
Oracle9i

Database Concepts

Release 2 (9.2)

March 2002

Part No. A96524-01

Oracle9i Database Concepts, Release 2 (9.2)

Part No. A96524-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Author: Michele Cyran

Contributors: Lance Ashdown, Cathy Baird, Sandeepan Banerjee, Mark Bauer, Ruth Baylis, Pradeep
Bhanot, Janet Blowney, Allen Brumm, Ted Burroughs, Larry Carpenter, Donna Carver, Chandra
Chandrasekar, Gary Chen, Amit Ganesh, Tom Grant, Mike Hartstein, John Haydu, Susan Hillson,
Dominique Jeunot, Archna Kalra Johnson, Vishy Karra, Alex Keh, Susan Kotsovolos, Sushil Kumar,
Tirthankar Lahiri, Paul Lane, Simon Law, Jeff Levinger, Yunrui Li, Bryn Llewellyn, Diana Lorentz, Lenore
Luscher, Sheryl Maring, Ben Meng, Kuassi Mensah, Tony Morales, Ari Mozes, Subramanian Muralidhar,
Ravi Murthy, Sujatha Muthulingam, Gary Ngai, Kant Patel, Ananth Raghavan, Jack Raitto, Beck
Reitmeyer, Ann Rhee, Kathy Rich, John Russell, Vivian Schupmann, Ravi Shankar, Mark Smith, Richard
Smith, Ekrem Soylemez, Marie St. Gelais, Debbie Steiner, Bob Thome, Anh-Tuan Tran, Randy Urbano,
Stephen Vivian, Daniel Wong, Wanli Yang, Ruiling Zhang, Zulaikha

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle7, Oracle Store, Oracle Transparent
Gateway, PL/SQL, Pro*C, Pro*Cobol, Pro*C/C++, Express, SQL*Net, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments ... xxxi

Preface... xxxiii

Audience ... xxxiv
Organization... xxxiv
Related Documentation ... xxxvii
Conventions.. xxxix
Documentation Accessibility .. xlii

Part I What Is Oracle?

1 Introduction to the Oracle Server

Database Structure and Space Management Overview .. 1-2
Logical Database Structures.. 1-2

Schemas and Schema Objects .. 1-2
Data Blocks, Extents, and Segments ... 1-3
Tablespaces... 1-5

Physical Database Structures .. 1-6
Datafiles .. 1-7
Redo Log Files.. 1-7
Control Files ... 1-8
Data Utilities .. 1-8

Data Dictionary Overview .. 1-9
Data Access Overview ... 1-10
iii

SQL Overview ... 1-10
SQL Statements .. 1-10

Objects Overview.. 1-12
Advantages of Objects .. 1-12

PL/SQL Overview.. 1-13
PL/SQL Program Units .. 1-13

Java Overview ... 1-14
XML Overview.. 1-15
Transactions Overview .. 1-17

Commit and Roll Back Transactions... 1-18
Savepoints... 1-19
Data Consistency Using Transactions .. 1-19

Data Integrity Overview.. 1-19
Integrity Constraints ... 1-20
Keys ... 1-20

SQL*Plus Overview.. 1-21
Memory Structure and Processes Overview .. 1-21

An Oracle Instance.. 1-24
Real Application Clusters: Multiple Instance Systems .. 1-24

Memory Structures ... 1-25
System Global Area ... 1-25
Program Global Area .. 1-26

Process Architecture... 1-26
User (Client) Processes.. 1-26
Oracle Processes... 1-27

The Program Interface Mechanism .. 1-30
Communications Software and Oracle Net Services.. 1-30

An Example of How Oracle Works.. 1-31
Application Architecture Overview .. 1-32

Client/Server Architecture.. 1-32
The Client.. 1-32
The Server ... 1-32

Multitier Architecture: Application Servers ... 1-32
Distributed Databases Overview... 1-33

Location Transparency ... 1-34
iv

Site Autonomy ... 1-34
Distributed Data Manipulation ... 1-34
Two-Phase Commit... 1-34

Replication Overview .. 1-35
Table Replication ... 1-35
Multitier Materialized Views... 1-35

Streams Overview .. 1-36
Advanced Queuing Overview.. 1-38
Heterogeneous Services Overview .. 1-39

Data Concurrency and Consistency Overview ... 1-40
Concurrency .. 1-40
Read Consistency.. 1-40

Read Consistency, Undo Records, and Transactions... 1-41
Read-Only Transactions ... 1-41

Locking Mechanisms.. 1-42
Automatic Locking.. 1-42
Manual Locking... 1-42

Quiesce Database.. 1-42
Database Security Overview .. 1-43

Security Mechanisms ... 1-44
Database Users and Schemas... 1-45
Privileges .. 1-45
Roles .. 1-46
Storage Settings and Quotas .. 1-47
Profiles and Resource Limits ... 1-47
Selective Auditing of User Actions... 1-48
Fine-Grained Auditing ... 1-49

Database Administration Overview ... 1-49
Enterprise Manager Overview ... 1-49
Database Backup and Recovery Overview... 1-50

Why Recovery Is Important... 1-50
Types of Failures.. 1-50
Structures Used for Recovery .. 1-52

Data Warehousing Overview ... 1-53
Differences Between Data Warehouse and OLTP Systems.. 1-54
v

Workload .. 1-54
Data Modifications .. 1-54
Schema Design ... 1-54
Typical Operations .. 1-54
Historical Data ... 1-55

Data Warehouse Architecture... 1-55
Data Warehouse Architecture (Basic)... 1-55
Data Warehouse Architecture (with a Staging Area)... 1-56
Data Warehouse Architecture (with a Staging Area and Data Marts) 1-57

Materialized Views... 1-58
OLAP Overview.. 1-58
Change Data Capture Overview .. 1-59

High Availability Overview ... 1-60
Transparent Application Failover .. 1-61

Elements Affected by Transparent Application Failover .. 1-61
Online Reorganization Architecture .. 1-62
Data Guard Overview.. 1-63

Data Guard Configurations ... 1-63
Data Guard Components ... 1-63

LogMiner Overview ... 1-65
Real Application Clusters .. 1-65
Real Application Clusters Guard ... 1-66

Content Management Overview .. 1-67
Oracle Internet File System Overview... 1-68

Part II Database Structures

2 Data Blocks, Extents, and Segments

Introduction to Data Blocks, Extents, and Segments ... 2-2
Data Blocks Overview.. 2-3

Data Block Format .. 2-4
Header (Common and Variable) ... 2-4
Table Directory... 2-5
Row Directory .. 2-5
Overhead .. 2-5
vi

Row Data .. 2-5
Free Space ... 2-5

Free Space Management .. 2-6
Availability and Compression of Free Space in a Data Block... 2-6
Row Chaining and Migrating.. 2-7
PCTFREE, PCTUSED, and Row Chaining... 2-7

Extents Overview .. 2-8
When Extents Are Allocated... 2-8
Determine the Number and Size of Extents ... 2-8
How Extents Are Allocated... 2-9
When Extents Are Deallocated... 2-10

Extents in Nonclustered Tables... 2-10
Extents in Clustered Tables.. 2-11
Extents in Materialized Views and Their Logs ... 2-11
Extents in Indexes.. 2-11
Extents in Temporary Segments ... 2-11
Extents in Rollback Segments .. 2-12

Segments Overview.. 2-12
Introduction to Data Segments... 2-12
Introduction to Index Segments ... 2-13
Introduction to Temporary Segments ... 2-13

Operations that Require Temporary Segments .. 2-14
Segments in Temporary Tables and Their Indexes .. 2-14
How Temporary Segments Are Allocated .. 2-14

Automatic Undo Management... 2-16
Undo Mode .. 2-16
Undo Quota.. 2-17
Undo Retention Control ... 2-17
External Views ... 2-18

3 Tablespaces, Datafiles, and Control Files

Introduction to Tablespaces, Datafiles, and Control Files.. 3-2
Oracle-Managed Files .. 3-3
Allocate More Space for a Database .. 3-3

Tablespaces Overview.. 3-7
vii

The SYSTEM Tablespace.. 3-7
The Data Dictionary .. 3-8
PL/SQL Program Units Description .. 3-8

Undo Tablespaces ... 3-8
Creation of Undo Tablespaces ... 3-9
Assignment of Undo Tablespaces ... 3-9

Default Temporary Tablespace... 3-10
How to Specify a Default Temporary Tablespace .. 3-10

Using Multiple Tablespaces .. 3-10
Managing Space in Tablespaces ... 3-11

Locally Managed Tablespaces ... 3-11
Segment Space Management in Locally Managed Tablespaces................................... 3-12
Dictionary Managed Tablespaces ... 3-13

Multiple Block Sizes ... 3-13
Online and Offline Tablespaces.. 3-13

When a Tablespace Goes Offline... 3-14
Use of Tablespaces for Special Procedures .. 3-14

Read-Only Tablespaces.. 3-15
Temporary Tablespaces for Sort Operations .. 3-16

Sort Segments ... 3-16
Creation of Temporary Tablespaces ... 3-16

Transport of Tablespaces Between Databases .. 3-17
How to Move or Copy a Tablespace to Another Database ... 3-17

Datafiles Overview ... 3-18
Datafile Contents .. 3-18
Size of Datafiles ... 3-19
Offline Datafiles .. 3-19
Temporary Datafiles... 3-19

Control Files Overview .. 3-20
Control File Contents ... 3-20
Multiplexed Control Files.. 3-22

4 The Data Dictionary

Introduction to the Data Dictionary .. 4-2
Structure of the Data Dictionary... 4-2
viii

Base Tables ... 4-3
User-Accessible Views.. 4-3

SYS, Owner of the Data Dictionary.. 4-3
How the Data Dictionary Is Used.. 4-3

How Oracle Uses the Data Dictionary .. 4-3
Public Synonyms for Data Dictionary Views.. 4-4
Cache the Data Dictionary for Fast Access .. 4-4
Other Programs and the Data Dictionary.. 4-4

How to Use the Data Dictionary .. 4-5
Views with the Prefix USER .. 4-5
Views with the Prefix ALL... 4-6
Views with the Prefix DBA .. 4-6
The DUAL Table.. 4-6

Dynamic Performance Tables .. 4-7
Database Object Metadata .. 4-7

Part III The Oracle Instance

5 Database and Instance Startup and Shutdown

Introduction to an Oracle Instance ... 5-2
The Instance and the Database ... 5-3
Connection with Administrator Privileges... 5-3
Initialization Parameter Files .. 5-4

How Parameter Values Are Changed .. 5-4
Instance and Database Startup... 5-5

How an Instance Is Started.. 5-5
Restricted Mode of Instance Startup .. 5-6
Forced Startup in Abnormal Situations ... 5-6

How a Database Is Mounted... 5-6
How a Database Is Mounted with Real Application Clusters .. 5-6
How a Standby Database Is Mounted.. 5-7
How a Clone Database Is Mounted .. 5-8

What Happens When You Open a Database.. 5-8
Instance Recovery.. 5-8
Undo Space Acquisition and Management ... 5-8
ix

Resolution of In-Doubt Distributed Transaction .. 5-9
Open a Database in Read-Only Mode .. 5-9

Database and Instance Shutdown ... 5-10
Close a Database ... 5-10

Close the Database by Terminating the Instance.. 5-10
Unmount a Database.. 5-11
Shut Down an Instance .. 5-11

Abnormal Instance Shutdown... 5-11

6 Application Architecture

Client/Server Architecture... 6-2
Multitier Architecture .. 6-5

Clients... 6-6
Application Servers .. 6-6
Database Servers ... 6-7

Oracle Net Services... 6-7
Connectivity ... 6-8
Manageability... 6-8
Internet Scalability... 6-8
Internet Security... 6-8

How Oracle Net Services Works .. 6-8
The Listener ... 6-9

Service Information Registration... 6-9

7 Memory Architecture

Introduction to Oracle Memory Structures.. 7-2
System Global Area (SGA) Overview .. 7-3

Dynamic SGA.. 7-4
Dynamic SGA Granules.. 7-5

Database Buffer Cache ... 7-7
Organization of the Database Buffer Cache .. 7-7
The LRU Algorithm and Full Table Scans ... 7-8
Size of the Database Buffer Cache... 7-8
Multiple Buffer Pools .. 7-10

Redo Log Buffer .. 7-11
x

Shared Pool.. 7-11
Library Cache... 7-12
Shared SQL Areas and Private SQL Areas .. 7-12
PL/SQL Program Units and the Shared Pool ... 7-12
Dictionary Cache ... 7-13
Allocation and Reuse of Memory in the Shared Pool .. 7-13

Large Pool .. 7-15
Control of the SGA’s Use of Memory.. 7-16
Other SGA Initialization Parameters ... 7-16

Physical Memory... 7-16
SGA Starting Address... 7-16
Extended Buffer Cache Mechanism.. 7-17

Program Global Areas (PGA) Overview .. 7-17
Content of the PGA .. 7-17

Private SQL Area ... 7-17
Session Memory... 7-19

SQL Work Areas ... 7-19
PGA Memory Management for Dedicated Mode ... 7-20

Dedicated and Shared Servers ... 7-22
Software Code Areas .. 7-22

8 Process Architecture

Introduction to Processes .. 8-2
Multiple-Process Oracle Systems ... 8-2
Types of Processes .. 8-2

User Processes Overview... 8-4
Connections and Sessions ... 8-4

Oracle Processes Overview ... 8-5
Server Processes.. 8-5
Background Processes.. 8-5

Database Writer Process (DBWn) ... 8-8
Log Writer Process (LGWR) .. 8-9
Checkpoint Process (CKPT)... 8-11
System Monitor Process (SMON) ... 8-11
Process Monitor Process (PMON) .. 8-12
xi

Recoverer Process (RECO) ... 8-12
Job Queue Processes.. 8-12
Archiver Processes (ARCn) .. 8-13
Lock Manager Server Process (LMS) .. 8-14
Queue Monitor Processes (QMNn)... 8-14

Trace Files and the Alert Log .. 8-14
Shared Server Architecture ... 8-15

Scalability ... 8-16
Dispatcher Request and Response Queues... 8-16

Dispatcher Processes (Dnnn).. 8-19
Shared Server Processes (Snnn) .. 8-19
Restricted Operations of the Shared Server .. 8-20

Dedicated Server Configuration .. 8-21
The Program Interface.. 8-22

Program Interface Structure.. 8-23
Program Interface Drivers ... 8-23
Communications Software for the Operating System... 8-24

9 Database Resource Management

Introduction to the Database Resource Manager ... 9-2
Database Resource Manager Overview .. 9-3
Example of a Simple Resource Plan... 9-4

How the Database Resource Manager Works ... 9-5
Resource Control... 9-5

Example of Resource Control .. 9-5
Effectiveness of the Database Resource Manager... 9-6

Database Integration .. 9-6
Performance Overhead .. 9-7

Resource Plans and Resource Consumer Groups... 9-7
Activation of a Resource Plan ... 9-8

Persistent... 9-8
Dynamic .. 9-8

Groups of Resource Plans.. 9-9
Resource Allocation Methods and Resource Plan Directives .. 9-11

Resource Plan Directives ... 9-11
xii

CPU Method... 9-12
Active Session Pool with Queuing.. 9-12
Degree of Parallelism Limit ... 9-12
Automatic Consumer Group Switching .. 9-12
Execution Time Limit.. 9-13
Undo Pool... 9-13

CPU Resource Allocation .. 9-13
CPU Allocation Rules ... 9-15
Levels and Priorities.. 9-16

Interaction with Operating-System Resource Control .. 9-17
Dynamic Reconfiguration ... 9-18

Part IV Data

10 Schema Objects

Introduction to Schema Objects .. 10-2
Tables... 10-5

How Table Data Is Stored.. 10-6
Row Format and Size .. 10-6
Rowids of Row Pieces... 10-9
Column Order.. 10-9

Nulls Indicate Absence of Value .. 10-10
Default Values for Columns.. 10-10

Default Value Insertion and Integrity Constraint Checking....................................... 10-11
Partitioned Tables... 10-12
Nested Tables .. 10-13
Temporary Tables... 10-13

Segment Allocation ... 10-14
Parent and Child Transactions .. 10-14

External Tables.. 10-14
The Access Driver.. 10-15
Data Loading with External Tables .. 10-15
Parallel Access to External Tables... 10-16

Views ... 10-16
How Views are Stored ... 10-17
xiii

How Views Are Used... 10-18
Mechanics of Views .. 10-19

Globalization Support Parameters in Views ... 10-19
Use of Indexes Against Views ... 10-19

Dependencies and Views... 10-20
Updatable Join Views... 10-20
Object Views .. 10-21
Inline Views ... 10-21

Materialized Views ... 10-22
Define Constraints on Views... 10-23
Refresh Materialized Views .. 10-24
Materialized View Logs ... 10-24

Dimensions .. 10-25
The Sequence Generator ... 10-25
Synonyms ... 10-27
Indexes .. 10-28

Unique and Nonunique Indexes .. 10-30
Composite Indexes ... 10-30
Indexes and Keys .. 10-31
Indexes and Nulls ... 10-31
Function-Based Indexes ... 10-32

Uses of Function-Based Indexes.. 10-32
Optimization with Function-Based Indexes .. 10-33
Dependencies of Function-Based Indexes ... 10-33

How Indexes Are Stored.. 10-34
Format of Index Blocks ... 10-34
The Internal Structure of Indexes.. 10-35
Index Properties... 10-36
Advantages of B-tree Structure ... 10-37

How Indexes Are Searched ... 10-38
Index Unique Scan... 10-38
Index Range Scan... 10-40
Index Range Scan Descending... 10-43

Key Compression.. 10-45
Prefix and Suffix Entries ... 10-45
xiv

Performance and Storage Considerations ... 10-46
Uses of Key Compression .. 10-46

Reverse Key Indexes .. 10-47
Bitmap Indexes.. 10-48

Benefits for Data Warehousing Applications.. 10-48
Cardinality.. 10-49
Bitmap Index Example ... 10-50
Bitmap Indexes and Nulls.. 10-52
Bitmap Indexes on Partitioned Tables.. 10-53

Bitmap Join Indexes.. 10-53
Four Join Models ... 10-53
Creation of a Bitmap Join Index .. 10-56

Index-Organized Tables .. 10-57
Benefits of Index-Organized Tables... 10-58
Index-Organized Tables with Row Overflow Area... 10-59
Secondary Indexes on Index-Organized Tables... 10-60
Bitmap Indexes on Index-Organized Tables .. 10-61

Mapping Table... 10-61
Partitioned Index-Organized Tables.. 10-62
B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables 10-62
Index-Organized Table Applications .. 10-62

Application Domain Indexes ... 10-62
Clusters ... 10-63
Hash Clusters... 10-65

11 Partitioned Tables and Indexes

Introduction to Partitioning.. 11-2
Partition Key.. 11-4
Partitioned Tables... 11-4
Partitioned Index-Organized Tables.. 11-5

Partitioning Methods ... 11-5
Range Partitioning.. 11-7

Range Partitioning Example .. 11-8
List Partitioning .. 11-8

List Partitioning Example... 11-8
xv

Hash Partitioning.. 11-9
Hash Partitioning Example .. 11-10

Composite Partitioning.. 11-10
Composite Partitioning Range-Hash Example ... 11-11
Composite Partitioning Range-List Example .. 11-12

When to Partition a Table .. 11-13
Partitioned Indexes ... 11-13

Local Partitioned Indexes .. 11-14
Global Partitioned Indexes .. 11-15

Maintenance of Global Partitioned Indexes .. 11-16
Global Nonpartitioned Indexes .. 11-17
Partitioned Index Examples .. 11-18

Example of Index Creation: Starting Table Used for Examples 11-18
Example of a Local Index Creation ... 11-18
Example of a Global Index Creation... 11-18
Example of a Global Partitioned Index Creation .. 11-18
Example of a Partitioned Index-Organized Table Creation .. 11-19

Miscellaneous Information about Creating Indexes on Partitioned Tables 11-19
Using Partitioned Indexes in OLTP Applications.. 11-19
Using Partitioned Indexes in Data Warehousing and DSS Applications......................... 11-19
Partitioned Indexes on Composite Partitions... 11-20

Partitioning to Improve Performance ... 11-20
Partition Pruning .. 11-20

Partition Pruning Example... 11-21
Partition-wise Joins... 11-21
Parallel DML.. 11-22

12 Native Datatypes

Introduction to Oracle Datatypes .. 12-2
Character Datatypes ... 12-3

CHAR Datatype .. 12-3
VARCHAR2 and VARCHAR Datatypes .. 12-4

VARCHAR Datatype .. 12-4
Length Semantics for Character Datatypes... 12-4
NCHAR and NVARCHAR2 Datatypes .. 12-5
xvi

NCHAR... 12-6
NVARCHAR2.. 12-6

Use of Unicode Data in an Oracle Database ... 12-6
Implicit Type Conversion... 12-7

LOB Character Datatypes.. 12-7
LONG Datatype.. 12-7

NUMBER Datatype .. 12-8
Internal Numeric Format... 12-9

DATE Datatype ... 12-10
Use of Julian Dates ... 12-11
Date Arithmetic... 12-11
Centuries and the Year 2000 ... 12-12
Daylight Savings Support ... 12-12
Time Zones .. 12-12

Example: ... 12-13
LOB Datatypes .. 12-13

BLOB Datatype ... 12-14
CLOB and NCLOB Datatypes .. 12-15
BFILE Datatype... 12-15

RAW and LONG RAW Datatypes ... 12-15
ROWID and UROWID Datatypes... 12-16

The ROWID Pseudocolumn.. 12-17
Physical Rowids.. 12-17

Extended Rowids... 12-18
Restricted Rowids.. 12-19
Examples of Rowid Use.. 12-19
How Rowids Are Used... 12-21

Logical Rowids.. 12-21
Comparison of Logical Rowids with Physical Rowids.. 12-22
Guesses in Logical Rowids... 12-22

Rowids in Non-Oracle Databases .. 12-23
ANSI, DB2, and SQL/DS Datatypes ... 12-23
XML Datatypes.. 12-25

XMLType Datatype.. 12-25
URI Datatypes ... 12-26
xvii

Data Conversion.. 12-26

13 Object Datatypes and Object Views

Introduction to Object Datatypes .. 13-2
Complex Data Models.. 13-2

Complex Data Model Example.. 13-2
Multimedia Datatypes ... 13-3

Object Datatype Categories .. 13-3
Object Types .. 13-4

Purchase Order Example.. 13-4
Types of Methods .. 13-5
Object Tables .. 13-8
Object Identifiers.. 13-9
Object Views Description ... 13-9
REFs ... 13-9

Collection Types.. 13-11
VARRAYs ... 13-11
Nested Tables Description ... 13-12

Type Inheritance.. 13-13
FINAL and NOT FINAL Types .. 13-13

Example of Creating a NOT FINAL Object Type ... 13-14
NOT INSTANTIABLE Types and Methods ... 13-14

User-Defined Aggregate Functions ... 13-15
Why Have User-Defined Aggregate Functions?.. 13-15
Creation and Use of UDAGs... 13-15
How Do Aggregate Functions Work? ... 13-16

Application Interfaces.. 13-17
SQL.. 13-17
PL/SQL .. 13-18
Pro*C/C++... 13-18

Dynamic Creation and Access of Type Descriptions ... 13-19
OCI .. 13-20
OTT ... 13-20
JPublisher ... 13-21
JDBC.. 13-21
xviii

SQLJ .. 13-21
SQLJ Object Types... 13-21

Datatype Evolution... 13-22
Introduction to Object Views ... 13-23

Advantages of Object Views ... 13-23
How Object Views Are Defined ... 13-24
Use of Object Views.. 13-25
Updates of Object Views ... 13-26
Updates of Nested Table Columns in Views.. 13-26
View Hierarchies .. 13-27

Part V Data Access

14 SQL, PL/SQL, and Java

SQL Overview ... 14-2
SQL Statements ... 14-2

Data Manipulation Language Statements ... 14-3
Data Definition Language Statements.. 14-4
Transaction Control Statements .. 14-5
Session Control Statements.. 14-5
System Control Statements .. 14-5
Embedded SQL Statements ... 14-5

Identification of Nonstandard SQL ... 14-6
Recursive SQL... 14-6
Cursors ... 14-6

Scrollable Cursors.. 14-7
Shared SQL .. 14-7
Parsing.. 14-7
SQL Processing ... 14-8

SQL Statement Execution... 14-8
DML Statement Processing.. 14-10
DDL Statement Processing... 14-14
Control of Transactions .. 14-14

The Optimizer Overview... 14-14
Execution Plans.. 14-15
xix

PL/SQL Overview ... 14-16
How PL/SQL Runs .. 14-17

Native Execution.. 14-17
Interpreted Execution ... 14-17

Language Constructs for PL/SQL.. 14-19
Variables and Constants ... 14-19
Cursors .. 14-19
Exceptions... 14-20
Dynamic SQL in PL/SQL... 14-20

PL/SQL Program Units ... 14-21
Stored Procedures and Functions ... 14-21
PL/SQL Packages.. 14-27

PL/SQL Collections and Records... 14-30
Collections .. 14-30
Records.. 14-30

PL/SQL Server Pages... 14-30
Java Overview.. 14-31

Java and Object-Oriented Programming Terminology... 14-32
Classes ... 14-32

Class Hierarchy ... 14-34
Interfaces .. 14-35
Polymorphism... 14-36
The Java Virtual Machine (JVM)... 14-37
Why Use Java in Oracle?.. 14-39

Multithreading ... 14-40
Automated Storage Management ... 14-41
Footprint ... 14-41
Performance.. 14-42
Dynamic Class Loading.. 14-43

Oracle’s Java Application Strategy... 14-44
Java Stored Procedures ... 14-45
PL/SQL Integration and Oracle RDBMS Functionality .. 14-45

15 Dependencies Among Schema Objects

Introduction to Dependency Issues .. 15-2
xx

Resolution of Schema Object Dependencies .. 15-4
Compilation of Views and PL/SQL Program Units ... 15-5

Views and Base Tables.. 15-5
Program Units and Referenced Objects ... 15-6
Data Warehousing Considerations... 15-7
Session State and Referenced Packages ... 15-7
Security Authorizations.. 15-7

Function-Based Index Dependencies... 15-8
Requirements ... 15-8
DETERMINISTIC Functions.. 15-8
Privileges on the Defining Function ... 15-8
Resolve Dependencies of Function-Based Indexes .. 15-9

Object Name Resolution ... 15-9
Shared SQL Dependency Management ... 15-10
Local and Remote Dependency Management... 15-10

Management of Local Dependencies... 15-10
Management of Remote Dependencies... 15-11

Dependencies Among Local and Remote Database Procedures................................ 15-11
Dependencies Among Other Remote Schema Objects .. 15-13
Dependencies of Applications... 15-13

16 Transaction Management

Introduction to Transactions... 16-2
Statement Execution and Transaction Control... 16-3
Statement-Level Rollback .. 16-4
Resumable Space Allocation ... 16-5

Transaction Management Overview ... 16-5
Commit Transactions ... 16-6
Rollback of Transactions.. 16-7
Savepoints In Transactions.. 16-8
Transaction Naming... 16-9

How Transactions Are Named.. 16-9
Commit Comment... 16-9

The Two-Phase Commit Mechanism... 16-10
Discrete Transaction Management .. 16-11
xxi

Autonomous Transactions ... 16-12
Autonomous PL/SQL Blocks ... 16-12
Transaction Control Statements in Autonomous Blocks .. 16-13

17 Triggers

Introduction to Triggers ... 17-2
How Triggers Are Used... 17-4

Some Cautionary Notes about Triggers ... 17-4
Triggers Compared with Declarative Integrity Constraints ... 17-5

Parts of a Trigger ... 17-6
The Triggering Event or Statement .. 17-7
Trigger Restriction .. 17-8
Trigger Action ... 17-8

Types of Triggers ... 17-9
Row Triggers and Statement Triggers ... 17-9

Row Triggers .. 17-9
Statement Triggers .. 17-9

BEFORE and AFTER Triggers .. 17-10
BEFORE Triggers .. 17-10
AFTER Triggers .. 17-10
Trigger Type Combinations ... 17-11

INSTEAD OF Triggers ... 17-12
Modify Views ... 17-12
Views That Are Not Modifiable .. 17-13
INSTEAD OF Triggers on Nested Tables .. 17-13

Triggers on System Events and User Events .. 17-14
Event Publication... 17-14
Event Attributes... 17-15
System Events .. 17-15
User Events... 17-15

Trigger Execution .. 17-17
The Execution Model for Triggers and Integrity Constraint Checking............................ 17-18
Data Access for Triggers .. 17-20
Storage of PL/SQL Triggers.. 17-21
Execution of Triggers ... 17-21
xxii

Dependency Maintenance for Triggers ... 17-21

Part VI Parallel SQL and Direct-Load INSERT

18 Parallel Execution of SQL Statements

Introduction to Parallel Execution... 18-2
When to Implement Parallel Execution... 18-2
When Not to Implement Parallel Execution... 18-3

