A view can also be considered a stored query. Views do not actually contain
data. Rather, they derive their data from the tables on which they are based,
referred to as the base tables of the views.

Like tables, views can be queried, updated, inserted into, and deleted from, with
some restrictions. All operations performed on a view actually affect the base tables
of the view.

Views provide an additional level of table security by restricting access to a
predetermined set of rows and columns of a table. They also hide data complexity
and store complex queries.

Indexes Indexes are optional structures associated with tables. Indexes can be
created to increase the performance of data retrieval. Just as the index in this
manual helps you quickly locate specific information, an Oracle index provides an
access path to table data.

When processing a request, Oracle can use some or all of the available indexes to
locate the requested rows efficiently. Indexes are useful when applications
frequently query a table for a range of rows (for example, all employees with a
salary greater than 1000 dollars) or a specific row.

Indexes are created on one or more columns of a table. After it is created, an index is
automatically maintained and used by Oracle. Changes to table data (such as
adding new rows, updating rows, or deleting rows) are automatically incorporated
into all relevant indexes with complete transparency to the users.

You can partition indexes.

See Also: Chapter 11, "Partitioned Tables and Indexes"

Clusters Clusters are groups of one or more tables physically stored together
because they share common columns and are often used together. Because related
rows are physically stored together, disk access time improves.

Like indexes, clusters do not affect application design. Whether or not a table is part
of a cluster is transparent to users and to applications. Data stored in a clustered
table is accessed by SQL in the same way as data stored in a nonclustered table.

Data Blocks, Extents, and Segments

The logical storage structures, including data blocks, extents, and segments, enable
Oracle to have fine-grained control of disk space use.

Introduction to the Oracle Server 1-3

Database Structure and Space Management Overview

See Also: Chapter 2, "Data Blocks, Extents, and Segments"

Oracle Data Blocks At the finest level of granularity, Oracle database data is stored in
data blocks. One data block corresponds to a specific number of bytes of physical
database space on disk. The standard block size is specified by the initialization
parameter DB_BLOCK Sl ZE. In addition, you can specify of up to five other block
sizes. A database uses and allocates free database space in Oracle data blocks.

See Also: "Multiple Block Sizes" on page 3-13

Extents The next level of logical database space is an extent. An extent is a specific
number of contiguous data blocks, obtained in a single allocation, used to store a
specific type of information.

Segments Above extents, the level of logical database storage is a segment. A
segment is a set of extents allocated for a certain logical structure. The following
table describes the different types of segments.

Segment Description

Data segment Each nonclustered table has a data segment. All table data
is stored in the extents of the data segment.

For a partitioned table, each partition has a data segment.

Each cluster has a data segment. The data of every table in
the cluster is stored in the cluster’s data segment.

Index segment Each index has an index segment that stores all of its data.

For a partitioned index, each partition has an index
segment.

Temporary segment Temporary segments are created by Oracle when a SQL
statement needs a temporary work area to complete
execution. When the statement finishes execution, the
extents in the temporary segment are returned to the
system for future use.

1-4 Oracle9i Database Concepts

Database Structure and Space Management Overview

Segment Description

Rollback segment If you are operating in automatic undo management
mode, then the database server manages undo space
using tablespaces. Oracle Corporation recommends that
you use "Automatic Undo Management" management.

However, if you are operating in manual undo
management mode, then one or more rollback segments
for a database are created by the database administrator
to temporarily store undo information.

The information in a rollback segment is used during
database recovery:

= To generate read-consistent database information

= To roll back uncommitted transactions for users

Oracle dynamically allocates space when the existing extents of a segment become
full. In other words, when the extents of a segment are full, Oracle allocates another
extent for that segment. Because extents are allocated as needed, the extents of a
segment may or may not be contiguous on disk.

See Also:

= "Automatic Undo Management" on page 2-16

= "Read Consistency" on page 1-40

= "Database Backup and Recovery Overview" on page 1-50

Tablespaces

A database is divided into logical storage units called tablespaces, which group
related logical structures together. For example, tablespaces commonly group
together all application objects to simplify some administrative operations.

Databases, Tablespaces, and Datafiles The relationship between databases, tablespaces,
and datafiles (datafiles are described in the next section) is illustrated in Figure 1-1.

Introduction to the Oracle Server 1-5

Database Structure and Space Management Overview

Figure 1-1 Databases, Tablespaces, and Datafiles

Database

[
: System Tablespace | :
| - - Iy
[
: | : DATA3.0RA
| I
| I

DATAL1.ORA DATA2.0RA
1 Mb 1 Mb 4 Mb

This figure illustrates the following:
= Each database is logically divided into one or more tablespaces.

= One or more datafiles are explicitly created for each tablespace to physically
store the data of all logical structures in a tablespace.

= The combined size of the datafiles in a tablespace is the total storage capacity of
the tablespace. (The SYSTEMtablespace has 2 megabit (Mb) storage capacity,
and USERS tablespace has 4 Mb).

= The combined storage capacity of a database’s tablespaces is the total storage
capacity of the database (6 Mb).

Online and Offline Tablespaces A tablespace can be online (accessible) or offline (not
accessible). A tablespace is generally online, so that users can access the information
in the tablespace. However, sometimes a tablespace is taken offline to make a
portion of the database unavailable while allowing normal access to the remainder
of the database. This makes many administrative tasks easier to perform.

Physical Database Structures

The following sections explain the physical database structures of an Oracle
database, including datafiles, redo log files, and control files.

1-6 Oracle9i Database Concepts

Database Structure and Space Management Overview

Datafiles

Every Oracle database has one or more physical datafiles. The datafiles contain all
the database data. The data of logical database structures, such as tables and
indexes, is physically stored in the datafiles allocated for a database.

The characteristics of datafiles are:
= A datafile can be associated with only one database.

= Datafiles can have certain characteristics set to let them automatically extend
when the database runs out of space.

= One or more datafiles form a logical unit of database storage called a
tablespace, as discussed earlier in this chapter.

Data in a datafile is read, as needed, during normal database operation and stored
in the memory cache of Oracle. For example, assume that a user wants to access
some data in a table of a database. If the requested information is not already in the
memory cache for the database, then it is read from the appropriate datafiles and
stored in memory.

Modified or new data is not necessarily written to a datafile immediately. To reduce
the amount of disk access and to increase performance, data is pooled in memory
and written to the appropriate datafiles all at once, as determined by the database
writer process (DBWn) background process.

See Also: "Memory Structure and Processes Overview" on
page 1-21 for more information about Oracle’s memory and process
structures

Redo Log Files

Every Oracle database has a set of two or more redo log files. The set of redo log
files is collectively known as the redo log for the database. A redo log is made up of
redo entries (also called redo records).

The primary function of the redo log is to record all changes made to data. If a
failure prevents modified data from being permanently written to the datafiles,
then the changes can be obtained from the redo log, so work is never lost.

To protect against a failure involving the redo log itself, Oracle allows a
multiplexed redo log so that two or more copies of the redo log can be maintained
on different disks.

The information in a redo log file is used only to recover the database from a system
or media failure that prevents database data from being written to the datafiles. For

Introduction to the Oracle Server 1-7

Database Structure and Space Management Overview

example, if an unexpected power outage terminates database operation, then data
in memory cannot be written to the datafiles, and the data is lost. However, lost
data can be recovered when the database is opened, after power is restored. By
applying the information in the most recent redo log files to the database datafiles,
Oracle restores the database to the time at which the power failure occurred.

The process of applying the redo log during a recovery operation is called rolling
forward.

See Also: "Database Backup and Recovery Overview" on
page 1-50 for more information about redo log files

Control Files

Every Oracle database has a control file. A control file contains entries that specify
the physical structure of the database. For example, it contains the following
information:

= Database name
= Names and locations of datafiles and redo log files
= Time stamp of database creation

Like the redo log, Oracle lets the control file be multiplexed for protection of the
control file.

Use of Control Files Every time an instance of an Oracle database is started, its
control file identifies the database and redo log files that must be opened for
database operation to proceed. If the physical makeup of the database is altered (for
example, if a new datafile or redo log file is created), then the control file is
automatically modified by Oracle to reflect the change. A control file is also used in
database recovery.

See Also: "Database Backup and Recovery Overview" on
page 1-50 for more information about the use of control files in
database recovery

Data Utilities

The three utilities for moving a subset of an Oracle database from one database to
another are Export, Import, and SQL*Loader.

Export Utility The Export utility transfers data objects between Oracle databases,
even if they reside on platforms with different hardware and software

1-8 Oracle9i Database Concepts

Database Structure and Space Management Overview

configurations. Export extracts the object definitions and table data from an Oracle
database and stores them in an Oracle binary-format Export dump file typically
located on disk or tape.

Such files can then be copied using file transfer protocol (FTP) or physically
transported (in the case of tape) to a different site. They can be used with the Import
utility to transfer data between databases that are on machines not connected
through a network or as backups in addition to normal backup procedures.

When you run Export against an Oracle database, it extracts objects, such as tables,
followed by their related objects, and then writes them to the Export dump file.

Import Utility The Import utility inserts the data objects extracted from one Oracle
database by the Export utility into another Oracle database. Export dump files can
be read only by Import. Import reads the object definitions and table data that the
Export utility extracted from an Oracle database.

The Export and Import utilities can also facilitate certain aspects of Oracle
Advanced Replication functionality, such as offline instantiation.

See Also: Oracle9i Replication

SQL*Loader Utility Export dump files can be read only by the Oracle Import utility. If
you need to read load data from ASCII fixed-format or delimited files, you can use
the SQL*Loader utility. SQL*Loader loads data from external files into tables in an
Oracle database. SQL*Loader accepts input data in a variety of formats, performs
filtering (selectively loading records based on their data values), and loads data into
multiple Oracle database tables during the same load session.

See Also: Oracle9i Database Utilities for detailed information about
Export, Import, and SQL*Loader

Data Dictionary Overview

Each Oracle database has a data dictionary. An Oracle data dictionary is a set of
tables and views that are used as a read-only reference about the database. For
example, a data dictionary stores information about both the logical and physical
structure of the database. A data dictionary also stores the following information:

= The valid users of an Oracle database
=« Information about integrity constraints defined for tables in the database

= The amount of space allocated for a schema object and how much of it is in use

Introduction to the Oracle Server 1-9

Data Access Overview

A data dictionary is created when a database is created. To accurately reflect the
status of the database at all times, the data dictionary is automatically updated by
Oracle in response to specific actions, such as when the structure of the database is
altered. The database relies on the data dictionary to record, verify, and conduct
ongoing work. For example, during database operation, Oracle reads the data
dictionary to verify that schema objects exist and that users have proper access to
them.

See Also: Chapter 4, "The Data Dictionary"

Data Access Overview

This section explains how Oracle adheres to industry accepted standards for data
access languages, and how Oracle controls data consistency and data integrity. This
section includes the following topics:

= "SQL Overview"

= "Objects Overview"

= "PL/SQL Overview"

= "Java Overview"

= "Transactions Overview"
= "Data Integrity Overview"

s "SQL*Plus Overview"

SQL Overview

SQL (pronounced SEQUEL) is the programming language that defines and
manipulates the database. SQL databases are relational databases, which means
that data is stored in a set of simple relations.

SQL Statements

All operations on the information in an Oracle database are performed using SQL
statements. A SQL statement is a string of SQL text. A statement must be the
equivalent of a complete SQL sentence, as in:

SELECT | ast_nane, departnent_id FROM enpl oyees;

Only a complete SQL statement can run successfully. A sentence fragment, such as
the following, generates an error indicating that more text is required:

1-10 Oracle9jDatabase Concepts

Data Access Overview

SEHLECT | ast _nane

A SQL statement can be thought of as a very simple, but powerful, computer
program or instruction. SQL statements are divided into the following categories:

= Data Definition Language (DDL) Statements

=« Data Manipulation Language (DML) Statements
= Transaction Control Statements

= Session Control Statements

= System Control Statements

= Embedded SQL Statements

Data Definition Language (DDL) Statements These statements create, alter, maintain, and
drop schema objects. DDL statements also include statements that permit a user to
grant other users the privileges to access the database and specific objects within the
database.

Data Manipulation Language (DML) Statements These statements manipulate data. For
example, querying, inserting, updating, and deleting rows of a table are all DML
operations. The most common SQL statement is the SELECT statement, which
retrieves data from the database. Locking a table or view and examining the
execution plan of an SQL statement are also DML operations.

Transaction Control Statements These statements manage the changes made by DML
statements. They enable a user to group changes into logical transactions. Examples
include COMM T, ROLLBACK, and SAVEPO NT.

Session Control Statements These statements let a user control the properties of the
current session, including enabling and disabling roles and changing language
settings. The two session control statements are ALTER SESSI ONand SET ROLE.

System Control Statements These statements change the properties of the Oracle
server instance. The only system control statement is ALTER SYSTEM It lets users
change settings, such as the minimum number of shared servers, kill a session, and
perform other tasks.

Embedded SQL Statements These statements incorporate DDL, DML, and transaction

control statements in a procedural language program, such as those used with the
Oracle precompilers. Examples include OPEN, CLOSE, FETCH, and EXECUTE.

Introduction to the Oracle Server 1-11

Data Access Overview

See Also:
= Oracle9i SQL Reference

= "Database Security Overview" on page 1-43 for more
information about privileges

= "Transactions Overview" on page 1-17 for more information
about transaction control statements

Objects Overview

Oracle object technology is a layer of abstraction built on Oracle's relational
technology. New object types can be created from any built-in database types or
any previously created object types, object references, and collection types.
Metadata for user-defined types is stored in a schema available to SQL, PL/SQL,
Java, and other published interfaces.

An object type differs from native SQL datatypes in that it is user-defined, and it
specifies both the underlying persistent data (attributes) and the related behaviors
(methods). Object types are abstractions of the real-world entities, for example,
purchase orders.

Object types and related object-oriented features, such as variable-length arrays and
nested tables, provide higher-level ways to organize and access data in the
database. Underneath the object layer, data is still stored in columns and tables, but
you can work with the data in terms of the real-world entities--customers and
purchase orders, for example--that make the data meaningful. Instead of thinking in
terms of columns and tables when you query the database, you can simply select a
customer.

Internally, statements about objects are still basically statements about relational
tables and columns, and you can continue to work with relational data types and
store data in relational tables. But you have the option to take advantage of
object-oriented features too. You can use object-oriented features while continuing
to work with most of your relational data, or you can go over to an object-oriented
approach entirely. For instance, you can define some object data types and store the
objects in columns in relational tables. You can also create object views of existing
relational data to represent and access this data according to an object model. Or
you can store object data in object tables, where each row is an object.

Advantages of Objects

In general, the object-type model is similar to the class mechanism found in C++
and Java. Like classes, objects make it easier to model complex, real-world business

1-12 Oracle9i Database Concepts

Data Access Overview

entities and logic, and the reusability of objects makes it possible to develop
database applications faster and more efficiently. By natively supporting object
types in the database, Oracle enables application developers to directly access the
data structures used by their applications. No mapping layer is required between
client-side objects and the relational database columns and tables that contain the
data. Object abstraction and the encapsulation of object behaviors also make
applications easier to understand and maintain.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features

PL/SQL Overview

PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL combines the
ease and flexibility of SQL with the procedural functionality of a structured
programming language, such as | F ... THEN, WHI LE, and LOCP.

When designing a database application, consider the following advantages of using
stored PL/SQL.:

= PL/SQL code can be stored centrally in a database. Network traffic between
applications and the database is reduced, so application and system
performance increases. Even when PL/SQL is not stored in the database,
applications can send blocks of PL/SQL to the database rather than individual
SQL statements, thereby reducing network traffic.

= Data access can be controlled by stored PL/SQL code. In this case, PL/SQL
users can access data only as intended by application developers, unless
another access route is granted.

= PL/SQL blocks can be sent by an application to a database, running complex
operations without excessive network traffic.

The following sections describe the PL/SQL program units that can be defined and
stored centrally in a database.

PL/SQL Program Units

Program units are stored procedures, functions, packages, triggers, and anonymous
transactions.

Procedures and Functions Procedures and functions are sets of SQL and PL/SQL
statements grouped together as a unit to solve a specific problem or to perform a set

Introduction to the Oracle Server 1-13

Data Access Overview

of related tasks. They are created and stored in compiled form in the database and
can be run by a user or a database application.

Procedures and functions are identical, except that functions always return a single
value to the user. Procedures do not return values.

Packages Packages encapsulate and store related procedures, functions, variables,
and other constructs together as a unit in the database. They offer increased
functionality (for example, global package variables can be declared and used by
any procedure in the package). They also improve performance (for example, all
objects of the package are parsed, compiled, and loaded into memory once).

Database Triggers Database triggers are PL/SQL, Java, or C procedures that run
implicitly whenever a table or view is modified or when some user actions or
database system actions occur. Database triggers can be used in a variety of ways
for managing your database. For example, they can automate data generation, audit
data modifications, enforce complex integrity constraints, and customize complex
security authorizations.

Autonomous Blocks You can call autonomous transactions from within a PL/SQL
block. When an autonomous PL/SQL block is entered, the transaction context of the
caller is suspended. This operation ensures that SQL operations performed in this
block (or other blocks called from it) have no dependence or effect on the state of
the caller’s transaction context.

Java Overview

Java is an object-oriented programming efficient for application-level programs.
Java has key features that make it ideal for developing server applications. These
features include the following:

= Simplicity--Java is a simpler language than most others used in server
applications because of its consistent enforcement of the object model. The
large, standard set of class libraries brings powerful tools to Java developers on
all platforms.

= Portability--Java is portable across platforms. It is possible to write
platform-dependent code in Java, but it is also simple to write programs that
move seamlessly across machines. Oracle server applications, which do not
support graphical user interfaces directly on the platform that hosts them, also
tend to avoid the few platform portability issues that Java has.

1-14 Oracle9i Database Concepts

Data Access Overview

s Automatic Storage Management--The Java virtual machine automatically
performs all memory allocation and deallocation during program execution.
Java programmers can neither allocate nor free memory explicitly. Instead, they
depend on the JVM to perform these bookkeeping operations, allocating
memory as they create new objects and deallocating memory when the objects
are no longer referenced. The latter operation is known as garbage collection.

s Strong Typing--Before you use a Java variable, you must declare the class of the
object it will hold. Java's strong typing makes it possible to provide a reasonable
and safe solution to inter-language calls between Java and PL/SQL
applications, and to integrate Java and SQL calls within the same application.

= No Pointers--Although Java retains much of the flavor of C in its syntax, it does
not support direct pointers or pointer manipulation. You pass all parameters,
except primitive types, by reference (that is, object identity is preserved), not by
value. Java does not provide C's low level, direct access to pointers, which
eliminates memory corruption and leaks.

= Exception Handling--Java exceptions are objects. Java requires developers to
declare which exceptions can be thrown by methods in any particular class.

= Security--The design of Java bytecodes and the JVM allow for built-in
mechanisms to verify that the Java binary code was not tampered with. Oracle9i
is installed with an instance of SecurityManager, which, when combined with
Oracle database security, determines who can invoke any Java methods.

= Standards for Connectivity to Relational Databases--JDBC and SQLJ enable Java
code to access and manipulate data resident in relational databases. Oracle
provides drivers that allow vendor-independent, portable Java code to access
the relational database.

See Also: Chapter 14, "SQL, PL/SQL, and Java"

XML Overview

XML, eXtensible Markup Language, is the standard way to identify and describe
data on the Web. It is a human-readable, machine-understandable, general syntax
for describing hierarchical data, applicable to a wide range of applications,
databases, e-commerce, Java, web development, searching, and so on.

The Oracle server includes the Oracle XML DB, a set of built-in high-performance
XML storage and retrieval technologies. The XML DB fully absorbs the W3C XML
data model into the Oracle server and provides new standard access methods for

navigating and querying XML. You get all the advantages of relational database

Introduction to the Oracle Server 1-15

Data Access Overview

technology and XML technology at the same time. Key aspects of the XML database
include the following:

= A native datatype -- XMLType -- to store and manipulate XML. Multiple storage
options (CLOB, decomposed object-relational) are available with XMLType, and
DBAs can choose a storage that meets their requirements for fidelity to original,
ease of query, ease of regeneration, and so on. With XM_Type, you can perform
SQL operations, such as queries and OLAP functions on XML data, as well as
XML operations, such as XPath searches and XSL transformations, on SQL data.
You can build regular SQL indexes or Oracle Text indexes on XM_Ty pe for high
performance for a broad spectrum of applications.

= Native XML generation provides built in SQL operators and supplied PL/SQL
packages to return the results of SQL queries formatted as XML.

= An XML repository provides foldering, access control, FTP and WebDAV
protocol support with versioning. This enables applications to retain a file
abstraction when manipulating XML data.

Complementing the XML Database is the Oracle XML Developer Kit, or XDK. XDK
is a set of commonly used building blocks or utilities for development and runtime
support. The Oracle XDK contains the basic building blocks for reading,
manipulating, transforming, and viewing XML documents. To provide a broad
variety of deployment options, the Oracle XDKs are available for Java, JavaBeans,
C, C++, and PL/SQL. Oracle XDKs consist of XML Parsers, an XSLT Processor,
XML Schema Processor, XML Class Generator, XML Transviewer Java Beans, XML
SQL Utility, and XSQL Servlet.

Advanced Queuing (AQ) is the message queuing functionality of the Oracle
database. With this functionality, message queuing operations can be performed
similar to that of SQL operations from the Oracle database. Message queuing
functionality enables asynchronous communication between applications and users
on Oracle databases using queues. AQ offers enqueue, dequeue, propagation, and
guaranteed delivery of messages, along with exception handling in case messages
cannot be delivered. Message queuing takes advantage of XM_Type for XML
message payloads.

See Also:
= Chapter 12, "Native Datatypes"
= Oracle9i XML Database Developer’s Guide - Oracle XML DB

1-16 Oracle9i Database Concepts

Data Access Overview

Transactions Overview

A transaction is a logical unit of work that comprises one or more SQL statements
run by a single user. According to the ANSI/ISO SQL standard, with which Oracle
is compatible, a transaction begins with the user’s first executable SQL statement. A
transaction ends when it is explicitly committed or rolled back by that user.

Note: Oracle9i is broadly compatible with the SQL-99 Core
specification.

Consider a banking database. When a bank customer transfers money from a
savings account to a checking account, the transaction can consist of three separate
operations: decrease the savings account, increase the checking account, and record
the transaction in the transaction journal.

Oracle must guarantee that all three SQL statements are performed to maintain the
accounts in proper balance. When something prevents one of the statements in the
transaction from running (such as a hardware failure), then the other statements of
the transaction must be undone. This is called rolling back. If an error occurs in
making any of the updates, then no updates are made.

Figure 1-2 illustrates the banking transaction example.

Introduction to the Oracle Server 1-17

Data Access Overview

Figure 1-2 A Banking Transaction

Transaction Begins

. ———— Decrement Savings Account
UPDATE savi ngs_account s

SET bal ance = bal ance - 500
WHERE account = 3209;

. ——— Increment Checking Account
UPDATE checki ng_account s

SET bal ance = bal ance + 500
WHERE account = 3208;

) ——— Record in Transaction Journal
I NSERT | NTO j ournal VALUES

(j ournal _seq. NEXTVAL, '1B'
3209, 3208, 500);

——— End Transaction

COW T WORK;

Transaction Ends

See Also: Oracle9i SQL Reference for information about Oracle’s
compliance with ANSI/ZISO standards

Commit and Roll Back Transactions

The changes made by the SQL statements that constitute a transaction can be either
committed or rolled back. After a transaction is committed or rolled back, the next
transaction begins with the next SQL statement.

Committing a transaction makes permanent the changes resulting from all SQL
statements in the transaction. The changes made by the SQL statements of a
transaction become visible to other user sessions’ transactions that start only after
the transaction is committed.

1-18 Oracle9i Database Concepts

Data Access Overview

Rolling back a transaction retracts any of the changes resulting from the SQL
statements in the transaction. After a transaction is rolled back, the affected data is
left unchanged, as if the SQL statements in the transaction were never run.

Savepoints

Savepoints divide a long transaction with many SQL statements into smaller parts.
With savepoints, you can arbitrarily mark your work at any point within a long
transaction. This gives you the option of later rolling back all work performed from
the current point in the transaction to a declared savepoint within the transaction.
For example, you can use savepoints throughout a long complex series of updates,
so if you make an error, you do not need to resubmit every statement.

Data Consistency Using Transactions

Transactions let users guarantee consistent changes to data, as long as the SQL
statements within a transaction are grouped logically. A transaction should consist
of all of the necessary parts for one logical unit of work—no more and no less. Data
in all referenced tables are in a consistent state before the transaction begins and
after it ends. Transactions should consist of only the SQL statements that make one
consistent change to the data.

For example, recall the banking example. A transfer of funds between two accounts
(the transaction) should include increasing one account (one SQL statement),
decreasing another account (one SQL statement), and recording the transaction in
the journal (one SQL statement). All actions should either fail or succeed together;
the credit should not be committed without the debit. Other nonrelated actions,
such as a new deposit to one account, should not be included in the transfer of
funds transaction. Such statements should be in other transactions.

Data Integrity Overview

Data must adhere to certain business rules, as determined by the database
administrator or application developer. For example, assume that a business rule
says that no row in the i nvent or y table can contain a numeric value greater than
nine in the sal e_di scount column. If an | NSERT or UPDATE statement attempts
to violate this integrity rule, then Oracle must roll back the invalid statement and
return an error to the application. Oracle provides integrity constraints and
database triggers to manage data integrity rules.

Introduction to the Oracle Server 1-19

Data Access Overview

Note: Database triggers let you define and enforce integrity rules,
but a database trigger is not the same as an integrity constraint.
Among other things, a database trigger does not check data already
loaded into a table. Therefore, it is strongly recommended that you
use database triggers only when the integrity rule cannot be
enforced by integrity constraints.

Integrity Constraints

An integrity constraint is a declarative way to define a business rule for a column
of a table. An integrity constraint is a statement about a table’s data that is always
true and that follows these rules:

s If anintegrity constraint is created for a table and some existing table data does
not satisfy the constraint, then the constraint cannot be enforced.

s After a constraint is defined, if any of the results of a DML statement violate the
integrity constraint, then the statement is rolled back, and an error is returned.

Integrity constraints are defined with a table and are stored as part of the table’s
definition in the data dictionary, so that all database applications adhere to the
same set of rules. When a rule changes, it only needs be changed once at the
database level and not many times for each application.

The following integrity constraints are supported by Oracle:
= NOT NULL: Disallows nulls (empty entries) in a table’s column.
= UNI QUE KEY: Disallows duplicate values in a column or set of columns.

= PRI MARY KEY: Disallows duplicate values and nulls in a column or set of
columns.

= FOREI GNKEY: Requires each value in a column or set of columns to match a
value in a related table’s UNI QUE or PRI MARY KEY. FOREI GNKEY integrity
constraints also define referential integrity actions that dictate what Oracle
should do with dependent data if the data it references is altered.

= CHECK: Disallows values that do not satisfy the logical expression of the
constraint.

Keys

Key is used in the definitions of several types of integrity constraints. A key is the
column or set of columns included in the definition of certain types of integrity

1-20 Oracle9i Database Concepts

Memory Structure and Processes Overview

constraints. Keys describe the relationships between the different tables and
columns of a relational database. Individual values in a key are called key values.

The different types of keys include:

s Primary key: The column or set of columns included in the definition of a
table’s PRI MARY KEY constraint. A primary key’s values uniquely identify the
rows in a table. Only one primary key can be defined for each table.

s Unique key: The column or set of columns included in the definition of a
UNI QUE constraint.

s Foreign key: The column or set of columns included in the definition of a
referential integrity constraint.

= Referenced key: The unique key or primary key of the same or a different table
referenced by a foreign key.

SQL*Plus Overview

SQL*Plus is a tool for entering and running ad-hoc database statements. It lets you
run SQL statements and PL/SQL blocks, and perform many additional tasks as
well. Through SQL*Plus, you can:

= Enter, edit, store, retrieve, and run SQL statements and PL/SQL blocks

= Format, perform calculations on, store, print, and create Web output of query
results

= List column definitions for any table access, and copy data between SQL
databases

= Send messages to, and accept responses from, an end user

= Perform database administration

See Also: SQL*Plus User’s Guide and Reference

Memory Structure and Processes Overview

An Oracle server uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the database system. Processes are jobs that work in the memory of these
computers.

The architectural features discussed in this section enable the Oracle server to
support:

Introduction to the Oracle Server 1-21

Memory Structure and Processes Overview

= Many users concurrently accessing a single database

= The high performance required by concurrent multiuser, multiapplication
database systems

Figure 1-3 shows a typical variation of the Oracle server memory and process
structures.

1-22 Oracle9i Database Concepts

Memory Structure and Processes Overview

Figure 1-3 Memory Structures and Processes of Oracle

CKPT \ ARCO Offline
Storage

Device

LMS RECO PMON SMON
/
System Global Area
Database Redo Log
Buffer Cache Buffer
4 4
I
User Shared Dedicated
Process Server Server
Process Process
User Processes
A A A
D000
v v
DBWO
LGWR
I'I_
v
Legend: User
Process
LMS Lock process
RECO Recoverer process
PMON Process monitor
SMON System monitor vy
CKPT Checkpoint
ARCO Archiver <
DBWO Database writer
LGWR Log writer

D000 Dispatcher Process

=)

Introduction to the Oracle Server 1-23

Memory Structure and Processes Overview

Note: Ina UNIX environment, most Oracle processes are part of
one master Oracle process, rather than being individual processes.
On Windows NT, all processes consist of at least one thread. A
thread is an individual execution within a process. Threads enable
concurrent operations within a process so that a process can run
different parts of its program simultaneously on different
processors. A thread is the most fundamental component that can
be scheduled on Windows NT. In UNIX documentation, such as
this book, whenever the word "process” is mentioned, it is
considered a "thread" on Windows NT.

An Oracle Instance

An Oracle server consists of an Oracle database and an Oracle server instance.
Every time a database is started, a system global area (SGA) is allocated and Oracle
background processes are started. The combination of the background processes
and memory buffers is called an Oracle instance.

Real Application Clusters: Multiple Instance Systems

Some hardware architectures (for example, shared disk systems) enable multiple
computers to share access to data, software, or peripheral devices. Real Application
Clusters take advantage of such architecture by running multiple instances that
share a single physical database. In most applications, Real Application Clusters
enable access to a single database by users on multiple machines with increased
performance.

Real Application Clusters are inherently high availability systems. The clusters that
are typical of Real Application Clusters environments can provide continuous
service for both planned and unplanned outages.

An Oracle server uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the database system. Processes are jobs that work in the memory of these
computers.

Note: Real Application Clusters are available only with Oracle9i
Enterprise Edition.

See Also: Oracle9i Real Application Clusters Concepts

1-24 Oracle9i Database Concepts

Memory Structure and Processes Overview

Memory Structures

Oracle creates and uses memory structures to complete several jobs. For example,
memory stores program code being run and data shared among users. Two basic
memory structures are associated with Oracle: the system global area and the
program global area. The following subsections explain each in detail.

System Global Area

The System Global Area (SGA) is a shared memory region that contains data and
control information for one Oracle instance. Oracle allocates the SGA when an
instance starts and deallocates it when the instance shuts down. Each instance has
its own SGA.

Users currently connected to an Oracle server share the data in the SGA. For
optimal performance, the entire SGA should be as large as possible (while still
fitting in real memory) to store as much data in memory as possible and to
minimize disk 170.

The information stored in the SGA is divided into several types of memory
structures, including the database buffers, redo log buffer, and the shared pool.

See Also:
= "An Oracle Instance" on page 1-24

= "Background Processes" on page 1-27 for more information
about the SGA and the Oracle background processes

Database Buffer Cache of the SGA Database buffers store the most recently used
blocks of data. The set of database buffers in an instance is the database buffer
cache. The buffer cache contains modified as well as unmodified blocks. Because
the most recently (and often, the most frequently) used data is kept in memory, less
disk 170 is necessary, and performance is improved.

Redo Log Buffer of the SGA The redo log buffer stores redo entries—a log of changes
made to the database. The redo entries stored in the redo log buffers are written to
an online redo log, which is used if database recovery is necessary. The size of the
redo log is static.

Shared Pool of the SGA The shared pool contains shared memory constructs, such as
shared SQL areas. A shared SQL area is required to process every unique SQL
statement submitted to a database. A shared SQL area contains information such as
the parse tree and execution plan for the corresponding statement. A single shared

Introduction to the Oracle Server 1-25

Memory Structure and Processes Overview

SQL area is used by multiple applications that issue the same statement, leaving
more shared memory for other uses.

See Also: "SQL Statements" on page 1-10 for more information
about shared SQL areas

Large Pool in the SGA The large pool is an optional area that provides large memory
allocations for Oracle backup and restore operations, 1/0 server processes, and
session memory for the shared server and Oracle XA (used where transactions
interact with more than one database).

Statement Handles or Cursors A cursor is a handle (a name or pointer) for the memory
associated with a specific statement. (Oracle Call Interface, OCI, refers to these as
statement handles.) Although most Oracle users rely on automatic cursor handling
of Oracle utilities, the programmatic interfaces offer application designers more
control over cursors.

For example, in precompiler application development, a cursor is a named resource
available to a program and can be used specifically to parse SQL statements
embedded within the application. Application developers can code an application
so it controls the phases of SQL statement execution and thus improves application
performance.

Program Global Area

The Program Global Area (PGA) is a memory buffer that contains data and control
information for a server process. A PGA is created by Oracle when a server process
is started. The information in a PGA depends on the Oracle configuration.

Process Architecture

A process is a "thread of control" or a mechanism in an operating system that can
run a series of steps. Some operating systems use the terms job or task. A process
generally has its own private memory area in which it runs.

An Oracle server has two general types of processes: user processes and Oracle
processes.

User (Client) Processes

User processes are created and maintained to run the software code of an
application program (such as a Pro*C/C++ program) or an Oracle tool (such as

1-26 Oracle9i Database Concepts

Memory Structure and Processes Overview

Enterprise Manager). User processes also manage communication with the server
process through the program interface, which is described in a later section.

Oracle Processes

Oracle processes are invoked by other processes to perform functions on behalf of
the invoking process. The different types of Oracle processes and their specific
functions are discussed in the following sections.

Server Processes Oracle creates server processes to handle requests from connected
user processes. A server process communicates with the user process and interacts
with Oracle to carry out requests from the associated user process. For example, if a
user queries some data not already in the database buffers of the SGA, then the
associated server process reads the proper data blocks from the datafiles into the
SGA.

Oracle can be configured to vary the number of user processes for each server
process. In a dedicated server configuration, a server process handles requests for a
single user process. A shared server configuration lets many user processes share a
small number of server processes, minimizing the number of server processes and
maximizing the use of available system resources.

On some systems, the user and server processes are separate, while on others they

are combined into a single process. If a system uses the shared server or if the user

and server processes run on different machines, then the user and server processes

must be separate. Client/server systems separate the user and server processes and
run them on different machines.

Background Processes Oracle creates a set of background processes for each
instance. The background processes consolidate functions that would otherwise be
handled by multiple Oracle programs running for each user process. They
asynchronously perform 1/0 and monitor other Oracle process to provide
increased parallelism for better performance and reliability.

Each Oracle instance can use several background processes. The names of these
processes are DBWn, LGWR, CKPT, SMON, PMON, ARCn, RECO, Jnnn, Dnnn,
LMS, and QMNNn.

See Also:
= "An Oracle Instance" on page 1-24

= "System Global Area" on page 1-25 for more information about
the SGA

Introduction to the Oracle Server 1-27

Memory Structure and Processes Overview

Database Writer (DBWn) The database writer writes modified blocks from the
database buffer cache to the datafiles. Although one database writer process
(DBWO) is sufficient for most systems, you can configure additional processes
(DBW1 through DBW9 and DBWa through DBWj) to improve write performance
for a system that modifies data heavily. The initialization parameter DB_WRI TER _
PROCESSES specifies the number of DBWn processes.

Because Oracle uses write-ahead logging, DBWn does not need to write blocks
when a transaction commits. Instead, DBWhn is designed to perform batched writes
with high efficiency. In the most common case, DBWn writes only when more data
needs to be read into the SGA and too few database buffers are free. The least
recently used data is written to the datafiles first. DBWn also performs writes for
other functions, such as checkpointing.

See Also: "Transactions Overview" on page 1-17 for more
information about commits

Log Writer (LGWR) The log writer writes redo log entries to disk. Redo log entries are
generated in the redo log buffer of the SGA, and LGWR writes the redo log entries
sequentially into an online redo log. If the database has a multiplexed redo log,
then LGWR writes the redo log entries to a group of online redo log files.

Checkpoint (CKPT) At specific times, all modified database buffers in the SGA are
written to the datafiles by DBWhn. This event is called a checkpoint. The checkpoint
process is responsible for signaling DBWn at checkpoints and updating all the
datafiles and control files of the database to indicate the most recent checkpoint.

System Monitor (SMON) The system monitor performs recovery when a failed
instance starts up again. With Real Application Clusters, the SMON process of one
instance can perform instance recovery for other instances that have failed. SMON
also cleans up temporary segments that are no longer in use and recovers
terminated transactions skipped during recovery because of file-read or offline
errors. These transactions are eventually recovered by SMON when the tablespace
or file is brought back online. SMON also coalesces free extents in the dictionary
managed tablespaces to make free space contiguous and easier to allocate.

Process Monitor (PMON) The process monitor performs process recovery when a user
process fails. PMON is responsible for cleaning up the cache and freeing resources
that the process was using. PMON also checks on dispatcher and server processes
and restarts them if they have failed.

1-28 Oracle9i Database Concepts

Memory Structure and Processes Overview

Archiver (ARCn) The archiver copies the online redo log files to archival storage after
a log switch has occurred. Although a single ARCn process (ARCDO) is sufficient for
most systems, you can specify up to 10 ARCn processes by using the dynamic
initialization parameter LOG_ARCHI VE_MAX_ PROCESSES. If the workload becomes
too great for the current number of ARCn processes, then LGWR automatically
starts another ARCn process up to the maximum of 10 processes. ARCn is active
only when a database is in ARCHI VELOG mode and automatic archiving is enabled.

See Also: "The Redo Log" on page 1-52 for more information
about the archiver

Recoverer (RECO) The recoverer is used to resolve distributed transactions that are
pending due to a network or system failure in a distributed database. At timed
intervals, the local RECO attempts to connect to remote databases and
automatically complete the commit or rollback of the local portion of any pending
distributed transactions.

Job Queue Processes (Jnnn) Job queue processes are used for batch processing. Job
gueue processes are managed dynamically. This enables job queue clients to use
more job queue processes when required. The resources used by the new processes
are released when they are idle.

See Also:

s Oracle9i Database Administrator’s Guide for more information
about job queues.

Dispatcher (Dnnn) Dispatchers are optional background processes, present only
when a shared server configuration is used. At least one dispatcher process is
created for every communication protocol in use (D000, . . ., Dnnn). Each dispatcher
process is responsible for routing requests from connected user processes to
available shared server processes and returning the responses back to the
appropriate user processes.

Lock Manager Server (LMS) The Lock Manager Server process (LMS) is used for
inter-instance locking in Real Application Clusters.

See Also: "Real Application Clusters: Multiple Instance Systems"
on page 1-24 for more information about the configuration of the
lock process

Introduction to the Oracle Server 1-29

Memory Structure and Processes Overview

Queue Monitor (QMNn) Queue monitors are optional background processes that
monitor the message queues for Oracle Advanced Queuing. You can configure up
to 10 queue monitor processes.

The Program Interface Mechanism

The program interface is the mechanism by which a user process communicates
with a server process. It serves as a method of standard communication between
any client tool or application (such as Oracle Forms) and Oracle software. Its
functions are to:

= Actas a communications mechanism by formatting data requests, passing data,
and trapping and returning errors

= Perform conversions and translations of data, particularly between different
types of computers or to external user program datatypes

Communications Software and Oracle Net Services

If the user and server processes are on different computers of a network, or if user
processes connect to shared server processes through dispatcher processes, then the
user process and server process communicate using Oracle Net Services.
Dispatchers are optional background processes, present only in the shared server
configuration.

Oracle Net Services is Oracle’s mechanism for interfacing with the communication
protocols used by the networks that facilitate distributed processing and distributed
databases. Communication protocols define the way that data is transmitted and
received on a network. In a networked environment, an Oracle database server
communicates with client workstations and other Oracle database servers using
Oracle Net Services software.

Oracle Net Services supports communications on all major network protocols,
ranging from those supported by PC LANSs to those used by the largest of
mainframe computer systems.

Using Oracle Net Services, application developers do not need to be concerned with
supporting network communications in a database application. If a new protocol is
used, then the database administrator makes some minor changes, while the
application requires no modifications and continues to function.

See Also: Oracle9i Net Services Administrator’s Guide

1-30 Oracle9i Database Concepts

Memory Structure and Processes Overview

An Example of How Oracle Works

The following example describes the most basic level of operations that Oracle
performs. This illustrates an Oracle configuration where the user and associated
server process are on separate machines (connected through a network).

1.

An instance has started on the computer running Oracle (often called the host
or database server).

A computer running an application (a local machine or client workstation)
runs the application in a user process. The client application attempts to
establish a connection to the server using the proper Oracle Net Services driver.

The server is running the proper Oracle Net Services driver. The server detects
the connection request from the application and creates a dedicated server
process on behalf of the user process.

The user runs a SQL statement and commits the transaction. For example, the
user changes a name in a row of a table.

The server process receives the statement and checks the shared pool for any
shared SQL area that contains a similar SQL statement. If a shared SQL area is
found, then the server process checks the user’s access privileges to the
requested data, and the previously existing shared SQL area is used to process
the statement. If not, then a new shared SQL area is allocated for the statement,
so it can be parsed and processed.

The server process retrieves any necessary data values from the actual datafile
(table) or those stored in the SGA.

The server process modifies data in the system global area. The DBWn process
writes modified blocks permanently to disk when doing so is efficient. Because
the transaction is committed, the LGWR process immediately records the
transaction in the online redo log file.

If the transaction is successful, then the server process sends a message across
the network to the application. If it is not successful, then an error message is
transmitted.

Throughout this entire procedure, the other background processes run,
watching for conditions that require intervention. In addition, the database
server manages other users’ transactions and prevents contention between
transactions that request the same data.

See Also: Chapter 8, "Process Architecture” for more information
about Oracle configuration

Introduction to the Oracle Server 1-31

Application Architecture Overview

Application Architecture Overview

There are two common ways to architect a database: client/server or multitier. As
internet computing becomes more prevalent in computing environments, many
database management systems are moving to a multitier environment.

Client/Server Architecture

Multiprocessing uses more than one processor for a set of related jobs. Distributed
processing reduces the load on a single processor by allowing different processors
to concentrate on a subset of related tasks, thus improving the performance and
capabilities of the system as a whole.

An Oracle database system can easily take advantage of distributed processing by
using its client/server architecture. In this architecture, the database system is
divided into two parts: a front-end or a client and a back-end or a server.

The Client

The client is the front-end database application, accessed by a user through the
keyboard, display, and pointing device, such as a mouse. The client has no data
access responsibilities. It requests, processes, and presents data managed by the
server. The client workstation can be optimized for its job. For example, it might not
need large disk capacity, or it might benefit from graphic capabilities.

Often, the client runs on a different computer than the database server, generally on
a PC. Many clients can simultaneously run against one server.

The Server

The server runs Oracle software and handles the functions required for concurrent,
shared data access. The server receives and processes the SQL and PL/SQL
statements that originate from client applications. The computer that manages the
server can be optimized for its duties. For example, it can have large disk capacity
and fast processors.

Multitier Architecture: Application Servers
A multitier architecture has the following components:

= Aclient or initiator process that starts an operation

= One or more application servers that perform parts of the operation. An
application server provides access to the data for the client and performs some

1-32 Oracle9i Database Concepts

Distributed Databases Overview

of the query processing, thus removing some of the load from the database
server. It can serve as an interface between clients and multiple database
servers, including providing an additional level of security.

s Anend or database server that stores most of the data used in the operation
This architecture enables use of an application server to:

= Validate the credentials of a client, such as a web browser

= Connect to an Oracle database server

s Perform the requested operation on behalf of the client

The identity of the client is maintained throughout all tiers of the connection.

Distributed Databases Overview

A distributed database is a network of databases managed by multiple database
servers that are used together. They are not usually seen as a single logical
database. The data of all databases in the distributed database can be
simultaneously accessed and modified. The primary benefit of a distributed
database is that the data of physically separate databases can be logically combined
and potentially made accessible to all users on a network.

Each computer that manages a database in the distributed database is called a node.
The database to which a user is directly connected is called the local database. Any
additional databases accessed by this user are called remote databases. When a
local database accesses a remote database for information, the local database is a
client of the remote server. This is an example of client/server architecture.

A database link describes a path from one database to another. Database links are
implicitly used when a reference is made to a global object name in a distributed
database.

While a distributed database enables increased access to a large amount of data
across a network, it must also hide the location of the data and the complexity of
accessing it across the network. The distributed database management system must
also preserve the advantages of administrating each local database as though it
were not distributed.

See Also : Oracle9i Database Administrator’s Guide for more
information about distributed databases

Introduction to the Oracle Server 1-33

Distributed Databases Overview

Location Transparency

Location transparency occurs when the physical location of data is transparent to
the applications and users of a database system. Several Oracle features, such as
views, procedures, and synonyms, can provide location transparency. For example,
a view that joins table data from several databases provides location transparency
because the user of the view does not need to know from where the data originates.

Site Autonomy

Site autonomy means that each database participating in a distributed database is
administered separately and independently from the other databases, as though
each database were a non-networked database. Although each database can work
with others, they are distinct, separate systems that are cared for individually.

Distributed Data Manipulation

The Oracle distributed database architecture supports all DML operations,
including queries, inserts, updates, and deletes of remote table data. To access
remote data, you make reference to the remote object’s global object name. No
coding or complex syntax is required to access remote data.

For example, to query a table named enpl oyees in the remote database named
sal es, reference the table’s global object name:

SH ECT * FROM enpl oyees@al es;

Two-Phase Commit

Oracle provides the same assurance of data consistency in a distributed
environment as in a nondistributed environment. Oracle provides this assurance
using the transaction model and a two-phase commit mechanism.

As in nondistributed systems, transactions should be carefully planned to include a
logical set of SQL statements that should all succeed or fail as a unit. Oracle’s
two-phase commit mechanism guarantees that no matter what type of system or
network failure occurs, a distributed transaction either commits on all involved
nodes or rolls back on all involved nodes to maintain data consistency across the
global distributed database.

See Also: "The Two-Phase Commit Mechanism" on page 16-10

1-34 Oracle9i Database Concepts

Distributed Databases Overview

Replication Overview

Replication is the process of copying and maintaining database objects, such as
tables, in multiple databases that make up a distributed database system. Changes
applied at one site are captured and stored locally before being forwarded and
applied at each of the remote locations. Oracle replication is a fully integrated
feature of the Oracle server. It is not a separate server.

Replication uses distributed database technology to share data between multiple
sites, but a replicated database and a distributed database are not the same. In a
distributed database, data is available at many locations, but a particular table
resides at only one location. For example, the enpl oyees table can reside at only
the db1 database in a distributed database system that also includes the db2 and
db3 databases. Replication means that the same data is available at multiple
locations. For example, the enpl oyees table can be available at db1, db2, and db3.

See Also: Oracle9i Replication

Table Replication

Distributed database systems often locally replicate remote tables that are
frequently queried by local users. By having copies of heavily accessed data on
several nodes, the distributed database does not need to send information across a
network repeatedly, thus helping to maximize the performance of the database
application.

Data can be replicated using materialized views.

Multitier Materialized Views

Oracle supports materialized views that are hierarchical and updatable. Multitier
replication provides increased flexibility of design for a distributed application.
Using multitier materialized views, applications can manage multilevel data
subsets with no direct connection between levels.

An updatable materialized view lets you insert, update, and delete rows in the
materialized view and propagate the changes to the target master table.
Synchronous and asynchronous replication is supported.

Figure 1-4 shows an example of multitier architecture, diagrammed as an inverted
tree structure. Changes are propagated up and down along the branches connecting
the outermost materialized views with the master (the root).

Introduction to the Oracle Server 1-35

Distributed Databases Overview

Figure 1-4 Multitier Architecture

Master > Master
Level 1 Level 1
updatable MV updatable MV
Level 2 Level 2 Level 2
updatable MV updatable MV P | updatable MV

! !

Level n Level n
updatable MV updatable MV

Conflict Resolution In Oracle9i conflict resolution routines are defined at the top
level, the master site, and are pulled into the updatable materialized view site when
needed. This makes it possible to have multitier materialized views. Existing
system-defined conflict resolution methods are supported.

In addition, users can write their own conflict resolution routines. A user-defined
conflict resolution method is a PL/SQL function that returns either t r ue or f al se.
Tr ue indicates that the method was able to successfully resolve all conflicting
modifications for a column group.

See Also: Oracle9i Replication and Oracle9i SQL Reference for more
information about creating and managing multitier materialized
views

Streams Overview

Oracle Streams enables the sharing of data and events in a data stream, either
within a database or from one database to another. The stream routes specified
information to specified destinations. Oracle Streams provides the capabilities
needed to build and operate distributed enterprises and applications, data
warehouses, and high availability solutions. You can use all the capabilities of
Oracle Streams at the same time. If your needs change, you can implement a new
capability of Streams without sacrificing existing capabilities.

1-36 Oracle9i Database Concepts

Distributed Databases Overview

Using Oracle Streams, you control what information is put into a stream, how the
stream flows or is routed from database to database, what happens to events in the
stream as they flow into each database, and how the stream terminates. By
configuring specific capabilities of Streams, you can address specific requirements.
Based on your specifications, Streams can capture and manage events in the
database automatically, including, but not limited to, DML changes and DDL
changes. You can also put user-defined events into a stream. Then, Streams can
propagate the information to other databases or applications automatically. Again,
based on your specifications, Streams can apply events at a destination database.

You can use Streams to:

Capture changes at a database.

You can configure a background capture process to capture changes made to
tables, schemas, or the entire database. A capture process captures changes
from the redo log and formats each captured change into a logical change
record (LCR). The database where changes are generated in the redo log is
called the source database.

Enqueue events into a queue. Two types of events may be staged in a Streams
gueue: LCRs and user messages.

A capture process enqueues LCR events into a queue that you specify. The
gueue can then share the LCR events within the same database or with other
databases.

You can also enqueue user events into a queue explicitly with a user
application. These explicitly enqueued events can be LCRs or user messages.

Propagate events from one queue to another. These queues may be in the same
database or in different databases.

Dequeue events from a queue.

A background apply process can dequeue events from a queue. You can also
dequeue events explicitly with a user application.

Apply events at a database.

You can configure an apply process to apply all of the events in a queue or only
the events that you specify. You can also configure an apply process to call your
own PL/SQL subprograms to process events.

The database where LCR events are applied and other types of events are
processed is called the destination database. In some configurations, the source
database and the destination database may be the same.

Introduction to the Oracle Server 1-37

Distributed Databases Overview

Other capabilities of Streams include the following:
= Tagsin captured LCRs

= Directed networks

= Automatic conflict detection and resolution

= Transformations

= Heterogeneous information sharing

See Also: Oracle9i Streams

Advanced Queuing Overview

Oracle Advanced Queuing provides an infrastructure for distributed applications to
communicate asynchronously using messages. Oracle Advanced Queuing stores
messages in queues for deferred retrieval and processing by the Oracle server. This
provides a reliable and efficient queuing system without additional software such
as transaction processing monitors or message-oriented middleware.

Messages pass between clients and servers, as well as between processes on
different servers. An effective messaging system implements content-based routing,
subscription, and querying.

A messaging system can be classified into one of two types:
= Synchronous Communication

= Asynchronous Communication

Synchronous Communication Synchronous communication is based on the
request/reply paradigm—a program sends a request to another program and waits
until the reply arrives.

This model of communication (also called online or connected) is suitable for
programs that need to get the reply before they can proceed with their work.
Traditional client/server architectures are based on this model. The major
drawback of this model is that the programs where the request is sent must be
available and running for the calling application to work.

Asynchronous Communication In the disconnected or deferred model, programs

communicate asynchronously, placing requests in a queue and then proceeding
with their work.

1-38 Oracle9i Database Concepts

Distributed Databases Overview

For example, an application might require entry of data or execution of an
operation after specific conditions are met. The recipient program retrieves the
request from the queue and acts on it. This model is suitable for applications that
can continue with their work after placing a request in the queue — they are not
blocked waiting for a reply.

For deferred execution to work correctly in the presence of network, machine, and
application failures, the requests must be stored persistently and processed exactly
once. This is achieved by combining persistent queuing with transaction protection.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing

Heterogeneous Services Overview

Heterogeneous Services is necessary for accessing a non-Oracle database system.
The term "non-Oracle database system" refers to the following:

= Any system accessed by PL/SQL procedures written in C (that is, by external
procedures)

= Any system accessed through SQL (that is, by Oracle Transparent Gateways
and Generic Connectivity)

= Any system accessed procedurally (that is, by procedural gateways)
Heterogeneous Services makes it possible for users to do the following:
= Use Oracle SQL statements to retrieve data stored in hon-Oracle systems.

= Use Oracle procedure calls to access non-Oracle systems, services, or
application programming interfaces (APIs) from within an Oracle distributed
environment.

Heterogeneous Services is generally applied in one of two ways:

= Oracle Transparent Gateway is used in conjunction with Heterogeneous
Services to access a particular, vendor-specific, non-Oracle system for which an
Oracle Transparent Gateways is designed. For example, you would use the
Oracle Transparent Gateway for Sybase on Solaris to access a Sybase database
system that was operating on a Solaris platform.

= Heterogeneous Services’ generic connectivity is used to access hon-Oracle
databases through ODBC or OLE DB interfaces.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide

Introduction to the Oracle Server 1-39

Data Concurrency and Consistency Overview

Data Concurrency and Consistency Overview

This section explains the software mechanisms used by Oracle to fulfill the
following important requirements of an information management system:

= Data must be read and modified in a consistent fashion.
= Data concurrency of a multiuser system must be maximized.

= High performance is required for maximum productivity from the many users
of the database system.

Concurrency

A primary concern of a multiuser database management system is how to control
concurrency, which is the simultaneous access of the same data by many users.
Without adequate concurrency controls, data could be updated or changed
improperly, compromising data integrity.

If many people are accessing the same data, one way of managing data concurrency
is to make each user wait for a turn. The goal of a database management system is
to reduce that wait so it is either nonexistent or negligible to each user. All data
manipulation language statements should proceed with as little interference as
possible, and destructive interactions between concurrent transactions must be
prevented. Destructive interaction is any interaction that incorrectly updates data or
incorrectly alters underlying data structures. Neither performance nor data
integrity can be sacrificed.

Oracle resolves such issues by using various types of locks and a multiversion
consistency model. Both features are discussed later in this section. These features
are based on the concept of a transaction. It is the application designer’s
responsibility to ensure that transactions fully exploit these concurrency and
consistency features.

See Also: "Data Consistency Using Transactions" on page 1-19 for
more information about concurrency and consistency features

Read Consistency
Read consistency, as supported by Oracle, does the following:

= Guarantees that the set of data seen by a statement is consistent with respect to
a single point in time and does not change during statement execution
(statement-level read consistency)

1-40 Oracle9i Database Concepts

Data Concurrency and Consistency Overview

s Ensures that readers of database data do not wait for writers or other readers of
the same data

s Ensures that writers of database data do not wait for readers of the same data

s Ensures that writers only wait for other writers if they attempt to update
identical rows in concurrent transactions

The simplest way to think of Oracle’s implementation of read consistency is to
imagine each user operating a private copy of the database, hence the multiversion
consistency model.

Read Consistency, Undo Records, and Transactions

To manage the multiversion consistency model, Oracle must create a
read-consistent set of data when a table is being queried (read) and simultaneously
updated (written). When an update occurs, the original data values changed by the
update are recorded in the database’s undo records. As long as this update remains
part of an uncommitted transaction, any user that later queries the modified data
views the original data values. Oracle uses current information in the system global
area and information in the undo records to construct a read-consistent view of a
table’s data for a query.

Only when a transaction is committed are the changes of the transaction made
permanent. Statements that start after the user’s transaction is committed only see
the changes made by the committed transaction.

Note that a transaction is key to Oracle’s strategy for providing read consistency.
This unit of committed (or uncommitted) SQL statements:

= Dictates the start point for read-consistent views generated on behalf of readers

= Controls when modified data can be seen by other transactions of the database
for reading or updating

Read-Only Transactions

By default, Oracle guarantees statement-level read consistency. The set of data
returned by a single query is consistent with respect to a single point in time.
However, in some situations, you might also require transaction-level read
consistency. This is the ability to run multiple queries within a single transaction, all
of which are read-consistent with respect to the same point in time, so that queries
in this transaction do not see the effects of intervening committed transactions.

If you want to run a number of queries against multiple tables and if you are not
doing any updating, you prefer a read-only transaction. After indicating that your

Introduction to the Oracle Server 1-41

Data Concurrency and Consistency Overview

transaction is read-only, you can run as many queries as you like against any table,
knowing that the results of each query are consistent with respect to the same point
in time.

Locking Mechanisms

Oracle also uses locks to control concurrent access to data. Locks are mechanisms
intended to prevent destructive interaction between users accessing Oracle data.

Locks are used to ensure consistency and integrity. Consistency means that the data
a user is viewing or changing is not changed (by other users) until the user is
finished with the data. Integrity means that the database’s data and structures
reflect all changes made to them in the correct sequence.

Locks guarantee data integrity while enabling maximum concurrent access to the
data by unlimited users.

Automatic Locking

Oracle locking is performed automatically and requires no user action. Implicit
locking occurs for SQL statements as necessary, depending on the action requested.

Oracle’s lock manager automatically locks table data at the row level. By locking
table data at the row level, contention for the same data is minimized.

Oracle’s lock manager maintains several different types of row locks, depending on
what type of operation established the lock. The two general types of locks are
exclusive locks and share locks. Only one exclusive lock can be placed on a
resource (such as a row or a table); however, many share locks can be placed on a
single resource. Both exclusive and share locks always allow queries on the locked
resource but prohibit other activity on the resource (such as updates and deletes).

Manual Locking

Under some circumstances, a user might want to override default locking. Oracle
allows manual override of automatic locking features at both the row level (by first
guerying for the rows that will be updated in a subsequent statement) and the table
level.

See Also: "Explicit (Manual) Data Locking" on page 20-32
Quiesce Database

Database administrators occasionally need isolation from concurrent non-database
administrator actions, that is, isolation from concurrent non-database administrator

1-42 Oracle9i Database Concepts

Database Security Overview

transactions, queries, or PL/SQL statements. One way to provide such isolation is
to shut down the database and reopen it in restricted mode. The Quiesce Database
feature provides another way of providing isolation: to put the system into quiesced
state without disrupting users.

The database administrator uses SQL statements to quiesce the database. After the
system is in quiesced state, the database administrator can safely perform certain
actions whose executions require isolation from concurrent non-DBA users.

See Also: "Quiesce Database" on page 20-15

Database Security Overview

Oracle includes security features that control how a database is accessed and used.
For example, security mechanisms:

= Prevent unauthorized database access
= Prevent unauthorized access to schema objects
= Audit user actions

Associated with each database user is a schema by the same name. By default, each
database user creates and has access to all objects in the corresponding schema.

Database security can be classified into two categories: system security and data
security.

System security includes the mechanisms that control the access and use of the
database at the system level. For example, system security includes:

= Valid username/password combinations
= The amount of disk space available to a user’s schema objects
= The resource limits for a user

System security mechanisms check whether a user is authorized to connect to the
database, whether database auditing is active, and which system operations a user
can perform.

Data security includes the mechanisms that control the access and use of the
database at the schema object level. For example, data security includes:

= Which users have access to a specific schema object and the specific types of
actions allowed for each user on the schema object (for example, user SCOTT
can issue SELECT and | NSERT statements but not DELETE statements using the
enpl oyees table)

Introduction to the Oracle Server 1-43

Database Security Overview

= The actions, if any, that are audited for each schema object

=« Data encryption to prevent unauthorized users from bypassing Oracle and
accessing data

Security Mechanisms

The Oracle server provides discretionary access control, which is a means of
restricting access to information based on privileges. The appropriate privilege
must be assigned to a user in order for that user to access a schema object.
Appropriately privileged users can grant other users privileges at their discretion.
For this reason, this type of security is called discretionary.

Oracle manages database security using several different facilities:
» Database Users and Schemas

= Privileges

= Roles

= Storage Settings and Quotas

= Profiles and Resource Limits

= Selective Auditing of User Actions

= Fine-Grained Auditing

Figure 1-5 illustrates the relationships of the different Oracle security facilities, and
the following sections provide an overview of users, privileges, and roles.

1-44 Oracle9i Database Concepts

Database Security Overview

Figure 1-5 Oracle Security Features

&P T &'ﬁT &'i T -

 / t

PAY_CLERK Role MANAGER Role REC_CLERK Role User Roles

NS N

ACCTS_PAY Role | | AcCTS_REC Role

1 1

Application Roles

Privileges to Privileges to o L
execute the execute the Application Privileges
ACCTS_PAY ACCTS_REC

application application

Database Users and Schemas

Each Oracle database has a list of usernames. To access a database, a user must use
a database application and attempt a connection with a valid username of the
database. Each username has an associated password to prevent unauthorized use.

Security Domain Each user has a security domain—a set of properties that determine
such things as:

= The actions (privileges and roles) available to the user

= The tablespace quotas (available disk space) for the user

= The system resource limits (for example, CPU processing time) for the user

Each property that contributes to a user’s security domain is discussed in the
following sections.

Privileges
A privilege is a right to run a particular type of SQL statement. Some examples of
privileges include the right to:

= Connect to the database (create a session)

Introduction to the Oracle Server 1-45

Database Security Overview

= Create a table in your schema
= Select rows from someone else’s table
= Execute someone else’s stored procedure

The privileges of an Oracle database can be divided into two categories: system
privileges and schema object privileges.

System Privileges System privileges allow users to perform a particular systemwide
action or a particular action on a particular type of schema object. For example, the
privileges to create a tablespace or to delete the rows of any table in the database
are system privileges. Many system privileges are available only to administrators
and application developers because the privileges are very powerful.

Schema Object Privileges Schema object privileges allow users to perform a
particular action on a specific schema object. For example, the privilege to delete
rows of a specific table is an object privilege. Object privileges are granted
(assigned) to users so that they can use a database application to accomplish specific
tasks.

Granted Privileges Privileges are granted to users so that users can access and
modify data in the database. A user can receive a privilege two different ways:

= Privileges can be granted to users explicitly. For example, the privilege to insert
records into the enpl oyees table can be explicitly granted to the user SCOTT.

= Privileges can be granted to roles (a named group of privileges), and then the
role can be granted to one or more users. For example, the privilege to insert
records into the enpl oyees table can be granted to the role named CLERK,
which in turn can be granted to the users SCOTT and BRI AN.

Because roles enable easier and better management of privileges, privileges are
normally granted to roles and not to specific users. The following section explains
more about roles and their use.

Roles

Oracle provides for easy and controlled privilege management through roles. Roles
are named groups of related privileges that you grant to users or other roles.

See Also: "Introduction to Roles" on page 23-17 for more
information about role properties

1-46 Oracle9i Database Concepts

Database Security Overview

Storage Settings and Quotas

Oracle provides a way to direct and limit the use of disk space allocated to the
database for each user, including default and temporary tablespaces and tablespace
quotas.

Default Tablespace Each user is associated with a default tablespace. When a user
creates a table, index, or cluster and no tablespace is specified to physically contain
the schema object, the user’s default tablespace is used if the user has the privilege
to create the schema object and a quota in the specified default tablespace. The
default tablespace feature provides Oracle with information to direct space use in
situations where schema object’s location is not specified.

Temporary Tablespace Each user has a temporary tablespace. When a user runs a
SQL statement that requires the creation of temporary segments (such as the
creation of an index), the user’s temporary tablespace is used. By directing all users’
temporary segments to a separate tablespace, the temporary tablespace feature can
reduce 1/0 contention among temporary segments and other types of segments.

Tablespace Quotas Oracle can limit the collective amount of disk space available to
the objects in a schema. Quotas (space limits) can be set for each tablespace
available to a user. The tablespace quota security feature permits selective control
over the amount of disk space that can be consumed by the objects of specific
schemas.

Profiles and Resource Limits

Each user is assigned a profile that specifies limitations on several system resources
available to the user, including the following:

= Number of concurrent sessions the user can establish
= CPU processing time available for:

— The user’s session

— Asingle call to Oracle made by a SQL statement
= Amount of logical 170 available for:

— The user’s session

— Asingle call to Oracle made by a SQL statement
= Amount of idle time available for the user’s session

= Amount of connect time available for the user’s session

Introduction to the Oracle Server 1-47

Database Security Overview

= Password restrictions:
— Account locking after multiple unsuccessful login attempts
— Password expiration and grace period
— Password reuse and complexity restrictions

Different profiles can be created and assigned individually to each user of the
database. A default profile is present for all users not explicitly assigned a profile.
The resource limit feature prevents excessive consumption of global database
system resources.

Selective Auditing of User Actions

Oracle permits selective auditing (recorded monitoring) of user actions to aid in the
investigation of suspicious database use. Auditing can be performed at three
different levels: Statement Auditing, Privilege Auditing, and Schema Object
Auditing.

Statement Auditing Statement auditing is the auditing of specific SQL statements
without regard to specifically named schema objects. In addition, database triggers
let a database administrator to extend and customize Oracle’s built-in auditing
features.

Statement auditing can be broad and audit all users of the system or can be focused
to audit only selected users of the system. For example, statement auditing by user
can audit connections to and disconnections from the database by the users SCOTT
and LORI .

Privilege Auditing Privilege auditing is the auditing of powerful system privileges
without regard to specifically named schema objects. Privilege auditing can be
broad and audit all users or can be focused to audit only selected users.

Schema Object Auditing Schema object auditing is the auditing of access to specific
schema objects without regard to user. Object auditing monitors the statements
permitted by object privileges, such as SELECT or DELETE statements on a given
table.

For all types of auditing, Oracle allows the selective auditing of successful
statement executions, unsuccessful statement executions, or both. This enables
monitoring of suspicious statements, regardless of whether the user issuing a
statement has the appropriate privileges to issue the statement. The results of
audited operations are recorded in a table called the audit trail. Predefined views of
the audit trail are available so you can easily retrieve audit records.

1-48 Oracle9i Database Concepts

Database Administration Overview

Fine-Grained Auditing

Fine-grained auditing allows the monitoring of data access based on content. For
example, a central tax authority needs to track access to tax returns to guard against
employee snooping. Enough detail is wanted to be able to determine what data was
accessed, not just that SELECT privilege was used by a specific user on a particular
table. Fine-grained auditing provides this functionality.

In general, fine-grained auditing policy is based on simple user-defined SQL
predicates on table objects as conditions for selective auditing. During fetching,
whenever policy conditions are met for a returning row, the query is audited. Later,
Oracle executes user-defined audit event handlers using autonomous transactions
to process the event.

Fine-grained auditing can be implemented in user applications using the DBMS_FGA
package or by using database triggers.

Database Administration Overview

People who administer the operation of an Oracle database system, known as
database administrators (DBAS), are responsible for creating Oracle databases,
ensuring their smooth operation, and monitoring their use.

See Also: Oracle9i Database Administrator’s Guide for detailed
information on database administration tasks

Enterprise Manager Overview

Enterprise Manager is a system management tool that provides an integrated
solution for centrally managing your heterogeneous environment. Combining a
graphical console, Oracle Management Servers, Oracle Intelligent Agents, common
services, and administrative tools, Enterprise Manager provides a comprehensive
systems management platform for managing Oracle products.

From the client interface, the Enterprise Manager Console, you can perform the
following tasks:

= Administer the complete Oracle environment, including databases, iAS servers,
applications, and services

= Diagnose, modify, and tune multiple databases
= Schedule tasks on multiple systems at varying time intervals

= Monitor database conditions throughout the network

Introduction to the Oracle Server 1-49

Database Administration Overview

= Administer multiple network nodes and services from many locations

= Share tasks with other administrators

= Group related targets together to facilitate administration tasks

= Launch integrated Oracle and third-party tools

= Customize the display of an Enterprise Manager administrator

Database Backup and Recovery Overview
This section covers the structures and mechanisms used by Oracle to provide:

= Database recovery required by different types of failures

= Flexible recovery operations to suit any situation

= Availability of data during backup and recovery operations so users of the
system can continue to work

Why Recovery Is Important

In every database system, the possibility of a system or hardware failure always
exists. If a failure occurs and affects the database, the database must be recovered.
The goals after a failure are to ensure that the effects of all committed transactions
are reflected in the recovered database and to return to normal operation as quickly
as possible while insulating users from problems caused by the failure.