How Parallel Execution Works... 18-4
Parallelized SQL Statements ... 18-5

Parallelism Between Operations ... 18-6
Degree of Parallelism ... 18-8
Parallel Query Intra- and Inter-Operation Example ... 18-9

SQL Operations That Can Be Parallelized .. 18-12
Parallel Query ... 18-12
Parallel DDL .. 18-12

DDL Statements that can be Parallelized... 18-12
Parallel DML ... 18-13
SQL*Loader ... 18-13
How to Make a Statement Run in Parallel.. 18-14

Parallel Query .. 18-14
Parallel DDL... 18-14
Parallel DML .. 18-14

19 Direct-Path INSERT

Introduction to Direct-Path INSERT... 19-2
Advantages of Direct-Path INSERT .. 19-2
Serial and Parallel Direct-Path INSERT... 19-3
Direct-Path INSERT Into Partitioned and Nonpartitioned Tables ... 19-4

Serial Direct-Path INSERT into Partitioned and Nonpartitioned Tables 19-4
Parallel Direct-Path INSERT into Partitioned Tables .. 19-4
Parallel Direct-Path INSERT into Nonpartitioned Tables .. 19-4

Direct-Path INSERT and Logging Mode.. 19-4
Direct-Path INSERT with Logging... 19-5
xxiii

Direct-Path INSERT without Logging... 19-5
Additional Considerations for Direct-Path INSERT ... 19-5

Index Maintenance with Direct-Path INSERT.. 19-5
Space Considerations with Direct-Path INSERT.. 19-6
Locking Considerations with Direct-Path INSERT ... 19-6

Part VII Data Protection

20 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistency in a Multiuser Environment.............. 20-2
Preventable Phenomena and Transaction Isolation Levels .. 20-2
Overview of Locking Mechanisms... 20-3

How Oracle Manages Data Concurrency and Consistency .. 20-4
Multiversion Concurrency Control.. 20-4
Statement-Level Read Consistency .. 20-5
Transaction-Level Read Consistency ... 20-6
Read Consistency with Real Application Clusters .. 20-6
Oracle Isolation Levels ... 20-7

Set the Isolation Level ... 20-7
Read Committed Isolation ... 20-8
Serializable Isolation ... 20-8

Comparison of Read Committed and Serializable Isolation .. 20-10
Transaction Set Consistency .. 20-10
Row-Level Locking.. 20-11
Referential Integrity .. 20-12
Distributed Transactions .. 20-12

Choice of Isolation Level ... 20-13
Read Committed Isolation ... 20-13
Serializable Isolation ... 20-14
Quiesce Database... 20-15

How Oracle Locks Data ... 20-17
Transactions and Data Concurrency.. 20-17

Modes of Locking .. 20-18
Lock Duration .. 20-18
Data Lock Conversion Versus Lock Escalation... 20-18
xxiv

Deadlocks... 20-19
Deadlock Detection ... 20-20
Avoid Deadlocks ... 20-21

Types of Locks... 20-21
DML Locks .. 20-22

Row Locks (TX).. 20-22
Table Locks (TM)... 20-23
DML Locks Automatically Acquired for DML Statements .. 20-27

DDL Locks ... 20-30
Exclusive DDL Locks .. 20-30
Share DDL Locks ... 20-30
Breakable Parse Locks .. 20-31
Duration of DDL Locks .. 20-31
DDL Locks and Clusters... 20-31

Latches and Internal Locks.. 20-31
Latches .. 20-31
Internal Locks... 20-32

Explicit (Manual) Data Locking ... 20-32
Examples of Concurrency under Explicit Locking... 20-33

Oracle Lock Management Services .. 20-41
Flashback Query ... 20-41

Flashback Query Benefits .. 20-42
Some Uses of Flashback Query... 20-43

Self-Service Repair... 20-43
E-Mail or Voice Mail Applications ... 20-44
Account Balances... 20-44
Packaged Applications ... 20-44

21 Data Integrity

Introduction to Data Integrity .. 21-2
Types of Data Integrity .. 21-3

Null Rule... 21-3
Unique Column Values .. 21-3
Primary Key Values .. 21-3
Referential Integrity Rules ... 21-3
xxv

Complex Integrity Checking.. 21-4
How Oracle Enforces Data Integrity.. 21-4

Integrity Constraints Description.. 21-4
Database Triggers .. 21-5

Introduction to Integrity Constraints.. 21-5
Advantages of Integrity Constraints.. 21-5

Declarative Ease... 21-6
Centralized Rules... 21-6
Maximum Application Development Productivity ... 21-6
Immediate User Feedback.. 21-6
Superior Performance ... 21-6
Flexibility for Data Loads and Identification of Integrity Violations........................... 21-7

The Performance Cost of Integrity Constraints.. 21-7
Types of Integrity Constraints .. 21-7

NOT NULL Integrity Constraints .. 21-7
UNIQUE Key Integrity Constraints ... 21-8

Unique Keys ... 21-9
UNIQUE Key Constraints and Indexes.. 21-10
Combine UNIQUE Key and NOT NULL Integrity Constraints................................. 21-11

PRIMARY KEY Integrity Constraints.. 21-11
Primary Keys.. 21-12
PRIMARY KEY Constraints and Indexes .. 21-12

Referential Integrity Constraints .. 21-13
Self-Referential Integrity Constraints ... 21-14
Nulls and Foreign Keys .. 21-15
Actions Defined by Referential Integrity Constraints.. 21-16
Concurrency Control, Indexes, and Foreign Keys.. 21-17

CHECK Integrity Constraints ... 21-20
The Check Condition .. 21-21
Multiple CHECK Constraints .. 21-21

The Mechanisms of Constraint Checking.. 21-21
Default Column Values and Integrity Constraint Checking.. 21-24

Deferred Constraint Checking ... 21-24
Constraint Attributes.. 21-24
SET CONSTRAINTS Mode ... 21-25
xxvi

Unique Constraints and Indexes .. 21-26
Constraint States ... 21-26

Constraint State Modification... 21-27

22 Controlling Database Access

Introduction to Database Security... 22-2
Schemas, Database Users, and Security Domains.. 22-2
User Authentication ... 22-3

Authentication by the Operating System.. 22-4
Authentication by the Network.. 22-4

Third Party-Based Authentication Technologies.. 22-4
Public Key Infrastructure-Based Authentication.. 22-5
Remote Authentication... 22-7

Authentication by the Oracle Database... 22-8
Password Encryption While Connecting... 22-8
Account Locking.. 22-8
Password Lifetime and Expiration ... 22-9
Password History .. 22-9
Password Complexity Verification ... 22-9

Multitier Authentication and Authorization.. 22-10
Clients, Application Servers, and Database Servers .. 22-10
Security Issues for Middle-Tier Applications ... 22-12
Identity Issues in a Multitier Environment ... 22-12
Restricted Privileges in a Multitier Environment ... 22-12

Authentication by the Secure Socket Layer Protocol .. 22-12
Authentication of Database Administrators... 22-13

Oracle Internet Directory .. 22-14
User Tablespace Settings and Quotas ... 22-14

Default Tablespace Option.. 22-15
Temporary Tablespace Option ... 22-15
Tablespace Access and Quotas ... 22-15

The User Group PUBLIC... 22-16
User Resource Limits and Profiles .. 22-17

Types of System Resources and Limits ... 22-17
CPU Time ... 22-18
xxvii

Logical Reads ... 22-18
Other Resources ... 22-19

Profiles.. 22-20
When to Use Profiles... 22-20
Determine Values for Resource Limits of a Profile .. 22-20

23 Privileges, Roles, and Security Policies

Introduction to Privileges.. 23-2
System Privileges .. 23-2

Grant and Revoke System Privileges.. 23-3
Who Can Grant or Revoke System Privileges? ... 23-3

Schema Object Privileges... 23-3
Grant and Revoke Schema Object Privileges .. 23-4
Who Can Grant Schema Object Privileges? ... 23-4

Table Security .. 23-5
Data Manipulation Language Operations ... 23-5
Data Definition Language Operations ... 23-6

View Security... 23-6
Privileges Required to Create Views .. 23-6
Increase Table Security with Views .. 23-7

Procedure Security.. 23-8
Procedure Execution and Security Domains ... 23-8
System Privileges Needed to Create or Alter a Procedure.. 23-10
Packages and Package Objects... 23-10

Type Security... 23-12
System Privileges for Named Types... 23-12
Object Privileges .. 23-12
Method Execution Model ... 23-13
Privileges Required to Create Types and Tables Using Types 23-13
Privileges Required to Create Types and Tables Using Types Example................... 23-14
Privileges on Type Access and Object Access ... 23-15
Type Dependencies ... 23-16

Introduction to Roles.. 23-17
Common Uses for Roles... 23-18

Application Roles .. 23-19
xxviii

User Roles ... 23-19
The Mechanisms of Roles .. 23-19
Grant and Revoke Roles .. 23-20
Who Can Grant or Revoke Roles?.. 23-20
Role Names.. 23-21
Security Domains of Roles and Users.. 23-21
PL/SQL Blocks and Roles ... 23-21

Named Blocks with Definer Rights .. 23-21
Anonymous Blocks with Invoker Rights ... 23-21

Data Definition Language Statements and Roles .. 23-22
Predefined Roles ... 23-23
The Operating System and Roles ... 23-23
Roles in a Distributed Environment .. 23-24

Fine-Grained Access Control.. 23-24
Dynamic Predicates.. 23-25

Application Context ... 23-25
Secure Application Roles .. 23-26

Creation of Secure Application Roles .. 23-26

24 Auditing

Introduction to Auditing ... 24-2
Features of Auditing .. 24-2

Types of Auditing.. 24-2
Focus of Auditing.. 24-3
Audit Records and the Audit Trail ... 24-3

Mechanisms for Auditing.. 24-4
When Are Audit Records Generated?.. 24-4
Events Always Audited to the Operating System Audit Trail 24-5
When Do Audit Options Take Effect?.. 24-6
Audit in a Distributed Database ... 24-6
Audit to the Operating System Audit Trail... 24-6

Statement Auditing .. 24-7
Privilege Auditing .. 24-7
Schema Object Auditing ... 24-8

Schema Object Audit Options for Views and Procedures.. 24-8
xxix

Fine-Grained Auditing .. 24-9
Focus Statement, Privilege, and Schema Object Auditing ... 24-10

Successful and Unsuccessful Statement Executions Auditing... 24-10
BY SESSION and BY ACCESS Clauses of Audit Statement... 24-11

BY SESSION ... 24-11
BY ACCESS... 24-12
Defaults and Excluded Operations ... 24-12

Audit By User.. 24-13
Audit in a Multitier Environment ... 24-13

A Operating System Specific Information

B Information on Deprecated Features

Allocating Extents in Dictionary Managed Tablespaces ... B-2
Introduction to Rollback Segments... B-3

Contents of a Rollback Segment .. B-4
How Rollback Entries Are Logged ... B-4
When Rollback Information Is Required ... B-5
Transactions and Rollback Segments ... B-5
How Extents Are Deallocated from a Rollback Segment .. B-9
The Rollback Segment SYSTEM .. B-10
Oracle Instances and Types of Rollback Segments... B-10
Rollback Segment States ... B-12
Deferred Rollback Segments.. B-14
High Water Mark... B-15

PCTFREE, PCTUSED, and Row Chaining... B-15

Glossary

Index
xxx

Send Us Your Comments

Oracle9i Database Concepts, Release 2 (9.2)

Part No. A96524-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

� Electronic mail: infodev_us@oracle.com
� FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
� Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally)
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xxxi

xxxii

Preface

This manual describes all features of the Oracle server, an object-relational database
management system. It describes how the Oracle server functions and lays a
conceptual foundation for much of the practical information contained in other
Oracle server manuals. Information in this manual applies to the Oracle server
running on all operating systems.

This preface contains these topics:

� Audience

� Organization

� Related Documentation

� Conventions

� Documentation Accessibility
xxxiii

Audience
Oracle9i Database Concepts is intended for database administrators, system
administrators, and database application developers.

To use this document, you need to know the following:

� Relational database concepts in general

� Concepts and terminology in Chapter 1, "Introduction to the Oracle Server"

� The operating system environment under which you are running Oracle

Organization
This document contains:

Part I: What Is Oracle?

Chapter 1, "Introduction to the Oracle Server"
This chapter provides an overview of the concepts and features you need for
understanding the Oracle data server. You should read this overview before using
the detailed information in the remainder of this manual.

Part II: Database Structures

Chapter 2, "Data Blocks, Extents, and Segments"
This chapter discusses how data is stored and how storage space is allocated for
and consumed by various objects within an Oracle database.

Chapter 3, "Tablespaces, Datafiles, and Control Files"
This chapter discusses how physical storage space in an Oracle database is divided
into logical divisions called tablespaces. It also discusses the physical operating
system files associated with tablespaces (datafiles) and files used in recovery
(control files).

Chapter 4, "The Data Dictionary"
This chapter describes the data dictionary, which is a set of reference tables and
views that contain read-only information about an Oracle database.
xxxiv

Part III: The Oracle Instance

Chapter 5, "Database and Instance Startup and Shutdown"
This chapter describes an Oracle instance and explains how the database
administrator can control the accessibility of an Oracle database system.

Chapter 6, "Application Architecture"
This chapter discusses distributed processing environments in which the Oracle
data server can operate.

Chapter 7, "Memory Architecture"
This chapter describes the memory structures used by an Oracle database system.

Chapter 8, "Process Architecture"
This chapter describes the process architecture of an Oracle instance and the
different process configurations available for Oracle.

Chapter 9, "Database Resource Management"
This chapter describes how the Database Resource Manager can be used to control
resource use.

Part IV: Data

Chapter 10, "Schema Objects"
This chapter describes the database objects that can be created in the domain of a
specific user (a schema), including tables, views, numeric sequences, and
synonyms. Optional structures that make data retrieval more efficient, including
indexes, materialized views, dimensions, and clusters, are also described.

Chapter 11, "Partitioned Tables and Indexes"
This chapter describes how partitioning can be used to split large tables and indexes
into more manageable pieces.

Chapter 12, "Native Datatypes"
This chapter describes the types of relational data that can be stored in an Oracle
database table, such as fixed- and variable-length character strings, numbers, dates,
and binary large objects (BLOBs).
xxxv

Chapter 13, "Object Datatypes and Object Views"
This chapter gives an overview of the object extensions that Oracle provides.

Part V: Data Access

Chapter 14, "SQL, PL/SQL, and Java"
This chapter briefly describes SQL (Structured Query Language), the language used
to communicate with Oracle, as well as PL/SQL, the Oracle procedural language
extension to SQL. It also discusses the procedural language constructs called
procedures, functions, and packages, which are PL/SQL program units that are
stored in the database.

Chapter 15, "Dependencies Among Schema Objects"
This chapter explains how Oracle manages the dependencies for objects such as
procedures, packages, triggers, and views.

Chapter 16, "Transaction Management"
This chapter defines the concept of transactions and explains the SQL statements
used to control them. Transactions are logical units of work that are run together as
a unit.

Chapter 17, "Triggers"
This chapter discusses triggers, which are procedures written in PL/SQL, Java, or C
that run implicitly whenever a table or view is modified or when some user actions
or database system actions occur.

Part VI: Parallel SQL and Direct-Path INSERT

Chapter 18, "Parallel Execution of SQL Statements"
This chapter describes parallel execution of SQL statements (queries, DML, and
DDL statements) and explains the rules for parallelizing SQL statements.

Chapter 19, "Direct-Path INSERT"
This chapter describes the Oracle direct-path INSERT feature for serial or parallel
inserts, and the NOLOGGING clause.
xxxvi

Part VII: Data Protection

Chapter 20, "Data Concurrency and Consistency"
This chapter explains how Oracle provides concurrent access to and maintains the
accuracy of shared information in a multiuser environment. It describes the
automatic mechanisms that Oracle uses to guarantee that the concurrent operations
of multiple users do not interfere with each other.

Chapter 21, "Data Integrity"
This chapter discusses data integrity and the declarative integrity constraints that
you can use to enforce data integrity.

Chapter 22, "Controlling Database Access"
This chapter describes how to control user access to data and database resources.

Chapter 23, "Privileges, Roles, and Security Policies"
This chapter discusses security at the system and schema object levels.

Chapter 24, "Auditing"
This chapter discusses how the Oracle auditing feature tracks database activity.

Appendix A, "Operating System Specific Information"
This appendix lists all the operating system specific references within this manual.

Appendix B, "Information on Deprecated Features"
This appendix contains conceptual information that might be of interest if you
created your database with an earlier version of Oracle.

Glossary
The glossary defines terms used in this manual.

Related Documentation
For more information, see these Oracle resources:

� Oracle9i Database Migration for information about upgrading a previous release
of Oracle
xxxvii

� Oracle9i Database Administrator’s Guide for information about how to administer
the Oracle server

� Oracle9i Application Developer’s Guide - Fundamentals for information about
developing Oracle database applications

� Oracle9i Database Performance Planning for information about optimizing
performance of an Oracle database

� Oracle9i Data Warehousing Guide for information about data warehousing and
business intelligence

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com
xxxviii

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

� Conventions in Text

� Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xxxix

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xl

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

.

.

.

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xli

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.
xlii

Part I

What Is Oracle?

Part I provides an overview of Oracle server concepts and terminology. It contains
the following chapters:

� Chapter 1, "Introduction to the Oracle Server"

Oracle9i Database Concepts

Introduction to the Oracle S
1

Introduction to the Oracle Server

This chapter provides an overview of the Oracle server. The topics include:

� Database Structure and Space Management Overview

� Data Access Overview

� Memory Structure and Processes Overview

� Application Architecture Overview

� Distributed Databases Overview

� Data Concurrency and Consistency Overview

� Database Security Overview

� Database Administration Overview

� Data Warehousing Overview

� High Availability Overview

� Content Management Overview

Note: This chapter contains information relating to both Oracle9i
Standard Edition and Oracle9i Enterprise Edition. Some of the
features and options documented in this chapter are available only
if you have purchased the Oracle9i Enterprise Edition. See Oracle9i
Database New Features for information about the differences
between Oracle9i Standard Edition and Oracle9i Enterprise Edition.
erver 1-1

Database Structure and Space Management Overview
Database Structure and Space Management Overview
An Oracle database is a collection of data treated as a unit. The purpose of a
database is to store and retrieve related information. A database server is the key to
solving the problems of information management. In general, a server reliably
manages a large amount of data in a multiuser environment so that many users can
concurrently access the same data. All this is accomplished while delivering high
performance. A database server also prevents unauthorized access and provides
efficient solutions for failure recovery.

The database has logical structures and physical structures. Because the physical
and logical structures are separate, the physical storage of data can be managed
without affecting the access to logical storage structures.

Logical Database Structures
The logical structures of an Oracle database include schema objects, data blocks,
extents, segments, and tablespaces.

Schemas and Schema Objects
A schema is a collection of database objects. A schema is owned by a database user
and has the same name as that user. Schema objects are the logical structures that
directly refer to the database’s data. Schema objects include structures like tables,
views, and indexes. (There is no relationship between a tablespace and a schema.
Objects in the same schema can be in different tablespaces, and a tablespace can
hold objects from different schemas.)

Some of the most common schema objects are defined in the following section.

Tables Tables are the basic unit of data storage in an Oracle database. Database
tables hold all user-accessible data. Each table has columns and rows. Oracle stores
each row of a database table containing data for less than 256 columns as one or
more row pieces. A table that has an employee database, for example, can have a
column called employee number, and each row in that column is an employee’s
number.

See Also: Chapter 10, "Schema Objects" for detailed information
on these schema objects, and for information on other schema
objects, such as dimensions, the sequence generator, synonyms,
index-organized tables, domain indexes, clusters, and hash clusters
1-2 Oracle9i Database Concepts

Database Structure and Space Management Overview
Views Views are customized presentations of data in one or more tables or other
views. A view can also be considered a stored query. Views do not actually contain
data. Rather, they derive their data from the tables on which they are based,
referred to as the base tables of the views.

Like tables, views can be queried, updated, inserted into, and deleted from, with
some restrictions. All operations performed on a view actually affect the base tables
of the view.

Views provide an additional level of table security by restricting access to a
predetermined set of rows and columns of a table. They also hide data complexity
and store complex queries.

Indexes Indexes are optional structures associated with tables. Indexes can be
created to increase the performance of data retrieval. Just as the index in this
manual helps you quickly locate specific information, an Oracle index provides an
access path to table data.

When processing a request, Oracle can use some or all of the available indexes to
locate the requested rows efficiently. Indexes are useful when applications
frequently query a table for a range of rows (for example, all employees with a
salary greater than 1000 dollars) or a specific row.

Indexes are created on one or more columns of a table. After it is created, an index is
automatically maintained and used by Oracle. Changes to table data (such as
adding new rows, updating rows, or deleting rows) are automatically incorporated
into all relevant indexes with complete transparency to the users.

You can partition indexes.

Clusters Clusters are groups of one or more tables physically stored together
because they share common columns and are often used together. Because related
rows are physically stored together, disk access time improves.

Like indexes, clusters do not affect application design. Whether or not a table is part
of a cluster is transparent to users and to applications. Data stored in a clustered
table is accessed by SQL in the same way as data stored in a nonclustered table.

Data Blocks, Extents, and Segments
The logical storage structures, including data blocks, extents, and segments, enable
Oracle to have fine-grained control of disk space use.

See Also: Chapter 11, "Partitioned Tables and Indexes"
Introduction to the Oracle Server 1-3

Database Structure and Space Management Overview
Oracle Data Blocks At the finest level of granularity, Oracle database data is stored in
data blocks. One data block corresponds to a specific number of bytes of physical
database space on disk. The standard block size is specified by the initialization
parameter DB_BLOCK_SIZE. In addition, you can specify of up to five other block
sizes. A database uses and allocates free database space in Oracle data blocks.

Extents The next level of logical database space is an extent. An extent is a specific
number of contiguous data blocks, obtained in a single allocation, used to store a
specific type of information.

Segments Above extents, the level of logical database storage is a segment. A
segment is a set of extents allocated for a certain logical structure. The following
table describes the different types of segments.

See Also: Chapter 2, "Data Blocks, Extents, and Segments"

See Also: "Multiple Block Sizes" on page 3-13

Segment Description

Data segment Each nonclustered table has a data segment. All table data
is stored in the extents of the data segment.

For a partitioned table, each partition has a data segment.

Each cluster has a data segment. The data of every table in
the cluster is stored in the cluster’s data segment.

Index segment Each index has an index segment that stores all of its data.

For a partitioned index, each partition has an index
segment.

Temporary segment Temporary segments are created by Oracle when a SQL
statement needs a temporary work area to complete
execution. When the statement finishes execution, the
extents in the temporary segment are returned to the
system for future use.
1-4 Oracle9i Database Concepts

Database Structure and Space Management Overview
Oracle dynamically allocates space when the existing extents of a segment become
full. In other words, when the extents of a segment are full, Oracle allocates another
extent for that segment. Because extents are allocated as needed, the extents of a
segment may or may not be contiguous on disk.

Tablespaces
A database is divided into logical storage units called tablespaces, which group
related logical structures together. For example, tablespaces commonly group
together all application objects to simplify some administrative operations.

Databases, Tablespaces, and Datafiles The relationship between databases, tablespaces,
and datafiles (datafiles are described in the next section) is illustrated in Figure 1–1.

Rollback segment If you are operating in automatic undo management
mode, then the database server manages undo space
using tablespaces. Oracle Corporation recommends that
you use "Automatic Undo Management" management.

However, if you are operating in manual undo
management mode, then one or more rollback segments
for a database are created by the database administrator
to temporarily store undo information.

The information in a rollback segment is used during
database recovery:

� To generate read-consistent database information

� To roll back uncommitted transactions for users

See Also:

� "Automatic Undo Management" on page 2-16

� "Read Consistency" on page 1-40

� "Database Backup and Recovery Overview" on page 1-50

Segment Description
Introduction to the Oracle Server 1-5

Database Structure and Space Management Overview
Figure 1–1 Databases, Tablespaces, and Datafiles

This figure illustrates the following:

� Each database is logically divided into one or more tablespaces.

� One or more datafiles are explicitly created for each tablespace to physically
store the data of all logical structures in a tablespace.

� The combined size of the datafiles in a tablespace is the total storage capacity of
the tablespace. (The SYSTEM tablespace has 2 megabit (Mb) storage capacity,
and USERS tablespace has 4 Mb).

� The combined storage capacity of a database’s tablespaces is the total storage
capacity of the database (6 Mb).

Online and Offline Tablespaces A tablespace can be online (accessible) or offline (not
accessible). A tablespace is generally online, so that users can access the information
in the tablespace. However, sometimes a tablespace is taken offline to make a
portion of the database unavailable while allowing normal access to the remainder
of the database. This makes many administrative tasks easier to perform.

Physical Database Structures
The following sections explain the physical database structures of an Oracle
database, including datafiles, redo log files, and control files.

DATA1.ORA
1 Mb

DATA2.ORA
1 Mb

DATA3.ORA
4 Mb

System Tablespace USERS Tablespace

Database
1-6 Oracle9i Database Concepts

Database Structure and Space Management Overview
Datafiles
Every Oracle database has one or more physical datafiles. The datafiles contain all
the database data. The data of logical database structures, such as tables and
indexes, is physically stored in the datafiles allocated for a database.

The characteristics of datafiles are:

� A datafile can be associated with only one database.

� Datafiles can have certain characteristics set to let them automatically extend
when the database runs out of space.

� One or more datafiles form a logical unit of database storage called a
tablespace, as discussed earlier in this chapter.

Data in a datafile is read, as needed, during normal database operation and stored
in the memory cache of Oracle. For example, assume that a user wants to access
some data in a table of a database. If the requested information is not already in the
memory cache for the database, then it is read from the appropriate datafiles and
stored in memory.

Modified or new data is not necessarily written to a datafile immediately. To reduce
the amount of disk access and to increase performance, data is pooled in memory
and written to the appropriate datafiles all at once, as determined by the database
writer process (DBWn) background process.

Redo Log Files
Every Oracle database has a set of two or more redo log files. The set of redo log
files is collectively known as the redo log for the database. A redo log is made up of
redo entries (also called redo records).

The primary function of the redo log is to record all changes made to data. If a
failure prevents modified data from being permanently written to the datafiles,
then the changes can be obtained from the redo log, so work is never lost.

To protect against a failure involving the redo log itself, Oracle allows a
multiplexed redo log so that two or more copies of the redo log can be maintained
on different disks.

The information in a redo log file is used only to recover the database from a system
or media failure that prevents database data from being written to the datafiles. For

See Also: "Memory Structure and Processes Overview" on
page 1-21 for more information about Oracle’s memory and process
structures
Introduction to the Oracle Server 1-7

Database Structure and Space Management Overview
example, if an unexpected power outage terminates database operation, then data
in memory cannot be written to the datafiles, and the data is lost. However, lost
data can be recovered when the database is opened, after power is restored. By
applying the information in the most recent redo log files to the database datafiles,
Oracle restores the database to the time at which the power failure occurred.

The process of applying the redo log during a recovery operation is called rolling
forward.

Control Files
Every Oracle database has a control file. A control file contains entries that specify
the physical structure of the database. For example, it contains the following
information:

� Database name

� Names and locations of datafiles and redo log files

� Time stamp of database creation

Like the redo log, Oracle lets the control file be multiplexed for protection of the
control file.

Use of Control Files Every time an instance of an Oracle database is started, its
control file identifies the database and redo log files that must be opened for
database operation to proceed. If the physical makeup of the database is altered (for
example, if a new datafile or redo log file is created), then the control file is
automatically modified by Oracle to reflect the change. A control file is also used in
database recovery.

Data Utilities
The three utilities for moving a subset of an Oracle database from one database to
another are Export, Import, and SQL*Loader.

Export Utility The Export utility transfers data objects between Oracle databases,
even if they reside on platforms with different hardware and software

See Also: "Database Backup and Recovery Overview" on
page 1-50 for more information about redo log files

See Also: "Database Backup and Recovery Overview" on
page 1-50 for more information about the use of control files in
database recovery
1-8 Oracle9i Database Concepts

Database Structure and Space Management Overview
configurations. Export extracts the object definitions and table data from an Oracle
database and stores them in an Oracle binary-format Export dump file typically
located on disk or tape.

Such files can then be copied using file transfer protocol (FTP) or physically
transported (in the case of tape) to a different site. They can be used with the Import
utility to transfer data between databases that are on machines not connected
through a network or as backups in addition to normal backup procedures.

When you run Export against an Oracle database, it extracts objects, such as tables,
followed by their related objects, and then writes them to the Export dump file.

Import Utility The Import utility inserts the data objects extracted from one Oracle
database by the Export utility into another Oracle database. Export dump files can
be read only by Import. Import reads the object definitions and table data that the
Export utility extracted from an Oracle database.

The Export and Import utilities can also facilitate certain aspects of Oracle
Advanced Replication functionality, such as offline instantiation.

SQL*Loader Utility Export dump files can be read only by the Oracle Import utility. If
you need to read load data from ASCII fixed-format or delimited files, you can use
the SQL*Loader utility. SQL*Loader loads data from external files into tables in an
Oracle database. SQL*Loader accepts input data in a variety of formats, performs
filtering (selectively loading records based on their data values), and loads data into
multiple Oracle database tables during the same load session.

Data Dictionary Overview
Each Oracle database has a data dictionary. An Oracle data dictionary is a set of
tables and views that are used as a read-only reference about the database. For
example, a data dictionary stores information about both the logical and physical
structure of the database. A data dictionary also stores the following information:

� The valid users of an Oracle database

� Information about integrity constraints defined for tables in the database

� The amount of space allocated for a schema object and how much of it is in use

See Also: Oracle9i Replication

See Also: Oracle9i Database Utilities for detailed information about
Export, Import, and SQL*Loader
Introduction to the Oracle Server 1-9

Data Access Overview
A data dictionary is created when a database is created. To accurately reflect the
status of the database at all times, the data dictionary is automatically updated by
Oracle in response to specific actions, such as when the structure of the database is
altered. The database relies on the data dictionary to record, verify, and conduct
ongoing work. For example, during database operation, Oracle reads the data
dictionary to verify that schema objects exist and that users have proper access to
them.

Data Access Overview
This section explains how Oracle adheres to industry accepted standards for data
access languages, and how Oracle controls data consistency and data integrity. This
section includes the following topics:

� "SQL Overview"

� "Objects Overview"

� "PL/SQL Overview"

� "Java Overview"

� "Transactions Overview"

� "Data Integrity Overview"

� "SQL*Plus Overview"

SQL Overview
SQL (pronounced SEQUEL) is the programming language that defines and
manipulates the database. SQL databases are relational databases, which means
that data is stored in a set of simple relations.

SQL Statements
All operations on the information in an Oracle database are performed using SQL
statements. A SQL statement is a string of SQL text. A statement must be the
equivalent of a complete SQL sentence, as in:

SELECT last_name, department_id FROM employees;

Only a complete SQL statement can run successfully. A sentence fragment, such as
the following, generates an error indicating that more text is required:

See Also: Chapter 4, "The Data Dictionary"
1-10 Oracle9i Database Concepts

Data Access Overview
SELECT last_name

A SQL statement can be thought of as a very simple, but powerful, computer
program or instruction. SQL statements are divided into the following categories:

� Data Definition Language (DDL) Statements

� Data Manipulation Language (DML) Statements

� Transaction Control Statements

� Session Control Statements

� System Control Statements

� Embedded SQL Statements

Data Definition Language (DDL) Statements These statements create, alter, maintain, and
drop schema objects. DDL statements also include statements that permit a user to
grant other users the privileges to access the database and specific objects within the
database.

Data Manipulation Language (DML) Statements These statements manipulate data. For
example, querying, inserting, updating, and deleting rows of a table are all DML
operations. The most common SQL statement is the SELECT statement, which
retrieves data from the database. Locking a table or view and examining the
execution plan of an SQL statement are also DML operations.

Transaction Control Statements These statements manage the changes made by DML
statements. They enable a user to group changes into logical transactions. Examples
include COMMIT, ROLLBACK, and SAVEPOINT.

Session Control Statements These statements let a user control the properties of the
current session, including enabling and disabling roles and changing language
settings. The two session control statements are ALTER SESSION and SET ROLE.

System Control Statements These statements change the properties of the Oracle
server instance. The only system control statement is ALTER SYSTEM. It lets users
change settings, such as the minimum number of shared servers, kill a session, and
perform other tasks.

Embedded SQL Statements These statements incorporate DDL, DML, and transaction
control statements in a procedural language program, such as those used with the
Oracle precompilers. Examples include OPEN, CLOSE, FETCH, and EXECUTE.
Introduction to the Oracle Server 1-11

Data Access Overview
Objects Overview
Oracle object technology is a layer of abstraction built on Oracle's relational
technology. New object types can be created from any built-in database types or
any previously created object types, object references, and collection types.
Metadata for user-defined types is stored in a schema available to SQL, PL/SQL,
Java, and other published interfaces.

An object type differs from native SQL datatypes in that it is user-defined, and it
specifies both the underlying persistent data (attributes) and the related behaviors
(methods). Object types are abstractions of the real-world entities, for example,
purchase orders.

Object types and related object-oriented features, such as variable-length arrays and
nested tables, provide higher-level ways to organize and access data in the
database. Underneath the object layer, data is still stored in columns and tables, but
you can work with the data in terms of the real-world entities--customers and
purchase orders, for example--that make the data meaningful. Instead of thinking in
terms of columns and tables when you query the database, you can simply select a
customer.

Internally, statements about objects are still basically statements about relational
tables and columns, and you can continue to work with relational data types and
store data in relational tables. But you have the option to take advantage of
object-oriented features too. You can use object-oriented features while continuing
to work with most of your relational data, or you can go over to an object-oriented
approach entirely. For instance, you can define some object data types and store the
objects in columns in relational tables. You can also create object views of existing
relational data to represent and access this data according to an object model. Or
you can store object data in object tables, where each row is an object.

Advantages of Objects
In general, the object-type model is similar to the class mechanism found in C++
and Java. Like classes, objects make it easier to model complex, real-world business

See Also:

� Oracle9i SQL Reference

� "Database Security Overview" on page 1-43 for more
information about privileges

� "Transactions Overview" on page 1-17 for more information
about transaction control statements
1-12 Oracle9i Database Concepts

Data Access Overview
entities and logic, and the reusability of objects makes it possible to develop
database applications faster and more efficiently. By natively supporting object
types in the database, Oracle enables application developers to directly access the
data structures used by their applications. No mapping layer is required between
client-side objects and the relational database columns and tables that contain the
data. Object abstraction and the encapsulation of object behaviors also make
applications easier to understand and maintain.

PL/SQL Overview
PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL combines the
ease and flexibility of SQL with the procedural functionality of a structured
programming language, such as IF ... THEN, WHILE, and LOOP.

When designing a database application, consider the following advantages of using
stored PL/SQL:

� PL/SQL code can be stored centrally in a database. Network traffic between
applications and the database is reduced, so application and system
performance increases. Even when PL/SQL is not stored in the database,
applications can send blocks of PL/SQL to the database rather than individual
SQL statements, thereby reducing network traffic.

� Data access can be controlled by stored PL/SQL code. In this case, PL/SQL
users can access data only as intended by application developers, unless
another access route is granted.

� PL/SQL blocks can be sent by an application to a database, running complex
operations without excessive network traffic.

The following sections describe the PL/SQL program units that can be defined and
stored centrally in a database.

PL/SQL Program Units
Program units are stored procedures, functions, packages, triggers, and anonymous
transactions.

Procedures and Functions Procedures and functions are sets of SQL and PL/SQL
statements grouped together as a unit to solve a specific problem or to perform a set

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features
Introduction to the Oracle Server 1-13

Data Access Overview
of related tasks. They are created and stored in compiled form in the database and
can be run by a user or a database application.

Procedures and functions are identical, except that functions always return a single
value to the user. Procedures do not return values.

Packages Packages encapsulate and store related procedures, functions, variables,
and other constructs together as a unit in the database. They offer increased
functionality (for example, global package variables can be declared and used by
any procedure in the package). They also improve performance (for example, all
objects of the package are parsed, compiled, and loaded into memory once).

Database Triggers Database triggers are PL/SQL, Java, or C procedures that run
implicitly whenever a table or view is modified or when some user actions or
database system actions occur. Database triggers can be used in a variety of ways
for managing your database. For example, they can automate data generation, audit
data modifications, enforce complex integrity constraints, and customize complex
security authorizations.

Autonomous Blocks You can call autonomous transactions from within a PL/SQL
block. When an autonomous PL/SQL block is entered, the transaction context of the
caller is suspended. This operation ensures that SQL operations performed in this
block (or other blocks called from it) have no dependence or effect on the state of
the caller’s transaction context.

Java Overview
Java is an object-oriented programming efficient for application-level programs.
Java has key features that make it ideal for developing server applications. These
features include the following:

� Simplicity--Java is a simpler language than most others used in server
applications because of its consistent enforcement of the object model. The
large, standard set of class libraries brings powerful tools to Java developers on
all platforms.

� Portability--Java is portable across platforms. It is possible to write
platform-dependent code in Java, but it is also simple to write programs that
move seamlessly across machines. Oracle server applications, which do not
support graphical user interfaces directly on the platform that hosts them, also
tend to avoid the few platform portability issues that Java has.
1-14 Oracle9i Database Concepts

Data Access Overview
� Automatic Storage Management--The Java virtual machine automatically
performs all memory allocation and deallocation during program execution.
Java programmers can neither allocate nor free memory explicitly. Instead, they
depend on the JVM to perform these bookkeeping operations, allocating
memory as they create new objects and deallocating memory when the objects
are no longer referenced. The latter operation is known as garbage collection.

� Strong Typing--Before you use a Java variable, you must declare the class of the
object it will hold. Java's strong typing makes it possible to provide a reasonable
and safe solution to inter-language calls between Java and PL/SQL
applications, and to integrate Java and SQL calls within the same application.

� No Pointers--Although Java retains much of the flavor of C in its syntax, it does
not support direct pointers or pointer manipulation. You pass all parameters,
except primitive types, by reference (that is, object identity is preserved), not by
value. Java does not provide C's low level, direct access to pointers, which
eliminates memory corruption and leaks.

� Exception Handling--Java exceptions are objects. Java requires developers to
declare which exceptions can be thrown by methods in any particular class.

� Security--The design of Java bytecodes and the JVM allow for built-in
mechanisms to verify that the Java binary code was not tampered with. Oracle9i
is installed with an instance of SecurityManager, which, when combined with
Oracle database security, determines who can invoke any Java methods.

� Standards for Connectivity to Relational Databases--JDBC and SQLJ enable Java
code to access and manipulate data resident in relational databases. Oracle
provides drivers that allow vendor-independent, portable Java code to access
the relational database.

XML Overview
XML, eXtensible Markup Language, is the standard way to identify and describe
data on the Web. It is a human-readable, machine-understandable, general syntax
for describing hierarchical data, applicable to a wide range of applications,
databases, e-commerce, Java, web development, searching, and so on.

The Oracle server includes the Oracle XML DB, a set of built-in high-performance
XML storage and retrieval technologies. The XML DB fully absorbs the W3C XML
data model into the Oracle server and provides new standard access methods for
navigating and querying XML. You get all the advantages of relational database

See Also: Chapter 14, "SQL, PL/SQL, and Java"
Introduction to the Oracle Server 1-15

Data Access Overview
technology and XML technology at the same time. Key aspects of the XML database
include the following:

� A native datatype -- XMLType -- to store and manipulate XML. Multiple storage
options (CLOB, decomposed object-relational) are available with XMLType, and
DBAs can choose a storage that meets their requirements for fidelity to original,
ease of query, ease of regeneration, and so on. With XMLType, you can perform
SQL operations, such as queries and OLAP functions on XML data, as well as
XML operations, such as XPath searches and XSL transformations, on SQL data.
You can build regular SQL indexes or Oracle Text indexes on XMLType for high
performance for a broad spectrum of applications.

� Native XML generation provides built in SQL operators and supplied PL/SQL
packages to return the results of SQL queries formatted as XML.

� An XML repository provides foldering, access control, FTP and WebDAV
protocol support with versioning. This enables applications to retain a file
abstraction when manipulating XML data.

Complementing the XML Database is the Oracle XML Developer Kit, or XDK. XDK
is a set of commonly used building blocks or utilities for development and runtime
support. The Oracle XDK contains the basic building blocks for reading,
manipulating, transforming, and viewing XML documents. To provide a broad
variety of deployment options, the Oracle XDKs are available for Java, JavaBeans,
C, C++, and PL/SQL. Oracle XDKs consist of XML Parsers, an XSLT Processor,
XML Schema Processor, XML Class Generator, XML Transviewer Java Beans, XML
SQL Utility, and XSQL Servlet.

Advanced Queuing (AQ) is the message queuing functionality of the Oracle
database. With this functionality, message queuing operations can be performed
similar to that of SQL operations from the Oracle database. Message queuing
functionality enables asynchronous communication between applications and users
on Oracle databases using queues. AQ offers enqueue, dequeue, propagation, and
guaranteed delivery of messages, along with exception handling in case messages
cannot be delivered. Message queuing takes advantage of XMLType for XML
message payloads.

See Also:

� Chapter 12, "Native Datatypes"

� Oracle9i XML Database Developer’s Guide - Oracle XML DB
1-16 Oracle9i Database Concepts

Data Access Overview
Transactions Overview
A transaction is a logical unit of work that comprises one or more SQL statements
run by a single user. According to the ANSI/ISO SQL standard, with which Oracle
is compatible, a transaction begins with the user’s first executable SQL statement. A
transaction ends when it is explicitly committed or rolled back by that user.

Consider a banking database. When a bank customer transfers money from a
savings account to a checking account, the transaction can consist of three separate
operations: decrease the savings account, increase the checking account, and record
the transaction in the transaction journal.

Oracle must guarantee that all three SQL statements are performed to maintain the
accounts in proper balance. When something prevents one of the statements in the
transaction from running (such as a hardware failure), then the other statements of
the transaction must be undone. This is called rolling back. If an error occurs in
making any of the updates, then no updates are made.

Figure 1–2 illustrates the banking transaction example.

Note: Oracle9i is broadly compatible with the SQL-99 Core
specification.
Introduction to the Oracle Server 1-17

Data Access Overview
Figure 1–2 A Banking Transaction

Commit and Roll Back Transactions
The changes made by the SQL statements that constitute a transaction can be either
committed or rolled back. After a transaction is committed or rolled back, the next
transaction begins with the next SQL statement.

Committing a transaction makes permanent the changes resulting from all SQL
statements in the transaction. The changes made by the SQL statements of a
transaction become visible to other user sessions’ transactions that start only after
the transaction is committed.

See Also: Oracle9i SQL Reference for information about Oracle’s
compliance with ANSI/ISO standards

Transaction Begins

Transaction Ends

UPDATE savings_accounts
 SET balance = balance - 500
 WHERE account = 3209;

UPDATE checking_accounts
 SET balance = balance + 500
 WHERE account = 3208;

INSERT INTO journal VALUES
 (journal_seq.NEXTVAL, '1B'
 3209, 3208, 500);

COMMIT WORK;

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction
1-18 Oracle9i Database Concepts

Data Access Overview
Rolling back a transaction retracts any of the changes resulting from the SQL
statements in the transaction. After a transaction is rolled back, the affected data is
left unchanged, as if the SQL statements in the transaction were never run.

Savepoints
Savepoints divide a long transaction with many SQL statements into smaller parts.
With savepoints, you can arbitrarily mark your work at any point within a long
transaction. This gives you the option of later rolling back all work performed from
the current point in the transaction to a declared savepoint within the transaction.
For example, you can use savepoints throughout a long complex series of updates,
so if you make an error, you do not need to resubmit every statement.

Data Consistency Using Transactions
Transactions let users guarantee consistent changes to data, as long as the SQL
statements within a transaction are grouped logically. A transaction should consist
of all of the necessary parts for one logical unit of work—no more and no less. Data
in all referenced tables are in a consistent state before the transaction begins and
after it ends. Transactions should consist of only the SQL statements that make one
consistent change to the data.

For example, recall the banking example. A transfer of funds between two accounts
(the transaction) should include increasing one account (one SQL statement),
decreasing another account (one SQL statement), and recording the transaction in
the journal (one SQL statement). All actions should either fail or succeed together;
the credit should not be committed without the debit. Other nonrelated actions,
such as a new deposit to one account, should not be included in the transfer of
funds transaction. Such statements should be in other transactions.

Data Integrity Overview
Data must adhere to certain business rules, as determined by the database
administrator or application developer. For example, assume that a business rule
says that no row in the inventory table can contain a numeric value greater than
nine in the sale_discount column. If an INSERT or UPDATE statement attempts
to violate this integrity rule, then Oracle must roll back the invalid statement and
return an error to the application. Oracle provides integrity constraints and
database triggers to manage data integrity rules.
Introduction to the Oracle Server 1-19

Data Access Overview
Integrity Constraints
An integrity constraint is a declarative way to define a business rule for a column
of a table. An integrity constraint is a statement about a table’s data that is always
true and that follows these rules:

� If an integrity constraint is created for a table and some existing table data does
not satisfy the constraint, then the constraint cannot be enforced.

� After a constraint is defined, if any of the results of a DML statement violate the
integrity constraint, then the statement is rolled back, and an error is returned.

Integrity constraints are defined with a table and are stored as part of the table’s
definition in the data dictionary, so that all database applications adhere to the
same set of rules. When a rule changes, it only needs be changed once at the
database level and not many times for each application.

The following integrity constraints are supported by Oracle:

� NOT NULL: Disallows nulls (empty entries) in a table’s column.

� UNIQUE KEY: Disallows duplicate values in a column or set of columns.

� PRIMARY KEY: Disallows duplicate values and nulls in a column or set of
columns.

� FOREIGN KEY: Requires each value in a column or set of columns to match a
value in a related table’s UNIQUE or PRIMARY KEY. FOREIGN KEY integrity
constraints also define referential integrity actions that dictate what Oracle
should do with dependent data if the data it references is altered.

� CHECK: Disallows values that do not satisfy the logical expression of the
constraint.

Keys
Key is used in the definitions of several types of integrity constraints. A key is the
column or set of columns included in the definition of certain types of integrity

Note: Database triggers let you define and enforce integrity rules,
but a database trigger is not the same as an integrity constraint.
Among other things, a database trigger does not check data already
loaded into a table. Therefore, it is strongly recommended that you
use database triggers only when the integrity rule cannot be
enforced by integrity constraints.
1-20 Oracle9i Database Concepts

Memory Structure and Processes Overview
constraints. Keys describe the relationships between the different tables and
columns of a relational database. Individual values in a key are called key values.

The different types of keys include:

� Primary key: The column or set of columns included in the definition of a
table’s PRIMARY KEY constraint. A primary key’s values uniquely identify the
rows in a table. Only one primary key can be defined for each table.

� Unique key: The column or set of columns included in the definition of a
UNIQUE constraint.

� Foreign key: The column or set of columns included in the definition of a
referential integrity constraint.

� Referenced key: The unique key or primary key of the same or a different table
referenced by a foreign key.

SQL*Plus Overview
SQL*Plus is a tool for entering and running ad-hoc database statements. It lets you
run SQL statements and PL/SQL blocks, and perform many additional tasks as
well. Through SQL*Plus, you can:

� Enter, edit, store, retrieve, and run SQL statements and PL/SQL blocks

� Format, perform calculations on, store, print, and create Web output of query
results

� List column definitions for any table access, and copy data between SQL
databases

� Send messages to, and accept responses from, an end user

� Perform database administration

Memory Structure and Processes Overview
An Oracle server uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the database system. Processes are jobs that work in the memory of these
computers.

The architectural features discussed in this section enable the Oracle server to
support:

See Also: SQL*Plus User’s Guide and Reference
Introduction to the Oracle Server 1-21

Memory Structure and Processes Overview
� Many users concurrently accessing a single database

� The high performance required by concurrent multiuser, multiapplication
database systems

Figure 1–3 shows a typical variation of the Oracle server memory and process
structures.
1-22 Oracle9i Database Concepts

Memory Structure and Processes Overview
Figure 1–3 Memory Structures and Processes of Oracle

Datafiles

Redo Log
Files

Control
Files

Offline
Storage
Device

SMONPMONRECO

System Global Area

Database
Buffer Cache

Redo Log
Buffer

User
Process

User Processes

D000

User
Process

LGWR

Dedicated
Server

Process

CKPT

DBW0

Legend:

LMS
RECO
PMON
SMON
CKPT
ARC0
DBW0
LGWR
D000

Lock process
Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer
Dispatcher Process

ARC0

Shared
Server

Process

DBW0

ARC0

LGWR

LMS
Introduction to the Oracle Server 1-23

Memory Structure and Processes Overview
An Oracle Instance
An Oracle server consists of an Oracle database and an Oracle server instance.
Every time a database is started, a system global area (SGA) is allocated and Oracle
background processes are started. The combination of the background processes
and memory buffers is called an Oracle instance.

Real Application Clusters: Multiple Instance Systems
Some hardware architectures (for example, shared disk systems) enable multiple
computers to share access to data, software, or peripheral devices. Real Application
Clusters take advantage of such architecture by running multiple instances that
share a single physical database. In most applications, Real Application Clusters
enable access to a single database by users on multiple machines with increased
performance.

Real Application Clusters are inherently high availability systems. The clusters that
are typical of Real Application Clusters environments can provide continuous
service for both planned and unplanned outages.

An Oracle server uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the database system. Processes are jobs that work in the memory of these
computers.

Note: In a UNIX environment, most Oracle processes are part of
one master Oracle process, rather than being individual processes.
On Windows NT, all processes consist of at least one thread. A
thread is an individual execution within a process. Threads enable
concurrent operations within a process so that a process can run
different parts of its program simultaneously on different
processors. A thread is the most fundamental component that can
be scheduled on Windows NT. In UNIX documentation, such as
this book, whenever the word "process" is mentioned, it is
considered a "thread" on Windows NT.

Note: Real Application Clusters are available only with Oracle9i
Enterprise Edition.

See Also: Oracle9i Real Application Clusters Concepts
1-24 Oracle9i Database Concepts

Memory Structure and Processes Overview
Memory Structures
Oracle creates and uses memory structures to complete several jobs. For example,
memory stores program code being run and data shared among users. Two basic
memory structures are associated with Oracle: the system global area and the
program global area. The following subsections explain each in detail.

System Global Area
The System Global Area (SGA) is a shared memory region that contains data and
control information for one Oracle instance. Oracle allocates the SGA when an
instance starts and deallocates it when the instance shuts down. Each instance has
its own SGA.

Users currently connected to an Oracle server share the data in the SGA. For
optimal performance, the entire SGA should be as large as possible (while still
fitting in real memory) to store as much data in memory as possible and to
minimize disk I/O.

The information stored in the SGA is divided into several types of memory
structures, including the database buffers, redo log buffer, and the shared pool.

Database Buffer Cache of the SGA Database buffers store the most recently used
blocks of data. The set of database buffers in an instance is the database buffer
cache. The buffer cache contains modified as well as unmodified blocks. Because
the most recently (and often, the most frequently) used data is kept in memory, less
disk I/O is necessary, and performance is improved.

Redo Log Buffer of the SGA The redo log buffer stores redo entries—a log of changes
made to the database. The redo entries stored in the redo log buffers are written to
an online redo log, which is used if database recovery is necessary. The size of the
redo log is static.

Shared Pool of the SGA The shared pool contains shared memory constructs, such as
shared SQL areas. A shared SQL area is required to process every unique SQL
statement submitted to a database. A shared SQL area contains information such as
the parse tree and execution plan for the corresponding statement. A single shared

See Also:

� "An Oracle Instance" on page 1-24

� "Background Processes" on page 1-27 for more information
about the SGA and the Oracle background processes
Introduction to the Oracle Server 1-25

Memory Structure and Processes Overview
SQL area is used by multiple applications that issue the same statement, leaving
more shared memory for other uses.

Large Pool in the SGA The large pool is an optional area that provides large memory
allocations for Oracle backup and restore operations, I/O server processes, and
session memory for the shared server and Oracle XA (used where transactions
interact with more than one database).

Statement Handles or Cursors A cursor is a handle (a name or pointer) for the memory
associated with a specific statement. (Oracle Call Interface, OCI, refers to these as
statement handles.) Although most Oracle users rely on automatic cursor handling
of Oracle utilities, the programmatic interfaces offer application designers more
control over cursors.

For example, in precompiler application development, a cursor is a named resource
available to a program and can be used specifically to parse SQL statements
embedded within the application. Application developers can code an application
so it controls the phases of SQL statement execution and thus improves application
performance.

Program Global Area
The Program Global Area (PGA) is a memory buffer that contains data and control
information for a server process. A PGA is created by Oracle when a server process
is started. The information in a PGA depends on the Oracle configuration.

Process Architecture
A process is a "thread of control" or a mechanism in an operating system that can
run a series of steps. Some operating systems use the terms job or task. A process
generally has its own private memory area in which it runs.

An Oracle server has two general types of processes: user processes and Oracle
processes.

User (Client) Processes
User processes are created and maintained to run the software code of an
application program (such as a Pro*C/C++ program) or an Oracle tool (such as

See Also: "SQL Statements" on page 1-10 for more information
about shared SQL areas
1-26 Oracle9i Database Concepts

Memory Structure and Processes Overview
Enterprise Manager). User processes also manage communication with the server
process through the program interface, which is described in a later section.

Oracle Processes
Oracle processes are invoked by other processes to perform functions on behalf of
the invoking process. The different types of Oracle processes and their specific
functions are discussed in the following sections.

Server Processes Oracle creates server processes to handle requests from connected
user processes. A server process communicates with the user process and interacts
with Oracle to carry out requests from the associated user process. For example, if a
user queries some data not already in the database buffers of the SGA, then the
associated server process reads the proper data blocks from the datafiles into the
SGA.

Oracle can be configured to vary the number of user processes for each server
process. In a dedicated server configuration, a server process handles requests for a
single user process. A shared server configuration lets many user processes share a
small number of server processes, minimizing the number of server processes and
maximizing the use of available system resources.

On some systems, the user and server processes are separate, while on others they
are combined into a single process. If a system uses the shared server or if the user
and server processes run on different machines, then the user and server processes
must be separate. Client/server systems separate the user and server processes and
run them on different machines.

Background Processes Oracle creates a set of background processes for each
instance. The background processes consolidate functions that would otherwise be
handled by multiple Oracle programs running for each user process. They
asynchronously perform I/O and monitor other Oracle process to provide
increased parallelism for better performance and reliability.

Each Oracle instance can use several background processes. The names of these
processes are DBWn, LGWR, CKPT, SMON, PMON, ARCn, RECO, Jnnn, Dnnn,
LMS, and QMNn.

See Also:

� "An Oracle Instance" on page 1-24

� "System Global Area" on page 1-25 for more information about
the SGA
Introduction to the Oracle Server 1-27

Memory Structure and Processes Overview
Database Writer (DBWn) The database writer writes modified blocks from the
database buffer cache to the datafiles. Although one database writer process
(DBW0) is sufficient for most systems, you can configure additional processes
(DBW1 through DBW9 and DBWa through DBWj) to improve write performance
for a system that modifies data heavily. The initialization parameter DB_WRITER_
PROCESSES specifies the number of DBWn processes.

Because Oracle uses write-ahead logging, DBWn does not need to write blocks
when a transaction commits. Instead, DBWn is designed to perform batched writes
with high efficiency. In the most common case, DBWn writes only when more data
needs to be read into the SGA and too few database buffers are free. The least
recently used data is written to the datafiles first. DBWn also performs writes for
other functions, such as checkpointing.

Log Writer (LGWR) The log writer writes redo log entries to disk. Redo log entries are
generated in the redo log buffer of the SGA, and LGWR writes the redo log entries
sequentially into an online redo log. If the database has a multiplexed redo log,
then LGWR writes the redo log entries to a group of online redo log files.

Checkpoint (CKPT) At specific times, all modified database buffers in the SGA are
written to the datafiles by DBWn. This event is called a checkpoint. The checkpoint
process is responsible for signaling DBWn at checkpoints and updating all the
datafiles and control files of the database to indicate the most recent checkpoint.

System Monitor (SMON) The system monitor performs recovery when a failed
instance starts up again. With Real Application Clusters, the SMON process of one
instance can perform instance recovery for other instances that have failed. SMON
also cleans up temporary segments that are no longer in use and recovers
terminated transactions skipped during recovery because of file-read or offline
errors. These transactions are eventually recovered by SMON when the tablespace
or file is brought back online. SMON also coalesces free extents in the dictionary
managed tablespaces to make free space contiguous and easier to allocate.

Process Monitor (PMON) The process monitor performs process recovery when a user
process fails. PMON is responsible for cleaning up the cache and freeing resources
that the process was using. PMON also checks on dispatcher and server processes
and restarts them if they have failed.

See Also: "Transactions Overview" on page 1-17 for more
information about commits
1-28 Oracle9i Database Concepts

Memory Structure and Processes Overview
Archiver (ARCn) The archiver copies the online redo log files to archival storage after
a log switch has occurred. Although a single ARCn process (ARC0) is sufficient for
most systems, you can specify up to 10 ARCn processes by using the dynamic
initialization parameter LOG_ARCHIVE_MAX_PROCESSES. If the workload becomes
too great for the current number of ARCn processes, then LGWR automatically
starts another ARCn process up to the maximum of 10 processes. ARCn is active
only when a database is in ARCHIVELOG mode and automatic archiving is enabled.

Recoverer (RECO) The recoverer is used to resolve distributed transactions that are
pending due to a network or system failure in a distributed database. At timed
intervals, the local RECO attempts to connect to remote databases and
automatically complete the commit or rollback of the local portion of any pending
distributed transactions.

Job Queue Processes (Jnnn) Job queue processes are used for batch processing. Job
queue processes are managed dynamically. This enables job queue clients to use
more job queue processes when required. The resources used by the new processes
are released when they are idle.