Types of Failures

Several circumstances can halt the operation of an Oracle database. The most
common types of failure are described in the following table.

Failure

Description

User error

Statement failure

1-50 Oracle9i Database Concepts

Requires a database to be recovered to a point in time before
the error occurred. For example, a user could accidentally
drop a table. To enable recovery from user errors and
accommodate other unique recovery requirements, Oracle
provides exact point-in-time recovery. For example, if a user
accidentally drops a table, the database can be recovered to
the instant in time before the table was dropped.

Occurs when there is a logical failure in the handling of a
statement in an Oracle program. When statement failure
occurs, any effects of the statement are automatically undone
by Oracle and control is returned to the user.

Database Administration Overview

Failure

Description

Process failure

Instance failure

Media (disk) failure

Results from a failure in a user process accessing Oracle, such
as an abnormal disconnection or process termination. The
background process PMON automatically detects the failed
user process, rolls back the uncommitted transaction of the
user process, and releases any resources that the process was
using.

Occurs when a problem arises that prevents an instance from
continuing work. Instance failure can result from a hardware
problem such as a power outage, or a software problem such
as an operating system failure. When an instance failure
occurs, the data in the buffers of the system global area is not
written to the datafiles.

After an instance failure, Oracle automatically performs
instance recovery. If one instance in a Real Application
Clusters environment, another instance recovers the redo for
the failed instance. In a single-instance database, or in a Real
Application Cluster database in which all instances fail,
Oracle automatically applies all redo when you restart the
database.

An error can occur when trying to write or read a file on disk
that is required to operate the database. A common example
is a disk head failure, which causes the loss of all files on a
disk drive.

Different files can be affected by this type of disk failure,
including the datafiles, the redo log files, and the control files.
Also, because the database instance cannot continue to
function properly, the data in the database buffers of the
system global area cannot be permanently written to the
datafiles.

A disk failure requires you to restore lost files and then
perform media recovery. Unlike instance recovery, media
recovery must be initiated by the user. Media recovery
updates restored datafiles so the information in them
corresponds to the most recent time point before the disk
failure, including the committed data in memory that was
lost because of the failure.

Oracle provides for complete media recovery from all possible types of hardware
failures, including disk failures. Options are provided so that a database can be
completely recovered or partially recovered to a specific point in time.

If some datafiles are damaged in a disk failure but most of the database is intact and
operational, the database can remain open while the required tablespaces are

Introduction to the Oracle Server 1-51

Database Administration Overview

individually recovered. Therefore, undamaged portions of a database are available
for normal use while damaged portions are being recovered.

Structures Used for Recovery

Oracle uses several structures to provide complete recovery from an instance or
disk failure: the redo log, undo records, a control file, and database backups. If
compatibility is set to Oracle9i or higher, undo records can be stored in either undo
tablespaces or rollback segments.

See Also: "Automatic Undo Management" on page 2-16 for more
information about managing undo records

The Redo Log The redo log is a set of files that protect altered database data in
memory that has not been written to the datafiles. The redo log can consist of two
parts: the online redo log and the archived redo log.

The online redo log is a set of two or more online redo log files that record all
changes made to the database, including both uncommitted and committed
changes. Redo entries are temporarily stored in redo log buffers of the system
global area, and the background process LGWR writes the redo entries sequentially
to an online redo log file. LGWR writes redo entries continually, and it also writes a
commit record every time a user process commits a transaction.

Optionally, filled online redo files can be manually or automatically archived before
being reused, creating archived redo logs.

To enable or disable archiving, set the database in one of the following modes:

= ARCHI VELOG The filled online redo log files are archived before they are
reused in the cycle.

= NOARCHI VELQOG: The filled online redo log files are not archived.

In ARCHI VEL OG mode, the database can be completely recovered from both
instance and disk failure. The database can also be backed up while it is open and
available for use. However, additional administrative operations are required to
maintain the archived redo log.

If the database’s redo log operates in NOARCHI VELOG mode, the database can be
completely recovered from instance failure but not from disk failure. Also, the
database can be backed up only while it is completely closed. Because no archived
redo log is created, no extra work is required by the database administrator.

1-52 Oracle9i Database Concepts

Data Warehousing Overview

Undo Records Undo records can be stored in either undo tablespaces or rollback
segments. Oracle uses the undo data for a variety of purposes, including accessing
before-images of blocks changed in uncommitted transactions. During database
recovery, Oracle applies all changes recorded in the redo log and then uses undo
information to roll back any uncommitted transactions.

See Also:

s Oracle9i Database Administrator’s Guide for more information
about managing undo space

= "Undo Space Acquisition and Management" on page 5-8 for
information about specifying the undo method at startup

=« "Automatic Undo Management" on page 2-16 for more
information about managing undo space

Control Files The control files of a database keep, among other things, information
about the file structure of the database and the current log sequence number being
written by LGWR. During normal recovery procedures, the information in a control
file is used to guide the automated progression of the recovery operation. Oracle
can multiplex the control file, that is, simultaneously maintain a number of
identical control files.

Database Backups Because one or more files can be physically damaged as the result
of a disk failure, media recovery requires the restoration of the damaged files from
the most recent operating system backup of a database.

You can either back up the database files with Recovery Manager, which is
recommended, or use operating system utilities. Recovery Manager (RMAN) is an
Oracle utility that manages backup and recovery operations, creates backups of
database files (datafiles, control files, and archived redo log files), and restores or
recovers a database from backups.

Data Warehousing Overview

A data warehouse is a relational database designed for query and analysis rather
than for transaction processing. It usually contains historical data derived from
transaction data, but it can include data from other sources. It separates analysis
workload from transaction workload and enables an organization to consolidate
data from several sources.

Introduction to the Oracle Server 1-53

Data Warehousing Overview

In addition to a relational database, a data warehouse environment includes an
extraction, transportation, transformation, and loading (ETL) solution, an online
analytical processing (OLAP) engine, client analysis tools, and other applications
that manage the process of gathering data and delivering it to business users.

Differences Between Data Warehouse and OLTP Systems

Data warehouses and OLTP systems have very different requirements. Here are
some examples of differences between typical data warehouses and OLTP systems:

Workload

Data warehouses are designed to accommodate ad hoc queries. You might not
know the workload of your data warehouse in advance, so a data warehouse
should be optimized to perform well for a wide variety of possible query
operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

Data Modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly or
weekly) using bulk data modification techniques. The end users of a data
warehouse do not directly update the data warehouse.

In OLTP systems, end users routinely issue individual data modification statements
to the database. The OLTP database is always up to date, and reflects the current
state of each business transaction.

Schema Design

Data warehouses often use denormalized or partially denormalized schemas (such
as a star schema) to optimize query performance.

OLTP systems often use fully normalized schemas to optimize
update/insert/delete performance, and to guarantee data consistency.

Typical Operations

A typical data warehouse query scans thousands or millions of rows.For example,
"Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example,
"Retrieve the current order for this customer."

1-54 Oracle9i Database Concepts

Data Warehousing Overview

Historical Data

Data warehouses usually store many months or years of data. This is to support
historical analysis.

OLTP systems usually store data from only a few weeks or months. The OLTP
system stores only historical data as needed to successfully meet the requirements
of the current transaction.

Data Warehouse Architecture

Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

= Data Warehouse Architecture (Basic)
= Data Warehouse Architecture (with a Staging Area)
= Data Warehouse Architecture (with a Staging Area and Data Marts)

Data Warehouse Architecture (Basic)

Figure 1-6 shows a simple architecture for a data warehouse. End users directly
access data derived from several source systems through the data warehouse.

Introduction to the Oracle Server 1-55

Data Warehousing Overview

Figure 1-6 Architecture of a Data Warehouse

Data Sources Warehouse Users

Operational
System

d—
Metadata
| Raw Data

—

Reporting

Summary
Data

—F—

Operational
System

[—
3

Flat Files

Mining

In Figure 1-6, the metadata and raw data of a traditional OLTP system is present, as
is an additional type of data, summary data. Summaries are very valuable in data
warehouses because they pre-compute long operations in advance. For example, a
typical data warehouse query is to retrieve something like August sales.

Summaries in Oracle are called materialized views.

Data Warehouse Architecture (with a Staging Area)

Figure 1-6, you need to clean and process your operational data before putting it
into the warehouse. You can do this programmatically, although most data
warehouses use a staging area instead. A staging area simplifies building
summaries and general warehouse management. Figure 1-7 illustrates this typical
architecture.

1-56 Oracle9i Database Concepts

Data Warehousing Overview

Figure 1-7 Architecture of a Data Warehouse with a Staging Area

Data Staging
Sources Area Warehouse Users

Operational
System

8_’8_’ Summary EW Data

- Data
Operational
System

Analysis

| m————]
Flat Files

Mining

Data Warehouse Architecture (with a Staging Area and Data Marts)

Although the architecture in Figure 1-7 is quite common, you might want to
customize your warehouse's architecture for different groups within your
organization.

Do this by adding data marts, which are systems designed for a particular line of
business. Figure 1-8 illustrates an example where purchasing, sales, and inventories
are separated. In this example, a financial analyst might want to analyze historical
data for purchases and sales.

Introduction to the Oracle Server 1-57

Data Warehousing Overview

Figure 1-8 Architecture of a Data Warehouse with a Staging Area and Data Marts

Data Staging Data
Sources Area Warehouse Marts Users

8<—EI

Purchasing Analysis

8‘—D

Operational
System

Summary

Data Raw Data

Operational
System

— -

Flat Files Inventory

.. <
Mining
See Also: Oracle9i Data Warehousing Guide

Materialized Views

A materialized view provides indirect access to table data by storing the results of a
guery in a separate schema object. Unlike an ordinary view, which does not take up
any storage space or contain any data, a materialized view contains the rows
resulting from a query against one or more base tables or views. A materialized
view can be stored in the same database as its base tables or in a different database.

Materialized views stored in the same database as their base tables can improve

qguery performance through query rewrites. Query rewrites are particularly useful
in a data warehouse environment.

OLAP Overview

Oracle integrates Online Analytical Processing (OLAP) into the database to support
business intelligence. This integration provides the power of a multidimensional
database while retaining the manageability, scalability, and reliability of the Oracle
database and the accessibility of SQL.

1-58 Oracle9i Database Concepts

Data Warehousing Overview

The relational management system and Oracle OLAP provide complementary
functionality to support a full range of reporting and analytic applications.
Applications developers can choose to use SQL OLAP functions for standard and
ad-hoc reporting. When additional analytic functionality is needed, Oracle OLAP
can be used to provide capabilities such as multidimensional calculations,
forecasting, modeling, and what-if scenarios. These calculations enable developers
to build sophisticated analytic and planning applications such as sales and
marketing analysis, enterprise budgeting and financial analysis, and demand
planning systems.

Data can be stored in either relational tables or multidimensional objects, whichever
is more suitable in terms of performance and resources. Regardless of where the
data is stored, it can be manipulated in the OLAP engine using either Java or SQL.
There is no need for data replication between relational and multidimensional data
sources.

Oracle OLAP consists of the following components:
= Calculation engine that is optimized for rapid calculations

= Analytic workspace that stores multidimensional data on either a temporary or
persistent basis

= OLAP data manipulation language for performing mathematical, statistical,
modeling, and other transformations on multidimensional data

= A SQL interface to Oracle OLAP that makes multidimensional data available to
SQL

= OLAP API for developing Java applications for business intelligence

= OLAP metadata repository that defines multidimensional data to the OLAP
API

See Also: Oracle9i OLAP User’s Guide for more information about
Oracle OLAP

Change Data Capture Overview

Change data capture efficiently identifies and captures data that has been added to,
updated, or removed from Oracle relational tables, and makes the change data
available for use by applications.

Oftentimes, data warehousing involves the extraction and transportation of
relational data from one or more source databases into the data warehouse for

Introduction to the Oracle Server 1-59

High Availability Overview

analysis. Change data capture quickly identifies and processes only the data that
has changed, not entire tables, and makes the change data available for further use.

Change data capture does not depend on intermediate flat files to stage the data
outside of the relational database. It captures the change data resulting from

| NSERT, UPDATE, and DELETE operations made to user tables. The change data is
then stored in a database object called a change table, and the change data is made
available to applications in a controlled way.

See Also: Oracle9i Data Warehousing Guide

High Availability Overview

Computing environments configured to provide nearly full-time availability are
known as high availability systems. Such systems typically have redundant
hardware and software that makes the system available despite failures.
Well-designed high availability systems avoid having single points-of-failure. Any
hardware or software component that can fail has a redundant component of the
same type.

When failures occur, the failover process moves processing performed by the failed
component to the backup component. This process remasters systemwide
resources, recovers partial or failed transactions, and restores the system to normal,
preferably within a matter of microseconds. The more transparent that failover is to
users, the higher the availability of the system.

Oracle has a number of products and features that provide high availability. These
include multiplexed redo log files, Recovery Manager (RMAN), Fast-Start
Recovery, LogMiner, flashback query, partitioning, Transparent Application
Failover, online reorganization, Oracle Replication, Oracle Data Guard and Standby
Database, Real Application Clusters, and Oracle Real Application Clusters Guard.
These can be used in various combinations to meet specific high availability needs.

1-60 Oracle9i Database Concepts

High Availability Overview

See Also:

= "Redo Log Files" on page 1-7 for information on multiplexed
redo log files

= Oracle9i Recovery Manager User’s Guidefor information on
Recovery Manager

= Oracle9i Database Performance Tuning Guide and Reference for
information on Fast-Start Recovery

=« Chapter 20, "Data Concurrency and Consistency" for
information on flashback query

= Chapter 11, "Partitioned Tables and Indexes" for information on
partitioning

= "Replication Overview" on page 1-35 for information on
replication

Transparent Application Failover

Transparent Application Failover (TAF) enables an application user to
automatically reconnect to a database if the connection fails. Active transactions roll
back, but the new database connection, made by way of a different node, is identical
to the original. This is true regardless of how the connection fails.

With Transparent Application Failover, a client notices no loss of connection as long
as there is one instance left serving the application. The database administrator
controls which applications run on which instances and also creates a failover order
for each application.

Elements Affected by Transparent Application Failover

During normal client/server database operations, the client maintains a connection
to the database so the client and server can communicate. If the server fails, so then
does the connection. The next time the client tries to use the connection the client
issues an error. At this point, the user must log in to the database again.

With Transparent Application Failover, however, Oracle automatically obtains a
new connection to the database. This enables users to continue working as if the
original connection had never failed.

There are several elements associated with active database connections. These
include:

» Client/Server database connections

Introduction to the Oracle Server 1-61

High Availability Overview

= Users' database sessions executing commands
= Open cursors used for fetching

= Active transactions

= Server-side program variables

Transparent Application Failover automatically restores some of these elements.
However, you might need to embed other elements in the application code to
enable transparent application failover.

See Also:

= Oracle9i Net Services Administrator’s Guide

= Oracle9i Real Application Clusters Concepts

Online Reorganization Architecture

Database administrators can perform a variety of online operations to table
definitions, including online reorganization of heap-organized tables. This makes it
possible to reorganize a table while users have full access to it.

This online architecture provides the following capabilities:

= Any physical attribute of the table can be changed online. The table can be
moved to a new location. The table can be partitioned. The table can be
converted from one type of organization (such as a heap-organized) to another
(such as index-organized).

= Many logical attributes can also be changed. Column names, types, and sizes
can be changed. Columns can be added, deleted, or merged. One restriction is
that the primary key of the table cannot be modified.

= Online creation and rebuilding of secondary indexes on index-organized tables
(10Ts). Secondary indexes support efficient use of block hints (physical
guesses). Invalid physical guesses can be repaired online.

= Indexes can be created online and analyzed at the same time. Online fix-up of
physical guess component of logical RON Ds (used in secondary indexes and
mapping table on index-organized tables) also can be used.

» Fix the physical guess component of logical RON Ds stored in secondary
indexes on 10Ts. This allows online repair of invalid physical guesses

1-62 Oracle9i Database Concepts

High Availability Overview

Data Guard Overview

Oracle Data Guard maintains up to nine standby databases, each of which is a
real-time copy of the production database, to protect against all
threats—corruptions, human errors, and disasters. If a failure occurs on the
production (primary) database, you can failover to one of the standby databases to
become the new primary database. In addition, planned downtime for maintenance
can be reduced because you can quickly and easily move (switch over) production
processing from the current primary database to a standby database, and then back
again.

Note: To protect against unlogged direct writes in the primary
database that cannot be propagated to the standby database, turn
on FORCE LOGA NGat the primary database before taking datafile
backups for standby creation. Keep the database (or at least
important tablespaces) in FORCE LOGE NGmode as long as the
standby database is active.

Data Guard Configurations

A Data Guard configuration is a collection of loosely connected systems, consisting
of a single primary database and up to nine standby databases that can include a
mix of both physical and logical standby databases. The databases in a Data Guard
configuration can be connected by a LAN in the same data center, or—for
maximum disaster protection—geographically dispersed over a WAN and
connected by Oracle Network Services.

A Data Guard configuration can be deployed for any database. This is possible
because its use is transparent to applications; no application code changes are
required to accommodate a standby database. Moreover, Data Guard lets you tune
the configuration to balance data protection levels and application performance
impact; you can configure the protection mode to maximize data protection,
maximize availability, or maximize performance.

Data Guard Components

As application transactions make changes to the primary database, the changes are
logged locally in redo logs, which are sent to the standby databases by log transport
services and applied by log apply services.

Introduction to the Oracle Server 1-63

High Availability Overview

For physical standby databases, the changes are applied to each physical standby
database that is running in managed recovery mode. For logical standby databases,
the changes are applied using SQL regenerated from the archived redo logs.

Physical Standby Databases A physical standby database is physically identical to the
primary database. While the primary database is open and active, a physical
standby database is either performing recovery (by applying logs), or open for
reporting access. A physical standby database can be queried read-only when not
performing recovery while the production database continues to ship redo data to
the physical standby site.

Physical standby on disk database structures must be identical to the primary
database on a block-for-block basis, because a recovery operation applies changes
block-for-block using the physical ROWID. The database schema, including
indexes, must be the same, and the database cannot be opened (other than for
read-only access). If opened, the physical standby database will have different
ROWIDs, making continued recovery impossible.

Logical Standby Databases A logical standby database takes standard Oracle archived
redo logs, transforms the redo records they contain into SQL transactions, and then
applies them to an open standby database. Although changes can be applied
concurrently with end-user access, the tables being maintained through regenerated
SQL transactions allow read-only access to users of the logical standby database.
Because the database is open, it is physically different from the primary database.
The database tables can have different indexes and physical characteristics from
their primary database peers, but must maintain logical consistency from an
application access perspective, to fulfill their role as a standby data source.

Data Guard Broker Oracle Data Guard Broker automates complex creation and
maintenance tasks and provides dramatically enhanced monitoring, alert, and
control mechanisms. It uses background agent processes that are integrated with
the Oracle database server and associated with each Data Guard site to provide a
unified monitoring and management infrastructure for an entire Data Guard
configuration. Two user interfaces are provided to interact with the Data Guard
configuration, a command-line interface (DGVIGRL) and a graphical user interface
called Data Guard Manager.

Oracle Data Guard Manager, which is integrated with Oracle Enterprise Manager,
provides wizards to help you easily create, manage, and monitor the configuration.
This integration lets you take advantage of other Enterprise Manager features, such
as to provide an event service for alerts, the discovery service for easier setup, and
the job service to ease maintenance.

1-64 Oracle9i Database Concepts

High Availability Overview

See Also:
= Oracle9i Data Guard Concepts and Administration

s Oracle9i Data Guard Broker

LogMiner Overview

LogMiner is a relational tool that lets administrators use SQL to read, analyze, and
interpret log files. LogMiner can view both online and archived redo logs. The
Enterprise Manager application LogMiner Viewer adds a GUI-based interface.

The ability of LogMiner to access data stored in redo logs helps you to perform
many database management tasks. For example, you can do the following:

= Track specific sets of changes based on transaction, user, table, time, and so on.
You can determine who modified a database object and what the object data
was before and after the modification. The ability to trace and audit database
changes back to their source and undo the changes provides data security and
control.

= Pinpoint when an incorrect modification was introduced into the database. This
lets you perform logical recovery at the application level instead of at the
database level.

= Provide supplemental information for tuning and capacity planning. You can
also perform historical analysis to determine trends and data access patterns.

= Retrieve critical information for debugging complex applications.

See Also:
= Oracle9i Data Guard Concepts and Administration

s Oracle9i Database Administrator’s Guide for more information
about LogMiner

Real Application Clusters

Real Application Clusters are inherently high availability systems. Clusters typical
of Real Application Clusters environments can provide continuous service for both
planned and unplanned outages.

Real Application Clusters builds higher levels of availability on top of the standard
Oracle features. All single instance high availability features, such as Fast-Start
Recovery and online reorganizations, apply to Real Application Clusters as well.

Introduction to the Oracle Server 1-65

High Availability Overview

Fast-Start Recovery can greatly reduce mean time to recover (MTTR) with minimal
effects on online application performance. Online reorganizations reduce the
durations of planned downtimes. Many operations can be performed online while
users update the underlying objects. Real Application Clusters preserves all these
standard Oracle features.

In addition to all the regular Oracle features, Real Application Clusters exploits the
redundancy provided by clustering to deliver availability with n-1 node failures in

an n-node cluster. In other words, all users have access to all data as long as there is
one available node in the cluster.

See Also: Oracle9i Real Application Clusters Concepts

Real Application Clusters Guard

Oracle Real Application Clusters Guard is an integral component of Real
Application Clusters. Oracle Real Application Clusters Guard provides the
following functions:

= Automated, fast recovery and bounded recovery time from failures that stop
the Oracle instance

= Automatic capture of diagnostic data when certain types of failures occur

= Enforced primary/secondary configuration. Clients connecting through Oracle
Net Services are properly routed to the primary node even if connected to
another node in the cluster

=« Elimination of delays that clients experience when reestablishing connections
after a failure

A database server that runs Real Application Clusters consists of the Oracle
database, Real Application Clusters software, and the Oracle Net listeners that
accept client requests. These software components run on each node of a cluster.
They use the services provided by the hardware, the operating system, and the
port-specific Cluster Manager. The Cluster Manager monitors and reports the
health of the nodes in the cluster and controls pack behavior.

See Also:
= Oracle9i Real Application Clusters Concepts

= Oracle9i Real Application Clusters Real Application Clusters Guard
I - Concepts and Administration

1-66 Oracle9i Database Concepts

Content Management Overview

Content Management Overview

Oracle provides a single platform for creating, managing, and delivering
personalized, rich content to any device. Corporate information assets - documents,
spreadsheets, multimedia, presentations, e-mail, and HTML files - are easily
accessible to all users, and there is no need for specialty servers or unrelated file
systems. Automatic search capabilities can discover valuable content wherever it
resides and whatever language it is in.

Oracle’s content management features include the following:

The Oracle Internet File System (9iFS) provides both an out-of-the-box file
system for storing and managing content in the database as well as a robust
development platform for developing content management applications.

Oracle interMedia extracts metadata from rich media files (image, audio, video)
and lets you manipulate these files in the Oracle database.

Oracle Text indexes textual content stored in the database and lets you perform
sophisticated content-based queries on these indexes. The Oracle database
indexes more than 150 document file types including MS Office, Adobe PDF,
HTML, and XML documents, and Oracle Text supports over 40 languages.

Oracle Ultra Search builds on Oracle Text to provide a unified, searchable index
of content stored in databases, file systems, and Web sites.

Oracle eLocation lets you add regional metadata to content and perform spatial
searches.

Dynamic Services and the Syndication Server make it easy to aggregate content
and deliver it to subscribers.

Workspaces help version content in the database.

XML services like the Oracle XML parser help you parse and render XML
content, making it possible to tailor XML-based content to different formats and
audiences.

Oracle Portal simplifies the process of delivering content to the intranet and
Internet, and provides a framework for content providers to publish.

The Wireless Edition of Oracle9i can push content from the database into
wireless devices.

Oracle provides access for creating and delivering content, while at the same time
keeping content manageable. Not only can you create, manage, and deliver content

Introduction to the Oracle Server 1-67

Content Management Overview

through out-of-the-box interfaces like the Oracle Internet File System, but also
through the Java, XML, and PL/SQL APIs.

Oracle Internet File System Overview

A large amount of critical business information usually resides in documents,
spreadsheets, email, and Web pages. This data often exists only on someone's
laptop or in a departmental file server, obscured from the rest of the organization.
The Oracle Internet File System creates a secure, scalable file service that reaches all
your information.

Oracle Internet File System injects more functionality and intelligence into your
corporate file management processes. Users can search for words or phrases
that appear in a document and use check-in/check-out features to keep disk
space and document versioning from getting out of control.

Users can access files and data stored in the Oracle database from any standard
Web browser, Windows client, or e-mail server without special training. Oracle
Internet File System supports all of the most popular industry standards
including HTTP, WebDAYV, SMB, FTP, NFS, IMAP4, and SMTP.

Oracle Internet File System uses the multilevel security model of the Oracle
database to establish secure methods for storing and managing content. It
provides user authentication, access rights definition, and access control at the
document, version, and folder level to prevent unauthorized access to
information.

Developers can customize 9iFS for specific application purposes like quickly
supporting new document types or validating and translating XML-based
business rules between companies.

1-68 Oracle9i Database Concepts

Part Il

Database Structures

Part 11 describes the basic structural architecture of the Oracle database, including
physical and logical storage structures. Part Il contains the following chapters:

= Chapter 2, "Data Blocks, Extents, and Segments"
= Chapter 3, "Tablespaces, Datafiles, and Control Files"
= Chapter 4, "The Data Dictionary"

Oracle9i Database Concepts

2

Data Blocks, Extents, and Segments

This chapter describes the nature of and relationships among the logical storage
structures in the Oracle server. It includes:

= Introduction to Data Blocks, Extents, and Segments
=« DataBlocks Overview
= Extents Overview

= Segments Overview

Data Blocks, Extents, and Segments 2-1

Introduction to Data Blocks, Extents, and Segments

Introduction to Data Blocks, Extents, and Segments

Oracle allocates logical database space for all data in a database. The units of
database space allocation are data blocks, extents, and segments. Figure 2-1 shows
the relationships among these data structures:

Figure 2—1 The Relationships Among Segments, Extents, and Data Blocks

Segment A

96Kb N

N\

N . Kb
N — \ —
IR B { N el

N AN

AN Extent || Extent « ﬂ

\ 24Kb 72Kb kb

\

[2Kn | [2xb [2Kb [2xb

V| 2kn || 2xb | 2xb | 2K6

V| 2o [}] 2xb | 2b | 260

| 2koi|] 2xb | 2b | 2kb

\ | 2kb)f 3f 2b | 2Kb | 2k

l2ko |) 216 | 216 | 2b

\
| 2k | | 2kb | 2kb | 2kb
\
2kb | | 2kb [2kb | 2kb

Data Blocks

At the finest level of granularity, Oracle stores data in data blocks (also called
logical blocks, Oracle blocks, or pages). One data block corresponds to a specific
number of bytes of physical database space on disk.

The next level of logical database space is an extent. An extent is a specific number
of contiguous data blocks allocated for storing a specific type of information.

2-2 Oracle9i Database Concepts

Data Blocks Overview

The level of logical database storage above an extent is called a segment. A segment
is a set of extents, each of which has been allocated for a specific data structure and
all of which are stored in the same tablespace. For example, each table’s data is
stored in its own data segment, while each index’s data is stored in its own index
segment. If the table or index is partitioned, each partition is stored in its own
segment.

Oracle allocates space for segments in units of one extent. When the existing extents
of a segment are full, Oracle allocates another extent for that segment. Because
extents are allocated as needed, the extents of a segment may or may not be
contiguous on disk.

A segment and all its extents are stored in one tablespace. Within a tablespace, a
segment can include extents from more than one file; that is, the segment can span
datafiles. However, each extent can contain data from only one datafile.

Although you can allocate additional extents, the blocks themselves are allocated
separately. If you allocate an extent to a specific instance, the blocks are immediately
allocated to the free list. However, if the extent is not allocated to a specific instance,
then the blocks themselves are allocated only when the high water mark moves.
The high water mark is the boundary between used and unused space in a
segment.

Note: Oracle Corporation recommends that you manage free
space automatically. See "Free Space Management" on page 2-6.

Data Blocks Overview

Oracle manages the storage space in the datafiles of a database in units called

data blocks. A data block is the smallest unit of data used by a database. In contrast,
at the physical, operating system level, all data is stored in bytes. Each operating
system has a block size. Oracle requests data in multiples of Oracle data blocks, not
operating system blocks.

The standard block size is specified by the initialization parameter DB_BLOCK _

SI ZE. In addition, you can specify of up to five nonstandard block sizes. The data
block sizes should be a multiple of the operating system’s block size within the
maximum limit to avoid unnecessary 1/0. Oracle data blocks are the smallest units
of storage that Oracle can use or allocate.

Data Blocks, Extents, and Segments 2-3

Data Blocks Overview

See Also:

= Your Oracle operating system-specific documentation for more
information about data block sizes

= Multiple Block Sizes on page 3-13

Data Block Format

The Oracle data block format is similar regardless of whether the data block
contains table, index, or clustered data. Figure 2-2 illustrates the format of a
data block.

Figure 2-2 Data Block Format
Database Block

Common and Variable Header
Table Directory

Row Directory

Free Space

Row Data

Header (Common and Variable)

The header contains general block information, such as the block address and the
type of segment (for example, data or index).

2-4 Oracle9i Database Concepts

Data Blocks Overview

Table Directory

This portion of the data block contains information about the table having rows in
this block.

Row Directory

This portion of the data block contains information about the actual rows in the
block (including addresses for each row piece in the row data area).

After the space has been allocated in the row directory of a data block’s overhead,
this space is not reclaimed when the row is deleted. Therefore, a block that is
currently empty but had up to 50 rows at one time continues to’ have 100 bytes
allocated in the header for the row directory. Oracle reuses this space only when
new rows are inserted in the block.

Overhead

The data block header, table directory, and row directory are referred to collectively
as overhead. Some block overhead is fixed in size; the total block overhead size is
variable. On average, the fixed and variable portions of data block overhead total 84
to 107 bytes.

Row Data
This portion of the data block contains table or index data. Rows can span blocks.

See Also: "Row Chaining and Migrating" on page 2-7

Free Space

Free space is allocated for insertion of new rows and for updates to rows that
require additional space (for example, when a trailing null is updated to a nonnull
value). Whether issued insertions actually occur in a given data block is a function
of current free space in that data block and the value of the space management
parameter PCTFREE.

In data blocks allocated for the data segment of a table or cluster, or for the index
segment of an index, free space can also hold transaction entries. A transaction
entry is required in a block for each | NSERT, UPDATE, DELETE, and SELECT...FOR
UPDATE statement accessing one or more rows in the block. The space required for
transaction entries is operating system dependent; however, transaction entries in
most operating systems require approximately 23 bytes.

Data Blocks, Extents, and Segments 2-5

Data Blocks Overview

Free Space Management
Free space can be managed automatically or manually.

Free space can be managed automatically inside database segments. The in-segment
free/used space is tracked using bitmaps, as opposed to free lists. Automatic
segment-space management offers the following benefits:

= Easeof use

= Better space utilization, especially for the objects with highly varying size rows
= Better run-time adjustment to variations in concurrent access

= Better multi-instance behavior in terms of performance/space utilization

You specify automatic segment-space management when you create a locally
managed tablespace. The specification then applies to all segments subsequently
created in this tablespace.

See Also:

= Oracle9i Database Administrator’s Guide

= Oracle9i SQL Reference

= Oracle9i Supplied PL/SQL Packages and Types Reference

Availability and Compression of Free Space in a Data Block

Two types of statements can increase the free space of one or more data blocks:
DELETE statements, and UPDATE statements that update existing values to smaller
values. The released space from these types of statements is available for
subsequent | NSERT statements under the following conditions:

= If the | NSERT statement is in the same transaction and subsequent to the
statement that frees space, then the | NSERT statement can use the space made
available.

= If the | NSERT statement is in a separate transaction from the statement that
frees space (perhaps being run by another user), then the | NSERT statement can
use the space made available only after the other transaction commits and only
if the space is needed.

Released space may or may not be contiguous with the main area of free space in a
data block. Oracle coalesces the free space of a data block only when (1) an | NSERT
or UPDATE statement attempts to use a block that contains enough free space to
contain a new row piece, and (2) the free space is fragmented so the row piece

2-6 Oracle9i Database Concepts

Data Blocks Overview

cannot be inserted in a contiguous section of the block. Oracle does this
compression only in such situations, because otherwise the performance of a
database system decreases due to the continuous compression of the free space in
data blocks.

Row Chaining and Migrating

In two circumstances, the data for a row in a table may be too large to fit into a
single data block. In the first case, the row is too large to fit into one data block
when it is first inserted. In this case, Oracle stores the data for the row in a chain of
data blocks (one or more) reserved for that segment. Row chaining most often
occurs with large rows, such as rows that contain a column of datatype LONGor
LONG RAWRow chaining in these cases is unavoidable.

However, in the second case, a row that originally fit into one data block is updated
so that the overall row length increases, and the block’s free space is already
completely filled. In this case, Oracle migrates the data for the entire row to a new
data block, assuming the entire row can fit in a new block. Oracle preserves the
original row piece of a migrated row to point to the new block containing the
migrated row. The rowid of a migrated row does not change.

When a row is chained or migrated, 1/0 performance associated with this row
decreases because Oracle must scan more than one data block to retrieve the
information for the row.

See Also:

= "Row Format and Size" on page 10-6 for more information on
the format of a row and a row piece

= "Rowids of Row Pieces" on page 10-9 for more information on
rowids

= "Physical Rowids" on page 12-17 for information about rowids

= Oracle9i Database Performance Tuning Guide and Reference for
information about reducing chained and migrated rows and
improving 1/0 performance

PCTFREE, PCTUSED, and Row Chaining

For manually managed tablespaces, two space management parameters, PCTFREE
and PCTUSED, enable you to control the use of free space for inserts and updates to
the rows in all the data blocks of a particular segment. Specify these parameters
when you create or alter a table or cluster (which has its own data segment). You

Data Blocks, Extents, and Segments 2-7

Extents Overview

can also specify the storage parameter PCTFREE when creating or altering an index
(which has its own index segment).

See Also: Appendix B, "Information on Deprecated Features" for
more information on the PCTFREE and PCTUSED parameters

Extents Overview

An extent is a logical unit of database storage space allocation made up of a number
of contiguous data blocks. One or more extents in turn make up a segment. When
the existing space in a segment is completely used, Oracle allocates a new extent for
the segment.

When Extents Are Allocated

When you create a table, Oracle allocates to the table’s data segment an initial
extent of a specified number of data blocks. Although no rows have been inserted
yet, the Oracle data blocks that correspond to the initial extent are reserved for that
table’s rows.

If the data blocks of a segment’s initial extent become full and more space is
required to hold new data, Oracle automatically allocates an incremental extent for
that segment. An incremental extent is a subsequent extent of the same or greater
size than the previously allocated extent in that segment.

For maintenance purposes, the header block of each segment contains a directory of
the extents in that segment.

Note: This chapter applies to serial operations, in which one
server process parses and runs a SQL statement. Extents are
allocated somewhat differently in parallel SQL statements, which
entail multiple server processes.

Determine the Number and Size of Extents

Storage parameters expressed in terms of extents define every segment. Storage
parameters apply to all types of segments. They control how Oracle allocates free
database space for a given segment. For example, you can determine how much
space is initially reserved for a table’s data segment or you can limit the number of
extents the table can allocate by specifying the storage parameters of a table in the

2-8 Oracle9i Database Concepts

Extents Overview

STORAGE clause of the CREATE TABLE statement. If you do not specify a table’s
storage parameters, then it uses the default storage parameters of the tablespace.

Prior to Oracle8i, all tablespaces were created as dictionary managed. Dictionary
managed tablespaces rely on data dictionary tables to track space utilization.
Beginning with Oracle8i, you could create locally managed tablespaces, which use
bitmaps (instead of data dictionary tables) to track used and free space. Because of
the better performance and greater ease of management of locally managed
tablespaces, the default for non-SYSTEMpermanent tablespaces is locally managed
whenever the type of extent management is not explicitly specified.

A tablespace that manages its extents locally can have either uniform extent sizes or
variable extent sizes that are determined automatically by the system. When you
create the tablespace, the UNI FORMor AUTOALLOCATE (system-managed) clause
specifies the type of allocation.

= For system-managed extents, you can specify the size of the initial extent and
Oracle determines the optimal size of additional extents, with a minimum
extent size of 64 KB. This is the default for permanent tablespaces.

= For uniform extents, you can specify an extent size or use the default size,
which is 1 MB. Temporary tablespaces that manage their extents locally can
only use this type of allocation.

The storage parameters NEXT, PCTI NCREASE, M NEXTENTS, MAXEXTENTS, and
DEFAULT STORAGE are not valid for extents that are managed locally.

See Also:
= "Managing Space in Tablespaces" on page 3-11

s Oracle9i Database Administrator’s Guide

How Extents Are Allocated

Oracle uses different algorithms to allocate extents, depending on whether they are
locally managed or dictionary managed.

With locally managed tablespaces, Oracle looks for free space to allocate to a new
extent by first determining a candidate datafile in the tablespace and then searching
the datafile’s bitmap for the required number of adjacent free blocks. If that datafile
does not have enough adjacent free space, then Oracle looks in another datafile.

Data Blocks, Extents, and Segments 2-9

Extents Overview

Note: Oracle Corporation strongly recommends that you use
locally managed tablespaces.

See Also: Appendix B, "Information on Deprecated Features" for
information on allocating extents in dictionary managed tables

When Extents Are Deallocated

In general, the extents of a segment do not return to the tablespace until you drop
the schema object whose data is stored in the segment (using a DROP TABLE or
DROP CLUSTER statement). Exceptions to this include the following:

= The owner of a table or cluster, or a user with the DELETE ANY privilege, can
truncate the table or cluster with a TRUNCATE...DROP STORAGE statement.

= A database administrator (DBA) can deallocate unused extents using the
following SQL syntax:

ALTER TABLE tabl e_nane DEALLGCATE UNUSED
= Periodically, Oracle deallocates one or more extents of a rollback segment if it
has the OPTI MAL size specified.

When extents are freed, Oracle modifies the bitmap in the datafile (for locally
managed tablespaces) or updates the data dictionary (for dictionary managed
tablespaces) to reflect the regained extents as available space. Any data in the blocks
of freed extents becomes inaccessible.

See Also:
» Oracle9i Database Administrator’s Guide
= Oracle9i SQL Reference

for more information about deallocating extents

Extents in Nonclustered Tables

As long as a nonclustered table exists or until you truncate the table, any data block
allocated to its data segment remains allocated for the table. Oracle inserts new
rows into a block if there is enough room. Even if you delete all rows of a table,
Oracle does not reclaim the data blocks for use by other objects in the tablespace.

After you drop a nonclustered table, this space can be reclaimed when other extents
require free space. Oracle reclaims all the extents of the table’s data and index

2-10 Oracle9i Database Concepts

Extents Overview

segments for the tablespaces that they were in and makes the extents available for
other schema objects in the same tablespace.

In dictionary managed tablespaces, when a segment requires an extent larger than
the available extents, Oracle identifies and combines contiguous reclaimed extents
to form a larger one. This is called coalescing extents. Coalescing extents is not
necessary in locally managed tablespaces, because all contiguous free space is
available for allocation to a new extent regardless of whether it was reclaimed from
one or more extents.

Extents in Clustered Tables

Clustered tables store information in the data segment created for the cluster.
Therefore, if you drop one table in a cluster, the data segment remains for the other
tables in the cluster, and no extents are deallocated. You can also truncate clusters
(except for hash clusters) to free extents.

Extents in Materialized Views and Their Logs

Oracle deallocates the extents of materialized views and materialized view logs in
the same manner as for tables and clusters.

See Also: "Materialized Views" on page 10-22 for a description of
materialized views and their logs

Extents in Indexes

All extents allocated to an index segment remain allocated as long as the index
exists. When you drop the index or associated table or cluster, Oracle reclaims the
extents for other uses within the tablespace.

Extents in Temporary Segments

When Oracle completes the execution of a statement requiring a temporary
segment, Oracle automatically drops the temporary segment and returns the extents
allocated for that segment to the associated tablespace. A single sort allocates its
own temporary segment in the temporary tablespace of the user issuing the
statement and then returns the extents to the tablespace.

Multiple sorts, however, can use sort segments in a temporary tablespace
designated exclusively for sorts. These sort segments are allocated only once for the
instance, and they are not returned after the sort, but remain available for other
multiple sorts.

Data Blocks, Extents, and Segments 2-11

Segments Overview

A temporary segment in a temporary table contains data for multiple statements of
a single transaction or session. Oracle drops the temporary segment at the end of
the transaction or session, returning the extents allocated for that segment to the
associated tablespace.

See Also:
= "Introduction to Temporary Segments" on page 2-13

= "Temporary Tables" on page 10-13

Extents in Rollback Segments

Oracle periodically checks the rollback segments of the database to see if they have
grown larger than their optimal size. If a rollback segment is larger than is optimal

(that is, it has too many extents), then Oracle automatically deallocates one or more
extents from the rollback segment.

See Also: Appendix B, "Information on Deprecated Features" for
more information on rollback segments

Segments Overview

A segment is a set of extents that contains all the data for a specific logical storage
structure within a tablespace. For example, for each table, Oracle allocates one or
more extents to form that table’s data segment, and for each index, Oracle allocates
one or more extents to form its index segment.

Oracle databases use four types of segments, which are described in the following
sections:

= Introduction to Data Segments
= Introduction to Index Segments

= Introduction to Temporary Segments

Introduction to Data Segments

A single data segment in an Oracle database holds all of the data for one of the
following:

= Atable thatis not partitioned or clustered

= A partition of a partitioned table

2-12 Oracle9i Database Concepts

Segments Overview

s Acluster of tables

Oracle creates this data segment when you create the table or cluster with the
CREATE statement.

The storage parameters for a table or cluster determine how its data segment’s
extents are allocated. You can set these storage parameters directly with the
appropriate CREATE or ALTER statement. These storage parameters affect the
efficiency of data retrieval and storage for the data segment associated with the
object.

Note: Oracle creates segments for materialized views and
materialized view logs in the same manner as for tables and
clusters.

See Also:

= Oracle9i Replication for information on materialized views and
materialized view logs

= Oracle9i SQL Reference for information on the CREATE and
ALTER statements

Introduction to Index Segments

Every nonpartitioned index in an Oracle database has a single index segment to
hold all of its data. For a partitioned index, every partition has a single index
segment to hold its data.

Oracle creates the index segment for an index or an index partition when you issue
the CREATE | NDEX statement. In this statement, you can specify storage parameters
for the extents of the index segment and a tablespace in which to create the index
segment. (The segments of a table and an index associated with it do not have to
occupy the same tablespace.) Setting the storage parameters directly affects the
efficiency of data retrieval and storage.

Introduction to Temporary Segments

When processing queries, Oracle often requires temporary workspace for
intermediate stages of SQL statement parsing and execution. Oracle automatically
allocates this disk space called a temporary segment. Typically, Oracle requires a
temporary segment as a work area for sorting. Oracle does not create a segment if

Data Blocks, Extents, and Segments 2-13

Segments Overview

the sorting operation can be done in memory or if Oracle finds some other way to
perform the operation using indexes.

Operations that Require Temporary Segments
The following statements sometimes require the use of a temporary segment:

» CREATE | NDEX

= SELECT ... ORDER BY
= SELECT DI STINCT ...

= SELECT ... GROUP BY
= SELECT ... UNION

= SELECT ... | NTERSECT
= SELECT ... MNUS

Some unindexed joins and correlated subqueries can require use of a temporary
segment. For example, if a query contains a DI STI NCT clause, a GROUP BY, and an
ORDER BY, Oracle can require as many as two temporary segments. If applications
often issue statements in the previous list, the database administrator can improve
performance by adjusting the initialization parameter SORT_AREA S| ZE.

See Also: Oracle9i Database Reference for information on SORT _
AREA SI ZE and other initialization parameters

Segments in Temporary Tables and Their Indexes

Oracle can also allocate temporary segments for temporary tables and indexes
created on temporary tables. Temporary tables hold data that exists only for the
duration of a transaction or session.

See Also: "Temporary Tables" on page 10-13

How Temporary Segments Are Allocated
Oracle allocates temporary segments differently for queries and temporary tables.

Allocation of Temporary Segments for Queries Oracle allocates temporary segments as
needed during a user session in the temporary tablespace of the user issuing the
statement. Specify this tablespace with a CREATE USER or an ALTER USER
statement using the TEMPORARY TABLESPACE clause.

2-14 Oracle9i Database Concepts

Segments Overview

Note: You cannot assign a permanent tablespace as a user's
temporary tablespace.

If no temporary tablespace is defined for the user, then the default temporary
tablespace is the SYSTEMtablespace. The default storage characteristics of the
containing tablespace determine those of the extents of the temporary segment.
Oracle drops temporary segments when the statement completes.

Because allocation and deallocation of temporary segments occur frequently, create
a special tablespace for temporary segments. By doing so, you can distribute 1/0
across disk devices, and you can avoid fragmentation of the SYSTEMand other
tablespaces that otherwise hold temporary segments.

Note: When the SYSTEMtablespace is locally managed, you must
define a default temporary tablespace when creating a database. A
locally managed SYSTEMtablespace cannot be used for default
temporary storage.

Entries for changes to temporary segments used for sort operations are not stored in
the redo log, except for space management operations on the temporary segment.

See Also: Chapter 22, "Controlling Database Access" for more
information about assigning a user’s temporary segment tablespace

Allocation of Temporary Segments for Temporary Tables and Indexes Oracle allocates
segments for a temporary table when the first | NSERT into that table is issued. (This
can be an internal insert operation issued by CREATE TABLE AS SELECT.) The first

| NSERT into a temporary table allocates the segments for the table and its indexes,
creates the root page for the indexes, and allocates any LOB segments.

Segments for a temporary table are allocated in the temporary tablespace of the user
who created the temporary table.

Oracle drops segments for a transaction-specific temporary table at the end of the
transaction and drops segments for a session-specific temporary table at the end of
the session. If other transactions or sessions share the use of that temporary table,
the segments containing their data remain in the table.

See Also: "Temporary Tables" on page 10-13

Data Blocks, Extents, and Segments 2-15

Segments Overview

Automatic Undo Management

Automatic undo management is undo-tablespace based. You allocate space in the
form of a few undo tablespaces, instead of allocating many rollback segments in
different sizes.

See Also: Oracle9i Database Administrator’s Guide for information
about creating an undo tablespace

Automatic undo management lets you explicitly control undo retention. Through
the use of a system parameter (UNDO_RETENTI ON), you can specify the amount of
committed undo information to retain in the database. You specify the parameter as
clock time (for example, 30 seconds). With retention control, you can configure your
system to enable long queries to run successfully.

Use the VEUNDOSTAT view to monitor and configure your database system to
achieve efficient use of undo space. V$UNDOSTAT shows various undo and
transaction statistics, such as the amount of undo space consumed in the instance.

Note: In earlier releases, undo space management was performed
using rollback segments. This method is now called manual undo
management mode.

Undo Mode

Undo mode provides a more flexible way to migrate from manual undo
management to automatic undo management. A database system can run in either
manual undo management mode or automatic undo management mode. In manual
undo management mode, undo space is managed through rollback segments.
Manual undo management mode is supported under any compatibility level. Use it
when you need to run Oracle9i to take advantage of some new features, but are not
yet not ready to convert to automatic undo management mode.

In automatic undo management mode, undo space is managed in undo tablespaces.
To use automatic undo management mode, the database administrator needs only
to create an undo tablespace for each instance and set the UNDO_MANAGEMENT
initialization parameter to AUTO Automatic undo management mode is supported
under compatibility levels of Oracle9i or higher. Although manual undo
management mode is supported, you are strongly encouraged to run in automatic
undo management mode.

2-16 Oracle9/ Database Concepts

Segments Overview

See Also:

= Oracle9i Database Administrator’s Guide for descriptions of the
syntax and the semantics of the DDL statements.

= Appendix B, "Information on Deprecated Features" for more
information on manual undo management mode

Undo Quota

In automatic undo management mode, the system controls exclusively the
assignment of transactions to undo segments, and controls space allocation for
undo segments. An ill-behaved transaction can potentially consume much of the
undo space, thus paralyzing the entire system. In manual undo management mode,
you can control such possibilities by limiting the size of rollback segments with
small MAXEXTENTS values. However, you then have to explicitly assign long
running transactions to larger rollback segments, using the SET TRANSACTI ON USE
ROLLBACK SEGQVENT statement. This approach has proven to be cumbersome.

The Resource Manager directive UNDO_PQOOL is a more explicit way to control large
transactions. This lets database administrators group users into consumer groups,
with each group assigned a maximum undo space limit. When the total undo space
consumed by a group exceeds the limit, its users cannot make further updates until
undo space is freed up by other member transactions ending.

The default value of UNDO_PQOOL is UNLI M TED, where users are allowed to
consume as much undo space as the undo tablespace has. Database administrators
can limit a particular user by using the UNDO_PQOOL directive.

Undo Retention Control

Long-running queries sometimes fail because undo information required for
consistent read operations is no longer available. This happens when committed
undo blocks are overwritten by active transactions.

Automatic undo management provides a way to explicitly control when undo space
can be reused; that is, how long undo information is retained. A database
administrator can specify a retention period by using the parameter UNDO
RETENTI ON. For example, if UNDO _RETENTI ONis set to 30 minutes, then all
committed undo information in the system is retained for at least 30 minutes. This
ensures that all queries running for 30 minutes or less, under usual circumstances,
do not encounter the CER error, "snapshot too old."

Data Blocks, Extents, and Segments 2-17

Segments Overview

You can either set UNDO _RETENTI ONat startup or change it dynamically with the
ALTER SYSTEMstatement. The following example sets retention to 20 minutes:

ALTER SYSTEM SET UNDO RETENTI ON = 1200;

If you do not set the UNDO_RETENTI ON parameter, then Oracle uses a small default
value that should be adequate for most OLTP systems, where queries are not
usually not very long.

In general, it is a good idea not to set retention to a value very close to what the
undo tablespace can support, because that may result in excessive movement of
space between undo segments. A 20% buffer of undo space is recommended.

External Views

Monitor transaction and undo information with V$TRANSACTI ONand
VSROLLSTAT. For automatic undo management, the information in VEROLLSTAT
reflects the behaviors of the automatic undo management undo segments.

The V$UNDOSTAT view displays a histogram of statistical data to show how well
the system is working. You can see statistics such as undo consumption rate,
transaction concurrency, and lengths of queries run in the instance. Using this view,
you can better estimate the amount of undo space required for the current
workload. This view is available in both the automatic undo management and
manual undo management mode.

See Also: Oracle9i Database Administrator’s Guide for more details
about using VSUNDOSTAT.

2-18 Oracle9/i Database Concepts

3

Tablespaces, Datafiles, and Control Files

This chapter describes tablespaces, the primary logical database structures of any
Oracle database, and the physical datafiles that correspond to each tablespace. The
chapter includes:

= Introduction to Tablespaces, Datafiles, and Control Files
= Tablespaces Overview
= Datafiles Overview

s Control Files Overview

Tablespaces, Datafiles, and Control Files 3-1

Introduction to Tablespaces, Datafiles, and Control Files

Introduction to Tablespaces, Datafiles, and Control Files

Oracle stores data logically in tablespaces and physically in datafiles associated
with the corresponding tablespace. Figure 3-1 illustrates this relationship.

Figure 3—1 Datafiles and Tablespaces

Tablespace
(one or more datafiles)

N Y
N

|
|
|
|
|
|
|
|
|
| Table Table Index
|
|
|
|
|
|
|
|

Index | Index | \I\ Index | | Index |
Index | Index | In

Table

Datafiles Objects
(physical structures associated (stored in tablespaces-
with only one tablespace) may span several datafiles)

Databases, tablespaces, and datafiles are closely related, but they have important
differences:

= An Oracle database consists of one or more logical storage units called
tablespaces, which collectively store all of the database’s data.

= Each tablespace in an Oracle database consists of one or more files called
datafiles, which are physical structures that conform to the operating system in
which Oracle is running.

= A database’s data is collectively stored in the datafiles that constitute each
tablespace of the database. For example, the simplest Oracle database would

3-2 Oracle9i Database Concepts

Introduction to Tablespaces, Datafiles, and Control Files

have one tablespace and one datafile. Another database can have three
tablespaces, each consisting of two datafiles (for a total of six datafiles).

Oracle-Managed Files

Oracle-managed files eliminate the need for you, the DBA, to directly manage the
operating system files comprising an Oracle database. You specify operations in
terms of database objects rather than filenames. Oracle internally uses standard file

system interfaces to create and delete files as needed for the following database
structures:

= Tablespaces
= Online redo log files
= Control files

Through initialization parameters, you specify the file system directory to be used
for a particular type of file. Oracle then ensures that a unique file, an
Oracle-managed file, is created and deleted when no longer needed.

See Also: Oracle9i Database Administrator’s Guide

Allocate More Space for a Database

The size of a tablespace is the size of the datafiles that constitute the tablespace. The
size of a database is the collective size of the tablespaces that constitute the
database.

You can enlarge a database in three ways:
= Add a datafile to a tablespace

= Add a new tablespace

= Increase the size of a datafile

When you add another datafile to an existing tablespace, you increase the amount
of disk space allocated for the corresponding tablespace. Figure 3-2 illustrates this
kind of space increase.

Tablespaces, Datafiles, and Control Files 3-3

Introduction to Tablespaces, Datafiles, and Control Files

Figure 3-2 Enlarging a Database by Adding a Datafile to a Tablespace

Database

| System Tablespace —4—— Single Tablespace

| |
| |
| |
| |DATAL.0RA DATA2.0RA DATA3.0RA :
I

| |
| |

B Database size and
______________ P tablespace size increase
with the addition of
datafiles

ALTER TABLESPACE system
ADD DATAFI LE ' DATA2. CRA

ALTER TABLESPACE system
ADD DATAFI LE ' DATA3. ORA

Alternatively, you can create a new tablespace (which contains at least one
additional datafile) to increase the size of a database. Figure 3-3 illustrates this.

3-4 Oracle9i Database Concepts

Introduction to Tablespaces, Datafiles, and Control Files

Figure 3-3 Enlarging a Database by Adding a New Tablespace

Two Tablespaces

Database /
- - = - - = = i S

| System Tablespace USERS Tablespace

I
I
I I
I I
| |DATAL.ORA DATA2.0RA | DATAS.ORA
I I
I I
I I

CREATE TABLESPACE users
DATAFI LE ' DATA3. ORA'

The third option for enlarging a database is to change a datafile’s size or let datafiles
in existing tablespaces grow dynamically as more space is needed. You accomplish
this by altering existing files or by adding files with dynamic extension properties.
Figure 3—4 illustrates this.

Tablespaces, Datafiles, and Control Files 3-5

Introduction to Tablespaces, Datafiles, and Control Files

Figure 3—-4 Enlarging a Database by Dynamically Sizing Datafiles

Database

USERS Tablespace

I |
I I I
I I I
| IDATALORA| [DATA2.0RA| 1, DATA3.0RA [
I I I
I I v I
I I I
! I —t20m |
I I I
I I I
I I ~— I
! i —t 2om
I I I
I I I
| I v |
I I

ALTER DATABASE
DATAFI LE ' DATA3. ORA'
AUTOEXTEND ON NEXT 20M
MAXSI ZE 1000M

See Also: Oracle9i Database Administrator’s Guide for more
information about increasing the amount of space in your database

3-6 Oracle9/ Database Concepts

Tablespaces Overview

Tablespaces Overview

A database is divided into one or more logical storage units called tablespaces.
Tablespaces are divided into logical units of storage called segments, which are
further divided into extents. Extents are a collection of contiguous blocks.

This section includes the following topics about tablespaces:
= The SYSTEM Tablespace

= Undo Tablespaces

= Default Temporary Tablespace

= Using Multiple Tablespaces

= Managing Space in Tablespaces

= Multiple Block Sizes

= Online and Offline Tablespaces

= Read-Only Tablespaces

= Temporary Tablespaces for Sort Operations
= Transport of Tablespaces Between Databases

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for
more information about segments and extents

The SYSTEM Tablespace

Every Oracle database contains a tablespace named SYSTEM which Oracle creates
automatically when the database is created. The SYSTEMtablespace is always online
when the database is open.

To take advantage of the benefits of locally managed tablespaces, you can create a
locally managed SYSTEMtablespace, or you can migrate an existing dictionary
managed SYSTEMtablespace to a locally managed format.

In a database with a locally managed SYSTEMtablespace, dictionary tablespaces
cannot be created. It is possible to plug in a dictionary managed tablespace using
the transportable feature, but it cannot be made writable.

Note: Once atablespace is locally managed, it cannot be reverted
back to being dictionary managed.

Tablespaces, Datafiles, and Control Files 3-7

Tablespaces Overview

The Data Dictionary

The SYSTEMtablespace always contains the data dictionary tables for the entire
database. The data dictionary tables are stored indat afil e 1.

PL/SQL Program Units Description

All data stored on behalf of stored PL/SQL program units (that is, procedures,
functions, packages, and triggers) resides in the SYSTEMtablespace. If the database
contains many of these program units, then the database administrator must
provide the space the units need in the SYSTEMtablespace.

See Also:

= Oracle9i Database Administrator’s Guide for detailed information
about creating or migrating to a locally managed SYSTEM
tablespace

= "Online and Offline Tablespaces" on page 3-13 for more
information about the permanent online condition of the
SYSTEM tablespace

= Chapter 14, "SQL, PL/SQL, and Java" and Chapter 17,
"Triggers" for more information about the space requirements
of PL/SQL program units

Undo Tablespaces

Undo tablespaces are special tablespaces used solely for storing undo information.
You cannot create any other segment types (for example, tables or indexes) in undo
tablespaces. Each database contains zero or more undo tablespaces. In automatic
undo management mode, each Oracle instance is assigned one (and only one) undo
tablespace. Undo data is managed within an undo tablespace using undo segments
that are automatically created and maintained by Oracle.

When the first DML operation is run within a transaction, the transaction is bound
(assigned) to an undo segment (and therefore to a transaction table) in the current
undo tablespace. In rare circumstances, if the instance does not have a designated

undo tablespace, the transaction binds to the system undo segment.

Caution: Do not run any user transactions before creating the first
undo tablespace and taking it online.

3-8 Oracle9iDatabase Concepts

Tablespaces Overview

Each undo tablespace is composed of a set of undo files and is locally managed.
Like other types of tablespaces, undo blocks are grouped in extents and the status of
each extent is represented in the bitmap. At any point in time, an extent is either
allocated to (and used by) a transaction table, or it is free.

Creation of Undo Tablespaces

A database administrator creates undo tablespaces individually, using the CREATE
UNDO TABLESPACE statement. It can also be created when the database is created,
using the CREATE DATABASE statement. A set of files is assigned to each newly
created undo tablespace. Like regular tablespaces, attributes of undo tablespaces
can be modified with the ALTER TABLESPACE statement and dropped with the
DROP TABLESPACE statement.

Note: An undo tablespace cannot be dropped if it is being used by
any instance or contains any undo information needed to recover
transactions.

Assignment of Undo Tablespaces
You assign an undo tablespace to an instance in one of two ways:

= At instance startup. You can specify the undo tablespace in the initialization file
or let the system choose an available undo tablespace.

= While the instance is running. Use ALTER SYSTEMSET UNDO_TABLESPACE to
replace the active undo tablespace with another undo tablespace. This method
is rarely used.

You can add more space to an undo tablespace by adding more data files to the
undo tablespace with the ALTER TABLESPACE statement.

You can have more than one undo tablespace and switch between them. Use the
Database Resource Manager to establish user quotas for undo tablespaces. You can
specify the retention period for undo information.

See Also: Oracle9i Database Administrator’s Guide for detailed
information about creating and managing undo tablespaces

Tablespaces, Datafiles, and Control Files 3-9

Tablespaces Overview

Default Temporary Tablespace

When the SYSTEMtablespace is locally managed, you must define a default
temporary tablespace when creating a database. A locally managed SYSTEM
tablespace cannot be used for default temporary storage.

If SYSTEMis dictionary managed and if you do not define a default temporary
tablespace when creating the database, then SYSTEM is still used for default
temporary storage. However, you will receive a warning in ALERT.LOGsaying that
a default temporary tablespace is recommended and will be necessary in future
releases.

How to Specify a Default Temporary Tablespace
Specify a default temporary tablespace when you create a database, using the
DEFAULT TEMPORARY TABLESPACE extension to the CREATE DATABASE statement.

If you drop the default temporary tablespace, then the SYSTEMtablespace is used as
the default temporary tablespace.

Note: You cannot make the default temporary tablespace
permanent or take it offline.

See Also: Oracle9i SQL Reference for more information about
defining and altering default temporary tablespaces

Using Multiple Tablespaces

A very small database may need only the SYSTEMtablespace; however, Oracle
Corporation recommends that you create at least one additional tablespace to store
user data separate from data dictionary information. This gives you more flexibility
in various database administration operations and reduces contention among
dictionary objects and schema objects for the same datafiles.

You can use multiple tablespaces to perform the following tasks:

= Control disk space allocation for database data

= Assign specific space quotas for database users

= Control availability of data by taking individual tablespaces online or offline
= Perform partial database backup or recovery operations

= Allocate data storage across devices to improve performance

3-10 Oracle9i Database Concepts

Tablespaces Overview

A database administrator can use tablespaces to do the following actions:
s Create new tablespaces
s Add datafiles to tablespaces

s Set and alter default segment storage settings for segments created in a
tablespace

s Make a tablespace read-only or read/write
s Make a tablespace temporary or permanent

s Drop tablespaces.

Managing Space in Tablespaces

Tablespaces allocate space in extents. Tablespaces can use two different methods to
keep track of their free and used space:

= Locally managed tablespaces: Extent management by the tablespace
= Dictionary managed tablespaces: Extent management by the data dictionary

When you create a tablespace, you choose one of these methods of space
management. You cannot alter the method at a later time.

Note: If you do not specify extent management when you create a
tablespace, then the default is locally managed.

See Also: "Extents Overview" on page 2-8

Locally Managed Tablespaces

A tablespace that manages its own extents maintains a bitmap in each datafile to
keep track of the free or used status of blocks in that datafile. Each bit in the bitmap
corresponds to a block or a group of blocks. When an extent is allocated or freed for
reuse, Oracle changes the bitmap values to show the new status of the blocks. These
changes do not generate rollback information because they do not update tables in
the data dictionary (except for special cases such as tablespace quota information).

Locally managed tablespaces have the following advantages over dictionary
managed tablespaces:

= Local management of extents automatically tracks adjacent free space,
eliminating the need to coalesce free extents.

Tablespaces, Datafiles, and Control Files 3-11

Tablespaces Overview

= Local management of extents avoids recursive space management operations.
Such recursive operations can occur in dictionary managed tablespaces if
consuming or releasing space in an extent results in another operation that
consumes or releases space in a data dictionary table or rollback segment.

The sizes of extents that are managed locally can be determined automatically by
the system. Alternatively, all extents can have the same size in a locally managed
tablespace and override object storage options.

The LOCAL clause of the CREATE TABLESPACE or CREATE TEMPORARY
TABLESPACE statement is specified to create locally managed permanent or
temporary tablespaces, respectively.

Segment Space Management in Locally Managed Tablespaces

When you create a locally managed tablespace using the CREATE TABLESPACE
statement, the SEGVENT SPACE MANAGEMENT clause lets you specify how free and
used space within a segment is to be managed. Your choices are:

= AUTO

This keyword tells Oracle that you want to use bitmaps to manage the free
space within segments. A bitmap, in this case, is a map that describes the status
of each data block within a segment with respect to the amount of space in the
block available for inserting rows. As more or less space becomes available in a
data block, its new state is reflected in the bitmap. Bitmaps enable Oracle to
manage free space more automatically; thus, this form of space management is
called automatic segment-space management.

= MANUAL

This keyword tells Oracle that you want to use free lists for managing free space
within segments. Free lists are lists of data blocks that have space available for
inserting rows. MANUAL is the default.

See Also:
= Oracle9i SQL Reference for details about SQL statements

= Oracle9i Database Administrator’s Guide for more information
about managing SQL statements

= "Determine the Number and Size of Extents" on page 2-8

= "Temporary Tablespaces for Sort Operations" on page 3-16 for
more information about temporary tablespaces

3-12 Oracle9i Database Concepts

Tablespaces Overview

Dictionary Managed Tablespaces

If you created your database with an earlier version of Oracle, then you could be
using dictionary managed tablespaces. For a tablespace that uses the data
dictionary to manage its extents, Oracle updates the appropriate tables in the data
dictionary whenever an extent is allocated or freed for reuse. Oracle also stores
rollback information about each update of the dictionary tables. Because dictionary
tables and rollback segments are part of the database, the space that they occupy is
subject to the same space management operations as all other data.

Multiple Block Sizes

The block size of the SYSTEMtablespace is the standard block size. This is set when
the database is created and can be any valid size.

You can specify up to four block sizes, in addition to a standard block size. In the
initialization file, you can configure subcaches within the buffer cache for each of
these block sizes. Subcaches can also be configured while an instance is running.
You can create tablespaces having any of these block sizes. The standard block size
is used for the system tablespace and most other tablespaces.

Note: All partitions of a partitioned object must reside in
tablespaces of a single block size.

Multiple block sizes are useful primarily when transporting a tablespace from an
OLTP database to an enterprise data warehouse. This facilitates transport between
databases of different block sizes.

See Also:

= "Transport of Tablespaces Between Databases" on page 3-17

= Oracle9i Data Warehousing Guide for information about
transporting tablespaces in data warehousing environments

Online and Offline Tablespaces

A database administrator can bring any tablespace other than the SYSTEM
tablespace online (accessible) or offline (not accessible) whenever the database is
open. The SYSTEMtablespace is always online when the database is open because
the data dictionary must always be available to Oracle.

Tablespaces, Datafiles, and Control Files 3-13

Tablespaces Overview

A tablespace is usually online so that the data contained within it is available to
database users. However, the database administrator can take a tablespace offline
for maintenance or backup and recovery purposes.

When a Tablespace Goes Offline

When a tablespace goes offline, Oracle does not permit any subsequent SQL
statements to reference objects contained in that tablespace. Active transactions
with completed statements that refer to data in that tablespace are not affected at
the transaction level. Oracle saves rollback data corresponding to those completed
statements in a deferred rollback segment in the SYSTEMtablespace. When the
tablespace is brought back online, Oracle applies the rollback data to the tablespace,
if needed.

When a tablespace goes offline or comes back online, this is recorded in the data
dictionary in the SYSTEMtablespace. If a tablespace is offline when you shut down
a database, the tablespace remains offline when the database is subsequently
mounted and reopened.

You can bring a tablespace online only in the database in which it was created
because the necessary data dictionary information is maintained in the SYSTEM
tablespace of that database. An offline tablespace cannot be read or edited by any
utility other than Oracle. Thus, offline tablespaces cannot be transposed to other
databases.

Oracle automatically switches a tablespace from online to offline when certain
errors are encountered. For example, Oracle switches a tablespace from online to
offline when the database writer process, DBWhn, fails in several attempts to write to
a datafile of the tablespace. Users trying to access tables in the offline tablespace
receive an error. If the problem that causes this disk 1/0 to fail is media failure, you
must recover the tablespace after you correct the problem.

See Also:

= "Temporary Tablespaces for Sort Operations" on page 3-16 for
more information about transferring online tablespaces
between databases

= Oracle9i Database Utilities for more information about tools for
data transfer

Use of Tablespaces for Special Procedures

If you create multiple tablespaces to separate different types of data, you take
specific tablespaces offline for various procedures. Other tablespaces remain online,

3-14 Oracle9i Database Concepts

Tablespaces Overview

and the information in them is still available for use. However, special
circumstances can occur when tablespaces are taken offline. For example, if two
tablespaces are used to separate table data from index data, the following is true:

» If the tablespace containing the indexes is offline, then queries can still access
table data because queries do not require an index to access the table data.

s If the tablespace containing the tables is offline, then the table data in the
database is not accessible because the tables are required to access the data.