Dispatcher (Dnnn) Dispatchers are optional background processes, present only
when a shared server configuration is used. At least one dispatcher process is
created for every communication protocol in use (D000, . . ., Dnnn). Each dispatcher
process is responsible for routing requests from connected user processes to
available shared server processes and returning the responses back to the
appropriate user processes.

Lock Manager Server (LMS) The Lock Manager Server process (LMS) is used for
inter-instance locking in Real Application Clusters.

See Also: "The Redo Log" on page 1-52 for more information
about the archiver

See Also:

� Oracle9i Database Administrator’s Guide for more information
about job queues.

See Also: "Real Application Clusters: Multiple Instance Systems"
on page 1-24 for more information about the configuration of the
lock process
Introduction to the Oracle Server 1-29

Memory Structure and Processes Overview
Queue Monitor (QMNn) Queue monitors are optional background processes that
monitor the message queues for Oracle Advanced Queuing. You can configure up
to 10 queue monitor processes.

The Program Interface Mechanism
The program interface is the mechanism by which a user process communicates
with a server process. It serves as a method of standard communication between
any client tool or application (such as Oracle Forms) and Oracle software. Its
functions are to:

� Act as a communications mechanism by formatting data requests, passing data,
and trapping and returning errors

� Perform conversions and translations of data, particularly between different
types of computers or to external user program datatypes

Communications Software and Oracle Net Services
If the user and server processes are on different computers of a network, or if user
processes connect to shared server processes through dispatcher processes, then the
user process and server process communicate using Oracle Net Services.
Dispatchers are optional background processes, present only in the shared server
configuration.

Oracle Net Services is Oracle’s mechanism for interfacing with the communication
protocols used by the networks that facilitate distributed processing and distributed
databases. Communication protocols define the way that data is transmitted and
received on a network. In a networked environment, an Oracle database server
communicates with client workstations and other Oracle database servers using
Oracle Net Services software.

Oracle Net Services supports communications on all major network protocols,
ranging from those supported by PC LANs to those used by the largest of
mainframe computer systems.

Using Oracle Net Services, application developers do not need to be concerned with
supporting network communications in a database application. If a new protocol is
used, then the database administrator makes some minor changes, while the
application requires no modifications and continues to function.

See Also: Oracle9i Net Services Administrator’s Guide
1-30 Oracle9i Database Concepts

Memory Structure and Processes Overview
An Example of How Oracle Works
The following example describes the most basic level of operations that Oracle
performs. This illustrates an Oracle configuration where the user and associated
server process are on separate machines (connected through a network).

1. An instance has started on the computer running Oracle (often called the host
or database server).

2. A computer running an application (a local machine or client workstation)
runs the application in a user process. The client application attempts to
establish a connection to the server using the proper Oracle Net Services driver.

3. The server is running the proper Oracle Net Services driver. The server detects
the connection request from the application and creates a dedicated server
process on behalf of the user process.

4. The user runs a SQL statement and commits the transaction. For example, the
user changes a name in a row of a table.

5. The server process receives the statement and checks the shared pool for any
shared SQL area that contains a similar SQL statement. If a shared SQL area is
found, then the server process checks the user’s access privileges to the
requested data, and the previously existing shared SQL area is used to process
the statement. If not, then a new shared SQL area is allocated for the statement,
so it can be parsed and processed.

6. The server process retrieves any necessary data values from the actual datafile
(table) or those stored in the SGA.

7. The server process modifies data in the system global area. The DBWn process
writes modified blocks permanently to disk when doing so is efficient. Because
the transaction is committed, the LGWR process immediately records the
transaction in the online redo log file.

8. If the transaction is successful, then the server process sends a message across
the network to the application. If it is not successful, then an error message is
transmitted.

9. Throughout this entire procedure, the other background processes run,
watching for conditions that require intervention. In addition, the database
server manages other users’ transactions and prevents contention between
transactions that request the same data.

See Also: Chapter 8, "Process Architecture" for more information
about Oracle configuration
Introduction to the Oracle Server 1-31

Application Architecture Overview
Application Architecture Overview
There are two common ways to architect a database: client/server or multitier. As
internet computing becomes more prevalent in computing environments, many
database management systems are moving to a multitier environment.

Client/Server Architecture
Multiprocessing uses more than one processor for a set of related jobs. Distributed
processing reduces the load on a single processor by allowing different processors
to concentrate on a subset of related tasks, thus improving the performance and
capabilities of the system as a whole.

An Oracle database system can easily take advantage of distributed processing by
using its client/server architecture. In this architecture, the database system is
divided into two parts: a front-end or a client and a back-end or a server.

The Client
The client is the front-end database application, accessed by a user through the
keyboard, display, and pointing device, such as a mouse. The client has no data
access responsibilities. It requests, processes, and presents data managed by the
server. The client workstation can be optimized for its job. For example, it might not
need large disk capacity, or it might benefit from graphic capabilities.

Often, the client runs on a different computer than the database server, generally on
a PC. Many clients can simultaneously run against one server.

The Server
The server runs Oracle software and handles the functions required for concurrent,
shared data access. The server receives and processes the SQL and PL/SQL
statements that originate from client applications. The computer that manages the
server can be optimized for its duties. For example, it can have large disk capacity
and fast processors.

Multitier Architecture: Application Servers
A multitier architecture has the following components:

� A client or initiator process that starts an operation

� One or more application servers that perform parts of the operation. An
application server provides access to the data for the client and performs some
1-32 Oracle9i Database Concepts

Distributed Databases Overview
of the query processing, thus removing some of the load from the database
server. It can serve as an interface between clients and multiple database
servers, including providing an additional level of security.

� An end or database server that stores most of the data used in the operation

This architecture enables use of an application server to:

� Validate the credentials of a client, such as a web browser

� Connect to an Oracle database server

� Perform the requested operation on behalf of the client

The identity of the client is maintained throughout all tiers of the connection.

Distributed Databases Overview
A distributed database is a network of databases managed by multiple database
servers that are used together. They are not usually seen as a single logical
database. The data of all databases in the distributed database can be
simultaneously accessed and modified. The primary benefit of a distributed
database is that the data of physically separate databases can be logically combined
and potentially made accessible to all users on a network.

Each computer that manages a database in the distributed database is called a node.
The database to which a user is directly connected is called the local database. Any
additional databases accessed by this user are called remote databases. When a
local database accesses a remote database for information, the local database is a
client of the remote server. This is an example of client/server architecture.

A database link describes a path from one database to another. Database links are
implicitly used when a reference is made to a global object name in a distributed
database.

While a distributed database enables increased access to a large amount of data
across a network, it must also hide the location of the data and the complexity of
accessing it across the network. The distributed database management system must
also preserve the advantages of administrating each local database as though it
were not distributed.

See Also : Oracle9i Database Administrator’s Guide for more
information about distributed databases
Introduction to the Oracle Server 1-33

Distributed Databases Overview
Location Transparency
Location transparency occurs when the physical location of data is transparent to
the applications and users of a database system. Several Oracle features, such as
views, procedures, and synonyms, can provide location transparency. For example,
a view that joins table data from several databases provides location transparency
because the user of the view does not need to know from where the data originates.

Site Autonomy
Site autonomy means that each database participating in a distributed database is
administered separately and independently from the other databases, as though
each database were a non-networked database. Although each database can work
with others, they are distinct, separate systems that are cared for individually.

Distributed Data Manipulation
The Oracle distributed database architecture supports all DML operations,
including queries, inserts, updates, and deletes of remote table data. To access
remote data, you make reference to the remote object’s global object name. No
coding or complex syntax is required to access remote data.

For example, to query a table named employees in the remote database named
sales, reference the table’s global object name:

SELECT * FROM employees@sales;

Two-Phase Commit
Oracle provides the same assurance of data consistency in a distributed
environment as in a nondistributed environment. Oracle provides this assurance
using the transaction model and a two-phase commit mechanism.

As in nondistributed systems, transactions should be carefully planned to include a
logical set of SQL statements that should all succeed or fail as a unit. Oracle’s
two-phase commit mechanism guarantees that no matter what type of system or
network failure occurs, a distributed transaction either commits on all involved
nodes or rolls back on all involved nodes to maintain data consistency across the
global distributed database.

See Also: "The Two-Phase Commit Mechanism" on page 16-10
1-34 Oracle9i Database Concepts

Distributed Databases Overview
Replication Overview
Replication is the process of copying and maintaining database objects, such as
tables, in multiple databases that make up a distributed database system. Changes
applied at one site are captured and stored locally before being forwarded and
applied at each of the remote locations. Oracle replication is a fully integrated
feature of the Oracle server. It is not a separate server.

Replication uses distributed database technology to share data between multiple
sites, but a replicated database and a distributed database are not the same. In a
distributed database, data is available at many locations, but a particular table
resides at only one location. For example, the employees table can reside at only
the db1 database in a distributed database system that also includes the db2 and
db3 databases. Replication means that the same data is available at multiple
locations. For example, the employees table can be available at db1, db2, and db3.

Table Replication
Distributed database systems often locally replicate remote tables that are
frequently queried by local users. By having copies of heavily accessed data on
several nodes, the distributed database does not need to send information across a
network repeatedly, thus helping to maximize the performance of the database
application.

Data can be replicated using materialized views.

Multitier Materialized Views
Oracle supports materialized views that are hierarchical and updatable. Multitier
replication provides increased flexibility of design for a distributed application.
Using multitier materialized views, applications can manage multilevel data
subsets with no direct connection between levels.

An updatable materialized view lets you insert, update, and delete rows in the
materialized view and propagate the changes to the target master table.
Synchronous and asynchronous replication is supported.

Figure 1–4 shows an example of multitier architecture, diagrammed as an inverted
tree structure. Changes are propagated up and down along the branches connecting
the outermost materialized views with the master (the root).

See Also: Oracle9i Replication
Introduction to the Oracle Server 1-35

Distributed Databases Overview
Figure 1–4 Multitier Architecture

Conflict Resolution In Oracle9i conflict resolution routines are defined at the top
level, the master site, and are pulled into the updatable materialized view site when
needed. This makes it possible to have multitier materialized views. Existing
system-defined conflict resolution methods are supported.

In addition, users can write their own conflict resolution routines. A user-defined
conflict resolution method is a PL/SQL function that returns either true or false.
True indicates that the method was able to successfully resolve all conflicting
modifications for a column group.

Streams Overview
Oracle Streams enables the sharing of data and events in a data stream, either
within a database or from one database to another. The stream routes specified
information to specified destinations. Oracle Streams provides the capabilities
needed to build and operate distributed enterprises and applications, data
warehouses, and high availability solutions. You can use all the capabilities of
Oracle Streams at the same time. If your needs change, you can implement a new
capability of Streams without sacrificing existing capabilities.

See Also: Oracle9i Replication and Oracle9i SQL Reference for more
information about creating and managing multitier materialized
views

Master Master

Level 2
updatable MV

Level 2
updatable MV

Level 1
updatable MV

Level 2
updatable MV

Level n
updatable MV

Level 1
updatable MV

Level n
updatable MV
1-36 Oracle9i Database Concepts

Distributed Databases Overview
Using Oracle Streams, you control what information is put into a stream, how the
stream flows or is routed from database to database, what happens to events in the
stream as they flow into each database, and how the stream terminates. By
configuring specific capabilities of Streams, you can address specific requirements.
Based on your specifications, Streams can capture and manage events in the
database automatically, including, but not limited to, DML changes and DDL
changes. You can also put user-defined events into a stream. Then, Streams can
propagate the information to other databases or applications automatically. Again,
based on your specifications, Streams can apply events at a destination database.

You can use Streams to:

� Capture changes at a database.

You can configure a background capture process to capture changes made to
tables, schemas, or the entire database. A capture process captures changes
from the redo log and formats each captured change into a logical change
record (LCR). The database where changes are generated in the redo log is
called the source database.

� Enqueue events into a queue. Two types of events may be staged in a Streams
queue: LCRs and user messages.

A capture process enqueues LCR events into a queue that you specify. The
queue can then share the LCR events within the same database or with other
databases.

You can also enqueue user events into a queue explicitly with a user
application. These explicitly enqueued events can be LCRs or user messages.

� Propagate events from one queue to another. These queues may be in the same
database or in different databases.

� Dequeue events from a queue.

A background apply process can dequeue events from a queue. You can also
dequeue events explicitly with a user application.

� Apply events at a database.

You can configure an apply process to apply all of the events in a queue or only
the events that you specify. You can also configure an apply process to call your
own PL/SQL subprograms to process events.

The database where LCR events are applied and other types of events are
processed is called the destination database. In some configurations, the source
database and the destination database may be the same.
Introduction to the Oracle Server 1-37

Distributed Databases Overview
Other capabilities of Streams include the following:

� Tags in captured LCRs

� Directed networks

� Automatic conflict detection and resolution

� Transformations

� Heterogeneous information sharing

Advanced Queuing Overview
Oracle Advanced Queuing provides an infrastructure for distributed applications to
communicate asynchronously using messages. Oracle Advanced Queuing stores
messages in queues for deferred retrieval and processing by the Oracle server. This
provides a reliable and efficient queuing system without additional software such
as transaction processing monitors or message-oriented middleware.

Messages pass between clients and servers, as well as between processes on
different servers. An effective messaging system implements content-based routing,
subscription, and querying.

A messaging system can be classified into one of two types:

� Synchronous Communication

� Asynchronous Communication

Synchronous Communication Synchronous communication is based on the
request/reply paradigm—a program sends a request to another program and waits
until the reply arrives.

This model of communication (also called online or connected) is suitable for
programs that need to get the reply before they can proceed with their work.
Traditional client/server architectures are based on this model. The major
drawback of this model is that the programs where the request is sent must be
available and running for the calling application to work.

Asynchronous Communication In the disconnected or deferred model, programs
communicate asynchronously, placing requests in a queue and then proceeding
with their work.

See Also: Oracle9i Streams
1-38 Oracle9i Database Concepts

Distributed Databases Overview
For example, an application might require entry of data or execution of an
operation after specific conditions are met. The recipient program retrieves the
request from the queue and acts on it. This model is suitable for applications that
can continue with their work after placing a request in the queue — they are not
blocked waiting for a reply.

For deferred execution to work correctly in the presence of network, machine, and
application failures, the requests must be stored persistently and processed exactly
once. This is achieved by combining persistent queuing with transaction protection.

Heterogeneous Services Overview
Heterogeneous Services is necessary for accessing a non-Oracle database system.
The term "non-Oracle database system" refers to the following:

� Any system accessed by PL/SQL procedures written in C (that is, by external
procedures)

� Any system accessed through SQL (that is, by Oracle Transparent Gateways
and Generic Connectivity)

� Any system accessed procedurally (that is, by procedural gateways)

Heterogeneous Services makes it possible for users to do the following:

� Use Oracle SQL statements to retrieve data stored in non-Oracle systems.

� Use Oracle procedure calls to access non-Oracle systems, services, or
application programming interfaces (APIs) from within an Oracle distributed
environment.

Heterogeneous Services is generally applied in one of two ways:

� Oracle Transparent Gateway is used in conjunction with Heterogeneous
Services to access a particular, vendor-specific, non-Oracle system for which an
Oracle Transparent Gateways is designed. For example, you would use the
Oracle Transparent Gateway for Sybase on Solaris to access a Sybase database
system that was operating on a Solaris platform.

� Heterogeneous Services’ generic connectivity is used to access non-Oracle
databases through ODBC or OLE DB interfaces.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
Introduction to the Oracle Server 1-39

Data Concurrency and Consistency Overview
Data Concurrency and Consistency Overview
This section explains the software mechanisms used by Oracle to fulfill the
following important requirements of an information management system:

� Data must be read and modified in a consistent fashion.

� Data concurrency of a multiuser system must be maximized.

� High performance is required for maximum productivity from the many users
of the database system.

Concurrency
A primary concern of a multiuser database management system is how to control
concurrency, which is the simultaneous access of the same data by many users.
Without adequate concurrency controls, data could be updated or changed
improperly, compromising data integrity.

If many people are accessing the same data, one way of managing data concurrency
is to make each user wait for a turn. The goal of a database management system is
to reduce that wait so it is either nonexistent or negligible to each user. All data
manipulation language statements should proceed with as little interference as
possible, and destructive interactions between concurrent transactions must be
prevented. Destructive interaction is any interaction that incorrectly updates data or
incorrectly alters underlying data structures. Neither performance nor data
integrity can be sacrificed.

Oracle resolves such issues by using various types of locks and a multiversion
consistency model. Both features are discussed later in this section. These features
are based on the concept of a transaction. It is the application designer’s
responsibility to ensure that transactions fully exploit these concurrency and
consistency features.

Read Consistency
Read consistency, as supported by Oracle, does the following:

� Guarantees that the set of data seen by a statement is consistent with respect to
a single point in time and does not change during statement execution
(statement-level read consistency)

See Also: "Data Consistency Using Transactions" on page 1-19 for
more information about concurrency and consistency features
1-40 Oracle9i Database Concepts

Data Concurrency and Consistency Overview
� Ensures that readers of database data do not wait for writers or other readers of
the same data

� Ensures that writers of database data do not wait for readers of the same data

� Ensures that writers only wait for other writers if they attempt to update
identical rows in concurrent transactions

The simplest way to think of Oracle’s implementation of read consistency is to
imagine each user operating a private copy of the database, hence the multiversion
consistency model.

Read Consistency, Undo Records, and Transactions
To manage the multiversion consistency model, Oracle must create a
read-consistent set of data when a table is being queried (read) and simultaneously
updated (written). When an update occurs, the original data values changed by the
update are recorded in the database’s undo records. As long as this update remains
part of an uncommitted transaction, any user that later queries the modified data
views the original data values. Oracle uses current information in the system global
area and information in the undo records to construct a read-consistent view of a
table’s data for a query.

Only when a transaction is committed are the changes of the transaction made
permanent. Statements that start after the user’s transaction is committed only see
the changes made by the committed transaction.

Note that a transaction is key to Oracle’s strategy for providing read consistency.
This unit of committed (or uncommitted) SQL statements:

� Dictates the start point for read-consistent views generated on behalf of readers

� Controls when modified data can be seen by other transactions of the database
for reading or updating

Read-Only Transactions
By default, Oracle guarantees statement-level read consistency. The set of data
returned by a single query is consistent with respect to a single point in time.
However, in some situations, you might also require transaction-level read
consistency. This is the ability to run multiple queries within a single transaction, all
of which are read-consistent with respect to the same point in time, so that queries
in this transaction do not see the effects of intervening committed transactions.

If you want to run a number of queries against multiple tables and if you are not
doing any updating, you prefer a read-only transaction. After indicating that your
Introduction to the Oracle Server 1-41

Data Concurrency and Consistency Overview
transaction is read-only, you can run as many queries as you like against any table,
knowing that the results of each query are consistent with respect to the same point
in time.

Locking Mechanisms
Oracle also uses locks to control concurrent access to data. Locks are mechanisms
intended to prevent destructive interaction between users accessing Oracle data.

Locks are used to ensure consistency and integrity. Consistency means that the data
a user is viewing or changing is not changed (by other users) until the user is
finished with the data. Integrity means that the database’s data and structures
reflect all changes made to them in the correct sequence.

Locks guarantee data integrity while enabling maximum concurrent access to the
data by unlimited users.

Automatic Locking
Oracle locking is performed automatically and requires no user action. Implicit
locking occurs for SQL statements as necessary, depending on the action requested.

Oracle’s lock manager automatically locks table data at the row level. By locking
table data at the row level, contention for the same data is minimized.

Oracle’s lock manager maintains several different types of row locks, depending on
what type of operation established the lock. The two general types of locks are
exclusive locks and share locks. Only one exclusive lock can be placed on a
resource (such as a row or a table); however, many share locks can be placed on a
single resource. Both exclusive and share locks always allow queries on the locked
resource but prohibit other activity on the resource (such as updates and deletes).

Manual Locking
Under some circumstances, a user might want to override default locking. Oracle
allows manual override of automatic locking features at both the row level (by first
querying for the rows that will be updated in a subsequent statement) and the table
level.

Quiesce Database
Database administrators occasionally need isolation from concurrent non-database
administrator actions, that is, isolation from concurrent non-database administrator

See Also: "Explicit (Manual) Data Locking" on page 20-32
1-42 Oracle9i Database Concepts

Database Security Overview
transactions, queries, or PL/SQL statements. One way to provide such isolation is
to shut down the database and reopen it in restricted mode. The Quiesce Database
feature provides another way of providing isolation: to put the system into quiesced
state without disrupting users.

The database administrator uses SQL statements to quiesce the database. After the
system is in quiesced state, the database administrator can safely perform certain
actions whose executions require isolation from concurrent non-DBA users.

Database Security Overview
Oracle includes security features that control how a database is accessed and used.
For example, security mechanisms:

� Prevent unauthorized database access

� Prevent unauthorized access to schema objects

� Audit user actions

Associated with each database user is a schema by the same name. By default, each
database user creates and has access to all objects in the corresponding schema.

Database security can be classified into two categories: system security and data
security.

System security includes the mechanisms that control the access and use of the
database at the system level. For example, system security includes:

� Valid username/password combinations

� The amount of disk space available to a user’s schema objects

� The resource limits for a user

System security mechanisms check whether a user is authorized to connect to the
database, whether database auditing is active, and which system operations a user
can perform.

Data security includes the mechanisms that control the access and use of the
database at the schema object level. For example, data security includes:

� Which users have access to a specific schema object and the specific types of
actions allowed for each user on the schema object (for example, user SCOTT
can issue SELECT and INSERT statements but not DELETE statements using the
employees table)

See Also: "Quiesce Database" on page 20-15
Introduction to the Oracle Server 1-43

Database Security Overview
� The actions, if any, that are audited for each schema object

� Data encryption to prevent unauthorized users from bypassing Oracle and
accessing data

Security Mechanisms
The Oracle server provides discretionary access control, which is a means of
restricting access to information based on privileges. The appropriate privilege
must be assigned to a user in order for that user to access a schema object.
Appropriately privileged users can grant other users privileges at their discretion.
For this reason, this type of security is called discretionary.

Oracle manages database security using several different facilities:

� Database Users and Schemas

� Privileges

� Roles

� Storage Settings and Quotas

� Profiles and Resource Limits

� Selective Auditing of User Actions

� Fine-Grained Auditing

Figure 1–5 illustrates the relationships of the different Oracle security facilities, and
the following sections provide an overview of users, privileges, and roles.
1-44 Oracle9i Database Concepts

Database Security Overview
Figure 1–5 Oracle Security Features

Database Users and Schemas
Each Oracle database has a list of usernames. To access a database, a user must use
a database application and attempt a connection with a valid username of the
database. Each username has an associated password to prevent unauthorized use.

Security Domain Each user has a security domain—a set of properties that determine
such things as:

� The actions (privileges and roles) available to the user

� The tablespace quotas (available disk space) for the user

� The system resource limits (for example, CPU processing time) for the user

Each property that contributes to a user’s security domain is discussed in the
following sections.

Privileges
A privilege is a right to run a particular type of SQL statement. Some examples of
privileges include the right to:

� Connect to the database (create a session)

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users
Introduction to the Oracle Server 1-45

Database Security Overview
� Create a table in your schema

� Select rows from someone else’s table

� Execute someone else’s stored procedure

The privileges of an Oracle database can be divided into two categories: system
privileges and schema object privileges.

System Privileges System privileges allow users to perform a particular systemwide
action or a particular action on a particular type of schema object. For example, the
privileges to create a tablespace or to delete the rows of any table in the database
are system privileges. Many system privileges are available only to administrators
and application developers because the privileges are very powerful.

Schema Object Privileges Schema object privileges allow users to perform a
particular action on a specific schema object. For example, the privilege to delete
rows of a specific table is an object privilege. Object privileges are granted
(assigned) to users so that they can use a database application to accomplish specific
tasks.

Granted Privileges Privileges are granted to users so that users can access and
modify data in the database. A user can receive a privilege two different ways:

� Privileges can be granted to users explicitly. For example, the privilege to insert
records into the employees table can be explicitly granted to the user SCOTT.

� Privileges can be granted to roles (a named group of privileges), and then the
role can be granted to one or more users. For example, the privilege to insert
records into the employees table can be granted to the role named CLERK,
which in turn can be granted to the users SCOTT and BRIAN.

Because roles enable easier and better management of privileges, privileges are
normally granted to roles and not to specific users. The following section explains
more about roles and their use.

Roles
Oracle provides for easy and controlled privilege management through roles. Roles
are named groups of related privileges that you grant to users or other roles.

See Also: "Introduction to Roles" on page 23-17 for more
information about role properties
1-46 Oracle9i Database Concepts

Database Security Overview
Storage Settings and Quotas
Oracle provides a way to direct and limit the use of disk space allocated to the
database for each user, including default and temporary tablespaces and tablespace
quotas.

Default Tablespace Each user is associated with a default tablespace. When a user
creates a table, index, or cluster and no tablespace is specified to physically contain
the schema object, the user’s default tablespace is used if the user has the privilege
to create the schema object and a quota in the specified default tablespace. The
default tablespace feature provides Oracle with information to direct space use in
situations where schema object’s location is not specified.

Temporary Tablespace Each user has a temporary tablespace. When a user runs a
SQL statement that requires the creation of temporary segments (such as the
creation of an index), the user’s temporary tablespace is used. By directing all users’
temporary segments to a separate tablespace, the temporary tablespace feature can
reduce I/O contention among temporary segments and other types of segments.

Tablespace Quotas Oracle can limit the collective amount of disk space available to
the objects in a schema. Quotas (space limits) can be set for each tablespace
available to a user. The tablespace quota security feature permits selective control
over the amount of disk space that can be consumed by the objects of specific
schemas.

Profiles and Resource Limits
Each user is assigned a profile that specifies limitations on several system resources
available to the user, including the following:

� Number of concurrent sessions the user can establish

� CPU processing time available for:

– The user’s session

– A single call to Oracle made by a SQL statement

� Amount of logical I/O available for:

– The user’s session

– A single call to Oracle made by a SQL statement

� Amount of idle time available for the user’s session

� Amount of connect time available for the user’s session
Introduction to the Oracle Server 1-47

Database Security Overview
� Password restrictions:

– Account locking after multiple unsuccessful login attempts

– Password expiration and grace period

– Password reuse and complexity restrictions

Different profiles can be created and assigned individually to each user of the
database. A default profile is present for all users not explicitly assigned a profile.
The resource limit feature prevents excessive consumption of global database
system resources.

Selective Auditing of User Actions
Oracle permits selective auditing (recorded monitoring) of user actions to aid in the
investigation of suspicious database use. Auditing can be performed at three
different levels: Statement Auditing, Privilege Auditing, and Schema Object
Auditing.

Statement Auditing Statement auditing is the auditing of specific SQL statements
without regard to specifically named schema objects. In addition, database triggers
let a database administrator to extend and customize Oracle’s built-in auditing
features.

Statement auditing can be broad and audit all users of the system or can be focused
to audit only selected users of the system. For example, statement auditing by user
can audit connections to and disconnections from the database by the users SCOTT
and LORI.

Privilege Auditing Privilege auditing is the auditing of powerful system privileges
without regard to specifically named schema objects. Privilege auditing can be
broad and audit all users or can be focused to audit only selected users.

Schema Object Auditing Schema object auditing is the auditing of access to specific
schema objects without regard to user. Object auditing monitors the statements
permitted by object privileges, such as SELECT or DELETE statements on a given
table.

For all types of auditing, Oracle allows the selective auditing of successful
statement executions, unsuccessful statement executions, or both. This enables
monitoring of suspicious statements, regardless of whether the user issuing a
statement has the appropriate privileges to issue the statement. The results of
audited operations are recorded in a table called the audit trail. Predefined views of
the audit trail are available so you can easily retrieve audit records.
1-48 Oracle9i Database Concepts

Database Administration Overview
Fine-Grained Auditing
Fine-grained auditing allows the monitoring of data access based on content. For
example, a central tax authority needs to track access to tax returns to guard against
employee snooping. Enough detail is wanted to be able to determine what data was
accessed, not just that SELECT privilege was used by a specific user on a particular
table. Fine-grained auditing provides this functionality.

In general, fine-grained auditing policy is based on simple user-defined SQL
predicates on table objects as conditions for selective auditing. During fetching,
whenever policy conditions are met for a returning row, the query is audited. Later,
Oracle executes user-defined audit event handlers using autonomous transactions
to process the event.

Fine-grained auditing can be implemented in user applications using the DBMS_FGA
package or by using database triggers.

Database Administration Overview
People who administer the operation of an Oracle database system, known as
database administrators (DBAs), are responsible for creating Oracle databases,
ensuring their smooth operation, and monitoring their use.

Enterprise Manager Overview
Enterprise Manager is a system management tool that provides an integrated
solution for centrally managing your heterogeneous environment. Combining a
graphical console, Oracle Management Servers, Oracle Intelligent Agents, common
services, and administrative tools, Enterprise Manager provides a comprehensive
systems management platform for managing Oracle products.