If Oracle has enough information in the online tablespaces to run a statement, it
does so. If it needs data in an offline tablespace, then it causes the statement to fail.

Read-Only Tablespaces

The primary purpose of read-only tablespaces is to eliminate the need to perform
backup and recovery of large, static portions of a database. Oracle never updates
the files of a read-only tablespace, and therefore the files can reside on read-only

media such as CD-ROMs or WORM drives.

Note: Because you can only bring a tablespace online in the
database in which it was created, read-only tablespaces are not
meant to satisfy archiving or data publishing requirements.

Read-only tablespaces cannot be modified. To update a read-only tablespace, first
make the tablespace read/write. After updating the tablespace, you can then reset it
to be read-only.

Because read-only tablespaces cannot be modified, and as long as they have not
been made read-write at any point, they do not need repeated backup. Also, if you
need to recover your database, you do not need to recover any read-only
tablespaces, because they could not have been modified.

See Also:

= Oracle9i Database Administrator’s Guide for more information
about changing a tablespace to read-only or read/write mode

= Oracle9i SQL Reference for more information about the ALTER
TABLESPACE statement

= Oracle9i Backup and Recovery Concepts for more information
about recovery

Tablespaces, Datafiles, and Control Files 3-15

Tablespaces Overview

Temporary Tablespaces for Sort Operations

You can manage space for sort operations more efficiently by designating
temporary tablespaces exclusively for sorts. Doing so effectively eliminates
serialization of space management operations involved in the allocation and
deallocation of sort space.

All operations that use sorts, including joins, index builds, ordering, computing
aggregates (GROUP BY), and collecting optimizer statistics, benefit from temporary
tablespaces. The performance gains are significant with Real Application Clusters.

Sort Segments

A temporary tablespace can be used only for sort segments. A temporary tablespace
is not the same as a tablespace that a user designates for temporary segments,
which can be any tablespace available to the user. No permanent schema objects can
reside in a temporary tablespace.

Sort segments are used when a segment is shared by multiple sort operations. One
sort segment exists for every instance that performs a sort operation in a given
tablespace.

Temporary tablespaces provide performance improvements when you have
multiple sorts that are too large to fit into memory. The sort segment of a given
temporary tablespace is created at the time of the first sort operation. The sort
segment expands by allocating extents until the segment size is equal to or greater
than the total storage demands of all of the active sorts running on that instance.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for
more information about segments

Creation of Temporary Tablespaces

You can create temporary tablespaces by using the CREATE TABLESPACE or
CREATE TEMPORARY TABLESPACE statement.

3-16 Oracle9/ Database Concepts

Tablespaces Overview

See Also:

=« "Temporary Datafiles" on page 3-19 for information about
TEMPFI LES

= "Managing Space in Tablespaces" on page 3-11 for information
about locally managed and dictionary managed tablespaces

= Oracle9i SQL Reference for information about the CREATE
TABLESPACE, CREATE TEMPORARY TABLESPACE, and ALTER
TABLESPACE statements

= Oracle9i Database Performance Tuning Guide and Reference for
information about setting up temporary tablespaces for sorts
and hash joins

Transport of Tablespaces Between Databases

A transportable tablespace lets you move a subset of an Oracle database from one
Oracle database to another on the same platform. You can clone a tablespace and
plug it into another database, copying the tablespace between databases, or you can
unplug a tablespace from one Oracle database and plug it into another Oracle
database, moving the tablespace between databases on the same platform.

Moving data by transporting tablespaces can be orders of magnitude faster than
either export/import or unload/load of the same data, because transporting a
tablespace involves only copying datafiles and integrating the tablespace metadata.
When you transport tablespaces you can also move index data, so you do not have
to rebuild the indexes after importing or loading the table data.

Note: You can transport tablespaces only between Oracle
databases that use the same character set and that run on
compatible platforms from the same hardware vendor.

How to Move or Copy a Tablespace to Another Database

To move or copy a set of tablespaces, you must make the tablespaces read-only;,
copy the datafiles of these tablespaces, and use export/import to move the database
information (metadata) stored in the data dictionary. Both the datafiles and the
metadata export file must be copied to the target database. The transport of these
files can be done using any facility for copying flat files, such as the operating
system copying facility, ftp, or publishing on CDs.

Tablespaces, Datafiles, and Control Files 3-17

Datafiles Overview

After copying the datafiles and importing the metadata, you can optionally put the
tablespaces in read/write mode.

Note: In a database with a locally managed SYSTEMtablespace,
dictionary tablespaces cannot be created. It is possible to plug in a
dictionary managed tablespace using the transportable feature, but
it cannot be made writable.

See Also:

s Oracle9i Database Administrator’s Guide for details about how to
move or copy tablespaces to another database

= Oracle9i Database Utilities for import/export information

= "The SYSTEM Tablespace" on page 3-7 for

Datafiles Overview

A tablespace in an Oracle database consists of one or more physical datafiles. A
datafile can be associated with only one tablespace and only one database.

Oracle creates a datafile for a tablespace by allocating the specified amount of disk
space plus the overhead required for the file header. When a datafile is created, the
operating system under which Oracle runs is responsible for clearing old
information and authorizations from a file before allocating it to Oracle. If the file is
large, this process can take a significant amount of time. The first tablespace in any
database is always the SYSTEMtablespace, so Oracle automatically allocates the first
datafiles of any database for the SYSTEMtablespace during database creation.

See Also: Your Oracle operating system-specific documentation
for information about the amount of space required for the file
header of datafiles on your operating system

Datafile Contents

When a datafile is first created, the allocated disk space is formatted but does not
contain any user data. However, Oracle reserves the space to hold the data for
future segments of the associated tablespace—it is used exclusively by Oracle. As
the data grows in a tablespace, Oracle uses the free space in the associated datafiles
to allocate extents for the segment.

3-18 Oracle9/ Database Concepts

Datafiles Overview

The data associated with schema objects in a tablespace is physically stored in one
or more of the datafiles that constitute the tablespace. Note that a schema object
does not correspond to a specific datafile; rather, a datafile is a repository for the
data of any schema object within a specific tablespace. Oracle allocates space for the
data associated with a schema object in one or more datafiles of a tablespace.
Therefore, a schema object can span one or more datafiles. Unless table striping is
used (where data is spread across more than one disk), the database administrator
and end users cannot control which datafile stores a schema object.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for
more information about use of space

Size of Datafiles

You can alter the size of a datafile after its creation or you can specify that a datafile
should dynamically grow as schema objects in the tablespace grow. This
functionality enables you to have fewer datafiles for each tablespace and can
simplify administration of datafiles.

Note: You need sufficient space on the operating system for
expansion.

See Also: Oracle9i Database Administrator’s Guide for more
information about resizing datafiles

Offline Datafiles

You can take tablespaces offline or bring them online at any time, except for the
SYSTEMtablespace. All of the datafiles of a tablespace are taken offline or brought
online as a unit when you take the tablespace offline or bring it online, respectively.

You can take individual datafiles offline. However, this is usually done only during
some database recovery procedures.

Temporary Datafiles

Locally managed temporary tablespaces have temporary datafiles (tempfiles),
which are similar to ordinary datafiles, with the following exceptions:

= Tempfiles are always set to NOLOGGE NG mode.

= You cannot make a tempfile read-only.

Tablespaces, Datafiles, and Control Files 3-19

Control Files Overview

= You cannot rename a tempfile.
= You cannot create a tempfile with the ALTER DATABASE statement.

= When you create or resize tempfiles, they are not always guaranteed allocation
of disk space for the file size specified. On certain file systems (for example,
UNIX) disk blocks are allocated not at file creation or resizing, but before the
blocks are accessed.

Caution: This enables fast tempfile creation and resizing;
however, the disk could run of space later when the tempfiles are
accessed.

s Tempfile information is shown in the dictionary view DBA TEMP_FI LES and
the dynamic performance view V3 TEMPFI LE, but not in DBA_DATA_FI LES or
the V$DATAFI LE view.

See Also: "Managing Space in Tablespaces" on page 3-11 for
more information about locally managed tablespaces

Control Files Overview

The database control file is a small binary file necessary for the database to start and
operate successfully. A control file is updated continuously by Oracle during
database use, so it must be available for writing whenever the database is open. If
for some reason the control file is not accessible, then the database cannot function

properly.
Each control file is associated with only one Oracle database.

Control File Contents

A control file contains information about the associated database that is required for
access by an instance, both at startup and during normal operation. Control file
information can be modified only by Oracle; no database administrator or user can
edit a control file.

Among other things, a control file contains information such as:
= The database name

= The timestamp of database creation

3-20 Oracle9i Database Concepts

Control Files Overview

s The names and locations of associated datafiles and online redo log files
s Tablespace information

s Datafile offline ranges

s The log history

s Archived log information

s Backup set and backup piece information

s Backup datafile and redo log information

= Datafile copy information

= The current log sequence number

= Checkpoint information

The database name and timestamp originate at database creation. The database
name is taken from either the name specified by the initialization parameter DB_
NAME or the name used in the CREATE DATABASE statement.

Each time that a datafile or an online redo log file is added to, renamed in, or
dropped from the database, the control file is updated to reflect this physical
structure change. These changes are recorded so that:

= Oracle can identify the datafiles and online redo log files to open during
database startup

= Oracle can identify files that are required or available in case database recovery
is necessary

Therefore, if you make a change to the physical structure of your database (using
ALTER DATABASE statements), then you should immediately make a backup of
your control file.

Control files also record information about checkpoints. Every three seconds, the
checkpoint process (CKPT) records information in the control file about the
checkpoint position in the online redo log. This information is used during database
recovery to tell Oracle that all redo entries recorded before this point in the online
redo log group are not necessary for database recovery; they were already written
to the datafiles.

Tablespaces, Datafiles, and Control Files 3-21

Control Files Overview

See Also:
= Oracle9i Recovery Manager User’s Guide
= Oracle9i User-Managed Backup and Recovery Guide

for information about backing up a database’s control file

Multiplexed Control Files

As with online redo log files, Oracle enables multiple, identical control files to be
open concurrently and written for the same database.

By storing multiple control files for a single database on different disks, you can
safeguard against a single point of failure with respect to control files. If a single
disk that contained a control file crashes, then the current instance fails when Oracle
attempts to access the damaged control file. However, when other copies of the
current control file are available on different disks, an instance can be restarted
easily without the need for database recovery.

If all control files of a database are permanently lost during operation, then the
instance is aborted and media recovery is required. Media recovery is not
straightforward if an older backup of a control file must be used because a current
copy is not available. Therefore, it is strongly recommended that you adhere to the
following practices:

= Use multiplexed control files with each database
= Store each copy on a different physical disk
= Use operating system mirroring

= Monitor backups

3-22 Oracle9i Database Concepts

A

The Data Dictionary

This chapter describes the central set of read-only reference tables and views of each
Oracle database, known collectively as the data dictionary. The chapter includes:

Introduction to the Data Dictionary
How the Data Dictionary Is Used
Dynamic Performance Tables

Database Object Metadata

The Data Dictionary 4-1

Introduction to the Data Dictionary

Introduction to the Data Dictionary

One of the most important parts of an Oracle database is its data dictionary, which
is a read-only set of tables that provides information about the database. A data
dictionary contains:

= The definitions of all schema objects in the database (tables, views, indexes,
clusters, synonyms, sequences, procedures, functions, packages, triggers,
and so on)

= How much space has been allocated for, and is currently used by, the
schema objects

= Default values for columns

= Integrity constraint information

= The names of Oracle users

= Privileges and roles each user has been granted

= Auditing information, such as who has accessed or updated various
schema objects

= Other general database information

The data dictionary is structured in tables and views, just like other database data.
All the data dictionary tables and views for a given database are stored in that
database’s SYSTEMtablespace.

Not only is the data dictionary central to every Oracle database, it is an important
tool for all users, from end users to application designers and database
administrators. Use SQL statements to access the data dictionary. Because the data
dictionary is read-only, you can issue only queries (SELECT statements) against it’s
tables and views.

See Also: "The SYSTEM Tablespace" on page 3-7 for more
information about SYSTEMtablespaces

Structure of the Data Dictionary
The data dictionary consists of the following:

4-2 Oracle9i Database Concepts

How the Data Dictionary Is Used

Base Tables

The underlying tables that store information about the associated database. Only
Oracle should write to and read these tables. Users rarely access them directly
because they are normalized, and most of the data is stored in a cryptic format.

User-Accessible Views

The views that summarize and display the information stored in the base tables of
the data dictionary. These views decode the base table data into useful information,
such as user or table names, using joins and WHERE clauses to simplify the
information. Most users are given access to the views rather than the base tables.

SYS, Owner of the Data Dictionary

The Oracle user SYS owns all base tables and user-accessible views of the data
dictionary. No Oracle user should ever alter (UPDATE, DELETE, or | NSERT) any
rows or schema objects contained in the SYS schema, because such activity can
compromise data integrity. The security administrator must keep strict control of
this central account.

Caution: Altering or manipulating the data in data dictionary
tables can permanently and detrimentally affect the operation of a
database.

How the Data Dictionary Is Used
The data dictionary has three primary uses;

= Oracle accesses the data dictionary to find information about users, schema
objects, and storage structures.

= Oracle modifies the data dictionary every time that a data definition language
(DDL) statement is issued.

= Any Oracle user can use the data dictionary as a read-only reference for
information about the database.

How Oracle Uses the Data Dictionary

Data in the base tables of the data dictionary is necessary for Oracle to function.
Therefore, only Oracle should write or change data dictionary information. Oracle

The Data Dictionary 4-3

How the Data Dictionary Is Used

provides scripts to modify the data dictionary tables when a database is upgraded
or downgraded.

Caution: No data in any data dictionary table should be altered or
deleted by any user.

During database operation, Oracle reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle also updates
the data dictionary continuously to reflect changes in database structures, auditing,
grants, and data.

For example, if user Kathy creates a table named par t s, then new rows are added
to the data dictionary that reflect the new table, columns, segment, extents, and the
privileges that Kathy has on the table. This new information is then visible the next
time the dictionary views are queried.

Public Synonyms for Data Dictionary Views

Oracle creates public synonyms for many data dictionary views so users can access
them conveniently. The security administrator can also create additional public
synonyms for schema objects that are used systemwide. Users should avoid naming
their own schema objects with the same names as those used for public synonyms.

Cache the Data Dictionary for Fast Access

Much of the data dictionary information is kept in the SGA in the dictionary cache,
because Oracle constantly accesses the data dictionary during database operation to
validate user access and to verify the state of schema objects. All information is
stored in memory using the least recently used (LRU) algorithm.

Parsing information is typically kept in the caches. The COMMENTS columns
describing the tables and their columns are not cached unless they are accessed
frequently.

Other Programs and the Data Dictionary

Other Oracle products can reference existing views and create additional data
dictionary tables or views of their own. Application developers who write
programs that refer to the data dictionary should refer to the public synonyms
rather than the underlying tables: the synonyms are less likely to change between
software releases.

4-4 Oracle9i Database Concepts

How the Data Dictionary Is Used

How to Use the Data Dictionary

The views of the data dictionary serve as a reference for all database users. Access
the data dictionary views with SQL statements. Some views are accessible to all
Oracle users, and others are intended for database administrators only.

The data dictionary is always available when the database is open. It resides in the
SYSTEMtablespace, which is always online.

The data dictionary consists of sets of views. In many cases, a set consists of three
views containing similar information and distinguished from each other by their
prefixes:

Table 4-1 Data Dictionary View Prefixes

Prefix Scope

USER User’s view (what is in the user’s schema)

ALL Expanded user’s view (what the user can access)

DBA Database administrator’s view (what is in all users’ schemas)

The set of columns is identical across views, with these exceptions:

= Views with the prefix USER usually exclude the column OANER. This column is
implied in the USER views to be the user issuing the query.

= Some DBA views have additional columns containing information useful to the
administrator.

See Also: Oracle9i Database Reference for a complete list of data
dictionary views and their columns

Views with the Prefix USER

The views most likely to be of interest to typical database users are those with the
prefix USER. These views:

= Refer to the user’s own private environment in the database, including
information about schema objects created by the user, grants made by the user,
and soon

= Display only rows pertinent to the user

= Have columns identical to the other views, except that the column ONNER is
implied

s Return a subset of the information in the ALL views

The Data Dictionary 4-5

How the Data Dictionary Is Used

= Can have abbreviated PUBLI Csynonyms for convenience
For example, the following query returns all the objects contained in your schema:
SELECT obj ect _nare, object _type FROM USER (BIECTS,

Views with the Prefix ALL

Views with the prefix ALL refer to the user’s overall perspective of the database.
These views return information about schema objects to which the user has access
through public or explicit grants of privileges and roles, in addition to schema
objects that the user owns. For example, the following query returns information
about all the objects to which you have access:

SELECT owner, object_nane, object_type FROM ALL_CBIECTS,

Views with the Prefix DBA

Views with the prefix DBA show a global view of the entire database. Synonyms are
not created for these views, because DBA views should be queried only by
administrators. Therefore, to query the DBA views, administrators must prefix the
view name with its owner, SYS, as in the following:

SELECT owner, object_nane, object_type FROM SYS. DBA (BIECTS,

Oracle recommends that you implement data dictionary protection to prevent users
having the ANY system privileges from using such privileges on the data dictionary.
If you enable dictionary protection (O7_DI CTI ONARY_ACCESSI BI LI TYisf al se),
then access to objects in the SYS schema (dictionary objects) is restricted to users
with the SYS schema. These users are SYS and those who connect as SYSDBA.

See Also: Oracle9i Database Administrator’s Guide for detailed
information on system privileges restrictions

The DUAL Table

The table named DUAL is a small table in the data dictionary that Oracle and
user-written programs can reference to guarantee a known result. This table has one
column called DUMVWY and one row containing the value X.

See Also: Oracle9i SQL Reference for more information about the
DUAL table

4-6 Oracle9i Database Concepts

Database Object Metadata

Dynamic Performance Tables

Throughout its operation, Oracle maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables.

Dynamic performance tables are not true tables, and they should not be accessed by
most users. However, database administrators can query and create views on the
tables and grant access to those views to other users. These views are sometimes
called fixed views because they cannot be altered or removed by the database
administrator.

SYS owns the dynamic performance tables; their names all begin with V_$. Views
are created on these tables, and then public synonyms are created for the views. The
synonym names begin with V$. For example, the V3DATAFI LE view contains
information about the database’s datafiles, and the V$FI XED TABLE view contains
information about all of the dynamic performance tables and views in the database.

See Also: Oracle9i Database Reference for a complete list of the
dynamic performance views’ synonyms and their columns

Database Object Metadata

The DBM5_VETADATA package provides interfaces for extracting complete
definitions of database objects. The definitions can be expressed either as XML or as
SQL DDL. Two styles of interface are provided:

= A flexible, sophisticated interface for programmatic control

=« Asimplified interface for ad hoc querying

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about DBVS_METADATA

The Data Dictionary 4-7

Database Object Metadata

4-8 Oracle9i Database Concepts

Part Il

The Oracle Instance

Part 111 describes the architecture of the Oracle instance and explains the different
client/server configurations it can have in a network environment. Part Il also
explains the Oracle startup and shutdown procedures.

Part 11l contains the following chapters:

Chapter 5, "Database and Instance Startup and Shutdown"
Chapter 6, "Application Architecture”

Chapter 7, "Memory Architecture"

Chapter 8, "Process Architecture"

Chapter 9, "Database Resource Management"

Oracle9i Database Concepts

D

Database and Instance
Startup and Shutdown

This chapter explains the procedures involved in starting and stopping an Oracle
instance and database. It includes:

= Introduction to an Oracle Instance
= Instance and Database Startup

= Database and Instance Shutdown

Database and Instance Startup and Shutdown 5-1

Introduction to an Oracle Instance

Introduction to an Oracle Instance

Every running Oracle database is associated with an Oracle instance. When a
database is started on a database server (regardless of the type of computer), Oracle
allocates a memory area called the System Global Area (SGA) and starts one or
more Oracle processes. This combination of the SGA and the Oracle processes is
called an Oracle instance. The memory and processes of an instance manage the
associated database’s data efficiently and serve the one or multiple users of the

database.

Figure 5-1 shows an Oracle instance.

Figure 5-1 An Oracle Instance

—

Context Areas

System Global Area (SGA)

L

Database Buffer
Cache Redo Log
Buffer

N—

_

See Also:

!

Oracle Processes

= Chapter 7, "Memory Architecture"

= Chapter 8, "Process Architecture"

5-2 Oracle9i Database Concepts

Introduction to an Oracle Instance

The Instance and the Database

After starting an instance, Oracle associates the instance with the specified database.
This is called mounting the database. The database is then ready to be opened,
which makes it accessible to authorized users.

Multiple instances can run concurrently on the same computer, each accessing its
own physical database. In clustered and massively parallel systems (MPS), Real
Application Clusters enables multiple instances to mount a single database.

Only the database administrator can start up an instance and open the database. If a
database is open, then the database administrator can shut down the database so
that it is closed. When a database is closed, users cannot access the information that
it contains.

Security for database startup and shutdown is controlled through connections to
Oracle with administrator privileges. Normal users do not have control over the
current status of an Oracle database.

See Also: Oracle9i Real Application Clusters Concepts for
information

Connection with Administrator Privileges

Database startup and shutdown are powerful administrative options and are
restricted to users who connect to Oracle with administrator privileges. Depending
on the operating system, one of the following conditions establishes administrator
privileges for a user:

= The user’s operating system privileges allow him or her to connect using
administrator privileges.

= The user is granted the SYSDBA or SYSOPER privileges and the database uses
password files to authenticate database administrators.

When you connect with SYSDBA privileges, you are in the schema owned by SYS.
When you connect as SYSOPER, you are in the public schema. SYSOPER privileges
are a subset of SYSDBA privileges.

Database and Instance Startup and Shutdown 5-3

Introduction to an Oracle Instance

See Also:

= Your operating system-specific Oracle documentation for more
information about how administrator privileges work on your
operating system

= Chapter 22, "Controlling Database Access" for more
information about password files and authentication schemes
for database administrators

Initialization Parameter Files

To start an instance, Oracle must read an initialization parameter file—a file
containing a list of configuration parameters for that instance and database. Set
these parameters to particular values to initialize many of the memory and process
settings of an Oracle instance. Most initialization parameters belong to one of the
following groups:

= Parameters that name things, such as files
= Parameters that set limits, such as maximums

= Parameters that affect capacity, such as the size of the SGA, which are called
variable parameters

Among other things, the initialization parameters tell Oracle:

= The name of the database for which to start up an instance

=« How much memory to use for memory structures in the SGA
= What to do with filled online redo log files

= The names and locations of the database control files

= The names of undo tablespaces or private rollback segments in the database

See Also: Oracle9i Database Administrator’s Guide for a sample
initialization parameter file

How Parameter Values Are Changed

The database administrator can adjust variable parameters to improve the
performance of a database system. Exactly which parameters most affect a system
depends on numerous database characteristics and variables.

Some parameters can be changed dynamically by using the ALTER SESSI ON or
ALTER SYSTEMstatement while the instance is running. Unless you are using a

5-4 Oracle9i Database Concepts

Instance and Database Startup

server parameter file, changes made using the ALTER SYSTEMstatement are only in
effect for the current instance. You must manually update the text initialization
parameter file for the changes to be known the next time you start up an instance.
When you use a server parameter file, you can update the parameters on disk, so
that changes persist across database shutdown and startup.

See Also:

= Oracle9i Database Administrator’s Guide for a discussion of
initialization parameters and the use of a server parameter file

= Oracle9i Database Reference for descriptions of all initialization
parameters

= "Dynamic SGA" on page 7-4 for information about parameters
that affect the SGA

Instance and Database Startup

The three steps to starting an Oracle database and making it available for
systemwide use are:

1. Start an instance.
2. Mount the database.
3. Open the database.

A database administrator can perform these steps using the SQL*Plus STARTUP
statement or Enterprise Manager.

See Also: Oracle Enterprise Manager Administrator’s Guide

How an Instance Is Started

When Oracle starts an instance, it reads the initialization parameter file to
determine the values of initialization parameters. Then, it allocates an SGA, which
is a shared area of memory used for database information, and creates background
processes. At this point, no database is associated with these memory structures and
processes.

Database and Instance Startup and Shutdown 5-5

Instance and Database Startup

See Also:

= Chapter 7, "Memory Architecture” for information about the
SGA

= Chapter 8, "Process Architecture" for information about
background processes

Restricted Mode of Instance Startup

You can start an instance in restricted mode (or later alter an existing instance to be
in restricted mode). This restricts connections to only those users who have been
granted the RESTRI CTED SESSI ONsystem privilege.

Forced Startup in Abnormal Situations

In unusual circumstances, a previous instance might not have been shut down
cleanly. For example, one of the instance’s processes might not have terminated
properly. In such situations, the database can return an error during normal
instance startup. To resolve this problem, you must terminate all remnant Oracle
processes of the previous instance before starting the new instance.

How a Database Is Mounted

The instance mounts a database to associate the database with that instance. To
mount the database, the instance finds the database control files and opens them.
Control files are specified in the CONTROL_FI LES initialization parameter in the
parameter file used to start the instance. Oracle then reads the control files to get the
names of the database’s datafiles and redo log files.

At this point, the database is still closed and is accessible only to the database
administrator. The database administrator can keep the database closed while
completing specific maintenance operations. However, the database is not yet
available for normal operations.

How a Database Is Mounted with Real Application Clusters

Note: The features described in this section are available only if
you have purchased Oracle9i Enterprise Edition with Real
Application Clusters.

5-6 Oracle9/ Database Concepts

Instance and Database Startup

If Oracle allows multiple instances to mount the same database concurrently, then
the database administrator can use the initialization parameter CLUSTER _
DATABASE

to make the database available to multiple instances. The default value of the
CLUSTER_DATABASE parameter is f al se. Versions of Oracle that do not support
Real Application Clusters only allow CLUSTER DATABASE to be f al se.

If CLUSTER DATABASE is f al se for the first instance that mounts a database, thne
only that instance can mount the database. If CLUSTER DATABASE issettotr ue on
the first instance, then other instances can mount the database if their CLUSTER _
DATABASE parameters are set to t r ue. The number of instances that can mount the
database is subject to a predetermined maximum, which you can specify when
creating the database.

See Also:

= Oracle9i Real Application Clusters Concepts

= Oracle9i Real Application Clusters Setup and Configuration

= Oracle9i Real Application Clusters Administration

= Oracle9i Real Application Clusters Deployment and Performance

for more information about the use of multiple instances with a
single database

How a Standby Database Is Mounted

A standby database maintains a duplicate copy of your primary database and
provides continued availability in the event of a disaster.

The standby database is constantly in recovery mode. To maintain your standby
database, you must mount it in standby mode using the ALTER DATABASE
statement and apply the archived redo logs that your primary database generates.

You can open a standby database in read-only mode to use it as a temporary
reporting database. You cannot open a standby database in read/write mode.
See Also:
= Oracle9i Data Guard Concepts and Administration

= "Open a Database in Read-Only Mode" on page 5-9 for
information about opening a standby database in read-only
mode

Database and Instance Startup and Shutdown 5-7

Instance and Database Startup

How a Clone Database Is Mounted

A clone database is a specialized copy of a database that can be used for tablespace
point-in-time recovery. When you perform tablespace point-in-time recovery, you
mount the clone database and recover the tablespaces to the desired time, then
export metadata from the clone to the primary database and copy the datafiles from
the recovered tablespaces.

See Also:
= Oracle9i Recovery Manager User’s Guide
= Oracle9i User-Managed Backup and Recovery Guide

for detailed information about clone databases and tablespace
point-in-time recovery

What Happens When You Open a Database

Opening a mounted database makes it available for normal database operations.
Any valid user can connect to an open database and access its information. Usually,
a database administrator opens the database to make it available for general use.

When you open the database, Oracle opens the online datafiles and online redo log
files. If a tablespace was offline when the database was previously shut down, the
tablespace and its corresponding datafiles will still be offline when you reopen the
database.

If any of the datafiles or redo log files are not present when you attempt to open the
database, then Oracle returns an error. You must perform recovery on a backup of
any damaged or missing files before you can open the database.

See Also: "Online and Offline Tablespaces" on page 3-13 for
information about opening an offline tablespace

Instance Recovery

If the database was last closed abnormally, either because the database
administrator terminated its instance or because of a power failure, then Oracle
automatically performs recovery when the database is reopened.

Undo Space Acquisition and Management

When you open the database, the instance attempts to acquire one or more undo
tablespaces or rollback segments. You determine whether to operate in automatic
undo management mode or manual undo management mode at instance startup

5-8 Oracle9/ Database Concepts

Instance and Database Startup

using the UNDO_MANAGEMENT inialization parameter. The supported values are
AUTOor MANUAL. If AUTQ, then the instance is started in automatic undo
management mode. The default value is MANUAL.

s If you use the undo tablespace method, you are using automatic undo
management mode. This is recommended.

s If you use the rollback segment method of managing undo space, then you are
using manual undo management mode.

See Also: "Automatic Undo Management" on page 2-16 for more
information about managing undo space.

Resolution of In-Doubt Distributed Transaction

Occasionally a database closes abnormally with one or more distributed
transactions in doubt (neither committed nor rolled back). When you reopen the
database and recovery is complete, the RECO background process automatically,
immediately, and consistently resolves any in-doubt distributed transactions.

See Also: Oracle9i Database Administrator’s Guide for information
about recovery from distributed transaction failures

Open a Database in Read-Only Mode

You can open any database in read-only mode to prevent its data from being
modified by user transactions. Read-only mode restricts database access to
read-only transactions, which cannot write to the datafiles or to the redo log files.

Disk writes to other files, such as control files, operating system audit trails, trace
files, and alert files, can continue in read-only mode. Temporary tablespaces for sort
operations are not affected by the database being open in read-only mode.
However, you cannot take permanent tablespaces offline while a database is open in
read-only mode. Also, job queues are not available in read-only mode.

Read-only mode does not restrict database recovery or operations that change the
database’s state without generating redo data. For example, in read-only mode:

= Datafiles can be taken offline and online
= Offline datafiles and tablespaces can be recovered
= The control file remains available for updates about the state of the database

One useful application of read-only mode is that standby databases can function as
temporary reporting databases.

Database and Instance Startup and Shutdown 5-9

Database and Instance Shutdown

See Also: Oracle9i Database Administrator’s Guide for information
about how to open a database in read-only mode

Database and Instance Shutdown
The three steps to shutting down a database and its associated instance are:
1. Close the database.
2. Unmount the database.
3. Shut down the instance.

A database administrator can perform these steps using Enterprise Manager. Oracle
automatically performs all three steps whenever an instance is shut down.

See Also: Oracle Enterprise Manager Administrator’s Guide

Close a Database

When you close a database, Oracle writes all database data and recovery data in the
SGA to the datafiles and redo log files, respectively. Next, Oracle closes all online
datafiles and online redo log files. (Any offline datafiles of any offline tablespaces
have been closed already. If you subsequently reopen the database, any tablespace
that was offline and its datafiles remain offline and closed, respectively.) At this
point, the database is closed and inaccessible for normal operations. The control
files remain open after a database is closed but still mounted.

Close the Database by Terminating the Instance

In rare emergency situations, you can terminate the instance of an open database to
close and completely shut down the database instantaneously. This process is fast,
because the operation of writing all data in the buffers of the SGA to the datafiles
and redo log files is skipped. The subsequent reopening of the database requires
recovery, which Oracle performs automatically.

Note: If a system or power failure occurs while the database is
open, then the instance is, in effect, terminated, and recovery is
performed when the database is reopened.

5-10 Oracle9/ Database Concepts

Database and Instance Shutdown

Unmount a Database

Shut Down an

After the database is closed, Oracle unmounts the database to disassociate it from
the instance. At this point, the instance remains in the memory of your computer.

After a database is unmounted, Oracle closes the control files of the database.

Instance

The final step in database shutdown is shutting down the instance. When you shut
down an instance, the SGA is removed from memory and the background processes
are terminated.

Abnormal Instance Shutdown

In unusual circumstances, shutdown of an instance might not occur cleanly; all
memory structures might not be removed from memory or one of the background
processes might not be terminated. When remnants of a previous instance exist, a
subsequent instance startup most likely will fail. In such situations, the database
administrator can force the new instance to start up by first removing the remnants
of the previous instance and then starting a new instance, or by issuing a SHUTDOAN
ABORT statement in Enterprise Manager.

See Also: Oracle9i Database Administrator’s Guide for more detailed
information about instance and database startup and shutdown

Database and Instance Startup and Shutdown 5-11

Database and Instance Shutdown

5-12 Oracle9/ Database Concepts

6

Application Architecture

This chapter defines application architecture and describes how the Oracle server
and database applications work in a distributed processing environment. This
material applies to almost every type of Oracle database system environment.

This chapter includes:
» Client/Server Architecture
s Multitier Architecture

s Oracle Net Services

Application Architecture 6-1

Client/Server Architecture

Client/Server Architecture

In the Oracle database system environment, the database application and the
database are separated into two parts: a front-end or client portion, and a back-end
or server portion—hence the term client/server architecture. The client runs the
database application that accesses database information and interacts with a user
through the keyboard, screen, and pointing device, such as a mouse. The server
runs the Oracle software and handles the functions required for concurrent, shared
data access to an Oracle database.

Although the client application and Oracle can be run on the same computer,
greater efficiency can often be achieved when the client portions and server portion
are run by different computers connected through a network. The following
sections discuss possible variations in the Oracle client/server architecture.

Distributed processing is the use of more than one processor to perform the
processing for an individual task. Examples of distributed processing in Oracle
database systems appear in Figure 6-1.

= InPart A of the figure, the client and server are located on different computers,
and these computers are connected through a network. The server and clients of
an Oracle database system communicate through Oracle Net Services, Oracle’s
network interface.

= InPart B of the figure, a single computer has more than one processor, and
different processors separate the execution of the client application from Oracle.

Note: This chapter applies to environments with one database on
one server. In a distributed database, one server (Oracle) may need
to access a database on another server.

6-2 Oracle9/Database Concepts

Client/Server Architecture

Figure 6—1 The Client/Server Architecture and Distributed Processing

Database Server

B

3 R

Database Server

==

client
client

Oracle client/server architecture in a distributed processing environment provides
the following benefits:

= Client applications are not responsible for performing any data processing.
Rather, they request input from users, request data from the server, and then
analyze and present this data using the display capabilities of the client
workstation or the terminal (for example, using graphics or spreadsheets).

Application Architecture 6-3

Client/Server Architecture

= Client applications are not dependent on the physical location of the data. Even
if the data is moved or distributed to other database servers, the application
continues to function with little or no modification.

= Oracle exploits the multitasking and shared-memory facilities of its underlying
operating system. As a result, it delivers the highest possible degree of
concurrency, data integrity, and performance to its client applications.

= Client workstations or terminals can be optimized for the presentation of data
(for example, by providing graphics and mouse support), and the server can be
optimized for the processing and storage of data (for example, by having large
amounts of memory and disk space).

= In networked environments, you can use inexpensive client workstations to
access the remote data of the server effectively.

= If necessary, Oracle can be scaled as your system grows. You can add multiple
servers to distribute the database processing load throughout the network
(horizontally scaled), or you can move Oracle to a minicomputer or mainframe,
to take advantage of a larger system’s performance (vertically scaled). In either
case, all data and applications are maintained with little or no modification,
because Oracle is portable between systems.

» In networked environments, shared data is stored on the servers rather than on
all computers in the system. This makes it easier and more efficient to manage
concurrent access.

= In networked environments, client applications submit database requests to the
server using SQL statements. After it is received, the SQL statement is
processed by the server, and the results are returned to the client application.
Network traffic is kept to a minimum, because only the requests and the results
are shipped over the network.

See Also:

= "Oracle Net Services" on page 6-7 for more information about
Oracle Net Services

s Oracle9i Database Administrator’s Guide for more information
about clients and servers in distributed databases

6-4 Oracle9iDatabase Concepts

Multitier Architecture

Multitier Architecture

In a multitier architecture environment, an application server provides data for
clients and serves as an interface between clients and database servers. This
architecture is particularly important because of the prevalence of Internet use.

This architecture enables use of an application server to:

= Validate the credentials of a client, such as a Web browser
= Connect to a database server

= Perform the requested operation

An example of a multitier architecture appears in Figure 6-2.

Application Architecture 6-5

Multitier Architecture

Figure 6—=2 A Multitier Architecture Environment Example

Database Server Database Server Database Server

Thin Client

v | Data Y \4
[:l Application |« Application Application
4P| Server1 Server 2 Server n

Thin Clientjz

Thin Client:lz

i
il
it

]
"l

Query

7 N

v
v

r y N

—

it
il
litf=

|

Database Server Database Server Database Server

Clients

A client initiates a request for an operation to be performed on the database server.
The client can be a Web browser or other end-user process. In a multitier
architecture, the client connects to the database server through one or more
application servers.

Application Servers

An application server provides access to the data for the client. It serves as an
interface between the client and one or more database servers, which provides an
additional level of security. It can also perform some of the query processing for the
client, thus removing some of the load from the database server.

6-6 Oracle9/Database Concepts

Oracle Net Services

The application server assumes the identity of the client when it is performing
operations on the database server for that client. The application server’s privileges
are restricted to prevent it from performing unneeded and unwanted operations
during a client operation.

Database Servers

A database server provides the data requested by an application server on behalf of
a client. The database server does all of the remaining query processing.

The Oracle database server can audit operations performed by the application
server on behalf of individual clients as well as operations performed by the
application server on its own behalf. For example, a client operation can be a
request for information to be displayed on the client, whereas an application server
operation can be a request for a connection to the database server.

See Also: "Multitier Authentication and Authorization" on
page 22-10 for more information about security issues in a multitier
environment

Oracle Net Services

Oracle Net Services provides enterprise-wide connectivity solutions in distributed,
heterogeneous computing environments. Oracle Net Services enables a network
session from a client application to an Oracle database.

Oracle Net Services uses the communication protocols or application programmatic
interfaces (APIs) supported by a wide range of networks to provide a distributed
database and distributed processing for Oracle.

= A communication protocol is a set of rules that determine how applications
access the network and how data is subdivided into packets for transmission
across the network.

= An APl is a set of subroutines that provide, in the case of networks, a means to
establish remote process-to-process communication through a communication
protocol.

The following sections introduce several Oracle Net Services solutions in a typical
network configuration.

Application Architecture 6-7

Oracle Net Services

Connectivity

After a network session is established, Oracle Net Services acts as a data courier for
the client application and the database server. It is responsible for establishing and
maintaining the connection between the client application and database server, as
well as exchanging messages between them. Oracle Net Services is able to perform
these jobs because it is located on each computer in the network.

Manageability

Oracle Net Services provides location transparency, centralized configuration and
management, and quick out-of-the-box installation and configuration.

Internet Scalability

Oracle Net Services enables you to maximize system resources and improve
performance. Oracle’s shared server architecture increases the scalability of
applications and the number of clients simultaneously connected to the
database.The Virtual Interface (V1) protocol places most of the messaging burden
on high-speed network hardware, freeing the CPU for more important tasks.

Internet Security

Network security is enhanced with features like database access control and Oracle
Advanced Security.

See Also: Oracle9i Net Services Administrator’s Guide for more
information about these features

How Oracle Net Services Works

Oracle’s support of industry network protocols provides an interface between
Oracle processes running on the database server and the user processes of Oracle
applications running on other computers of the network.

The Oracle protocols take SQL statements from the interface of the Oracle
applications and package them for transmission to Oracle through one of the
supported industry-standard higher level protocols or programmatic interfaces. The
protocols also take replies from Oracle and package them for transmission to the
applications through the same higher level communications mechanism. This is all
done independently of the network operating system.

Depending on the operation system that runs Oracle, the Oracle Net Services
software of the database server could include the driver software and start an
additional Oracle background process.

6-8 Oracle9/Database Concepts

Oracle Net Services

The Listener

See Also: Oracle9i Net Services Administrator’s Guide for more
information about how Oracle Net Services works

When an instance starts, a listener process establishes a communication pathway to
Oracle. When a user process makes a connection request, the listener determines
whether it should use a shared server dispatcher process or a dedicated server
process and establishes an appropriate connection.

The listener also establishes a communication pathway between databases. When
multiple databases or instances run on one computer, as in Real Application
Clusters, service names enable instances to register automatically with other
listeners on the same machine. A service name can identify multiple instances, and
an instance can belong to multiple services. Clients connecting to a service do not
have to specify which instance they require.

Service Information Registration

Dynamic service registration reduces the administrative overhead for multiple
databases or instances. Information about the services to which the listener
forwards client requests is registered with the listener. Service information can by
dynamically registered with the listener through a feature called service
registration or statically configured in the | i st ener.or a file.

Service registration relies on the PMON process—an instance background
process—to register instance information with a listener, as well as the current state
and load of the instance and shared server dispatchers. The registered information
enables the listener to forward client connection requests to the appropriate service
handler. Service registration does not require configuration in the | i st ener.or a
file.

The initialization parameter SERVI CE_NAMES identifies which database services an
instance belongs to. On startup, each instance registers with the listeners of other
instances belonging to the same services. During database operations, the instances
of each service pass information about CPU use and current connection counts to all
of the listeners in the same services. This enables dynamic load balancing and
connection failover.

Application Architecture 6-9

Oracle Net Services

See Also:

= "Shared Server Architecture" on page 8-15 for more information
about server processes

= "Dedicated Server Configuration" on page 8-21 for more
information about server processes

s Oracle9i Net Services Administrator’s Guide for more information
about the listener

= Oracle9i Real Application Clusters Setup and Configuration and
Oracle9i Real Application Clusters Deployment and Performance for
information about instance registration and client/service
connections in Real Application Clusters

6-10 Oracle9/ Database Concepts

v

Memory Architecture

This chapter discusses the memory architecture of an Oracle instance. It includes:

Introduction to Oracle Memory Structures
System Global Area (SGA) Overview
Program Global Areas (PGA) Overview
Dedicated and Shared Servers

Software Code Areas

Memory Architecture 7-1

Introduction to Oracle Memory Structures

Introduction to Oracle Memory Structures
Oracle uses memory to store information such as the following:
= Program code
=« Information about a connected session, even if it is not currently active

= Information needed during program execution (for example, the current state of
a query from which rows are being fetched)

= Information that is shared and communicated among Oracle processes (for
example, locking information)

= Cached data that is also permanently stored on peripheral memory (for
example, data blocks and redo log entries)

The basic memory structures associated with Oracle include:

= System Global Area (SGA), which is shared by all server and background
processes and holds the following:

— Database buffer cache

— Redo log buffer

— Shared pool

— Large pool (if configured)

= Program Global Areas (PGA), which is private to each server and background
process; there is one PGA for each process. The PGA holds the following:

— Stack areas
— Data areas

Figure 7-1 illustrates the relationships among these memory structures.

7-2 Oracle9i Database Concepts

System Global Area (SGA) Overview

Figure 7—-1 Oracle Memory Structures

Server Server Background
Process | <= | PGA Process | <= | PGA progcess <+ | PCA
1 2

! ! !

System Global Area

Java Buffer Redo

Pool Cache Buffer
Shared Large

Pool Pool

Server Oracle
Process | <= | PGA Process | <= | PGA
3

Software Code Areas are another basic memory structure, discussed on page 7-22.

See Also:
= "System Global Area (SGA) Overview" on page 7-3
= "Program Global Areas (PGA) Overview" on page 7-17

System Global Area (SGA) Overview

A system global area (SGA) is a group of shared memory structures that contain
data and control information for one Oracle database instance. If multiple users are
concurrently connected to the same instance, then the data in the instance’s SGA is
shared among the users. Consequently, the SGA is sometimes called the shared
global area.

An SGA and Oracle processes constitute an Oracle instance. Oracle automatically
allocates memory for an SGA when you start an instance, and the operating system
reclaims the memory when you shut down the instance. Each instance has its own
SGA.

Memory Architecture 7-3

System Global Area (SGA) Overview

The SGA is read/write. All users connected to a multiple-process database instance
can read information contained within the instance’s SGA, and several processes
write to the SGA during execution of Oracle.

The SGA contains the following data structures;
= Database buffer cache

= Redo log buffer

= Shared pool

= Java pool

= Large pool (optional)

= Data dictionary cache

= Other miscellaneous information

Part of the SGA contains general information about the state of the database and the
instance, which the background processes need to access; this is called the fixed
SGA. No user data is stored here. The SGA also includes information
communicated between processes, such as locking information.

If the system uses shared server architecture, then the request and response queues
and some contents of the PGA are in the SGA.
See Also:

= "Introduction to an Oracle Instance" on page 5-2 for more
information about an Oracle instance

= "Program Global Areas (PGA) Overview" on page 7-17

= "Dispatcher Request and Response Queues" on page 8-16

Dynamic SGA

With the dynamic SGA infrastructure, the size of the buffer cache, the shared pool,
the large pool, and the process-private memory can be changed without shutting
down the instance.

Dynamic SGA allows Oracle to set, at run time, limits on how much virtual memory
Oracle uses for the SGA. Oracle can start instances underconfigured and allow the
instance to use more memory by growing the SGA components, up to a maximum
of SGA_MAX_SI ZE. If SGA_MAX_SI ZE specified in the initialization parameter file is
less than the sum of all components specified or defaulted at initialization time,
then the setting in the initialization parameter file is ignored.

7-4 Oracle9i Database Concepts

System Global Area (SGA) Overview

For optimal performance in most systems, the entire SGA should fit in real memory.
If it does not, and if virtual memory is used to store parts of it, then overall database
system performance can decrease dramatically, because portions of the SGA are
paged (written to and read from disk) by the operating system. The amount of
memory dedicated to all shared areas in the SGA also has performance impact.

The size of the SGA is determined by several initialization parameters. The
following parameters most affect SGA size:

Parameter Description

DB _CACHE_SI ZE The size of the cache of standard blocks.

LOG BUFFER The number of bytes allocated for the redo log buffer.

SHARED POOL_SI ZE The size in bytes of the area devoted to shared SQL and
PL/SQL statements.

LARGE _POOL_SI ZE The size of the large pool; the default is 0.

The memory allocated for an instance’s SGA is displayed on instance startup when
using Enterprise Manager or SQL*Plus. You can also display the current instance’s
SGA size using the SQL*Plus SHOWstatement with the SGA clause.

Dynamic SGA Granules

With dynamic SGA, the unit of allocation is called a granule. Components, such as the
buffer cache, the shared pool, the java pool, and the large pool, allocate and free
SGA space in units of granules. Oracle tracks SGA memory use in integral numbers
of granules, by SGA component. All information about a granule is stored in a
corresponding granule entry. Oracle maintains the state of each granule in the
granule entry and the granule type.

Granule size is determined by total SGA size. On most platforms, the size of a
granule is 4 MB if the total SGA size is less than 128 MB, and it is 16 MB for larger
SGAs. There may be some platform dependency, for example, on 32-bit Windows
NT, the granule size is 8 MB for SGAs larger than 128 MB.

The granule size that is currently being used for SGA can be viewed in the view
V$SGA DYNAM C_COVPONENTS. The same granule size is used for all dynamic
components in the SGA.

Memory Architecture 7-5

System Global Area (SGA) Overview

Note: If you specify a size for a component that is not a multiple
of granule size, then Oracle rounds the specified size up to the
nearest multiple. For example, if the granule size is 4 MB and you
specify DB_CACHE_SI ZE as 10 MB, you will actually be allocated
12 MB.

Oracle keeps information about the components and their granules in a scoreboard.
For each component that owns granules, the scoreboard contains the number of
granules allocated to the component, any pending operations against this
component, the target size in granules, and the progress made toward the target
size. The start time of the operation is also logged. Oracle maintains the initial
number of granules and the maximum number of granules for each component.

For operations that modify the number of granules, Oracle logs the operation, the
target size, and the start time to the appropriate SGA component in the scoreboard.
Oracle updates the progress field until the operation is complete. When the
operation is complete, Oracle replaces the current size with the target size and clears
the target size field and the progress field. At the end of the operation, a database
administrator can see how the number of granules was changed. Oracle updates the
initialization parameter values to reflect the updated amount of SGA in use.

Oracle maintains a circular buffer of the last 100 operations made to the scoreboard.
Fixed views show the state of the scoreboard and the current contents of last 100
operations to the scoreboard.

Allocating Granules at Startup At startup, Oracle reads the values in the initialization
parameter file, queries the operating system memory limits, and allocates virtual
address space for the SGA. The initialization parameter SGA_MAX_SI ZE specifies
the maximum size of the SGA for the life of the instance in bytes. Its value is
rounded up to the next granule size.

Adding Granules to Components A database administrator grows a component’s SGA
use with ALTER SYSTEMstatements to modify the initialization parameter values.
Oracle takes the new size, rounds it up to the nearest multiple of 16MB, and adds or
takes away granules to meet the target size. Oracle must have enough free granules
to satisfy the request. If the current amount of SGA memory is less than SGA MAX_
SI ZE, then Oracle can allocate more granules until the SGA size reaches SGA MAX
S| ZE.

7-6 Oracle9i Database Concepts

System Global Area (SGA) Overview

See Also:

s Oracle9i Database Administrator’s Guide for information on
allocating memory

= Oracle Enterprise Manager Administrator’s Guide for information
on showing the SGA size with Enterprise Manager

s SQL*Plus User’s Guide and Reference for information on
displaying the SGA size with SQL*Plus

= Oracle9i Database Reference for information on V$SGASTAT

= Your Oracle installation or user’s guide for information specific
to your operating system

Database Buffer Cache

The database buffer cache is the portion of the SGA that holds copies of data blocks
read from datafiles. All user processes concurrently connected to the instance share
access to the database buffer cache.

The database buffer cache and the shared SQL cache are logically segmented into
multiple sets. This organization into multiple sets reduces contention on
multiprocessor systems.

Organization of the Database Buffer Cache

The buffers in the cache are organized in two lists: the write list and the least
recently used (LRU) list. The write list holds dirty buffers, which contain data that
has been modified but has not yet been written to disk. The LRU list holds free
buffers, pinned buffers, and dirty buffers that have not yet been moved to the write
list. Free buffers do not contain any useful data and are available for use. Pinned
buffers are currently being accessed.

When an Oracle process accesses a buffer, the process moves the buffer to the most
recently used (MRU) end of the LRU list. As more buffers are continually moved to
the MRU end of the LRU list, dirty buffers age toward the LRU end of the LRU list.

The first time an Oracle user process requires a particular piece of data, it searches
for the data in the database buffer cache. If the process finds the data already in the
cache (a cache hit), it can read the data directly from memory. If the process cannot
find the data in the cache (a cache miss), it must copy the data block from a datafile
on disk into a buffer in the cache before accessing the data. Accessing data through
a cache hit is faster than data access through a cache miss.

Memory Architecture 7-7

System Global Area (SGA) Overview

Before reading a data block into the cache, the process must first find a free buffer.
The process searches the LRU list, starting at the least recently used end of the list.
The process searches either until it finds a free buffer or until it has searched the
threshold limit of buffers.

If the user process finds a dirty buffer as it searches the LRU list, it moves that
buffer to the write list and continues to search. When the process finds a free buffer,
it reads the data block from disk into the buffer and moves the buffer to the MRU
end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a
free buffer, the process stops searching the LRU list and signals the DBWO
background process to write some of the dirty buffers to disk.

See Also: "Database Writer Process (DBWn)" on page 8-8 for more
information about DBWn processes

The LRU Algorithm and Full Table Scans

When the user process is performing a full table scan, it reads the blocks of the table
into buffers and puts them on the LRU end (instead of the MRU end) of the LRU
list. This is because a fully scanned table usually is needed only briefly, so the blocks
should be moved out quickly to leave more frequently used blocks in the cache.

You can control this default behavior of blocks involved in table scans on a
table-by-table basis. To specify that blocks of the table are to be placed at the MRU
end of the list during a full table scan, use the CACHE clause when creating or
altering a table or cluster. You can specify this behavior for small lookup tables or
large static historical tables to avoid 1/0 on subsequent accesses of the table.

See Also: Oracle9i SQL Reference for information about the
CACHE clause

Size of the Database Buffer Cache

Oracle supports multiple block size in a database. This is the default block size—the
block size used for the system tablespace. You specify the standard block size by
setting the initialization parameter DB_BLOCK_SI ZE. Legitimate values are from 2K
to 32K.

To specify the size of the standard block size cache, set the initialization parameter
DB_CACHE_SI ZE. Optionally, you can also set the size for two additional buffer
pools, KEEP and RECYCLE, by setting DB_KEEP_CACHE_SI ZE and DB_RECYCLE _
CACHE_SI ZE. These three parameters are independent of one another.

7-8 Oracle9i Database Concepts

System Global Area (SGA) Overview

See Also: "Multiple Buffer Pools" on page 7-10 for more
information about the KEEP and RECYCLE buffer pools

The sizes and numbers of non-standard block size buffers are specified by the
following parameters:

DB 2K CAGHE S ZE
DB 4K CAGHE SI ZE
DB 8K CACHE SI ZE
DB 16K CAGHE SI ZE
DB 32K CAGHE SI ZE

Each parameter specifies the size of the cache for the corresponding block size.

Note: Platform-specific restrictions regarding the maximum block
size apply, so some of these sizes might not be allowed on some
platforms.

Example of Setting Block and Cache Sizes
[B BLOK S ZE=4096

DB _CAGHE S ZE=1024M

DB 2K CACHE Sl ZE=256M

[B 8K CAGHE Sl ZE=512M

In the preceding example, the parameter DB_BLOCK S| ZE sets the standard block
size of the database to 4K. The size of the cache of standard block size buffers is
1024MB. Additionally, 2K and 8K caches are also configured, with sizes of 256 MB
and 512MB, respectively.

Note: The DB_nK_CACHE_SI ZE parameters cannot be used to
size the cache for the standard block size. If the value of DB _
BLOCK_SI ZEis nK, itis illegal to set DB _nK_CACHE_SI ZE. The
size of the cache for the standard block size is always determined
from the value of DB_ CACHE_SI ZE.

The cache has a limited size, so not all the data on disk can fit in the cache. When
the cache is full, subsequent cache misses cause Oracle to write dirty data already in
the cache to disk to make room for the new data. (If a buffer is not dirty, it does not
need to be written to disk before a new block can be read into the buffer.)

Memory Architecture 7-9

System Global Area (SGA) Overview

Subsequent access to any data that was written to disk results in additional cache
misses.

The size of the cache affects the likelihood that a request for data results in a cache
hit. If the cache is large, it is more likely to contain the data that is requested.
Increasing the size of a cache increases the percentage of data requests that result in
cache hits.

You can change the size of the buffer cache while the instance is running, without
having to shut down the database. Do this with the ALTER SYSTEMstatement. For
more information, see "Control of the SGA’s Use of Memory" on page 7-16.

Use the fixed view VSBUFFER _POQL to track the sizes of the different cache
components and any pending resize operations.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information about tuning the buffer cache

Multiple Buffer Pools

You can configure the database buffer cache with separate buffer pools that either
keep data in the buffer cache or make the buffers available for new data
immediately after using the data blocks. Particular schema objects (tables, clusters,
indexes, and partitions) can then be assigned to the appropriate buffer pool to
control the way their data blocks age out of the cache.

= The KEEP buffer pool retains the schema object’s data blocks in memory.

= The RECYCLE buffer pool eliminates data blocks from memory as soon as they
are no longer needed.

= The DEFAULT buffer pool contains data blocks from schema objects that are not
assigned to any buffer pool, as well as schema objects that are explicitly
assigned to the DEFAULT pool.

The initialization parameters that configure the KEEP and RECYCLE buffer pools are
DB_KEEP_CACHE_SI ZE and DB_RECYCLE_CACHE_SI ZE.

Note: Multiple buffer pools are only available for the standard
block size. Non-standard block size caches have a single DEFAULT
pool.

7-10 Oracle9/ Database Concepts

System Global Area (SGA) Overview

See Also:

= Oracle9i Database Performance Tuning Guide and Reference for
more information about multiple buffer pools

= Oracle9i SQL Reference for the syntax of the BUFFER _POCL
clause of the STORAGE clause

Redo Log Buffer

Shared Pool

The redo log buffer is a circular buffer in the SGA that holds information about
changes made to the database. This information is stored in redo entries. Redo
entries contain the information necessary to reconstruct, or redo, changes made to
the database by | NSERT, UPDATE, DELETE, CREATE, ALTER, or DROP operations.
Redo entries are used for database recovery, if necessary.

Redo entries are copied by Oracle server processes from the user’s memory space to
the redo log buffer in the SGA. The redo entries take up continuous, sequential
space in the buffer. The background process LGWR writes the redo log buffer to the
active online redo log file (or group of files) on disk.

See Also:

= "Log Writer Process (LGWR)" on page 8-9 for more information
about how the redo log buffer is written to disk

= Oracle9i Backup and Recovery Concepts for information about
online redo log files and groups

The initialization parameter LOG_BUFFER determines the size (in bytes) of the redo
log buffer. In general, larger values reduce log file 170, particularly if transactions
are long or numerous. The default setting is either 512 kilobytes (KB) or 128 KB
times the setting of the CPU_COUNT parameter, whichever is greater.

The shared pool portion of the SGA contains three major areas: library cache,
dictionary cache, buffers for parallel execution messages, and control structures.

Note: If the initialization parameter PARALLEL _AUTQOVATI C_
TUNI NGis set to t r ue, these buffers are allocated from the large
pool.

Memory Architecture 7-11

System Global Area (SGA) Overview

The total size of the shared pool is determined by the initialization parameter
SHARED POOL_SI ZE. The default value of this parameter is 8MB on 32-bit
platforms and 64MB on 64-bit platforms. Increasing the value of this parameter
increases the amount of memory reserved for the shared pool.

Library Cache

The library cache includes the shared SQL areas, private SQL areas (in the case of a
multiple transaction server), PL/SQL procedures and packages, and control
structures such as locks and library cache handles.

Shared SQL areas are accessible to all users, so the library cache is contained in the
shared pool within the SGA.

Shared SQL Areas and Private SQL Areas

Oracle represents each SQL statement it runs with a shared SQL area and a private
SQL area. Oracle recognizes when two users are executing the same SQL statement
and reuses the shared SQL area for those users. However, each user must have a
separate copy of the statement’s private SQL area.

Shared SQL Areas A shared SQL area contains the parse tree and execution plan for a
given SQL statement. Oracle saves memory by using one shared SQL area for SQL
statements run multiple times, which often happens when many users run the same
application.

Oracle allocates memory from the shared pool when a new SQL statement is
parsed, to store in the shared SQL area. The size of this memory depends on the
complexity of the statement. If the entire shared pool has already been allocated,
Oracle can deallocate items from the pool using a modified LRU (least recently
used) algorithm until there is enough free space for the new statement’s shared SQL
area. If Oracle deallocates a shared SQL area, the associated SQL statement must be
reparsed and reassigned to another shared SQL area at its next execution.

See Also:
= "Private SQL Area" on page 7-17

= Oracle9i Database Performance Tuning Guide and Reference

PL/SQL Program Units and the Shared Pool

Oracle processes PL/SQL program units (procedures, functions, packages,
anonymous blocks, and database triggers) much the same way it processes
individual SQL statements. Oracle allocates a shared area to hold the parsed,

7-12 Oracle9i Database Concepts

System Global Area (SGA) Overview

compiled form of a program unit. Oracle allocates a private area to hold values
specific to the session that runs the program unit, including local, global, and
package variables (also known as package instantiation) and buffers for executing
SQL. If more than one user runs the same program unit, then a single, shared area is
used by all users, while each user maintains a separate copy of his or her private
SQL area, holding values specific to his or her session.

Individual SQL statements contained within a PL/SQL program unit are processed
as described in the previous sections. Despite their origins within a PL/SQL
program unit, these SQL statements use a shared area to hold their parsed
representations and a private area for each session that runs the statement.

Dictionary Cache

The data dictionary is a collection of database tables and views containing reference
information about the database, its structures, and its users. Oracle accesses the data
dictionary frequently during SQL statement parsing. This access is essential to the
continuing operation of Oracle.

The data dictionary is accessed so often by Oracle that two special locations in
memory are designated to hold dictionary data. One area is called the data
dictionary cache, also known as the row cache because it holds data as rows instead
of buffers (which hold entire blocks of data). The other area in memory to hold
dictionary data is the library cache. All Oracle user processes share these two caches
for access to data dictionary information.

See Also:
= Chapter 4, "The Data Dictionary"
= "Library Cache" on page 7-12

Allocation and Reuse of Memory in the Shared Pool

In general, any item (shared SQL area or dictionary row) in the shared pool remains
until it is flushed according to a modified LRU algorithm. The memory for items
that are not being used regularly is freed if space is required for new items that
must be allocated some space in the shared pool. A modified LRU algorithm allows
shared pool items that are used by many sessions to remain in memory as long as
they are useful, even if the process that originally created the item terminates. As a
result, the overhead and processing of SQL statements associated with a multiuser
Oracle system is minimized.

When a SQL statement is submitted to Oracle for execution, Oracle automatically
performs the following memory allocation steps:

Memory Architecture 7-13

System Global Area (SGA) Overview

1. Oracle checks the shared pool to see if a shared SQL area already exists for an
identical statement. If so, that shared SQL area is used for the execution of the
subsequent new instances of the statement. Alternatively, if there is no shared
SQL area for a statement, Oracle allocates a new shared SQL area in the shared
pool. In either case, the user’s private SQL area is associated with the shared
SQL area that contains the statement.

Note: A shared SQL area can be flushed from the shared pool,
even if the shared SQL area corresponds to an open cursor that has
not been used for some time. If the open cursor is subsequently
used to run its statement, Oracle reparses the statement, and a new
shared SQL area is allocated in the shared pool.

2. Oracle allocates a private SQL area on behalf of the session. The location of the
private SQL area depends on the type of connection established for the session.

Oracle also flushes a shared SQL area from the shared pool in these circumstances:

= When the ANALYZE statement is used to update or delete the statistics of a
table, cluster, or index, all shared SQL areas that contain statements referencing
the analyzed schema object are flushed from the shared pool. The next time a
flushed statement is run, the statement is parsed in a new shared SQL area to
reflect the new statistics for the schema object.

= If aschema object is referenced in a SQL statement and that object is later
modified in any way, the shared SQL area is invalidated (marked invalid), and
the statement must be reparsed the next time it is run.

= If you change a database’s global database name, all information is flushed
from the shared pool.

= The administrator can manually flush all information in the shared pool to
assess the performance (with respect to the shared pool, not the data buffer
cache) that can be expected after instance startup without shutting down the
current instance. The statement ALTER SYSTEMFLUSH SHARED POCL is used
to do this.

7-14 Oracle9/ Database Concepts

System Global Area (SGA) Overview

Large Pool

See Also:

= "Shared SQL Areas and Private SQL Areas" on page 7-12 for
more information about the location of the private SQL area

= Chapter 15, "Dependencies Among Schema Objects" for more
information about the invalidation of SQL statements and
dependency issues

= Oracle9i SQL Reference for information about using ALTER
SYSTEMFLUSH SHARED POCL

= Oracle9i Database Reference for information about V$SQL and
V$SQLAREA dynamic views

The database administrator can configure an optional memory area called the large
pool to provide large memory allocations for:

= Session memory for the shared server and the Oracle XA interface (used where
transactions interact with more than one database)

= 1/0 server processes
= Oracle backup and restore operations

= Parallel execution message buffers, if the initialization parameter PARALLEL _
AUTOVATI C_TUNI NGis set to t r ue (otherwise, these buffers are allocated to
the shared pool)

By allocating session memory from the large pool for shared server, Oracle XA, or
parallel query buffers, Oracle can use the shared pool primarily for caching shared
SQL and avoid the performance overhead caused by shrinking the shared SQL
cache.

In addition, the memory for Oracle backup and restore operations, for 1/0 server
processes, and for parallel buffers is allocated in buffers of a few hundred kilobytes.
The large pool is better able to satisfy such large memory requests than the shared
pool.

The large pool does not have an LRU list. It is different from reserved space in the
shared pool, which uses the same LRU list as other memory allocated from the
shared pool.

Memory Architecture 7-15

System Global Area (SGA) Overview

See Also:

= "Shared Server Architecture” on page 8-15 for information
about allocating session memory from the large pool for the
shared server

= Oracle9i Application Developer’s Guide - Fundamentals for
information about Oracle XA

= Oracle9i Database Performance Planning for more information
about the large pool, reserve space in the shared pool, and 1/0
server processes

= "Degree of Parallelism" on page 18-8 for information about
allocating memory for parallel execution

Control of the SGA’s Use of Memory

Dynamic SGA provides external controls for increasing and decreasing Oracle’s use
of physical memory. Together with the dynamic buffer cache, shared pool, and large
pool, dynamic SGA allows the following:

= The SGA can grow in response to a database administrator statement, up to an
operating system specified maximum and the SGA_MAX_SI ZE specification.

= The SGA can shrink in response to a database administrator statement, to an
Oracle prescribed minimum, usually an operating system preferred limit.

= Both the buffer cache and the SGA pools can grow and shrink at runtime
according to some internal, Oracle-managed policy.

Other SGA Initialization Parameters
You can use several initialization parameters to control how the SGA uses memory.

Physical Memory
The LOCK_SGA parameter locks the SGA into physical memory.

SGA Starting Address

The SHARED MEMORY_ADDRESS and HI _SHARED MEMORY _ADDRESS parameters
specify the SGA’s starting address at runtime. These parameters are rarely used. For
64-bit platforms, H _ SHARED MEMORY_ADDRESS specifies the high order 32 bits of
the 64-bit address.

7-16 Oracle9/ Database Concepts

Program Global Areas (PGA) Overview

Extended Buffer Cache Mechanism

The USE_| NDI RECT_DATA BUFFERS parameter enables the extended buffer cache
mechanism for 32-bit platforms that can support more than 4 GB of physical
memory.

However, the dynamic buffer cache feature requires every buffer to have a valid
virtual address. This is because the underlying unit of allocation, a granule, is
identified by its virtual address. For this reason, the extended cache feature is not
available in the current version.

See Also:

= Oracle9i Database Reference for details about the USE
| NDI RECT_DATA BUFFERS parameter

= Your Oracle installation or user’s guide for information specific
to your operating system

Program Global Areas (PGA) Overview

A program global area (PGA) is a memory region which contains data and control
information for a server process. It is a nonshared memory created by Oracle when
a server process is started. Access to it is exclusive to that server process and is read
and written only by Oracle code acting on behalf of it. The total PGA memory
allocated by each server process attached to an Oracle instance is also referred to as
the aggregated PGA memory allocated by the instance.

See Also: "Connections and Sessions" on page 8-4 for information
about sessions

Content of the PGA

The content of the PGA memory varies, depending on whether the instance is
running the shared server option or not. But generally speaking, the PGA memory
can be classified as follows.

Private SQL Area

A private SQL area contains data such as bind information and runtime memory
structures. Each session that issues a SQL statement has a private SQL area. Each
user that submits the same SQL statement has his or her own private SQL area that

Memory Architecture 7-17

Program Global Areas (PGA) Overview

uses a single shared SQL area. Thus, many private SQL areas can be associated with
the same shared SQL area.

The private SQL area of a cursor is itself divided into two areas whose lifetimes are
different:

= The persistent area, which contains, for example, bind information. It is freed
only when the cursor is closed.

= The run-time area, which is freed when the execution is terminated.

Oracle creates the runtime area as the first step of an execute request. For | NSERT,
UPDATE, and DELETE statements, Oracle frees the runtime area after the statement
has been run. For queries, Oracle frees the runtime area only after all rows are
fetched or the query is canceled.

The location of a private SQL area depends on the type of connection established for
a session. If a session is connected through a dedicated server, private SQL areas are
located in the server process’s PGA. However, if a session is connected through a
shared server, part of the private SQL area is kept in the SGA.

See Also:

= "Program Global Areas (PGA) Overview" on page 7-17 for
information about the PGA

= "Connections and Sessions" on page 8-4 for more information
about sessions

= "SQL Work Areas" on page 7-19 for information about SELECT
runtimes during a sort, hash-join, bitmap create, or bitmap
merge

s Oracle9i Net Services Administrator’s Guide for an introduction to
shared servers

Cursors and SQL Areas The application developer of an Oracle precompiler program
or OCI program can explicitly open cursors, or handles to specific private SQL
areas, and use them as a named resource throughout the execution of the program.
Recursive cursors that Oracle issues implicitly for some SQL statements also use
shared SQL areas.

The management of private SQL areas is the responsibility of the user process. The
allocation and deallocation of private SQL areas depends largely on which
application tool you are using, although the number of private SQL areas that a user

7-18 Oracle9i Database Concepts

Program Global Areas (PGA) Overview

process can allocate is always limited by the initialization parameter OPEN _
CURSORS. The default value of this parameter is 50.

A private SQL area continues to exist until the corresponding cursor is closed or the
statement handle is freed. Although Oracle frees the runtime area after the
statement completes, the persistent area remains waiting. Application developers
close all open cursors that will not be used again to free the persistent area and to
minimize the amount of memory required for users of the application.

See Also: "Cursors" on page 14-6

Session Memory

Session memory is the memory allocated to hold a session’s variables (logon
information) and other information related to the session. For a shared server, the
session memory is shared and not private.

SQL Work Areas

For complex queries (for example, decision-support queries), a big portion of the
runtime area is dedicated to work areas allocated by memory-intensive operators
such as the following:

= Sort-based operators (order by, group-by, rollup, window function)
= Hash-join

= Bitmap merge

= Bitmap create

For example, a sort operator uses a work area (sometimes called the sort area) to
perform the in-memory sort of a set of rows. Similarly, a hash-join operator uses a
work area (also called the hash area) to build a hash table from its left input. If the
amount of data to be processed by these two operators does not fit into a work area,
the input data is divided into smaller pieces. This allows some data pieces to be
processed in memory while the rest are spilled to temporary disk storage to be
processed later. Although bitmap operators do not spill to disk when their
associated work area is too small, their complexity is inversely proportional to the
size of their work area. Thus, these operators run faster with larger work area.

The size of a work area can be controlled and tuned. Generally, bigger work areas
can significantly improve the performance of a particular operator at the cost of
higher memory consumption. Optimally, the size of a work area is big enough such
to accommodate the input data and auxiliary memory structures allocated by its

Memory Architecture 7-19

Program Global Areas (PGA) Overview

associated SQL operator. If not, response time increases, because part of the input
data must be spilled to temporary disk storage. In the extreme case, if the size of a
work area is far too small compared to the input data size, multiple passes over the
data pieces must be performed. This can dramatically increase the response time of
the operator.

PGA Memory Management for Dedicated Mode

You can automatically and globally manage the size of SQL work areas. The
database administrator simply needs to specify the total size dedicated to PGA
memory for the Oracle instance by setting the initialization parameter PGA _
AGCGREGATE_TARGET. The specified number (for example, 2G) is a global target for
the Oracle instance, and Oracle tries to ensure that the total amount of PGA
memory allocated across all database server processes never exceeds this target.

Note: In earlier releases, the database administrator controlled the
maximum size of SQL work areas by setting the following
parameters: SORT_AREA S| ZE, HASH AREA_SI ZE, Bl TMAP_
VERGE_AREA_SI ZE and CREATE_BI TMAP_AREA_SI ZE. Setting
these parameters is difficult, because the maximum work area size
is ideally selected from the data input size and the total number of
work areas active in the system. These two factors vary a lot from
one work area to another and from one time to another. Thus, the
various * _AREA Sl ZE parameters are hard to tune under the best
of circumstances.

With PGA_AGCREGATE_TARGET, sizing of work areas for all dedicated sessions is
automatic and all * _AREA_SI ZE parameters are ignored for these sessions. At any
given time, the total amount of PGA memory available to active work areas on the
instance is automatically derived from the parameter PGA_ AGGREGATE TARGET.
This amount is set to the value of PGA AGGREGATE_TARGET minus the PGA
memory allocated by other components of the system (for example, PGA memory
allocated by sessions). The resulting PGA memory is then allotted to individual
active work areas based on their specific memory requirement.

7-20 Oracle9/i Database Concepts

Program Global Areas (PGA) Overview

Note: The initialization parameter WORKAREA S| ZE_PCOLI CY is a
session- and system-level parameter that can take only two values:

MANUAL or AUTO. The default is AUTO. The database administrator

can set PGA_AGGREGATE_TARCET, and then switch back and forth

from auto to manual memory management mode.

There are fixed views and columns that provide PGA memory use statistics. Most of
these statistics are enabled when PGA AGGREGATE _TARCET is set.

Statistics on allocation and use of work area memory can be viewed in the
following dynamic views:

V$SYSSTAT

V$SESSTAT

V$PGASTAT
V$SQL_WORKAREA
V$SQL_WORKAREA ACTI VE

The following three columns in the VEPROCESS view report the PGA memory
allocated and used by an Oracle process:

PGA_USED_MEM
PGA_ALLOCATED MEM
PGA_MAX_MEM

Note: The automatic PGA memory management mode only
applies to work areas allocated by dedicated Oracle servers. The
size of work areas allocated by shared Oracle servers is still
controlled by the old * _AREA SI ZE parameters, because these
work areas are allocated mainly in SGA and not in PGA

See Also:
= Oracle9i Database Reference for information about views

= Oracle9i Database Performance Tuning Guide and Reference for
information about using these views

Memory Architecture 7-21

Dedicated and Shared Servers

Dedicated and Shared Servers

Memory allocation depends, in some specifics, on whether the system uses
dedicated or shared server architecture. Table 7-1 shows the differences.

Table 7-1 Differences in Memory Allocation Between Dedicated and Shared Servers

Dedicated Shared

Memory Area Server Server
Nature of session memory Private Shared
Location of the persistent area PGA SGA
Location of part of the runtime area for SELECT PGA SGA
statements

Location of the runtime area for DML/DDL statements PGA PGA

Software Code Areas

Software code areas are portions of memory used to store code that is being run or
can be run. Oracle code is stored in a software area that is typically at a different
location from users’ programs—a more exclusive or protected location.

Software areas are usually static in size, changing only when software is updated or
reinstalled. The required size of these areas varies by operating system.

Software areas are read-only and can be installed shared or nonshared. When
possible, Oracle code is shared so that all Oracle users can access it without having
multiple copies in memory. This results in a saving of real main memory and
improves overall performance.

User programs can be shared or nonshared. Some Oracle tools and utilities (such as
SQL*Forms and SQL*Plus) can be installed shared, but some cannot. Multiple
instances of Oracle can use the same Oracle code area with different databases if
running on the same computer.

Note: The option of installing software shared is not available for
all operating systems (for example, on PCs operating Windows).

See your Oracle operating system-specific documentation for more
information.

7-22 Oracle9i Database Concepts

38

Process Architecture

This chapter discusses the processes in an Oracle database system and the different

configurations available for an Oracle system. It includes:

Introduction to Processes

User Processes Overview
Oracle Processes Overview
Shared Server Architecture
Dedicated Server Configuration

The Program Interface

Process Architecture 8-1

Introduction to Processes

Introduction to Processes

All connected Oracle users must run two modules of code to access an Oracle
database instance.

= Application or Oracle tool: A database user runs a database application (such as
a precompiler program) or an Oracle tool (such as SQL*Plus), which issues SQL
statements to an Oracle database.

= Oracle server code; Each user has some Oracle server code executing on his or
her behalf, which interprets and processes the application’s SQL statements.

These code modules are run by processes. A process is a "thread of control” or a
mechanism in an operating system that can run a series of steps. (Some operating
systems use the terms job or task.) A process normally has its own private memory
area in which it runs.

Multiple-Process Oracle Systems

Multiple-process Oracle (also called multiuser Oracle) uses several processes to
run different parts of the Oracle code and additional processes for the users—either
one process for each connected user or one or more processes shared by multiple
users. Most database systems are multiuser, because one of the primary benefits of a
database is managing data needed by multiple users at the same time.

Each process in an Oracle instance performs a specific job. By dividing the work of
Oracle and database applications into several processes, multiple users and
applications can connect to a single database instance simultaneously while the
system maintains excellent performance.

Types of Processes
The processes in an Oracle system can be categorized into two major groups:

= User processes run the application or Oracle tool code.

= Oracle processes run the Oracle server code. They include server processes and
background processes.

The process structure varies for different Oracle configurations, depending on the
operating system and the choice of Oracle options. The code for connected users can
be configured as a dedicated server or a shared server.

With dedicated server, for each user, the database application is run by a different
process (a user process) than the one that runs the Oracle server code (a dedicated
server process).

8-2 Oracle9iDatabase Concepts

Introduction to Processes

With shared server, the database application is run by a different process (a user
process) than the one that runs the Oracle server code. Each server process that runs
Oracle server code (a shared server process) can serve multiple user processes.

Figure 8-1 illustrates a dedicated server configuration. Each connected user has a
separate user process, and several background processes run Oracle.

Figure 8-=1 An Oracle Instance

User User User User -——— = - ;Jr?)ecresses
System Global Area
(SGA)
. Oracle
Recoverer Process System Database Log Archiver Processes
(RECO) Monitor Monitor Writer Writer (ARCO) | (background
(PMON) (SMON) (bBWO) (LGWR) processes)

Figure 8-1 can represent multiple concurrent users running an application on the
same machine as Oracle. This particular configuration usually runs on a mainframe
or minicomputer.

Process Architecture 8-3

User Processes Overview

See Also:

= "User Processes Overview" on page 8-4

= "Oracle Processes Overview" on page 8-5

= "Dedicated Server Configuration" on page 8-21
= "Shared Server Architecture" on page 8-15

= Your Oracle operating system-specific documentation for more
details on configuration choices

User Processes Overview

When a user runs an application program (such as a Pro*C program) or an Oracle
tool (such as Enterprise Manager or SQL*Plus), Oracle creates a user process to run
the user’s application.

Connections and Sessions

Connection and session are closely related to user process but are very different in
meaning.

A connection is a communication pathway between a user process and an Oracle
instance. A communication pathway is established using available interprocess
communication mechanisms (on a computer that runs both the user process and
Oracle) or network software (when different computers run the database
application and Oracle, and communicate through a network).

A session is a specific connection of a user to an Oracle instance through a user
process. For example, when a user starts SQL*Plus, the user must provide a valid
username and password, and then a session is established for that user. A session
lasts from the time the user connects until the time the user disconnects or exits the
database application.

Multiple sessions can be created and exist concurrently for a single Oracle user
using the same username. For example, a user with the username/password of
SCOTT/ Tl GER can connect to the same Oracle instance several times.

In configurations without the shared server, Oracle creates a server process on
behalf of each user session. However, with the shared server, many user sessions
can share a single server process.

See Also: "Shared Server Architecture" on page 8-15

8-4 Oracle9iDatabase Concepts

Oracle Processes Overview

Oracle Processes Overview

This section describes the two types of processes that run the Oracle server code
(server processes and background processes). It also describes the trace files and
alert file, which record database events for the Oracle processes.

Server Processes

Oracle creates server processes to handle the requests of user processes connected
to the instance. In some situations when the application and Oracle operate on the
same machine, it is possible to combine the user process and corresponding server
process into a single process to reduce system overhead. However, when the
application and Oracle operate on different machines, a user process always
communicates with Oracle through a separate server process.

Server processes (or the server portion of combined user/server processes) created
on behalf of each user’s application can perform one or more of the following:

= Parse and run SQL statements issued through the application

= Read necessary data blocks from datafiles on disk into the shared database
buffers of the SGA, if the blocks are not already present in the SGA

= Return results in such a way that the application can process the information

Background Processes

To maximize performance and accommodate many users, a multiprocess Oracle
system uses some additional Oracle processes called background processes.

An Oracle instance can have many background processes; not all are always
present. The background processes in an Oracle instance include the following:

= Database Writer (DBWO0 or DBWn)

= Log Writer (LGWR)

= Checkpoint (CKPT)

= System Monitor (SMON)

= Process Monitor (PMON)

= Archiver (ARCn)

= Recoverer (RECO)

= Lock Manager Server (LMS) - Real Application Clusters only

Process Architecture 8-5

Oracle Processes Overview

= Queue Monitor (QMNN)
= Dispatcher (Dnnn)
= Server (Snnn)

On many operating systems, background processes are created automatically when
an instance is started.

Figure 8-2 illustrates how each background process interacts with the different
parts of an Oracle database, and the rest of this section describes each process.

See Also:

= Oracle9i Real Application Clusters Concepts for more information.
Oracle9i Real Application Clusters are not illustrated in
Figure 8-2

= Your operating system-specific documentation for details on
how these processes are created

8-6 Oracle9/Database Concepts

Oracle Processes Overview

Figure 82 The Background Processes of a Multiple-Process Oracle Instance

RECO PMON SMON

System Global Area

Database Redo Log
Buffer Cache Buffer
4 4
I I
User Shared Dedicated
Process Server Server
Process Process
User Processes
A A A
ckeT N ARCO Offline
5000 Storage
Device
v v

DBWO
JI LGWR
| —
v

User

Legend:

Process

RECO Recoverer process
PMON Process monitor
SMON System monitor

CKPT Checkpoint vy
ARCO Archiver
DBWO Database writer]

LGWR Log writer
D000 Dispatcher Process

— >
Datafiles

Process Architecture 8-7

Oracle Processes Overview

Database Writer Process (DBWn)

The database writer process (DBWn) writes the contents of buffers to datafiles. The
DBWn processes are responsible for writing modified (dirty) buffers in the database
buffer cache to disk. Although one database writer process (DBWO) is adequate for
most systems, you can configure additional processes (DBW1 through DBW9 and
DBWa through DBWj) to improve write performance if your system modifies data
heavily. These additional DBWn processes are not useful on uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked dirty. A cold
buffer is a buffer that has not been recently used according to the least recently used
(LRU) algorithm. The DBWn process writes cold, dirty buffers to disk so that user
processes are able to find cold, clean buffers that can be used to read new blocks
into the cache. As buffers are dirtied by user processes, the number of free buffers
diminishes. If the number of free buffers drops too low, user processes that must
read blocks from disk into the cache are not able to find free buffers. DBWn
manages the buffer cache so that user processes can always find free buffers.

By writing cold, dirty buffers to disk, DBWn improves the performance of finding
free buffers while keeping recently used buffers resident in memory. For example,
blocks that are part of frequently accessed small tables or indexes are kept in the
cache so that they do not need to be read in again from disk. The LRU algorithm
keeps more frequently accessed blocks in the buffer cache so that when a buffer is
written to disk, it is unlikely to contain data that will be useful soon.

The initialization parameter DB_WRI TER _PROCESSES specifies the number of
DBWn processes. The maximum number of DBWn processes is 20. If it is not
specified by the user during startup, Oracle determines how to set DB_BLOCK _
PROCESSES based on the number of CPUs and processor groups.

The DBWn process writes dirty buffers to disk under the following conditions:

= When a server process cannot find a clean reusable buffer after scanning a
threshold number of buffers, it signals DBWn to write. DBWn writes dirty
buffers to disk asynchronously while performing other processing.

= DBWn periodically writes buffers to advance the checkpoint, which is the
position in the redo thread (log) from which instance recovery begins. This log
position is determined by the oldest dirty buffer in the buffer cache.

In all cases, DBWn performs batched (multiblock) writes to improve efficiency. The
number of blocks written in a multiblock write varies by operating system.

8-8 Oracle9/Database Concepts

Oracle Processes Overview

See Also:
=« "Database Buffer Cache" on page 7-7

= Oracle9i Database Performance Tuning Guide and Reference for
advice on setting DB_WRI TER_PROCESSES and for information
about how to monitor and tune the performance of a single
DBWO process or multiple DBWn processes

= Oracle9i Backup and Recovery Concepts

Log Writer Process (LGWR)

The log writer process (LGWR) is responsible for redo log buffer
management—uwriting the redo log buffer to a redo log file on disk. LGWR writes
all redo entries that have been copied into the buffer since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the
redo log buffer to a redo log file, server processes can then copy new entries over
the entries in the redo log buffer that have been written to disk. LGWR normally
writes fast enough to ensure that space is always available in the buffer for new
entries, even when access to the redo log is heavy.

LGWR writes one contiguous portion of the buffer to disk. LGWR writes:
= A commit record when a user process commits a transaction
= Redo log buffers

— Every three seconds

— When the redo log buffer is one-third full

— When a DBWNn process writes modified buffers to disk, if necessary

Note: Before DBWn can write a modified buffer, all redo records
associated with the changes to the buffer must be written to disk
(the write-ahead protocol). If DBWn finds that some redo records
have not been written, it signals LGWR to write the redo records to
disk and waits for LGWR to complete writing the redo log buffer
before it can write out the data buffers.

LGWR writes synchronously to the active mirrored group of online redo log files. If
one of the files in the group is damaged or unavailable, LGWR continues writing to
other files in the group and logs an error in the LGWR trace file and in the system

Process Architecture 8-9

Oracle Processes Overview

alert file. If all files in a group are damaged, or the group is unavailable because it
has not been archived, LGWR cannot continue to function.

When a user issues a COVM T statement, LGWR puts a commit record in the redo
log buffer and writes it to disk immediately, along with the transaction’s redo
entries. The corresponding changes to data blocks are deferred until it is more
efficient to write them. This is called a fast commit mechanism. The atomic write of
the redo entry containing the transaction’s commit record is the single event that
determines the transaction has committed. Oracle returns a success code to the
committing transaction, although the data buffers have not yet been written to disk.

Note: Sometimes, if more buffer space is needed, LGWR writes
redo log entries before a transaction is committed. These entries
become permanent only if the transaction is later committed.

When a user commits a transaction, the transaction is assigned a system change
number (SCN), which Oracle records along with the transaction’s redo entries in
the redo log. SCNs are recorded in the redo log so that recovery operations can be
synchronized in Oracle9i Real Application Clusters and distributed databases.

In times of high activity, LGWR can write to the online redo log file using group
commits. For example, assume that a user commits a transaction. LGWR must write
the transaction’s redo entries to disk, and as this happens, other users issue COWM T
statements. However, LGWR cannot write to the online redo log file to commit
these transactions until it has completed its previous write operation. After the first
transaction’s entries are written to the online redo log file, the entire list of redo
entries of waiting transactions (not yet committed) can be written to disk in one
operation, requiring less I/0 than do transaction entries handled individually.
Therefore, Oracle minimizes disk 1/0 and maximizes performance of LGWR. If
requests to commit continue at a high rate, then every write (by LGWR) from the
redo log buffer can contain multiple commit records.

8-10 Oracle9/ Database Concepts

Oracle Processes Overview

See Also:
= Redo Log Buffer on page 7-11
= "Trace Files and the Alert Log" on page 8-14

= Oracle9i Real Application Clusters Deployment and Performance for
more information about SCNs and how they are used

s Oracle9i Database Administrator’s Guide for more information
about SCNs and how they are used

= Oracle9i Database Performance Tuning Guide and Reference for
information about how to monitor and tune the performance of
LGWR

Checkpoint Process (CKPT)

When a checkpoint occurs, Oracle must update the headers of all datafiles to record
the details of the checkpoint. This is done by the CKPT process. The CKPT process
does not write blocks to disk; DBWn always performs that work.

The statistic DBWR checkpoints displayed by the Syst em St ati sti cs monitor
in Enterprise Manager indicates the number of checkpoint requests completed.

See Also: Oracle9i Real Application Clusters Administration for
information about CKPT with Real Application Clusters

System Monitor Process (SMON)

The system monitor process (SMON) performs recovery, if necessary, at instance
startup. SMON is also responsible for cleaning up temporary segments that are no
longer in use and for coalescing contiguous free extents within dictionary managed
tablespaces. If any terminated transactions were skipped during instance recovery
because of file-read or offline errors, SMON recovers them when the tablespace or
file is brought back online. SMON checks regularly to see whether it is needed.
Other processes can call SMON if they detect a need for it.

With Real Application Clusters, the SMON process of one instance can perform
instance recovery for a failed CPU or instance.

See Also: Oracle9i Real Application Clusters Administration for more
information about SMON

Process Architecture 8-11

Oracle Processes Overview

Process Monitor Process (PMON)

The process monitor (PMON) performs process recovery when a user process fails.
PMON is responsible for cleaning up the database buffer cache and freeing
resources that the user process was using. For example, it resets the status of the
active transaction table, releases locks, and removes the process ID from the list of
active processes.

PMON periodically checks the status of dispatcher and server processes, and
restarts any that have stopped running (but not any that Oracle has terminated
intentionally). PMON also registers information about the instance and dispatcher
processes with the network listener.

Like SMON, PMON checks regularly to see whether it is needed and can be called if
another process detects the need for it.

Recoverer Process (RECO)

The recoverer process (RECO) is a background process used with the distributed
database configuration that automatically resolves failures involving distributed
transactions. The RECO process of a node automatically connects to other databases
involved in an in-doubt distributed transaction. When the RECO process
reestablishes a connection between involved database servers, it automatically
resolves all in-doubt transactions, removing from each database’s pending
transaction table any rows that correspond to the resolved in-doubt transactions.

If the RECO process fails to connect with a remote server, RECO automatically tries
to connect again after a timed interval. However, RECO waits an increasing amount
of time (growing exponentially) before it attempts another connection. The RECO
process is present only if the instance permits distributed transactions. The number
of concurrent distributed transactions is not limited.

See Also: Oracle9i Database Administrator’s Guide for more
information about distributed transaction recovery

Job Queue Processes

Job queue processes are used for batch processing. They run user jobs. They can be
viewed as a scheduler service that can be used to schedule jobs as PL/SQL
statements or procedures on an Oracle instance. Given a start date and an interval,
the job queue processes try to run the job at the next occurrence of the interval.

Beginning with Oracle9i, job queue processes are managed dynamically. This allows
job queue clients to use more job queue processes when required. The resources
used by the new processes are released when they are idle.

8-12 Oracle9/ Database Concepts

Oracle Processes Overview

Dynamic job queue processes can run a large number of jobs concurrently at a given
interval. The job queue processes run user jobs as they are assigned by the CJQ
process. Here’s what happens:

1. The coordinator process, named CJQO, periodically selects jobs that need to be
run from the system JOB$ table. New jobs selected are ordered by time.

2. The CJQO process dynamically spawns job queue slave processes (J000...J999) to
run the jobs.

3. The job queue process runs one of the jobs that was selected by the CJQ process
for execution. The processes run one job at a time.

4. After the process finishes execution of a single job, it polls for more jobs. If no
jobs are scheduled for execution, then it enters a sleep state, from which it
wakes up at periodic intervals and polls for more jobs. If the process does not
find any new jobs, then it aborts after a preset interval.

The init.ora parameter JOB_ QUEUE_PROCESSES represents the maximum number
of job queue processes that can concurrently run on an instance. However, clients
should not assume that all job queue processes are available for job execution.

Note: The coordinator process is not started if the init.ora
parameter JOB_QUEUE PROCESSES is set to 0.

See Also: Oracle9i Database Administrator’s Guide for more
information about job queues

Archiver Processes (ARCn)

The archiver process (ARCn) copies online redo log files to a designated storage
device after a log switch has occurred. ARCn processes are present only when the
database is in ARCHI VELOGmode, and automatic archiving is enabled.

An Oracle instance can have up to 10 ARCn processes (ARCO to ARC9). The LGWR
process starts a new ARCn process whenever the current number of ARCn
processes is insufficient to handle the workload. The alert file keeps a record of
when LGWR starts a new ARCnh process.

If you anticipate a heavy workload for archiving, such as during bulk loading of
data, you can specify multiple archiver processes with the initialization parameter
LOG_ARCHI VE_MAX PROCESSES. The ALTER SYSTEMstatement can change the
value of this parameter dynamically to increase or decrease the number of ARCn
processes. However, you do not need to change this parameter from its default

Process Architecture 8-13

Oracle Processes Overview

value of 1, because the system determines how many ARCn processes are needed,
and LGWR automatically starts up more ARCn processes when the database
workload requires more.

See Also:
= "Trace Files and the Alert Log" on page 8-14
» Oracle9i Backup and Recovery Concepts

= Your operating system-specific documentation for details about
using the ARCn processes

Lock Manager Server Process (LMS)

In Oracle9i Real Application Clusters, a Lock Manager Server process (LMS)
provides inter-instance resource management.

See Also: Oracle9i Real Application Clusters Concepts for more
information about this background process

Queue Monitor Processes (QMNn)

The queue monitor process is an optional background process for Oracle Advanced
Queuing, which monitors the message queues. You can configure up to 10 queue
monitor processes. These processes, like the job queue processes, are different from
other Oracle background processes in that process failure does not cause the
instance to fail.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about Oracle Advanced Queuing

Trace Files and the Alert Log

Each server and background process can write to an associated trace file. When a
process detects an internal error, it dumps information about the error to its trace
file. If an internal error occurs and information is written to a trace file, the
administrator should contact Oracle support.

All filenames of trace files associated with a background process contain the name
of the process that generated the trace file. The one exception to this is trace files
generated by job queue processes (Jnnn).

Additional information in trace files can provide guidance for tuning applications
or an instance. Background processes always write this information to a trace file
when appropriate.

8-14 Oracle9/ Database Concepts

Shared Server Architecture

Each database also has an al ert .| og. The alert file of a database is a chronological
log of messages and errors, including the following:

s Allinternal errors (ORA-600), block corruption errors (ORA-1578), and
deadlock errors (ORA-60) that occur

s Administrative operations, such as the SQL statements CREATE/ ALTER/ DROP
DATABASE/ TABLESPACE/ ROLLBACK SEGVENT and the Enterprise Manager or
SQL*Plus statements STARTUP, SHUTDOWN, ARCHI VE LOG, and RECOVER

s Several messages and errors relating to the functions of shared server and
dispatcher processes

= Errors during the automatic refresh of a materialized view

Oracle uses the alert file to keep a record of these events as an alternative to
displaying the information on an operator’s console. (Many systems also display
this information on the console.) If an administrative operation is successful, a
message is written in the alert file as "completed"” along with a time stamp.

See Also:

= Oracle9i Database Performance Tuning Guide and Reference for
information about enabling the SQL trace facility

= Oracle9i Database Error Messages for information about error
messages

Shared Server Architecture

Shared server architecture eliminates the need for a dedicated server process for
each connection. A dispatcher directs multiple incoming network session requests
to a pool of shared server processes. An idle shared server process from a shared
pool of server processes picks up a request from a common queue, which means a
small number of shared servers can perform the same amount of processing as
many dedicated servers. Also, because the amount of memory required for each
user is relatively small, less memory and process management are required, and
more users can be supported.

A number of different processes are needed in a shared server system:

= A network listener process that connects the user processes to dispatchers or
dedicated servers (the listener process is part of Oracle Net Services, not
Oracle).

= One or more dispatcher processes

Process Architecture 8-15

Shared Server Architecture

= One or more shared server processes

Shared server processes require Oracle Net Services or SQL*Net version 2.

Note: To use shared servers, a user process must connect through
Oracle Net Services or SQL*Net version 2, even if the process runs
on the same machine as the Oracle instance.

When an instance starts, the network listener process opens and establishes a
communication pathway through which users connect to Oracle. Then, each
dispatcher process gives the listener process an address at which the dispatcher
listens for connection requests. At least one dispatcher process must be configured
and started for each network protocol that the database clients will use.

When a user process makes a connection request, the listener examines the request
and determines whether the user process can use a shared server process. If so, the
listener returns the address of the dispatcher process that has the lightest load, and
the user process connects to the dispatcher directly.

Some user processes cannot communicate with the dispatcher, so the network
listener process cannot connect them to a dispatcher. In this case, or if the user
process requests a dedicated server, the listener creates a dedicated server and
establishes an appropriate connection.

See Also:
= "Restricted Operations of the Shared Server" on page 8-20

s Oracle9i Net Services Administrator’s Guide for more information
about the network listener

Scalability

Oracle’s shared server architecture increases the scalability of applications and the
number of clients simultaneously connected to the database. It can enable existing
applications to scale up without making any changes to the application itself.

Dispatcher Request and Response Queues

A request from a user is a single program interface call that is part of the user’s SQL
statement. When a user makes a call, its dispatcher places the request on the request
queue, where it is picked up by the next available shared server process.

8-16 Oracle9/ Database Concepts

Shared Server Architecture

The request queue is in the SGA and is common to all dispatcher processes of an
instance. The shared server processes check the common request queue for new
requests, picking up new requests on a first-in-first-out basis. One shared server
process picks up one request in the queue and makes all necessary calls to the
database to complete that request.

When the server completes the request, it places the response on the calling
dispatcher’s response queue. Each dispatcher has its own response queue in the SGA.
The dispatcher then returns the completed request to the appropriate user process.

For example, in an order entry system each clerk’s user process connects to a
dispatcher and each request made by the clerk is sent to that dispatcher, which
places the request in the request queue. The next available shared server process
picks up the request, services it, and puts the response in the response queue. When
a clerk’s request is completed, the clerk remains connected to the dispatcher, but the
shared server process that processed the request is released and available for other
requests. While one clerk is talking to a customer, another clerk can use the same
shared server process.

Figure 8-3 illustrates how user processes communicate with the dispatcher across
the program interface and how the dispatcher communicates users’ requests to
shared server processes.

Process Architecture 8-17

Shared Server Architecture

Figure 8-3 The Shared Server Configuration and Shared Server Processes

User
Process

Application
Code

a Client Workstation
0 Database Server

Dispatcher Processes <

Shared
Server
Processes

Oracle
Server Code

Request Response

Queues Queues

8-18 Oracle9/ Database Concepts

Shared Server Architecture

Dispatcher Processes (Dnnn)

The dispatcher processes support shared server configuration by allowing user
processes to share a limited number of server processes. With the shared server,
fewer shared server processes are required for the same number of users, Therefore,
the shared server can support a greater number of users, particularly in
client/server environments where the client application and server operate on
different machines.

You can create multiple dispatcher processes for a single database instance. At least
one dispatcher must be created for each network protocol used with Oracle. The
database administrator starts an optimal number of dispatcher processes depending
on the operating system limitation on the number of connections for each process,
and can add and remove dispatcher processes while the instance runs.

Note: Each user process that connects to a dispatcher must do so
through Oracle Net Services or SQL*Net version 2, even if both
processes are running on the same machine.

In a shared server configuration, a network listener process waits for connection
requests from client applications and routes each to a dispatcher process. If it cannot
connect a client application to a dispatcher, the listener process starts a dedicated
server process, and connects the client application to the dedicated server. The
listener process is not part of an Oracle instance; rather, it is part of the networking
processes that work with Oracle.

See Also:
= "Shared Server Architecture" on page 8-15

= Oracle9i Net Services Administrator’s Guide for more information
about the network listener

Shared Server Processes (Snnn)

Each shared server process serves multiple client requests in the shared server
configuration. Shared server processes and dedicated server processes provide the
same functionality, except shared server processes are not associated with a specific
user process. Instead, a shared server process serves any client request in the shared
server configuration.

Process Architecture 8-19

Shared Server Architecture

The PGA of a shared server process does not contain user-related data (which needs
to be accessible to all shared server processes). The PGA of a shared server process
contains only stack space and process-specific variables.

All session-related information is contained in the SGA. Each shared server process
needs to be able to access all sessions’ data spaces so that any server can handle
requests from any session. Space is allocated in the SGA for each session’s data
space. You can limit the amount of space that a session can allocate by setting the
resource limit PRI VATE_SGA to the desired amount of space in the user’s profile.

Oracle dynamically adjusts the number of shared server processes based on the
length of the request queue. The number of shared server processes that can be
created ranges between the values of the initialization parameters SHARED _
SERVERS and MAX_SHARED SERVERS.

See Also:

= "Program Global Areas (PGA) Overview" on page 7-17 for
more information about the content of a PGA in different types
of instance configurations

= Chapter 22, "Controlling Database Access"for more information
about resource limits and profiles

Restricted Operations of the Shared Server

Certain administrative activities cannot be performed while connected to a
dispatcher process, including shutting down or starting an instance and media
recovery. An error message is issued if you attempt to perform these activities while
connected to a dispatcher process.

These activities are typically performed when connected with administrator
privileges. When you want to connect with administrator privileges in a system
configured with shared servers, you must state in your connect string that you want
to use a dedicated server process (SERVER=DEDI CATED) instead of a dispatcher
process.

See Also:
= Your operating system-specific documentation

= Oracle9i Net Services Administrator’s Guide for the proper
connect string syntax

8-20 Oracle9/ Database Concepts

Dedicated Server Configuration

Dedicated Server Configuration

Figure 8-4 illustrates Oracle running on two computers using the dedicated server
architecture. In this configuration, a user process runs the database application on
one machine, and a server process runs the associated Oracle server on another

machine.

Figure 8—4 Oracle Using Dedicated Server Processes

User
Process

Application
Code

Oracle
Server Code
Program
Interface

Dedicated
Server
Process

User
Process

Application
Code

Client Workstation

_ Database Server

Oracle
Server Code

!

System Global Area

The user and server processes are separate, distinct processes. The separate server
process created on behalf of each user process is called a dedicated server process
(or shadow process), because this server process acts only on behalf of the

associated user process.

Process Architecture 8-21

The Program Interface

This configuration maintains a one-to-one ratio between the number of user
processes and server processes. Even when the user is not actively making a
database request, the dedicated server process remains (though it is inactive and
can be paged out on some operating systems).

Figure 8-4 shows user and server processes running on separate computers
connected across a network. However, the dedicated server architecture is also used
if the same computer runs both the client application and the Oracle server code but
the host operating system could not maintain the separation of the two programs if
they were run in a single process. UNIX is a common example of such an operating
system.

In the dedicated server configuration, the user and server processes communicate
using different mechanisms:

= If the system is configured so that the user process and the dedicated server
process run on the same computer, the program interface uses the host
operating system’s interprocess communication mechanism to perform its job.

= If the user process and the dedicated server process run on different computers,
the program interface provides the communication mechanisms (such as the
network software and Oracle Net Services) between the programs.

» Dedicated server architecture can sometimes result in inefficiency. Consider an
order entry system with dedicated server processes. A customer places an order
as a clerk enters the order into the database. For most of the transaction, the
clerk is talking to the customer while the server process dedicated to the clerk’s
user process remains idle. The server process is not needed during most of the
transaction, and the system is slower for other clerks entering orders. For
applications such as this, the shared server architecture may be preferable.

See Also:
= Your operating system-specific documentation
= Oracle9i Net Services Administrator’s Guide

for more information about communication links

The Program Interface

The program interface is the software layer between a database application and
Oracle. The program interface:

= Provides a security barrier, preventing destructive access to the SGA by client
user processes

8-22 Oracle9/ Database Concepts

The Program Interface

s Acts as a communication mechanism, formatting information requests, passing
data, and trapping and returning errors

s Converts and translates data, particularly between different types of computers
or to external user program datatypes

The Oracle code acts as a server, performing database tasks on behalf of an
application (a client), such as fetching rows from data blocks. It consists of several
parts, provided by both Oracle software and operating system-specific software.

Program Interface Structure
The program interface consists of the following pieces:

= Oracle call interface (OCI) or the Oracle runtime library (SQLLIB)
= The client or user side of the program interface (also called the UPI)

= Various Oracle Net Services drivers (protocol-specific communications
software)

= Operating system communications software
= The server or Oracle side of the program interface (also called the OPI)

Both the user and Oracle sides of the program interface run Oracle software, as do
the drivers.

Oracle Net Services is the portion of the program interface that allows the client
application program and the Oracle server to reside on separate computers in your
communication network.

Program Interface Drivers

Drivers are pieces of software that transport data, usually across a network. They
perform operations such as connect, disconnect, signal errors, and test for errors.
Drivers are specific to a communications protocol, and there is always a default
driver.

You can install multiple drivers (such as the asynchronous or DECnet drivers) and
select one as the default driver, but allow an individual user to use other drivers by
specifying the desired driver at the time of connection. Different processes can use
different drivers. A single process can have concurrent connections to a single
database or to multiple databases (either local or remote) using different Oracle Net
Services drivers.

Process Architecture 8-23

The Program Interface

See Also:

= Your system installation and configuration guide for details
about choosing, installing, and adding drivers

= Your system Oracle Net Services documentation for
information about selecting a driver at runtime while accessing
Oracle

= Oracle9i Net Services Administrator’s Guide

Communications Software for the Operating System

The lowest-level software connecting the user side to the Oracle side of the program
interface is the communications software, which is provided by the host operating
system. DECnet, TCP/IP, LU6.2, and ASYNC are examples. The communication
software can be supplied by Oracle Corporation but is usually purchased separately
from the hardware vendor or a third-party software supplier.

See Also: Your Oracle operating system-specific documentation
for more information about the communication software of your
system

8-24 Oracle9/ Database Concepts

9

Database Resource Management

This chapter describes how Oracle’s Database Resource Manager works to help a
database administrator allocate resources to different groups of users. This chapter
includes the following topics:

Introduction to the Database Resource Manager

How the Database Resource Manager Works

Resource Plans and Resource Consumer Groups

Resource Allocation Methods and Resource Plan Directives

Interaction with Operating-System Resource Control

Database Resource Management 9-1

Introduction to the Database Resource Manager

Introduction to the Database Resource Manager

Traditionally, it has been up to the operating system to regulate resource
management among the various applications running on a system, including Oracle
databases. Before Oracle8i, there was no way to prioritize one Oracle session over
another. The Database Resource Manager gives database administrators more
control over resource management decisions, so that resource allocation can be
aligned with an enterprise’s business objectives.

Note: The Database Resource Manager is available with Oracle
Enterprise Edition, beginning with Release 8i.

The Database Resource Manager solves many resource allocation problems that an
operating system does not manage so well:

= Excessive overhead. This results from operating system context switching
between Oracle server processes when the number of server processes is high.

= Inefficient scheduling. The operating system deschedules Oracle database
servers while they hold latches, which is inefficient.

= Inappropriate allocation of resources. The operating system distributes
resources equally among all active processes and is unable to prioritize one task
over another.

=« [Inability to manage database-specific resources
With Oracle’s Database Resource Manager, a database administrator can:

= Guarantee certain users a minimum amount of processing resources regardless
of the load on the system and the number of users

= Distribute available processing resources by allocating percentages of CPU time
to different users and applications. In a data warehouse, a higher percentage
may be given to ROLAP (relational on-line analytical processing) applications
than to batch jobs.

= Limit the degree of parallelism of any operation performed by members of a
group of users

= Create an active session pool. This pool consists of a specified maximum
number of user sessions allowed to be concurrently active within a group of
users. Additional sessions beyond the maximum are queued for execution, but
you can specify a timeout period, after which queued jobs terminate.

9-2 Oracle9iDatabase Concepts

Introduction to the Database Resource Manager

s Allow automatic switching of users from one group to another group based on
administrator-defined criteria. If a member of a particular group of users creates
a session that runs for longer than a specified amount of time, that session can
be automatically switched to another group of users with different resource
requirements.

s Prevent the execution of operations that are estimated to run for a longer time
than a predefined limit

s Create an undo pool. This pool consists of the amount of undo space that can be
consumed in by a group of users.

= Configure an instance to use a particular method of allocating resources. You
can dynamically change the method, for example, from a daytime setup to a
nighttime setup, without having to shut down and restart the instance.

It is thus possible to balance one user's resource consumption against that of other
users and to partition system resources among tasks of varying importance, to
achieve overall enterprise goals.

See Also: Oracle9i Database Administrator’s Guide for information
about using the Database Resource Manager

Database Resource Manager Overview

Resources are allocated to users according to a resource plan specified by the
database administrator. The following terms are used in specifying a resource plan:

A resource plan specifies how the resources are to be distributed among various
users (resource consumer groups).

Resource consumer groups allow the administrator to group user sessions together
by resource requirements. Resource consumer groups are different from user roles;
one database user can have different sessions assigned to different resource
consumer groups.

Resource allocation methods determine what policy to use when allocating for any
particular resource. Resource allocation methods are used by resource plans and
resource consumer groups.

Resource plan directives are a means of assigning consumer groups to particular
plans and partitioning resources among consumer groups by specifying parameters
for each resource allocation method.

Database Resource Management 9-3

Introduction to the Database Resource Manager

The Database Resource Manager also allows for creation of plans within plans,
called subplans. Subplans allow further subdivision of resources among different
users of an application.

Levels provide a mechanism to specify distribution of unused resources among
available users. Up to eight levels of resource allocation can be specified.

Example of a Simple Resource Plan

To illustrate these concepts, take an example of a fictitious company, ABC Inc. ABC
sells electronics consumer goods over the Internet. To ensure the best performance
for online customers, at least 85% of the CPU resources should be allocated to them.
From the remaining resources, 10% should go to users involved in shipping orders
and 5% to billing operations.

To configure an Oracle database to allocate resources in such a way, the database
administrator creates three resource consumer groups:

= ONLINE for online customers

= SHIPPING for shipping users

= BILLING for billing users

The database administrator then creates a resource plan such as the one in
Table 9-1.

Table 9-1 Simple Resource Allocation Plan, ABCUSERS

Consumer Group CPU Resource Allocation
ONLINE 85%

SHIPPING 10%

BILLING 5%

The plan shown in Table 9-1 specifies that 85% of CPU cycles be allotted to
ONLINE group sessions, 10% to those of the SHIPPING group and the remaining
5% to the BILLING group. Although this example describes a very simplistic
scenario, the Database Resource Manager provides the database administrator with
a powerful mechanism for implementing controlled resource allocation policies
within an Oracle database.

See Also: PL/SQL User’s Guide and Reference for information about
PL/SQL code to create these plans

9-4 Oracle9i Database Concepts

How the Database Resource Manager Works

How the Database Resource Manager Works

The Database Resource Manager controls the distribution of resources among
various sessions by controlling the execution schedule inside the database. By
controlling which sessions to run and for how long, the Database Resource Manager
can ensure that resource distribution matches the plan directive and hence, the
business objectives.

Sessions belonging to consumer groups with higher CPU resource allocation are
allowed to use more CPU time than sessions belonging to groups or sub plans with
lower allocation.

Caution: On UNIX platforms, do not use the ni ce statement to
alter the operating-system run priorities of processes. Use of this
statement can lead to instability and unpredictable behavior of the
Oracle Server. See "Interaction with Operating-System Resource
Control" on page 9-17 for details.

Resource Control

The basic objective of the Database Resource Manager is to maximize system
throughput in a way that conforms to business objectives. Consequently, it does not
try to enforce CPU allocation percentage limits as long as consumer groups are
getting the resources they need.

Example of Resource Control

Consider the plan in Table 9-1. If this plan is activated on a system with a single
CPU, any one of the consumer groups can consume up to 100% of CPU resources,
providing other groups do not have enough active sessions to consume their
allocation. Therefore, with no active sessions in the SHIPPING and BILLING
groups, the ONLINE group sessions can use 100% of CPU resources, even though
their allocation limit is set to 85%.

Similarly, if the database is hosted on system with three CPUs and each group has
only one active session, each session runs on one of the three CPUSs; in this case,
resource allocation is actually 33.33%, no matter how allocation limits are set.
However, if all the consumer groups have enough active sessions to consume all
available CPU resources, then the Database Resource Manager enforces the
allocation guidelines specified by the plan directive.

Database Resource Management 9-5

How the Database Resource Manager Works

Effectiveness of the Database Resource Manager

The effect of the Database Resource Manager is noticeable only in busy
environments with high system utilization.

On multiprocessor systems, processor affinity scheduling at the operating system
level can distort CPU allocation on under utilized systems. On a system with
multiple CPUs, if one of the CPUs has resources available while others are fully
utilized, the operating system attempts to migrate processes from the busy
processor's run queue to an under utilized processor. However this does not happen
immediately.

On a fully loaded system with enough processes, processor affinity increases
performance; this is because invalidating the current CPU cache and loading the
new one can be quite expensive. Because most platforms support processor affinity,
enough processes must be run to ensure full system utilization.

Database Integration

The Database Resource Manager is fully integrated into the database security
system. The supplied PL/SQL package DBM5S_RESOURCE MANAGER lets the
database administrator create, update, and delete resource plans and resource
consumer groups. The administrator defines a user's default consumer group and
what privileges the user has (using the DBV5_RESOURCE_MANAGER PRI VS
package). A user or session can switch resource consumer groups (using DBVS
SESSI ON.SW TCH_CURRENT _CONSUMER GROUP) to change execution priority, if
the user has been granted the privilege to switch to that consumer group. In
addition, users or sessions can be moved from group to group by the database
administrator on a production system, dynamically changing the way CPU
resources are used.

It is very simple to use the Database Resource Manager in an environment where
each application user logs on to the database using a different database username. It
is also not very difficult to implement it where applications use generic database
login. Because Database Resource Manager actually controls resource utilization at
the session level, it is possible to prioritize one session over another, even if both the
sessions belong to the same database user. Therefore, it is possible to switch a
session to the desired consumer group because of the user's application role, using
the DBVB_SESSI ON.SW TCH_CURRENT _CONSUMER _GROUP procedure, as follows:

9-6 Oracle9/ Database Concepts

Resource Plans and Resource Consumer Groups

CEALARE def aul t _group VARCHAR2(30) ;

BEA N DBVS_SESSI N SWTCH CURRENT_OONSUMER GROUF(' desi red_consuner _group' ,
"default_group', false);

BND /

Oracle continues to support user resource limits and profiles used with the
Database Resource Manager. While the Database Resource Manager balances
different requests for service against each other within the defined resource
allocation plan, profiles are used to limits a user's consumption of resources.

The Database Resource Manager and the automatic degree of parallelism (ADOP)
feature are integrated. ADOP attempts to optimize system utilization by
automatically adjusting the degree of parallelism for parallel query operations
based on current system load and the Database Resource Manager degree of
parallelism directive.

Performance Overhead

The Database Resource Manager can effectively manage resources with minimal
overhead. For systems with hundreds of users, Database Resource Manager can
actually improve the performance by reducing context switches and latch
contention.

= Database Resource Manager does not switch process as often as any operating
system’s fair-share scheduler does.

= Database Resource Manager runs fewer processes concurrently and never
context-switches a process that is holding a latch.

Judicious use of the Database Resource Manager should not lead to any
performance degradation. However, the depth or complexity of a resource plan can
impede the process of selecting the process to be run; therefore, it may advisable to
avoid too deep a resource plan. The more levels a plan schema has, the more work
the Database Resource Manager must do to pick a session for execution.

Resource Plans and Resource Consumer Groups

A resource plan is a way to group a set of resource consumer groups together and
specify how resources should be divided among them. Consider the example from
Table 9-1, which can be diagrammed as follows:

Database Resource Management 9-7

Resource Plans and Resource Consumer Groups

Figure 9—1 ABC Resource Allocation Plan, ABCUSERS

Users
Plan
v v
Online Billing Shipping
(85%) (10%) (5%)

Activation of a Resource Plan

You can create as many resource plans as you need in a database. However, only
one plan can be active at any given time. You can activate a resource plan in one of
two ways: persistent and dynamic.

Persistent

Set the value of the RESOURCE _MANAGER_PLAN initialization parameter to the plan
you want to activate. For example, to activate ABC’s simple resource plan,
abcuser s, you would modify the initialization parameter file to include the
following line:

RESORCE_ MINAGER PLANE' ABAUSERS

When you modify the initialization parameter file, you ensure persistence of the
resource plan across database shutdown. However, changes in the initialization
parameter file take effect only when the database is restarted. Use this method to set
a the default resource plan for the database.

Dynamic
Issue the ALTER SYSTEMSET RESOURCE_MANAGER PLAN statement. Using the
same example, you would issue the following statement:

ALTER SYSTEM SET RESOURCE MANACER PLAN = ABOUSERS
When you issue the ALTER SYSTEMSET RESOURCE_MANAGER_PLAN statement, the
specified plan is activated immediately, without requiring an instance restart.

However, the database reverts to the default setting in the initialization parameter
file the next time it is started.

9-8 Oracle9/ Database Concepts

Resource Plans and Resource Consumer Groups

For example, using the dynamic method an administrator could create two different
plans, for day time and for night time. The day time plan would allocate more
resources to online users, while the night time plan (when online users are not very
active) would ensure higher allocation to batch jobs. Then the database
administrator uses the ALTER SYSTEMstatement to toggle back and forth between
day and night plans without interrupting database services.

The ALTER SYSTEMSET RESOURCE_MANAGER PLAN statement is used to
dynamically activate, change, or deactivate resource plans.

See Also: Step 3 of "Interaction with Operating-System Resource
Control" on page 9-18

Groups of Resource Plans

You can also use resource plans to group other resource plans. This enables you to
partition resources among different kinds of applications. For example, the ABC
company might need to reserve certain minimum resources to developers and
administrators, so that they can perform critical maintenance operations.

Consider a case where at least 25% of the available CPU cycles must be reserved for
sessions belonging to two resource consumer groups: DEVELOPERS and
ADMINISTRATORS. These CPU cycles should be allocated between DEVELOPERS
and ADMINISTRATORS in a ratio of 60 to 40. To achieve this objective, the database
administrator first creates a maintenance plan with following specifications:

Table 9-2 Sample Maintenance Plan, ABCMAINT

Consumer Group CPU Resource Allocation
DEVELOPERS 60%
ADMINISTRATORS 40%

When activated, the plan shown in Table 9-2 ensures that all available resources are
distributed among developers’ and administrators’ sessions in a 60:40 ratio.
However, only 25% of all available resources are to be reserved for maintenance;
75% should made available to the abcuser s plan. This can be realized by creating
a top-level plan with abcuser s and abcnai nt being its members, as shown in
Table 9-3:

Database Resource Management 9-9

Resource Plans and Resource Consumer Groups

Table 9-3 Top Plan, ABCTOP

Subplan CPU Resource Allocation
ABCUSERS 75%
ABCVAI NT 25%

The users and maintenance groups become subplans of ABCTOP. The resulting plan
tree is diagrammed in Figure 9-2.

Figure 9—2 Resource Plan Containing Subplans

Top

Users Maint

(75%) (25%)
Online Billing Shipping Developers Admin
(85%) (10%) (5%) (60%) (40%)

A subplan or consumer group can have more than one parent. For example, in the
plan shown in Figure 9-2, the consumer group Admin could very well have been
part of both the users and maintenance plans. Because multiple parents are allowed,
you can preserve plan independence: You do not need to change anything in
subplans when you roll them up to a top-level plan.

A plan tree can have as many hierarchical levels as you want. However, as the
number of these levels increase, the overhead associated with resource control
increases; the determination of which process is to be run next has to be performed
at every level that contains subplans. On the other hand, sub plans provide a good
way to partition database resources at a high level among multiple applications and
then repartition them within an application among various users. If a given group
within an application does not consume its allocation, unused resources are made
available to other groups within the same application first. If none of the groups in
an application can consume all the resources made available to them, the unused

9-10 Oracle9/ Database Concepts

Resource Allocation Methods and Resource Plan Directives

resources are handed back to the parent plan, which can then distribute it among its
subplans.

See Also: PL/SQL User’s Guide and Reference for information about
using PL/SQL code to create these plans

Resource Allocation Methods and Resource Plan Directives

The Database Resource Manager enables controlled distribution of resources among
consumer groups (inter-group), as well within a consumer group (intra-group),
using allocation methods and plan directives.

= Plan-level resource allocation methods and directives specify how resources
must be distributed among consumer groups.

= Consumer-group methods and directives control resource distribution among
sessions belonging to a consumer group.

When scheduling a session for execution, the Database Resource Manager acts as
follows:

1. Plan resource allocation guidelines and directives determine which consumer
group is to run next.

2. Group-level allocation methods and directives determine which session in the
selected group is dispatched to the CPU run queue.

For example, in case of the ABC Company’s users plan shown in Table 9-1,
plan-level methods and directives specify a resource distribution allowing ONLINE
consumer group sessions to be run 85% of the time, while sessions belonging to
SHIPPING and BILLING groups get 10% and 5% of CPU time, respectively.

Plan-level directives of ABCUSERS ensure that the ONLINE group is picked up
more frequently for execution than the SHIPPING and BILLING groups. However,
the ONLINE group usually has several active sessions waiting for execution.
Group-level directives determine the order in which these sessions are run.

Resource Plan Directives

How resources are allocated to resource consumer groups is specified in resource
allocation directives. The Database Resource Manager provides several means of
allocating resources.

Database Resource Management 9-11

Resource Allocation Methods and Resource Plan Directives

CPU Method

This method lets you specify how CPU resources are to be allocated among
consumer groups or subplans. The multiple levels of CPU resource allocation (up to
eight levels) provide a means of prioritizing CPU use within a plan schema. Level 2
gets resources only after level 1 is unable to use all of its resources. Multiple levels
not only provide a way of prioritizing, but they provide a way of explicitly
specifying how all primary and leftover resources are to be used.

Active Session Pool with Queuing

You can control the maximum number of concurrently active sessions allowed
within a consumer group. This maximum designates the active session pool. When
a session cannot be initiated because the pool is full, the session is placed into a
gueue. When an active session completes, the first session in the queue can then be
scheduled for execution. You can also specify a timeout period after which a job in
the execution queue (waiting for execution) will timeout, causing it to terminate
with an error.

An entire parallel execution session is counted as one active session.

Degree of Parallelism Limit

*Specifying a parallel degree limit lets you control the maximum degree of
parallelism for any operation within a consumer group.

Automatic Consumer Group Switching

This method lets you control resources by specifying criteria that, if met, causes the
automatic switching of sessions to another consumer group. The criteria used to
determine switching are:

= SW TCH_GROUP—specifies the consumer group to which this session is
switched if the other (following) criteria are met.

= SW TCH_TI ME—specifies the length of time that a session can run before it is
switched to another consumer group.

= SW TCH_ESTI MATE—specifies whether Oracle is to use its own estimate of
how long an operation will run.

The Database Resource Manager switches a running session to SW TCH_GROUP if
the session is active for more than SW TCH_TI ME seconds. Active means that the
session is running and consuming resources, not waiting idly for user input or
waiting for CPU cycles. The session is allowed to continue running, even if the
active session pool for the new group is full. Under these conditions a consumer

9-12 Oracle9/ Database Concepts

Resource Allocation Methods and Resource Plan Directives

group can have more sessions running than specified by its active session pool.
After the session finishes its operation and becomes idle, it is switched back to its
original group.

If SW TCH_ESTI MATE is set to t r ue, then the Database Resource Manager uses a
predicted estimate of how long the operation will take to complete. If Oracle’s
predicted estimate is longer than the value specified as SW TCH_TI ME, then Oracle
switches the session before execution starts. If this parameter is not set, the
operation starts normally and only switches groups when other switch criteria are
met.

Execution Time Limit

You can specify a maximum execution time allowed for an operation. If Oracle
estimates that an operation will run longer than the specified maximum execution
time, then the operation is terminated with an error. This error can be trapped and
the operation rescheduled.

Undo Pool

You can specify an undo pool for each consumer group. An undo pool controls the
amount of total undo that can be generated by a consumer group. When the total
undo generated by a consumer group exceeds it’s undo limit, the current DML
statement generating the redo is terminated. No other members of the consumer
group can perform further data manipulation until undo space is freed from the
pool.

CPU Resource Allocation

A database administrator can control resource distribution among sessions in
competing consumer groups by granting resources at up to eight levels of resource
allocation and by specifying how resources are to be distributed among consumer
groups at each of these levels.

The users plan shown in Table 9-1 depicts a simple resource distribution scheme
using a resource allocation at a single level. This plan can be modified to allocate
any unconsumed resources first to administrators (for maintenance operations) and
then to any batch jobs. Table 9-4 shows the modified plan:

Table 9-4 Multilevel Users Plan 1

Consumer Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVELS3
ONLINE 85% 0% 0%

Database Resource Management 9-13

Resource Allocation Methods and Resource Plan Directives

Table 9-4 Multilevel Users Plan 1

Consumer Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVELS3
SHIPPING 10% 0% 0%

BILLING 5% 0% 0%

ADMIN 0% 100% 0%

BATCH 0% 0% 100%

The modified users plan shown in Table 9-4 accomplishes the following:

s CPU_LEVELI1 ensures that at least 85% of CPU resources are available to the
sessions belonging to ONLINE, 10% to SHIPPING, and 5% to BILLING
consumer groups.

s CPU_LEVEL? offers to the ADMIN consumer group any resources not
consumed by ONLINE, SHIPPING, and BILLING.

= CPU_LEVEL3 makes available to the BATCH consumer group any resources
still left.

Multilevel User Plan 1 meets the stated objective by granting resources among the
consumer groups at different levels. Sessions belonging to ONLINE, SHIPPING and
BILLING groups are always given the first opportunity to run, but their resource
consumption is limited to 85%, 10% and 5%, respectively. Any unused resources are
made available to Level 2 and are distributed among consumer groups in the
proportion of grants made at this level. If unused resources still exist, then they are
made available to the next level down.

However, the ADMIN group might have to wait a long time, if all the groups at
Level 1 are busy. Similarly, the BATCH group might not get to run any sessions at
all, if groups at Level 1 and 2 consume all the resources. Such behavior might not be
acceptable in some environments. What is required is a plan that allocates most
CPU resources to ONLINE, SHIPPING, and BILLING and also ensures availability
of certain minimum CPU cycles to the ADMIN and BATCH groups. The modified
multilevel users plan is shown in Table 9-5:

Table 9-5 Multilevel Users Plan 2

Consumer Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVELS3
ONLINE 75% 0% 0%
SHIPPING 10% 0% 0%

9-14 Oracle9/ Database Concepts

Resource Allocation Methods and Resource Plan Directives

Table 9-5 Multilevel Users Plan 2

Consumer Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVEL3
BILLING 5% 0% 0%
ADMIN 0% 80% 0%
BATCH 0% 20% 0%

The modified multiuser plan shown in Table 9-5 accomplishes the following:

« CPU_LEVEL1 now allocates up to 75% of available CPU time to the ONLINE
group, while SHIPPING gets 10% and BILLING gets 5%.

» CPU_LEVEL? splits the remaining 10% of CPU time between ADMIN and
BATCH groups in a ratio of 80 to 20. This ensures that ADMIN group sessions
get at least 8% of all available CPU time (80% of 10%); BATCH group sessions
get at least 2%.

Multilevel User Plan 2 guarantees a minimum of 10% of the CPU resources to the
ADMIN and BATCH groups. These Level 2 groups get more CPU time if the
ONLINE, SHIPPING, and BILLING groups do not use all of their allocated
resources. With no active sessions for any Level 1 groups, the ADMIN group
sessions can run 80% of the time, and BATCH group sessions can run 20% of the
time.

CPU Allocation Rules

The multilevel user plans shown in Table 9-4 and Table 9-5 demonstrate that CPU
resource allocation using the Emphasis method follows a set of rules. These rules
are as follows:

1. Sessions in resource consumer groups with nonzero percentage allocation at
Level 1 always get the first opportunity to run.

2. CPU resources are distributed at a given level by specified percentages.

= If one consumer group does not consume its allocated resources, unused
resources are not given to other groups at the same level, but fall through to
the next level.

= After all resource consumer groups at a given level have had a chance to
run, any remaining resources fall through to the next level.

3. The sum of percentages at any given level must be less than or equal to 100.

Database Resource Management 9-15

Resource Allocation Methods and Resource Plan Directives

4. After being offered to consumer groups at all levels, any CPU time that is
unused, because of either inactivity or quota restrictions, gets recycled. It is
offered to consumer groups again starting at Level 1.

5. Any levels that have no plan directives explicitly specified (for example, Level 3
in the example) are implied to have 0% for all subplans or consumer groups.

The Database Resource Manager allocates CPU resources among groups that have
active sessions at a given time. It does not use any historical information in deciding
which group to run. For example, perhaps the ONLINE consumer group does not
have any active sessions for two hours. During this period, its share of resources is
available to other consumer groups. Later, when sessions belonging to the ONLINE
consumer group are active, they are still allocated only 75% of CPU resources.
Consumer groups do not accrue credit for the period in which they did not have
any active sessions.

Levels and Priorities

Levels are similar to priorities. Consumer groups at Level 1 are offered resources
before those at lower levels are considered. Table 9-6 illustrates one way of setting
priorities with Database Resource Manager plan directives:

Table 9-6 Simple Priority Plan

Subplan or Group CPU_LEVEL1 CPU_LEVEL?2 CPU_LEVEL3
High Priority 100% 0% 0%

Medium Priority 0% 100% 0%

Low Priority 0% 0% 100%

In Table 9-6, sessions belonging to the Medium Priority group or subplan are
allowed to run only when no active sessions are in the High Priority group or
subplan. Similarly, Low Priority sessions get a chance to run only when no active
sessions belong to either the High or Medium priority groups or subplans.

However, a plan like the one shown in Table 9-6 can lead to resource starvation. As
long as the High Priority group can use 100% of the CPU resources, no session
belonging to the Medium or Low priority groups can run at all. In other words, a
set of runaway sessions belonging to the High Priority group could completely stall
processing of Medium and Low priority group sessions.

If this is not the effect you intend, you can create a plan that ensures allocation of at
least minimum resources to all consumer groups by their relative priorities. For
example, you might modify the plan in Table 9-6 as follows:

9-16 Oracle9/ Database Concepts

Interaction with Operating-System Resource Control

Table 9-7 Modified Priority Plan

Subplan or Group ~ CPU_LEVEL1 CPU_LEVEL2 CPU_LEVEL3
High Priority 80% 0% 0%
Medium Priority 10% 0% 0%
Low Priority 10% 0% 0%

The modified plan in Table 9-7 ensures that while the High Priority group gets most
of the CPU time, other groups are not completely stalled.

Interaction with Operating-System Resource Control

Oracle9i expects a static configuration and allocates internal resources, such as
latches, from available resources detected at database startup. The database might
not perform optimally and can become unstable if resource configuration changes
very frequently. Therefore, operating-system resource control should be used with
Oracle databases judiciously, according to the following guidelines:

1. Operating-system resource control should not be used concurrently with the
Database Resource Manager, because neither of them are aware of each other's
existence. As a result, both the operating system and Database Resource
Manager try to control resource allocation in a manner that causes
unpredictable behavior and instability of Oracle databases.

=« If you want to control resource distribution within an instance, use the
Database Resource Manager and turn off operating-system resource
control.

= If you have multiple instances on a node and you want to distribute
resources among them, use operating-system resource control, not the
Database Resource Manager.

Note: Oracle9i does not support the use of both tools
simultaneously. Future releases might allow for their interaction on
a limited scale.

2. Inan Oracle environment, the use of an operating-system resource manager,
such as Hewlett Packard's Process Resource Manager (PRM) or Sun's Solaris
Resource Manager (SRM), is supported only if all of the following conditions

are met:

Database Resource Management 9-17

Interaction with Operating-System Resource Control

= Each instance must be assigned to a dedicated operating-system resource
manager group or managed entity.

= The dedicated entity running all the instance's processes must run at one
priority (or resource consumption) level.

= Process priority management must not be enabled.

Caution: Please note that management of individual Oracle
processes at different priority levels (for example, using the ni ce
statement on UNIX platforms) is not supported. Severe
consequences, including instance crashes, can result. You can
expect similar undesirable results if operating-system resource
control is permitted to manage memory on which an Oracle
instance is pinned.

3. Ifyou chose to use operating-system resource control, make sure you turn off
the Database Resource Manager. By default, the Database Resource Manager is
turned off. If it is not, you can turn it off by issuing the following statement:

ALTER SYSTEM SET RESOURCE MANACER PLAN=''
Also remember to reset this parameter in your initialization parameter file, so

that the Database Resource Manager is not activated the next time the database
is started up.

Dynamic Reconfiguration

Tools such as Sun's processor sets and dynamic system domains work well with an
Oracle database. There is no need to restart an instance if the number of CPUs
changes.

Oracle dynamically detects any change in the number of available CPUs and
reallocates internal resources. On most platforms, Oracle automatically adjusts the
value of CPU_CQOUNT to the number of available CPUs.

See Also: Oracle9i Database Reference for more information on
CPU_COUNT

9-18 Oracle9/ Database Concepts

Part |V

Data

Part IV describes the data involved in database management.

Part IV contains the following chapters:

Chapter 10, "Schema Objects"

Chapter 11, "Partitioned Tables and Indexes"
Chapter 12, "Native Datatypes"

Chapter 13, "Object Datatypes and Object Views"

Oracle9i Database Concepts

10

Schema Objects

This chapter discusses the different types of database objects contained in a user’s
schema. It includes:

Introduction to Schema Objects

Tables

Views

Materialized Views
Dimensions

The Sequence Generator
Synonyms

Indexes

Index-Organized Tables
Application Domain Indexes
Clusters

Hash Clusters

Schema Objects 10-1

Introduction to Schema Objects

Introduction to Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a
single schema. Schema objects can be created and manipulated with SQL and
include the following types of objects:

s Clusters

= Database links

= Database triggers

= Dimensions

= External procedure libraries

= Indexes and index types

= Java classes, Java resources, and Java sources
= Materialized views and materialized view logs
= Object tables, object types, and object views
= Operators

= Sequences

= Stored functions, procedures, and packages
= Synonyms

= Tables and index-organized tables

= Views

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

= Contexts

= Directories
= Profiles

= Roles

= Tablespaces
n Users

= Rollback segments

10-2 Oracle9i Database Concepts

Introduction to Schema Objects

Schema objects are logical data storage structures. Schema objects do not have a
one-to-one correspondence to physical files on disk that store their information.
However, Oracle stores a schema object logically within a tablespace of the
database. The data of each object is physically contained in one or more of the
tablespace’s datafiles. For some objects, such as tables, indexes, and clusters, you
can specify how much disk space Oracle allocates for the object within the
tablespace’s datafiles.

There is no relationship between schemas and tablespaces: a tablespace can contain
objects from different schemas, and the objects for a schema can be contained in
different tablespaces.

Figure 10-1 illustrates the relationship among objects, tablespaces, and datafiles.

Schema Objects 10-3

Introduction to Schema Objects

Figure 10-1 Schema Objects, Tablespaces, and Datafiles

Database

| System Tablespace

AN

|

| |
I | I
I | I
I v | I v
I | I
| |
| Table Index | | Cluster Index Index Index

|
I Index | Index | | : | Index || Index | | Index || Index |
|

Index Index
| | Index | I | | Index |
X ! l vl :v

I _/: I | \\\ .I ! ~
| ‘. DBFILEL — "+ DBFILE2 Lo DBFILE3 -~
U U — - — —

See Also:

= Oracle9i Database Administrator’s Guide

= "Stored Procedures and Functions" on page 14-21
= Chapter 14, "SQL, PL/SQL, and Java"

= Chapter 17, "Triggers"

10-4 Oracle9i Database Concepts

Tables

Tables

Tables are the basic unit of data storage in an Oracle database. Data is stored in
rows and columns. You define a table with a table name (such as enpl oyees) and
set of columns. You give each column a column name (such as enpl oyee_i d,

| ast _nane, and j ob_i d), a datatype (such as VARCHAR2, DATE, or NUMBER), and
a width. The width can be predetermined by the datatype, as in DATE. If columns
are of the NUMBER datatype, define precision and scale instead of width. A row is a
collection of column information corresponding to a single record.

You can specify rules for each column of a table. These rules are called integrity
constraints. One example is a NOT NULL integrity constraint. This constraint forces
the column to contain a value in every row.

After you create a table, insert rows of data using SQL statements. Table data can
then be queried, deleted, or updated using SQL.

Figure 10-2 shows a sample table named enp.

See Also:

= Chapter 12, "Native Datatypes" for a discussion of the Oracle
datatypes

= Chapter 21, "Data Integrity" for more information about
integrity constraints

Schema Objects 10-5

Tables

Figure 10-2 The EMP Table

Rows Columns Column names
| |
| ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO -
- 7329 SMITH CLERK 7902 17-DEC-88 800.00 300.00 20

7499 ALLEN SALESMAN 7698 20-FEB-88 1600.00 300.00 30
7521 WARD SALESMAN 7698 22-FEB-88 1250.00 500.00 30
7566 JONES MANAGER 7839 02-APR-88 2975.00 | 20

L

Column not L Column

allowing nulls allowing
nulls

How Table Data Is Stored

When you create a table, Oracle automatically allocates a data segment in a
tablespace to hold the table’s future data. You can control the allocation and use of
space for a table’s data segment in the following ways:

= You can control the amount of space allocated to the data segment by setting the
storage parameters for the data segment.

= You can control the use of the free space in the data blocks that constitute the
data segment’s extents by setting the PCTFREE and PCTUSED parameters for
the data segment.

Oracle stores data for a clustered table in the data segment created for the cluster
instead of in a data segment in a tablespace. Storage parameters cannot be specified
when a clustered table is created or altered. The storage parameters set for the
cluster always control the storage of all tables in the cluster.

The tablespace that contains a nonclustered table’s data segment is either the table
owner’s default tablespace or a tablespace specifically named in the CREATE TABLE
statement.