From the client interface, the Enterprise Manager Console, you can perform the
following tasks:

� Administer the complete Oracle environment, including databases, iAS servers,
applications, and services

� Diagnose, modify, and tune multiple databases

� Schedule tasks on multiple systems at varying time intervals

� Monitor database conditions throughout the network

See Also: Oracle9i Database Administrator’s Guide for detailed
information on database administration tasks
Introduction to the Oracle Server 1-49

Database Administration Overview
� Administer multiple network nodes and services from many locations

� Share tasks with other administrators

� Group related targets together to facilitate administration tasks

� Launch integrated Oracle and third-party tools

� Customize the display of an Enterprise Manager administrator

Database Backup and Recovery Overview
This section covers the structures and mechanisms used by Oracle to provide:

� Database recovery required by different types of failures

� Flexible recovery operations to suit any situation

� Availability of data during backup and recovery operations so users of the
system can continue to work

Why Recovery Is Important
In every database system, the possibility of a system or hardware failure always
exists. If a failure occurs and affects the database, the database must be recovered.
The goals after a failure are to ensure that the effects of all committed transactions
are reflected in the recovered database and to return to normal operation as quickly
as possible while insulating users from problems caused by the failure.

Types of Failures
Several circumstances can halt the operation of an Oracle database. The most
common types of failure are described in the following table.

Failure Description

User error Requires a database to be recovered to a point in time before
the error occurred. For example, a user could accidentally
drop a table. To enable recovery from user errors and
accommodate other unique recovery requirements, Oracle
provides exact point-in-time recovery. For example, if a user
accidentally drops a table, the database can be recovered to
the instant in time before the table was dropped.

Statement failure Occurs when there is a logical failure in the handling of a
statement in an Oracle program. When statement failure
occurs, any effects of the statement are automatically undone
by Oracle and control is returned to the user.
1-50 Oracle9i Database Concepts

Database Administration Overview
Oracle provides for complete media recovery from all possible types of hardware
failures, including disk failures. Options are provided so that a database can be
completely recovered or partially recovered to a specific point in time.

If some datafiles are damaged in a disk failure but most of the database is intact and
operational, the database can remain open while the required tablespaces are

Process failure Results from a failure in a user process accessing Oracle, such
as an abnormal disconnection or process termination. The
background process PMON automatically detects the failed
user process, rolls back the uncommitted transaction of the
user process, and releases any resources that the process was
using.

Instance failure Occurs when a problem arises that prevents an instance from
continuing work. Instance failure can result from a hardware
problem such as a power outage, or a software problem such
as an operating system failure. When an instance failure
occurs, the data in the buffers of the system global area is not
written to the datafiles.

After an instance failure, Oracle automatically performs
instance recovery. If one instance in a Real Application
Clusters environment, another instance recovers the redo for
the failed instance. In a single-instance database, or in a Real
Application Cluster database in which all instances fail,
Oracle automatically applies all redo when you restart the
database.

Media (disk) failure An error can occur when trying to write or read a file on disk
that is required to operate the database. A common example
is a disk head failure, which causes the loss of all files on a
disk drive.

Different files can be affected by this type of disk failure,
including the datafiles, the redo log files, and the control files.
Also, because the database instance cannot continue to
function properly, the data in the database buffers of the
system global area cannot be permanently written to the
datafiles.

A disk failure requires you to restore lost files and then
perform media recovery. Unlike instance recovery, media
recovery must be initiated by the user. Media recovery
updates restored datafiles so the information in them
corresponds to the most recent time point before the disk
failure, including the committed data in memory that was
lost because of the failure.

Failure Description
Introduction to the Oracle Server 1-51

Database Administration Overview
individually recovered. Therefore, undamaged portions of a database are available
for normal use while damaged portions are being recovered.

Structures Used for Recovery
Oracle uses several structures to provide complete recovery from an instance or
disk failure: the redo log, undo records, a control file, and database backups. If
compatibility is set to Oracle9i or higher, undo records can be stored in either undo
tablespaces or rollback segments.

The Redo Log The redo log is a set of files that protect altered database data in
memory that has not been written to the datafiles. The redo log can consist of two
parts: the online redo log and the archived redo log.

The online redo log is a set of two or more online redo log files that record all
changes made to the database, including both uncommitted and committed
changes. Redo entries are temporarily stored in redo log buffers of the system
global area, and the background process LGWR writes the redo entries sequentially
to an online redo log file. LGWR writes redo entries continually, and it also writes a
commit record every time a user process commits a transaction.

Optionally, filled online redo files can be manually or automatically archived before
being reused, creating archived redo logs.

To enable or disable archiving, set the database in one of the following modes:

� ARCHIVELOG: The filled online redo log files are archived before they are
reused in the cycle.

� NOARCHIVELOG: The filled online redo log files are not archived.

In ARCHIVELOG mode, the database can be completely recovered from both
instance and disk failure. The database can also be backed up while it is open and
available for use. However, additional administrative operations are required to
maintain the archived redo log.

If the database’s redo log operates in NOARCHIVELOG mode, the database can be
completely recovered from instance failure but not from disk failure. Also, the
database can be backed up only while it is completely closed. Because no archived
redo log is created, no extra work is required by the database administrator.

See Also: "Automatic Undo Management" on page 2-16 for more
information about managing undo records
1-52 Oracle9i Database Concepts

Data Warehousing Overview
Undo Records Undo records can be stored in either undo tablespaces or rollback
segments. Oracle uses the undo data for a variety of purposes, including accessing
before-images of blocks changed in uncommitted transactions. During database
recovery, Oracle applies all changes recorded in the redo log and then uses undo
information to roll back any uncommitted transactions.

Control Files The control files of a database keep, among other things, information
about the file structure of the database and the current log sequence number being
written by LGWR. During normal recovery procedures, the information in a control
file is used to guide the automated progression of the recovery operation. Oracle
can multiplex the control file, that is, simultaneously maintain a number of
identical control files.

Database Backups Because one or more files can be physically damaged as the result
of a disk failure, media recovery requires the restoration of the damaged files from
the most recent operating system backup of a database.

You can either back up the database files with Recovery Manager, which is
recommended, or use operating system utilities. Recovery Manager (RMAN) is an
Oracle utility that manages backup and recovery operations, creates backups of
database files (datafiles, control files, and archived redo log files), and restores or
recovers a database from backups.

Data Warehousing Overview
A data warehouse is a relational database designed for query and analysis rather
than for transaction processing. It usually contains historical data derived from
transaction data, but it can include data from other sources. It separates analysis
workload from transaction workload and enables an organization to consolidate
data from several sources.

See Also:

� Oracle9i Database Administrator’s Guide for more information
about managing undo space

� "Undo Space Acquisition and Management" on page 5-8 for
information about specifying the undo method at startup

� "Automatic Undo Management" on page 2-16 for more
information about managing undo space
Introduction to the Oracle Server 1-53

Data Warehousing Overview
In addition to a relational database, a data warehouse environment includes an
extraction, transportation, transformation, and loading (ETL) solution, an online
analytical processing (OLAP) engine, client analysis tools, and other applications
that manage the process of gathering data and delivering it to business users.

Differences Between Data Warehouse and OLTP Systems
Data warehouses and OLTP systems have very different requirements. Here are
some examples of differences between typical data warehouses and OLTP systems:

Workload
Data warehouses are designed to accommodate ad hoc queries. You might not
know the workload of your data warehouse in advance, so a data warehouse
should be optimized to perform well for a wide variety of possible query
operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

Data Modifications
A data warehouse is updated on a regular basis by the ETL process (run nightly or
weekly) using bulk data modification techniques. The end users of a data
warehouse do not directly update the data warehouse.

In OLTP systems, end users routinely issue individual data modification statements
to the database. The OLTP database is always up to date, and reflects the current
state of each business transaction.

Schema Design
Data warehouses often use denormalized or partially denormalized schemas (such
as a star schema) to optimize query performance.

OLTP systems often use fully normalized schemas to optimize
update/insert/delete performance, and to guarantee data consistency.

Typical Operations
A typical data warehouse query scans thousands or millions of rows.For example,
"Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example,
"Retrieve the current order for this customer."
1-54 Oracle9i Database Concepts

Data Warehousing Overview
Historical Data
Data warehouses usually store many months or years of data. This is to support
historical analysis.

OLTP systems usually store data from only a few weeks or months. The OLTP
system stores only historical data as needed to successfully meet the requirements
of the current transaction.

Data Warehouse Architecture
Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

� Data Warehouse Architecture (Basic)

� Data Warehouse Architecture (with a Staging Area)

� Data Warehouse Architecture (with a Staging Area and Data Marts)

Data Warehouse Architecture (Basic)
Figure 1–6 shows a simple architecture for a data warehouse. End users directly
access data derived from several source systems through the data warehouse.
Introduction to the Oracle Server 1-55

Data Warehousing Overview
Figure 1–6 Architecture of a Data Warehouse

In Figure 1–6, the metadata and raw data of a traditional OLTP system is present, as
is an additional type of data, summary data. Summaries are very valuable in data
warehouses because they pre-compute long operations in advance. For example, a
typical data warehouse query is to retrieve something like August sales.

Summaries in Oracle are called materialized views.

Data Warehouse Architecture (with a Staging Area)
Figure 1–6, you need to clean and process your operational data before putting it
into the warehouse. You can do this programmatically, although most data
warehouses use a staging area instead. A staging area simplifies building
summaries and general warehouse management. Figure 1–7 illustrates this typical
architecture.

WarehouseData Sources

Summary
Data

Raw Data

Metadata

Operational
System

Operational
System

Flat Files

Users

Analysis

Reporting

Mining
1-56 Oracle9i Database Concepts

Data Warehousing Overview
Figure 1–7 Architecture of a Data Warehouse with a Staging Area

Data Warehouse Architecture (with a Staging Area and Data Marts)
Although the architecture in Figure 1–7 is quite common, you might want to
customize your warehouse's architecture for different groups within your
organization.

Do this by adding data marts, which are systems designed for a particular line of
business. Figure 1–8 illustrates an example where purchasing, sales, and inventories
are separated. In this example, a financial analyst might want to analyze historical
data for purchases and sales.

Operational
System

Data
Sources

Staging
Area Warehouse Users

Operational
System

Flat Files

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata
Introduction to the Oracle Server 1-57

Data Warehousing Overview
Figure 1–8 Architecture of a Data Warehouse with a Staging Area and Data Marts

Materialized Views
A materialized view provides indirect access to table data by storing the results of a
query in a separate schema object. Unlike an ordinary view, which does not take up
any storage space or contain any data, a materialized view contains the rows
resulting from a query against one or more base tables or views. A materialized
view can be stored in the same database as its base tables or in a different database.

Materialized views stored in the same database as their base tables can improve
query performance through query rewrites. Query rewrites are particularly useful
in a data warehouse environment.

OLAP Overview
Oracle integrates Online Analytical Processing (OLAP) into the database to support
business intelligence. This integration provides the power of a multidimensional
database while retaining the manageability, scalability, and reliability of the Oracle
database and the accessibility of SQL.

See Also: Oracle9i Data Warehousing Guide

Operational
System

Data
Sources

Staging
Area Warehouse

Data
Marts Users

Operational
System

Flat Files

Sales

Purchasing

Inventory

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata
1-58 Oracle9i Database Concepts

Data Warehousing Overview
The relational management system and Oracle OLAP provide complementary
functionality to support a full range of reporting and analytic applications.
Applications developers can choose to use SQL OLAP functions for standard and
ad-hoc reporting. When additional analytic functionality is needed, Oracle OLAP
can be used to provide capabilities such as multidimensional calculations,
forecasting, modeling, and what-if scenarios. These calculations enable developers
to build sophisticated analytic and planning applications such as sales and
marketing analysis, enterprise budgeting and financial analysis, and demand
planning systems.

Data can be stored in either relational tables or multidimensional objects, whichever
is more suitable in terms of performance and resources. Regardless of where the
data is stored, it can be manipulated in the OLAP engine using either Java or SQL.
There is no need for data replication between relational and multidimensional data
sources.

Oracle OLAP consists of the following components:

� Calculation engine that is optimized for rapid calculations

� Analytic workspace that stores multidimensional data on either a temporary or
persistent basis

� OLAP data manipulation language for performing mathematical, statistical,
modeling, and other transformations on multidimensional data

� A SQL interface to Oracle OLAP that makes multidimensional data available to
SQL

� OLAP API for developing Java applications for business intelligence

� OLAP metadata repository that defines multidimensional data to the OLAP
API

Change Data Capture Overview
Change data capture efficiently identifies and captures data that has been added to,
updated, or removed from Oracle relational tables, and makes the change data
available for use by applications.

Oftentimes, data warehousing involves the extraction and transportation of
relational data from one or more source databases into the data warehouse for

See Also: Oracle9i OLAP User’s Guide for more information about
Oracle OLAP
Introduction to the Oracle Server 1-59

High Availability Overview
analysis. Change data capture quickly identifies and processes only the data that
has changed, not entire tables, and makes the change data available for further use.

Change data capture does not depend on intermediate flat files to stage the data
outside of the relational database. It captures the change data resulting from
INSERT, UPDATE, and DELETE operations made to user tables. The change data is
then stored in a database object called a change table, and the change data is made
available to applications in a controlled way.

High Availability Overview
Computing environments configured to provide nearly full-time availability are
known as high availability systems. Such systems typically have redundant
hardware and software that makes the system available despite failures.
Well-designed high availability systems avoid having single points-of-failure. Any
hardware or software component that can fail has a redundant component of the
same type.

When failures occur, the failover process moves processing performed by the failed
component to the backup component. This process remasters systemwide
resources, recovers partial or failed transactions, and restores the system to normal,
preferably within a matter of microseconds. The more transparent that failover is to
users, the higher the availability of the system.

Oracle has a number of products and features that provide high availability. These
include multiplexed redo log files, Recovery Manager (RMAN), Fast-Start
Recovery, LogMiner, flashback query, partitioning, Transparent Application
Failover, online reorganization, Oracle Replication, Oracle Data Guard and Standby
Database, Real Application Clusters, and Oracle Real Application Clusters Guard.
These can be used in various combinations to meet specific high availability needs.

See Also: Oracle9i Data Warehousing Guide
1-60 Oracle9i Database Concepts

High Availability Overview
Transparent Application Failover
Transparent Application Failover (TAF) enables an application user to
automatically reconnect to a database if the connection fails. Active transactions roll
back, but the new database connection, made by way of a different node, is identical
to the original. This is true regardless of how the connection fails.

With Transparent Application Failover, a client notices no loss of connection as long
as there is one instance left serving the application. The database administrator
controls which applications run on which instances and also creates a failover order
for each application.

Elements Affected by Transparent Application Failover
During normal client/server database operations, the client maintains a connection
to the database so the client and server can communicate. If the server fails, so then
does the connection. The next time the client tries to use the connection the client
issues an error. At this point, the user must log in to the database again.

With Transparent Application Failover, however, Oracle automatically obtains a
new connection to the database. This enables users to continue working as if the
original connection had never failed.

There are several elements associated with active database connections. These
include:

� Client/Server database connections

See Also:

� "Redo Log Files" on page 1-7 for information on multiplexed
redo log files

� Oracle9i Recovery Manager User’s Guidefor information on
Recovery Manager

� Oracle9i Database Performance Tuning Guide and Reference for
information on Fast-Start Recovery

� Chapter 20, "Data Concurrency and Consistency" for
information on flashback query

� Chapter 11, "Partitioned Tables and Indexes" for information on
partitioning

� "Replication Overview" on page 1-35 for information on
replication
Introduction to the Oracle Server 1-61

High Availability Overview
� Users' database sessions executing commands

� Open cursors used for fetching

� Active transactions

� Server-side program variables

Transparent Application Failover automatically restores some of these elements.
However, you might need to embed other elements in the application code to
enable transparent application failover.

Online Reorganization Architecture
Database administrators can perform a variety of online operations to table
definitions, including online reorganization of heap-organized tables. This makes it
possible to reorganize a table while users have full access to it.

This online architecture provides the following capabilities:

� Any physical attribute of the table can be changed online. The table can be
moved to a new location. The table can be partitioned. The table can be
converted from one type of organization (such as a heap-organized) to another
(such as index-organized).

� Many logical attributes can also be changed. Column names, types, and sizes
can be changed. Columns can be added, deleted, or merged. One restriction is
that the primary key of the table cannot be modified.

� Online creation and rebuilding of secondary indexes on index-organized tables
(IOTs). Secondary indexes support efficient use of block hints (physical
guesses). Invalid physical guesses can be repaired online.

� Indexes can be created online and analyzed at the same time. Online fix-up of
physical guess component of logical ROWIDs (used in secondary indexes and
mapping table on index-organized tables) also can be used.

� Fix the physical guess component of logical ROWIDs stored in secondary
indexes on IOTs. This allows online repair of invalid physical guesses

See Also:

� Oracle9i Net Services Administrator’s Guide

� Oracle9i Real Application Clusters Concepts
1-62 Oracle9i Database Concepts

High Availability Overview
Data Guard Overview
Oracle Data Guard maintains up to nine standby databases, each of which is a
real-time copy of the production database, to protect against all
threats—corruptions, human errors, and disasters. If a failure occurs on the
production (primary) database, you can failover to one of the standby databases to
become the new primary database. In addition, planned downtime for maintenance
can be reduced because you can quickly and easily move (switch over) production
processing from the current primary database to a standby database, and then back
again.

Data Guard Configurations
A Data Guard configuration is a collection of loosely connected systems, consisting
of a single primary database and up to nine standby databases that can include a
mix of both physical and logical standby databases. The databases in a Data Guard
configuration can be connected by a LAN in the same data center, or—for
maximum disaster protection—geographically dispersed over a WAN and
connected by Oracle Network Services.

A Data Guard configuration can be deployed for any database. This is possible
because its use is transparent to applications; no application code changes are
required to accommodate a standby database. Moreover, Data Guard lets you tune
the configuration to balance data protection levels and application performance
impact; you can configure the protection mode to maximize data protection,
maximize availability, or maximize performance.

Data Guard Components
As application transactions make changes to the primary database, the changes are
logged locally in redo logs, which are sent to the standby databases by log transport
services and applied by log apply services.

Note: To protect against unlogged direct writes in the primary
database that cannot be propagated to the standby database, turn
on FORCE LOGGING at the primary database before taking datafile
backups for standby creation. Keep the database (or at least
important tablespaces) in FORCE LOGGING mode as long as the
standby database is active.
Introduction to the Oracle Server 1-63

High Availability Overview
For physical standby databases, the changes are applied to each physical standby
database that is running in managed recovery mode. For logical standby databases,
the changes are applied using SQL regenerated from the archived redo logs.

Physical Standby Databases A physical standby database is physically identical to the
primary database. While the primary database is open and active, a physical
standby database is either performing recovery (by applying logs), or open for
reporting access. A physical standby database can be queried read-only when not
performing recovery while the production database continues to ship redo data to
the physical standby site.

Physical standby on disk database structures must be identical to the primary
database on a block-for-block basis, because a recovery operation applies changes
block-for-block using the physical ROWID. The database schema, including
indexes, must be the same, and the database cannot be opened (other than for
read-only access). If opened, the physical standby database will have different
ROWIDs, making continued recovery impossible.

Logical Standby Databases A logical standby database takes standard Oracle archived
redo logs, transforms the redo records they contain into SQL transactions, and then
applies them to an open standby database. Although changes can be applied
concurrently with end-user access, the tables being maintained through regenerated
SQL transactions allow read-only access to users of the logical standby database.
Because the database is open, it is physically different from the primary database.
The database tables can have different indexes and physical characteristics from
their primary database peers, but must maintain logical consistency from an
application access perspective, to fulfill their role as a standby data source.

Data Guard Broker Oracle Data Guard Broker automates complex creation and
maintenance tasks and provides dramatically enhanced monitoring, alert, and
control mechanisms. It uses background agent processes that are integrated with
the Oracle database server and associated with each Data Guard site to provide a
unified monitoring and management infrastructure for an entire Data Guard
configuration. Two user interfaces are provided to interact with the Data Guard
configuration, a command-line interface (DGMGRL) and a graphical user interface
called Data Guard Manager.

Oracle Data Guard Manager, which is integrated with Oracle Enterprise Manager,
provides wizards to help you easily create, manage, and monitor the configuration.
This integration lets you take advantage of other Enterprise Manager features, such
as to provide an event service for alerts, the discovery service for easier setup, and
the job service to ease maintenance.
1-64 Oracle9i Database Concepts

High Availability Overview
LogMiner Overview
LogMiner is a relational tool that lets administrators use SQL to read, analyze, and
interpret log files. LogMiner can view both online and archived redo logs. The
Enterprise Manager application LogMiner Viewer adds a GUI-based interface.

The ability of LogMiner to access data stored in redo logs helps you to perform
many database management tasks. For example, you can do the following:

� Track specific sets of changes based on transaction, user, table, time, and so on.
You can determine who modified a database object and what the object data
was before and after the modification. The ability to trace and audit database
changes back to their source and undo the changes provides data security and
control.

� Pinpoint when an incorrect modification was introduced into the database. This
lets you perform logical recovery at the application level instead of at the
database level.

� Provide supplemental information for tuning and capacity planning. You can
also perform historical analysis to determine trends and data access patterns.

� Retrieve critical information for debugging complex applications.

Real Application Clusters
Real Application Clusters are inherently high availability systems. Clusters typical
of Real Application Clusters environments can provide continuous service for both
planned and unplanned outages.

Real Application Clusters builds higher levels of availability on top of the standard
Oracle features. All single instance high availability features, such as Fast-Start
Recovery and online reorganizations, apply to Real Application Clusters as well.

See Also:

� Oracle9i Data Guard Concepts and Administration

� Oracle9i Data Guard Broker

See Also:

� Oracle9i Data Guard Concepts and Administration

� Oracle9i Database Administrator’s Guide for more information
about LogMiner
Introduction to the Oracle Server 1-65

High Availability Overview
Fast-Start Recovery can greatly reduce mean time to recover (MTTR) with minimal
effects on online application performance. Online reorganizations reduce the
durations of planned downtimes. Many operations can be performed online while
users update the underlying objects. Real Application Clusters preserves all these
standard Oracle features.

In addition to all the regular Oracle features, Real Application Clusters exploits the
redundancy provided by clustering to deliver availability with n-1 node failures in
an n-node cluster. In other words, all users have access to all data as long as there is
one available node in the cluster.

Real Application Clusters Guard
Oracle Real Application Clusters Guard is an integral component of Real
Application Clusters. Oracle Real Application Clusters Guard provides the
following functions:

� Automated, fast recovery and bounded recovery time from failures that stop
the Oracle instance

� Automatic capture of diagnostic data when certain types of failures occur

� Enforced primary/secondary configuration. Clients connecting through Oracle
Net Services are properly routed to the primary node even if connected to
another node in the cluster

� Elimination of delays that clients experience when reestablishing connections
after a failure

A database server that runs Real Application Clusters consists of the Oracle
database, Real Application Clusters software, and the Oracle Net listeners that
accept client requests. These software components run on each node of a cluster.
They use the services provided by the hardware, the operating system, and the
port-specific Cluster Manager. The Cluster Manager monitors and reports the
health of the nodes in the cluster and controls pack behavior.

See Also: Oracle9i Real Application Clusters Concepts

See Also:

� Oracle9i Real Application Clusters Concepts

� Oracle9i Real Application Clusters Real Application Clusters Guard
I - Concepts and Administration
1-66 Oracle9i Database Concepts

Content Management Overview
Content Management Overview
Oracle provides a single platform for creating, managing, and delivering
personalized, rich content to any device. Corporate information assets - documents,
spreadsheets, multimedia, presentations, e-mail, and HTML files - are easily
accessible to all users, and there is no need for specialty servers or unrelated file
systems. Automatic search capabilities can discover valuable content wherever it
resides and whatever language it is in.

Oracle’s content management features include the following:

� The Oracle Internet File System (9iFS) provides both an out-of-the-box file
system for storing and managing content in the database as well as a robust
development platform for developing content management applications.

� Oracle interMedia extracts metadata from rich media files (image, audio, video)
and lets you manipulate these files in the Oracle database.

� Oracle Text indexes textual content stored in the database and lets you perform
sophisticated content-based queries on these indexes. The Oracle database
indexes more than 150 document file types including MS Office, Adobe PDF,
HTML, and XML documents, and Oracle Text supports over 40 languages.

� Oracle Ultra Search builds on Oracle Text to provide a unified, searchable index
of content stored in databases, file systems, and Web sites.

� Oracle eLocation lets you add regional metadata to content and perform spatial
searches.

� Dynamic Services and the Syndication Server make it easy to aggregate content
and deliver it to subscribers.

� Workspaces help version content in the database.

� XML services like the Oracle XML parser help you parse and render XML
content, making it possible to tailor XML-based content to different formats and
audiences.

� Oracle Portal simplifies the process of delivering content to the intranet and
Internet, and provides a framework for content providers to publish.

� The Wireless Edition of Oracle9i can push content from the database into
wireless devices.

Oracle provides access for creating and delivering content, while at the same time
keeping content manageable. Not only can you create, manage, and deliver content
Introduction to the Oracle Server 1-67

Content Management Overview
through out-of-the-box interfaces like the Oracle Internet File System, but also
through the Java, XML, and PL/SQL APIs.

Oracle Internet File System Overview
A large amount of critical business information usually resides in documents,
spreadsheets, email, and Web pages. This data often exists only on someone's
laptop or in a departmental file server, obscured from the rest of the organization.
The Oracle Internet File System creates a secure, scalable file service that reaches all
your information.

� Oracle Internet File System injects more functionality and intelligence into your
corporate file management processes. Users can search for words or phrases
that appear in a document and use check-in/check-out features to keep disk
space and document versioning from getting out of control.

� Users can access files and data stored in the Oracle database from any standard
Web browser, Windows client, or e-mail server without special training. Oracle
Internet File System supports all of the most popular industry standards
including HTTP, WebDAV, SMB, FTP, NFS, IMAP4, and SMTP.

� Oracle Internet File System uses the multilevel security model of the Oracle
database to establish secure methods for storing and managing content. It
provides user authentication, access rights definition, and access control at the
document, version, and folder level to prevent unauthorized access to
information.

� Developers can customize 9iFS for specific application purposes like quickly
supporting new document types or validating and translating XML-based
business rules between companies.
1-68 Oracle9i Database Concepts

Part II

Database Structures

Part II describes the basic structural architecture of the Oracle database, including
physical and logical storage structures. Part II contains the following chapters:

� Chapter 2, "Data Blocks, Extents, and Segments"

� Chapter 3, "Tablespaces, Datafiles, and Control Files"

� Chapter 4, "The Data Dictionary"

Oracle9i Database Concepts

Data Blocks, Extents, and Segm
2

Data Blocks, Extents, and Segments

This chapter describes the nature of and relationships among the logical storage
structures in the Oracle server. It includes:

� Introduction to Data Blocks, Extents, and Segments

� Data Blocks Overview

� Extents Overview

� Segments Overview
ents 2-1

Introduction to Data Blocks, Extents, and Segments
Introduction to Data Blocks, Extents, and Segments
Oracle allocates logical database space for all data in a database. The units of
database space allocation are data blocks, extents, and segments. Figure 2–1 shows
the relationships among these data structures:

Figure 2–1 The Relationships Among Segments, Extents, and Data Blocks

At the finest level of granularity, Oracle stores data in data blocks (also called
logical blocks, Oracle blocks, or pages). One data block corresponds to a specific
number of bytes of physical database space on disk.

The next level of logical database space is an extent. An extent is a specific number
of contiguous data blocks allocated for storing a specific type of information.

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

Data Blocks

Extent
24Kb

Extent
72Kb

Segment
96Kb
2-2 Oracle9i Database Concepts

Data Blocks Overview
The level of logical database storage above an extent is called a segment. A segment
is a set of extents, each of which has been allocated for a specific data structure and
all of which are stored in the same tablespace. For example, each table’s data is
stored in its own data segment, while each index’s data is stored in its own index
segment. If the table or index is partitioned, each partition is stored in its own
segment.

Oracle allocates space for segments in units of one extent. When the existing extents
of a segment are full, Oracle allocates another extent for that segment. Because
extents are allocated as needed, the extents of a segment may or may not be
contiguous on disk.

A segment and all its extents are stored in one tablespace. Within a tablespace, a
segment can include extents from more than one file; that is, the segment can span
datafiles. However, each extent can contain data from only one datafile.

Although you can allocate additional extents, the blocks themselves are allocated
separately. If you allocate an extent to a specific instance, the blocks are immediately
allocated to the free list. However, if the extent is not allocated to a specific instance,
then the blocks themselves are allocated only when the high water mark moves.
The high water mark is the boundary between used and unused space in a
segment.

Data Blocks Overview
Oracle manages the storage space in the datafiles of a database in units called
data blocks. A data block is the smallest unit of data used by a database. In contrast,
at the physical, operating system level, all data is stored in bytes. Each operating
system has a block size. Oracle requests data in multiples of Oracle data blocks, not
operating system blocks.

The standard block size is specified by the initialization parameter DB_BLOCK_
SIZE. In addition, you can specify of up to five nonstandard block sizes. The data
block sizes should be a multiple of the operating system’s block size within the
maximum limit to avoid unnecessary I/O. Oracle data blocks are the smallest units
of storage that Oracle can use or allocate.

Note: Oracle Corporation recommends that you manage free
space automatically. See "Free Space Management" on page 2-6.
Data Blocks, Extents, and Segments 2-3

Data Blocks Overview
Data Block Format
The Oracle data block format is similar regardless of whether the data block
contains table, index, or clustered data. Figure 2–2 illustrates the format of a
data block.

Figure 2–2 Data Block Format

Header (Common and Variable)
The header contains general block information, such as the block address and the
type of segment (for example, data or index).

See Also:

� Your Oracle operating system-specific documentation for more
information about data block sizes

� Multiple Block Sizes on page 3-13

Database Block

Common and Variable Header

Table Directory

Row Directory

Free Space

Row Data
2-4 Oracle9i Database Concepts

Data Blocks Overview
Table Directory
This portion of the data block contains information about the table having rows in
this block.

Row Directory
This portion of the data block contains information about the actual rows in the
block (including addresses for each row piece in the row data area).

After the space has been allocated in the row directory of a data block’s overhead,
this space is not reclaimed when the row is deleted. Therefore, a block that is
currently empty but had up to 50 rows at one time continues to’ have 100 bytes
allocated in the header for the row directory. Oracle reuses this space only when
new rows are inserted in the block.

Overhead
The data block header, table directory, and row directory are referred to collectively
as overhead. Some block overhead is fixed in size; the total block overhead size is
variable. On average, the fixed and variable portions of data block overhead total 84
to 107 bytes.

Row Data
This portion of the data block contains table or index data. Rows can span blocks.

Free Space
Free space is allocated for insertion of new rows and for updates to rows that
require additional space (for example, when a trailing null is updated to a nonnull
value). Whether issued insertions actually occur in a given data block is a function
of current free space in that data block and the value of the space management
parameter PCTFREE.

In data blocks allocated for the data segment of a table or cluster, or for the index
segment of an index, free space can also hold transaction entries. A transaction
entry is required in a block for each INSERT, UPDATE, DELETE, and SELECT...FOR
UPDATE statement accessing one or more rows in the block. The space required for
transaction entries is operating system dependent; however, transaction entries in
most operating systems require approximately 23 bytes.

See Also: "Row Chaining and Migrating" on page 2-7
Data Blocks, Extents, and Segments 2-5

Data Blocks Overview
Free Space Management
Free space can be managed automatically or manually.

Free space can be managed automatically inside database segments. The in-segment
free/used space is tracked using bitmaps, as opposed to free lists. Automatic
segment-space management offers the following benefits:

� Ease of use

� Better space utilization, especially for the objects with highly varying size rows

� Better run-time adjustment to variations in concurrent access

� Better multi-instance behavior in terms of performance/space utilization

You specify automatic segment-space management when you create a locally
managed tablespace. The specification then applies to all segments subsequently
created in this tablespace.

Availability and Compression of Free Space in a Data Block
Two types of statements can increase the free space of one or more data blocks:
DELETE statements, and UPDATE statements that update existing values to smaller
values. The released space from these types of statements is available for
subsequent INSERT statements under the following conditions:

� If the INSERT statement is in the same transaction and subsequent to the
statement that frees space, then the INSERT statement can use the space made
available.

� If the INSERT statement is in a separate transaction from the statement that
frees space (perhaps being run by another user), then the INSERT statement can
use the space made available only after the other transaction commits and only
if the space is needed.

Released space may or may not be contiguous with the main area of free space in a
data block. Oracle coalesces the free space of a data block only when (1) an INSERT
or UPDATE statement attempts to use a block that contains enough free space to
contain a new row piece, and (2) the free space is fragmented so the row piece

See Also:

� Oracle9i Database Administrator’s Guide

� Oracle9i SQL Reference

� Oracle9i Supplied PL/SQL Packages and Types Reference
2-6 Oracle9i Database Concepts

Data Blocks Overview
cannot be inserted in a contiguous section of the block. Oracle does this
compression only in such situations, because otherwise the performance of a
database system decreases due to the continuous compression of the free space in
data blocks.

Row Chaining and Migrating
In two circumstances, the data for a row in a table may be too large to fit into a
single data block. In the first case, the row is too large to fit into one data block
when it is first inserted. In this case, Oracle stores the data for the row in a chain of
data blocks (one or more) reserved for that segment. Row chaining most often
occurs with large rows, such as rows that contain a column of datatype LONG or
LONG RAW. Row chaining in these cases is unavoidable.

However, in the second case, a row that originally fit into one data block is updated
so that the overall row length increases, and the block’s free space is already
completely filled. In this case, Oracle migrates the data for the entire row to a new
data block, assuming the entire row can fit in a new block. Oracle preserves the
original row piece of a migrated row to point to the new block containing the
migrated row. The rowid of a migrated row does not change.

When a row is chained or migrated, I/O performance associated with this row
decreases because Oracle must scan more than one data block to retrieve the
information for the row.

PCTFREE, PCTUSED, and Row Chaining
For manually managed tablespaces, two space management parameters, PCTFREE
and PCTUSED, enable you to control the use of free space for inserts and updates to
the rows in all the data blocks of a particular segment. Specify these parameters
when you create or alter a table or cluster (which has its own data segment). You

See Also:

� "Row Format and Size" on page 10-6 for more information on
the format of a row and a row piece

� "Rowids of Row Pieces" on page 10-9 for more information on
rowids

� "Physical Rowids" on page 12-17 for information about rowids

� Oracle9i Database Performance Tuning Guide and Reference for
information about reducing chained and migrated rows and
improving I/O performance
Data Blocks, Extents, and Segments 2-7

Extents Overview
can also specify the storage parameter PCTFREE when creating or altering an index
(which has its own index segment).

Extents Overview
An extent is a logical unit of database storage space allocation made up of a number
of contiguous data blocks. One or more extents in turn make up a segment. When
the existing space in a segment is completely used, Oracle allocates a new extent for
the segment.

When Extents Are Allocated
When you create a table, Oracle allocates to the table’s data segment an initial
extent of a specified number of data blocks. Although no rows have been inserted
yet, the Oracle data blocks that correspond to the initial extent are reserved for that
table’s rows.

If the data blocks of a segment’s initial extent become full and more space is
required to hold new data, Oracle automatically allocates an incremental extent for
that segment. An incremental extent is a subsequent extent of the same or greater
size than the previously allocated extent in that segment.

For maintenance purposes, the header block of each segment contains a directory of
the extents in that segment.

Determine the Number and Size of Extents
Storage parameters expressed in terms of extents define every segment. Storage
parameters apply to all types of segments. They control how Oracle allocates free
database space for a given segment. For example, you can determine how much
space is initially reserved for a table’s data segment or you can limit the number of
extents the table can allocate by specifying the storage parameters of a table in the

See Also: Appendix B, "Information on Deprecated Features" for
more information on the PCTFREE and PCTUSED parameters

Note: This chapter applies to serial operations, in which one
server process parses and runs a SQL statement. Extents are
allocated somewhat differently in parallel SQL statements, which
entail multiple server processes.
2-8 Oracle9i Database Concepts

Extents Overview
STORAGE clause of the CREATE TABLE statement. If you do not specify a table’s
storage parameters, then it uses the default storage parameters of the tablespace.

Prior to Oracle8i, all tablespaces were created as dictionary managed. Dictionary
managed tablespaces rely on data dictionary tables to track space utilization.
Beginning with Oracle8i, you could create locally managed tablespaces, which use
bitmaps (instead of data dictionary tables) to track used and free space. Because of
the better performance and greater ease of management of locally managed
tablespaces, the default for non-SYSTEM permanent tablespaces is locally managed
whenever the type of extent management is not explicitly specified.

A tablespace that manages its extents locally can have either uniform extent sizes or
variable extent sizes that are determined automatically by the system. When you
create the tablespace, the UNIFORM or AUTOALLOCATE (system-managed) clause
specifies the type of allocation.

� For system-managed extents, you can specify the size of the initial extent and
Oracle determines the optimal size of additional extents, with a minimum
extent size of 64 KB. This is the default for permanent tablespaces.

� For uniform extents, you can specify an extent size or use the default size,
which is 1 MB. Temporary tablespaces that manage their extents locally can
only use this type of allocation.

The storage parameters NEXT, PCTINCREASE, MINEXTENTS, MAXEXTENTS, and
DEFAULT STORAGE are not valid for extents that are managed locally.

How Extents Are Allocated
Oracle uses different algorithms to allocate extents, depending on whether they are
locally managed or dictionary managed.

With locally managed tablespaces, Oracle looks for free space to allocate to a new
extent by first determining a candidate datafile in the tablespace and then searching
the datafile’s bitmap for the required number of adjacent free blocks. If that datafile
does not have enough adjacent free space, then Oracle looks in another datafile.

See Also:

� "Managing Space in Tablespaces" on page 3-11

� Oracle9i Database Administrator’s Guide
Data Blocks, Extents, and Segments 2-9

Extents Overview
When Extents Are Deallocated
In general, the extents of a segment do not return to the tablespace until you drop
the schema object whose data is stored in the segment (using a DROP TABLE or
DROP CLUSTER statement). Exceptions to this include the following:

� The owner of a table or cluster, or a user with the DELETE ANY privilege, can
truncate the table or cluster with a TRUNCATE...DROP STORAGE statement.

� A database administrator (DBA) can deallocate unused extents using the
following SQL syntax:

ALTER TABLE table_name DEALLOCATE UNUSED;

� Periodically, Oracle deallocates one or more extents of a rollback segment if it
has the OPTIMAL size specified.

When extents are freed, Oracle modifies the bitmap in the datafile (for locally
managed tablespaces) or updates the data dictionary (for dictionary managed
tablespaces) to reflect the regained extents as available space. Any data in the blocks
of freed extents becomes inaccessible.

Extents in Nonclustered Tables
As long as a nonclustered table exists or until you truncate the table, any data block
allocated to its data segment remains allocated for the table. Oracle inserts new
rows into a block if there is enough room. Even if you delete all rows of a table,
Oracle does not reclaim the data blocks for use by other objects in the tablespace.

After you drop a nonclustered table, this space can be reclaimed when other extents
require free space. Oracle reclaims all the extents of the table’s data and index

Note: Oracle Corporation strongly recommends that you use
locally managed tablespaces.

See Also: Appendix B, "Information on Deprecated Features" for
information on allocating extents in dictionary managed tables

See Also:

� Oracle9i Database Administrator’s Guide

� Oracle9i SQL Reference

for more information about deallocating extents
2-10 Oracle9i Database Concepts

Extents Overview
segments for the tablespaces that they were in and makes the extents available for
other schema objects in the same tablespace.

In dictionary managed tablespaces, when a segment requires an extent larger than
the available extents, Oracle identifies and combines contiguous reclaimed extents
to form a larger one. This is called coalescing extents. Coalescing extents is not
necessary in locally managed tablespaces, because all contiguous free space is
available for allocation to a new extent regardless of whether it was reclaimed from
one or more extents.

Extents in Clustered Tables
Clustered tables store information in the data segment created for the cluster.
Therefore, if you drop one table in a cluster, the data segment remains for the other
tables in the cluster, and no extents are deallocated. You can also truncate clusters
(except for hash clusters) to free extents.

Extents in Materialized Views and Their Logs
Oracle deallocates the extents of materialized views and materialized view logs in
the same manner as for tables and clusters.

Extents in Indexes
All extents allocated to an index segment remain allocated as long as the index
exists. When you drop the index or associated table or cluster, Oracle reclaims the
extents for other uses within the tablespace.

Extents in Temporary Segments
When Oracle completes the execution of a statement requiring a temporary
segment, Oracle automatically drops the temporary segment and returns the extents
allocated for that segment to the associated tablespace. A single sort allocates its
own temporary segment in the temporary tablespace of the user issuing the
statement and then returns the extents to the tablespace.

Multiple sorts, however, can use sort segments in a temporary tablespace
designated exclusively for sorts. These sort segments are allocated only once for the
instance, and they are not returned after the sort, but remain available for other
multiple sorts.

See Also: "Materialized Views" on page 10-22 for a description of
materialized views and their logs
Data Blocks, Extents, and Segments 2-11

Segments Overview
A temporary segment in a temporary table contains data for multiple statements of
a single transaction or session. Oracle drops the temporary segment at the end of
the transaction or session, returning the extents allocated for that segment to the
associated tablespace.

Extents in Rollback Segments
Oracle periodically checks the rollback segments of the database to see if they have
grown larger than their optimal size. If a rollback segment is larger than is optimal
(that is, it has too many extents), then Oracle automatically deallocates one or more
extents from the rollback segment.

Segments Overview
A segment is a set of extents that contains all the data for a specific logical storage
structure within a tablespace. For example, for each table, Oracle allocates one or
more extents to form that table’s data segment, and for each index, Oracle allocates
one or more extents to form its index segment.

Oracle databases use four types of segments, which are described in the following
sections:

� Introduction to Data Segments

� Introduction to Index Segments

� Introduction to Temporary Segments

Introduction to Data Segments
A single data segment in an Oracle database holds all of the data for one of the
following:

� A table that is not partitioned or clustered

� A partition of a partitioned table

See Also:

� "Introduction to Temporary Segments" on page 2-13

� "Temporary Tables" on page 10-13

See Also: Appendix B, "Information on Deprecated Features" for
more information on rollback segments
2-12 Oracle9i Database Concepts

Segments Overview
� A cluster of tables

Oracle creates this data segment when you create the table or cluster with the
CREATE statement.

The storage parameters for a table or cluster determine how its data segment’s
extents are allocated. You can set these storage parameters directly with the
appropriate CREATE or ALTER statement. These storage parameters affect the
efficiency of data retrieval and storage for the data segment associated with the
object.

Introduction to Index Segments
Every nonpartitioned index in an Oracle database has a single index segment to
hold all of its data. For a partitioned index, every partition has a single index
segment to hold its data.

Oracle creates the index segment for an index or an index partition when you issue
the CREATE INDEX statement. In this statement, you can specify storage parameters
for the extents of the index segment and a tablespace in which to create the index
segment. (The segments of a table and an index associated with it do not have to
occupy the same tablespace.) Setting the storage parameters directly affects the
efficiency of data retrieval and storage.

Introduction to Temporary Segments
When processing queries, Oracle often requires temporary workspace for
intermediate stages of SQL statement parsing and execution. Oracle automatically
allocates this disk space called a temporary segment. Typically, Oracle requires a
temporary segment as a work area for sorting. Oracle does not create a segment if

Note: Oracle creates segments for materialized views and
materialized view logs in the same manner as for tables and
clusters.

See Also:

� Oracle9i Replication for information on materialized views and
materialized view logs

� Oracle9i SQL Reference for information on the CREATE and
ALTER statements
Data Blocks, Extents, and Segments 2-13

Segments Overview
the sorting operation can be done in memory or if Oracle finds some other way to
perform the operation using indexes.

Operations that Require Temporary Segments
The following statements sometimes require the use of a temporary segment:

� CREATE INDEX

� SELECT ... ORDER BY

� SELECT DISTINCT ...

� SELECT ... GROUP BY

� SELECT ... UNION

� SELECT ... INTERSECT

� SELECT ... MINUS

Some unindexed joins and correlated subqueries can require use of a temporary
segment. For example, if a query contains a DISTINCT clause, a GROUP BY, and an
ORDER BY, Oracle can require as many as two temporary segments. If applications
often issue statements in the previous list, the database administrator can improve
performance by adjusting the initialization parameter SORT_AREA_SIZE.

Segments in Temporary Tables and Their Indexes
Oracle can also allocate temporary segments for temporary tables and indexes
created on temporary tables. Temporary tables hold data that exists only for the
duration of a transaction or session.

How Temporary Segments Are Allocated
Oracle allocates temporary segments differently for queries and temporary tables.

Allocation of Temporary Segments for Queries Oracle allocates temporary segments as
needed during a user session in the temporary tablespace of the user issuing the
statement. Specify this tablespace with a CREATE USER or an ALTER USER
statement using the TEMPORARY TABLESPACE clause.

See Also: Oracle9i Database Reference for information on SORT_
AREA_SIZE and other initialization parameters

See Also: "Temporary Tables" on page 10-13
2-14 Oracle9i Database Concepts

Segments Overview
If no temporary tablespace is defined for the user, then the default temporary
tablespace is the SYSTEM tablespace. The default storage characteristics of the
containing tablespace determine those of the extents of the temporary segment.
Oracle drops temporary segments when the statement completes.

Because allocation and deallocation of temporary segments occur frequently, create
a special tablespace for temporary segments. By doing so, you can distribute I/O
across disk devices, and you can avoid fragmentation of the SYSTEM and other
tablespaces that otherwise hold temporary segments.

Entries for changes to temporary segments used for sort operations are not stored in
the redo log, except for space management operations on the temporary segment.

Allocation of Temporary Segments for Temporary Tables and Indexes Oracle allocates
segments for a temporary table when the first INSERT into that table is issued. (This
can be an internal insert operation issued by CREATE TABLE AS SELECT.) The first
INSERT into a temporary table allocates the segments for the table and its indexes,
creates the root page for the indexes, and allocates any LOB segments.

Segments for a temporary table are allocated in the temporary tablespace of the user
who created the temporary table.

Oracle drops segments for a transaction-specific temporary table at the end of the
transaction and drops segments for a session-specific temporary table at the end of
the session. If other transactions or sessions share the use of that temporary table,
the segments containing their data remain in the table.

Note: You cannot assign a permanent tablespace as a user's
temporary tablespace.

Note: When the SYSTEM tablespace is locally managed, you must
define a default temporary tablespace when creating a database. A
locally managed SYSTEM tablespace cannot be used for default
temporary storage.

See Also: Chapter 22, "Controlling Database Access" for more
information about assigning a user’s temporary segment tablespace

See Also: "Temporary Tables" on page 10-13
Data Blocks, Extents, and Segments 2-15

Segments Overview
Automatic Undo Management
Automatic undo management is undo-tablespace based. You allocate space in the
form of a few undo tablespaces, instead of allocating many rollback segments in
different sizes.

Automatic undo management lets you explicitly control undo retention. Through
the use of a system parameter (UNDO_RETENTION), you can specify the amount of
committed undo information to retain in the database. You specify the parameter as
clock time (for example, 30 seconds). With retention control, you can configure your
system to enable long queries to run successfully.

Use the V$UNDOSTAT view to monitor and configure your database system to
achieve efficient use of undo space. V$UNDOSTAT shows various undo and
transaction statistics, such as the amount of undo space consumed in the instance.

Undo Mode
Undo mode provides a more flexible way to migrate from manual undo
management to automatic undo management. A database system can run in either
manual undo management mode or automatic undo management mode. In manual
undo management mode, undo space is managed through rollback segments.
Manual undo management mode is supported under any compatibility level. Use it
when you need to run Oracle9i to take advantage of some new features, but are not
yet not ready to convert to automatic undo management mode.

In automatic undo management mode, undo space is managed in undo tablespaces.
To use automatic undo management mode, the database administrator needs only
to create an undo tablespace for each instance and set the UNDO_MANAGEMENT
initialization parameter to AUTO. Automatic undo management mode is supported
under compatibility levels of Oracle9i or higher. Although manual undo
management mode is supported, you are strongly encouraged to run in automatic
undo management mode.

See Also: Oracle9i Database Administrator’s Guide for information
about creating an undo tablespace

Note: In earlier releases, undo space management was performed
using rollback segments. This method is now called manual undo
management mode.
2-16 Oracle9i Database Concepts

Segments Overview
Undo Quota
In automatic undo management mode, the system controls exclusively the
assignment of transactions to undo segments, and controls space allocation for
undo segments. An ill-behaved transaction can potentially consume much of the
undo space, thus paralyzing the entire system. In manual undo management mode,
you can control such possibilities by limiting the size of rollback segments with
small MAXEXTENTS values. However, you then have to explicitly assign long
running transactions to larger rollback segments, using the SET TRANSACTION USE
ROLLBACK SEGMENT statement. This approach has proven to be cumbersome.

The Resource Manager directive UNDO_POOL is a more explicit way to control large
transactions. This lets database administrators group users into consumer groups,
with each group assigned a maximum undo space limit. When the total undo space
consumed by a group exceeds the limit, its users cannot make further updates until
undo space is freed up by other member transactions ending.

The default value of UNDO_POOL is UNLIMITED, where users are allowed to
consume as much undo space as the undo tablespace has. Database administrators
can limit a particular user by using the UNDO_POOL directive.

Undo Retention Control
Long-running queries sometimes fail because undo information required for
consistent read operations is no longer available. This happens when committed
undo blocks are overwritten by active transactions.

Automatic undo management provides a way to explicitly control when undo space
can be reused; that is, how long undo information is retained. A database
administrator can specify a retention period by using the parameter UNDO_
RETENTION. For example, if UNDO_RETENTION is set to 30 minutes, then all
committed undo information in the system is retained for at least 30 minutes. This
ensures that all queries running for 30 minutes or less, under usual circumstances,
do not encounter the OER error, "snapshot too old."

See Also:

� Oracle9i Database Administrator’s Guide for descriptions of the
syntax and the semantics of the DDL statements.

� Appendix B, "Information on Deprecated Features" for more
information on manual undo management mode
Data Blocks, Extents, and Segments 2-17

Segments Overview
You can either set UNDO_RETENTION at startup or change it dynamically with the
ALTER SYSTEM statement. The following example sets retention to 20 minutes:

ALTER SYSTEM SET UNDO_RETENTION = 1200;

If you do not set the UNDO_RETENTION parameter, then Oracle uses a small default
value that should be adequate for most OLTP systems, where queries are not
usually not very long.

In general, it is a good idea not to set retention to a value very close to what the
undo tablespace can support, because that may result in excessive movement of
space between undo segments. A 20% buffer of undo space is recommended.

External Views
Monitor transaction and undo information with V$TRANSACTION and
V$ROLLSTAT. For automatic undo management, the information in V$ROLLSTAT
reflects the behaviors of the automatic undo management undo segments.

The V$UNDOSTAT view displays a histogram of statistical data to show how well
the system is working. You can see statistics such as undo consumption rate,
transaction concurrency, and lengths of queries run in the instance. Using this view,
you can better estimate the amount of undo space required for the current
workload. This view is available in both the automatic undo management and
manual undo management mode.

See Also: Oracle9i Database Administrator’s Guide for more details
about using V$UNDOSTAT.
2-18 Oracle9i Database Concepts

Tablespaces, Datafiles, and Contro
3

Tablespaces, Datafiles, and Control Files

This chapter describes tablespaces, the primary logical database structures of any
Oracle database, and the physical datafiles that correspond to each tablespace. The
chapter includes:

� Introduction to Tablespaces, Datafiles, and Control Files

� Tablespaces Overview

� Datafiles Overview

� Control Files Overview
l Files 3-1

Introduction to Tablespaces, Datafiles, and Control Files
Introduction to Tablespaces, Datafiles, and Control Files
Oracle stores data logically in tablespaces and physically in datafiles associated
with the corresponding tablespace. Figure 3–1 illustrates this relationship.

Figure 3–1 Datafiles and Tablespaces

Databases, tablespaces, and datafiles are closely related, but they have important
differences:

� An Oracle database consists of one or more logical storage units called
tablespaces, which collectively store all of the database’s data.

� Each tablespace in an Oracle database consists of one or more files called
datafiles, which are physical structures that conform to the operating system in
which Oracle is running.

� A database’s data is collectively stored in the datafiles that constitute each
tablespace of the database. For example, the simplest Oracle database would

Tablespace
(one or more datafiles)

Table

Index

Index

Index

Index

Index

Index

Index

Table

Table

Index

Index

Index

Datafiles
(physical structures associated
with only one tablespace)

Objects
(stored in tablespaces-
may span several datafiles)
3-2 Oracle9i Database Concepts

Introduction to Tablespaces, Datafiles, and Control Files
have one tablespace and one datafile. Another database can have three
tablespaces, each consisting of two datafiles (for a total of six datafiles).

Oracle-Managed Files
Oracle-managed files eliminate the need for you, the DBA, to directly manage the
operating system files comprising an Oracle database. You specify operations in
terms of database objects rather than filenames. Oracle internally uses standard file

system interfaces to create and delete files as needed for the following database
structures:

� Tablespaces

� Online redo log files

� Control files

Through initialization parameters, you specify the file system directory to be used
for a particular type of file. Oracle then ensures that a unique file, an
Oracle-managed file, is created and deleted when no longer needed.

Allocate More Space for a Database
The size of a tablespace is the size of the datafiles that constitute the tablespace. The
size of a database is the collective size of the tablespaces that constitute the
database.

You can enlarge a database in three ways:

� Add a datafile to a tablespace

� Add a new tablespace

� Increase the size of a datafile

When you add another datafile to an existing tablespace, you increase the amount
of disk space allocated for the corresponding tablespace. Figure 3–2 illustrates this
kind of space increase.

See Also: Oracle9i Database Administrator’s Guide
Tablespaces, Datafiles, and Control Files 3-3

Introduction to Tablespaces, Datafiles, and Control Files
Figure 3–2 Enlarging a Database by Adding a Datafile to a Tablespace

Alternatively, you can create a new tablespace (which contains at least one
additional datafile) to increase the size of a database. Figure 3–3 illustrates this.

DATA1.ORA DATA3.ORADATA2.ORA

System Tablespace

Database

ALTER TABLESPACE system
ADD DATAFILE 'DATA2.ORA'

ALTER TABLESPACE system
ADD DATAFILE 'DATA3.ORA'

Single Tablespace

Database size and
tablespace size increase
with the addition of
datafiles
3-4 Oracle9i Database Concepts

Introduction to Tablespaces, Datafiles, and Control Files
Figure 3–3 Enlarging a Database by Adding a New Tablespace

The third option for enlarging a database is to change a datafile’s size or let datafiles
in existing tablespaces grow dynamically as more space is needed. You accomplish
this by altering existing files or by adding files with dynamic extension properties.
Figure 3–4 illustrates this.

DATA1.ORA DATA2.ORA DATA3.ORA

System Tablespace USERS Tablespace

Database

Two Tablespaces

CREATE TABLESPACE users
DATAFILE 'DATA3.ORA'
Tablespaces, Datafiles, and Control Files 3-5

Introduction to Tablespaces, Datafiles, and Control Files
Figure 3–4 Enlarging a Database by Dynamically Sizing Datafiles

See Also: Oracle9i Database Administrator’s Guide for more
information about increasing the amount of space in your database

DATA1.ORA DATA2.ORA

System Tablespace USERS Tablespace

DATA3.ORA

Database

ALTER DATABASE
DATAFILE 'DATA3.ORA'
 AUTOEXTEND ON NEXT 20M
 MAXSIZE 1000M;

20 M

20 M
3-6 Oracle9i Database Concepts

Tablespaces Overview
Tablespaces Overview
A database is divided into one or more logical storage units called tablespaces.
Tablespaces are divided into logical units of storage called segments, which are
further divided into extents. Extents are a collection of contiguous blocks.

This section includes the following topics about tablespaces:

� The SYSTEM Tablespace

� Undo Tablespaces

� Default Temporary Tablespace

� Using Multiple Tablespaces

� Managing Space in Tablespaces

� Multiple Block Sizes

� Online and Offline Tablespaces

� Read-Only Tablespaces

� Temporary Tablespaces for Sort Operations

� Transport of Tablespaces Between Databases

The SYSTEM Tablespace
Every Oracle database contains a tablespace named SYSTEM, which Oracle creates
automatically when the database is created. The SYSTEM tablespace is always online
when the database is open.

To take advantage of the benefits of locally managed tablespaces, you can create a
locally managed SYSTEM tablespace, or you can migrate an existing dictionary
managed SYSTEM tablespace to a locally managed format.

In a database with a locally managed SYSTEM tablespace, dictionary tablespaces
cannot be created. It is possible to plug in a dictionary managed tablespace using
the transportable feature, but it cannot be made writable.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for
more information about segments and extents

Note: Once a tablespace is locally managed, it cannot be reverted
back to being dictionary managed.
Tablespaces, Datafiles, and Control Files 3-7

Tablespaces Overview
The Data Dictionary
The SYSTEM tablespace always contains the data dictionary tables for the entire
database. The data dictionary tables are stored in datafile 1.

PL/SQL Program Units Description
All data stored on behalf of stored PL/SQL program units (that is, procedures,
functions, packages, and triggers) resides in the SYSTEM tablespace. If the database
contains many of these program units, then the database administrator must
provide the space the units need in the SYSTEM tablespace.

Undo Tablespaces
Undo tablespaces are special tablespaces used solely for storing undo information.
You cannot create any other segment types (for example, tables or indexes) in undo
tablespaces. Each database contains zero or more undo tablespaces. In automatic
undo management mode, each Oracle instance is assigned one (and only one) undo
tablespace. Undo data is managed within an undo tablespace using undo segments
that are automatically created and maintained by Oracle.