See Also: "User Tablespace Settings and Quotas" on page 22-14

Row Format and Size

Oracle stores each row of a database table containing data for less than 256 columns
as one or more row pieces. If an entire row can be inserted into a single data block,
then Oracle stores the row as one row piece. However, if all of a row’s data cannot

10-6 Oracle9j Database Concepts

Tables

be inserted into a single data block or an update to an existing row causes the row
to outgrow its data block, Oracle stores the row using multiple row pieces. A data
block usually contains only one row piece for each row. When Oracle must store a
row in more than one row piece, it is chained across multiple blocks.

When a table has more than 255 columns, rows that have data after the 255th
column are likely to be chained within the same block. This is called intra-block
chaining. A chained row’s pieces are chained together using the rowids of the
pieces. With intra-block chaining, users receive all the data in the same block. If the
row fits in the block, users do not see an effect in 1/0 performance, because no extra
I1/0 operation is required to retrieve the rest of the row.

Each row piece, chained or unchained, contains a row header and data for all or
some of the row’s columns. Individual columns can also span row pieces and,
consequently, data blocks. Figure 10-3 shows the format of a row piece:

Schema Objects 10-7

Tables

Figure 10-3 The Format of a Row Piece

Row Header Column Data
| > |« > |
L [N
A N\ N\ \N A N
\~\ Row Piece in a Database Block :

. Row Overhead

|:| Number of Columns

|:| Cluster Key ID (if clustered)

. ROWID of Chained Row Pieces (if any)
|:| Column Length Database
. Column Value Block

The row header precedes the data and contains information about:
= Row pieces

= Chaining (for chained row pieces only)

= Columns in the row piece

= Cluster keys (for clustered data only)

A row fully contained in one block has at least 3 bytes of row header. After the row
header information, each row contains column length and data. The column length
requires 1 byte for columns that store 250 bytes or less, or 3 bytes for columns that
store more than 250 bytes, and precedes the column data. Space required for
column data depends on the datatype. If the datatype of a column is variable
length, then the space required to hold a value can grow and shrink with updates to
the data.

10-8 Oracle9i Database Concepts

Tables

To conserve space, a null in a column only stores the column length (zero). Oracle
does not store data for the null column. Also, for trailing null columns, Oracle does
not even store the column length.

Note: Each row also uses 2 bytes in the data block header’s row
directory.

Clustered rows contain the same information as nonclustered rows. In addition,
they contain information that references the cluster key to which they belong.
See Also:

= Oracle9i Database Administrator’s Guide for more information
about clustered rows and tables

= "Clusters" on page 10-63
= "Row Chaining and Migrating" on page 2-7
= "Nulls Indicate Absence of Value" on page 10-10

= "Row Directory" on page 2-5

Rowids of Row Pieces

The rowid identifies each row piece by its location or address. After they are
assigned, a given row piece retains its rowid until the corresponding row is deleted
or exported and imported using the Export and Import utilities. For clustered
tables, if the cluster key values of a row change, then the row keeps the same rowid
but also gets an additional pointer rowid for the new values.

Because rowids are constant for the lifetime of a row piece, it is useful to reference
rowids in SQL statements such as SELECT, UPDATE, and DELETE.

See Also:
= "Clusters" on page 10-63
= "Physical Rowids" on page 12-17

Column Order

The column order is the same for all rows in a given table. Columns are usually
stored in the order in which they were listed in the CREATE TABLE statement, but
this is not guaranteed. For example, if you create a table with a column of datatype

Schema Objects 10-9

Tables

LONG, then Oracle always stores this column last. Also, if a table is altered so that a
new column is added, then the new column becomes the last column stored.

In general, try to place columns that frequently contain nulls last so that rows take
less space. Note, though, that if the table you are creating includes a LONG column
as well, then the benefits of placing frequently null columns last are lost.

Nulls Indicate Absence of Value

A null is the absence of a value in a column of a row. Nulls indicate missing,
unknown, or inapplicable data. A null should not be used to imply any other value,
such as zero. A column allows nulls unless a NOT NULL or PRI MARY KEY integrity
constraint has been defined for the column, in which case no row can be inserted
without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In
these cases they require 1 byte to store the length of the column (zero).

Trailing nulls in a row require no storage because a new row header signals that the
remaining columns in the previous row are null. For example, if the last three
columns of a table are null, no information is stored for those columns. In tables
with many columns, the columns more likely to contain nulls should be defined last
to conserve disk space.

Most comparisons between nulls and other values are by definition neither true nor
false, but unknown. To identify nulls in SQL, use the | SNULL predicate. Use the
SQL function NVL to convert nulls to non-null values.

Nulls are not indexed, except when the cluster key column value is null or the index
is a bitmap index.

See Also:

= Oracle9i SQL Reference for more information about comparisons
using I SNULL and the NVL function

= "Indexes and Nulls" on page 10-31
= "Bitmap Indexes and Nulls" on page 10-52

Default Values for Columns

10-10

You can assign a default value to a column of a table so that when a new row is
inserted and a value for the column is omitted or keyword DEFAULT is supplied, a
default value is supplied automatically. Default column values work as though an
| NSERT statement actually specifies the default value.

Oracle9/ Database Concepts

Tables

The datatype of the default literal or expression must match or be convertible to the
column datatype.

If a default value is not explicitly defined for a column, then the default for the
column is implicitly set to NULL.

Default Value Insertion and Integrity Constraint Checking

Integrity constraint checking occurs after the row with a default value is inserted.
For example, in Figure 10-4, a row is inserted into the enp table that does not
include a value for the employee’s department number. Because no value is
supplied for the department number, Oracle inserts the dept no column’s default
value of 20. After inserting the default value, Oracle checks the FOREI GN KEY
integrity constraint defined on the dept no column.

See Also: Chapter 21, "Data Integrity" for more information about
integrity constraints

Schema Objects 10-11

Tables

Figure 10-4 DEFAULT Column Values

Parent Key

L Table DEPT
DEPTNO | DNAME | LOC
20 RESEARCH | DALLAS
30 SALES CHICAGO

Foreign Key

Table EMP \

EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO A
7329 SMITH CEO 17-DEC-85 9000.00 20
7499 ALLEN VP_SALES 7329 20-FEB-90 7500.00 100.00 30
7521 WARD MANAGER 7499 22-FEB-90 5000.00 200.00 30
7566 JONES SALESMAN 7521 02—-APR-90 2975.00 400.00 30
7691 OSTER SALESMAN 7521 06-APR-90 2975.00 400.00 20

Default Value
(if no value is given for
this column, the default

New row to be inserted, without value INSERT ;
for DEPTNO column. INTO ff 201is used)
I
7691 OSTER SALESMAN 7521 06-APR-90 2975.00 400.00

Partitioned Tables

Partitioned tables allow your data to be broken down into smaller, more
manageable pieces called partitions, or even subpartitions. Indexes can be
partitioned in similar fashion. Each partition can be managed individually, and can
operate independently of the other partitions, thus providing a structure that can be
better tuned for availability and performance.

See Also: Chapter 11, "Partitioned Tables and Indexes"

10-12 Oracle9i Database Concepts

Tables

Nested Tables

You can create a table with a column whose datatype is another table. That is, tables
can be nested within other tables as values in a column. The Oracle server stores
nested table data out of line from the rows of the parent table, using a store table
that is associated with the nested table column. The parent row contains a unique
set identifier value associated with a nested table instance.

See Also:
= "Nested Tables Description” on page 13-12

= Oracle9i Application Developer’s Guide - Fundamentals

Temporary Tables

In addition to permanent tables, Oracle can create temporary tables to hold
session-private data that exists only for the duration of a transaction or session.

The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table that
can be transaction-specific or session-specific. For transaction-specific temporary
tables, data exists for the duration of the transaction. For session-specific temporary
tables, data exists for the duration of the session. Data in a temporary table is
private to the session. Each session can only see and modify its own data. DML
locks are not acquired on the data of the temporary tables. The LOCK statement has
no effect on a temporary table, because each session has its own private data.

A TRUNCATE statement issued on a session-specific temporary table truncates data
in its own session. It does not truncate the data of other sessions that are using the
same table.

DML statements on temporary tables do not generate redo logs for the data
changes. However, undo logs for the data and redo logs for the undo logs are
generated. Data from the temporary table is automatically dropped in the case of
session termination, either when the user logs off or when the session terminates
abnormally such as during a session or instance failure.

You can create indexes for temporary tables using the CREATE | NDEX statement.
Indexes created on temporary tables are also temporary, and the data in the index
has the same session or transaction scope as the data in the temporary table.

You can create views that access both temporary and permanent tables. You can also
create triggers on temporary tables.

The Export and Import utilities can export and import the definition of a temporary
table. However, no data rows are exported even if you use the ROAS clause.

Schema Objects 10-13

Tables

Similarly, you can replicate the definition of a temporary table, but you cannot
replicate its data.

Segment Allocation

Temporary tables use temporary segments. Unlike permanent tables, temporary
tables and their indexes do not automatically allocate a segment when they are
created. Instead, segments are allocated when the first | NSERT (or CREATE TABLE
AS SELECT) is performed. This means that if a SELECT, UPDATE, or DELETE is
performed before the first | NSERT, then the table appears to be empty.

You can perform DDL statements (ALTER TABLE, DROP TABLE, CREATE | NDEX,
and so on) on a temporary table only when no session is currently bound to it. A
session gets bound to a temporary table when an | NSERT is performed on it. The
session gets unbound by a TRUNCATE, at session termination, or by doing a COMM T
or ABORT for a transaction-specific temporary table.

Temporary segments are deallocated at the end of the transaction for
transaction-specific temporary tables and at the end of the session for
session-specific temporary tables.

See Also: "Extents in Temporary Segments"” on page 2-11

Parent and Child Transactions

Transaction-specific temporary tables are accessible by user transactions and their
child transactions. However, a given transaction-specific temporary table cannot be
used concurrently by two transactions in the same session, although it can be used
by transactions in different sessions.

If a user transaction does an | NSERT into the temporary table, then none of its child
transactions can use the temporary table afterward.

If a child transaction does an | NSERT into the temporary table, then at the end of
the child transaction, the data associated with the temporary table goes away. After
that, either the user transaction or any other child transaction can access the
temporary table.

External Tables

You can access data in external sources as if it were in a table in the database. You
can connect to the database and create metadata for the external table, using DDL.
The DDL for an external table consists of two parts: one part that describes the

10-14 Oracle9i Database Concepts

Tables

Oracle column types, another part (the access parameters) which describes the
mapping of the external data to the Oracle data columns.

An external table does not describe any data that is stored in the database. Nor does
it describe how data is stored in the external source. Instead, it describes how the
external table layer needs to present the data to the server. It is the responsibility of
the access driver and the external table layer to do the necessary transformations
required on the data in the data file so that it matches the external table definition.

External tables are read-only; therefore, no DML operations are possible, and no
index can be created on them.

The Access Driver

When the database server needs to access data in an external source, it calls the
appropriate access driver to get the data from an external source in a form that the
database server expects. Oracle provides a default access driver that satisfies most
requirements for accessing data in files.

It is important to remember that the description of the data in the data source is
separate from the definition of the external table. The source file can contain more
or fewer fields than the columns in the table. Also, the datatypes for fields in the
data source can be different from the columns in the table. The access driver takes
care of ensuring the data from the data source is processed so that it matches the
definition of the external table.

Data Loading with External Tables

The main use for external tables is to use them as a row source for loading data into
an actual table in the database. After you create an external table, you can then use a
CREATE TABLE AS SELECT or | NSERT | NTO... AS SELECT statement, using the
external table as the source of the SELECT clause.

Note: You cannot insert data into external tables or update records
in them; external tables are read-only.

When you access the external table through a SQL statement, the fields of the
external table can be used just like any other field in a regular table. In particular,
you can use the fields as arguments for any SQL built-in function, PL/SQL function,
or Java function. This lets you manipulate data from the external source. For data
warehousing, you can do more sophisticated transformations in this way than you

Schema Objects 10-15

Views

Views

can with simple datatype conversions. You can also use this mechanism in data
warehousing to do data cleansing.

While external tables cannot contain a column object, constructor functions can be
used to build a column object from attributes in the external table

Parallel Access to External Tables

After the metadata for an external table is created, you can query the external data
directly and in parallel, using SQL. As a result, the external table acts as a view,
which lets you run any SQL query against external data without loading the
external data into the database.

The degree of parallel access to an external table is specified using standard parallel
hints and with the PARALLEL clause. Using parallelism on an external table allows
for concurrent access to the data files that comprise an external table. Whether a
single file is accessed concurrently or not is dependent upon the access driver
implementation, and attributes of the data file(s) being accessed (for example,
record formats).

See Also:

= Oracle9i Database Administrator’s Guide for information about
managing external tables, external connections, and directories

= Oracle9i Database Performance Tuning Guide and Reference for
information about tuning loads from external tables

= Oracle9i Database Utilities for information about import and
export

= Oracle9i SQL Reference for information about creating and
qguerying external tables

A view is a tailored presentation of the data contained in one or more tables or other
views. A view takes the output of a query and treats it as a table. Therefore, a view
can be thought of as a stored query or a virtual table. You can use views in most
places where a table can be used.

For example, the enpl oyees table has several columns and humerous rows of
information. If you want users to see only five of these columns or only specific
rows, then you can create a view of that table for other users to access.

10-16 Oracle9i Database Concepts

Views

Figure 10-5 shows an example of a view called STAFF derived from the base table
enpl oyees. Notice that the view shows only five of the columns in the base table.

Figure 10-5 An Example of a View

Base
Table employees
employee_id | last_name | job_id | manager_id | hire_date | salary | department_id
203 marvis hr_rep 101 07-Jun-94 6500 40
204 baer pr_rep 101 07-Jun-94 10000 70
205 higgins ac_rep 101 07-Jun-94 12000 110
206 gietz ac_account | 205 07-Jun-94 8300 110
View staff
employee_id | last_name |job_id | manager_id | department_id
203 marvis hr_rep 101 40
204 baer pr_rep 101 70
205 higgins ac_rep 101 110
206 gietz ac_account | 205 110

Because views are derived from tables, they have many similarities. For example,
you can define views with up to 1000 columns, just like a table. You can query
views, and with some restrictions you can update, insert into, and delete from
views. All operations performed on a view actually affect data in some base table of
the view and are subject to the integrity constraints and triggers of the base tables.

Note: You cannot explicitly define triggers on views, but you can
define them for the underlying base tables referenced by the view.
Oracle does support definition of logical constraints on views.

See Also: Oracle9i SQL Reference

How Views are Stored

Unlike a table, a view is not allocated any storage space, nor does a view actually
contain data. Rather, a view is defined by a query that extracts or derives data from
the tables that the view references. These tables are called base tables. Base tables

Schema Objects 10-17

Views

can in turn be actual tables or can be views themselves (including materialized
views). Because a view is based on other objects, a view requires no storage other
than storage for the definition of the view (the stored query) in the data dictionary.

How Views Are Used

Views provide a means to present a different representation of the data that resides
within the base tables. Views are very powerful because they let you tailor the
presentation of data to different types of users. Views are often used to:

Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 10-5 shows how the STAFF view does not show the
sal ary or conmi ssi on_pct columns of the base table enpl oyees.

Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact
that this information actually originates from several tables.

Simplify statements for the user

For example, views allow users to select information from multiple tables
without actually knowing how to perform a join.

Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables
on which the view is based.

Isolate applications from changes in definitions of base tables

For example, if a view’s defining query references three columns of a four
column table, and a fifth column is added to the table, then the view’s definition
is not affected, and all applications using the view are not affected.

Express a query that cannot be expressed without using a view

For example, a view can be defined that joins a GROUP BY view with a table, or a
view can be defined that joins a UNI ONview with a table.

Save complex queries

For example, a query can perform extensive calculations with table information.
By saving this query as a view, you can perform the calculations each time the
view is queried.

10-18 Oracle9i Database Concepts

Views

See Also: Oracle9i SQL Reference for information about the GROUP
BY or UNI ON views

Mechanics of Views

Oracle stores a view’s definition in the data dictionary as the text of the query that
defines the view. When you reference a view in a SQL statement, Oracle:

1. Merges the statement that references the view with the query that defines the
view

2. Parses the merged statement in a shared SQL area
3. Executes the statement

Oracle parses a statement that references a view in a new shared SQL area only if no
existing shared SQL area contains a similar statement. Therefore, you get the benefit
of reduced memory use associated with shared SQL when you use views.

Globalization Support Parameters in Views

When Oracle evaluates views containing string literals or SQL functions that have
globalization support parameters as arguments (such as TO_CHAR, TO_DATE, and
TO_NUMBER), Oracle takes default values for these parameters from the
globalization support parameters for the session. You can override these default
values by specifying globalization support parameters explicitly in the view
definition.

See Also: Oracle9i Database Globalization Support Guide for
information about globalization support

Use of Indexes Against Views

Oracle determines whether to use indexes for a query against a view by
transforming the original query when merging it with the view’s defining query.
Consider the following view:

CREATE M EWenpl oyees_vi ew AS
SH.ECT enpl oyee_id, last_nane, salary, location_id
FRCM enpl oyees, departnents
WHERE enpl oyees. departnent _id = departnents. departnent _id AND
department s. departnent _i d = 10;

Now consider the following user-issued query:

Schema Objects 10-19

Views

SELECT | ast_nane
FROM enpl oyees_vi ew
WHERE enpl oyee_id = 9876;

The final query constructed by Oracle is:

SELECT | ast_nane
FROM enpl oyees, depart nent s
WHERE enpl oyees. depart ment _i d = departnents. depart ment _i d AND
departnents. departnent _id = 10 AND
enpl oyees. enpl oyee_i d = 9876;

In all possible cases, Oracle merges a query against a view with the view’s defining
guery and those of any underlying views. Oracle optimizes the merged query as if
you issued the query without referencing the views. Therefore, Oracle can use
indexes on any referenced base table columns, whether the columns are referenced
in the view definition or in the user query against the view.

In some cases, Oracle cannot merge the view definition with the user-issued query.
In such cases, Oracle may not use all indexes on referenced columns.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about query optimization

Dependencies and Views

Because a view is defined by a query that references other objects (tables,
materialized views, or other views), a view depends on the referenced objects.
Oracle automatically handles the dependencies for views. For example, if you drop
a base table of a view and then create it again, Oracle determines whether the new
base table is acceptable to the existing definition of the view.

See Also: Chapter 15, "Dependencies Among Schema Objects" for
a complete discussion of dependencies in a database

Updatable Join Views

A join view is defined as a view that has more than one table or view in its FROM
clause (a join) and that does not use any of these clauses: DI STI NCT,

AGGREGATI ON, GROUP BY, START W TH, CONNECT BY, ROANNUM and set operations
(UNI ON ALL, I NTERSECT, and so on).

An updatable join view is a join view that involves two or more base tables or
views, where UPDATE, | NSERT, and DELETE operations are permitted. The data

10-20 Oracle9i Database Concepts

Views

Object Views

Inline Views

dictionary views ALL_UPDATABLE_COLUMWNS, DBA UPDATABLE CCOLUMWNS, and
USER UPDATABLE COLUWNS contain information that indicates which of the view
columns are updatable. In order to be inherently updatable, a view cannot contain any of
the following constructs;

= Asetoperator

s A DI STI NCT operator

s An aggregate or analytic function

= A GROUP BY, ORDER BY, CONNECT BY, or START W THclause
= A collection expression in a SELECT list

= Asubquery in a SELECT list

= Joins (with some exceptions). See Oracle9i Database Administrator’s Guide for
details.

Views that are not updatable can be modified using | NSTEAD OF triggers.

See Also:

= Oracle9i SQL Reference for further information about updatable
views

= "INSTEAD OF Triggers" on page 17-12

In the Oracle object-relational database, an object view let you retrieve, update,
insert, and delete relational data as if it was stored as an object type. You can also
define views with columns that are object datatypes, such as objects, REFs, and
collections (nested tables and VARRAYS).

See Also:
= Chapter 13, "Object Datatypes and Object Views"

= Oracle9i Application Developer’s Guide - Fundamentals

An inline view is not a schema object. It is a subquery with an alias (correlation
name) that you can use like a view within a SQL statement.

Schema Objects 10-21

Materialized Views

For example, this query joins the summary table SUMTAB to an inline view V
defined on the Tl ME table to obtain T. YEAR, and then rolls up the aggregates in
SUMTAB to the YEAR level:

SEHLECT v.year, s.prod_name, SUMSs.sumsal es)

FROM suntab s,

(SELECT DSTINCT t.month, t.year FROMtine t) v
WHERE s.nonth = v. nont h
GROP BY v.year, s.prod nang;

See Also: Oracle9i SQL Reference for information about subqueries

Materialized Views

Materialized views are schema objects that can be used to summarize, compute,
replicate, and distribute data. They are suitable in various computing environments
such as data warehousing, decision support, and distributed or mobile computing:

In data warehouses, materialized views are used to compute and store
aggregated data such as sums and averages. Materialized views in these
environments are typically referred to as summaries because they store
summarized data. They can also be used to compute joins with or without
aggregations. If compatibility is set to Oracle9i or higher, then materialized
views can be used for queries that include filter selections.

Cost-based optimization can use materialized views to improve query
performance by automatically recognizing when a materialized view can and
should be used to satisfy a request. The optimizer transparently rewrites the
request to use the materialized view. Queries are then directed to the
materialized view and not to the underlying detail tables or views.

In distributed environments, materialized views are used to replicate data at
distributed sites and synchronize updates done at several sites with conflict
resolution methods. The materialized views as replicas provide local access to
data that otherwise has to be accessed from remote sites.

In mobile computing environments, materialized views are used to download a
subset of data from central servers to mobile clients, with periodic refreshes
from the central servers and propagation of updates by clients back to the
central servers.

Materialized views are similar to indexes in several ways:

They consume storage space.

10-22 Oracle9i Database Concepts

Materialized Views

s They must be refreshed when the data in their master tables changes.

s They improve the performance of SQL execution when they are used for query
rewrites.

m Their existence is transparent to SQL applications and users.

Unlike indexes, materialized views can be accessed directly using a SELECT
statement. Depending on the types of refresh that are required, they can also be
accessed directly in an | NSERT, UPDATE, or DELETE statement.

A materialized view can be partitioned. You can define a materialized view on a
partitioned table and one or more indexes on the materialized view.

See Also:
= "Indexes" on page 10-28
= Chapter 11, "Partitioned Tables and Indexes"

= Oracle9i Data Warehousing Guide for information about
materialized views in a data warehousing environment

Define Constraints on Views

Data warehousing applications recognize multidimensional data in the Oracle
database by identifying Referential Integrity (RI) constraints in the relational
schema. RI constraints represent primary and foreign key relationships among
tables. By querying the Oracle data dictionary, applications can recognize RI
constraints and therefore recognize the multidimensional data in the database. In
some environments, database administrators, for schema complexity or security
reasons, define views on fact and dimension tables. Oracle provides the ability to
constrain views. By allowing constraint definitions between views, database
administrators can propagate base table constraints to the views, thereby allowing
applications to recognize multidimensional data even in a restricted environment.

Only logical constraints, that is, constraints that are declarative and not enforced by
Oracle, can be defined on views. The purpose of these constraints is not to enforce
any business rules but to identify multidimensional data. The following constraints
can be defined on views:

= Primary key constraint
= Unique constraint

= Referential Integrity constraint

Schema Objects 10-23

Materialized Views

Given that view constraints are declarative, DI SABLE, NOVALI DATE is the only
valid state for a view constraint. However, the RELY or NORELY state is also
allowed, because constraints on views may be used to enable more sophisticated
guery rewrites; a view constraint in the RELY state allows query rewrites to occur
when the rewrite integrity level is set to trusted mode.

Note: Although view constraint definitions are declarative in
nature, operations on views are subject to the integrity constraints
defined on the underlying base tables, and constraints on views can
be enforced through constraints on base tables.

Refresh Materialized Views

Oracle maintains the data in materialized views by refreshing them after changes
are made to their master tables. The refresh method can be incremental (fast
refresh) or complete. For materialized views that use the fast refresh method, a
materialized view log or direct loader log keeps a record of changes to the master
tables.

Materialized views can be refreshed either on demand or at regular time intervals.
Alternatively, materialized views in the same database as their master tables can be
refreshed whenever a transaction commits its changes to the master tables.

Materialized View Logs

A materialized view log is a schema object that records changes to a master table’s
data so that a materialized view defined on the master table can be refreshed
incrementally.

Each materialized view log is associated with a single master table. The
materialized view log resides in the same database and schema as its master table.

See Also:

= Oracle9i Data Warehousing Guide for information about
materialized views and materialized view logs in a
warehousing environment

= Oracle9i Replication for information about materialized views
used for replication

10-24 Oracle9i Database Concepts

The Sequence Generator

Dimensions

A dimension defines hierarchical (parent/child) relationships between pairs of
columns or column sets. Each value at the child level is associated with one and
only one value at the parent level. A hierarchical relationship is a functional
dependency from one level of a hierarchy to the next level in the hierarchy. A
dimension is a container of logical relationships between columns, and it does not
have any data storage assigned to it.

The CREATE DI MENSI ON statement specifies:

= Multiple LEVEL clauses, each of which identifies a column or column set in the
dimension

= One or more H ERARCHY clauses that specify the parent/child relationships
between adjacent levels

= Optional ATTRI BUTE clauses, each of which identifies an additional column or
column set associated with an individual level

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). To define a dimension over
columns from multiple tables, connect the tables using the JO Nclause of the

HI ERARCHY clause.

For example, a normalized time dimension can include a date table, a month table,
and a year table, with join conditions that connect each date row to a month row,
and each month row to a year row. In a fully denormalized time dimension, the
date, month, and year columns are all in the same table. Whether normalized or
denormalized, the hierarchical relationships among the columns need to be
specified in the CREATE DI MENSI ON statement.

See Also:

= Oracle9i Data Warehousing Guide for information about how
dimensions are used in a warehousing environment

= Oracle9i SQL Reference for information about creating
dimensions

The Sequence Generator

The sequence generator provides a sequential series of numbers. The sequence
generator is especially useful in multiuser environments for generating unique
sequential numbers without the overhead of disk I/0 or transaction locking. For

Schema Objects 10-25

The Sequence Generator

example, assume two users are simultaneously inserting new employee rows into
the enpl oyees table. By using a sequence to generate unique employee numbers
for the enpl oyee_i d column, neither user has to wait for the other to enter the
next available employee number. The sequence automatically generates the correct
values for each user.

Therefore, the sequence generator reduces serialization where the statements of
two transactions must generate sequential numbers at the same time. By avoiding
the serialization that results when multiple users wait for each other to generate and
use a sequence number, the sequence generator improves transaction throughput,
and a user’s wait is considerably shorter.

Sequence numbers are Oracle integers of up to 38 digits defined in the database. A
sequence definition indicates general information, such as the following:

= The name of the sequence

= Whether the sequence ascends or descends

= The interval between numbers

= Whether Oracle should cache sets of generated sequence numbers in memory

Oracle stores the definitions of all sequences for a particular database as rows in a
single data dictionary table in the SYSTEMtablespace. Therefore, all sequence
definitions are always available, because the SYSTEMtablespace is always online.

Sequence numbers are used by SQL statements that reference the sequence. You can
issue a statement to generate a new sequence number or use the current sequence
number. After a statement in a user’s session generates a sequence number, the
particular sequence number is available only to that session. Each user that
references a sequence has access to the current sequence number.

Sequence numbers are generated independently of tables. Therefore, the same
sequence generator can be used for more than one table. Sequence number
generation is useful to generate unique primary keys for your data automatically
and to coordinate keys across multiple rows or tables. Individual sequence numbers
can be skipped if they were generated and used in a transaction that was ultimately
rolled back. Applications can make provisions to catch and reuse these sequence
numbers, if desired.

10-26 Oracle9i Database Concepts

Synonyms

Synonyms

Caution: If accountability for all sequence numbers is required,
that is, if your application can never lose sequence numbers, then
you cannot use Oracle sequences and you may choose to store
sequence numbers in database tables.

Be careful when implementing sequence generators using database
tables. Even in a single instance configuration, for a high rate of
sequence values generation, a performance overhead is associated
with the cost of locking the row that stores the sequence value.

See Also:

= Oracle9i Application Developer’s Guide - Fundamentals for
performance implications when using sequences

= Oracle9i SQL Reference for information about the CREATE
SEQUENCE statement

A synonym is an alias for any table, view, materialized view, sequence, procedure,
function, or package. Because a synonym is simply an alias, it requires no storage
other than its definition in the data dictionary.

Synonyms are often used for security and convenience. For example, they can do
the following:

= Mask the name and owner of an object
= Provide location transparency for remote objects of a distributed database
=« Simplify SQL statements for database users

= Enable restricted access similar to specialized views when exercising
fine-grained access control

You can create both public and private synonyms. A public synonym is owned by the
special user group named PUBLI Cand every user in a database can access it. A private
synonym is in the schema of a specific user who has control over its availability to others.

Synonyms are very useful in both distributed and nondistributed database
environments because they hide the identity of the underlying object, including its
location in a distributed system. This is advantageous because if the underlying

Schema Objects 10-27

Indexes

Indexes

object must be renamed or moved, then only the synonym needs to be redefined.
Applications based on the synonym continue to function without modification.

Synonyms can also simplify SQL statements for users in a distributed database
system. The following example shows how and why public synonyms are often
created by a database administrator to hide the identity of a base table and reduce
the complexity of SQL statements. Assume the following:

= Atablecalled SALES DATA s in the schema owned by the user JWARD.
= The SELECT privilege for the SALES DATA table is granted to PUBLI C.

At this point, you have to query the table SALES DATA with a SQL statement
similar to the following:

SEHLECT * FROMj ward. sal es_dat a;

Notice how you must include both the schema that contains the table along with the
table name to perform the query.

Assume that the database administrator creates a public synonym with the
following SQL statement:

CREATE PUBLI C SYNONYM sal es FCR j war d. sal es_dat a;

After the public synonym is created, you can query the table SALES DATA with a
simple SQL statement:

SH ECT * FROM sal es;

Notice that the public synonym SALES hides the name of the table SALES DATA
and the name of the schema that contains the table.

Indexes are optional structures associated with tables and clusters. You can create
indexes on one or more columns of a table to speed SQL statement execution on
that table. Just as the index in this manual helps you locate information faster than
if there were no index, an Oracle index provides a faster access path to table data.
Indexes are the primary means of reducing disk 1/0 when properly used.

You can create many indexes for a table as long as the combination of columns
differs for each index. You can create more than one index using the same columns
if you specify distinctly different combinations of the columns. For example, the
following statements specify valid combinations:

10-28 Oracle9i Database Concepts

Indexes

CREATE | NDEX enpl oyees_i dx1 QN enpl oyees (last_nane, job_id)
CREATE | NDEX enpl oyees_i dx2 QN enpl oyees (job_id, |ast_nane);

You cannot create an index that references only one column in a table if another
such index already exists.

Oracle provides several indexing schemes, which provide complementary
performance functionality:

= B-tree indexes

= B-tree cluster indexes
= Hash cluster indexes
= Reverse key indexes

= Bitmap indexes

= Bitmap Join Indexes

Oracle also provides support for function-based indexes and domain indexes
specific to an application or cartridge.

The absence or presence of an index does not require a change in the wording of
any SQL statement. An index is merely a fast access path to the data. It affects only
the speed of execution. Given a data value that has been indexed, the index points
directly to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.
You can create or drop an index at any time without affecting the base tables or
other indexes. If you drop an index, all applications continue to work. However,
access of previously indexed data can be slower. Indexes, as independent structures,
require storage space.

Oracle automatically maintains and uses indexes after they are created. Oracle
automatically reflects changes to data, such as adding new rows, updating rows, or
deleting rows, in all relevant indexes with no additional action by users.

Retrieval performance of indexed data remains almost constant, even as new rows
are inserted. However, the presence of many indexes on a table decreases the
performance of updates, deletes, and inserts, because Oracle must also update the
indexes associated with the table.

The optimizer can use an existing index to build another index. This results in a
much faster index build.

Schema Objects 10-29

Indexes

Unique and Nonunique Indexes

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows
of a table have duplicate values in the key column (or columns). Nonunique indexes
do not impose this restriction on the column values.

Oracle recommends that unique indexes be created explicitly, and not through
enabling a unique constraint on a table.

Alternatively, you can define UNI QUE integrity constraints on the desired columns.
Oracle enforces UNI QUE integrity constraints by automatically defining a unique
index on the unique key. However, it is advisable that any index that exists for
guery performance, including unique indexes, be created explicitly.

See Also: Oracle9i Database Administrator’s Guide for information
about creating unique indexes explicitly

Composite Indexes

A composite index (also called a concatenated index) is an index that you create on
multiple columns in a table. Columns in a composite index can appear in any order and
need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
VWHERE clause references all or the leading portion of the columns in the composite
index. Therefore, the order of the columns used in the definition is important.
Generally, the most commonly accessed or most selective columns go first.

Figure 10-6 illustrates the VENDOR_PARTS table that has a composite index on the
VENDOR | Dand PART_NOcolumns.

10-30 Oracle9i Database Concepts

Indexes

Figure 10-6 Composite Index Example

VENDOR_PARTS

VEND ID | PART NO | UNIT COST
1012 10-440 .25
1012 10441 .39
1012 457 4.95
1010 10-440 27
1010 457 5.10
1220 08-300 1.33
1012 08-300 1.19
1|292 457 5.28

Concatenated Index
(index with multiple columns)

No more than 32 columns can form a regular composite index. For a bitmap index,
the maximum number columns is 30. A key value cannot exceed roughly half
(minus some overhead) the available data space in a data block.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about using composite indexes

Indexes and Keys

Although the terms are often used interchangeably, indexes and keys are different.
Indexes are structures actually stored in the database, which users create, alter, and drop
using SQL statements. You create an index to provide a fast access path to table data. Keys
are strictly a logical concept. Keys correspond to another feature of Oracle called integrity
constraints, which enforce the business rules of a database.

Because Oracle uses indexes to enforce some integrity constraints, the terms key

and index are often are used interchangeably. However, do not confuse them with
each other.

See Also: Chapter 21, "Data Integrity"

Indexes and Nulls

NULL values in indexes are considered to be distinct except when all the non-NULL
values in two or more rows of an index are identical, in which case the rows are
considered to be identical. Therefore, UNI QUE indexes prevent rows containing

Schema Objects 10-31

Indexes

NULL values from being treated as identical. This does not apply if there are no
non-NULL values—in other words, if the rows are entirely NULL.

Oracle does not index table rows in which all key columns are NULL, except in the
case of bitmap indexes or when the cluster key column value is NULL.

See Also: "Bitmap Indexes and Nulls" on page 10-52

Function-Based Indexes

You can create indexes on functions and expressions that involve one or more
columns in the table being indexed. A function-based index computes the value of
the function or expression and stores it in the index. You can create a function-based
index as either a B-tree or a bitmap index.

The function used for building the index can be an arithmetic expression or an
expression that contains a PL/SQL function, package function, C callout, or SQL
function. The expression cannot contain any aggregate functions, and it must be
DETERM NI STI C. For building an index on a column containing an object type, the
function can be a method of that object, such as a map method. However, you
cannot build a function-based index on a LOB column, REF, or nested table column,
nor can you build a function-based index if the object type contains a LOB, REF, or
nested table.

See Also:

= "Bitmap Indexes"

= Oracle9i Database Performance Tuning Guide and Reference for
more information about using function-based indexes

Uses of Function-Based Indexes

Function-based indexes provide an efficient mechanism for evaluating statements
that contain functions in their WHERE clauses. The value of the expression is
computed and stored in the index. When it processes | NSERT and UPDATE
statements, however, Oracle must still evaluate the function to process the
statement.

For example, if you create the following index:
CREATE INDEX idx ONtable 1 (a+b * (c - 1), a b);

then Oracle can use it when processing queries such as this:
SHECT a FRMtable 1 WEREa + b * (¢ - 1) < 100;

10-32 Oracle9i Database Concepts

Indexes

Function-based indexes defined on UPPER(col umm_nane) or LONER(col unm_
nane) can facilitate case-insensitive searches. For example, the following index:

CREATE | NDEX upper case_i dx CN enpl oyees (UPPERfirst_nane));

can facilitate processing queries such as this:

SELECT * FROM enpl oyees WHERE UPPER(first_nane) = 'R CHARD ;

A function-based index can also be used for a globalization support sort index that
provides efficient linguistic collation in SQL statements.

See Also: Oracle9i Database Globalization Support Guide for
information about linguistic indexes

Optimization with Function-Based Indexes

You must gather statistics about function-based indexes for the optimizer.
Otherwise, the indexes cannot be used to process SQL statements. Rule-based
optimization never uses function-based indexes.

Cost-based optimization can use an index range scan on a function-based index for
gueries with expressions in WHERE clause. For example, in this query:

SHECT * FRMt WERE a + b < 10;

the optimizer can use index range scan if an index is built on a+b. The range scan
access path is especially beneficial when the predicate (WHERE clause) has low
selectivity. In addition, the optimizer can estimate the selectivity of predicates
involving expressions more accurately if the expressions are materialized in a
function-based index.

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the
function-based index. This comparison is case-insensitive and ignores blank spaces.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about gathering statistics

Dependencies of Function-Based Indexes

Function-based indexes depend on the function used in the expression that defines
the index. If the function is a PL/SQL function or package function, the index is
disabled by any changes to the function specification.

Schema Objects 10-33

Indexes

PL/SQL functions used in defining function-based indexes must be

DETERM NI STI C. The index owner needs to have the EXECUTE privilege on the
defining function. If the EXECUTE privilege is revoked, then the function-based
index is marked DI SABLED.

See Also:

= Oracle9i Database Performance Tuning Guide and Reference for
information about DETERM NI STI CPL/SQL functions

= "Function-Based Index Dependencies” on page 15-8 for more
information about dependencies and privileges for
function-based indexes

How Indexes Are Stored

When you create an index, Oracle automatically allocates an index segment to hold
the index’s data in a tablespace. You can control allocation of space for an index’s
segment and use of this reserved space in the following ways:

= Set the storage parameters for the index segment to control the allocation of the
index segment’s extents.

= Set the PCTFREE parameter for the index segment to control the free space in
the data blocks that constitute the index segment’s extents.

The tablespace of an index’s segment is either the owner’s default tablespace or a
tablespace specifically named in the CREATE | NDEX statement. You do not have to
place an index in the same tablespace as its associated table. Furthermore, you can
improve performance of queries that use an index by storing an index and its table
in different tablespaces located on different disk drives, because Oracle can retrieve
both index and table data in parallel.

See Also: "User Tablespace Settings and Quotas" on page 22-14

Format of Index Blocks

Space available for index data is the Oracle block size minus block overhead, entry
overhead, rowid, and one length byte for each value indexed. The number of bytes
required for the overhead of an index block depends on the operating system.

See Also: Your Oracle operating system specific documentation
for information about the overhead of an index block

10-34 Oracle9i Database Concepts

Indexes

When you create an index, Oracle fetches and sorts the columns to be indexed and
stores the rowid along with the index value for each row. Then Oracle loads the
index from the bottom up. For example, consider the statement:

CREATE | NDEX enpl oyees_| ast _nane ON enpl oyees(| ast _nane) ;

Oracle sorts the enpl oyees table on the | ast _nane column. It then loads the
index with the | ast _nane and corresponding rowid values in this sorted order.
When it uses the index, Oracle does a quick search through the sorted | ast _namne
values and then uses the associated rowid values to locate the rows having the
sought | ast _nane value.

Although Oracle accepts the keywords ASC, DESC, COVPRESS, and NOCOVPRESS
in the CREATE | NDEX statement, they have no effect on index data, which is stored
using rear compression in the branch nodes but not in the leaf nodes.

The Internal Structure of Indexes

Oracle uses B-trees to store indexes to speed up data access. With no indexes, you
have to do a sequential scan on the data to find a value. For n rows, the average
number of rows searched is n/2. Obviously this does not scale very well as data
volumes increase.

Consider an ordered list of the values divided into block-wide ranges (leaf blocks).
The end points of the ranges along with pointers to the blocks can be stored in a
search tree and a value in log(n) time for n entries could be found. This is the basic
principle behind Oracle indexes.

Figure 10-7 illustrates the structure of a B-tree index.

Schema Objects 10-35

Indexes

Figure 10-7 Internal Structure of a B-tree Index

Branch Blocks

| Di [Lu[Rh]

Kar
Sam
St
Su

LeafBIocksl l l 1 l
al |2 ala 2lal|2(2]a alalala al2]afe
SNHEE o|=|=[2]2 SHEHEE HHBEE NHEHE

s HEHE S HEHEER SR HadBHEHeHEHEHER as
o|z|o|x olz|2]18]8 Xl|x|x|x rle|x|z olElx|8)x

BB s ENEP s R E A e EE RN RN
=|<|€lc al=|=1L]12 clcslcslelc =1 = =R =l=|lc|=]2a
S|lc|E|l s S|S|s|=Z2|= sl c|c|L]OS ||| © || c|T|c
v N4 ¥ I il =l D S S zlz|Z2]|Z2]2 alalala ola|lx|x|x

The upper blocks (branch blocks) of a B-tree index contain index data that points to
lower-level index blocks. The lowest level index blocks (leaf blocks) contain every
indexed data value and a corresponding rowid used to locate the actual row. The leaf
blocks are doubly linked. Indexes in columns containing character data are based on the
binary values of the characters in the database character set.

For a unique index, one rowid exists for each data value. For a nonunique index, the
rowid is included in the key in sorted order, so nonunique indexes are sorted by the
index key and rowid. Key values containing all nulls are not indexed, except for
cluster indexes. Two rows can both contain all nulls without violating a unique
index.

Index Properties
The two kinds of blocks:

= Branch blocks for searching

= Leaf blocks that store the values

10-36 Oracle9i Database Concepts

Indexes

Branch Blocks Branch blocks store the following:

s The minimum key prefix needed to make a branching decision between two
keys

s The pointer to the child block containing the key

If the blocks have n keys then they have n+1 pointers. The number of keys and
pointers is limited by the block size.

Leaf Blocks All leaf blocks are at the same depth from the root branch block. Leaf
blocks store the following:

= The complete key value for every row

= ROW Ds of the table rows

All key and ROW D pairs are linked to their left and right siblings. They are sorted
by (key, ROW D).

Advantages of B-tree Structure
The B-tree structure has the following advantages:

= All leaf blocks of the tree are at the same depth, so retrieval of any record from
anywhere in the index takes approximately the same amount of time.

= B-tree indexes automatically stay balanced.
= All blocks of the B-tree are three-quarters full on the average.

= B-trees provide excellent retrieval performance for a wide range of queries,
including exact match and range searches.

= Inserts, updates, and deletes are efficient, maintaining key order for fast
retrieval.

= B-tree performance is good for both small and large tables and does not
degrade as the size of a table grows.

See Also: Computer science texts for more information about
B-tree indexes

Schema Objects 10-37

Indexes

How Indexes Are Searched

Index Unique Scan

Index unique scan is one of the most efficient ways of accessing data. This access
method is used for returning the data from B-tree indexes. The optimizer chooses a
unique scan when all columns of a unique (B-tree) index are specified with equality
conditions.

Steps in Index Unique Scans

1
2.
3.

o

© N o

9.

Start with the root block.
Search the block keys for the smallest key greater than or equal to the value.

If key is greater than the value, then follow the link before this key to the child
block.

If key is equal to the value, then follow this link to the child block.

If no key is greater than or equal to the value in Step 2, then follow the link after
the highest key in the block.

Repeat steps 2 through 4 if the child block is a branch block.
Search the leaf block for key equal to the value.
If key is found, then return the ROW D.

If key is not found, then the row does not exist.

Figure 10-8 shows an example of an index unique scan and is described in the text
that follows the figure.

10-38 Oracle9i Database Concepts

Indexes

Figure 10-8 Example of an Index Unique Scan

| Di [Lu[Rh]

t v

- 3 =} <= %‘_.3
m|O|O w|lT|x Sla|a nlnlon
al |2 2|4 olal .|2|a al8]lala =] =1 PN I
SHEHINEHHEHINEHEEEINEHEHENEEEEE
;%;o—»;og;E—ro%;o%—»%g%%—rgoog%-r
2% 2|%|z|8 B L Ele®fx o|Z|Z|z|c
1215 gl £l 5| 5] oLl Bl | 2| £l S8l E] s[E| €|1 2| 2 21
3|8El& HEEEBRE S|s|2|e|s 3| 3| 3|3 HEEEE
YIx|X¥|a Jlz|1z|=|= z|lz|lz|z|z olaja|a o|lo|x|x|x

If searching for Patrick:

In the root block, Rh is the smallest key >= Patrick.

Follow the link before Rh to branch block (N, P, Ph).

In this block, Ph is the smallest key >= Patrick.

Follow the link before Ph to leaf block (Pablo, Patrick, Paula, Peter).
In this block, search for key Patrick = Patrick.

Found Patrick = Patrick, return (KEY, RON D).

If searching for Meg:

In the root block, Rh is the smallest key >= Meg.

Follow the link before Rh to branch block (N, P, Ph).

In this block, Mo is the smallest key >= Meg.

Follow the link before Mo to leaf block (Luis,... , May, Mike).
In this block, search for key = Meg.

Schema Objects 10-39

Indexes

=« Did not find key = Meg, return 0 rows.

Index Range Scan

Index range scan is a common operation for accessing selective data. It can be
bounded (bounded on both sides) or unbounded (on one or both sides). Data is
returned in the ascending order of index columns. Multiple rows with identical
values are sorted (in ascending order) by the RON Ds.

How Index Range Scans Work Index range scans can happen on both unique and
non-unigue indexes. B-tree non-unique indexes are identical to the unique B-tree
indexes. However, they allow multiple values for the same key.

For a range scan, you can specify an equality condition. For example:

= hname = ‘ALEX - start key = ‘ALEX, end key = ‘ ALEX
Alternatively, specify an interval bounded by start key and end key. For example:
= hname LIKE ‘AL% - start key = ‘AL, end key < ‘AM

= order_idBETWEEN100 AND120 -start key =100, end key =120

Or, specify just a start key or an end key (unbounded range scan). For example:

=« order_book date > SYSDATE - 30 (orders booked in last month)

» enployee_hire _date < SYSDATE - 3650 (employees with more than a
decade of service)

Figure 10-9 shows an example of a bounded range scan and is described in the text
that follows the figure.

10-40 Oracle9i Database Concepts

Indexes

Figure 10-9 Example of a Bounded Range Scan

t v

| Di [Lu|Rh]
o IS

—] = C|l—=|>

m|o|OC wlx|x Zla|x n|h|la

o a) ala 2lal|2(2]a ofalala ol2]ale

ol|2|2|2 NHHEE SHEHHEHE HHEHE NHEHEE
;%;o—};%%g§—>O%OO%—>%%%%—>§OO%%—>

ofxlo|x 80:0:88 Tlx|T|E|x rlele|e o] i e 1 L
C12E] 8le 5] 2| 5| 6| o€ B 2] 3| L] e[2| E| 2| 5| €| | 2] 5| 3 =

—|=|€|<c 205 5lx| = clS|<]18]= =1 =1 = B =lslel=| 2

S| T|E| S E] cs|s|s|L| o c|c| T| @ sl g| T s

Y| X|IX|a pl =3 =) z|lzlz|zZz]|z olajalja ol

Steps in a Bounded Range Scan

1.

2
3
4.
5

o

Start with the root block.

Search the block keys for the smallest key greater than or equal to the start key.
If key > start key, then follow the link before this key to the child block.

If key = start key, then follow this link to the child block.

If no key is greater than or equal to the start key in Step 2, then follow the link
after the highest key in the block.

Repeat steps 2 through 4 if the child block is a branch block.

Search the leaf block keys for the smallest key greater than or equal to the start
key.

While key <= end key:

= If the key columns meet all WHERE clause conditions, then return the (value,
ROW D).

= Follow the link to the right.

Schema Objects 10-41

Indexes

Here, the range scans make use of the fact that all the leaf nodes are linked from left
to right. In Step 7, extra filtering conditions on the index columns can be applied
before accessing the table by ROW D.

Range scans bounded on the left (unbounded on the right) start the same. However,
they do not check for the end point. They continue until they reach the right-most
leaf key.

Range scans bounded on the right traverse the index tree to the left-most leaf key
and then follow step #6 and # 7 until they reach a key greater then the specified
condition.

With range scans using the non-unique B-tree index, if searching for Nancy:
= Start key = ‘Nancy’, end key < ‘Nancy’.

= Inthe root block, Rh is the smallest key >= start key.
= Follow the link before Rh to branch block (N, P, Ph).
= Inthis block, P is the smallest key >= start key.

= Follow the link before P to leaf block (Nancy, ..., Nicole, Norm).
= Inthis block, Nancy is the smallest key >= start key.

= Because Nancy <= end key, return the (KEY, RON D).
= Next key Nancy <= end key, return the (KEY, RON D).
= Next key Nancy <= end key, return the (KEY, RON D).
= Next key Nicole > end key, terminate the range scan.
If searching for ‘P%’:

= Startkey =‘P’, end key < ‘Q’.

= Inthe root block, Rh is the smallest key >= start key.
= Follow the link before Rh to branch block (N, P, Ph).
= Inthis block, P is the smallest key = start key.

= Follow this link to leaf block (Pablo,..., Peter).

= Inthis block, Pablo is the smallest key >= start key.

= Because Pablo <= end key, return the (KEY, RON D).

= Next key Paula <= end key, return the (KEY, ROW D).
= Next key Paula <= end key, return the (KEY, ROW D).

10-42 Oracle9i Database Concepts

Indexes

s Next key Phil <= end key, return the (KEY, RON D).
s Next key Pierre <= end key, return the (KEY, RON D).

s Next key Rachel > end key, terminate the range scan.

Index Range Scan Descending

Steps in a Bounded Descending Range Scan For a descending range scan (like with the
normal range scan), specify an equality condition or an interval.

1. Start with the root block.

2. Search the block keys for the biggest key less than or equal to the end key.

3. Follow the link to the child block.
4

If no key is less than or equal to the end key in step 2, then follow the link
before the lowest key in the block.

o

Repeat steps 2 through 4 if the child block is a branch block.
6. Search the leaf block keys for the biggest key less than or equal to the end key.
7. While key >= start key:

= If the key columns meet all WHERE clause conditions, then return the (value,
ROW D).

= Follow the link to the left.

Here, the range scans make use of the fact that all the leaf nodes are linked from
right to left.

Figure 10-10 shows examples of a bounded range scan and is described in the text
that follows the figure.

Schema Objects 10-43

Indexes

Figure 10-10 Examples of Range Scans Using the Non-Unique B-tree Index

| Di [Lu[Rh]

- 5 < El.]=
m|O|O wlz|x zla|x n|h|la
l \ 4 l l \ 4
o) a) ala Qlal|2(2]a oflalala ol2]ale
HEHINEEHEHHINEHHEHEINEHEEHINEHEEE
B =< HEHHEHedHHE N HHHadHE B uea
o|x|o|x Olel|le|lele A4 A e 4 rle|le|x olx|Z|x|x
—Z| 32 8l 2| 5| o] o€ B 2| 2| €| £l e | €| 5| 5| E| €| 2] 5| S e
=|El <] 8 gz 2] e|e clelel9ol =s|l3|318 =lEl5l2]a
SIRB|EIS HEIEERE d|ls|s| S| c|c|z| @ = K B G B
N4 V4 B2 | Jl1=z1=z|1=|= zZlzlz|Zz|z2 ojla|a|a ojla|x|x|x

If searching for Nancy:

= Start key = ‘Nancy’, end key < ‘Nancy’.

= Inthe root block, Lu is the biggest key <= end key.

= Follow the link to branch block (N, P, Ph).

= Inthis branch block, N is the biggest key <= end key.
= Follow the link after N to leaf block (Nancy, ..., Nicole, Norm).
= Inthis leaf block, Nancy is the biggest key <= end key.
= Nancy >= start key, return the (KEY, RON D).

= Prev key Nancy >= start key, return the (KEY, RON D).
= Prev key Nancy >= start key, return the (KEY, RON D).
= Prev key Mike < start key, terminate the range scan.

If searching for ‘P%’:

= Startkey =‘P’, end key < ‘Q’.

10-44 Oracle9i Database Concepts

Indexes

s Inthe root block key, Lu is the biggest key <= end key.
s Follow the link to branch block (N, P, Ph).

s Inthis branch block, Ph is the biggest key <= end key.
s Follow the link to leaf block (Phil,...,Raoul).

s Inthe leaf block, Pierre is the biggest key <= end key.
n Pierre >= start key, return the (KEY, RON D).

s Prev key Phil >= start key, return the (KEY, RON D).

= Prev key Peter >= start key, return the (KEY, ROA D).

= Prev key Paula >= start key, return the (KEY, ROW D).
= Prev key Pablo >= start key, return the (KEY, ROW D).

= Prev key Norm < start key, terminate the range scan.

Key Compression

Key compression lets you compress portions of the primary key column values in
an index or index-organized table, which reduces the storage overhead of repeated
values.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If
the key is not defined to have a unique piece, Oracle provides one in the form of a
rowid appended to the grouping piece. Key compression is a method of breaking
off the grouping piece and storing it so it can be shared by multiple unique pieces.

Prefix and Suffix Entries

Key compression breaks the index key into a prefix entry (the grouping piece) and a
suffix entry (the unique piece). Compression is achieved by sharing the prefix
entries among the suffix entries in an index block. Only keys in the leaf blocks of a
B-tree index are compressed. In the branch blocks the key suffix can be truncated,
but the key is not compressed.

Key compression is done within an index block but not across multiple index
blocks. Suffix entries form the compressed version of index rows. Each suffix entry
references a prefix entry, which is stored in the same index block as the suffix entry.

By default, the prefix consists of all key columns excluding the last one. For
example, in a key made up of three columns (columnl, column2, column3) the
default prefix is (columnl, column2). For a list of values (1,2,3), (1,2,4), (1,2,7),

Schema Objects 10-45

Indexes

(1,3,5), (1,3,4), (1,4,4) the repeated occurrences of (1,2), (1,3) in the prefix are
compressed.

Alternatively, you can specify the prefix length, which is the number of columns in
the prefix. For example, if you specify prefix length 1, then the prefix is columnl
and the suffix is (column2, column3). For the list of values (1,2,3), (1,2,4), (1,2,7),
(1,3,5), (1,3,4), (1,4,4) the repeated occurrences of 1 in the prefix are compressed.

The maximum prefix length for a nonunique index is the number of key columns,
and the maximum prefix length for a unique index is the number of key columns
minus one.

Prefix entries are written to the index block only if the index block does not already
contain a prefix entry whose value is equal to the present prefix entry. Prefix entries
are available for sharing immediately after being written to the index block and
remain available until the last deleted referencing suffix entry is cleaned out of the
index block.

Performance and Storage Considerations

Key compression can lead to a huge saving in space, letting you store more keys in
each index block, which can lead to less 1/0 and better performance.

Although key compression reduces the storage requirements of an index, it can
increase the CPU time required to reconstruct the key column values during an
index scan. It also incurs some additional storage overhead, because every prefix
entry has an overhead of 4 bytes associated with it.

Uses of Key Compression
Key compression is useful in many different scenarios, such as:

= Inanonunique regular index, Oracle stores duplicate keys with the rowid
appended to the key to break the duplicate rows. If key compression is used,
Oracle stores the duplicate key as a prefix entry on the index block without the
rowid. The rest of the rows are suffix entries that consist of only the rowid.

= This same behavior can be seen in a unique index that has a key of the form
(item, time stamp), for example (st ock_ti cker,transacti on_ti ne).
Thousands of rows can have the same st ock_ti cker value, with
transacti on_ti ne preserving uniqueness. On a particular index block a
stock_ti cker value is stored only once as a prefix entry. Other entries on the
index block are t r ansact i on_t i ne values stored as suffix entries that
reference the common st ock_t i cker prefix entry.

10-46 Oracle9i Database Concepts

Indexes

s Inanindex-organized table that contains a VARRAY or NESTED TABLE datatype,
the object ID (OID) is repeated for each element of the collection datatype. Key
compression lets you compress the repeating OID values.

In some cases, however, key compression cannot be used. For example, in a unique
index with a single attribute key, key compression is not possible, because even
though there is a unique piece, there are no grouping pieces to share.

See Also: "Index-Organized Tables" on page 10-57

Reverse Key Indexes

Creating a reverse key index, compared to a standard index, reverses the bytes of
each column indexed (except the rowid) while keeping the column order. Such an
arrangement can help avoid performance degradation with Oracle9i Real
Application Clusters where modifications to the index are concentrated on a small
set of leaf blocks. By reversing the keys of the index, the insertions become
distributed across all leaf keys in the index.

Using the reverse key arrangement eliminates the ability to run an index range
scanning query on the index. Because lexically adjacent keys are not stored next to
each other in a reverse-key index, only fetch-by-key or full-index (table) scans can
be performed.

Sometimes, using a reverse-key index can make an OLTP Oracle9i Real Application
Clusters application faster. For example, keeping the index of mail messages in an
e-mail application: some users keep old messages, and the index must maintain
pointers to these as well as to the most recent.

The REVERSE keyword provides a simple mechanism for creating a reverse key
index. You can specify the keyword REVERSE along with the optional index
specifications in a CREATE | NDEX statement:

CREATE INDEXi ONt (a,b,c) REVERSE

You can specify the keyword NOREVERSE to REBUI LD a reverse-key index into one
that is not reverse keyed:

ALTER | NDEX i REBU LD NCREVERSE;

Rebuilding a reverse-key index without the NOREVERSE keyword produces a
rebuilt, reverse-key index.

Schema Objects 10-47

Indexes

Bitmap Indexes

Note: Bitmap indexes are available only if you have purchased the
Oracle9i Enterprise Edition.

See Oracle9i Database New Features for more information about the
features available in Oracle9i and the Oracle9i Enterprise Edition.

The purpose of an index is to provide pointers to the rows in a table that contain a
given key value. In a regular index, this is achieved by storing a list of rowids for
each key corresponding to the rows with that key value. Oracle stores each key
value repeatedly with each stored rowid. In a bitmap index, a bitmap for each key
value is used instead of a list of rowids.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so the bitmap index provides
the same functionality as a regular index even though it uses a different
representation internally. If the number of different key values is small, then bitmap
indexes are very space efficient.

Bitmap indexing efficiently merges indexes that correspond to several conditions in
a WHERE clause. Rows that satisfy some, but not all, conditions are filtered out
before the table itself is accessed. This improves response time, often dramatically.

Benefits for Data Warehousing Applications

Bitmap indexing benefits data warehousing applications which have large amounts
of data and ad hoc queries but a low level of concurrent transactions. For such
applications, bitmap indexing provides:

= Reduced response time for large classes of ad hoc queries

= A substantial reduction of space use compared to other indexing techniques
=« Dramatic performance gains even on very low end hardware

= \Very efficient parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of space, because the index can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

10-48 Oracle9i Database Concepts

Indexes

Bitmap indexes are not suitable for OLTP applications with large numbers of
concurrent transactions modifying the data. These indexes are primarily intended
for decision support in data warehousing applications where users typically query
the data rather than update it.

Bitmap indexes are also not suitable for columns that are primarily queried with
less than or greater than comparisons. For example, a salary column that usually
appears in WHERE clauses in a comparison to a certain value is better served with a
B-tree index. Bitmapped indexes are only useful for AND, OR, NOT, or equality
queries.

Bitmap indexes are integrated with the Oracle cost-based optimization approach
and execution engine. They can be used seamlessly in combination with other
Oracle execution methods. For example, the optimizer can decide to perform a hash
join between two tables using a bitmap index on one table and a regular B-tree
index on the other. The optimizer considers bitmap indexes and other available
access methods, such as regular B-tree indexes and full table scan, and chooses the
most efficient method, taking parallelism into account where appropriate.

Parallel query and parallel DML work with bitmap indexes as with traditional
indexes. Bitmap indexes on partitioned tables must be local indexes. Parallel create
index and concatenated indexes are also supported.

Cardinality

The advantages of using bitmap indexes are greatest for low cardinality columns:
that is, columns in which the number of distinct values is small compared to the
number of rows in the table. If the number of distinct values of a column is less than
1% of the number of rows in the table, or if the values in a column are repeated
more than 100 times, then the column is a candidate for a bitmap index. Even
columns with a lower number of repetitions and thus higher cardinality can be
candidates if they tend to be involved in complex conditions in the WHERE clauses
of queries.

For example, on a table with 1 million rows, a column with 10,000 distinct values is
a candidate for a bitmap index. A bitmap index on this column can out-perform a
B-tree index, particularly when this column is often queried in conjunction with
other columns.

B-tree indexes are most effective for high-cardinality data: that is, data with many
possible values, such as CUSTOVER_NANME or PHONE_NUMBER. In some situations, a
B-tree index can be larger than the indexed data. Used appropriately, bitmap
indexes can be significantly smaller than a corresponding B-tree index.

Schema Objects 10-49

Indexes

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
qguery performance. AND and OR conditions in the WHERE clause of a query can be
quickly resolved by performing the corresponding Boolean operations directly on
the bitmaps before converting the resulting bitmap to rowids. If the resulting
number of rows is small, the query can be answered very quickly without resorting
to a full table scan of the table.

Bitmap Index Example
Table 10-1 shows a portion of a company’s customer data.

Table 10-1 Bitmap Index Example

MARITAL _ INCOME_

CUSTOMER # STATUS REGION GENDER LEVEL

101 single east male bracket_1
102 married central female bracket_4
103 married west female bracket_2
104 divorced west male bracket 4
105 single central female bracket_2
106 married central female bracket_3

MARI TAL_STATUS, REG ON, GENDER, and | NCOVE_LEVEL are all low-cardinality
columns. There are only three possible values for marital status and region, two
possible values for gender, and four for income level. Therefore, it is appropriate to
create bitmap indexes on these columns. A bitmap index should not be created on
CUSTOMER¥# because this is a high-cardinality column. Instead, use a unique B-tree
index on this column to provide the most efficient representation and retrieval.

Table 10-2 illustrates the bitmap index for the REG ONcolumn in this example. It
consists of three separate bitmaps, one for each region.

10-50 Oracle9i Database Concepts

Indexes

Table 10-2 Sample Bitmap

REGION="east’ REGION="central’ REGION="west’

O O O o O Bk
P =, O O +» O
o O +» B O o

Each entry or bit in the bitmap corresponds to a single row of the CUSTOVER table.
The value of each bit depends upon the values of the corresponding row in the
table. For instance, the bitmap REA ON=" east’ contains a one as its first bit. This is
because the region is east in the first row of the CUSTOVER table. The bitmap

REG ON=" east’ has a zero for its other bits because none of the other rows of the
table contain east as their value for REG ON.

An analyst investigating demographic trends of the company’s customers can ask,
"How many of our married customers live in the central or west regions?" This
corresponds to the following SQL query:

SHLECT QONT(*) FROM QUSTOMER
WHERE MAR TAL_STATUS = "narried AND REQON IN ("central ', west’);

Bitmap indexes can process this query with great efficiency by counting the number
of ones in the resulting bitmap, as illustrated in Figure 10-11. To identify the specific
customers who satisfy the criteria, the resulting bitmap can be used to access the
table.

Schema Objects 10-51

Indexes

Figure 10-11 Executing a Query Using Bitmap Indexes

status = region = region =

'married' ‘central' ‘west'

0 0 0 0 0 0
1 1 0 1 1 1
1 AND 0 OR 1 = 1 AND L = !
0 0 1 0 1 0
0 1 0 0 1 0
1 1 0 1 1 1

Bitmap Indexes and Nulls

Bitmap indexes include rows that have NULL values, unlike most other types of
indexes. Indexing of nulls can be useful for some types of SQL statements, such as
gueries with the aggregate function COUNT.

Bitmap Indexes and Nulls Example 1
SELECT GANT(*) FROM enpl oyees;
Any bitmap index can be used for this query, because all table rows are indexed,

including those that have NULL data. If NULLs were not indexed, then the optimizer
could only use indexes on columns with NOT NULL constraints.

Bitmap Indexes and Nulls Example 2
SHLECT GANT(*) FROM enpl oyees WHERE commi ssi on_pct | S NULL;

This query can be optimized with a bitmap index on conmi ssi on_pct.

Bitmap Indexes and Nulls Example 3

SHLECT GONT(*)
FROM cust oner s
WHERE cust_gender ='M AND cust_state province !="'"CA;

This query can be answered by finding the bitmap for cust_gender =’ M and
subtracting the bitmap for cust_state province =’ CA’ . If cust _state_provi nce can
contain null values (that is, if it does not have a NOT NULL constraint), then the
bitmaps for cust_state province =" NULL' must also be subtracted from the result.

10-52 Oracle9i Database Concepts

Indexes

Bitmap Indexes on Partitioned Tables

Like other indexes, you can create bitmap indexes on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table—they cannot
be global indexes. Global bitmap indexes are supported only on nonpartitioned
tables.

See Also:

= Chapter 11, "Partitioned Tables and Indexes" for information
about partitioned tables and descriptions of local and global
indexes

= Oracle9i Database Performance Tuning Guide and Reference for
more information about using bitmap indexes

Bitmap Join Indexes

A join index is an index on one table that involves columns of one or more different
tables through a join.

The bitmap join index, in its simplest form, is a bitmap index on a table F based on
columns from table D1, . . . , Dn, where Di joins with F in a star or snowflake
schema as described in "Creation of a Bitmap Join Index" on page 10-56. In the data
warehousing environment, table F is usually a fact table, table Di is usually a
dimension table, and the join condition is an equi-inner join between the primary
key column(s) of the dimension tables and the foreign key column(s) in the fact
table. For simplicity, from now on we call the table whose rowids are bitmapped the
fact table, and the other tables participating in the join of bitmap join index the
dimension tables.

The volume of data that must be joined can be reduced if join indexes are used as
joins have already been precalculated. In addition, join indexes which contain
multiple dimension tables can eliminate bitwise operations which are necessary in
the star transformation with existing bitmap indexes. Finally, bitmap join indexes
are much more efficient in storage than materialized join views which do not
compress rowids of the fact tables.

Four Join Models

The following section describes four join models in the star query framework and
explains how they are addressed by bitmap join indexes. The accompanying figures
are described by SQL statements in the text that follows each figure.

Notation

Schema Objects 10-53

Indexes

Fi --Facttablei

Di -- Dimension table i

pk -- The primary key column on the dimension table

f k -- The fact table column participating in the join with the dimension tables
sal es -- The measurement column on the fact table

Figure 10-12 One Dimension Table Column Joins One Fact Table

d.pk = f.fk
D cl _> =

In Figure 10-12, a bitmap join index on F(D. c1) can be represented by the
following SQL statement:

CREATE BI TMWP INDEX bji ONf (d.cl) FROMf, d WERE d.pk = f.fk

Then the following query can be run by accessing the bitmap join index to avoid the
join operation:
SELECT SUMf. sal es)

FRoMd, f
WHERE d.pk = f.fk and d.cl1 = 2

Similar to the materialized join view, a bitmap join index computes the join and
stores it as a database object. The difference is that a materialized join view
materializes the join into a table while a bitmap join index materializes the join into
a bitmap index.

Figure 10-13 Two or More Dimension Table Columns Join One Fact Table

d.pk = f.fk
D c1lc2 _> =

Figure 10-13 shows a simple extension of Figure 10-12, requiring a concatenated
bitmap join index to represent it, as follows:

10-54 Oracle9i Database Concepts

Indexes

CREATE BI TMWP INDEX bji ONf (d.cl, d.c2)
FRMF, d
WERE d. pk = f.fk;

The result of the following query can be retrieved by accessing the bitmap join
index bj i .:
SH ECT SUMT. sal es)

FROMd, f
WERE d.pk = f.fk AADd.cl =1 A\Dd.c2 = 3

Another query which references only the leading portion of the index key can also
use bitmap join index bj i :

SELECT SUMf. sal es)
FRaMd, f
WERE d.pk = f.fk ANDd.cl1 =1

Figure 10-14 Multiple Dimension Tables Join One Fact Table

dl.pk = f.fk1l d2.pk = f.fk2
D1 cl _» = 4— D2 c2

Figure 10-14 shows the third model, which requires a concatenated bitmap join
index:

CREATE BI TMWP INDEX bji ONf (dl.cl, d2.c2)
FRMf, dl, d2
WERE d1.pk = f.fk1 AND d2.pk = f.fk2

Schema Objects 10-55

Indexes

Figure 10-15 Snow Flake Schema

dl.pk =d2.c2 d2.pk = f.fk
D1 c3 _> D2 c2 _> E

Figure 10-15 involves joins between two or more dimension tables. It can be
expressed by a bitmap join index. The bitmap join index can be either single or
concatenated depending on the number of columns in the dimension tables to be
indexed. A bitmap join index on d1. c¢3 with a join between d1 and d2 and a join
between d2 and f can be created as follows:

CREATE Bl TMAP | NDEX bji ONf (d1.c3)
FRoMf, di, d2
WHERE d1. pk = d2.¢c2 AND d2. pk = f.fk;

A bitmap join index should be able to represent joins of the combination of the
preceding models.