When the first DML operation is run within a transaction, the transaction is bound
(assigned) to an undo segment (and therefore to a transaction table) in the current
undo tablespace. In rare circumstances, if the instance does not have a designated
undo tablespace, the transaction binds to the system undo segment.

See Also:

� Oracle9i Database Administrator’s Guide for detailed information
about creating or migrating to a locally managed SYSTEM
tablespace

� "Online and Offline Tablespaces" on page 3-13 for more
information about the permanent online condition of the
SYSTEM tablespace

� Chapter 14, "SQL, PL/SQL, and Java" and Chapter 17,
"Triggers" for more information about the space requirements
of PL/SQL program units

Caution: Do not run any user transactions before creating the first
undo tablespace and taking it online.
3-8 Oracle9i Database Concepts

Tablespaces Overview
Each undo tablespace is composed of a set of undo files and is locally managed.
Like other types of tablespaces, undo blocks are grouped in extents and the status of
each extent is represented in the bitmap. At any point in time, an extent is either
allocated to (and used by) a transaction table, or it is free.

Creation of Undo Tablespaces
A database administrator creates undo tablespaces individually, using the CREATE
UNDO TABLESPACE statement. It can also be created when the database is created,
using the CREATE DATABASE statement. A set of files is assigned to each newly
created undo tablespace. Like regular tablespaces, attributes of undo tablespaces
can be modified with the ALTER TABLESPACE statement and dropped with the
DROP TABLESPACE statement.

Assignment of Undo Tablespaces
You assign an undo tablespace to an instance in one of two ways:

� At instance startup. You can specify the undo tablespace in the initialization file
or let the system choose an available undo tablespace.

� While the instance is running. Use ALTER SYSTEM SET UNDO_TABLESPACE to
replace the active undo tablespace with another undo tablespace. This method
is rarely used.

You can add more space to an undo tablespace by adding more data files to the
undo tablespace with the ALTER TABLESPACE statement.

You can have more than one undo tablespace and switch between them. Use the
Database Resource Manager to establish user quotas for undo tablespaces. You can
specify the retention period for undo information.

Note: An undo tablespace cannot be dropped if it is being used by
any instance or contains any undo information needed to recover
transactions.

See Also: Oracle9i Database Administrator’s Guide for detailed
information about creating and managing undo tablespaces
Tablespaces, Datafiles, and Control Files 3-9

Tablespaces Overview
Default Temporary Tablespace
When the SYSTEM tablespace is locally managed, you must define a default
temporary tablespace when creating a database. A locally managed SYSTEM
tablespace cannot be used for default temporary storage.

If SYSTEM is dictionary managed and if you do not define a default temporary
tablespace when creating the database, then SYSTEM is still used for default
temporary storage. However, you will receive a warning in ALERT.LOG saying that
a default temporary tablespace is recommended and will be necessary in future
releases.

How to Specify a Default Temporary Tablespace
Specify a default temporary tablespace when you create a database, using the
DEFAULT TEMPORARY TABLESPACE extension to the CREATE DATABASE statement.

If you drop the default temporary tablespace, then the SYSTEM tablespace is used as
the default temporary tablespace.

Using Multiple Tablespaces
A very small database may need only the SYSTEM tablespace; however, Oracle
Corporation recommends that you create at least one additional tablespace to store
user data separate from data dictionary information. This gives you more flexibility
in various database administration operations and reduces contention among
dictionary objects and schema objects for the same datafiles.

You can use multiple tablespaces to perform the following tasks:

� Control disk space allocation for database data

� Assign specific space quotas for database users

� Control availability of data by taking individual tablespaces online or offline

� Perform partial database backup or recovery operations

� Allocate data storage across devices to improve performance

Note: You cannot make the default temporary tablespace
permanent or take it offline.

See Also: Oracle9i SQL Reference for more information about
defining and altering default temporary tablespaces
3-10 Oracle9i Database Concepts

Tablespaces Overview
A database administrator can use tablespaces to do the following actions:

� Create new tablespaces

� Add datafiles to tablespaces

� Set and alter default segment storage settings for segments created in a
tablespace

� Make a tablespace read-only or read/write

� Make a tablespace temporary or permanent

� Drop tablespaces.

Managing Space in Tablespaces
Tablespaces allocate space in extents. Tablespaces can use two different methods to
keep track of their free and used space:

� Locally managed tablespaces: Extent management by the tablespace

� Dictionary managed tablespaces: Extent management by the data dictionary

When you create a tablespace, you choose one of these methods of space
management. You cannot alter the method at a later time.

Locally Managed Tablespaces
A tablespace that manages its own extents maintains a bitmap in each datafile to
keep track of the free or used status of blocks in that datafile. Each bit in the bitmap
corresponds to a block or a group of blocks. When an extent is allocated or freed for
reuse, Oracle changes the bitmap values to show the new status of the blocks. These
changes do not generate rollback information because they do not update tables in
the data dictionary (except for special cases such as tablespace quota information).

Locally managed tablespaces have the following advantages over dictionary
managed tablespaces:

� Local management of extents automatically tracks adjacent free space,
eliminating the need to coalesce free extents.

Note: If you do not specify extent management when you create a
tablespace, then the default is locally managed.

See Also: "Extents Overview" on page 2-8
Tablespaces, Datafiles, and Control Files 3-11

Tablespaces Overview
� Local management of extents avoids recursive space management operations.
Such recursive operations can occur in dictionary managed tablespaces if
consuming or releasing space in an extent results in another operation that
consumes or releases space in a data dictionary table or rollback segment.

The sizes of extents that are managed locally can be determined automatically by
the system. Alternatively, all extents can have the same size in a locally managed
tablespace and override object storage options.

The LOCAL clause of the CREATE TABLESPACE or CREATE TEMPORARY
TABLESPACE statement is specified to create locally managed permanent or
temporary tablespaces, respectively.

Segment Space Management in Locally Managed Tablespaces
When you create a locally managed tablespace using the CREATE TABLESPACE
statement, the SEGMENT SPACE MANAGEMENT clause lets you specify how free and
used space within a segment is to be managed. Your choices are:

� AUTO

This keyword tells Oracle that you want to use bitmaps to manage the free
space within segments. A bitmap, in this case, is a map that describes the status
of each data block within a segment with respect to the amount of space in the
block available for inserting rows. As more or less space becomes available in a
data block, its new state is reflected in the bitmap. Bitmaps enable Oracle to
manage free space more automatically; thus, this form of space management is
called automatic segment-space management.

� MANUAL

This keyword tells Oracle that you want to use free lists for managing free space
within segments. Free lists are lists of data blocks that have space available for
inserting rows. MANUAL is the default.

See Also:

� Oracle9i SQL Reference for details about SQL statements

� Oracle9i Database Administrator’s Guide for more information
about managing SQL statements

� "Determine the Number and Size of Extents" on page 2-8

� "Temporary Tablespaces for Sort Operations" on page 3-16 for
more information about temporary tablespaces
3-12 Oracle9i Database Concepts

Tablespaces Overview
Dictionary Managed Tablespaces
If you created your database with an earlier version of Oracle, then you could be
using dictionary managed tablespaces. For a tablespace that uses the data
dictionary to manage its extents, Oracle updates the appropriate tables in the data
dictionary whenever an extent is allocated or freed for reuse. Oracle also stores
rollback information about each update of the dictionary tables. Because dictionary
tables and rollback segments are part of the database, the space that they occupy is
subject to the same space management operations as all other data.

Multiple Block Sizes
The block size of the SYSTEM tablespace is the standard block size. This is set when
the database is created and can be any valid size.

You can specify up to four block sizes, in addition to a standard block size. In the
initialization file, you can configure subcaches within the buffer cache for each of
these block sizes. Subcaches can also be configured while an instance is running.
You can create tablespaces having any of these block sizes. The standard block size
is used for the system tablespace and most other tablespaces.

Multiple block sizes are useful primarily when transporting a tablespace from an
OLTP database to an enterprise data warehouse. This facilitates transport between
databases of different block sizes.

Online and Offline Tablespaces
A database administrator can bring any tablespace other than the SYSTEM
tablespace online (accessible) or offline (not accessible) whenever the database is
open. The SYSTEM tablespace is always online when the database is open because
the data dictionary must always be available to Oracle.

Note: All partitions of a partitioned object must reside in
tablespaces of a single block size.

See Also:

� "Transport of Tablespaces Between Databases" on page 3-17

� Oracle9i Data Warehousing Guide for information about
transporting tablespaces in data warehousing environments
Tablespaces, Datafiles, and Control Files 3-13

Tablespaces Overview
A tablespace is usually online so that the data contained within it is available to
database users. However, the database administrator can take a tablespace offline
for maintenance or backup and recovery purposes.

When a Tablespace Goes Offline
When a tablespace goes offline, Oracle does not permit any subsequent SQL
statements to reference objects contained in that tablespace. Active transactions
with completed statements that refer to data in that tablespace are not affected at
the transaction level. Oracle saves rollback data corresponding to those completed
statements in a deferred rollback segment in the SYSTEM tablespace. When the
tablespace is brought back online, Oracle applies the rollback data to the tablespace,
if needed.

When a tablespace goes offline or comes back online, this is recorded in the data
dictionary in the SYSTEM tablespace. If a tablespace is offline when you shut down
a database, the tablespace remains offline when the database is subsequently
mounted and reopened.

You can bring a tablespace online only in the database in which it was created
because the necessary data dictionary information is maintained in the SYSTEM
tablespace of that database. An offline tablespace cannot be read or edited by any
utility other than Oracle. Thus, offline tablespaces cannot be transposed to other
databases.

Oracle automatically switches a tablespace from online to offline when certain
errors are encountered. For example, Oracle switches a tablespace from online to
offline when the database writer process, DBWn, fails in several attempts to write to
a datafile of the tablespace. Users trying to access tables in the offline tablespace
receive an error. If the problem that causes this disk I/O to fail is media failure, you
must recover the tablespace after you correct the problem.

Use of Tablespaces for Special Procedures
If you create multiple tablespaces to separate different types of data, you take
specific tablespaces offline for various procedures. Other tablespaces remain online,

See Also:

� "Temporary Tablespaces for Sort Operations" on page 3-16 for
more information about transferring online tablespaces
between databases

� Oracle9i Database Utilities for more information about tools for
data transfer
3-14 Oracle9i Database Concepts

Tablespaces Overview
and the information in them is still available for use. However, special
circumstances can occur when tablespaces are taken offline. For example, if two
tablespaces are used to separate table data from index data, the following is true:

� If the tablespace containing the indexes is offline, then queries can still access
table data because queries do not require an index to access the table data.

� If the tablespace containing the tables is offline, then the table data in the
database is not accessible because the tables are required to access the data.

If Oracle has enough information in the online tablespaces to run a statement, it
does so. If it needs data in an offline tablespace, then it causes the statement to fail.

Read-Only Tablespaces
The primary purpose of read-only tablespaces is to eliminate the need to perform
backup and recovery of large, static portions of a database. Oracle never updates
the files of a read-only tablespace, and therefore the files can reside on read-only
media such as CD-ROMs or WORM drives.

Read-only tablespaces cannot be modified. To update a read-only tablespace, first
make the tablespace read/write. After updating the tablespace, you can then reset it
to be read-only.

Because read-only tablespaces cannot be modified, and as long as they have not
been made read-write at any point, they do not need repeated backup. Also, if you
need to recover your database, you do not need to recover any read-only
tablespaces, because they could not have been modified.

Note: Because you can only bring a tablespace online in the
database in which it was created, read-only tablespaces are not
meant to satisfy archiving or data publishing requirements.

See Also:

� Oracle9i Database Administrator’s Guide for more information
about changing a tablespace to read-only or read/write mode

� Oracle9i SQL Reference for more information about the ALTER
TABLESPACE statement

� Oracle9i Backup and Recovery Concepts for more information
about recovery
Tablespaces, Datafiles, and Control Files 3-15

Tablespaces Overview
Temporary Tablespaces for Sort Operations
You can manage space for sort operations more efficiently by designating
temporary tablespaces exclusively for sorts. Doing so effectively eliminates
serialization of space management operations involved in the allocation and
deallocation of sort space.

All operations that use sorts, including joins, index builds, ordering, computing
aggregates (GROUP BY), and collecting optimizer statistics, benefit from temporary
tablespaces. The performance gains are significant with Real Application Clusters.

Sort Segments
A temporary tablespace can be used only for sort segments. A temporary tablespace
is not the same as a tablespace that a user designates for temporary segments,
which can be any tablespace available to the user. No permanent schema objects can
reside in a temporary tablespace.

Sort segments are used when a segment is shared by multiple sort operations. One
sort segment exists for every instance that performs a sort operation in a given
tablespace.

Temporary tablespaces provide performance improvements when you have
multiple sorts that are too large to fit into memory. The sort segment of a given
temporary tablespace is created at the time of the first sort operation. The sort
segment expands by allocating extents until the segment size is equal to or greater
than the total storage demands of all of the active sorts running on that instance.

Creation of Temporary Tablespaces
You can create temporary tablespaces by using the CREATE TABLESPACE or
CREATE TEMPORARY TABLESPACE statement.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for
more information about segments
3-16 Oracle9i Database Concepts

Tablespaces Overview
Transport of Tablespaces Between Databases
A transportable tablespace lets you move a subset of an Oracle database from one
Oracle database to another on the same platform. You can clone a tablespace and
plug it into another database, copying the tablespace between databases, or you can
unplug a tablespace from one Oracle database and plug it into another Oracle
database, moving the tablespace between databases on the same platform.

Moving data by transporting tablespaces can be orders of magnitude faster than
either export/import or unload/load of the same data, because transporting a
tablespace involves only copying datafiles and integrating the tablespace metadata.
When you transport tablespaces you can also move index data, so you do not have
to rebuild the indexes after importing or loading the table data.

How to Move or Copy a Tablespace to Another Database
To move or copy a set of tablespaces, you must make the tablespaces read-only,
copy the datafiles of these tablespaces, and use export/import to move the database
information (metadata) stored in the data dictionary. Both the datafiles and the
metadata export file must be copied to the target database. The transport of these
files can be done using any facility for copying flat files, such as the operating
system copying facility, ftp, or publishing on CDs.

See Also:

� "Temporary Datafiles" on page 3-19 for information about
TEMPFILES

� "Managing Space in Tablespaces" on page 3-11 for information
about locally managed and dictionary managed tablespaces

� Oracle9i SQL Reference for information about the CREATE
TABLESPACE, CREATE TEMPORARY TABLESPACE, and ALTER
TABLESPACE statements

� Oracle9i Database Performance Tuning Guide and Reference for
information about setting up temporary tablespaces for sorts
and hash joins

Note: You can transport tablespaces only between Oracle
databases that use the same character set and that run on
compatible platforms from the same hardware vendor.
Tablespaces, Datafiles, and Control Files 3-17

Datafiles Overview
After copying the datafiles and importing the metadata, you can optionally put the
tablespaces in read/write mode.

Datafiles Overview
A tablespace in an Oracle database consists of one or more physical datafiles. A
datafile can be associated with only one tablespace and only one database.

Oracle creates a datafile for a tablespace by allocating the specified amount of disk
space plus the overhead required for the file header. When a datafile is created, the
operating system under which Oracle runs is responsible for clearing old
information and authorizations from a file before allocating it to Oracle. If the file is
large, this process can take a significant amount of time. The first tablespace in any
database is always the SYSTEM tablespace, so Oracle automatically allocates the first
datafiles of any database for the SYSTEM tablespace during database creation.

Datafile Contents
When a datafile is first created, the allocated disk space is formatted but does not
contain any user data. However, Oracle reserves the space to hold the data for
future segments of the associated tablespace—it is used exclusively by Oracle. As
the data grows in a tablespace, Oracle uses the free space in the associated datafiles
to allocate extents for the segment.

Note: In a database with a locally managed SYSTEM tablespace,
dictionary tablespaces cannot be created. It is possible to plug in a
dictionary managed tablespace using the transportable feature, but
it cannot be made writable.

See Also:

� Oracle9i Database Administrator’s Guide for details about how to
move or copy tablespaces to another database

� Oracle9i Database Utilities for import/export information

� "The SYSTEM Tablespace" on page 3-7 for

See Also: Your Oracle operating system-specific documentation
for information about the amount of space required for the file
header of datafiles on your operating system
3-18 Oracle9i Database Concepts

Datafiles Overview
The data associated with schema objects in a tablespace is physically stored in one
or more of the datafiles that constitute the tablespace. Note that a schema object
does not correspond to a specific datafile; rather, a datafile is a repository for the
data of any schema object within a specific tablespace. Oracle allocates space for the
data associated with a schema object in one or more datafiles of a tablespace.
Therefore, a schema object can span one or more datafiles. Unless table striping is
used (where data is spread across more than one disk), the database administrator
and end users cannot control which datafile stores a schema object.

Size of Datafiles
You can alter the size of a datafile after its creation or you can specify that a datafile
should dynamically grow as schema objects in the tablespace grow. This
functionality enables you to have fewer datafiles for each tablespace and can
simplify administration of datafiles.

Offline Datafiles
You can take tablespaces offline or bring them online at any time, except for the
SYSTEM tablespace. All of the datafiles of a tablespace are taken offline or brought
online as a unit when you take the tablespace offline or bring it online, respectively.

You can take individual datafiles offline. However, this is usually done only during
some database recovery procedures.

Temporary Datafiles
Locally managed temporary tablespaces have temporary datafiles (tempfiles),
which are similar to ordinary datafiles, with the following exceptions:

� Tempfiles are always set to NOLOGGING mode.

� You cannot make a tempfile read-only.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for
more information about use of space

Note: You need sufficient space on the operating system for
expansion.

See Also: Oracle9i Database Administrator’s Guide for more
information about resizing datafiles
Tablespaces, Datafiles, and Control Files 3-19

Control Files Overview
� You cannot rename a tempfile.

� You cannot create a tempfile with the ALTER DATABASE statement.

� When you create or resize tempfiles, they are not always guaranteed allocation
of disk space for the file size specified. On certain file systems (for example,
UNIX) disk blocks are allocated not at file creation or resizing, but before the
blocks are accessed.

� Tempfile information is shown in the dictionary view DBA_TEMP_FILES and
the dynamic performance view V$TEMPFILE, but not in DBA_DATA_FILES or
the V$DATAFILE view.

Control Files Overview
The database control file is a small binary file necessary for the database to start and
operate successfully. A control file is updated continuously by Oracle during
database use, so it must be available for writing whenever the database is open. If
for some reason the control file is not accessible, then the database cannot function
properly.

Each control file is associated with only one Oracle database.

Control File Contents
A control file contains information about the associated database that is required for
access by an instance, both at startup and during normal operation. Control file
information can be modified only by Oracle; no database administrator or user can
edit a control file.

Among other things, a control file contains information such as:

� The database name

� The timestamp of database creation

Caution: This enables fast tempfile creation and resizing;
however, the disk could run of space later when the tempfiles are
accessed.

See Also: "Managing Space in Tablespaces" on page 3-11 for
more information about locally managed tablespaces
3-20 Oracle9i Database Concepts

Control Files Overview
� The names and locations of associated datafiles and online redo log files

� Tablespace information

� Datafile offline ranges

� The log history

� Archived log information

� Backup set and backup piece information

� Backup datafile and redo log information

� Datafile copy information

� The current log sequence number

� Checkpoint information

The database name and timestamp originate at database creation. The database
name is taken from either the name specified by the initialization parameter DB_
NAME or the name used in the CREATE DATABASE statement.

Each time that a datafile or an online redo log file is added to, renamed in, or
dropped from the database, the control file is updated to reflect this physical
structure change. These changes are recorded so that:

� Oracle can identify the datafiles and online redo log files to open during
database startup

� Oracle can identify files that are required or available in case database recovery
is necessary

Therefore, if you make a change to the physical structure of your database (using
ALTER DATABASE statements), then you should immediately make a backup of
your control file.

Control files also record information about checkpoints. Every three seconds, the
checkpoint process (CKPT) records information in the control file about the
checkpoint position in the online redo log. This information is used during database
recovery to tell Oracle that all redo entries recorded before this point in the online
redo log group are not necessary for database recovery; they were already written
to the datafiles.
Tablespaces, Datafiles, and Control Files 3-21

Control Files Overview
Multiplexed Control Files
As with online redo log files, Oracle enables multiple, identical control files to be
open concurrently and written for the same database.

By storing multiple control files for a single database on different disks, you can
safeguard against a single point of failure with respect to control files. If a single
disk that contained a control file crashes, then the current instance fails when Oracle
attempts to access the damaged control file. However, when other copies of the
current control file are available on different disks, an instance can be restarted
easily without the need for database recovery.

If all control files of a database are permanently lost during operation, then the
instance is aborted and media recovery is required. Media recovery is not
straightforward if an older backup of a control file must be used because a current
copy is not available. Therefore, it is strongly recommended that you adhere to the
following practices:

� Use multiplexed control files with each database

� Store each copy on a different physical disk

� Use operating system mirroring

� Monitor backups

See Also:

� Oracle9i Recovery Manager User’s Guide

� Oracle9i User-Managed Backup and Recovery Guide

for information about backing up a database’s control file
3-22 Oracle9i Database Concepts

The Data Dicti
4

The Data Dictionary

This chapter describes the central set of read-only reference tables and views of each
Oracle database, known collectively as the data dictionary. The chapter includes:

� Introduction to the Data Dictionary

� How the Data Dictionary Is Used

� Dynamic Performance Tables

� Database Object Metadata
onary 4-1

Introduction to the Data Dictionary
Introduction to the Data Dictionary
One of the most important parts of an Oracle database is its data dictionary, which
is a read-only set of tables that provides information about the database. A data
dictionary contains:

� The definitions of all schema objects in the database (tables, views, indexes,
clusters, synonyms, sequences, procedures, functions, packages, triggers,
and so on)

� How much space has been allocated for, and is currently used by, the
schema objects

� Default values for columns

� Integrity constraint information

� The names of Oracle users

� Privileges and roles each user has been granted

� Auditing information, such as who has accessed or updated various
schema objects

� Other general database information

The data dictionary is structured in tables and views, just like other database data.
All the data dictionary tables and views for a given database are stored in that
database’s SYSTEM tablespace.

Not only is the data dictionary central to every Oracle database, it is an important
tool for all users, from end users to application designers and database
administrators. Use SQL statements to access the data dictionary. Because the data
dictionary is read-only, you can issue only queries (SELECT statements) against it’s
tables and views.

Structure of the Data Dictionary
The data dictionary consists of the following:

See Also: "The SYSTEM Tablespace" on page 3-7 for more
information about SYSTEM tablespaces
4-2 Oracle9i Database Concepts

How the Data Dictionary Is Used
Base Tables
The underlying tables that store information about the associated database. Only
Oracle should write to and read these tables. Users rarely access them directly
because they are normalized, and most of the data is stored in a cryptic format.

User-Accessible Views
The views that summarize and display the information stored in the base tables of
the data dictionary. These views decode the base table data into useful information,
such as user or table names, using joins and WHERE clauses to simplify the
information. Most users are given access to the views rather than the base tables.

SYS, Owner of the Data Dictionary
The Oracle user SYS owns all base tables and user-accessible views of the data
dictionary. No Oracle user should ever alter (UPDATE, DELETE, or INSERT) any
rows or schema objects contained in the SYS schema, because such activity can
compromise data integrity. The security administrator must keep strict control of
this central account.

How the Data Dictionary Is Used
The data dictionary has three primary uses:

� Oracle accesses the data dictionary to find information about users, schema
objects, and storage structures.

� Oracle modifies the data dictionary every time that a data definition language
(DDL) statement is issued.

� Any Oracle user can use the data dictionary as a read-only reference for
information about the database.

How Oracle Uses the Data Dictionary
Data in the base tables of the data dictionary is necessary for Oracle to function.
Therefore, only Oracle should write or change data dictionary information. Oracle

Caution: Altering or manipulating the data in data dictionary
tables can permanently and detrimentally affect the operation of a
database.
The Data Dictionary 4-3

How the Data Dictionary Is Used
provides scripts to modify the data dictionary tables when a database is upgraded
or downgraded.

During database operation, Oracle reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle also updates
the data dictionary continuously to reflect changes in database structures, auditing,
grants, and data.

For example, if user Kathy creates a table named parts, then new rows are added
to the data dictionary that reflect the new table, columns, segment, extents, and the
privileges that Kathy has on the table. This new information is then visible the next
time the dictionary views are queried.

Public Synonyms for Data Dictionary Views
Oracle creates public synonyms for many data dictionary views so users can access
them conveniently. The security administrator can also create additional public
synonyms for schema objects that are used systemwide. Users should avoid naming
their own schema objects with the same names as those used for public synonyms.

Cache the Data Dictionary for Fast Access
Much of the data dictionary information is kept in the SGA in the dictionary cache,
because Oracle constantly accesses the data dictionary during database operation to
validate user access and to verify the state of schema objects. All information is
stored in memory using the least recently used (LRU) algorithm.

Parsing information is typically kept in the caches. The COMMENTS columns
describing the tables and their columns are not cached unless they are accessed
frequently.

Other Programs and the Data Dictionary
Other Oracle products can reference existing views and create additional data
dictionary tables or views of their own. Application developers who write
programs that refer to the data dictionary should refer to the public synonyms
rather than the underlying tables: the synonyms are less likely to change between
software releases.

Caution: No data in any data dictionary table should be altered or
deleted by any user.
4-4 Oracle9i Database Concepts

How the Data Dictionary Is Used
How to Use the Data Dictionary
The views of the data dictionary serve as a reference for all database users. Access
the data dictionary views with SQL statements. Some views are accessible to all
Oracle users, and others are intended for database administrators only.

The data dictionary is always available when the database is open. It resides in the
SYSTEM tablespace, which is always online.

The data dictionary consists of sets of views. In many cases, a set consists of three
views containing similar information and distinguished from each other by their
prefixes:

The set of columns is identical across views, with these exceptions:

� Views with the prefix USER usually exclude the column OWNER. This column is
implied in the USER views to be the user issuing the query.

� Some DBA views have additional columns containing information useful to the
administrator.

Views with the Prefix USER
The views most likely to be of interest to typical database users are those with the
prefix USER. These views:

� Refer to the user’s own private environment in the database, including
information about schema objects created by the user, grants made by the user,
and so on

� Display only rows pertinent to the user

� Have columns identical to the other views, except that the column OWNER is
implied

� Return a subset of the information in the ALL views

Table 4–1 Data Dictionary View Prefixes

Prefix Scope

USER User’s view (what is in the user’s schema)

ALL Expanded user’s view (what the user can access)

DBA Database administrator’s view (what is in all users’ schemas)

See Also: Oracle9i Database Reference for a complete list of data
dictionary views and their columns
The Data Dictionary 4-5

How the Data Dictionary Is Used
� Can have abbreviated PUBLIC synonyms for convenience

For example, the following query returns all the objects contained in your schema:

SELECT object_name, object_type FROM USER_OBJECTS;

Views with the Prefix ALL
Views with the prefix ALL refer to the user’s overall perspective of the database.
These views return information about schema objects to which the user has access
through public or explicit grants of privileges and roles, in addition to schema
objects that the user owns. For example, the following query returns information
about all the objects to which you have access:

SELECT owner, object_name, object_type FROM ALL_OBJECTS;

Views with the Prefix DBA
Views with the prefix DBA show a global view of the entire database. Synonyms are
not created for these views, because DBA views should be queried only by
administrators. Therefore, to query the DBA views, administrators must prefix the
view name with its owner, SYS, as in the following:

SELECT owner, object_name, object_type FROM SYS.DBA_OBJECTS;

Oracle recommends that you implement data dictionary protection to prevent users
having the ANY system privileges from using such privileges on the data dictionary.
If you enable dictionary protection (O7_DICTIONARY_ACCESSIBILITY is false),
then access to objects in the SYS schema (dictionary objects) is restricted to users
with the SYS schema. These users are SYS and those who connect as SYSDBA.

The DUAL Table
The table named DUAL is a small table in the data dictionary that Oracle and
user-written programs can reference to guarantee a known result. This table has one
column called DUMMY and one row containing the value X.

See Also: Oracle9i Database Administrator’s Guide for detailed
information on system privileges restrictions

See Also: Oracle9i SQL Reference for more information about the
DUAL table
4-6 Oracle9i Database Concepts

Database Object Metadata
Dynamic Performance Tables
Throughout its operation, Oracle maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables.

Dynamic performance tables are not true tables, and they should not be accessed by
most users. However, database administrators can query and create views on the
tables and grant access to those views to other users. These views are sometimes
called fixed views because they cannot be altered or removed by the database
administrator.

SYS owns the dynamic performance tables; their names all begin with V_$. Views
are created on these tables, and then public synonyms are created for the views. The
synonym names begin with V$. For example, the V$DATAFILE view contains
information about the database’s datafiles, and the V$FIXED_TABLE view contains
information about all of the dynamic performance tables and views in the database.