Creation of a Bitmap Join Index

Consider a star or snowflake schema with a single fact table F and multiple
dimension tables D1,.., Dn as defined in "Bitmap Join Indexes" on page 10-53. These
are the restrictions on the bitmap join index on F joined with D1,.., Dn.

= The bitmap join index is on a single table F.
= No table can appear twice in the FROMclause.

= Joins form either star or snowflake schema and all joins are through primary
keys or keys with unique constraints as follows:

= The dimension table column(s) participating the join with the fact table
must be either the primary key column(s) or with the unique constraint

= Inthe snow flake schema where a join is D1><D2><F, the column(s) on D1
participating in the join D1><D2 must be either the primary key column(s)
or with the unique constraint.

= For a composite primary key on the dimension table, each column of the
key needs to be in the join.

= Alljoins are equi-inner joins and they are connected by ANDs only.

10-56 Oracle9i Database Concepts

Index-Organized Tables

s The current restrictions for creating a regular bitmap index also apply to a
bitmap join index. For example, we cannot create a bitmap index with the UNI QUE
attribute. See the Oracle9i SQL Reference for other restrictions.

s A bitmap join index must not be partitioned if the fact table is not partitioned. If
the fact table is partitioned, the corresponding bitmap join index must be local
partitioned with the fact table. Global partitioned bitmap join indexes are not
supported.

Bitmap join index on 10T, functional bitmap join index and temporary bitmap join
index are not yet allowed.

The primary key or unique constraint requirement is a correctness issue of a bitmap
join index. For a regular bitmap index, there is a one-to-one mapping relation
between a bit set in a bitmap and a rowid in the base table. For a bitmap join index,
there should also be a one to one mapping between each row in the result set of the
join and the rowids in the fact table. The primary key or unique constraint is used to
enforce this one-to-one mapping.

Index-Organized Tables

An index-organized table has a storage organization that is a variant of a primary
B-tree. Unlike an ordinary (heap-organized) table whose data is stored as an
unordered collection (heap), data for an index-organized table is stored in a B-tree
index structure in a primary key sorted manner. Besides storing the primary key
column values of an index-organized table row, each index entry in the B-tree stores
the nonkey column values as well.

As shown in Figure 10-16, the index-organized table is somewhat similar to a
configuration consisting of an ordinary table and an index on one or more of the
table columns, but instead of maintaining two separate storage structures, one for
the table and one for the B-tree index, the database system maintains only a single
B-tree index. Also, rather than having a row's rowid stored in the index entry, the
nonkey column values are stored. Thus, each B-tree index entry contains
<primary_key val ue,non_prinmary_key col um_val ues>.

Schema Objects 10-57

Index-Organized Tables

Figure 10-16 Structure of a Regular Table Compared with an Index-Organized Table

Regular Table and Index Index-Organized Table
Table Index
Index Finance 5543
Finance ROWID » Finance | 5543 Invest 6879
Invest ROWID P Invest 6879

Table Data Stored
in Index

Applications manipulate the index-organized table just like an ordinary table, using
SQL statements. However, the database system performs all operations by
manipulating the corresponding B-tree index.

Table 10-3 summarizes the differences between index-organized tables and
ordinary tables.

Table 10-3 Comparison of Index-Organized Tables with Ordinary Tables

Ordinary Table Index-Organized Table

Rowid uniquely identifies a row. Primary Primary key uniquely identifies a row.
key can be optionally specified Primary key must be specified

Physical rowid in ROW D pseudocolumn Logical rowid in RON D pseudocolumn
allows building secondary indexes allows building secondary indexes
Access is based on rowid Access is based on logical rowid
Sequential scan returns all rows Full-index scan returns all rows

Can be stored in a cluster with other tables Cannot be stored in a cluster

Can contain a column of the LONG datatype Can contain LOB columns but not LONG
and columns of LOB datatypes columns

Benefits of Index-Organized Tables

Index-organized tables provide faster access to table rows by the primary key or
any key that is a valid prefix of the primary key. Presence of nonkey columns of a
row in the B-tree leaf block itself avoids an additional block access. Also, because
rows are stored in primary key order, range access by the primary key (or a valid
prefix) involves minimum block accesses.

10-58 Oracle9i Database Concepts

Index-Organized Tables

In order to allow even faster access to frequently accessed columns, you can use a
row overflow storage option (as described later) to push out infrequently accessed
nonkey columns from the B-tree leaf block to an optional (heap-organized) overflow
storage area. This allows limiting the size and content of the portion of a row that is
actually stored in the B-tree leaf block, which may lead to a higher number of rows
in each leaf block and a smaller B-tree.

Unlike a configuration of heap-organized table with a primary key index where
primary key columns are stored both in the table and in the index, there is no such
duplication here because primary key column values are stored only in the B-tree
index.

Because rows are stored in primary key order, a significant amount of additional
storage space savings can be obtained through the use of key compression.

Use of primary-key based logical rowids, as opposed to physical rowids, in
secondary indexes on index-organized tables allows high availability. This is
because, due to the logical nature of the rowids, secondary indexes do not become
unusable even after a table reorganization operation that causes movement of the
base table rows. At the same time, through the use of physical guess in the logical
rowid, it is possible to get secondary index based index-organized table access
performance that is comparable to performance for secondary index based access to
an ordinary table.

See Also:
= "Key Compression” on page 10-45
= "Secondary Indexes on Index-Organized Tables" on page 10-60

s Oracle9i Database Administrator’s Guide for information about
creating and maintaining index-organized tables

Index-Organized Tables with Row Overflow Area

B-tree index entries are usually quite small, because they only consist of the key
value and a ROW D. In index-organized tables, however, the B-tree index entries can
be large, because they consist of the entire row. This may destroy the dense
clustering property of the B-tree index.

Oracle provides the OVERFLOWclause to handle this problem. You can specify an
overflow tablespace so that, if necessary, a row can be divided into the following
two parts that are then stored in the index and in the overflow storage area,
respectively:

Schema Objects 10-59

Index-Organized Tables

= The index entry, containing column values for all the primary key columns, a
physical rowid that points to the overflow part of the row, and optionally a few
of the nonkey columns, and

= The overflow part, containing column values for the remaining nonkey
columns

With OVERFLOWYyou can use two clauses, PCTTHRESHOLD and | NCLUDI NG to
control how Oracle determines whether a row should be stored in two parts and if
so, at which nonkey column to break the row. Using PCTTHRESHOLD, you can
specify a threshold value as a percentage of the block size. If all the nonkey column
values can be accommodated within the specified size limit, the row will not be
broken into two parts. Otherwise, starting with the first nonkey column that cannot
be accommodated, the rest of the nonkey columns are all stored in the row overflow
storage area for the table.

The | NCLUDI NGclause lets you specify a column name so that any nonkey column,
appearing in the CREATE TABLE statement after that specified column, is stored in
the row overflow storage area. Note that additional nonkey columns may
sometimes need to be stored in the overflow due to PCTTHRESHOLD- based limits.

See Also: Oracle9i Database Administrator’s Guide for examples of
using the OVERFLOW clause

Secondary Indexes on Index-Organized Tables

Secondary index support on index-organized tables provides efficient access to
index-organized table using columns that are not the primary key nor a prefix of the
primary key.

Oracle constructs secondary indexes on index-organized tables using logical row
identifiers (logical rowids) that are based on the table's primary key. A logical
rowid optionally includes a physical guess, which identifies the block location of
the row. Oracle can use these physical guesses to probe directly into the leaf block of
the index-organized table, bypassing the primary key search. Because rows in
index-organized tables do not have permanent physical addresses, the physical
guesses can become stale when rows are moved to new blocks.

For an ordinary table, access by a secondary index involves a scan of the secondary
index and an additional 170 to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use
and accuracy of physical guesses:

= Without physical guesses, access involves two index scans: a secondary index
scan followed by a scan of the primary key index.

10-60 Oracle9i Database Concepts

Index-Organized Tables

s With accurate physical guesses, access involves a secondary index scan and an
additional 170 to fetch the data block containing the row.

s With inaccurate physical guesses, access involves a secondary index scan and
an 1/0 to fetch the wrong data block (as indicated by the physical guess),
followed by a scan of the primary key index.

See Also: "Logical Rowids" on page 12-21

Bitmap Indexes on Index-Organized Tables

Oracle supports bitmap indexes on index-organized tables. A mapping table is
required for creating bitmap indexes on an index-organized table.

Mapping Table

The mapping table is a heap-organized table that stores logical rowids of the
index-organized table. Specifically, each mapping table row stores one logical rowid
for the corresponding index-organized table row. Thus, the mapping table provides
one-to-one mapping between logical rowids of the index-organized table rows and
physical rowids of the mapping table rows.

A bitmap index on an index-organized table is similar to that on a heap-organized
table except that the rowids used in the bitmap index on an index-organized table
are those of the mapping table as opposed to the base table. There is one mapping
table for each index-organized table and it is used by all the bitmap indexes created
on that index-organized table.

In both heap-organized and index-organized base tables, a bitmap index is accessed
using a search key. If the key is found, the bitmap entry is converted to a physical
rowid. In the case of heap-organized table, this physical rowid is then used to access
the base table. However, in the case of index-organized table, the physical rowid is
then used to access the mapping table. The access to the mapping table yields a
logical rowid. This logical rowid is used to access the index-organized table.

Though a bitmap index on an index-organized table does not store logical rowids, it
is still logical in nature.

Schema Objects 10-61

Application Domain Indexes

Note: Movement of rows in an index-organized table does not
leave the bitmap indexes built on that index-organized table
unusable. Movement of rows in the index-organized table does
invalidate the physical guess in some of the mapping table's logical
rowid entries. However, the index-organized table can still be
accessed using the primary key.

Partitioned Index-Organized Tables

You can partition an index-organized table by RANGE or HASH on column values.
The partitioning columns must form a subset of the primary key columns. Just like
ordinary tables, local partitioned (prefixed and non-prefixed) index as well as global
partitioned (prefixed) indexes are supported for partitioned index-organized tables.

B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables

UROW D datatype columns can hold logical primary key-based rowids identifying
rows of index-organized tables. Oracle9i supports indexes on UROW D datatypes of
a heap- or index-organized table. The index supports equality predicates on

UROW D columns. For predicates other than equality or for ordering on URON D
datatype columns, the index is not used.

Index-Organized Table Applications

The superior query performance for primary key based access, high availability
aspects, and reduced storage requirements make index-organized tables ideal for
the following kinds of applications:

= Online Transaction Processing (OLTP)

= Internet (for example, search engines and portals)

=« E-Commerce (for example, electronic stores and catalogs)
=« Data Warehousing

= Time-series applications

Application Domain Indexes

Oracle provides extensible indexing to accommodate indexes on customized
complex data types such as documents, spatial data, images, and video clips and to

10-62 Oracle9i Database Concepts

Clusters

Clusters

make use of specialized indexing techniques. With extensible indexing, you can
encapsulate application-specific index management routines as an indextype
schema object and define a domain index (an application-specific index) on table
columns or attributes of an object type. Extensible indexing also provides efficient
processing of application-specific operators.

The application software, called the cartridge, controls the structure and content of
a domain index. The Oracle server interacts with the application to build, maintain,
and search the domain index. The index structure itself can be stored in the Oracle
database as an index-organized table or externally as a file.

See Also: Oracle9i Data Cartridge Developer’s Guide for information
about using data cartridges within Oracle’s extensibility
architecture

Clusters are an optional method of storing table data. A cluster is a group of tables

that share the same data blocks because they share common columns and are often used
together. For example, the enpl oyees and depar t nent s table share the

depart ment _i d column. When you cluster the enpl oyees and depar t nent s
tables, Oracle physically stores all rows for each department from both the

enpl oyees and depart ment s tables in the same data blocks. Figure 10-17 shows
what happens when you cluster the enpl oyees and depart nent s tables:

Schema Objects 10-63

Clusters

Figure 10-17 Clustered Table Data

Clustered Key employees
department_id
employee_id last_name | department_id
20 department_name location_id 201 Hartstein 20
) 202 Fay 20
marketing 1800 203 Mavris 40
204 Baer 70
205 Higgins 110
employee_id last_name | R 206 Gietz 110
201 Hartstein R
202 Fay o /__/\
' departments
department_name location_id ' L
110 P — — ' department_id | department_name | location_id
ti 1700 ')
accounting | 20 Marketing 1800
' 110 Accounting 1700
employee_id last_name | C ' /\/\
205 Higgins o “\ R . . '
206 Gietz . [! ‘

Clustered Tables Unclustered Tables

related data stored
apart, taking up
more space

Related data stored
together, more
efficiently

Because clusters store related rows of different tables together in the same data
blocks, properly used clusters offers these benefits:

10-64 Oracle9i Database Concepts

Hash Clusters

s Disk I/0 is reduced for joins of clustered tables.
m Access time improves for joins of clustered tables.

s Inacluster, acluster key value is the value of the cluster key columns for a
particular row. Each cluster key value is stored only once each in the cluster and
the cluster index, no matter how many rows of different tables contain the
value. Therefore, less storage is required to store related table and index data in
a cluster than is necessary in nonclustered table format. For example, in
Figure 10-17, notice how each cluster key (each depar t ment _i d) is stored just
once for many rows that contain the same value in both the enpl oyees and
depart ment s tables.

See Also: Oracle9i Database Administrator’s Guide for information
about creating and managing clusters

Hash Clusters

Hash clusters group table data in a manner similar to regular index clusters
(clusters keyed with an index rather than a hash function). However, a row is stored
in a hash cluster based on the result of applying a hash function to the row’s cluster
key value. All rows with the same key value are stored together on disk.

Hash clusters are a better choice than using an indexed table or index cluster when
a table is queried frequently with equality queries (for example, return all rows for
department 10). For such queries, the specified cluster key value is hashed. The
resulting hash key value points directly to the area on disk that stores the rows.

Hashing is an optional way of storing table data to improve the performance of data
retrieval. To use hashing, create a hash cluster and load tables into the cluster.
Oracle physically stores the rows of a table in a hash cluster and retrieves them
according to the results of a hash function.

Oracle uses a hash function to generate a distribution of numeric values, called
hash values, which are based on specific cluster key values. The key of a hash
cluster, like the key of an index cluster, can be a single column or composite key
(multiple column key). To find or store a row in a hash cluster, Oracle applies the
hash function to the row’s cluster key value. The resulting hash value corresponds
to a data block in the cluster, which Oracle then reads or writes on behalf of the
issued statement.

A hash cluster is an alternative to a nonclustered table with an index or an index
cluster. With an indexed table or index cluster, Oracle locates the rows in a table

Schema Objects 10-65

Hash Clusters

using key values that Oracle stores in a separate index. To find or store a row in an
indexed table or cluster, at least two 1/0s must be performed:

= One or more I/0s to find or store the key value in the index

= Another I/0 to read or write the row in the table or cluster

See Also: Oracle9i Database Administrator’s Guide for information
about creating and managing hash clusters

10-66 Oracle9i Database Concepts

11

Partitioned Tables and Indexes

This chapter describes partitioned tables and indexes. It covers the following topics:
= Introduction to Partitioning

= Partitioning Methods

= Partitioned Indexes

= Partitioning to Improve Performance

Note: Oracle supports partitioning only for tables, indexes on
tables, materialized views, and indexes on materialized views.
Oracle does not support partitioning of clustered tables or indexes
on clustered tables.

Partitioned Tables and Indexes 11-1

Introduction to Partitioning

Introduction to Partitioning

Partitioning addresses key issues in supporting very large tables and indexes by
letting you decompose them into smaller and more manageable pieces called
partitions. SQL queries and DML statements do not need to be modified in order to
access partitioned tables. However, after partitions are defined, DDL statements can
access and manipulate individuals partitions rather than entire tables or indexes.
This is how partitioning can simplify the manageability of large database objects.
Also, partitioning is entirely transparent to applications.

Each partition of a table or index must have the same logical attributes, such as
column names, datatypes, and constraints, but each partition can have separate
physical attributes such as pctfree, pctused, and tablespaces.

Partitioning is useful for many different types of applications, particularly
applications that manage large volumes of data. OLTP systems often benefit from
improvements in manageability and availability, while data warehousing systems
benefit from performance and manageability.

Note: All partitions of a partitioned object must reside in
tablespaces of a single block size.

See Also:
= "Multiple Block Sizes" on page 3-13

= Oracle9i Data Warehousing Guide for more information about
partitioning

Partitioning offers these advantages:

= Partitioning enables data management operations such data loads, index
creation and rebuilding, and backup/recovery at the partition level, rather than
on the entire table. This results in significantly reduced times for these
operations.

= Partitioning improves query performance. In many cases, the results of a query
can be achieved by accessing a subset of partitions, rather than the entire table.
For some queries, this technique (called partition pruning) can provide
order-of-magnitude gains in performance.

= Partitioning can significantly reduce the impact of scheduled downtime for
maintenance operations.

11-2 Oracle9i Database Concepts

Introduction to Partitioning

Partition independence for partition maintenance operations lets you perform
concurrent maintenance operations on different partitions of the same table or
index. You can also run concurrent SELECT and DML operations against
partitions that are unaffected by maintenance operations.

s Partitioning increases the availability of mission-critical databases if critical
tables and indexes are divided into partitions to reduce the maintenance
windows, recovery times, and impact of failures.

s Partitioning can be implemented without requiring any modifications to your
applications. For example, you could convert a nonpartitioned table to a
partitioned table without needing to modify any of the SELECT statements or
DML statements which access that table. You do not need to rewrite your
application code to take advantage of partitioning.

Figure 11-1 offers a graphical view of how partitioned tables differ from
nonpartitioned tables.

Partitioned Tables and Indexes 11-3

Introduction to Partitioning

Figure 11-1 A View of Partitioned Tables

A nonpartitioned table
can have partitioned or
nonpartitioned indexes.

UOO[MEN|BER
| 0ooo0oooog

January - March

]])) O O T

:

Table 1

Partition Key

A partitioned table
can have partitioned or
nonpartitioned indexes.

UO0[NAR|BER
uoooooooo

v
January February March
EI‘[H DH I‘EH
Table 2

Each row in a partitioned table is unambiguously assigned to a single partition. The
partition key is a set of one or more columns that determines the partition for each
row. Oracle9i automatically directs insert, update, and delete operations to the
appropriate partition through the use of the partition key. A partition key:

= Consists of an ordered list of 1 to 16 columns

= Cannot contain a LEVEL, ROW D, or MLSLABEL pseudocolumn or a column of

type ROWN D

= Can contain columns that are NULLable

Partitioned Tables

Tables can be partitioned into up to 64,000 separate partitions. Any table can be
partitioned except those tables containing columns with LONG or LONG RAW
datatypes. You can, however, use tables containing columns with CLOB or BLOB

datatypes.

11-4 Oracle9i Database Concepts

Partitioning Methods

Partitioned Index-Organized Tables

You can range partition index-organized tables. This feature is very useful for
providing improved manageability, availability and performance for
index-organized tables. In addition, data cartridges that use index-organized tables
can take advantage of the ability to partition their stored data. Common examples
of this are the Image and interMedia cartridges.

For partitioning an index-organized table:

= Only range and hash partitioning are supported

= Partition columns must be a subset of primary key columns
= Secondary indexes can be partitioned — locally and globally

=« OVERFLOWdata segments are always equipartitioned with the table partitions

Partitioning Methods
Oracle provides the following partitioning methods:
= Range Partitioning
= List Partitioning
= Hash Partitioning
= Composite Partitioning

Figure 11-2 offers a graphical view of the methods of partitioning.

Partitioned Tables and Indexes 11-5

Partitioning Methods

Figure 11-2 List, Range, and Hash Partitioning

List

Partitioning
East Sales Region _—]
New York
Virginia |_
Florida | —
West Sales Region _—"
California
Oregon |_
Hawaii | —
Central Sales Region
lllinois
Texas |_
Missouri /

Range
Partitioning

January and/

February
[I—

HEL

March and
April

May and /
June

I
July and /
August

L1

Hash
Partitioning

hl
h2

h4

Composite partitioning is a combination of other partitioning methods. Oracle
currently supports range-hash and range-list composite partitioning. Figure 11-3
offers a graphical view of range-hash and range-list composite partitioning.

11-6 Oracle9i Database Concepts

Partitioning Methods

Figure 11-3 Composite Partitioning

Composite Partitioning Composite Partitioning
Range-Hash Range - List
January and March and May and
h February April June
2
otk s
f/ h4 Virginia |_ > >
= T/ Florida - —— | — | —
hi= “Tha West Sales Regi
gion
h f/ California |_/ / /
— Oregon i —> —
h ﬁ/ h4 Hawaii - — - — | —
| ’ﬁ %ﬁ cltl_ent_ral Sales Region _— 7
= Illinois
h4 Texas |_ —> —
// Missouri / / - —

Range Partitioning

Range partitioning maps data to partitions based on ranges of partition key values
that you establish for each partition. It is the most common type of partitioning and
is often used with dates. For example, you might want to partition sales data into
monthly partitions.

When using range partitioning, consider the following rules:

= Each partition has a VALUES LESS THAN clause, which specifies a noninclusive
upper bound for the partitions. Any binary values of the partition key equal to
or higher than this literal are added to the next higher partition.

= All partitions, except the first, have an implicit lower bound specified by the
VALUES LESS THAN clause on the previous partition.

= A MAXVALUE literal can be defined for the highest partition. MAXVALUE
represents a virtual infinite value that sorts higher than any other possible value
for the partition key, including the null value.

A typical example is given in the following section. The statement creates a table
(sal es_r ange) that is range partitioned on the sal es_dat e field.

Partitioned Tables and Indexes 11-7

Partitioning Methods

Range Partitioning Example

CREATE TABLE sal es_range

(salesman_id NMBER5),

sal esman_nane VARCHAR2(30),

sal es_amount NUMBER(10),

sal es_date DATE)

PARTI TI ON BY RANGK sal es_dat €)

(

PARTI TI ON sal es_j an2000 VALUES LESS THAN TO DATH ' 02/ 01/ 2000 ,' DO M YYYY')),
PARTI TI ON sal es_f eb2000 VALUES LESS THAN TO DATH' 03/ 01/ 2000' , ' DO MM YYYY')),
PARTI TI ON sal es_mar 2000 VALUES LESS THAN TO DATH' 04/ 01/ 2000' , ' DO MM YYYY')),
PARTI TI ON sal es_apr 2000 VALUES LESS THAN TO DATH' 05/ 01/ 2000' , ' DO MM YYYY'))

)

List Partitioning

List partitioning enables you to explicitly control how rows map to partitions. You
do this by specifying a list of discrete values for the partitioning key in the
description for each partition. This is different from range partitioning, where a
range of values is associated with a partition and from hash partitioning, where a
hash function controls the row-to-partition mapping. The advantage of list
partitioning is that you can group and organize unordered and unrelated sets of
data in a natural way.

The details of list partitioning can best be described with an example. In this case,
let’s say you want to partition a sales table by region. That means grouping states
together according to their geographical location as in the following example.

List Partitioning Example

CREATE TABLE sal es_|i st

(salesman_id NMBER5),

sal esman_nane VARCHAR2(30),

sales_state VARCHARZ2(20),

sal es_amount NUMBER(10),

sal es_date DATE)

PARTI TI ON BY LI ST(sal es_state)

(

PARTI TI ON sal es_west VALLES(' Galifornia', 'Haaii'),
PARTI TI ON sal es_east VALUES (' New York', "Mrginia, 'Horida'),
PARTI TI ON sal es_central VALUES(' Texas', 'Illinois")
PARTI TI ON sal es_ot her VALUES(DEFALLT)

K

11-8 Oracle9i Database Concepts

Partitioning Methods

A row is mapped to a partition by checking whether the value of the partitioning
column for a row falls within the set of values that describes the partition. For
example, the rows are inserted as follows;

s (10,'Jones',' Hawaii',b100,' 05- JAN- 2000') maps to partition sal es__
west

s (21,"Smith',"Florida', 150,' 15- JAN- 2000') maps to partition sal es__
east

s (32,'Lee’,' Col orado',130,' 21- JAN- 2000') does not map to any
partition in the table

Unlike range and hash partitioning, multicolumn partition keys are not supported
for list partitioning. If a table is partitioned by list, the partitioning key can only
consist of a single column of the table.

The DEFAULT partition enables you to avoid specifying all possible values for a
list-partitioned table by using a default partition, so that all rows that do not map to
any other partition do not generate an error.

Hash Partitioning

Hash partitioning enables easy partitioning of data that does not lend itself to range
or list partitioning. It does this with a simple syntax and is easy to implement. It is a
better choice than range partitioning when:

= You do not know beforehand how much data maps into a given range

= The sizes of range partitions would differ quite substantially or would be
difficult to balance manually

= Range partitioning would cause the data to be undesirably clustered

= Performance features such as parallel DML, partition pruning, and
partition-wise joins are important

The concepts of splitting, dropping or merging partitions do not apply to hash
partitions. Instead, hash partitions can be added and coalesced.

Partitioned Tables and Indexes 11-9

Partitioning Methods

Hash Partitioning Example

CREATE TABLE sal es_hash

(salesnman_id NMBER5),

sal esman_nane VARCHAR2(30),

sal es_amount NUMBER(10),

week_no NUMBER2))

PARTI TI ON BY HASH sal esnan_i d)

PARTI TI ON\S 4

STGRE IN (datal, data2, data3, datad);

The preceding statement creates a table sal es_hash, which is hash partitioned on
sal esman_i d field. The tablespace names are dat al, dat a2, dat a3, and dat a4.

Composite Partitioning

Composite partitioning partitions data using the range method, and within each
partition, subpartitions it using the hash or list method. Composite range-hash
partitioning provides the improved manageability of range partitioning and the
data placement, striping, and parallelism advantages of hash partitioning.
Composite range-list partitioning provides the manageability of range partitioning
and the explicit control of list partitioning for the subpartitions.

Composite partitioning supports historical operations, such as adding new range
partitions, but also provides higher degrees of parallelism for DML operations and
finer granularity of data placement through subpartitioning.

11-10 Oracle9i Database Concepts

Partitioning Methods

Composite Partitioning Range-Hash Example

CREATE TABLE sal es_conposite

(salesman_id NMBER5),
sal esman_nane VARCHAR2(30),
sal es_amount NUMBER(10),
sal es_date DATE)

PARTI TI ON BY RANGK sal es_dat €)

SUBPARTI TI ON BY HASH(sal esnan_i d)

SUBPARTI TI ON TEMPLATH

SUBPARTI TI ON spl TABLESPACE dat al,

SUBPARTI TI ON sp2 TABLESPACE dat a2,

SUBPARTI TI ON sp3 TABLESPACE dat a3,

SUBPARTI Tl ON sp4 TABLESPACE dat a4)

(PARTI TI ON sal es_j an2000 VALUES LESS THAN TO DATE(' 02/ 01/ 2000', ' OO MM YYYY'))
PARTI TI CN sal es_f eb2000 VALUES LESS THAN TO DATE(' 03/ 01/2000', ' OO MM YYYY'))
PARTI TI ON sal es_nar 2000 VALUES LESS THAN TO DATE(' 04/ 01/ 2000', ' OO MM YYYY'))
PARTI TI ON sal es_apr 2000 VALUES LESS THAN TO DATE(' 05/ 01/2000', ' OO MM YYYY'))
PARTI TI ON sal es_nmay2000 VALUES LESS THAN TO DATE(' 06/ 01/ 2000' , ' DO MM YYYY')));

This statement creates a table sal es_comnposi t e that is range partitioned on the
sal es_dat e field and hash subpartitioned on sal esman_i d. When you use a
template, Oracle names the subpartitions by concatenating the partition name, an
underscore, and the subpartition name from the template. Oracle places this
subpartition in the tablespace specified in the template. In the previous statement,
sal es_j an2000_sp1 is created and placed in tablespace dat al while sal es__
j an2000_sp4 is created and placed in tablespace dat a4. In the same manner,
sal es_apr 2000_sp1 is created and placed in tablespace dat al while sal es__
apr 2000_sp4 is created and placed in tablespace dat a4. Figure 11-4 offers a
graphical view of the previous example.

Partitioned Tables and Indexes 11-11

Partitioning Methods

Figure 11-4 Composite Range-Hash Partitioning

s RN (JE(SAlES_(atE) m—

Sub-1 Sub-1 Sub-1] = = = Sub-1 Sub-1

Sub-2 Sub-2 Sub-2 LI Sub-2 Sub-2

Sub-3 Sub-3 Sub-3 LI Sub-3 Sub-3

Sub-4 Sub-4 Sub-4 | = = = Sub-4 Sub-4

¢ HASH(salesman_id)

Composite Partitioning Range-List Example

CREATE TABLE bi nont hl y_r egi onal _sal es
(dept no NUMBER
itemno VARCHAR2(20),
txn_dat e DATE,
txn_anount NUMBER
state VARCHAR2(2))
PARTI TI ON BY RANGE (txn_dat e)
SUBPARTI TION BY LI ST (state)
SUBPARTI TI ON TEMPLATH
SUBPARTI TION east VALUES(' NY', 'VA, 'FL') TABLESPACE tsl,
SUBPARTI TION west VALUES(' CA', 'R, '"H') TABLESPACE ts2,
SUBPARTI TION central VALUES('IL', 'TX, 'MD) TABLESPACE ts3)
(
PARTI TI ON j anf eb_2000 VALUES LESS THAN (TO DATH' 1- MAR 2000, ' DD MON YYYY')),
PARTI TI ON nar apr _2000 VALUES LESS THAN (TO DATH ' 1- MAY-2000' , ' DD MON YYYY')),
PARTI TI ON nmayj un_2000 VALUES LESS THAN (TO DATH' 1-JU.-2000' , ' DD MO\ YYYY'))

)

This statement creates a table bi nont hl y_r egi onal _sal es that is range
partitioned on the t xn_dat e field and list subpartitioned on st at e. When you use
a template, Oracle names the subpartitions by concatenating the partition name, an
underscore, and the subpartition name from the template. Oracle places this
subpartition in the tablespace specified in the template. In the previous statement,

11-12 Oracle9i Database Concepts

Partitioned Indexes

j anf eb_2000_east is created and placed in tablespace t s1 while j anf eb_
2000_central iscreated and placed in tablespace t s3. In the same manner,

mayj un_2000_east is placed in tablespacet s1 while mayj un_2000_central is
placed in tablespace t s3. Figure 11-5 offers a graphical view of the table

bi nont hl y_r egi onal _sal es and its 9 individual subpartitions.

Figure 11-5 Composite Range-List Partitioning

Composite Partitioning

Range - List
January and March and May and
February April June
East Sales Region/ /]
New York > >
Virginia |_
Florida | — / | —
West Sales Region _—" _—] _—
California
Oregon |_ e e
Hawaii / / /
Central Sales Region / 7
lllinois
Toxas L[SN ST
Missouri / / | —

When to Partition a Table
Here are some suggestions for when to partition a table:

= Tables greater than 2GB should always be considered for partitioning.

= Tables containing historical data, in which new data is added into the newest
partition. A typical example is a historical table where only the current month's
data is updatable and the other 11 months are read-only.

Partitioned Indexes

Just like partitioned tables, partitioned indexes improve manageability, availability,
performance, and scalability. They can either be partitioned independently (global
indexes) or automatically linked to a table's partitioning method (local indexes).

Partitioned Tables and Indexes 11-13

Partitioned Indexes

See Also: Oracle9i Data Warehousing Guide for more information
about partitioned indexes

Local Partitioned Indexes

Local partitioned indexes are easier to manage than other types of partitioned
indexes. They also offer greater availability and are common in DSS environments.
The reason for this is equipartitioning: each partition of a local index is associated
with exactly one partition of the table. This enables Oracle to automatically keep the
index partitions in sync with the table partitions, and makes each table-index pair
independent. Any actions that make one partition's data invalid or unavailable only
affect a single partition.

You cannot explicitly add a partition to a local index. Instead, new partitions are
added to local indexes only when you add a partition to the underlying table.
Likewise, you cannot explicitly drop a partition from a local index. Instead, local
index partitions are dropped only when you drop a partition from the underlying
table.

A local index can be unique. However, in order for a local index to be unique, the
partitioning key of the table must be part of the index’s key columns. Unique local
indexes are useful for OLTP environments.

Figure 11-6 offers a graphical view of local partitioned indexes.

11-14 Oracle9i Database Concepts

Partitioned Indexes

Figure 11-6 Local Partitioned Index

Partitioned
Indexes
OO0ONENEER O0mEm Ood0OmmEE

partitoned | (N NEEE OEOOE0E
ables

Global Partitioned Indexes

Global partitioned indexes are flexible in that the degree of partitioning and the
partitioning key are independent from the table's partitioning method. They are
commonly used for OLTP environments and offer efficient access to any individual
record.

The highest partition of a global index must have a partition bound, all of whose
values are MAXVALUE. This ensures that all rows in the underlying table can be
represented in the index. Global prefixed indexes can be unique or nonunique.

You cannot add a partition to a global index because the highest partition always
has a partition bound of MAXVALUE. If you wish to add a new highest partition, use
the ALTER| NDEX SPLI T PARTI TI ON statement. If a global index partition is
empty, you can explicitly drop it by issuing the ALTER | NDEX DROP PARTI TI ON
statement. If a global index partition contains data, dropping the partition causes
the next highest partition to be marked unusable. You cannot drop the highest
partition in a global index.

Partitioned Tables and Indexes 11-15

Partitioned Indexes

Maintenance of Global Partitioned Indexes

By default, the following operations on partitions on a heap-organized table mark
all global indexes as unusable:

ADD (HASH)
COALESCE (HASH)
DRP

EXCHANGE

MERGE

MOVE

ST
TRUNCATE

These indexes can be maintained by appending the clause UPDATE GLOBAL
| NDEXES to the SQL statements for the operation. The two advantages to
maintaining global indexes:

= The index remains available and online throughout the operation. Hence no
other applications are affected by this operation.

= The index doesn't have to be rebuilt after the operation.

Example: ALTER TABLE DRCP PARTI TION P1 UPDATE Q. CRAL | NCEXES

Note: This feature is supported only for heap organized tables.

See Also: Oracle9i SQL Reference for more information about the
UPDATE GLOBAL | NDEX clause

Figure 11-7 offers a graphical view of global partitioned indexes.

11-16 Oracle9i Database Concepts

Partitioned Indexes

Figure 11-7 Global Partitioned Index

AInnEn EEEEREE| | DOODOODO0O

Partitioned
Indexes

vy l \AA AL
partitoned | (BB NN OO
ables

Global Nonpartitioned Indexes

Global nonpartitioned indexes behave just like a nonpartitioned index. They are
commonly used in OLTP environments and offer efficient access to any individual
record.

Figure 11-8 offers a graphical view of global nonpartitioned indexes.

Partitioned Tables and Indexes 11-17

Partitioned Indexes

Figure 11-8 Global Nonpartitioned Index

IRRRERERREROO000ODOO

Index

partitoned | REINENN ONOOEOE

Partitioned Index Examples

Example of Index Creation: Starting Table Used for Examples

CREATE TABLE enpl oyees

(enpl oyee_i d NUMBER(4) NOT NLLL,
| ast _nane VARCHAR2(10),
departrent _id NUMBER 2))

PARTI TI ON BY RANGE (depart nent _i d)

(PARTI Tl ON enpl oyees_part1 VALUES LESS THAN (11) TABLESPACE partl1,
PARTI TI N enpl oyees_part2 VALUES LESS THAN (21) TABLESPACE part 2,
PARTI TI N enpl oyees_part3 VALUES LESS THAN (31) TABLESPACE part3);

Example of a Local Index Creation
CREATE | NDEX enpl oyees_| ocal _i dx ON enpl oyees (enpl oyee id) LQOCAL;

Example of a Global Index Creation
CREATE | NDEX enpl oyees_gl obal _i dx ON enpl oyees(enpl oyee_i d);

Example of a Global Partitioned Index Creation
CREATE | NDEX enpl oyees_gl obal _part_i dx ON enpl oyees(enpl oyee_i d)
Q. CBAL PARTI TI ON BY RANGH enpl oyee_i d)
(PARTI TI ON pl VALLES LESS THAN 5000),
PARTI TI ON p2 VALUES LESS THAN MAXVALUE)) ;

11-18 Oracle9i Database Concepts

Partitioned Indexes

Example of a Partitioned Index-Organized Table Creation

CREATE TABLE sal es_range

(
salesman_id NMBER5),
sal esman_nane VARCHARZ2(30),

sal es_amount NUMBER(10),
sal es_date DATE,

PR MARY KEY(sal es_date, sal esnman_id))

CRGAN ZATI ON | NDEX | NOLUDI NG sal esman_i d

OVERFLON TABLESPACE t absp_over f| ow

PARTI TI ON BY RANGKH sal es_dat €)

(PARTI TI ON sal es_j an2000 VALUES LESS THAN TO DATE(' 02/ 01/ 2000, ' DO MM YYYY'))
OV/ERFLON TABLESPACE pl_overfl ow
PARTI TI CN sal es_f eb2000 VALUES LESS THAN TO DATE(' 03/ 01/2000', ' OO MM YYYY'))
OV/ERFLON TABLESPACE p2_over fl ow
PARTI TI ON sal es_nar 2000 VALUES LESS THAN TO DATE(' 04/ 01/ 2000', ' OO MM YYYY'))
OV/ERFLON TABLESPACE p3_over fl ow
PARTI TI ON sal es_apr 2000 VALLES LESS THAN TO DATE(' 05/ 01/2000', ' OO MM YYYY'))
OV/ERFLON TABLESPACE p4_overfl ow;

Miscellaneous Information about Creating Indexes on Partitioned Tables

You can create bitmap indexes on partitioned tables, with the restriction that the
bitmap indexes must be local to the partitioned table. They cannot be global
indexes.

Global indexes can be unique. Local indexes can only be unique if the partitioning
key is a part of the index key.

Using Partitioned Indexes in OLTP Applications

Here are a few guidelines for OLTP applications:

= Global indexes and unique, local indexes provide better performance than
nonunique local indexes because they minimize the number of index partition
probes.

= Local indexes offer better availability when there are partition or subpartition
maintenance operations on the table.

Using Partitioned Indexes in Data Warehousing and DSS Applications
Here are a few guidelines for data warehousing and DSS applications:

Partitioned Tables and Indexes 11-19

Partitioning to Improve Performance

= Local indexes are preferable because they are easier to manage during data
loads and during partition-maintenance operations.

= Local indexes can improve performance because many index partitions can be
scanned in parallel by range queries on the index key.

Partitioned Indexes on Composite Partitions

Here are a few points to remember when using partitioned indexes on composite
partitions:

= Only range partitioned global indexes are supported.

= Subpartitioned indexes are always local and stored with the table subpartition
by default.

= Tablespaces can be specified at either index or index subpartition levels.

Partitioning to Improve Performance

Partitioning can help you improve performance and manageability. Some topics to
keep in mind when using partitioning for these reasons are:

= Partition Pruning
= Partition-wise Joins

s Parallel DML

Partition Pruning

The Oracle server explicitly recognizes partitions and subpartitions. It then
optimizes SQL statements to mark the partitions or subpartitions that need to be
accessed and eliminates (prunes) unnecessary partitions or subpartitions from
access by those SQL statements. In other words, partition pruning is the skipping of
unnecessary index and data partitions or subpartitions in a query.

For each SQL statement, depending on the selection criteria specified, unneeded
partitions or subpartitions can be eliminated. For example, if a query only involves
March sales data, then there is no need to retrieve data for the remaining eleven
months. Such intelligent pruning can dramatically reduce the data volume,
resulting in substantial improvements in query performance.

If the optimizer determines that the selection criteria used for pruning are satisfied
by all the rows in the accessed partition or subpartition, it removes those criteria

11-20 Oracle9i Database Concepts

Partitioning to Improve Performance

from the predicate list (WHERE clause) during evaluation in order to improve
performance. However, the optimizer cannot prune partitions if the SQL statement
applies a function to the partitioning column (with the exception of the TO_DATE
function). Similarly, the optimizer cannot use an index if the SQL statement applies
a function to the indexed column, unless it is a function-based index.

Pruning can eliminate index partitions even when the underlying table's partitions
cannot be eliminated, but only when the index and table are partitioned on different
columns. You can often improve the performance of operations on large tables by
creating partitioned indexes that reduce the amount of data that your SQL
statements need to access or modify.

Equality, range, LI KE, and | N-list predicates are considered for partition pruning
with range or list partitioning, and equality and | N-list predicates are considered
for partition pruning with hash partitioning.

Partition Pruning Example

We have a partitioned table called or der s. The partition key for or der s is or der _
dat e. Let’s assume that or der s has six months of data, January to June, with a
partition for each month of data. If the following query is run:

SH ECT SUM val ue)
FROM or der s
WHERE order _date BETWEEN ' 28-MAR 98' AND ' 23- APR 98'

Partition pruning is achieved by:

= First, partition elimination of January, February, May, and June data partitions.

Then either:

= An index scan of the March and April data partition due to high index
selectivity
or

= A full scan of the March and April data partition due to low index
selectivity

Partition-wise Joins

A partition-wise join is a join optimization that you can use when joining two tables
that are both partitioned along the join column(s). With partition-wise joins, the join
operation is broken into smaller joins that are performed sequentially or in parallel.
Another way of looking at partition-wise joins is that they minimize the amount of

Partitioned Tables and Indexes 11-21

Partitioning to Improve Performance

Parallel DML

data exchanged among parallel slaves during the execution of parallel joins by
taking into account data distribution.

See Also: Oracle9i Data Warehousing Guide for more information
about partitioning methods and partition-wise joins

Parallel execution dramatically reduces response time for data-intensive operations
on large databases typically associated with decision support systems and data
warehouses. In addition to conventional tables, you can use parallel query and
parallel DML with range- and hash-partitioned tables. By doing so, you can
enhance scalability and performance for batch operations.

The semantics and restrictions for parallel DML sessions are the same whether you
are using index-organized tables or not.

See Also: Oracle9i Data Warehousing Guide for more information
about parallel DML and its use with partitioned tables

11-22 Oracle9i Database Concepts

12

Native Datatypes

This chapter discusses the Oracle built-in datatypes, their properties, and how they

map to non-Oracle datatypes. Topics include:

Introduction to Oracle Datatypes
Character Datatypes

NUMBER Datatype

DATE Datatype

LOB Datatypes

RAW and LONG RAW Datatypes
ROWID and UROWID Datatypes
ANSI, DB2, and SQL/DS Datatypes
XML Datatypes

URI Datatypes

Data Conversion

Native Datatypes 12-1

Introduction to Oracle Datatypes

Introduction to Oracle Datatypes

Each column value and constant in a SQL statement has a datatype, which is
associated with a specific storage format, constraints, and a valid range of values.
When you create a table, you must specify a datatype for each of its columns.

Oracle provides the following built-in datatypes:
= Character Datatypes
— CHAR Datatype
- VARCHAR2 and VARCHAR Datatypes
— NCHAR and NVARCHAR?2 Datatypes
— LONG Datatype
= NUMBER Datatype
= DATE Datatype
= LOB Datatypes
— BLOB Datatype
— CLOB and NCLOB Datatypes
— BFILE Datatype
= RAW and LONG RAW Datatypes
« ROWID and UROWID Datatypes
— Physical Rowids
— Logical Rowids

— Rowids in Non-Oracle Databases

Note: PL/SQL has additional datatypes for constants and
variables, which include BOOLEAN, reference types, composite
types (collections and records), and user-defined subtypes.

12-2 Oracle9i Database Concepts

Character Datatypes

See Also:

s PL/SQL User’s Guide and Reference for information about
PL/SQL datatypes and a summary of the characteristics of each
Oracle datatype

= Oracle9i Application Developer’s Guide - Fundamentals for
information about how to use the built-in datatypes

The following sections that describe each of the built-in datatypes in more detail.

Character Datatypes

The character datatypes store character (alphanumeric) data in strings, with byte
values corresponding to the character encoding scheme, generally called a character
set or code page.

The database’s character set is established when you create the database. Examples
of character sets are 7-bit ASCII (American Standard Code for Information
Interchange), EBCDIC (Extended Binary Coded Decimal Interchange Code), Code
Page 500, Japan Extended UNIX, and Unicode UTF-8. Oracle supports both
single-byte and multibyte encoding schemes.

See Also:

= Oracle9i Application Developer’s Guide - Fundamentals for
information about how to select a character datatype

= Oracle9i Database Globalization Support Guide for more
information about converting character data

CHAR Datatype

The CHAR datatype stores fixed-length character strings. When you create a table
with a CHAR column, you must specify a string length (in bytes or characters)
between 1 and 2000 bytes for the CHAR column width. The default is 1 byte. Oracle
then guarantees that:

= When you insert or update a row in the table, the value for the CHAR column
has the fixed length.

= If you give a shorter value, then the value is blank-padded to the fixed length.

= If you give a longer value with trailing blanks, then blanks are trimmed from
the value to the fixed length.

Native Datatypes 12-3

Character Datatypes

=« Ifavalue istoo large, Oracle returns an error.

Oracle compares CHAR values using blank-padded comparison semantics.

See Also: Oracle9i SQL Reference for details about blank-padded
comparison semantics

VARCHAR?2 and VARCHAR Datatypes

The VARCHARZ datatype stores variable-length character strings. When you create a
table with a VARCHAR2 column, you specify a maximum string length (in bytes or
characters) between 1 and 4000 bytes for the VARCHAR2 column. For each row,
Oracle stores each value in the column as a variable-length field unless a value
exceeds the column’s maximum length, in which case Oracle returns an error. Using
VARCHAR2 and VARCHAR saves on space used by the table.

For example, assume you declare a column VARCHAR2 with a maximum size of 50
characters. In a single-byte character set, if only 10 characters are given for the
VARCHAR2 column value in a particular row, the column in the row’s row piece
stores only the 10 characters (10 bytes), not 50.

Oracle compares VARCHAR? values using nonpadded comparison semantics.

See Also: Oracle9i SQL Reference for details about nonpadded
comparison semantics

VARCHAR Datatype

The VARCHAR datatype is synonymous with the VARCHAR2 datatype. To avoid
possible changes in behavior, always use the VARCHAR2 datatype to store
variable-length character strings.

Length Semantics for Character Datatypes

Globalization support allows the use of various character sets for the character
datatypes. Globalization support lets you process single-byte and multibyte
character data and convert between character sets. Client sessions can use client
character sets that are different from the database character set.

Consider the size of characters when you specify the column length for character
datatypes. You must consider this issue when estimating space for tables with
columns that contain character data.

The length semantics of character datatypes can be measured in bytes or characters.

12-4 Oracle9i Database Concepts

Character Datatypes

s Byte semantics treat strings as a sequence of bytes. This is the default for
character datatypes.

s Character semantics treat strings as a sequence of characters. A character is
technically a codepoint of the database character set.

For single byte character sets, columns defined in character semantics are basically
the same as those defined in byte semantics. Character semantics are useful for
defining varying-width multibyte strings; it reduces the complexity when defining
the actual length requirements for data storage. For example, in a Unicode database
(UTF8), you need to define a VARCHAR2 column that can store up to five Chinese
characters together with five English characters. In byte semantics, this would
require (5*3 bytes) + (1*5 bytes) = 20 bytes; in character semantics, the column
would require 10 characters.

VARCHAR2(20 BYTE) and SUBSTRB(<stri ng>, 1, 20) use byte semantics.
VARCHAR2(10 CHAR) and SUBSTR(<st ri ng>, 1, 10) use character semantics.

The parameter NLS_LENGTH_SEMANTI CS decides whether a new column of
character datatype uses byte or character semantics. The default length semantic is
byte. If all character datatype columns in a database use byte semantics (or all use
character semantics) then users do not have to worry about which columns use
which semantics. The BYTE and CHAR qualifiers shown earlier should be avoided
when possible, because they lead to mixed-semantics databases. Instead, the NLS
LENGTH_SEMANTI CS initialization parameter should be set appropriately in

I NI T.ORA, and columns should use the default semantics.

See Also:
= "Use of Unicode Data in an Oracle Database" on page 12-6

= Oracle9i Database Globalization Support Guide for more
information about Oracle’s globalization support feature

= Oracle9i Application Developer’s Guide - Fundamentals for
information about setting length semantics and choosing the
appropriate Unicode character set.

= Oracle9i Database Migration for information about migrating
existing columns to character semantics

NCHAR and NVARCHAR?2 Datatypes

NCHAR and NVARCHAR?2 are Unicode data types that store Unicode character data.
The character set of NCHAR and NVARCHAR2 datatypes can only be either

Native Datatypes 12-5

Character Datatypes

AL16UTF16 or UTF8 and is specified at database creation time as the national
character set. ALI6UTF16 and UTF8 are both Unicode encoding.

= The NCHAR datatype stores fixed-length character strings that correspond to the
national character set.

= The NVARCHAR2 datatype stores variable length character strings.

When you create a table with an NCHAR or NVARCHARZ2 column, the maximum size
specified is always in character length semantics. Character length semantics is the
default and only length semantics for NCHAR or NVARCHAR?2.

Example 12-1 Defining Maximum Byte Length of a Column
If national character set is UTF8, the following statement defines the maximum byte
length of 90 bytes:

CREATE TABLE tabl (col 1 NOHAR(30));

This statement creates a column with maximum character length of 30. The
maximum byte length is the multiple of the maximum character length and the
maximum number of bytes in each character.

NCHAR

The maximum length of an NCHAR column is 2000 bytes. It can hold up to 2000
characters. The actual data is subject to the maximum byte limit of 2000. The two
size constraints must be satisfied simultaneously at run time.

NVARCHAR2

The maximum length of an NVARCHAR2 column is 4000 bytes. It can hold up to 4000
characters. The actual data is subject to the maximum byte limit of 4000. The two
size constraints must be satisfied simultaneously at run time.

See Also: Oracle9i Database Globalization Support Guide for more
information about the NCHAR and NVARCHAR? datatypes

Use of Unicode Data in an Oracle Database

Unicode is an effort to have a unified encoding of every character in every language
known to man. It also provides a way to represent privately-defined characters. A
database column that stores Unicode can store text written in any language.

12-6 Oracle9j Database Concepts

Character Datatypes

Oracle users deploying globalized applications have a strong need to store Unicode
data in Oracle databases. They need a datatype which is guaranteed to be Unicode
regardless of the database character set.

Oracle supports a reliable Unicode data type through NCHAR, NVARCHAR2, and
NCLOB. These data types are guaranteed to be Unicode encoding and always use
character length semantics. The character sets used by NCHAR/ NVARCHAR2 can be
either UTF8 or AL16UTF16, depending on the setting of the national character set
when the database is created. These data types allow character data in Unicode to
be stored in a database that may or may not use Unicode as database character set.

Implicit Type Conversion

In addition to all the implicit conversions for CHAR/ VARCHAR2, Oracle also
supports implicit conversion for NCHAR/ NVARCHAR2. Implicit conversion between
CHAR/ VARCHAR? and NCHAR/ NVARCHAR? is also supported.

LOB Character Datatypes

The LOB datatypes for character data are CLOB and NCLOB. They can store up to 4
gigabytes of character data (CLOB) or national character set data (NCLOB). LOB
datatypes are intended to replace the LONG datatype functionality.

See Also: "LOB Datatypes" on page 12-13

LONG Datatype

Note: The LONGdatatype is provided for backward compatibility
with existing applications. In new applications, use CLOB and
NCL OB datatypes for large amounts of character data.

Columns defined as LONG can store variable-length character data containing up to
2 gigabytes of information. LONG data is text data that is to be appropriately
converted when moving among different systems.

Native Datatypes 12-7

NUMBER Datatype

LONGdatatype columns are used in the data dictionary to store the text of view
definitions. You can use LONGcolumns in SELECT lists, SET clauses of UPDATE
statements, and VALUES clauses of | NSERT statements.

See Also:

= Oracle9i Application Developer’s Guide - Fundamentals for
information about the restrictions on the LONG datatype

= "RAW and LONG RAW Datatypes" on page 12-15 for
information about the LONG RAW datatype

NUMBER Datatype

The NUVBER datatype stores fixed and floating-point numbers. Numbers of
virtually any magnitude can be stored and are guaranteed portable among different
systems operating Oracle, up to 38 digits of precision.

The following numbers can be stored in a NUMBER column:

= Positive numbers in the range 1 x 10% t0 9.99...9 x 10'%° with up to 38
significant digits

= Negative numbers from -1 x 100 t0 9.99...99 x 10'% with up to 38 significant
digits
= Zero

= Positive and negative infinity (generated only by importing from an Oracle
Version 5 database)

For numeric columns, you can specify the column as:

col unm_nane NUMBER

Optionally, you can also specify a precision (total number of digits) and scale
(number of digits to the right of the decimal point):

col unm_nane NUMBER (preci sion, scal e)

If a precision is not specified, the column stores values as given. If no scale is
specified, the scale is zero.

Oracle guarantees portability of numbers with a precision equal to or less than 38
digits. You can specify a scale and no precision:

col urm_nane NUMBER (*, scal €)

12-8 Oracle9j Database Concepts

NUMBER Datatype

In this case, the precision is 38, and the specified scale is maintained.

When you specify numeric fields, it is a good idea to specify the precision and scale.
This provides extra integrity checking on input.

Table 12-1 shows examples of how data would be stored using different
scale factors.

Table 12-1 How Scale Factors Affect Numeric Data Storage

Input Data Specified As Stored As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER(*, 1) 7456123.9

7,456,123.89 NUMBER(9) 7456124

7,456,123.89 NUMBER(9, 2) 7456123.89

7,456,123.89 NUMVBER(9, 1) 7456123.9

7,456,123.89 NUVBER(6) (not accepted, exceeds precision)
7,456,123.89 NUMBER(7, - 2) 7456100

If you specify a negative scale, Oracle rounds the actual data to the specified
number of places to the left of the decimal point. For example, specifying (7, - 2)
means Oracle rounds to the nearest hundredths, as shown in Table 12-1.

For input and output of numbers, the standard Oracle default decimal character is a
period, as in the number 1234.56. The decimal is the character that separates the
integer and decimal parts of a number. You can change the default decimal
character with the initialization parameter NLS_NUMERI C_CHARACTERS. You can
also change it for the duration of a session with the ALTER SESSI ON statement. To
enter numbers that do not use the current default decimal character, use the TO_
NUMBER function.

Internal Numeric Format

Oracle stores numeric data in variable-length format. Each value is stored in
scientific notation, with 1 byte used to store the exponent and up to 20 bytes to store
the mantissa. The resulting value is limited to 38 digits of precision. Oracle does not
store leading and trailing zeros. For example, the number 412 is stored in a format
similar to 4.12 x 102, with 1 byte used to store the exponent(2) and 2 bytes used to
store the three significant digits of the mantissa(4, 1, 2). Negative numbers include
the sign in their length.

Native Datatypes 12-9

DATE Datatype

Taking this into account, the column size in bytes for a particular numeric data
value NUMBER(p) , where p is the precision of a given value, can be calculated using
the following formula:

ROUND((I ength(p) +s)/2)) +1
where s equals zero if the number is positive, and s equals 1 if the number is
negative.

Zero and positive and negative infinity (only generated on import from Version 5
Oracle databases) are stored using unique representations. Zero and negative
infinity each require 1 byte; positive infinity requires 2 bytes.

DATE Datatype

The DATE datatype stores point-in-time values (dates and times) in a table. The
DATE datatype stores the year (including the century), the month, the day, the
hours, the minutes, and the seconds (after midnight).

Oracle can store dates in the Julian era, ranging from January 1, 4712 BCE through
December 31, 4712 CE (Common Era). Unless BCE ('BC' in the format mask) is
specifically used, CE date entries are the default.

Oracle uses its own internal format to store dates. Date data is stored in fixed-length
fields of seven bytes each, corresponding to century, year, month, day, hour, minute,
and second.

For input and output of dates, the standard Oracle date format is DD- MON- YY, as
follows:

" 13- NOv-92

You can change this default date format for an instance with the parameter NLS
DATE_FORMAT. You can also change it during a user session with the ALTER
SESSI ON statement. To enter dates that are not in standard Oracle date format, use
the TO_DATE function with a format mask:

TO DATE (' Novenber 13, 1992’ , 'MINTH OD, YYYY')

Oracle stores time in 24-hour format—HH: M : SS. By default, the time in a date
field is 00: 00: 00 A. M (midnight) if no time portion is entered. In a time-only
entry, the date portion defaults to the first day of the current month. To enter the
time portion of a date, use the TO_DATE function with a format mask indicating the
time portion, as in:

12-10 Oracle9i Database Concepts

DATE Datatype

I NSERT | NTO bi rt hdays (bnane, bday) VALUES
(" A\DY' , TO DATH(' 13-AUG 66 12:56 AM’,"DDMNYY HHM AM’));

Use of Julian Dates

Julian dates allow continuous dating by the number of days from a common
reference. (The reference is 01-01-4712 years BCE, so current dates are somewhere in
the 2.4 million range.) A Julian date is nominally a noninteger, the fractional part
being a portion of a day. Oracle uses a simplified approach that results in integer
values. Julian dates can be calculated and interpreted differently. The calculation
method used by Oracle results in a seven-digit number (for dates most often used),
such as 2449086 for 08-APR-93.

Note: Oracle Julian dates might not be compatible with Julian
dates generated by other date algorithms.

The format mask ’ J’ can be used with date functions (TO_DATE or TO_CHAR) to
convert date data into Julian dates. For example, the following query returns all
dates in Julian date format:

SHECT TOGHAR (hire_date, 'J') FROMenpl oyees;

You must use the TO_NUMBER function if you want to use Julian dates in
calculations. You can use the TO_DATE function to enter Julian dates:

I NSERT | NTO enpl oyees (hire_date) VALUES (TO DATH 2448921, 'J'));

Date Arithmetic

Oracle date arithmetic takes into account the anomalies of the calendars used
throughout history. For example, the switch from the Julian to the Gregorian
calendar, 15-10-1582, eliminated the previous 10 days (05-10-1582 through
14-10-1582). The year 0 does not exist.

You can enter missing dates into the database, but they are ignored in date
arithmetic and treated as the next "real" date. For example, the next day after
04-10-1582 is 15-10-1582, and the day following 05-10-1582 is also 15-10-1582.

Note: This discussion of date arithmetic might not apply to all
countries’ date standards (such as those in Asia).

Native Datatypes 12-11

DATE Datatype

Centuries and the Year 2000

Oracle stores year data with the century information. For example, the Oracle
database stores 1996 or 2001, and not simply 96 or 01. The DATE datatype always
stores a four-digit year internally, and all other dates stored internally in the
database have four digit years. Oracle utilities such as import, export, and recovery
also deal with four-digit years.

Daylight Savings Support
Oracle9i provides daylight savings support for DATETI ME datatypes in the server.
You can insert and query DATETI ME values based on local time in a specific region.
The DATETI ME datatypes TI MESTAMP W THTI ME ZONE and TI MESTAMP W TH
LOCAL Tl ME ZONE are time-zone aware.
See Also:

= Oracle9i Application Developer’s Guide - Fundamentals for more
information about centuries and date format masks

= Oracle9i SQL Reference for information about date format codes

Time Zones

You can include the time zone in your date/time data and provides support for
fractional seconds. Three new datatypes are added to DATE, with the following

differences:

Datatype Time Zone Fractional Seconds
DATE No No

TI MESTAMP No Yes

TI MESTAMP Explicit Yes

WTH TI ME ZONE

TI MESTAMP Relative Yes
W TH LOCAL TI ME ZONE

TI MESTAMP W THLOCAL Tl ME ZONE is stored in the database time zone. When a
user selects the data, the value is adjusted to the user’s session time zone.

12-12 Oracle9i Database Concepts

LOB Datatypes

Example:
A San Francisco database has system time zone = -8:00. When a New York client

(session time zone = -5:00) inserts into or selects from the San Francisco database,
TI MESTAMP W THLOCAL TI ME ZONE data is adjusted as follows:

= The New York client inserts TI MESTAMP 1998- 1- 23 6: 00: 00-5: 00’ intoa
TI MESTAMP W TH LOCAL TI ME ZONE column in the San Francisco database.
The inserted data is stored in San Francisco as binary value 1998- 1- 23
3:00: 00.

= When the New York client selects that inserted data from the San Francisco
database, the value displayed in New York is * 1998-1-23 6: 00: 00" .

= A San Francisco client, selecting the same data, see the value’ 1998- 1- 23
3:00: 00 .

Note: To avoid unexpected results in your DML operations on
datatime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTI MEZONE and

SESSI ONTI MEZONE. If the database time zone or the session time
zone has not been set manually, Oracle uses the operating system
time zone by default. If the operating system time zone is not a
valid Oracle time zone, Oracle uses UTC as the default value.

See Also: Oracle9i SQL Reference for details about the syntax of
creating and entering data in time stamp columns

LOB Datatypes

The LOB datatypes BLOB, CLOB, NCLOB, and BFI LE enable you to store large blocks
of unstructured data (such as text, graphic images, video clips, and sound
waveforms) up to 4 gigabytes in size. They provide efficient, random, piece-wise
access to the data. Oracle Corporation recommends that you always use LOB
datatypes over LONG datatypes.

You can perform parallel queries (but not parallel DML or DDL) on LOB columns.

LOB datatypes differ from LONGand L ONG RAWdatatypes in several ways. For
example:

= Atable can contain multiple LOB columns but only one LONG column.

Native Datatypes 12-13

LOB Datatypes

= Atable containing one or more LOB columns can be partitioned, but a table
containing a LONG column cannot be partitioned.

= The maximum size of a LOB is 4 gigabytes, but the maximum size of a LONGis 2
gigabytes.
= LOBs support random access to data, but LONGs support only sequential access.

= LOB datatypes (except NCLOB) can be attributes of a user-defined object type
but LONG datatypes cannot.

= Temporary LOBs that act like local variables can be used to perform
transformations on LOB data. Temporary internal LOBs (BLOBs, CLOBs, and
NCLOBs) are created in the user’s temporary tablespace and are independent of
tables. For LONG datatypes, however, no temporary structures are available.

= Tables with LOB columns can be replicated, but tables with LONGcolumns
cannot.

SQL statements define LOB columns in a table and LOB attributes in a user-defined
object type. When defining LOBs in a table, you can explicitly specify the tablespace
and storage characteristics for each LOB.

LOB datatypes can be stored inline (within a table), out-of-line (within a tablespace,
using a LOB locator), or in an external file (BFI LE datatypes).

With compatibility set to Oracle9i or higher, you can use LOBs with SQL VARCHAR
operators and functions.

See Also:

= Oracle9i SQL Reference for a complete list of differences between
the LOB datatypes and the LONGand LONG RAWdatatypes

= Oracle9i Application Developer’s Guide - Large Objects (LOBs)for
more information about LOB storage and LOB locators

BLOB Datatype

The BLOB datatype stores unstructured binary data in the database. BLOBs can store
up to 4 gigabytes of binary data.

BLOBs participate fully in transactions. Changes made to a BLOB value by the
DBMS_LOB package, PL/SQL, or the OCI can be committed or rolled back.
However, BLOB locators cannot span transactions or sessions.

12-14 Oracle9i Database Concepts

RAW and LONG RAW Datatypes

CLOB and NCLOB Datatypes

The CLOB and NCLOB datatypes store up to 4 gigabytes of character data in the
database. CLOBs store database character set data and NCLOBs store Unicode
national character set data. For varying-width database character sets, the CLOB
value is stored in the database using the two-byte Unicode character set, which has
a fixed width. Oracle translates the stored Unicode value to the character set
requested on the client or on the server, which can be fixed-width or varying width.
When you insert data into a CLOB column using a varying-width character set,
Oracle converts the data into Unicode before storing it in the database.

CLOBs and NCLOBs participate fully in transactions. Changes made to a CLOB or
NCL OB value by the DBM5_L OB package, PL/SQL, or the OCI can be committed or
rolled back. However, CLOB and NCLOB locators cannot span transactions or
sessions.

You cannot create an object type with NCLOB attributes, but you can specify NCLOB
parameters in a method for an object type.

See Also: Oracle9i Database Globalization Support Guide for more
information about national character set data and the Unicode
character set

BFILE Datatype

The BFI LE datatype stores unstructured binary data in operating-system files
outside the database. A BFI LE column or attribute stores a file locator that points to
an external file containing the data. BFI LEs can store up to 4 gigabytes of data.

BFI LEs are read-only; you cannot modify them. They support only random (not
sequential) reads, and they do not participate in transactions. The underlying
operating system must maintain the file integrity, security, and durability for

BFI LEs. The database administrator must ensure that the file exists and that Oracle
processes have operating-system read permissions on the file.

RAW and LONG RAW Datatypes

Note: The LONGRAWdatatype is provided for backward
compatibility with existing applications. For new applications, use
the BLOB and BFI LE datatypes for large amounts of binary data.

Native Datatypes 12-15

ROWID and UROWID Datatypes

The RAWand LONG RAWdatatypes are used for data that is not to be interpreted (not
converted when moving data between different systems) by Oracle. These
datatypes are intended for binary data or byte strings. For example, LONG RAWcan
be used to store graphics, sound, documents, or arrays of binary data. The
interpretation depends on the use.

RAWIs a variable-length datatype like the VARCHAR2 character datatype, except
Oracle Net Services (which connects user sessions to the instance) and the Import
and Export utilities do not perform character conversion when transmitting RAWor
L ONG RAWdata. In contrast, Oracle Net Services and Import/Export automatically
convert CHAR, VARCHAR?2, and LONGdata between the database character set and
the user session character set (set by the NLS_L ANGUAGE parameter of the ALTER
SESSI ON statement), if the two character sets are different.

When Oracle automatically converts RAWor LONG RAWdata to and from CHAR data,
the binary data is represented in hexadecimal form with one hexadecimal character
representing every four bits of RAWdata. For example, one byte of RAWdata with
bits 11001011 is displayed and entered as’ CB.’

LONG RAWdata cannot be indexed, but RAWdata can be indexed.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information about other restrictions on the LONG RAWdatatype

ROWID and UROWID Datatypes

Oracle uses a ROW D datatype to store the address (rowid) of every row in the
database.

= Physical rowids store the addresses of rows in ordinary tables (excluding
index-organized tables), clustered tables, table partitions and subpartitions,
indexes, and index partitions and subpartitions.

= Logical rowids store the addresses of rows in index-organized tables.

A single datatype called the universal rowid, or URON D, supports both logical and
physical rowids, as well as rowids of foreign tables such as non-Oracle tables
accessed through a gateway.

A column of the UROW D datatype can store all kinds of rowids. The value of the
COWVPATI BLE initialization parameter must be set to 8.1 or higher to use URON D
columns.

See Also: "Rowids in Non-Oracle Databases" on page 12-23

12-16 Oracle9i Database Concepts

ROWID and UROWID Datatypes

The ROWID Pseudocolumn

Each table in an Oracle database internally has a pseudocolumn named RO D.
This pseudocolumn is not evident when listing the structure of a table by executing
a SELECT * FROM... statement, or a DESCRI BE ... statement using SQL*Plus, nor
does the pseudocolumn take up space in the table. However, each row’s address can
be retrieved with a SQL query using the reserved word ROW D as a column name,
for example:

SH ECT ROND, |ast_nane FROM enpl oyees;

You cannot set the value of the pseudocolumn ROW Din | NSERT or UPDATE
statements, and you cannot delete a ROW D value. Oracle uses the ROW Dvalues in
the pseudocolumn ROW Dinternally for the construction of indexes.

You can reference rowids in the pseudocolumn ROW D like other table columns
(used in SELECT lists and WHERE clauses), but rowids are not stored in the database,
nor are they database data. However, you can create tables that contain columns
having the RON D datatype, although Oracle does not guarantee that the values of
such columns are valid rowids. The user must ensure that the data stored in the
ROW Dcolumn truly is a valid ROW D.

See Also: "How Rowids Are Used" on page 12-21

Physical Rowids

Physical rowids provide the fastest possible access to a row of a given table. They
contain the physical address of a row (down to the specific block) and allow you to
retrieve the row in a single block access. Oracle guarantees that as long as the row
exists, its rowid does not change. These performance and stability qualities make
rowids useful for applications that select a set of rows, perform some operations on
them, and then access some of the selected rows again, perhaps with the purpose of
updating them.

Every row in a nonclustered table is assigned a unique rowid that corresponds to
the physical address of a row’s row piece (or the initial row piece if the row is
chained among multiple row pieces). In the case of clustered tables, rows in
different tables that are in the same data block can have the same rowid.

A row’s assigned rowid remains unchanged unless the row is exported and
imported using the Import and Export utilities. When you delete a row from a table
and then commit the encompassing transaction, the deleted row’s associated rowid
can be assigned to a row inserted in a subsequent transaction.

A physical rowid datatype has one of two formats:

Native Datatypes 12-17

ROWID and UROWID Datatypes

= The extended rowid format supports tablespace-relative data block addresses
and efficiently identifies rows in partitioned tables and indexes as well as
nonpartitioned tables and indexes. Tables and indexes created by an Oracle8i
(or higher) server always have extended rowids.

= Avrestricted rowid format is also available for backward compatibility with
applications developed with Oracle7 or earlier releases.

Extended Rowids

Extended rowids use a base 64 encoding of the physical address for each row
selected. The encoding charactersare A-Z, a-z, 0-9, +, and /. For
example, the following query:

SH ECT ROND, |ast_name FROM enpl oyees WHERE departnent _id = 20;

can return the following row information;

AAALS0AATAAABr XAAA BARTI NS
AAAASOAATAAABr XAAE RUALES
AAAASOAATAAABr XAAG GHEN
AAAASOAATAAABr XAAN BLUMBERG

An extended rowid has a four-piece format, OOOOOOFFFBBBBBBRRR:

= OO000O. The data object number that identifies the database segment
(AAAAao in the example). Schema objects in the same segment, such as a cluster
of tables, have the same data object number.

» FFF. The tablespace-relative datafile number of the datafile that contains the
row (file AAT in the example).

= BBBBBB: The data block that contains the row (block AAABr X in the
example). Block numbers are relative to their datafile, not tablespace. Therefore,
two rows with identical block numbers could reside in two different datafiles of
the same tablespace.

= RRR The row in the block.

You can retrieve the data object number from data dictionary views USER _
OBJECTS, DBA OBJECTS, and ALL_OBJECTS. For example, the following query
returns the data object number for the enpl oyees table in the SCOTT schema:

SELECT DATA CBJECT | D FROM DBA (BJECTS
WERE OMER = * SCOIT AND CBJECT_NAME =’ EMPLOYEES ;

12-18 Oracle9i Database Concepts

ROWID and UROWID Datatypes

You can also use the DBMS_ROW D package to extract information from an extended
rowid or to convert a rowid from extended format to restricted format (or vice
versa).

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information about the DBMS_ROW D package

Restricted Rowids

Restricted rowids use a binary representation of the physical address for each row
selected. When queried using SQL*Plus, the binary representation is converted to a
VARCHAR2/ hexadecimal representation. The following query:

SELECT ROND, |ast_nanme FROM enpl oyees
WHERE departrent _id = 30;

can return the following row information:

00000DCs. 0000. 0001 KR SHNAN
00000DCs. 0001. 0001 ARBUKLE
00000DD6. 0002. 0001 NGAUYEN

As shown, a restricted rowid’s VARCHAR2/ hexadecimal representationisin a
three-piece format, block.row.file:

= The data block that contains the row (block DD5 in the example). Block
numbers are relative to their datafile, not tablespace. Therefore, two rows with
identical block numbers could reside in two different datafiles of the same
tablespace.

= The row in the block that contains the row (rows 0, 1, 2 in the example). Row
numbers of a given block always start with 0.

= The datafile that contains the row (file 1 in the example). The first datafile of
every database is always 1, and file numbers are unique within a database.

Examples of Rowid Use

You can use the function SUBSTR to break the data in a rowid into its components.
For example, you can use SUBSTRto break an extended rowid into its four
components (database object, file, block, and row):

SH ECT ROND,

Native Datatypes 12-19

ROWID and UROWID Datatypes

SUBSTR(ROWD, 1, 6) " CBIECT",
SUBSTR ROND, 7,3) "FIL",
SUBSTRROWND, 10, 6) "BLAXK',
SUBSTRROWND, 16, 3) "RON
FRCM pr oduct s;

Or you can use SUBSTR to break a restricted rowid into its three components (block,
row, and file):

SH ECT ROND, SUBSTRIROND 15,4) "H LE',
SUBSTR ROND, 1, 8) "BLAX',
SUBSTRROWND, 10, 4) "RON
FRCM pr oduct s;

ROND FILE BLOX ROV

00000CCs. 0000. 0001 0001 0000OCCH 0000
00000CCs. 0001. 0001 0001 000OOCCH 0001
00000CCs. 0002. 0001 0001 0000OCCH 0002

Rowids can be useful for revealing information about the physical storage of a
table’s data. For example, if you are interested in the physical location of a table’s
rows (such as for table striping), the following query of an extended rowid tells how
many datafiles contain rows of a given table:

SELECT QOUNT(DI STI NCT(SUBSTRIRONVD, 7,3))) "FI LES' FROM t abl enane;

See Also:

= Oracle9i SQL Reference

s PL/SQL User’s Guide and Reference

= Oracle9i Database Performance Tuning Guide and Reference

for more examples using rowids

12-20 Oracle9i Database Concepts

ROWID and UROWID Datatypes

How Rowids Are Used

Oracle uses rowids internally for the construction of indexes. Each key in an index
is associated with a rowid that points to the associated row’s address for fast access.
End users and application developers can also use rowids for several important
functions:

= Rowids are the fastest means of accessing particular rows.
= Rowids can be used to see how a table is organized.
= Rowids are unique identifiers for rows in a given table.

Before you use rowids in DML statements, they should be verified and guaranteed
not to change. The intended rows should be locked so they cannot be deleted.
Under some circumstances, requesting data with an invalid rowid could cause a
statement to fail.

You can also create tables with columns defined using the ROW D datatype. For
example, you can define an exception table with a column of datatype ROWN Dto
store the rowids of rows in the database that violate integrity constraints. Columns
defined using the ROW D datatype behave like other table columns: values can be
updated, and so on. Each value in a column defined as datatype ROW D requires six
bytes to store pertinent column data.

Logical Rowids

Rows in index-organized tables do not have permanent physical addresses—they
are stored in the index leaves and can move within the block or to a different block
as a result of insertions. Therefore their row identifiers cannot be based on physical
addresses. Instead, Oracle provides index-organized tables with logical row
identifiers, called logical rowids, that are based on the table’s primary key. Oracle
uses these logical rowids for the construction of secondary indexes on
index-organized tables.

Each logical rowid used in a secondary index can include a physical guess, which
identifies the block location of the row in the index-organized table at the time the
guess was made; that is, when the secondary index was created or rebuilt.

Oracle can use guesses to probe into the leaf block directly, bypassing the full key
search. This ensures that rowid access of nonvolatile index-organized tables gives
comparable performance to the physical rowid access of ordinary tables. In a
volatile table, however, if the guess becomes stale the probe can fail, in which case a
primary key search must be performed.

Native Datatypes 12-21

ROWID and UROWID Datatypes

The values of two logical rowids are considered equal if they have the same
primary key values but different guesses.

Comparison of Logical Rowids with Physical Rowids
Logical rowids are similar to the physical rowids in the following ways:

= Logical rowids are accessible through the RON D pseudocolumn.

You can use the RON D pseudocolumn to select logical rowids from an
index-organized table. The SELECT ROW D statement returns an opaque
structure, which internally consists of the table’s primary key and the physical
guess (if any) for the row, along with some control information.

You can access a row using predicates of the form WHERE RON D =val ue,
where val ue is the opaque structure returned by SELECT ROW D.

= Access through the logical rowid is the fastest way to get to a specific row,
although it can require more than one block access.

= Arow’s logical rowid does not change as long as the primary key value does
not change. This is less stable than the physical rowid, which stays immutable
through all updates to the row.

= Logical rowids can be stored in a column of the UROW D datatype

One difference between physical and logical rowids is that logical rowids cannot be
used to see how a table is organized.

Note: An opaque type is one whose internal structure is not
known to the database. The database provides storage for the type.
The type designer can provide access to the contents of the type by
implementing functions, typically 3GL routines.

See Also: "ROWID and UROWID Datatypes" on page 12-16

Guesses in Logical Rowids

When a row’s physical location changes, the logical rowid remains valid even if it
contains a guess, although the guess could become stale and slow down access to
the row. Guess information cannot be updated dynamically. For secondary indexes
on index-organized tables, however, you can rebuild the index to obtain fresh
guesses. Note that rebuilding a secondary index on an index-organized table
involves reading the base table, unlike rebuilding an index on an ordinary table.

12-22 Oracle9i Database Concepts

ANSI, DB2, and SQL/DS Datatypes

Collect index statistics with the DBMS_STATS package or ANALYZE statement to
keep track of the staleness of guesses, so Oracle does not use them unnecessarily.
This is particularly important for applications that store rowids with guesses
persistently in a UROW D column, then retrieve the rowids later and use them to
fetch rows.

When you collect index statistics with the DBMS_STATS package or ANALYZE
statement, Oracle checks whether the existing guesses are still valid and records the
percentage of stale/valid guesses in the data dictionary. After you rebuild a
secondary index (recomputing the guesses), collect index statistics again.

In general, logical rowids without guesses provide the fastest possible access for a
highly volatile table. If a table is static or if the time between getting a rowid and
using it is sufficiently short to make row movement unlikely, logical rowids with
guesses provide the fastest access.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about collecting statistics

Rowids in Non-Oracle Databases

Oracle database applications can be run against non-Oracle database servers using
SQL*Connect or the Oracle Transparent Gateway. In such cases, the format of
rowids varies according to the characteristics of the non-Oracle system.
Furthermore, no standard translation to VARCHAR2/ hexadecimal format is
available. Programs can still use the RON D datatype. However, they must use a
nonstandard translation to hexadecimal format of length up to 256 bytes.

Rowids of a non-Oracle database can be stored in a column of the UROWN D datatype.

See Also:

= Oracle Call Interface Programmer’s Guide for further details on
handling rowids with non-Oracle systems

=« "ROWID and UROWID Datatypes" on page 12-16

ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from IBM’s products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name that differs from the Oracle datatype name, records it as the
name of the datatype of the column, and then stores the column’s data in an Oracle
datatype based on the conversions shown in Table 12-2 and Table 12-3.

Native Datatypes 12-23

ANSI, DB2, and SQL/DS Datatypes

Table 12-2 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype

Oracle Datatype

CHARACTER(n)

CHAR(n)

CHARACTER VARY! NG(n)
CHAR VARYI NG n)

NATI ONAL CHARACTER(n)
NATI ONAL CHAR(n)

NCHAR(n)

NATI ONAL CHARACTER VARYI NG(n)
NATI ONAL CHAR VARYI NG(n)
NCHAR VARYI NG(n)

NUMERI C(p, s)

DECI MAL(p, s)?

| NTEGER

I NT

SMALLI NT
FLOAT(b)®

DOUBLE PRECI SI ON
REALY

CHAR(n)

VARCHAR(n)

NCHAR(n)

NVARCHAR2(n)

NUVBER(p, s)

NUVBER(38)

NUMBER

2The NUMERI C and DECI MAL datatypes can specify only fixed-point numbers. For these

datatypes, s defaults to 0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

‘The DOUBLE PRECI SI ON datatype is a floating-point number with binary precision 126.
9The REAL datatype is a floating-point number with a binary precision of 63, or 18 decimal.

12-24 Oracle9i Database Concepts

XML Datatypes

Table 12-3 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype
CHARACTER(n) CHAR(n)
VARCHAR(n) VARCHAR(n)
LONG VARCHAR(n) LONG

DECI MAL(p, s) NUMBER(p, s)

| NTEGER NUVBER(38)
SVALLI NT

FLOAT(b) b NUMBER

aThe DECI MAL datatype can specify only fixed-point numbers. For this datatype, s defaults to
0.

PThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

Do not define columns with the following SQL/DS and DB2 datatypes, because
they have no corresponding Oracle datatype:

= GRAPH C

= LONGVARGRAPHI C

= VARGRAPH C

= TIME

Note that data of type TI ME can also be expressed as Oracle DATE data.

XML Datatypes

Oracle provides the XMLType datatype to handle XML data.

XMLType Datatype

XML.Type can be used like any other user-defined type. XMLType can be used as the
datatype of columns in tables and views. Variables of XMLType can be used in
PL/SQL stored procedures as parameters, return values, and so on. You can also
use XMLType in PL/SQL, SQL and Java, and through JDBC and OCI.

Native Datatypes 12-25

URI Datatypes

A number of useful functions that operate on XML content have been provided.
Many of these are provided both as SQL functions and as member functions of
XM.Type. For example, function extract() extracts a specific node(s) from an
XML.Type instance.

You can use XMLType in SQL queries in the same way as any other user-defined
datatypes in the system.

See Also:

URI Datatypes

Oracle9i XML Developer’s Kits Guide - XDK
Oracle9i XML Database Developer’s Guide - Oracle XML DB

Oracle9i Application Developer’s Guide - Advanced Queuing for
information about using XM_Type with Oracle Advanced
Queuing

Chapter 1, "Introduction to the Oracle Server"

A URI, or uniform resource identifier, is a generalized kind of URL. Like a URL, it
can reference any document, and can reference a specific part of a document. It is
more general than a URL because it has a powerful mechanism for specifying the
relevant part of the document.

By using Uri Type, you can do the following:

= Create table columns that point to data inside or outside the database.

= Query the database columns using functions provided by Uri Type.

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML

DB

Data Conversion

In some cases, Oracle supplies data of one datatype where it expects data of a
different datatype. This is allowed when Oracle can automatically convert the data
to the expected datatype. These are some of the functions used:

TO NUMBER()
TO GHAR()

TO NOHAR()
TO DATH()

12-26 Oracle9i Database Concepts

Data Conversion

TO ALCH()

TO NOLCH()
CHARTCROV Y)
RON DTQCHAR)
RON DTONCHAR)
HEXTCRAV)
RAWGHEX()
RAWTONHEX()
REFTGHEX()

See Also: Oracle9i SQL Reference for the rules for implicit datatype
conversions

Native Datatypes 12-27

Data Conversion

12-28 Oracle9i Database Concepts

13

Object Datatypes and Object Views

Object types and other user-defined datatypes let you define datatypes that model
the structure and behavior of the data in their applications. An object view is a
virtual object table.

This chapter contains the following major sections:
= Introduction to Object Datatypes

= Object Datatype Categories

= Type Inheritance

= User-Defined Aggregate Functions

= Application Interfaces

= Datatype Evolution

= Introduction to Object Views

Object Datatypes and Object Views 13-1

Introduction to Object Datatypes

Introduction to Object Datatypes

Relational database management systems (RDBMSs) are the standard tool for
managing business data. They provide reliable access to huge amounts of data for
millions of businesses around the world every day.

Oracle is an object-relational database management system (ORDBMS), which
means that users can define additional kinds of data—specifying both the structure
of the data and the ways of operating on it—and use these types within the
relational model. This approach adds value to the data stored in a database. Object
datatypes make it easier for application developers to work with complex data such
as images, audio, and video. Object types store structured business data in its
natural form and allow applications to retrieve it that way. For that reason, they
work efficiently with applications developed using object-oriented programming
techniques.

Complex Data Models

The Oracle server lets you define complex business models in SQL and make them
part of your database schema. Applications that manage and share your data need
only contain the application logic, not the data logic.

Complex Data Model Example

For example, your firm might use purchase orders to organize its purchasing,
accounts payable, shipping, and accounts receivable functions.

A purchase order contains an associated supplier or customer and an indefinite
number of line items. In addition, applications often need dynamically computed
status information about purchase orders. For example, you may need the current
value of the shipped or unshipped line items.

Later sections of this chapter show how you can define a schema object, called an
object type, that serves as a template for all purchase order data in your
applications. An object type specifies the elements, called attributes, that make up a
structured data unit, such as a purchase order. Some attributes, such as the list of
line items, can be other structured data units. The object type also specifies the
operations, called methods, you can perform on the data unit, such as determining
the total value of a purchase order.

You can create purchase orders that match the template and store them in table
columns, just as you would numbers or dates.

13-2 Oracle9i Database Concepts

Object Datatype Categories

You can also store purchase orders in object tables, where each row of the table
corresponds to a single purchase order and the table columns are the purchase
order’s attributes.

Because the logic of the purchase order’s structure and behavior is in your schema,
your applications do not need to know the details and do not have to keep up with
most changes.

Oracle uses schema information about object types to achieve substantial
transmission efficiencies. A client-side application can request a purchase order
from the server and receive all the relevant data in a single transmission. The
application can then, without knowing storage locations or implementation details,
navigate among related data items without further transmissions from the server.

Multimedia Datatypes

Many efficiencies of database systems arise from their optimized management of
basic datatypes like numbers, dates, and characters. Facilities exist for comparing
values, determining their distributions, building efficient indexes, and performing
other optimizations.

Text, video, sound, graphics, and spatial data are examples of important business
entities that do not fit neatly into those basic types. Oracle Enterprise Edition
supports modeling and implementation of these complex datatypes.

Object Datatype Categories
There are two categories of object datatypes:
= Object types
= Collection types

Object datatypes use the built-in datatypes and other user-defined datatypes as the
building blocks for datatypes that model the structure and behavior of data in
applications.

Object types are schema objects. Their use is subject to the same kinds of
administrative control as other schema objects.

See Also:
= Chapter 12, "Native Datatypes"

= Oracle9i Application Developer’s Guide - Object-Relational Features

Object Datatypes and Object Views 13-3

Object Datatype Categories

Object Types

Object types are abstractions of the real-world entities—for example, purchase
orders—that application programs deal with. An object type is a schema object with
three kinds of components:

= A name, which serves to identify the object type uniquely within that schema

= Attributes, which model the structure and state of the real-world entity.
Attributes are built-in types or other user-defined types.

= Methods, which are functions or procedures written in PL/SQL or Java and
stored in the database, or written in a language such as C and stored externally.
Methods implement operations the application can perform on the real-world
entity.

An object type is a template. A structured data unit that matches the template is
called an object.

Purchase Order Example

Here is an example of how you can define object types called ext er nal _per son,
I i nei t emand pur chase_or der.

The object types ext er nal _per son and | i nei t emhave attributes of built-in
types. The object type pur chase_or der has a more complex structure, which
closely matches the structure of real purchase orders.

The attributes of pur chase_or der arei d,contact,and !l i neitens. The
attribute cont act is an object, and the attribute | i nei t ens is a nested table.

CREATE TYPE external _person AS BIECT (
nane VARCHAR2(30,
phone VARCHAR2(20));

CREATE TYPE |inei tem AS CBIECT (
itemnane VARCHAR2(30),

quantity NUMBER,
unit_price NMER12, 2));

CREATE TYPE lineitemtabl e AS TABLE CF |ineitem

13-4 Oracle9i Database Concepts

Object Datatype Categories

CREATE TYPE purchase_order AS CBIECT (

id NUMBER
cont act ext er nal _per son,
lineitens lineitemtable,

MEVBER FUNCTI ON
get_value RETURN NUMBER);

This is a simplified example. It does not show how to specify the body of the
method get _val ue, nor does it show the full complexity of a real purchase order.

An object type is a template. Defining it does not result in storage allocation. You
canusel i nei t emexternal person,orpurchase_order in SQL statements
in most of the same places you can use types like NUVBER or VARCHAR2.

For example, you can define a relational table to keep track of your contacts:

CREATE TABLE contacts (
cont act ext er nal _person
dat e DATE);

The cont act s table is a relational table with an object type defining one of its
columns. Objects that occupy columns of relational tables are called column
objects.

See Also:
= "Nested Tables Description” on page 13-12
= "Row Objects and Column Objects" on page 13-8

= Oracle9i Application Developer’s Guide - Object-Relational Features
for a complete purchase order example

Types of Methods

Methods of an object type model the behavior of objects. The methods of an object
type broadly fall into these categories:

= A Member method is a function or a procedure that always has an implicit
SELF parameter as its first parameter, whose type is the containing object type.

= A Static method is a function or a procedure that does not have an implicit
SELF parameter. Such methods can be invoked by qualifying the method with
the type name, as in TYPE_NAME.METHOLX) . Static methods are useful for
specifying user-defined constructors or cast methods.

Object Datatypes and Object Views 13-5

Object Datatype Categories

= Comparison methods are used for comparing instances of objects.
Oracle supports the choice of implementing type methods in PL/SQL, Java, and C.

In the example, pur chase_or der has a method named get _val ue. Each
purchase order object has its own get _val ue method. For example, if x and y are
PL/SQL variables that hold purchase order objects and wand z are variables that
hold numbers, the following two statements can leave wand z with different
values:

w = Xx.get_val ue();
z = y.get_val ue();

After those statements, w has the value of the purchase order referred to by variable
X; Z has the value of the purchase order referred to by variable y.

The term x. get _val ue () is an invocation of the method get _val ue. Method
definitions can include parameters, but get _val ue does not need them, because it
finds all of its arguments among the attributes of the object to which its invocation
is tied. That is, in the first of the sample statements, it computes its value using the
attributes of purchase order x. In the second it computes its value using the
attributes of purchase order y. This is called the selfish style of method invocation.

Every object type also has one implicitly defined method that is not tied to specific
objects, the object type’s constructor method.

Object Type Constructor Methods Every object type has a system-defined constructor
method; that is, a method that makes a new object according to the object type’s
specification. The name of the constructor method is the name of the object type. Its
parameters have the names and types of the object type’s attributes. The constructor
method is a function. It returns the new object as its value.

For example, the expression:

pur chase_or der (
1000376,
ext ernal _person ("John Smth","1-800-555-1212"),
NULL)

represents a purchase order object with the following attributes:

id 1000376
cont act ext ernal _person("John Smth","1-800-555-1212")
lineitens NULL

13-6 Oracle9j Database Concepts

Object Datatype Categories

The expression ext er nal _person ("John Sm th",6 "1-800-555-1212") is
an invocation of the constructor function for the object type ext er nal _per son.
The object that it returns becomes the contact attribute of the purchase order.

You can also define your own constructor functions to use in place of the
constructor functions that the system implicitly defines for every object type.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features

Comparison Methods Methods play a role in comparing objects. Oracle has facilities
for comparing two data items of a given built-in type (for example, two numbers),
and determining whether one is greater than, equal to, or less than the other. Oracle
cannot, however, compare two items of an arbitrary user-defined type without
further guidance from the definer. Oracle provides two ways to define an order
relationship among objects of a given object type: map methods and order methods.

Map methods use Oracle’s ability to compare built-in types. Suppose, for example,
that you have defined an object type called r ect angl e, with attributes hei ght
and wi dt h. You can define a map method area that returns a number, namely the
product of the rectangle’s hei ght and wi dt h attributes. Oracle can then compare
two rectangles by comparing their areas.

Order methods are more general. An order method uses its own internal logic to
compare two objects of a given object type. It returns a value that encodes the order
relationship. For example, it could return -1 if the first is smaller, 0 if they are equal,
and 1 if the first is larger.

Suppose, for example, that you have defined an object type called addr ess, with
attributes st reet, ci ty, st at e, and zi p. Greater than and less than may have no
meaning for addresses in your application, but you may need to perform complex
computations to determine when two addresses are equal.

In defining an object type, you can specify either a map method or an order method
for it, but not both. If an object type has no comparison method, Oracle cannot
determine a greater than or less than relationship between two objects of that type.
It can, however, attempt to determine whether two objects of the type are equal.

Oracle compares two objects of a type that lacks a comparison method by
comparing corresponding attributes:

Object Datatypes and Object Views 13-7

Object Datatype Categories

= If all the attributes are non-null and equal, Oracle reports that the objects are
equal.

= If there is an attribute for which the two objects have unequal non-null values,
Oracle reports them unequal.

= Otherwise, Oracle reports that the comparison is not available (null).
See Also: Oracle9i Application Developer’s Guide - Object-Relational

Features for examples of how to specify and use comparison
methods

Object Tables

An object table is a special kind of table that holds objects and provides a relational
view of the attributes of those objects.

For example, the following statement defines an object table for objects of the
ext ernal _per son type defined earlier;

CREATE TABLE ext ernal _person_tabl e G external _person;

Oracle lets you view this table in two ways:
= Asingle column table in which each entry is an ext er nal _per son object.

= A multicolumn table in which each of the attributes of the object type
ext er nal _per son, namely nane and phone, occupies a column

For example, you can run the following instructions:

I NSERT | NTO ext ernal _person_tabl e VALUES (
"John Smth",
"1- 800- 555- 1212");

SELECT VALUH p) FROM external _person_table p
WHERE p. name = "John Smith";

The first instruction inserts an ext er nal _per son object into ext er nal _per son_
t abl e as a multicolumn table. the second selects from ext er nal _per son_t abl e
as a single column table.

Row Objects and Column Objects Objects that appear in object tables are called row

objects. Objects that appear in table columns or as attributes of other objects are
called column objects.

13-8 Oracle9j Database Concepts

Object Datatype Categories

Object Identifiers

Every row object in an object table has an associated logical object identifier (OID).
Oracle assigns a unique system-generated identifier of length 16 bytes as the OID
for each row object by default.

The OID column of an object table is a hidden column. Although the OID value in
itself is not very meaningful to an object-relational application, Oracle uses this
value to construct object references to the row objects. Applications need to be
concerned with only object references that are used for fetching and navigating
objects.

The purpose of the OID for a row object is to uniquely identify it in an object table.
To do this Oracle implicitly creates and maintains an index on the OID column of an
object table. The system-generated unique identifier has many advantages, among
which are the unambiguous identification of objects in a distributed and replicated
environment.

Primary-Key Based Object Identifiers For applications that do not require the
functionality provided by globally unique system-generated identifiers, storing 16
extra bytes with each object and maintaining an index on it may not be efficient.
Oracle allows the option of specifying the primary key value of a row object as the
object identifier for the row object.

Primary-key based identifiers also have the advantage of enabling a more efficient
and easier loading of the object table. By contrast, system-generated object
identifiers need to be remapped using some user-specified keys, especially when
references to them are also stored persistently.

Object Views Description

An object view is a virtual object table. Its rows are row objects. Oracle materializes
object identifiers, which it does not store persistently, from primary keys in the
underlying table or view.

See Also: "Introduction to Object Views" on page 13-23

REFs

In the relational model, foreign keys express many-to-one relationships. Oracle
object types provide a more efficient means of expressing many-to-one relationships
when the "one" side of the relationship is a row object.

Oracle provides a built-in datatype called REF to encapsulate references to row
objects of a specified object type. From a modeling perspective, REFs provide the

Object Datatypes and Object Views 13-9

Object Datatype Categories

ability to capture an association between two row objects. Oracle uses object
identifiers to construct such REFs.

You can use a REF to examine or update the object it refers to. You can also use a
REF to obtain a copy of the object it refers to. The only changes you can make to a
REF are to replace its contents with a reference to a different object of the same
object type or to assign it a null value.

Scoped REFs In declaring a column type, collection element, or object type attribute
to be a REF, you can constrain it to contain only references to a specified object table.
Such a REF is called a scoped REF. Scoped REFs require less storage space and
allow more efficient access than unscoped REFs.

Dangling REFs It is possible for the object identified by a REF to become unavailable
through either deletion of the object or a change in privileges. Such a REF is called
dangling. Oracle SQL provides a predicate (called | S DANGLI NG) to allow testing
REFs for this condition.

Dereference REFs Accessing the object referred to by a REF is called dereferencing
the REF. Oracle provides the DEREF operator to do this. Dereferencing a dangling
REF results in a null object.

Oracle provides implicit dereferencing of REFs. For example, consider the
following:

CREATE TYPE person AS CBIECT (
nane VARCHAR2(30) ,
nmanager REF person);

If x represents an object of type PERSON, then the expression:

X. nanager . nane

represents a string containing the namne attribute of the per son object referred to by
the manager attribute of x. The previous expression is a shortened form of:

y. nane, where y = DEREH X. nanager)

Obtain REFs You can obtain a REF to a row object by selecting the object from its

object table and applying the REF operator. For example, you can obtain a REF to
the purchase order with identification number 1000376 as follows;

13-10 Oracle9i Database Concepts

Object Datatype Categories

CEAARE Order Ref REF to pur chase_order;

SELECT REF(po) | NTO O der Ref
FROM pur chase_or der _t abl e po
WHERE po.id = 1000376;

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for examples of how to use REFs

Collection Types

Each collection type describes a data unit made up of an indefinite number of
elements, all of the same datatype. The collection types are array types and table

types.

Array types and table types are schema objects. The corresponding data units are
called VARRAYs and nested tables. When there is no danger of confusion, we often
refer to the collection types as VARRAYs and nested tables.

Collection types have constructor methods. The name of the constructor method is
the name of the type, and its argument is a comma separated list of the new
collection’s elements. The constructor method is a function. It returns the new
collection as its value.

An expression consisting of the type name followed by empty parentheses
represents a call to the constructor method to create an empty collection of that
type. An empty collection is different from a null collection.

VARRAYs

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
element’s position in the array.

The number of elements in an array is the size of the array. Oracle allows arrays to
be of variable size, which is why they are called VARRAYs. You must specify a
maximum size when you declare the array type.

For example, the following statement declares an array type:

CREATE TYPE prices AS VARRAY(10) CF NUVBER(12,2);

The VARRAYs of type pri ces have no more than 10 elements, each of datatype
NUMBER(12, 2) .

Object Datatypes and Object Views 13-11

Object Datatype Categories

Creating an array type does not allocate space. It defines a datatype, which you can
use as:

= The datatype of a column of a relational table

= An object type attribute

= APL/SQL variable, parameter, or function return type.

A VARRAY is normally stored in ling; that is, in the same tablespace as the other data

in its row. If it is sufficiently large, however, Oracle stores it as a BLOB.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information about using VARRAYsS

Nested Tables Description

A nested table is an unordered set of data elements, all of the same datatype. It has
a single column, and the type of that column is a built-in type or an object type. If
an object type, the table can also be viewed as a multicolumn table, with a column
for each attribute of the object type. If compatibility is set to Oracle9i or higher,
nested tables can contain other nested tables.

For example, in the purchase order example, the following statement declares the
table type used for the nested tables of line items:

CREATE TYPE lineitemtabl e AS TABLE CF |ineitem

A table type definition does not allocate space. It defines a type, which you can use
as:

= The datatype of a column of a relational table

= An object type attribute

= APL/SQL variable, parameter, or function return type

When a table type appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the
nested table data in a single table, which it associates with the enclosing relational
or object table. For example, the following statement defines an object table for the
object type pur chase_or der:

CREATE TABLE pur chase_or der _tabl e G- purchase_or der
NESTED TABLE | ineitens STGRE AS |ineitens_tabl e;

13-12 Oracle9i Database Concepts

Type Inheritance

The second line specifies | i nei t ens_t abl e as the storage table for the
I i nei t ens attributes of all of the pur chase_or der objects in pur chase_
order table.

A convenient way to access the elements of a nested table individually is to use a
nested cursor.

See Also:
= Oracle9i Database Reference for information about nested cursors

= Oracle9i Application Developer’s Guide - Object-Relational Features
for more information about using nested tables

Type Inheritance

An object type can be created as a subtype of an existing object type. A single
inheritance model is supported: the subtype can be derived from only one parent
type. A type inherits all the attributes and methods of its direct supertype. It can
add new attributes and methods, and it can override any of the inherited methods.

Figure 13-1 illustrates two subtypes, St udent _t and Enpl oyee_t, created under
Person_t.

Figure 13-1 A Type Hierarchy

Person_t
Student_t Employee_t

PartTimeStudent_t

Furthermore, a subtype can itself be refined by defining another subtype under it,
thus building up type hierarchies. In the preceding diagram, Par t Ti meSt udent _t
is derived from subtype St udent _t .

FINAL and NOT FINAL Types

A type declaration must have the NOT FI NAL keyword, if you want it to have
subtypes. The default is that the type is FI NAL; that is, no subtypes can be created
for the type. This allows for backward compatibility.

Object Datatypes and Object Views 13-13

Type Inheritance

Example of Creating a NOT FINAL Object Type

CREATE TYPE Person_t AS CBIECT

(ssn NUMBER
nane VARCHAR2(30),
address VARCHAR2(100)) NOT FI NAL;

Per son_t is declared to be a NOT FI NAL type. This enables definition of subtypes
of Person_t.

FI NAL types can be altered to be NOT FI NAL. In addition, NOT FI NAL types with no
subtypes can be altered to be FI NAL.

NOT INSTANTIABLE Types and Methods

A type can be declared to be NOT | NSTANTI ABLE. This implies that there is no
constructor (default or user-defined) for the type. Thus, it is not possible to
construct instances of this type. The typical use would be define instantiable
subtypes for such a type, as follows:

CREATE TYPE Address_t AS GBJECT(...) NOT | NSTANTI ABLE NOT FI NAL;
CREATE TYPE USAddress_t UNDER Address_t(...);
CREATE TYPE Intl Address_t UNDCER Address_t(...);

A method of a type can be declared to be NOT | NSTANTI ABLE. Declaring a method
as NOT | NSTANTI ABLE means that the type is not providing an implementation for
that method. Furthermore, a type that contains any non-instantiable methods must
necessarily be declared NOT | NSTANTI ABLE.

For example:

CREATE TYPE T AS BIECT

(

x NUMBER

NOT | NSTANTI ABLE MEVBER FUNCTI ON funcl() RETURN NUMBER
) NOT | NSTANTI ABLE,

A subtype of a NOT | NSTANTI ABLE type can override any of the non-instantiable
methods of the supertype and provide concrete implementations. If there are any
non-instantiable methods remaining, the subtype must also necessarily be declared
NOT | NSTANTI ABLE.

A non-instantiable subtype can be defined under an instantiable supertype.
Declaring a non-instantiable type to be FI NAL is not allowed.

See Also: PL/SQL User’s Guide and Reference

13-14 Oracle9i Database Concepts

User-Defined Aggregate Functions

User-Defined Aggregate Functions

Oracle supports a fixed set of aggregate functions, such as MAX; M N, and SUM
These is also a mechanism to implement new aggregate functions with user-defined
aggregation logic.

Why Have User-Defined Aggregate Functions?

User-defined aggregate functions (UDAGS) refer to aggregate functions with
user-specified aggregation semantics. Users can create a new aggregate function
and provide the aggregation logic through a set of routines. After it is created, the
user-defined aggregate function can be used in SQL DML statements in a manner
similar to built-in aggregates. The Oracle server evaluates the UDAG by invoking
the user-provided aggregation routines appropriately.

Databases are increasingly being used to store complex data such as image, spatial,
audio, video, and so on. The complex data is typically stored in the database using
object types, opaque types, or LOBs. User-defined aggregates are primarily useful in
specifying aggregation over such new domains of data.

Furthermore, UDAGSs can be used to create new aggregate functions over
traditional scalar data types for financial or scientific applications. Because it is not
possible to provide native support for all forms of aggregates, it is desirable to
provide application developers with a flexible mechanism to add new aggregate
functions.

See Also:

» Oracle9i Data Cartridge Developer’s Guide for information about
implementing user-defined aggregates

= Oracle9i Data Warehousing Guide for more information about
using UDAGs in data warehousing

= Chapter 12, "Native Datatypes" for more information on
opaque types

Creation and Use of UDAGs

The following is the procedure for implementing user-defined aggregates:

1. Implement the ODCl Aggr egat e interface routines as methods of an object
type.

Object Datatypes and Object Views 13-15

User-Defined Aggregate Functions

2. Create a UDAG, using the CREATE FUNCTI ON statement and specify the
implementation type created in Step 1:

CREATE FUNCTI ON M/UDAG . .. AGEREGATE USI NG M/UDAGRbut i nes;

3. Use the UDAG in SQL DML statements the same way you use built-in
aggregates:
SELECT col 1, M/UDAG col 2) FROMtab GROP BY col 1;

How Do Aggregate Functions Work?

An aggregate function conceptually takes a set of values as input and returns a
single value. The sets of values for aggregation are typically identified using a
GROUP BY clause. For example:

SELECT AV T. Sal es)
FROM Annual Sales T
AROP BY T.Sate

The evaluation of an aggregate function can be decomposed into three primitive
operations. Considering the preceding example of AVQE) , they are:
1. Initialize : initialize the computation

runni ngSum = 0; runni ngCount = 0;

2. lterate : process new input value

runni ngSum += i nput val ; runni ngGount ++;

3. Terminate : compute the result

return (runni ngSum runni ngGount) ;

The variables r unni ngSumand r unni ngCount , in the preceding example,
determine the state of the aggregation. Thus, the aggregation context can be viewed
as an object that contains r unni ngSumand r unni ngCount attributes. The
Initialize method initializes the aggregation context, Iterate updates it and
Terminate method uses the context to return the resultant aggregate value.

In addition, we require one more primitive operation to merge two aggregation
contexts and create a new context. This operation is needed to combine the results
of aggregation over subsets and obtain the aggregate over the entire set. This
situation can arise during both serial and parallel evaluations of the aggregate.

4. Merge: combine the two aggregation contexts and return a single context

13-16 Oracle9i Database Concepts

Application Interfaces

runni ngSum = runni ngSuni + runni ngSuUn®;
runni ngGount = runni ngQunt 1 + runni ngGount 2;

Oracle lets you register new aggregate functions by providing specific
implementations for these primitive operations.

Application Interfaces

Oracle provides several facilities for using object datatypes in application programs:

sQL

SQL
PL/SQL
Pro*C/C++
OcCl

OoTT
JPublisher
JDBC

SQLJ

Oracle SQL data definition language provides the following support for object
datatypes:

Defining object types, nested tables, and arrays
Specifying privileges
Specifying table columns of object types

Creating object tables

Oracle SQL data manipulation language provides the following support for object
datatypes:

Querying and updating objects and collections

Manipulating REFs

See Also: Oracle9i SQL Reference for a complete description of
SQL syntax

Object Datatypes and Object Views 13-17

Application Interfaces

PL/SQL

Pro*C/C++

PL/SQL is a procedural language that extends SQL. It offers features such as
packages, data encapsulation, information hiding, overloading, and exception
handling. Most stored procedures are written in PL/SQL.

PL/SQL allows use from within functions and procedures of the SQL features that
support object types. The parameters and variables of PL/SQL functions and
procedures can be of user-defined types.

PL/SQL provides all the capabilities necessary to implement the methods
associated with object types. These methods (functions and procedures) reside on
the server as part of a user’s schema.

See Also: PL/SQL User’s Guide and Reference for a complete
description of PL/SQL

The Oracle Pro*C/C++ precompiler allows programmers to use object datatypes in
C and C++ programs. Pro*C developers can use the Object Type Translator to map
Oracle object types and collections into C datatypes to be used in the Pro*C
application.

Pro*C provides compile time type checking of object types and collections and
automatic type conversion from database types to C datatypes. Pro*C includes an
EXEC SQL syntax to create and destroy objects and offers two ways to access objects
in the server:

= SQL statements and PL/SQL functions or procedures embedded in Pro*C
programs

= A simple interface to the object cache, where objects can be accessed by
traversing pointers, then modified and updated on the server

See Also:
= "OCI" on page 13-20

= Pro*C/C++ Precompiler Programmer’s Guide for a complete
description of the Pro*C precompiler

13-18 Oracle9i Database Concepts

Application Interfaces

Dynamic Creation and Access of Type Descriptions

Oracle provides a C API to enable dynamic creation and access of type descriptions.
Additionally, you can create transient type descriptions, type descriptions that are
not stored persistently in the DBMS.

The C API enables creation and access of LNOCI AnyDat a and LNOCI AnyDat aSet .

= The LNOCI AnyDat a type models a self descriptive (with regard to type) data
instance of a given type.

= The LNOCI AnyDat aSet type models a set of data instances of a given type.

Oracle also provides SQL data types (in Oracle’s Open Type System) that
correspond to these data types.

= SYS. ANYTYPE corresponds to LNOCI Type

= SYS. ANYDATA corresponds to LNOCI AnyDat a

= SYS. ANYDATASET corresponds to LNOCI AnyDat aSet

You can create database table columns and SQL queries on such data.
The new C API uses the following terms:

= Transient types - Type descriptions (type metadata) that are not stored
persistently in the database.

= Persistent types - SQL types created using the CREATE TYPE SQL statement.
Their type descriptions are stored persistently in the database.

= Self-descriptive data - Data encapsulating type information along with the
actual contents. The ANYDATA type (LNOCI AnyDat a) models such data. A data
value of any SQL type can be converted to an ANYDATA, which can be
converted back to the old data value. An incorrect conversion attempt results in
an exception.

= Self-descriptive MultiSet - Encapsulation of a set of data instances (all of the
same type), along with their type description.

See Also:
= Oracle9i Application Developer’s Guide - Object-Relational Features

= Oracle Call Interface Programmer’s Guide

Object Datatypes and Object Views 13-19

Application Interfaces

OCl

OoTT

The Oracle call interface (OCI) is a set of C language interfaces to the Oracle server.
It provides programmers great flexibility in using the server’s capabilities.

An important component of OCI is a set of calls to allow application programs to
use a workspace called the object cache. The object cache is a memory block on the
client side that allows programs to store entire objects and to navigate among them
without round trips to the server.

The object cache is completely under the control and management of the application
programs using it. The Oracle server has no access to it. The application programs
using it must maintain data coherency with the server and protect the workspace
against simultaneous conflicting access.

LNOCI provides functions to:
= Access objects on the server using SQL

= Access, manipulate and manage objects in the object cache by traversing
pointers or REFs

= Convert Oracle dates, strings and numbers to C data types
= Manage the size of the object cache’s memory

= Create transient type descriptions. Transient type descriptions are not stored
persistently in the DBMS. Compatibility must be set to Oracle9i or higher.

LNOCI improves concurrency by allowing individual objects to be locked. It
improves performance by supporting complex object retrieval.

LNOCI developers can use the object type translator to generate the C datatypes
corresponding to a Oracle object types.

See Also: Oracle Call Interface Programmer’s Guide

The Oracle type translator (OTT) is a program that automatically generates C
language structure declarations corresponding to object types. OTT facilitates using
the Pro*C precompiler and the OCI server access package.

See Also:
= Oracle Call Interface Programmer’s Guide

= Pro*C/C++ Precompiler Programmer’s Guide

13-20 Oracle9i Database Concepts

Application Interfaces

JPublisher

JDBC

SQLJ

Java Publisher (JPublisher) is a program that automatically generates Java class
definitions corresponding to object types in the database. Java Publisher facilitates
using SQLJ and the JDBC server access package.

See Also: Oracle9i JPublisher User’s Guide

Java Database Connectivity (JDBC) is a set of Java interfaces to the Oracle server.
Oracle’s JDBC:

= Allows access to objects and collection types defined in the database from Java
programs through dynamic SQL

= Provides for translation of types defined in the database into Java classes
through default or customizable mappings

See Also: Oracle9i JDBC Developer’s Guide and Reference

SQLJ allows developers to use object datatypes in Java programs. Developers can
use JPublisher to map Oracle object and collection types into Java classes to be used
in the application.

SQLJ provides access to server objects using SQL statements embedded in the Java
code. SQLJ provides compile-time type checking of object types and collections in
the SQL statements.

The syntax is based on an ANSI standard (SQLJ Consortium).

SQLJ Object Types

You can specify Java classes as SQL user-defined object types. You can define
columns or rows of this SQLJ type. You can also query and manipulate the objects
of this type as if they were SQL primitive types.

Additionally, you can do the following:
= Make the static fields of a class visible in SQL
= Allow the user to call a Java constructor

= Maintain the dependency between the Java class and its corresponding type

Object Datatypes and Object Views 13-21

Datatype Evolution

See Also:
= Oracle9i SQL Reference
= Oracle9i Application Developer’s Guide - Object-Relational Features

= Oracle9i SQLJ Developer’s Guide and Reference

Datatype Evolution
An object datatype can be referenced by any of the following schema objects:
= Table or subtable
= Type or subtype
= Program unit (PL/SQL block): procedure, function, package, trigger
= Indextype
= View (including object view)
= Functional index
= Operator

When any of these objects references a type, either directly or indirectly through
another type or subtype, it becomes a dependent object on that type. Whenever a
type is modified, all dependent program units, views, operators and indextypes are
marked invalid. The next time each of these invalid objects is referenced, it is
revalidated, using the new type definition. If it is recompiled successfully, then it
becomes valid and can be used again.

When a type has either type or table dependents, altering a type definition becomes
more complicated because existing persistent data relies on the current type
definition.

You can change an object type and propagate the type change to its dependent
types and tables. ALTER TYPE lets you add or drop methods and attributes from
existing types and optionally propagate the changes to dependent types, tables, and
even the table data. You can also modify certain attributes of a type.

13-22 Oracle9i Database Concepts

Introduction to Object Views

See Also:
= Oracle9i SQL Reference for details about syntax

= PL/SQL User’s Guide and Reference for details about type
specification and body compilation

= Oracle9i Application Developer’s Guide - Object-Relational Features
for details about managing type versions

Introduction to Object Views
Just as a view is a virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from
data—of either built-in or user-defined types—stored in the columns of relational or
object tables in the database.

Object views provide the ability to offer specialized or restricted access to the data
and objects in a database. For example, you can use an object view to provide a
version of an employee object table that does not have attributes containing
sensitive data and does not have a deletion method.

Object views allow the use of relational data in object-oriented applications. They
let users:

= Try object-oriented programming techniques without converting existing tables

= Convert data gradually and transparently from relational tables to
object-relational tables

= Use legacy RDBMS data with existing object-oriented applications

Advantages of Object Views

Using object views can lead to better performance. Relational data that make up a
row of an object view traverse the network as a unit, potentially saving many round
trips.

You can fetch relational data into the client-side object cache and map it into C or
C++ structures so 3GL applications can manipulate it just like native structures.

Object views provide a gradual upgrade path for legacy data. They provide for
co-existence of relational and object-oriented applications, and they make it easier

Object Datatypes and Object Views 13-23

Introduction to Object Views

to introduce object-oriented applications to existing relational data without having
to make a drastic change from one paradigm to another.

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Thus you can use different in-memory object representations
for different applications without changing the way you store the data in the
database.

How Object Views Are Defined

Conceptually, the process of defining an object view is simple. It consists of the
following actions:

= Defining an object type to be represented by rows of the object view.

= Writing a query that specifies which data in which relational tables contain the
attributes for objects of that type.

= Specifying an object identifier, based on attributes of the underlying data, to
allow REFs to the objects (rows) of the object view.

The object identifier corresponds to the unique object identifier that Oracle
generates automatically for rows of object tables. In the case of object views,
however, the declaration must specify something that is unique in the underlying
data (for example, a primary key).

If the object view is based on a table or another object view and you do not specify
an object identifier, Oracle uses the object identifier from the original table or object
view.

If you want to be able to update a complex object view, you might need to take
another action:

= Write an | NSTEAD CF trigger procedure for Oracle to run whenever an
application program tries to update data in the object view.

After doing these four things, you can use an object view just like an object table.
For example, the following SQL statements define an object view:

CREATE TABLE enp_table (
enpnum NUMBER (5),
enane VARCHAR? (20),
salary NMER (9, 2),

j ob VARCHARZ (20));

13-24 Oracle9i Database Concepts

Introduction to Object Views

CREATE TYPE enpl oyee t AS CBIECT(
enpno NUMBER (5),
enane VARCHAR2 (20),
salary NMER (9, 2),
job VARCHAR? (20));

CREATE M EWenp_viewl CF enpl oyee _t
WTH CBJECT A D (enpno) AS
SHECT e .enpnum e.enane, e.salary, e.job
FRQOMV enp_table e
WHERE job =" Devel oper’;

The object view looks to the user like an object table whose underlying type is
enpl oyee_t . Each row contains an object of type enpl oyee_t . Each row has a
unique object identifier.

Oracle constructs the object identifier based on the specified key. In most cases, it is
the primary key of the base table. If the query that defines the object view involves
joins, however, you must provide a key across all tables involved in the joins, so
that the key still uniquely identifies rows of the object view.

Note: Columns in the W THOBJECT O Dclause (enpno in the
example) must also be attributes of the underlying object type
(enpl oyee_t in the example). This makes it easy for trigger
programs to identify the corresponding row in the base table
uniquely.

See Also:

= Oracle9i Database Administrator’s Guide for specific directions for
defining object views

= "Updates of Object Views" on page 13-26 for more information
about writing an | NSTEAD OF trigger

Use of Object Views

Data in the rows of an object view can come from more than one table, but the
object still traverses the network in one operation. When the instance is in the client
side object cache, it appears to the programmer as a C or C++ structure or as a
PL/SQL object variable. You can manipulate it like any other native structure.

Object Datatypes and Object Views 13-25

Introduction to Object Views

You can refer to object views in SQL statements the same way you refer to an object
table. For example, object views can appear in a SELECT list, inan UPDATE SET
clause, or in a WHERE clause. You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use
for objects from object tables. For example, you can use LNOCI Cbj ect Pi n() for
pinning a REF and LNOCI Obj ect Fl ush() for flushing an object to the server.
When you update or flush to the server an object in an object view, Oracle updates
the object view.

See Also: Oracle Call Interface Programmer’s Guide for more
information about OCI calls

Updates of Object Views

You can update, insert, and delete the data in an object view using the same SQL
DML you use for object tables. Oracle updates the base tables of the object view if
there is no ambiguity.

A view is not updatable if its view query contains joins, set operators, aggregate
functions, GROUP BY, or DI STI NCT. If a view query contains pseudocolumns or
expressions, the corresponding view columns are not updatable. Object views often
involve joins.

To overcome these obstacles Oracle provides | NSTEAD OF triggers. They are called
| NSTEAD OF triggers because Oracle runs the trigger body instead of the actual
DML statement.

| NSTEAD OF triggers provide a transparent way to update object views or relational
views. You write the same SQL DML (I NSERT, DELETE, and UPDATE) statements
as for an object table. Oracle invokes the appropriate trigger instead of the SQL
statement, and the actions specified in the trigger body take place.

See Also:

= Oracle9i Application Developer’s Guide - Object-Relational Features
for a purchase order/line item example that uses an | NSTEAD
OF trigger

= Chapter 17, "Triggers"
Updates of Nested Table Columns in Views

A nested table can be modified by inserting new elements and updating or deleting
existing elements. Nested table columns that are virtual or synthesized, as in a view,

13-26 Oracle9i Database Concepts

Introduction to Object Views

are not usually updatable. To overcome this, Oracle allows | NSTEAD OF triggers to
be created on these columns.

The | NSTEAD OF trigger defined on a nested table column of a view is fired when
the column is modified. If the entire collection is replaced by an update of the
parent row, then the | NSTEAD COF trigger on the nested table column is not fired.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
a purchase order/line item example that uses an | NSTEAD OF
trigger on a nested table column

View Hierarchies

An object view can be created as a subview of another object view. The type of the
superview must be the immediate supertype of the type of the object view being
created. Thus, you can build an object view hierarchy which has a one-to-one
correspondence to the type hierarchy. This does not imply that every view hierarchy
must span the entire corresponding type hierarchy. The view hierarchy can be
rooted at any subtype of the type hierarchy. Furthermore, it does not have to
encompass the entire subhierarchy.

Figure 13-2 Multiple View Hierarchies

N~
N\

VH1 VH2

By default, the rows of an object view in a view hierarchy include all the rows of all
its subviews (direct and indirect) projected over the columns of the given view.

Only one object view can be created as a subview of a given view corresponding to
the given subtype,; that is, the same view cannot participate in many different view
hierarchies. An object view can be created as a subview of only one superview;
multiple inheritance is not supported.

The subview inherits the object identifier (OID) from its superview and cannot be
explicitly specified in any subview.

Object Datatypes and Object Views 13-27

Introduction to Object Views

13-28 Oracle9i Database Concepts

Part V

Data Access

Part V describes how to use transactions consisting of SQL statements to access data
in an Oracle database. It also describes the procedural language constructs that
provide additional functionality for data access.

Part V contains the following chapters:

Chapter 14, "SQL, PL/SQL, and Java"
Chapter 15, "Dependencies Among Schema Objects"”
Chapter 16, "Transaction Management"

Chapter 17, "Triggers"

Oracle9i Database Concepts

14

SQL, PL/SQL, and Java

This chapter provides an overview of the Structured Query Language (SQL),
PL/SQL, Oracle’s procedural extension to SQL, and Java. The chapter includes:

= SQL Overview
» PL/SQL Overview

s Java Overview

See Also:
= Oracle9i SQL Reference
s PL/SQL User’s Guide and Reference

SQL, PL/SQL, and Java 14-1

SQL Overview

SQL Overview

SQL is a database access, nonprocedural language. Users describe in SQL what they
want done, and the SQL language compiler automatically generates a procedure to
navigate the database and perform the desired task.

IBM Research developed and defined SQL, and ANSI/ZISO has refined SQL as the
standard language for relational database management systems.The minimal
conformance level for SQL-99 is known as Core. Core SQL-99 is a superset of
SQL-92 Entry Level specification. Oracle9i is broadly compatible with the SQL-99
Core specification.

Oracle SQL includes many extensions to the ANSI/ZISO standard SQL language,
and Oracle tools and applications provide additional statements. The Oracle tools
SQL*Plus and Oracle Enterprise Manager let you run any ANSI/ZISO standard SQL
statement against an Oracle database, as well as additional statements or functions
that are available for those tools.

Oracle SQLJ lets applications programmers embed static SQL operations in Java
code in a way that is compatible with the Java design philosophy. A SQLJ program
is a Java program containing embedded static SQL statements that comply with the
ANSI-standard SQLJ Language Reference syntax.

Although some Oracle tools and applications simplify or mask SQL use, all
database operations are performed using SQL. Any other data access method
circumvents the security built into Oracle and potentially compromise data security
and integrity.

See Also:

= Oracle9i SQL Reference for detailed information about SQL
statements and other parts of SQL (such as operators,
functions, and format models)

= Oracle Enterprise Manager Administrator’s Guide

s SQL*Plus User’s Guide and Reference for SQL*Plus statements,
including their distinction from SQL statements

= Oracle9i SQLJ Developer’s Guide and Reference for information
about embedding SQL operations in Java code

SQL Statements

All operations performed on the information in an Oracle database are run using
SQL statements. A statement consists partially of SQL reserved words, which have

14-2 Oracle9i Database Concepts

SQL Overview

special meaning in SQL and cannot be used for any other purpose. For example,
SELECT and UPDATE are reserved words and cannot be used as table names.

A SQL statement is a computer program or instruction. The statement must be the
equivalent of a complete SQL sentence, as in:

SEHLECT | ast_nane, departnent_id FROM enpl oyees;

Only a complete SQL statement can be run. A fragment such as the following
generates an error indicating that more text is required before a SQL statement can
run:

SELECT | ast_nane

Oracle SQL statements are divided into the following categories:
=« Data Manipulation Language Statements

» Data Definition Language Statements

= Transaction Control Statements

= Session Control Statements

= System Control Statements

= Embedded SQL Statements

See Also: Chapter 17, "Triggers" for more information about
using SQL statements in PL/SQL program units

Data Manipulation Language Statements

Data manipulation language (DML) statements query or manipulate data in
existing schema objects. They enable you to:

= Retrieve data from one or more tables or views (SELECT); fetches can be
scrollable (see "Scrollable Cursors" on page 14-7)

= Add new rows of data into a table or view (I NSERT)

= Change column values in existing rows of a table or view (UPDATE)
= Update or insert rows conditionally into a table or view (MERGE)

= Remove rows from tables or views (DELETE)

= See the execution plan for a SQL statement (EXPLAI N PLAN)

= Lock a table or view, temporarily limiting other users’ access (LOCK TABLE)

SQL, PL/SQL, and Java 14-3

SQL Overview

DML statements are the most frequently used SQL statements. Some examples of
DML statements are:

SH ECT | ast_nane, nanager _i d, conm ssion_pct + sal ary FROM enpl oyees;

I NSERT | NTO enpl oyees VALUES
(1234, "DV S, 'SALESVAN, 7698, ' 14-FEB-1988', 1600, 500, 30);

CELETE FROM enpl oyees WHERE | ast_nane | N (" WARD ,’ JONES) ;

Data Definition Language Statements

Data definition language (DDL) statements define, alter the structure of, and drop
schema objects. DDL statements enable you to:

= Create, alter, and drop schema objects and other database structures, including
the database itself and database users (CREATE, ALTER, DROP)

= Change the names of schema objects (RENANME)

= Delete all the data in schema objects without removing the objects’ structure
(TRUNCATE)

= Grant and revoke privileges and roles (GRANT, REVOKE)
= Turn auditing options on and off (AUDI T, NOAUDI T)
= Add acomment to the data dictionary (COMVENT)

DDL statements implicitly commit the preceding and start a new transaction. Some
examples of DDL statements are:

CREATE TABLE pl ant s
(COWWON_NAME VARCHAR2 (15), LATI N NAME VARCHAR2 (40));

ORCP TABLE pl ants;
GRANT SELECT ON enpl oyees TO scott;
REVCKE DELETE ON enpl oyees FROM scott;

See Also:
= Chapter 22, "Controlling Database Access"
= Chapter 23, "Privileges, Roles, and Security Policies"

= Chapter 24, "Auditing"

14-4 Oracle9i Database Concepts

SQL Overview

Transaction Control Statements

Transaction control statements manage the changes made by DML statements and
group DML statements into transactions. They enable you to:

= Make a transaction’s changes permanent (COVM T)

= Undo the changes in a transaction, either since the transaction started or since a
savepoint (ROLLBACK)

= Seta point to which you can roll back (SAVEPO NT)
= Establish properties for a transaction (SET TRANSACTI ON)

Session Control Statements

Session control statements manage the properties of a particular user’s session. For
example, they enable you to:

= Alter the current session by performing a specialized function, such as enabling
and disabling the SQL trace facility (ALTER SESSI ON)

= Enable and disable roles (groups of privileges) for the current session (SET
ROLE)

System Control Statements

System control statements change the properties of the Oracle server instance. The
only system control statement is ALTER SYSTEM It enables you to change settings
(such as the minimum number of shared servers), kill a session, and perform other
tasks.

Embedded SQL Statements

Embedded SQL statements incorporate DDL, DML, and transaction control
statements within a procedural language program. They are used with the Oracle
precompilers. Embedded SQL statements enable you to:

= Define, allocate, and release cursors (DECLARE CURSOR, OPEN, CLOSE)

= Specify a database and connect to Oracle (DECLARE DATABASE, CONNECT)
= Assign variable names (DECLARE STATEMENT)

= Initialize descriptors (DESCRI BE)

= Specify how error and warning conditions are handled (WHENEVER)

= Parse and run SQL statements (PREPARE, EXECUTE, EXECUTE | MVEDI ATE)

SQL, PL/SQL, and Java 14-5

SQL Overview

= Retrieve data from the database (FETCH)

Identification of Nonstandard SQL

Oracle provides extensions to the standard SQL database language with integrity
enhancement. The Federal Information Processing Standard for SQL (FIPS 127-2)
requires vendors to supply a method for identifying SQL statements that use such
extensions. You can identify or flag Oracle extensions in interactive SQL, the Oracle
precompilers, or SQL*Module by using the FIPS flagger.

If you are concerned with the portability of your applications to other
implementations of SQL, use the FIPS flagger.

See Also:

s Pro*C/C++ Precompiler Programmer’s Guide

= Pro*COBOL Precompiler Programmer’s Guide

= SQL*Module for Ada Programmer’s Guide

Recursive SQL

When a DDL statement is issued, Oracle implicitly issues recursive SQL statements
that modify data dictionary information. Users need not be concerned with the
recursive SQL internally performed by Oracle.

Cursors

A cursor is a handle or name for a private SQL area—an area in memory in which a
parsed statement and other information for processing the statement are kept.

Although most Oracle users rely on the automatic cursor handling of the Oracle
utilities, the programmatic interfaces offer application designers more control over
cursors. In application development, a cursor is a named resource available to a
program and can be used specifically to parse SQL statements embedded within the
application.

Each user session can open multiple cursors up to the limit set by the initialization
parameter OPEN_CURSORS. However, applications should close unneeded cursors
to conserve system memory. If a cursor cannot be opened due to a limit on the
number of cursors, then the database administrator can alter the OPEN_CURSORS
initialization parameter.

14-6 Oracle9i Database Concepts

SQL Overview

Shared SQL

Parsing

Some statements (primarily DDL statements) require Oracle to implicitly issue
recursive SQL statements, which also require recursive cursors. For example, a
CREATE TABLE statement causes many updates to various data dictionary tables to
record the new table and columns. Recursive calls are made for those recursive
cursors; one cursor can run several recursive calls. These recursive cursors also use
shared SQL areas.

Scrollable Cursors

Execution of a cursor puts the results of the query into a set of rows called the result
set, which can be fetched sequentially or nonsequentially. Scrollable cursors are
cursors in which fetches and DML operations do not need to be forward sequential
only. Interfaces exist to fetch previously fetched rows, to fetch the nth row in the
result set, and to fetch the nth row from the current position in the result set.

See Also: Oracle Call Interface Programmer’s Guide for more
information about using scrollable cursors in OCI

Oracle automatically notices when applications send similar SQL statements to the
database. The SQL area used to process the first occurrence of the statement is
shared—that is, used for processing subsequent occurrences of that same statement.
Therefore, only one shared SQL area exists for a unique statement. Because shared
SQL areas are shared memory areas, any Oracle process can use a shared SQL area.
The sharing of SQL areas reduces memory use on the database server, thereby
increasing system throughput.

In evaluating whether statements are similar or identical, Oracle considers SQL
statements issued directly by users and applications as well as recursive SQL
statements issued internally by a DDL statement.

See Also: Oracle9i Application Developer’s Guide - Fundamentals
and Oracle9i Database Performance Tuning Guide and Reference for
more information about shared SQL

Parsing is one stage in the processing of a SQL statement. When an application
issues a SQL statement, the application makes a parse call to Oracle. During the
parse call, Oracle:

= Checks the statement for syntactic and semantic validity

SQL, PL/SQL, and Java 14-7

SQL Overview

= Determines whether the process issuing the statement has privileges to run it
= Allocates a private SQL area for the statement

Oracle also determines whether there is an existing shared SQL area containing the
parsed representation of the statement in the library cache. If so, the user process
uses this parsed representation and runs the statement immediately. If not, Oracle
generates the parsed representation of the statement, and the user process allocates
a shared SQL area for the statement in the library cache and stores its parsed
representation there.

Note the difference between an application making a parse call for a SQL statement
and Oracle actually parsing the statement. A parse call by the application
associates a SQL statement with a private SQL area. After a statement has been
associated with a private SQL area, it can be run repeatedly without your
application making a parse call. A parse operation by Oracle allocates a shared SQL
area for a SQL statement. Once a shared SQL area has been allocated for a
statement, it can be run repeatedly without being reparsed.

Both parse calls and parsing can be expensive relative to execution, so perform
them as seldom as possible.

See Also: "PL/SQL Overview" on page 14-16

SQL Processing
This section introduces the basics of SQL processing. Topics include:
= SQL Statement Execution
= DML Statement Processing
=« DDL Statement Processing

s Control of Transactions

SQL Statement Execution

Figure 14-1 outlines the stages commonly used to process and run a SQL statement.
In some cases, Oracle can run these stages in a slightly different order. For example,
the DEFI NE stage could occur just before the FETCH stage, depending on how you
wrote your code.

For many Oracle tools, several of the stages are performed automatically. Most
users need not be concerned with or aware of this level of detail. However, this
information could be useful when writing Oracle applications.

14-8 Oracle9i Database Concepts

SQL Overview

Figure 14-1 The Stages in Processing a SQL Statement

OPEN I

yes

query? describe? DESCRIBE <

v

no

more? yes

DEFINE I <+

v

yes

no

yes v

reparse? no bind? yes BIND <+

EXECUTE I

v

PARALLELIZE I

v
e reron e
no l

execute
others?

SQL, PL/SQL, and Java 14-9

SQL Overview

DML Statement Processing

This section provides an example of what happens during the execution of a SQL
statement in each stage of DML statement processing.

Assume that you are using a Pro*C program to increase the salary for all employees
in a department. The program you are using has connected to Oracle and you are
connected to the proper schema to update the enpl oyees table. You can embed the
following SQL statement in your program:

EXEC SQL. UPDATE enpl oyees SET salary = 1.10 * salary
WHERE departnent _id = : departnent_id;

Depart ment _i d is a program variable containing a value for department number.
When the SQL statement is run, the value of depar t ment _i d is used, as provided
by the application program.

The following stages are necessary for each type of statement processing:
= Stage 1: Create a Cursor

= Stage 2: Parse the Statement

= Stage 5: Bind Any Variables

= Stage 7: Run the Statement

= Stage 9: Close the Cursor

Optionally, you can include another stage:

= Stage 6: Parallelize the Statement

Queries (SELECTSs) require several additional stages, as shown in Figure 14-1:
= Stage 3: Describe Results of a Query

= Stage 4: Define Output of a Query

= Stage 8: Fetch Rows of a Query

See Also: "Query Processing"” on page 14-11

Stage 1: Create a Cursor A program interface call creates a cursor. The cursor is
created independent of any SQL statement: it is created in expectation of any SQL
statement. In most applications, cursor creation is automatic. However, in
precompiler programs, cursor creation can either occur implicitly or be explicitly
declared.

14-10 Oracle9i Database Concepts

SQL Overview

Stage 2: Parse the Statement During parsing, the SQL statement is passed from the
user process to Oracle, and a parsed representation of the SQL statement is loaded
into a shared SQL area. Many errors can be caught during this stage of statement
processing.

Parsing is the process of:
s Translating a SQL statement, verifying it to be a valid statement
s Performing data dictionary lookups to check table and column definitions

s Acquiring parse locks on required objects so that their definitions do not change
during the statement’s parsing

= Checking privileges to access referenced schema objects
= Determining the optimal execution plan for the statement
» Loading it into a shared SQL area

= Routing all or part of distributed statements to remote nodes that contain
referenced data

Oracle parses a SQL statement only if a shared SQL area for an similar SQL
statement does not exist in the shared pool. In this case, a new shared SQL area is
allocated, and the statement is parsed.

The parse stage includes processing requirements that need to be done only once no
matter how many times the statement is run. Oracle translates each SQL statement
only once, reexecuting that parsed statement during subsequent references to the
statement.

Although parsing a SQL statement validates that statement, parsing only identifies
errors that can be found before statement execution. Thus, some errors cannot be
caught by parsing. For example, errors in data conversion or errors in data (such as
an attempt to enter duplicate values in a primary key) and deadlocks are all errors
or situations that can be encountered and reported only during the execution stage.

See Also: "Shared SQL" on page 14-7

Query Processing Queries are different from other types of SQL statements because,
if successful, they return data as results. Whereas other statements simply return
success or failure, a query can return one row or thousands of rows. The results of a
query are always in tabular format, and the rows of the result are fetched
(retrieved), either a row at a time or in groups.

SQL, PL/SQL, and Java 14-11

SQL Overview

Several issues relate only to query processing. Queries include not only explicit
SELECT statements but also the implicit queries (subqueries) in other SQL
statements. For example, each of the following statements requires a query as a part
of its execution:

INSERT INTO tabl e SEHLECT. . .
UPDATE table SET x = y WHERE. ..
DELETE FRMtabl e WERE . .
CREATE tabl e AS SHECT. ..

In particular, queries;
= Require read consistency
= Can use temporary segments for intermediate processing

= Can require the describe, define, and fetch stages of SQL statement processing.

Stage 3: Describe Results of a Query The describe stage is necessary only if the
characteristics of a query’s result are not known; for example, when a query is
entered interactively by a user. In this case, the describe stage determines the
characteristics (datatypes, lengths, and names) of a query’s result.

Stage 4: Define Output of a Query In the define stage for queries, you specify the
location, size, and datatype of variables defined to receive each fetched value.
Oracle performs datatype conversion if necessary.

Stage 5: Bind Any Variables At this point, Oracle knows the meaning of the SQL
statement but still does not have enough information to run the statement. Oracle
needs values for any variables listed in the statement; in the example, Oracle needs
a value for depar t nent _i d. The process of obtaining these values is called
binding variables.

A program must specify the location (memory address) where the value can be
found. End users of applications may be unaware that they are specifying bind
variables, because the Oracle utility can simply prompt them for a new value.

Because you specify the location (binding by reference), you need not rebind the
variable before reexecution. You can change its value and Oracle looks up the value
on each execution, using the memory address.

14-12 Oracle9i Database Concepts

SQL Overview

You must also specify a datatype and length for each value (unless they are implied
or defaulted) if Oracle needs to perform datatype conversion.

See Also:
= Oracle Call Interface Programmer’s Guide

s Pro*C/C++ Precompiler Programmer’s Guide (see "Dynamic SQL
Method 4")

s Pro*COBOL Precompiler Programmer’s Guide (see "Dynamic SQL
Method 4")

for more information about specifying a datatype and length for a
value

Stage 6: Parallelize the Statement Oracle can parallelize queries (SELECTSs, | NSERTS,
UPDATES, MERGES, DELETES), and some DDL operations such as index creation,
creating a table with a subquery, and operations on partitions. Parallelization causes
multiple server processes to perform the work of the SQL statement so it can
complete faster.

See Also: Chapter 18, "Parallel Execution of SQL Statements”

Stage 7: Run the Statement At this point, Oracle has all necessary information and
resources, so the statement is run. If the statement is a query or an | NSERT
statement, no rows need to be locked because no data is being changed. If the
statement is an UPDATE or DELETE statement, however, all rows that the statement
affects are locked from use by other users of the database until the next COVM T,
ROLLBACK, or SAVEPQO NT for the transaction. This ensures data integrity.

For some statements you can specify a number of executions to be performed. This
is called array processing. Given n number of executions, the bind and define
locations are assumed to be the beginning of an array of size n.

Stage 8: Fetch Rows of a Query In the fetch stage, rows are selected and ordered (if
requested by the query), and each successive fetch retrieves another row of the
result until the last row has been fetched.

Stage 9: Close the Cursor The final stage of processing a SQL statement is closing the
Cursor.

SQL, PL/SQL, and Java 14-13

SQL Overview

DDL Statement Processing

The execution of DDL statements differs from the execution of DML statements and
gueries, because the success of a DDL statement requires write access to the data
dictionary. For these statements, parsing (Stage 2) actually includes parsing, data
dictionary lookup, and execution.

Transaction management, session management, and system management SQL
statements are processed using the parse and run stages. To rerun them, simply
perform another execute.

Control of Transactions

In general, only application designers using the programming interfaces to Oracle
are concerned with the types of actions that should be grouped together as one
transaction. Transactions must be defined so that work is accomplished in logical
units and data is kept consistent. A transaction should consist of all of the necessary
parts for one logical unit of work, no more and no less.

= Data in all referenced tables should be in a consistent state before the
transaction begins and after it ends.

= Transactions should consist of only the SQL statements that make one
consistent change to the data.

For example, a transfer of funds between two accounts (the transaction or logical
unit of work) should include the debit to one account (one SQL statement) and the
credit to another account (one SQL statement). Both actions should either fail or
succeed together as a unit of work; the credit should not be committed without the
debit. Other unrelated actions, such as a new deposit to one account, should not be
included in the transfer of funds transaction.

In addition to determining which types of actions form a transaction, when you
design an application you must also determine when it is useful to use the BEG N _
DI SCRETE_TRANSACTI ON procedure to improve the performance of short,
non-distributed transactions.

See Also: "Discrete Transaction Management" on page 16-11

The Optimizer Overview

The optimizer determines the most efficient way to run a SQL statement. This is an
important step in the processing of any data manipulation language (DML)
statement: SELECT, | NSERT, UPDATE, MERGE, or DELETE. There are often many
different ways to run a SQL statement; for example, by varying the order in which

14-14 Oracle9i Database Concepts

SQL Overview

tables or indexes are accessed. The procedure Oracle uses to run a statement can
greatly affect how quickly the statement runs. The optimizer considers many factors
among alternative access paths. It can use either a cost-based or a rule-based
approach. In general, always use the cost-based approach. The rule-based approach
is available for the benefit of existing applications.

Note: The optimizer might not make the same decisions from one
version of Oracle to the next. In recent versions, the optimizer
might make different decisions based on better information
available to it.

You can influence the optimizer's choices by setting the optimizer approach and
goal. You can also gather statistics for the cost-based optimizer (CBO), using the
PL/SQL package DBMS_STATS.

Sometimes the application designer, who has more information about a particular
application's data than is available to the optimizer, can choose a more effective way
to run a SQL statement. The application designer can use hints in SQL statements to
specify how the statement should be run.

See Also:

= Oracle9i Supplied PL/SQL Packages and Types Reference for information
about using DBMS_STATS

= Oracle9i Database Performance Tuning Guide and Reference for
more information about the cost-based optimizer, the
rule-based optimizer, and the extensible optimizer

Execution Plans

To run a DML statement, Oracle might need to perform many steps. Each of these
steps either retrieves rows of data physically from the database or prepares them in
some way for the user issuing the statement. The combination of the steps Oracle
uses to run a statement is called an execution plan. An execution plan includes an
access method for each table that the statement accesses and an ordering of the
tables (the join order). The steps of the execution plan are not performed in the
order in which they are numbered.

Stored Outlines Stored outlines are abstractions of an execution plan generated by

the optimizer at the time the outline was created and are represented primarily as a
set of hints. When the outline is subsequently used, these hints are applied at

SQL, PL/SQL, and Java 14-15

PL/SQL Overview

various stages of compilation. Outline data is stored in the OQUTLN schema. You can
tune execution plans by editing stored outlines.

Editing Stored Outlines The outline is cloned into the user’s schema at the onset of the
outline editing session. All subsequent editing operations are performed on that
clone until the user is satisfied with the edits and chooses to publicize them. In this
way, any editing done by the user does not impact the rest of the user community;,
which would continue to use the public version of the outline until the edits are
explicitly saved.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for details about execution plans and using stored outlines

PL/SQL Overview

PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL enables you to
mix SQL statements with procedural constructs. With PL/SQL, you can define and
run PL/SQL program units such as procedures, functions, and packages.

PL/SQL program units generally are categorized as anonymous blocks and stored
procedures.

An anonymous block is a PL/SQL block that appears within your application and
it is not named or stored in the database. In many applications, PL/SQL blocks can
appear wherever SQL statements can appeatr.

A stored procedure is a PL/SQL block that Oracle stores in the database and can be
called by name from an application. When you create a stored procedure, Oracle
parses the procedure and stores its parsed representation in the database. Oracle
also lets you create and store functions (which are similar to procedures) and
packages (which are groups of procedures and functions).

See Also:
"Java Overview" on page 14-31

Chapter 17, "Triggers"

14-16 Oracle9i Database Concepts

PL/SQL Overview

How PL/SQL Runs

Native Execution

For best performance on computationally intensive program units, compile the
source code of PL/SQL program units stored in the database directly to object code
for the given platform. (This object code is linked into the Oracle server.)

See Also: PL/SQL User’s Guide and Reference

Interpreted Execution

In versions earlier than Oracle9i, PL/SQL source code was always compiled into a
so-called bytecode representation, which is executed by a portable virtual machine
implemented as part of the Oracle Server, and also in products such as Oracle
Forms. Starting with Oracle9i, you can choose between native execution and
interpreted execution

The PL/SQL engine is the tool you use to define, compile, and run PL/SQL
program units. This engine is a special component of many Oracle products,
including the Oracle server.

While many Oracle products have PL/SQL components, this section specifically
covers the program units that can be stored in an Oracle database and processed
using the Oracle server PL/SQL engine. The PL/SQL capabilities of each Oracle
tool are described in the appropriate tool's documentation.

Figure 14-2 illustrates the PL/SQL engine contained in Oracle server.

SQL, PL/SQL, and Java 14-17

PL/SQL Overview

Figure 14-2 The PL/SQL Engine and the Oracle Server

Oracle Server

/

e
Database SGA
Application
(\ Procedure Procedural
Program code Statement
Begi n Executor
Program code Pr ocedur al
Procedur al
Prodedure call |[=t=pp S
Pr odedur al
Program code SQL
END;
Program code
—
\\ / SQL Statement
\ A Executor

Database

The program unit is stored in a database. When an application calls a procedure
stored in the database, Oracle loads the compiled program unit into the shared pool
in the system global area (SGA). The PL/SQL and SQL statement executors work
together to process the statements within the procedure.

The following Oracle products contain a PL/SQL engine:
= Oracle server

= Oracle Forms (version 3 and later)

= SQL*Menu (version 5 and later)

= Oracle Reports (version 2 and later)

= Oracle Graphics version 2 and later)

14-18 Oracle9i Database Concepts

PL/SQL Overview

You can call a stored procedure from another PL/SQL block, which can be either an
anonymous block or another stored procedure. For example, you can call a stored
procedure from Oracle Forms (version 3 or later).

Also, you can pass anonymous blocks to Oracle from applications developed with
these tools:

s Oracle precompilers (including user exits)
s Oracle Call Interfaces (OClIs)
s SQL*Plus

= Oracle Enterprise Manager

Language Constructs for PL/SQL
PL/SQL blocks can include the following PL/SQL language constructs:

= Variables and constants
s Cursors
= Exceptions

This section gives a general description of each construct.

See Also: PL/SQL User’s Guide and Reference

Variables and Constants

Variables and constants can be declared within a procedure, function, or package. A
variable or constant can be used in a SQL or PL/SQL statement to capture or
provide a value when one is needed.

Note: Some interactive tools, such as SQL*Plus, let you define
variables in your current session. You can use such variables just as
you would variables declared within procedures or packages.

Cursors

Cursors can be declared explicitly within a procedure, function, or package to
facilitate record-oriented processing of Oracle data. Cursors also can be declared
implicitly (to support other data manipulation actions) by the PL/SQL engine.

See Also: "Scrollable Cursors" on page 14-7

SQL, PL/SQL, and Java 14-19

PL/SQL Overview

Exceptions

PL/SQL lets you explicitly handle internal and user-defined error conditions, called
exceptions, that arise during processing of PL/SQL code. Internal exceptions are
caused by illegal operations, such as division by zero, or Oracle errors returned to
the PL/SQL code. User-defined exceptions are explicitly defined and signaled
within the PL/SQL block to control processing of errors specific to the application
(for example, debiting an account and leaving a negative balance).

When an exception is raised, the execution of the PL/SQL code stops, and a routine
called an exception handler is invoked. Specific exception handlers can be written
for any internal or user-defined exception.

Dynamic SQL in PL/SQL

PL/SQL can run dynamic SQL statements whose complete text is not known until
runtime. Dynamic SQL statements are stored in character strings that are entered
into, or built by, the program at runtime. This enables you to create general purpose
procedures. For example, dynamic SQL lets you create a procedure that operates on
a table whose name is not known until runtime.

You can write stored procedures and anonymous PL/SQL blocks that include
dynamic SQL in two ways:

= By embedding dynamic SQL statements in the PL/SQL block
= By using the DBM5_SQ. package

Additionally, you can issue DML or DDL statements using dynamic SQL. This
helps solve the problem of not being able to statically embed DDL statements in
PL/SQL. For example, you can choose to issue a DROP TABLE statement from
within a stored procedure by using the EXECUTE | MVEDI ATE statement or the
PARSE procedure supplied with the DBMS_SQL package.

See Also:

= Oracle9i Application Developer’s Guide - Fundamentals for a
comparison of the two approaches to dynamic SQL

s PL/SQL User’s Guide and Reference for details about dynamic
SQL

= Oracle9i Supplied PL/SQL Packages and Types Reference

14-20 Oracle9i Database Concepts

PL/SQL Overview

PL/SQL Program Units

Oracle lets you access and manipulate database information using procedural
schema objects called PL/SQL program units. Procedures, functions, and packages
are all examples of PL/SQL program units.

Stored Procedures and Functions

A procedure or function is a schema object that consists of a set of SQL statements
and other PL/SQL constructs, grouped together, stored in the database, and run as
a unit to solve a specific problem or perform a set of related tasks. Procedures and
functions permit the caller to provide parameters that can be input only, output
only, or input and output values. Procedures and functions let you combine the ease
and flexibility of SQL with the procedural functionality of a structured
programming language.

Procedures and functions are identical except that functions always return a single
value to the caller, while procedures do not. For simplicity, procedure as used in the
remainder of this chapter means procedure or function.

You can run a procedure or function interactively by:
= Using an Oracle tool, such as SQL*Plus

= Calling it explicitly in the code of a database application, such as an Oracle
Forms or precompiler application

= Calling it explicitly in the code of another procedure or trigger

See Also:

s Pro*C/C++ Precompiler Programmer’s Guide for information
about how to call stored C or C++ procedures

= Pro*COBOL Precompiler Programmer’s Guide for information
about how to call stored COBOL procedures

= Other programmer’s guides for information about how to call
stored procedures of specific kinds of application

Figure 14-3 illustrates a simple procedure that is stored in the database and called
by several different database applications.

SQL, PL/SQL, and Java 14-21

PL/SQL Overview

Figure 14-3 Stored Procedure

Database
Applications

4 N

Program code

Pr ogram code
Stored

_ ; T Procedure
Pr ogram code
—>

- 4 LW hire_employees(...)
Program code //V BEG N

O hi re_enpl oyees(...); "

Progr 3 Pr ogram code

- P

Program code \ ‘

hi re_enpl oyees(...)

He

hire_enpl oyees(...): \ '

Pr ogram code ' /

Database

The stored procedure in Figure 14-3, which inserts an employee record into the
enpl oyees table, is shown in Figure 14-4.

14-22 Oracle9i Database Concepts

PL/SQL Overview

Figure 14-4 Stored Procedure Example

Procedure hire_employees (last_name VARCHAR?2, job_id VARCHARZ2,

manager_id NUMBER, hire_date DATE, salary NUMBER,
commission_pct NUMBER, department_id NUMBER)

BEG N

I NSERT | NTO enpl oyees VALUES
(enp_sequence. NEXTVAL, |ast_nane, job_id, nanager_id
hire_date, salary, conm ssion_pct, departnent_id);

END;

All of the database applications in Figure 14-3 call the hi r e_enpl oyees
procedure. Alternatively, a privileged user can use Oracle Enterprise Manager or
SQL*Plus to run the hi r e_enpl oyees procedure using the following statement:

EXEQUTE hire_enpl oyees (' TSMTH, 'CQLERK, 1037, SYSDATE \ 500, NULL, 20);

This statement places a new employee record for TSM THin the enpl oyees table.

See Also: PL/SQL User’s Guide and Reference

Benefits of Procedures Stored procedures provide advantages in the following areas:

Security with definer-rights procedures

Stored procedures can help enforce data security. You can restrict the database
operations that users can perform by allowing them to access data only through

procedures and functions that run with the definer’s privileges.

For example, you can grant users access to a procedure that updates a table but
not grant them access to the table itself. When a user invokes the procedure, the
procedure runs with the privileges of the procedure's owner. Users who have

only the privilege to run the procedure (but not the privileges to query, update,
or delete from the underlying tables) can invoke the procedure, but they cannot

manipulate table data in any other way.

See Also: "Dependency Tracking for Stored Procedures" on

page 14-26

SQL, PL/SQL, and Java 14-23

PL/SQL Overview

= Inherited privileges and schema context with invoker-rights procedures

An invoker-rights procedure inherits privileges and schema context from the
procedure that calls it. In other words, an invoker-rights procedure is not tied to
a particular user or schema, and each invocation of an invoker-rights procedure
operates in the current user’s schema with the current user’s privileges.
Invoker-rights procedures make it easy for application developers to centralize
application logic, even when the underlying data is divided among user
schemas.

For example, a a user who runs an update procedure on the enpl oyees table
as a manager can update salary, whereas a user who runs the same procedure as
a clerk can be restricted to updating address data.

= Improved performance

— The amount of information that must be sent over a network is small
compared with issuing individual SQL statements or sending the text of an
entire PL/SQL block to Oracle, because the information is sent only once
and thereafter invoked when it is used.

— A procedure's compiled form is readily available in the database, so no
compilation is required at execution time.

— If the procedure is already present in the shared pool of the system global
area (SGA), then retrieval from disk is not required, and execution can
begin immediately.

= Memory allocation

Because stored procedures take advantage the shared memory capabilities of
Oracle, only a single copy of the procedure needs to be loaded into memory for
execution by multiple users. Sharing the same code among many users results
in a substantial reduction in Oracle memory requirements for applications.

= Improved productivity

Stored procedures increase development productivity. By designing
applications around a common set of procedures, you can avoid redundant
coding and increase your productivity.

For example, procedures can be written to insert, update, or delete employee
records from the enpl oyees table. These procedures can then be called by any
application without rewriting the SQL statements necessary to accomplish these
tasks. If the methods of data management change, only the procedures need to
be modified, not all of the applications that use the procedures.

14-24 Oracle9i Database Concepts

PL/SQL Overview

s Integrity

Stored procedures improve the integrity and consistency of your applications.
By developing all of your applications around a common group of procedures,
you can reduce the likelihood of committing coding errors.

For example, you can test a procedure or function to guarantee that it returns an
accurate result and, once it is verified, reuse it in any number of applications
without testing it again. If the data structures referenced by the procedure are
altered in any way, only the procedure needs to be recompiled. Applications
that call the procedure do not necessarily require any modifications.

Procedure Guidelines Use the following guidelines when designing stored
procedures:

= Define procedures to complete a single, focused task. Do not define long
procedures with several distinct subtasks, because subtasks common to many
procedures can be duplicated unnecessarily in the code of several procedures.

= Do not define procedures that duplicate the functionality already provided by
other features of Oracle. For example, do not define procedures to enforce
simple data integrity rules that you could easily enforce using declarative
integrity constraints.

Anonymous PL/SQL Blocks Compared with Stored Procedures A stored procedure is
created and stored in the database as a schema object. Once created and compiled, it
is a named object that can be run without recompiling. Additionally, dependency
information is stored in the data dictionary to guarantee the validity of each stored
procedure.

As an alternative to a stored procedure, you can create an anonymous PL/SQL
block by sending an unnamed PL/SQL block to the Oracle server from an Oracle
tool or an application. Oracle compiles the PL/SQL block and places the compiled
version in the shared pool of the SGA, but it does not store the source code or
compiled version in the database for reuse beyond the current instance. Shared SQL
allows anonymous PL/SQL blocks in the shared pool to be reused and shared until
they are flushed out of the shared pool.

In either case, moving PL/SQL blocks out of a database application and into
database procedures stored either in the database or in memory, you avoid
unnecessary procedure recompilations by Oracle at runtime, improving the overall
performance of the application and Oracle.

SQL, PL/SQL, and Java 14-25

PL/SQL Overview

Standalone Procedures Stored procedures not defined within the context of a
package are called standalone procedures. Procedures defined within a package are
considered a part of the package.

See Also: "PL/SQL Packages" on page 14-27 for information
about the advantages of packages

Dependency Tracking for Stored Procedures A stored procedure depends on the objects
referenced in its body. Oracle automatically tracks and manages such dependencies.
For example, if you alter the definition of a table referenced by a procedure, the
procedure must be recompiled to validate that it will continue to work as designed.
Usually, Oracle automatically administers such dependency management.

See Also: Chapter 15, "Dependencies Among Schema Objects" for
more information about dependency tracking

External Procedures A PL/SQL procedure executing on an Oracle server can call an
external procedure or function that is written in the C programming language and
stored in a shared library. The C routine runs in a separate address space from that
of the Oracle server.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about external procedures

Table Functions Table functions are functions that can produce a set of rows as
output. In other words, table functions return a collection type instance (nested
table and VARRAY datatypes). You can use a table function in place of a regular table
in the FROMclause of a SQL statement.

Oracle allows table functions to pipeline results (act like an Oracle rowsource) out
of the functions. This can be achieved by either providing an implementation of the
ODCl Tabl e interface, or using native PL/SQL instructions.

Pipelining helps to improve the performance of a number of applications, such as
Oracle Warehouse Builder (OWB) and cartridges groups.

The ETL (Extraction-Transformation-Load) process in data warehouse building
extracts data from an OLTP system. The extracted data passes through a sequence
of transformations (written in procedural languages, such as PL/SQL) before it is
loaded into a data warehouse.

Oracle also allows parallel execution of table and non-table functions. Parallel
execution provides the following extensions:

14-26 Oracle9i Database Concepts

PL/SQL Overview

s Functions can directly accept a set of rows corresponding to a subquery
operand.

s A setof input rows can be partitioned among multiple instances of a parallel
function. The function developer specifies how the input rows should be
partitioned between parallel instances of the function.

Thus, table functions are similar to views. However, instead of defining the
transform declaratively in SQL, you define it procedurally in PL/SQL. This is
especially valuable for the arbitrarily complex transformations typically required in
ETL.

See Also:
= Oracle9i Data Cartridge Developer’s Guide
s PL/SQL User’s Guide and Reference

for detailed accounts of table functions

PL/SQL Packages

A package is a group of related procedures and functions, together with the cursors
and variables they use, stored together in the database for continued use as a unit.
Similar to standalone procedures and functions, packaged procedures and functions
can be called explicitly by applications or users.

You create a package in two parts: the specification and the body. The package
specification declares all public constructs of the package and the body defines all
constructs (public and private) of the package. This separation of the two parts
provides the following advantages:

= You have more flexibility in the development cycle. You can create
specifications and reference public procedures without actually creating the
package body.

= You can alter procedure bodies contained within the package body separately
from their publicly declared specifications in the package specification. As long
as the procedure specification does not change, objects that reference the altered
procedures of the package are never marked invalid. That is, they are never
marked as needing recompilation.

Figure 14-5 illustrates a package that encapsulates a number of procedures used to
manage an employee database.

SQL, PL/SQL, and Java 14-27

PL/SQL Overview

Figure 14-5 A Stored Package

Database Applications employees_management

Progr am code
fire_employees(...)

érrpl oyees_managenent . fire_enpl oyees(...);
BEG N
Program code .

Pr ogram code iEND;

érrpl oyees_managenent . hire_enpl oyees(...); ~

Pr ogram code

* .
/' hire_employees(...)

Progr am code / ?EGI N
érrpl oyees_managenent . hire_enpl oyees(...); 7 END;
Progr am code
Pr ogram code
érrpl oyees_management . sal ary_raise(...); salary_raise(...)
Pr ogram code BEG N

END;

Database

Database applications explicitly call packaged procedures as necessary. After being
granted the privileges for the enpl oyees_nmanagenent package, a user can

14-28 Oracle9i Database Concepts

PL/SQL Overview

explicitly run any of the procedures contained in it. For example, Oracle Enterprise
Manager or SQL*Plus can issue the following statement to run the hi re_
enpl oyees package procedure:

EXEQUTE enpl oyees_nanagenent . hi re_enpl oyees (' TSMTH, ' ABERK, 1037, SYSDATE,
500, NULL, 20);

See Also:
s PL/SQL User’s Guide and Reference
s Oracle9i Supplied PL/SQL Packages and Types Reference

Benefits of Packages Packages provide advantages in the following areas:
= Encapsulation of related procedures and variables

Stored packages allow you to encapsulate or group stored procedures,
variables, datatypes, and so forth in a single named, stored unit in the database.
This provides better organization during the development process.
Encapsulation of procedural constructs also makes privilege management
easier. Granting the privilege to use a package makes all constructs of the
package accessible to the grantee.

= Declaration of public and private procedures, variables, constants, and cursors

The methods of package definition allow you to specify which variables,
cursors, and procedures are public and private. Public means that it is directly
accessible to the user of a package. Private means that it is hidden from the user
of a package.

For example, a package can contain 10 procedures. You can define the package
so that only three procedures are public and therefore available for execution by
a user of the package. The remainder of the procedures are private and can only
be accessed by the procedures within the package. Do not confuse public and
private package variables with grants to PUBLI C.

See Also: Chapter 22, "Controlling Database Access" for more
information about grants to PUBLI C
= Better performance

An entire package is loaded into memory when a procedure within the package
is called for the first time. This load is completed in one operation, as opposed
to the separate loads required for standalone procedures. Therefore, when calls

SQL, PL/SQL, and Java 14-29

PL/SQL Overview

to related packaged procedures occur, no disk 170 is necessary to run the
compiled code already in memory.

A package body can be replaced and recompiled without affecting the
specification. As a result, schema objects that reference a package's constructs
(always through the specification) need not be recompiled unless the package
specification is also replaced. By using packages, unnecessary recompilations
can be minimized, resulting in less impact on overall database performance.

PL/SQL Collections and Records

Many programming techniques use collection types such as arrays, bags, lists,
nested tables, sets, and trees. To support these techniques in database applications,
PL/SQL provides the datatypes TABLE and VARRAY, which allow you to declare
index-by tables, nested tables and variable-size arrays.

Collections

A collection is an ordered group of elements, all of the same type. Each element has
a unique subscript that determines its position in the collection.

Collections work like the arrays found in most third-generation programming
languages. Also, collections can be passed as parameters. So, you can use them to
move columns of data into and out of database tables or between client-side
applications and stored subprograms.

Records

You can use the ¥RON YPE attribute to declare a record that represents a row in a
table or a row fetched from a cursor. But, with a user-defined record, you can
declare fields of your own.

Records contain uniquely named fields, which can have different datatypes.
Suppose you have various data about an employee such as name, salary, and hire
date. These items are dissimilar in type but logically related. A record containing a
field for each item lets you treat the data as a logical unit.

See Also: PL/SQL User’s Guide and Reference for detailed
information on using collections and records

PL/SQL Server Pages

PL/SQL Server Pages (PSP) are server-side Web pages (in HTML or XML) with
embedded PL/SQL scripts marked with special tags. To produce dynamic Web

14-30 Oracle9i Database Concepts

Java Overview

pages, developers have usually written CGI programs in C or Perl that fetch data
and produce the entire Web page within the same program. The development and
maintenance of such dynamic pages is costly and time-consuming.

Scripting fulfills the demand for rapid development of dynamic Web pages. Small
scripts can be embedded in HTML pages without changing their basic HTML
identity. The scripts contain the logic to produce the dynamic portions of HTML
pages and are run when the pages are requested by the users.

The separation of HTML content from application logic makes script pages easier to
develop, debug, and maintain. The simpler development model, along the fact that
scripting languages usually demand less programming skill, enables Web page
writers to develop dynamic Web pages.

There are two kinds of embedded scripts in HTML pages: client-side scripts and
server-side scripts. Client-side scripts are returned as part of the HTML page and
are run in the browser. They are mainly used for client-side navigation of HTML
pages or data validation. Server-side scripts, while also embedded in the HTML
pages, are run on the server side. They fetch and manipulate data and produce
HTML content that is returned as part of the page. PSP scripts are server-side
scripts.

A PL/SQL gateway receives HTTP requests from an HTTP client, invokes a
PL/SQL stored procedure as specified in the URL, and returns the HTTP output to
the client. A PL/SQL Server Page is processed by a PSP compiler, which compiles
the page into a PL/SQL stored procedure. When the procedure is run by the
gateway, it generates the Web page with dynamic content. PSP is built on one of two
existing PL/SQL gateways:

= PL/SQL Cartridge of Oracle Application Server
= WebDB

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about PL/SQL Server Pages

Java Overview

Java has emerged as the object-oriented programming language of choice, because it
is object-oriented and efficient for application-level programs. It includes the
following features:

= AlJava virtual machine (JVM), which provides the fundamental basis for
platform independence

SQL, PL/SQL, and Java 14-31

Java Overview

= Automated storage management techniques, the most visible of which is
garbage collection

= Language syntax that borrows from C and enforces strong typing

Java and Object-Oriented Programming Terminology

This section covers some basic terminology of Java application development in the
Oracle environment. The terms should be familiar to experienced Java
programmers.

Classes

All object-oriented programming languages support the concept of a class. As with
a table definition, a class provides a template for objects that share common
characteristics. Each class can contain the following:

= Attributes—static or instance variables that each object of a particular class
possesses

= Methods—you can invoke methods defined by the class or inherited by any
classes extended from the class

When you create an object from a class, you are creating an instance of that class.
The instance contains the fields of an object, which are known as its data, or state.

Figure 14-6 shows an example of an Enpl oyee class defined with two attributes:
last name (I ast Nane) and employee identifier (I D).

14-32 Oracle9i Database Concepts

Java Overview

Figure 14-6 Classes and Instances

Employee class defines the
fields that instances hold
(state) and methods you
can invoke on instances
of Employee (behavior).

public class Employee
fields — —
- — mployee

private String id il st)

public String lastName w;)lc)yee()» id =215 63 2179 Each instance of Employee

last name = Smith holds its own state. You can

| access that state only if the
hod I creator of the class defines

methods Employee it in a way that provides
Empl kil i A

private getld () w id = 372 74 3215 access to you.

public setld (String anld) last name = Jones

When you create an instance, the attributes store individual and private information
relevant only to the employee. That is, the information contained within an
employee instance is known only for that single employee. The example in

Figure 14-6 shows two instances of employee—Smith and Jones. Each instance
contains information relevant to the individual employee.

Attributes Attributes within an instance are known as fields. Instance fields are
analogous to the fields of a relational table row. The class defines the fields, as well
as the type of each field. You can declare fields in Java to be static, public, private,
protected, or default access.

= Public, private, protected, or default access fields are created within each
instance.

= Static fields are like global variables in that the information is available to all
instances of the employee class.

The language specification defines the rules of visibility of data for all fields. Rules
of visibility define under what circumstances you can access the data in these fields.

Methods The class also defines the methods you can invoke on an instance of that
class. Methods are written in Java and define the behavior of an object. This
bundling of state and behavior is the essence of encapsulation, which is a feature of
all object-oriented programming languages. If you define an Enpl oyee class,
declaring that each employee’si d is a private field, other objects can access that

SQL, PL/SQL, and Java 14-33

Java Overview

private field only if a method returns the field. In this example, an object could
retrieve the employee’s identifier by invoking the Enpl oyee.get | d() method.

In addition, with encapsulation, you can declare that the

Enpl oyee.get | d() method is private, or you can decide not to write an

Enpl oyee.get | d() method. Encapsulation helps you write programs that are
reusable and not misused. Encapsulation makes public only those features of an
object that are declared public; all other fields and methods are private. Private

fields and methods can be used for internal object processing.

Class Hierarchy

Java defines classes within a large hierarchy of classes. At the top of the hierarchy is
the Object class. All classes in Java inherit from the Qbj ect class at some level, as
you walk up through the inheritance chain of superclasses. When we say Class B
inherits from Class A, each instance of Class B contains all the fields defined in class
B, as well as all the fields defined in Class A. For example, in Figure 14-7, the

Ful | Ti meEnpl oyee class contains the i d and | ast Nane fields defined in the
Enpl oyee class, because it inherits from the Employee class. In addition, the

Ful | Ti meEnpl oyee class adds another field, bonus, which is contained only
within Ful | Ti neEnpl oyee.

You can invoke any method on an instance of Class B that was defined in either
Class A or B. In our employee example, the Ful | Ti meEnpl oyee instance can
invoke methods defined only within its own class, or methods defined within the
Enpl oyee class.

14-34 Oracle9i Database Concepts

Java Overview

Interfaces

Figure 14-7 Using Inheritance to Localize Behavior and State

class Employee —1-Employee class has two subclasses, PartTimeEmployee
id and FullTimeEmployee, rather than using attributes of
last name Employee to differentiate between different Employee types.

/ \ Note: We could have made Employee an interface.

class PartTime Employee class FullTime Employee - PartTimeEmployees have
schedule bonus to track their schedules,
while Full-TimeEmployees

/ \ are eligible for bonuses.

class ExemptEmployee class NonExemptEmployee
salaryToDate() salaryToDate()

Each FullTimeEmployee is
considered "exempt" if he
works for a monthly salary,
or "non-exempt" if he
works at an hourly rate.
Each one computes
salaryToDate differently.

Instances of Class B are substitutable for instances of Class A, which makes
inheritance another powerful construct of object-oriented languages for improving
code reuse. You can create new classes that define behavior and state where it
makes sense in the hierarchy, yet make use of pre-existing functionality in class
libraries.

Java supports only single inheritance; that is, each class has one and only one class
from which it inherits. If you must inherit from more than one source, Java provides
the equivalent of multiple inheritance, without the complications and confusion
that usually accompany it, through interfaces. Interfaces are similar to classes;
however, interfaces define method signatures, not implementations. The methods
are implemented in classes declared to implement an interface. Multiple inheritance
occurs when a single class simultaneously supports many interfaces.

SQL, PL/SQL, and Java 14-35

Java Overview

Polymorphism

Assume in our Enpl oyee example that the different types of employees must be
able to respond with their compensation to date. Compensation is computed
differently for different kinds of employees.

=« Ful | Ti meEnpl oyees are eligible for a bonus
= NonExenpt Enpl oyees get overtime pay

In traditional procedural languages, you would write a long switch statement, with
the different possible cases defined.

sw tch: (enpl oyee.type) {

case: Enpl oyee

return enpl oyee. sal aryToDat €;

case: Ful | Ti neEnpl oyee

return enpl oyee. sal aryToDat e + enpl oyee. bonusTolat e

If you add a new kind of Employee, you must update your switch statement. If you
modify your data structure, you must modify all switch statements that use it.

In an object-oriented language such as Java, you implement a method,
conpensati onToDat e(), for each subclass of Enpl oyee class that requires any
special treatment beyond what is already defined in Enpl oyee class. For example,
you could implement the conpensat i onToDat e() method of

NonExenpt Enpl oyee, as follows:

private float conpensati onToDate() {
return super. conpensationToDate() + this.overtineToDate();

}

You implement Ful | Ti meEnmpl oyee’s method, as follows:

private float conpensati onToDate() {
return super. conpensationToDate() + this. bonusToDate();

}

The common usage of the method name conpensat i onToDat e() lets you invoke
the identical method on different classes and receive different results, without
knowing the type of employee you are using. You do not have to write a special
method to handle Ful | Ti mreEnpl oyees and Part Ti meEnpl oyees. Thisability
for the different objects to respond to the identical message in different ways is
known as polymorphism.

In addition, you could create an entirely new class that does not inherit from
Enpl oyee at all—Cont r act or —and implement a conpensat i onToDat e()

14-36 Oracle9i Database Concepts

Java Overview

method in it. A program that calculates total payroll to date would iterate over all
people on payroll, regardless of whether they were full-time, part-time, or
contractors, and add up the values returned from invoking the

conpensati onToDat e() method on each. You can safely make changes to the
individual conpensat i onToDat e() methods with the knowledge that callers of
the methods will work correctly. For example, you can safely add new fields to
existing classes.

The Java Virtual Machine (JVM)

As with other high-level computer languages, your Java source compiles to
low-level machine instructions. In Java, these instructions are known as bytecodes
(because their size is uniformly one byte of storage). Most other languages—such as
C—compile to machine-specific instructions—such as instructions specific to an
Intel or HP processor. Your Java source compiles to a standard,
platform-independent set of bytecodes, which interacts with a Java virtual machine
(JVM). The JVM is a separate program that is optimized for the specific platform on
which you execute your Java code. Figure 14-8 illustrates how Java can maintain
platform independence. Your Java source is compiled into bytecodes, which are
platform independent. Each platform has installed a JVM that is specific to its
operating system. The Java bytecodes from your source get interpreted through the
JVM into appropriate platform dependent actions.

SQL, PL/SQL, and Java 14-37

Java Overview

Figure 14-8 Java Component Structure

Java Applications

|

Java Virtual Machine

I

Operating System

When you develop a Java program, you use predefined core class libraries written
in the Java language. The Java core class libraries are logically divided into
packages that provide commonly-used functionality, such as basic language
support (j ava.l ang), I/0 (j ava.i 0), and network access (j ava.net). Together, the
JVM and core class libraries provide a platform on which Java programmers can
develop with the confidence that any hardware and operating system that supports
Java will execute their program. This concept is what drives the “write once, run
anywhere” idea of Java.

Figure 14-9 illustrates how Oracle’s Java applications sit on top of the Java core
class libraries, which in turn sit on top of the JVM. Because Oracle’s Java support
system is located within the database, the JVM interacts with the Oracle database
libraries, instead of directly with the operating system.

14-38 Oracle9i Database Concepts

Java Overview

Figure 14-9 Java Component Structure

Java Server Applications

Oracle-Supported Java APIs:
SQLJ, JDBC

Java Core Class Libraries

Oracle Database JVM

Oracle Database Libraries

Operating System

Sun Microsystems furnishes publicly available specifications for both the Java
language and the JVM. The Java Language Specification (JLS) defines things such as
syntax and semantics; the JVM specification defines the necessary low-level
behavior for the “machine” that executes the bytecodes. In addition, Sun
Microsystems provides a compatibility test suite for JVM implementors to
determine if they have complied with the specifications. This test suite is known as
the Java Compatibility Kit (JCK). Oracle’s JVM implementation complies fully with
JCK. Part of the overall Java strategy is that an openly specified standard, together
with a simple way to verify compliance with that standard, allows vendors to offer
uniform support for Java across all platforms.

Why Use Java in Oracle?

The only reason that you are allowed to write and load Java applications within the
database is because it is a safe language. Java has been developed to prevent anyone
from tampering with the operating system that the Java code resides in. Some

SQL, PL/SQL, and Java 14-39

Java Overview

languages, such as C, can introduce security problems within the database; Java,
because of its design, is a safe language to allow within the database.

Although the Java language presents many advantages to developers, providing an
implementation of a JVM that supports Java server applications in a scalable
manner is a challenge. This section discusses some of these challenges.

= Multithreading

= Automated Storage Management
=« Footprint

= Performance

= Dynamic Class Loading

Multithreading

Multithreading support is often cited as one of the key scalability features of the
Java language. Certainly, the Java language and class libraries make it simpler to
write shared server applications in Java than many other languages, but it is still a
daunting task in any language to write reliable, scalable shared server code.

As a database server, Oracle efficiently schedules work for thousands of users. The
Oracle JVM uses the facilities of the RDBMS server to concurrently schedule Java
execution for thousands of users. Although Oracle supports Java language level
threads required by the JLS and JCK, using threads within the scope of the database
will not increase your scalability. Using the embedded scalability of the database
eliminates the need for writing shared server Java servers. You should use the
database’s facilities for scheduling users by writing single-threaded Java
applications. The database takes care of the scheduling between each application;
thus, you achieve scalability without having to manage threads. You can still write
shared server Java applications, but multiple Java threads does not increase your
server’s performance.

One difficulty multithreading imposes on Java is the interaction of threads and
automated storage management, or garbage collection. The garbage collector
executing in a generic JVM has no knowledge of which Java language threads are
executing or how the underlying operating system schedules them.

= Non-Oracle9i model—A single user maps to a single Java language level
thread; the same single garbage collector manages all garbage from all users.
Different techniques typically deal with allocation and collection of objects of
varying lifetimes and sizes. The result in a heavily shared server application is,
at best, dependent upon operating system support for native threads, which can

14-40 Oracle9i Database Concepts

Java Overview

be unreliable and limited in scalability. High levels of scalability for such
implementations have not been convincingly demonstrated.

= Oracle9i VM model—Even when thousands of users connect to the server and
execute the same Java code, each user experiences it as if he is executing his
own Java code on his own Java virtual machine. The responsibility of the Oracle
JVM is to make use of operating system processes and threads, using the
scalable approach of the Oracle RDBMS. As a result of this approach, the JVM’s
garbage collector is more reliable and efficient because it never collects garbage
from more than one user at any time.

Automated Storage Management

Garbage collection is a major feature of Java’s automated storage management,
eliminating the need for Java developers to allocate and free memory explicitly.
Consequently, this eliminates a large source of memory leaks that commonly plague
C and C++ programs. There is a price for such a benefit: garbage collection
contributes to the overhead of program execution speed and footprint. Although
many papers have been written qualifying and quantifying the trade-off, the overall
cost is reasonable, considering the alternatives.

Garbage collection imposes a challenge to the JVM developer seeking to supply a
highly scalable and fast Java platform. The Oracle JVM meets these challenges in
the following ways:

= The Oracle JVM uses the Oracle scheduling facilities, which can manage
multiple users efficiently.

= Garbage collection is performs consistently for multiple users because garbage
collection is focused on a single user within a single session. The Oracle VM
enjoys a huge advantage because the burden and complexity of the memory
manager’s job does not increase as the number of users increases. The memory
manager performs the allocation and collection of objects within a single
session—which typically translates to the activity of a single user.

= The Oracle JVM uses different garbage collection techniques depending on the
type of memory used. These techniques provide high efficiency and low
overhead.

Footprint
The footprint of an executing Java program is affected by many factors:

= Size of the program itself—how many classes and methods and how much code
they contain.

SQL, PL/SQL, and Java 14-41

Java Overview

= Complexity of the program—the amount of core class libraries that the Oracle
JVM uses as the program executes, as opposed to the program itself.

= Amount of state the VM uses—how many objects the JVM allocates, how large
they are, and how many must be retained across calls.

= Ability of the garbage collector and memory manager to deal with the demands
of the executing program, which is often non-deterministic. The speed with
which objects are allocated and the way they are held on to by other objects
influences the importance of this factor.

From a scalability perspective, the key to supporting many concurrent clients is a
minimum user session footprint. The Oracle JVM keeps the user session footprint to
a minimum by placing all read-only data for users, such as Java bytecodes, in
shared memory. Appropriate garbage collection algorithms are applied against call
and session memories to maintain a small footprint for the user’s session. The
Oracle JVM uses three types of garbage collection algorithms to maintain the user’s
session memory:

= Generational scavenging for short-lived objects
= Mark and lazy sweep collection for objects that exist for the life of a single call

= Copying collector for long-lived objects—objects that live across calls within a
session

Performance
Oracle JVM performance is enhanced by implementing a native compiler.

How Native Compilers Improve Performance Java executes platform-independent
bytecodes on top of a JVM, which in turn interacts with the specific hardware
platform. Any time you add levels within software, your performance is degraded.
Because Java requires going through an intermediary to interpret
platform-independent bytecodes, a degree of inefficiency exists for Java
applications that does not exists within a platform-dependent language, such as C.
To address this issue, several JVM suppliers create native compilers. Native
compilers translate Java bytecodes into platform-dependent native code, which
eliminates the interpreter step and improves performance.

The following table describes two methods for native compilation.

14-42 Oracle9i Database Concepts

Java Overview

Native Compilation

Method Description
Just-In-Time (JIT) JIT compilers quickly compile Java bytecodes to native
Compilation (platform-specific) machine code during runtime. This

does not produce an executable to be executed on the
platform; instead, it provides platform-dependent code
from Java bytecodes that is executed directly after it is
translated. This should be used for Java code that is run
frequently, which will be executed at speeds closer to
languages such as C.

Static Compilation Static compilation translates Java bytecodes to
platform-independent C code before runtime. Then a
standard C compiler compiles the C code into an
executable for the target platform. This approach is more
suitable for Java applications that are modified
infrequently. This approach takes advantage of the mature
and efficient platform-specific compilation technology
found in modern C compilers.

Oracle uses static compilation to deliver its core Java class libraries: the ORB and
JDBC code in natively compiled form. It is applicable across all the platforms Oracle
supports, whereas a JIT approach requires low-level, processor-dependent code to
be written and maintained for each platform. You can use this native compilation
technology with your own Java code.

Dynamic Class Loading

Another strong feature of Java is dynamic class loading. The class loader loads
classes from the disk (and places them in the JVM-specific memory structures
necessary for interpretation) only as they are used during program execution. The
class loader locates the classes in the CLASSPATH and loads them during program
execution. This approach, which works well for applets, poses the following
problems in a server environment:

SQL, PL/SQL, and Java 14-43

Java Overview

Problem Description Solution
Predictability The class loading operation The Oracle JVM loads classes
places a severe penalty on dynamically, just as with any other

first-time execution. A simple Java virtual machine. The same
program can cause the Oracle one-time class loading speed hit is
JVM to load many core classes encountered. However, because

to support its needs. A the classes are loaded into shared
programmer cannot easily memory, no other users of those
predict or determine the classes will cause the classes to
number of classes loaded. load again—they will simply use
the same pre-loaded classes.
Reliability A benefit of dynamic class Oracle separates the upload and
loading is that it supports resolve operation from the class
program updating. For loading operation at runtime. You

example, you would update ypj0ad Java code you developed

C"%SS%S on 6|1 Se(;\/tir, and clients (4 the server using the loadjava

who downioad thé program 41ty Instead of using

and load it dynamically see the CLASSPATH, you specify a resolver

update whenever they next . hyousp .
at installation time. The resolver is

use the program. Server

reliability. As a developer, you You specify the schemas in which
must know that every client the classes reside. This separation
executes a specific program of resolution from class loading
configuration. You do not means you always know what
want clients to inadvertently program users execute.

load some classes that you did

not intend them to load.

Oracle’s Java Application Strategy

One appeal of Java is its ubiquity and the growing number of programmers capable
of developing applications using it. Oracle furnishes enterprise application
developers with an end-to-end Java solution for creating, deploying, and managing
Java applications. The total solution consists of client-side and server-side
programmatic interfaces, tools to support Java development, and a Java virtual
machine integrated with the Oracle database server. All these products are
compatible with Java standards.

In addition to the Oracle JVM, the Java programming environment consists of the
following:

14-44 Oracle9i Database Concepts

Java Overview

s Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call a Java
stored procedure from a PL/SQL package; you can call PL/SQL procedures
from a Java stored procedure.

s SQL data can be accessed through JDBC and SQLJ programming interfaces.

s Tools and scripts used in assisting in development, class loading, and class
management.

Java Stored Procedures

If you are a PL/SQL programmer exploring Java, you will be interested in Java
stored procedures. A Java stored procedure is a program you write in Java to
execute in the server, exactly as a PL/SQL stored procedure. You invoke it directly
with products like SQL*Plus, or indirectly with a trigger. You can access it from any
Oracle Net client—OCI, PRO*, JDBC, or SQLJ.

The Oracle9i Java Stored Procedures Developer’s Guide explains how to write
stored procedures in Java, how to access them from PL/SQL, and how to access
PL/SQL functionality from Java.

In addition, you can use Java to develop powerful programs independently of
PL/SQL. Oracle provides a fully-compliant implementation of the Java
programming language and JVM.

PL/SQL Integration and Oracle RDBMS Functionality

You can invoke existing PL/SQL programs from Java and invoke Java programs
from PL/SQL. This solution protects and leverages your existing investment while
opening up the advantages and opportunities of Java-based Internet computing.

Oracle offers two different application programming interfaces (APIs) for Java
developers to access SQL data—JDBC and SQLJ. Both APIs are available on client
and server, so you can deploy the same code in either place.

= JDBC Drivers—used to build client/server 2-tier applications
= SQLJ-Embedded SQL in Java—used to access static SQL. You must know the
name of the columns

JDBC Drivers JDBC is a database access protocol that enables you to connect to a
database and then prepare and execute SQL statements against the database. Core
Java class libraries provide only one JDBC API. JDBC is designed, however, to allow

SQL, PL/SQL, and Java 14-45

Java Overview

vendors to supply drivers that offer the necessary specialization for a particular
database. Oracle delivers the following three distinct JDBC drivers.

Driver Description

JDBC Thin Driver You can use the JDBC Thin driver to write 100% pure
Java applications and applets that access Oracle SQL
data. The JDBC Thin driver is especially well-suited to
Web browser-based applications and applets, because
you can dynamically download it from a Web page just
like any other Java applet.

JDBC Oracle Call The JDBC Oracle Call Interface (OCI) driver accesses

Interface Driver Oracle-specific native code (that is, non-Java) libraries
on the client or middle tier, providing a richer set of
functionality and some performance boost compared to
the JDBC Thin driver, at the cost of significantly larger
size and client-side installation.

JDBC Server-side Internal Oracle uses the server-side internal driver when Java

Driver code executes on the server. It allows Java applications
executing in the server’s JVM to access locally defined
data (that is, on the same machine and in the same
process) with JDBC. It provides a further performance
boost because of its ability to use underlying Oracle
RDBMS libraries directly, without the overhead of an
intervening network connection between your Java
code and SQL data. By supporting the same Java-SQL
interface on the server, Oracle8i does not require you to
rework code when deploying it.

SQLJ - Embedded SQL in Java Oracle has worked with other vendors, including IBM,
Tandem, Sybase, and Sun Microsystems, to develop a standard way to embed SQL
statements in Java programs—SQLJ. This work has resulted in a new standard
(ANSI x.3.135.10-1998) for a simpler and more highly productive programming API
than JDBC. A user writes applications to this higher-level API and then employs a
preprocessor to translate the program to standard Java source with JDBC calls. At
runtime, the program can communicate with multi-vendor databases using
standard JDBC drivers.

SQLJ provides a simple, but powerful, way to develop both client-side and
middle-tier applications that access databases from Java. You can use it in stored
procedures, triggers, methods within the Oracle environment. In addition, you can
combine SQLJ programs with JDBC.

14-46 Oracle9i Database Concepts

Java Overview

The SQLJ translator is a Java program that translates embedded SQL in Java source
code to pure JDBC-based Java code. Because Oracle provides a complete Java
environment, you cannot only compile SQLJ programs on a client for execution on
the server, but you can compile them directly on the server. The adherence of Oracle
to Internet standards lets you choose the development style that fits your needs.

See Also: Oracle9i SQLJ Developer’s Guide and Reference

SQL, PL/SQL, and Java 14-47

Java Overview

14-48 Oracle9i Database Concepts

15

Dependencies Among Schema Objects

The definitions of some objects, including views and procedures, reference other
objects, such as tables. As a result, the objects being defined are dependent on the
objects referenced in their definitions. This chapter discusses the dependencies
among schema objects and how Oracle automatically tracks and manages these
dependencies. It includes:

= Introduction to Dependency Issues

= Resolution of Schema Object Dependencies
= Object Name Resolution

= Shared SQL Dependency Management

= Local and Remote Dependency Management

Dependencies Among Schema Objects 15-1

Introduction to Dependency Issues

Introduction to Dependency Issues

Some types of schema objects can reference other objects as part of their definition.
For example, a view is defined by a query that references tables or other views. A
procedure’s body can include SQL statements that reference other objects of a
database. An object that references another object as part of its definition is called a
dependent object, while the object being referenced is a referenced object.

Figure 15-1 illustrates the different types of dependent and referenced objects:

Figure 15-1 Types of Possible Dependent and Referenced Schema Objects

Dependent Objects Referenced Objects
Table Table
View View
Procedure Sequence
Function > Synonym
Package Specification Procedure
Package Body Function
Database Trigger Package Specification
User-Defined Object User-Defined Object
and Collection Types and Collection Types

If you alter the definition of a referenced object, dependent objects may or may not
continue to function without error, depending on the type of alteration. For
example, if you drop a table, no view based on the dropped table is usable.

Oracle automatically records dependencies among objects to alleviate the complex
job of dependency management for the database administrator and users. For
example, if you alter a table on which several stored procedures depend, Oracle
automatically recompiles the dependent procedures the next time the procedures
are referenced (runrun or compiled against).

To manage dependencies among schema objects, all of the schema objects in a
database have a status.

= Valid schema objects have been compiled and can be immediately used when
referenced.

= Invalid schema objects must be compiled before they can be used.

15-2 Oracle9i Database Concepts

Introduction to Dependency Issues

s For procedures, functions, and packages, this means compiling the schema
object.

s For views, this means that the view must be reparsed, using the current
definition in the data dictionary.

Only dependent objects can be invalid. Tables, sequences, and synonyms are
always valid.

If a view, procedure, function, or package is invalid, Oracle may have attempted
to compile it, but errors relating to the object occurred. For example, when
compiling a view, one of its base tables might not exist, or the correct privileges
for the base table might not be present. When compiling a package, there might
be a PL/SQL or SQL syntax error, or the correct privileges for a referenced
object might not be present. Schema objects with such problems remain invalid.

Oracle automatically tracks specific changes in the database and records the
appropriate status for related objects in the data dictionary.

Status recording is a recursive process. Any change in the status of a referenced
object changes the status not only for directly dependent objects, but also for
indirectly dependent objects.

For example, consider a stored procedure that directly references a view. In effect,
the stored procedure indirectly references the base tables of that view. Therefore, if
you alter a base table, the view is invalidated, which then invalidates the stored
procedure. Figure 15-2 illustrates indirect dependencies:

Dependencies Among Schema Objects 15-3

Resolution of Schema Object Dependencies

Figure 15-2 Indirect Dependencies

ALTER TABLE employees...;

Table employees

INVALID

View employees_ INVALID
\ departments
Function

P | add_employees

Table departments

Dependent
Object

Referenced by
add_employees
(Dependent Object)

Referenced by
employees_departments

Resolution of Schema Object Dependencies

When a schema object is referenced directly in a SQL statement or indirectly
through a reference to a dependent object, Oracle checks the status of the object
explicitly specified in the SQL statement and any referenced objects, as necessary.
Oracle’s action depends on the status of the objects that are directly and indirectly
referenced in a SQL statement:

= If every referenced object is valid, then Oracle runs the SQL statement
immediately without any additional work.

=« If any referenced view or procedure (including a function or package) is invalid,
then Oracle automatically attempts to compile the object.

— Ifall invalid referenced objects can be compiled successfully, then they are
compiled and Oracle runs the SQL statement.

— Ifan invalid object cannot be compiled successfully, then it remains invalid.
Oracle returns an error and rolls back the transaction containing the SQL
statement.

15-4 Oracle9i Database Concepts

Resolution of Schema Object Dependencies

Note: Oracle attempts to recompile an invalid object dynamically
only if it has not been replaced since it was detected as invalid. This
optimization eliminates unnecessary recompilations.

Compilation of Views and PL/SQL Program Units

A view or PL/SQL program unit can be compiled and made valid if the following
conditions are satisfied:

= The definition of the view or program unit must be correct. All of the SQL and
PL/SQL statements must be proper constructs.

= All referenced objects must be present and of the expected structure. For
example, if the defining query of a view includes a column, the column must be
present in the base table.

= The owner of the view or program unit must have the necessary privileges for
the referenced objects. For example, if a SQL statement in a procedure inserts a
row into a table, the owner of the procedure must have the | NSERT privilege
for the referenced table.

Views and Base Tables

A view depends on the base tables or views referenced in its defining query. If the
defining query of a view is not explicit about which columns are referenced, for
example, SELECT * FROMt abl e, then the defining query is expanded when stored
in the data dictionary to include all columns in the referenced base table at that
time.

If a base table or view of a view is altered, renamed, or dropped, then the view is
invalidated, but its definition remains in the data dictionary along with the
privileges, synonyms, other objects, and other views that reference the invalid view.

Note: Whenever you create a table, index, and view, and then
drop the index, all objects dependent on that table are invalidated,
including views, packages, package bodies, functions, and
procedures.

An attempt to use an invalid view automatically causes Oracle to recompile the
view dynamically. After replacing the view, the view might be valid or invalid,
depending on the following conditions:

Dependencies Among Schema Objects 15-5

Resolution of Schema Object Dependencies

All base tables referenced by the defining query of a view must exist. If a base
table of a view is renamed or dropped, the view is invalidated and cannot be
used. References to invalid views cause the referencing statement to fail. The
view can be compiled only if the base table is renamed to its original name or
the base table is re-created.

If a base table is altered or re-created with the same columns, but the datatype
of one or more columns in the base table is changed, then any dependent view
can be recompiled successfully.

If a base table of a view is altered or re-created with at least the same set of
columns, then the view can be validated. The view cannot be validated if the
base table is re-created with new columns and the view references columns no
longer contained in the re-created table. The latter point is especially relevant in
the case of views defined with a SELECT * FROMt abl e query, because the
defining query is expanded at view creation time and permanently stored in the
data dictionary.

Program Units and Referenced Objects

Oracle automatically invalidates a program unit when the definition of a referenced
object is altered. For example, assume that a standalone procedure includes several
statements that reference a table, a view, another standalone procedure, and a
public package procedure. In that case, the following conditions hold:

If the referenced table is altered, then the dependent procedure is invalidated.

If the base table of the referenced view is altered, then the view and the
dependent procedure are invalidated.

If the referenced standalone procedure is replaced, then the dependent
procedure is invalidated.

If the body of the referenced package is replaced, then the dependent procedure
is not affected. However, if the specification of the referenced package is
replaced, then the dependent procedure is invalidated. This is a mechanism for
minimizing dependencies among procedures and referenced objects by using
packages.

Whenever you create a table, index, and view, and then drop the index, all
objects dependent on that table are invalidated, including views, packages,
package bodies, functions, and procedures.

15-6 Oracle9i Database Concepts

Resolution of Schema Object Dependencies

Data Warehousing Considerations

Some data warehouses drop indexes on tables at night to facilitate faster loads.
However, all views dependent on the table whose index is dropped get invalidated.
This means that subsequently running any package that reference these dropped
views will invalidate the package.

Remember that whenever you create a table, index, and view, and then drop the
index, all objects dependent on that table are invalidated, including views,
packages, package bodies, functions, and procedures. This protects updatable join
views.

To make the view valid again, use one of the following statements:
SEHLECT * FROM vtest;

or

ALTER M EWvtest conpil e

Session State and Referenced Packages

Each session that references a package construct has its own instance of that
package, including a persistent state of any public and private variables, cursors,
and constants. All of a session’s package instantiations including state can be lost if
any of the session’s instantiated packages are subsequently invalidated and
recompiled.

Security Authorizations

Oracle notices when a DML object or system privilege is granted to or revoked from
a user or PUBLI Cand automatically invalidates all the owner’s dependent objects.
Oracle invalidates the dependent objects to verify that an owner of a dependent
object continues to have the necessary privileges for all referenced objects.
Internally, Oracle notes that such objects do not have to be recompiled. Only
security authorizations need to be validated, not the structure of any objects. This
optimization eliminates unnecessary recompilations and prevents the need to
change a dependent object’s time stamp.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

information about forcing the recompilation of an invalid view or
program unit

Dependencies Among Schema Objects 15-7

Resolution of Schema Object Dependencies

Function-Based Index Dependencies

Function-based indexes depend on functions used in the expression that defines the
index. If a PL/SQL function or package function is changed, then the index is
marked as disabled.

This section discusses requirements for function-based indexes and what happens
when a function is changed in any manner, such as when it is dropped or privileges
to use it are revoked.

Requirements
To create a function-based index:

= The following initialization parameters must be defined:
- QUERY_REWRI TE_| NTEGRI TY must be set to TRUSTED
- QUERY_REWRI TE_ENABLED must be set to TRUE
— COWPATI BLE must set to 8.1.0.0.0 or a greater value

= The user must be granted CREATE | NDEX and QUERY REVRI TE, or CREATE ANY
| NDEX and GLOBAL QUERY REV\RI TE.

To use a function-based index:
= The table must be analyzed after the index is created.

= The query must be guaranteed not to need any NULL values from the indexed
expression, because NULL values are not stored in indexes.

The following sections describe additional requirements.

See Also: "Function-Based Indexes" on page 10-32

DETERMINISTIC Functions

Any user-written function used in a function-based index must have been declared
with the DETERM NI STI C keyword to indicate that the function will always return
the same output return value for any given set of input argument values, now and
in the future.

See Also: Oracle9i Database Performance Tuning Guide and Reference
Privileges on the Defining Function

The index owner needs the EXECUTE privilege on the function used to define a
function-based index. If the EXECUTE privilege is revoked, Oracle marks the index

15-8 Oracle9i Database Concepts

Object Name Resolution

Dl SABLED. The index owner does not need the EXECUTE W TH GRANT OPTI ON
privilege on this function to grant SELECT privileges on the underlying table.

Resolve Dependencies of Function-Based Indexes

A function-based index depends on any function that it is using. If the function or
the specification of a package containing the function is redefined (or if the index
owner’s EXECUTE privilege is revoked), then the following conditions hold:

= Theindex is marked as DI SABLED.
= Queries on a DI SABLED index fail if the optimizer chooses to use the index.

= DML operations on a DI SABLED index fail unless the index is also marked
UNUSABLE and the initialization parameter SKI P_UNUSABLE_| NDEXES is set
to true.

To re-enable the index after a change to the function, use the ALTER | NDEX ...
ENABLE statement.

Object Name Resolution

Object names referenced in SQL statements can consist of several pieces, separated
by periods. The following describes how Oracle resolves an object name.

1. Oracle attempts to qualify the first piece of the name referenced in the SQL
statement. For example, in hr.enpl oyees, hr is the first piece. If there is only
one piece, then the one piece is considered the first piece.

a. Inthe current schema, Oracle searches for an object whose name matches
the first piece of the object name. If it does not find such an object, then it
continues with step b.

b. Oracle searches for a public synonym that matches the first piece of the
name. If it does not find one, then it continues with step c.

c. Oracle searches for a schema whose name matches the first piece of the
object name. If it finds one, then it returns to step b, now using the second
piece of the name as the object to find in the qualified schema. If the second
piece does not correspond to an object in the previously qualified schema or
there is not a second piece, then Oracle returns an error.

If no schema is found in step c, then the object cannot be qualified and Oracle
returns an error.

Dependencies Among Schema Objects 15-9

Shared SQL Dependency Management

2. A schema object has been qualified. Any remaining pieces of the name must
match a valid part of the found object. For example, if
hr.enpl oyees.depart nent _i d is the name, then hr is qualified as a schema,
enpl oyees is qualified as a table, and depar t nent _i d must correspond to a
column (because enpl oyees is a table). If enpl oyees is qualified as a
package, then depar t nent _i d must correspond to a public constant, variable,
procedure, or function of that package.

Because of how Oracle resolves references, it is possible for an object to depend on
the nonexistence of other objects. This situation occurs when the dependent object
uses a reference that would be interpreted differently were another object present.

See Also: Oracle9i Database Administrator’s Guide

Shared SQL Dependency Management

In addition to managing dependencies among schema objects, Oracle also manages
dependencies of each shared SQL area in the shared pool. If a table, view, synonym,
or sequence is created, altered, or dropped, or a procedure or package specification
is recompiled, all dependent shared SQL areas are invalidated. At a subsequent
execution of the cursor that corresponds to an invalidated shared SQL area, Oracle
reparses the SQL statement to regenerate the shared SQL area.

Local and Remote Dependency Management

Tracking dependencies and completing necessary recompilations are performed
automatically by Oracle. Local dependency management occurs when Oracle
manages dependencies among the objects in a single database. For example, a
statement in a procedure can reference a table in the same database.

Remote dependency management occurs when Oracle manages dependencies in
distributed environments across a network. For example, an Oracle Forms trigger
can depend on a schema object in the database. In a distributed database, a local
view’s defining query can reference a remote table.

Management of Local Dependencies

Oracle manages all local dependencies using the database’s internal dependency
table, which keeps track of each schema object’s dependent objects. When a
referenced object is modified, Oracle uses the depends-on table to identify
dependent objects, which are then invalidated.

15-10 Oracle9i Database Concepts

Local and Remote Dependency Management

For example, assume a stored procedure UPDATE_SAL references the table
JWARD.enpl oyees. If the definition of the table is altered in any way, the status of
every object that references JWARD.enpl oyees is changed to | NVALI D, including
the stored procedure UPDATE_SAL. As a result, the procedure cannot be run until it
has been recompiled and is valid. Similarly, when a DML privilege is revoked from
a user, every dependent object in the user’s schema is invalidated. However, an
object that is invalid because authorization was revoked can be revalidated by
"reauthorization,"” in which case it does not require full recompilation.

Management of Remote Dependencies

Oracle also manages application-to-database and distributed database
dependencies. For example, an Oracle Forms application might contain a trigger
that references a table, or a local stored procedure might call a remote procedure in
a distributed database system. The database system must account for dependencies
among such objects. Oracle uses different mechanisms to manage remote
dependencies, depending on the objects involved.

Dependencies Among Local and Remote Database Procedures

Dependencies among stored procedures including functions, packages, and triggers
in a distributed database system are managed using time stamp checking or
signature checking.

The dynamic initialization parameter REMOTE _DEPENDENCI ES MODE determines
whether time stamps or signatures govern remote dependencies.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
details about managing remote dependencies with time stamps or
signatures

Time stamp Checking In the time stamp checking dependency model, whenever a
procedure is compiled or recompiled its time stamp (the time it is created, altered,
or replaced) is recorded in the data dictionary. The time stamp is a record of the
time the procedure is created, altered, or replaced. Additionally, the compiled
version of the procedure contains information about each remote procedure that it
references, including the remote procedure’s schema, package name, procedure
name, and time stamp.

When a dependent procedure is used, Oracle compares the remote time stamps
recorded at compile time with the current time stamps of the remotely referenced
procedures. Depending on the result of this comparison, two situations can occur:

Dependencies Among Schema Objects 15-11

Local and Remote Dependency Management

= The local and remote procedures run without compilation if the time stamps
match.

= The local procedure is invalidated if any time stamps of remotely referenced
procedures do not match, and an error is returned to the calling environment.
Furthermore, all other local procedures that depend on the remote procedure
with the new time stamp are also invalidated. For example, assume several
local procedures call a remote procedure, and the remote procedure is
recompiled. When one of the local procedures is run and notices the different
time stamp of the remote procedure, every local procedure that depends on the
remote procedure is invalidated.

Actual time stamp comparison occurs when a statement in the body of a local
procedure runs a remote procedure. Only at this moment are the time stamps
compared using the distributed database’s communications link. Therefore, all
statements in a local procedure that precede an invalid procedure call might run
successfully. Statements subsequent to an invalid procedure call do not run at all.
Compilation is required. However, any DML statements run before the invalid
procedure call are rolled back.

Signature Checking Oracle provides the additional capability of remote dependencies
using signatures. The signature capability affects only remote dependencies. Local
dependencies are not affected, as recompilation is always possible in this
environment.

The signature of a procedure contains information about the following items:
= Name of the package, procedure, or function
= Base types of the parameters

= Modes of the parameters (I N, QUT, and | N OUT)

Note: Only the types and modes of parameters are significant. The
name of the parameter does not affect the signature.

If the signature dependency model is in effect, a dependency on a remote program
unit causes an invalidation of the dependent unit if the dependent unit contains a
call to a procedure in the parent unit, and the signature of this procedure has been
changed in an incompatible manner. A program unit can be a package, stored
procedure, stored function, or trigger.

15-12 Oracle9i Database Concepts

Local and Remote Dependency Management

Dependencies Among Other Remote Schema Objects

Oracle does not manage dependencies among remote schema objects other than
local-procedure-to-remote-procedure dependencies.

For example, assume that a local view is created and defined by a query that
references a remote table. Also assume that a local procedure includes a SQL
statement that references the same remote table. Later, the definition of the table is
altered.

As a result, the local view and procedure are never invalidated, even if the view or
procedure is used after the table is altered, and even if the view or procedure now
returns errors when used In this case, the view or procedure must be altered
manually so that errors are not returned. In such cases, lack of dependency
management is preferable to unnecessary recompilations of dependent objects.

Dependencies of Applications

Code in database applications can reference objects in the connected database. For
example, OCI, precompiler, and SQL*Module applications can submit anonymous
PL/SQL blocks. Triggers in Oracle Forms applications can reference a schema
object.

Such applications are dependent on the schema objects they reference. Dependency
management techniques vary, depending on the development environment.

See Also: Manuals for your application development tools and
your operating system for more information about managing the
remote dependencies within database applications

Dependencies Among Schema Objects 15-13

Local and Remote Dependency Management

15-14 Oracle9i Database Concepts

16

Transaction Management

This chapter defines a transaction and describes how you can manage your work
using transactions. It includes:

= Introduction to Transactions
= Transaction Management Overview
= Discrete Transaction Management

s Autonomous Transactions

Transaction Management 16-1

Introduction to Transactions

Introduction to Transactions

A transaction is a logical unit of work that contains one or more SQL statements. A
transaction is an atomic unit. The effects of all the SQL statements in a transaction
can be either all committed (applied to the database) or all rolled back (undone
from the database).

A transaction begins with the first executable SQL statement. A transaction ends
when it is committed or rolled back, either explicitly with a COVMM T or ROLLBACK
statement or implicitly when a DDL statement is issued.

To illustrate the concept of a transaction, consider a banking database. When a bank
customer transfers money from a savings account to a checking account, the
transaction can consist of three separate operations:

= Decrement the savings account
= Increment the checking account
= Record the transaction in the transaction journal

Oracle must allow for two situations. If all three SQL statements can be performed
to maintain the accounts in proper balance, the effects of the transaction can be
applied to the database. However, if a problem such as insufficient funds, invalid
account number, or a hardware failure prevents one or two of the statements in the
transaction from completing, the entire transaction must be rolled back so that the
balance of all accounts is correct.

Figure 16-1 illustrates the banking transaction example.

16-2 Oracle9j Database Concepts

Introduction to Transactions

Figure 16-1 A Banking Transaction

Transaction Begins

. ———— Decrement Savings Account
UPDATE savi ngs_accounts

SET bal ance = bal ance - 500
WHERE account = 3209;

. ——— Increment Checking Account
UPDATE checki ng_account s

SET bal ance = bal ance + 500
VWHERE account = 3208;

. ———— Record in Transaction Journal
I NSERT | NTO j our nal VALUES

(j ournal _seq. NEXTVAL, '1B'
3209, 3208, 500);

———— End Transaction

COWM T WORK;

Transaction Ends

Statement Execution and Transaction Control

A SQL statement tha