Database Object Metadata
The DBMS_METADATA package provides interfaces for extracting complete
definitions of database objects. The definitions can be expressed either as XML or as
SQL DDL. Two styles of interface are provided:

� A flexible, sophisticated interface for programmatic control

� A simplified interface for ad hoc querying

See Also: Oracle9i Database Reference for a complete list of the
dynamic performance views’ synonyms and their columns

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about DBMS_METADATA
The Data Dictionary 4-7

Database Object Metadata
4-8 Oracle9i Database Concepts

Part III

The Oracle Instance

Part III describes the architecture of the Oracle instance and explains the different
client/server configurations it can have in a network environment. Part III also
explains the Oracle startup and shutdown procedures.

Part III contains the following chapters:

� Chapter 5, "Database and Instance Startup and Shutdown"

� Chapter 6, "Application Architecture"

� Chapter 7, "Memory Architecture"

� Chapter 8, "Process Architecture"

� Chapter 9, "Database Resource Management"

Oracle9i Database Concepts

Database and Instance Startup and Shu
5

Database and Instance
Startup and Shutdown

This chapter explains the procedures involved in starting and stopping an Oracle
instance and database. It includes:

� Introduction to an Oracle Instance

� Instance and Database Startup

� Database and Instance Shutdown
tdown 5-1

Introduction to an Oracle Instance
Introduction to an Oracle Instance
Every running Oracle database is associated with an Oracle instance. When a
database is started on a database server (regardless of the type of computer), Oracle
allocates a memory area called the System Global Area (SGA) and starts one or
more Oracle processes. This combination of the SGA and the Oracle processes is
called an Oracle instance. The memory and processes of an instance manage the
associated database’s data efficiently and serve the one or multiple users of the
database.

Figure 5–1 shows an Oracle instance.

Figure 5–1 An Oracle Instance

See Also:

� Chapter 7, "Memory Architecture"

� Chapter 8, "Process Architecture"

Oracle Processes

System Global Area (SGA)

Redo Log
Buffer

Context Areas

Database Buffer
Cache
5-2 Oracle9i Database Concepts

Introduction to an Oracle Instance
The Instance and the Database
After starting an instance, Oracle associates the instance with the specified database.
This is called mounting the database. The database is then ready to be opened,
which makes it accessible to authorized users.

Multiple instances can run concurrently on the same computer, each accessing its
own physical database. In clustered and massively parallel systems (MPS), Real
Application Clusters enables multiple instances to mount a single database.

Only the database administrator can start up an instance and open the database. If a
database is open, then the database administrator can shut down the database so
that it is closed. When a database is closed, users cannot access the information that
it contains.

Security for database startup and shutdown is controlled through connections to
Oracle with administrator privileges. Normal users do not have control over the
current status of an Oracle database.

Connection with Administrator Privileges
Database startup and shutdown are powerful administrative options and are
restricted to users who connect to Oracle with administrator privileges. Depending
on the operating system, one of the following conditions establishes administrator
privileges for a user:

� The user’s operating system privileges allow him or her to connect using
administrator privileges.

� The user is granted the SYSDBA or SYSOPER privileges and the database uses
password files to authenticate database administrators.

When you connect with SYSDBA privileges, you are in the schema owned by SYS.
When you connect as SYSOPER, you are in the public schema. SYSOPER privileges
are a subset of SYSDBA privileges.

See Also: Oracle9i Real Application Clusters Concepts for
information
Database and Instance Startup and Shutdown 5-3

Introduction to an Oracle Instance
Initialization Parameter Files
To start an instance, Oracle must read an initialization parameter file—a file
containing a list of configuration parameters for that instance and database. Set
these parameters to particular values to initialize many of the memory and process
settings of an Oracle instance. Most initialization parameters belong to one of the
following groups:

� Parameters that name things, such as files

� Parameters that set limits, such as maximums

� Parameters that affect capacity, such as the size of the SGA, which are called
variable parameters

Among other things, the initialization parameters tell Oracle:

� The name of the database for which to start up an instance

� How much memory to use for memory structures in the SGA

� What to do with filled online redo log files

� The names and locations of the database control files

� The names of undo tablespaces or private rollback segments in the database

How Parameter Values Are Changed
The database administrator can adjust variable parameters to improve the
performance of a database system. Exactly which parameters most affect a system
depends on numerous database characteristics and variables.

Some parameters can be changed dynamically by using the ALTER SESSION or
ALTER SYSTEM statement while the instance is running. Unless you are using a

See Also:

� Your operating system-specific Oracle documentation for more
information about how administrator privileges work on your
operating system

� Chapter 22, "Controlling Database Access" for more
information about password files and authentication schemes
for database administrators

See Also: Oracle9i Database Administrator’s Guide for a sample
initialization parameter file
5-4 Oracle9i Database Concepts

Instance and Database Startup
server parameter file, changes made using the ALTER SYSTEM statement are only in
effect for the current instance. You must manually update the text initialization
parameter file for the changes to be known the next time you start up an instance.
When you use a server parameter file, you can update the parameters on disk, so
that changes persist across database shutdown and startup.

Instance and Database Startup
The three steps to starting an Oracle database and making it available for
systemwide use are:

1. Start an instance.

2. Mount the database.

3. Open the database.

A database administrator can perform these steps using the SQL*Plus STARTUP
statement or Enterprise Manager.

How an Instance Is Started
When Oracle starts an instance, it reads the initialization parameter file to
determine the values of initialization parameters. Then, it allocates an SGA, which
is a shared area of memory used for database information, and creates background
processes. At this point, no database is associated with these memory structures and
processes.

See Also:

� Oracle9i Database Administrator’s Guide for a discussion of
initialization parameters and the use of a server parameter file

� Oracle9i Database Reference for descriptions of all initialization
parameters

� "Dynamic SGA" on page 7-4 for information about parameters
that affect the SGA

See Also: Oracle Enterprise Manager Administrator’s Guide
Database and Instance Startup and Shutdown 5-5

Instance and Database Startup
Restricted Mode of Instance Startup
You can start an instance in restricted mode (or later alter an existing instance to be
in restricted mode). This restricts connections to only those users who have been
granted the RESTRICTED SESSION system privilege.

Forced Startup in Abnormal Situations
In unusual circumstances, a previous instance might not have been shut down
cleanly. For example, one of the instance’s processes might not have terminated
properly. In such situations, the database can return an error during normal
instance startup. To resolve this problem, you must terminate all remnant Oracle
processes of the previous instance before starting the new instance.

How a Database Is Mounted
The instance mounts a database to associate the database with that instance. To
mount the database, the instance finds the database control files and opens them.
Control files are specified in the CONTROL_FILES initialization parameter in the
parameter file used to start the instance. Oracle then reads the control files to get the
names of the database’s datafiles and redo log files.

At this point, the database is still closed and is accessible only to the database
administrator. The database administrator can keep the database closed while
completing specific maintenance operations. However, the database is not yet
available for normal operations.

How a Database Is Mounted with Real Application Clusters

See Also:

� Chapter 7, "Memory Architecture" for information about the
SGA

� Chapter 8, "Process Architecture" for information about
background processes

Note: The features described in this section are available only if
you have purchased Oracle9i Enterprise Edition with Real
Application Clusters.
5-6 Oracle9i Database Concepts

Instance and Database Startup
If Oracle allows multiple instances to mount the same database concurrently, then
the database administrator can use the initialization parameter CLUSTER_
DATABASE

to make the database available to multiple instances. The default value of the
CLUSTER_DATABASE parameter is false. Versions of Oracle that do not support
Real Application Clusters only allow CLUSTER_DATABASE to be false.

If CLUSTER_DATABASE is false for the first instance that mounts a database, thne
only that instance can mount the database. If CLUSTER_DATABASE is set to true on
the first instance, then other instances can mount the database if their CLUSTER_
DATABASE parameters are set to true. The number of instances that can mount the
database is subject to a predetermined maximum, which you can specify when
creating the database.

How a Standby Database Is Mounted
A standby database maintains a duplicate copy of your primary database and
provides continued availability in the event of a disaster.

The standby database is constantly in recovery mode. To maintain your standby
database, you must mount it in standby mode using the ALTER DATABASE
statement and apply the archived redo logs that your primary database generates.

You can open a standby database in read-only mode to use it as a temporary
reporting database. You cannot open a standby database in read/write mode.

See Also:

� Oracle9i Real Application Clusters Concepts

� Oracle9i Real Application Clusters Setup and Configuration

� Oracle9i Real Application Clusters Administration

� Oracle9i Real Application Clusters Deployment and Performance

for more information about the use of multiple instances with a
single database

See Also:

� Oracle9i Data Guard Concepts and Administration

� "Open a Database in Read-Only Mode" on page 5-9 for
information about opening a standby database in read-only
mode
Database and Instance Startup and Shutdown 5-7

Instance and Database Startup
How a Clone Database Is Mounted
A clone database is a specialized copy of a database that can be used for tablespace
point-in-time recovery. When you perform tablespace point-in-time recovery, you
mount the clone database and recover the tablespaces to the desired time, then
export metadata from the clone to the primary database and copy the datafiles from
the recovered tablespaces.

What Happens When You Open a Database
Opening a mounted database makes it available for normal database operations.
Any valid user can connect to an open database and access its information. Usually,
a database administrator opens the database to make it available for general use.

When you open the database, Oracle opens the online datafiles and online redo log
files. If a tablespace was offline when the database was previously shut down, the
tablespace and its corresponding datafiles will still be offline when you reopen the
database.

If any of the datafiles or redo log files are not present when you attempt to open the
database, then Oracle returns an error. You must perform recovery on a backup of
any damaged or missing files before you can open the database.

Instance Recovery
If the database was last closed abnormally, either because the database
administrator terminated its instance or because of a power failure, then Oracle
automatically performs recovery when the database is reopened.

Undo Space Acquisition and Management
When you open the database, the instance attempts to acquire one or more undo
tablespaces or rollback segments. You determine whether to operate in automatic
undo management mode or manual undo management mode at instance startup

See Also:

� Oracle9i Recovery Manager User’s Guide

� Oracle9i User-Managed Backup and Recovery Guide

for detailed information about clone databases and tablespace
point-in-time recovery

See Also: "Online and Offline Tablespaces" on page 3-13 for
information about opening an offline tablespace
5-8 Oracle9i Database Concepts

Instance and Database Startup
using the UNDO_MANAGEMENT inialization parameter. The supported values are
AUTO or MANUAL. If AUTO, then the instance is started in automatic undo
management mode. The default value is MANUAL.

� If you use the undo tablespace method, you are using automatic undo
management mode. This is recommended.

� If you use the rollback segment method of managing undo space, then you are
using manual undo management mode.

Resolution of In-Doubt Distributed Transaction
Occasionally a database closes abnormally with one or more distributed
transactions in doubt (neither committed nor rolled back). When you reopen the
database and recovery is complete, the RECO background process automatically,
immediately, and consistently resolves any in-doubt distributed transactions.

Open a Database in Read-Only Mode
You can open any database in read-only mode to prevent its data from being
modified by user transactions. Read-only mode restricts database access to
read-only transactions, which cannot write to the datafiles or to the redo log files.

Disk writes to other files, such as control files, operating system audit trails, trace
files, and alert files, can continue in read-only mode. Temporary tablespaces for sort
operations are not affected by the database being open in read-only mode.
However, you cannot take permanent tablespaces offline while a database is open in
read-only mode. Also, job queues are not available in read-only mode.

Read-only mode does not restrict database recovery or operations that change the
database’s state without generating redo data. For example, in read-only mode:

� Datafiles can be taken offline and online

� Offline datafiles and tablespaces can be recovered

� The control file remains available for updates about the state of the database

One useful application of read-only mode is that standby databases can function as
temporary reporting databases.

See Also: "Automatic Undo Management" on page 2-16 for more
information about managing undo space.

See Also: Oracle9i Database Administrator’s Guide for information
about recovery from distributed transaction failures
Database and Instance Startup and Shutdown 5-9

Database and Instance Shutdown
Database and Instance Shutdown
The three steps to shutting down a database and its associated instance are:

1. Close the database.

2. Unmount the database.

3. Shut down the instance.

A database administrator can perform these steps using Enterprise Manager. Oracle
automatically performs all three steps whenever an instance is shut down.

Close a Database
When you close a database, Oracle writes all database data and recovery data in the
SGA to the datafiles and redo log files, respectively. Next, Oracle closes all online
datafiles and online redo log files. (Any offline datafiles of any offline tablespaces
have been closed already. If you subsequently reopen the database, any tablespace
that was offline and its datafiles remain offline and closed, respectively.) At this
point, the database is closed and inaccessible for normal operations. The control
files remain open after a database is closed but still mounted.

Close the Database by Terminating the Instance
In rare emergency situations, you can terminate the instance of an open database to
close and completely shut down the database instantaneously. This process is fast,
because the operation of writing all data in the buffers of the SGA to the datafiles
and redo log files is skipped. The subsequent reopening of the database requires
recovery, which Oracle performs automatically.

See Also: Oracle9i Database Administrator’s Guide for information
about how to open a database in read-only mode

See Also: Oracle Enterprise Manager Administrator’s Guide

Note: If a system or power failure occurs while the database is
open, then the instance is, in effect, terminated, and recovery is
performed when the database is reopened.
5-10 Oracle9i Database Concepts

Database and Instance Shutdown
Unmount a Database
After the database is closed, Oracle unmounts the database to disassociate it from
the instance. At this point, the instance remains in the memory of your computer.

After a database is unmounted, Oracle closes the control files of the database.

Shut Down an Instance
The final step in database shutdown is shutting down the instance. When you shut
down an instance, the SGA is removed from memory and the background processes
are terminated.

Abnormal Instance Shutdown
In unusual circumstances, shutdown of an instance might not occur cleanly; all
memory structures might not be removed from memory or one of the background
processes might not be terminated. When remnants of a previous instance exist, a
subsequent instance startup most likely will fail. In such situations, the database
administrator can force the new instance to start up by first removing the remnants
of the previous instance and then starting a new instance, or by issuing a SHUTDOWN
ABORT statement in Enterprise Manager.

See Also: Oracle9i Database Administrator’s Guide for more detailed
information about instance and database startup and shutdown
Database and Instance Startup and Shutdown 5-11

Database and Instance Shutdown
5-12 Oracle9i Database Concepts

Application Archite
6

Application Architecture

This chapter defines application architecture and describes how the Oracle server
and database applications work in a distributed processing environment. This
material applies to almost every type of Oracle database system environment.

This chapter includes:

� Client/Server Architecture

� Multitier Architecture

� Oracle Net Services
cture 6-1

Client/Server Architecture
Client/Server Architecture
In the Oracle database system environment, the database application and the
database are separated into two parts: a front-end or client portion, and a back-end
or server portion—hence the term client/server architecture. The client runs the
database application that accesses database information and interacts with a user
through the keyboard, screen, and pointing device, such as a mouse. The server
runs the Oracle software and handles the functions required for concurrent, shared
data access to an Oracle database.

Although the client application and Oracle can be run on the same computer,
greater efficiency can often be achieved when the client portions and server portion
are run by different computers connected through a network. The following
sections discuss possible variations in the Oracle client/server architecture.

Distributed processing is the use of more than one processor to perform the
processing for an individual task. Examples of distributed processing in Oracle
database systems appear in Figure 6–1.

� In Part A of the figure, the client and server are located on different computers,
and these computers are connected through a network. The server and clients of
an Oracle database system communicate through Oracle Net Services, Oracle’s
network interface.

� In Part B of the figure, a single computer has more than one processor, and
different processors separate the execution of the client application from Oracle.

Note: This chapter applies to environments with one database on
one server. In a distributed database, one server (Oracle) may need
to access a database on another server.
6-2 Oracle9i Database Concepts

Client/Server Architecture
Figure 6–1 The Client/Server Architecture and Distributed Processing

Oracle client/server architecture in a distributed processing environment provides
the following benefits:

� Client applications are not responsible for performing any data processing.
Rather, they request input from users, request data from the server, and then
analyze and present this data using the display capabilities of the client
workstation or the terminal (for example, using graphics or spreadsheets).

NetworkA

B

client
client

Database Server

Database Server

Client Client
Application Architecture 6-3

Client/Server Architecture
� Client applications are not dependent on the physical location of the data. Even
if the data is moved or distributed to other database servers, the application
continues to function with little or no modification.

� Oracle exploits the multitasking and shared-memory facilities of its underlying
operating system. As a result, it delivers the highest possible degree of
concurrency, data integrity, and performance to its client applications.

� Client workstations or terminals can be optimized for the presentation of data
(for example, by providing graphics and mouse support), and the server can be
optimized for the processing and storage of data (for example, by having large
amounts of memory and disk space).

� In networked environments, you can use inexpensive client workstations to
access the remote data of the server effectively.

� If necessary, Oracle can be scaled as your system grows. You can add multiple
servers to distribute the database processing load throughout the network
(horizontally scaled), or you can move Oracle to a minicomputer or mainframe,
to take advantage of a larger system’s performance (vertically scaled). In either
case, all data and applications are maintained with little or no modification,
because Oracle is portable between systems.

� In networked environments, shared data is stored on the servers rather than on
all computers in the system. This makes it easier and more efficient to manage
concurrent access.

� In networked environments, client applications submit database requests to the
server using SQL statements. After it is received, the SQL statement is
processed by the server, and the results are returned to the client application.
Network traffic is kept to a minimum, because only the requests and the results
are shipped over the network.

See Also:

� "Oracle Net Services" on page 6-7 for more information about
Oracle Net Services

� Oracle9i Database Administrator’s Guide for more information
about clients and servers in distributed databases
6-4 Oracle9i Database Concepts

Multitier Architecture
Multitier Architecture
In a multitier architecture environment, an application server provides data for
clients and serves as an interface between clients and database servers. This
architecture is particularly important because of the prevalence of Internet use.

This architecture enables use of an application server to:

� Validate the credentials of a client, such as a Web browser

� Connect to a database server

� Perform the requested operation

An example of a multitier architecture appears in Figure 6–2.
Application Architecture 6-5

Multitier Architecture
Figure 6–2 A Multitier Architecture Environment Example

Clients
A client initiates a request for an operation to be performed on the database server.
The client can be a Web browser or other end-user process. In a multitier
architecture, the client connects to the database server through one or more
application servers.

Application Servers
An application server provides access to the data for the client. It serves as an
interface between the client and one or more database servers, which provides an
additional level of security. It can also perform some of the query processing for the
client, thus removing some of the load from the database server.

Database Server

Database Server

Thin Client

Thin Client

Thin Client

Application
Server 1

Database Server

Database Server

Application
Server n

Database Server

Database Server

Application
Server 2

Request

Data

Query
6-6 Oracle9i Database Concepts

Oracle Net Services
The application server assumes the identity of the client when it is performing
operations on the database server for that client. The application server’s privileges
are restricted to prevent it from performing unneeded and unwanted operations
during a client operation.

Database Servers
A database server provides the data requested by an application server on behalf of
a client. The database server does all of the remaining query processing.

The Oracle database server can audit operations performed by the application
server on behalf of individual clients as well as operations performed by the
application server on its own behalf. For example, a client operation can be a
request for information to be displayed on the client, whereas an application server
operation can be a request for a connection to the database server.

Oracle Net Services
Oracle Net Services provides enterprise-wide connectivity solutions in distributed,
heterogeneous computing environments. Oracle Net Services enables a network
session from a client application to an Oracle database.

Oracle Net Services uses the communication protocols or application programmatic
interfaces (APIs) supported by a wide range of networks to provide a distributed
database and distributed processing for Oracle.

� A communication protocol is a set of rules that determine how applications
access the network and how data is subdivided into packets for transmission
across the network.

� An API is a set of subroutines that provide, in the case of networks, a means to
establish remote process-to-process communication through a communication
protocol.

The following sections introduce several Oracle Net Services solutions in a typical
network configuration.

See Also: "Multitier Authentication and Authorization" on
page 22-10 for more information about security issues in a multitier
environment
Application Architecture 6-7

Oracle Net Services
Connectivity
After a network session is established, Oracle Net Services acts as a data courier for
the client application and the database server. It is responsible for establishing and
maintaining the connection between the client application and database server, as
well as exchanging messages between them. Oracle Net Services is able to perform
these jobs because it is located on each computer in the network.

Manageability
Oracle Net Services provides location transparency, centralized configuration and
management, and quick out-of-the-box installation and configuration.

Internet Scalability
Oracle Net Services enables you to maximize system resources and improve
performance. Oracle’s shared server architecture increases the scalability of
applications and the number of clients simultaneously connected to the
database.The Virtual Interface (VI) protocol places most of the messaging burden
on high-speed network hardware, freeing the CPU for more important tasks.

Internet Security
Network security is enhanced with features like database access control and Oracle
Advanced Security.

How Oracle Net Services Works
Oracle’s support of industry network protocols provides an interface between
Oracle processes running on the database server and the user processes of Oracle
applications running on other computers of the network.

The Oracle protocols take SQL statements from the interface of the Oracle
applications and package them for transmission to Oracle through one of the
supported industry-standard higher level protocols or programmatic interfaces. The
protocols also take replies from Oracle and package them for transmission to the
applications through the same higher level communications mechanism. This is all
done independently of the network operating system.

Depending on the operation system that runs Oracle, the Oracle Net Services
software of the database server could include the driver software and start an
additional Oracle background process.

See Also: Oracle9i Net Services Administrator’s Guide for more
information about these features
6-8 Oracle9i Database Concepts

Oracle Net Services
The Listener
When an instance starts, a listener process establishes a communication pathway to
Oracle. When a user process makes a connection request, the listener determines
whether it should use a shared server dispatcher process or a dedicated server
process and establishes an appropriate connection.

The listener also establishes a communication pathway between databases. When
multiple databases or instances run on one computer, as in Real Application
Clusters, service names enable instances to register automatically with other
listeners on the same machine. A service name can identify multiple instances, and
an instance can belong to multiple services. Clients connecting to a service do not
have to specify which instance they require.

Service Information Registration
Dynamic service registration reduces the administrative overhead for multiple
databases or instances. Information about the services to which the listener
forwards client requests is registered with the listener. Service information can by
dynamically registered with the listener through a feature called service
registration or statically configured in the listener.ora file.

Service registration relies on the PMON process—an instance background
process—to register instance information with a listener, as well as the current state
and load of the instance and shared server dispatchers. The registered information
enables the listener to forward client connection requests to the appropriate service
handler. Service registration does not require configuration in the listener.ora
file.

The initialization parameter SERVICE_NAMES identifies which database services an
instance belongs to. On startup, each instance registers with the listeners of other
instances belonging to the same services. During database operations, the instances
of each service pass information about CPU use and current connection counts to all
of the listeners in the same services. This enables dynamic load balancing and
connection failover.

See Also: Oracle9i Net Services Administrator’s Guide for more
information about how Oracle Net Services works
Application Architecture 6-9

Oracle Net Services
See Also:

� "Shared Server Architecture" on page 8-15 for more information
about server processes

� "Dedicated Server Configuration" on page 8-21 for more
information about server processes

� Oracle9i Net Services Administrator’s Guide for more information
about the listener

� Oracle9i Real Application Clusters Setup and Configuration and
Oracle9i Real Application Clusters Deployment and Performance for
information about instance registration and client/service
connections in Real Application Clusters
6-10 Oracle9i Database Concepts

Memory Archite
7

Memory Architecture

This chapter discusses the memory architecture of an Oracle instance. It includes:

� Introduction to Oracle Memory Structures

� System Global Area (SGA) Overview

� Program Global Areas (PGA) Overview

� Dedicated and Shared Servers

� Software Code Areas
cture 7-1

Introduction to Oracle Memory Structures
Introduction to Oracle Memory Structures
Oracle uses memory to store information such as the following:

� Program code

� Information about a connected session, even if it is not currently active

� Information needed during program execution (for example, the current state of
a query from which rows are being fetched)

� Information that is shared and communicated among Oracle processes (for
example, locking information)

� Cached data that is also permanently stored on peripheral memory (for
example, data blocks and redo log entries)

The basic memory structures associated with Oracle include:

� System Global Area (SGA), which is shared by all server and background
processes and holds the following:

– Database buffer cache

– Redo log buffer

– Shared pool

– Large pool (if configured)

� Program Global Areas (PGA), which is private to each server and background
process; there is one PGA for each process. The PGA holds the following:

– Stack areas

– Data areas

Figure 7–1 illustrates the relationships among these memory structures.
7-2 Oracle9i Database Concepts

System Global Area (SGA) Overview
Figure 7–1 Oracle Memory Structures

Software Code Areas are another basic memory structure, discussed on page 7-22.

System Global Area (SGA) Overview
A system global area (SGA) is a group of shared memory structures that contain
data and control information for one Oracle database instance. If multiple users are
concurrently connected to the same instance, then the data in the instance’s SGA is
shared among the users. Consequently, the SGA is sometimes called the shared
global area.

An SGA and Oracle processes constitute an Oracle instance. Oracle automatically
allocates memory for an SGA when you start an instance, and the operating system
reclaims the memory when you shut down the instance. Each instance has its own
SGA.

See Also:

� "System Global Area (SGA) Overview" on page 7-3

� "Program Global Areas (PGA) Overview" on page 7-17

Background
Process

Server
Process

1

Server
Process

2
PGA

Server
Process

3

Oracle
Process

System Global Area

Shared
Pool

Java
Pool

Buffer
Cache

Large
Pool

Redo
Buffer

PGA

PGA PGA

PGA
Memory Architecture 7-3

System Global Area (SGA) Overview
The SGA is read/write. All users connected to a multiple-process database instance
can read information contained within the instance’s SGA, and several processes
write to the SGA during execution of Oracle.

The SGA contains the following data structures:

� Database buffer cache

� Redo log buffer

� Shared pool

� Java pool

� Large pool (optional)

� Data dictionary cache

� Other miscellaneous information

Part of the SGA contains general information about the state of the database and the
instance, which the background processes need to access; this is called the fixed
SGA. No user data is stored here. The SGA also includes information
communicated between processes, such as locking information.

If the system uses shared server architecture, then the request and response queues
and some contents of the PGA are in the SGA.

Dynamic SGA
With the dynamic SGA infrastructure, the size of the buffer cache, the shared pool,
the large pool, and the process-private memory can be changed without shutting
down the instance.

Dynamic SGA allows Oracle to set, at run time, limits on how much virtual memory
Oracle uses for the SGA. Oracle can start instances underconfigured and allow the
instance to use more memory by growing the SGA components, up to a maximum
of SGA_MAX_SIZE. If SGA_MAX_SIZE specified in the initialization parameter file is
less than the sum of all components specified or defaulted at initialization time,
then the setting in the initialization parameter file is ignored.

See Also:

� "Introduction to an Oracle Instance" on page 5-2 for more
information about an Oracle instance

� "Program Global Areas (PGA) Overview" on page 7-17

� "Dispatcher Request and Response Queues" on page 8-16
7-4 Oracle9i Database Concepts

System Global Area (SGA) Overview
For optimal performance in most systems, the entire SGA should fit in real memory.
If it does not, and if virtual memory is used to store parts of it, then overall database
system performance can decrease dramatically, because portions of the SGA are
paged (written to and read from disk) by the operating system. The amount of
memory dedicated to all shared areas in the SGA also has performance impact.

The size of the SGA is determined by several initialization parameters. The
following parameters most affect SGA size:

The memory allocated for an instance’s SGA is displayed on instance startup when
using Enterprise Manager or SQL*Plus. You can also display the current instance’s
SGA size using the SQL*Plus SHOW statement with the SGA clause.

Dynamic SGA Granules
With dynamic SGA, the unit of allocation is called a granule. Components, such as the
buffer cache, the shared pool, the java pool, and the large pool, allocate and free
SGA space in units of granules. Oracle tracks SGA memory use in integral numbers
of granules, by SGA component. All information about a granule is stored in a
corresponding granule entry. Oracle maintains the state of each granule in the
granule entry and the granule type.

Granule size is determined by total SGA size. On most platforms, the size of a
granule is 4 MB if the total SGA size is less than 128 MB, and it is 16 MB for larger
SGAs. There may be some platform dependency, for example, on 32-bit Windows
NT, the granule size is 8 MB for SGAs larger than 128 MB.

The granule size that is currently being used for SGA can be viewed in the view
V$SGA_DYNAMIC_COMPONENTS. The same granule size is used for all dynamic
components in the SGA.

Parameter Description

DB_CACHE_SIZE The size of the cache of standard blocks.

LOG_BUFFER The number of bytes allocated for the redo log buffer.

SHARED_POOL_SIZE The size in bytes of the area devoted to shared SQL and
PL/SQL statements.

LARGE_POOL_SIZE The size of the large pool; the default is 0.
Memory Architecture 7-5

System Global Area (SGA) Overview
Oracle keeps information about the components and their granules in a scoreboard.
For each component that owns granules, the scoreboard contains the number of
granules allocated to the component, any pending operations against this
component, the target size in granules, and the progress made toward the target
size. The start time of the operation is also logged. Oracle maintains the initial
number of granules and the maximum number of granules for each component.

For operations that modify the number of granules, Oracle logs the operation, the
target size, and the start time to the appropriate SGA component in the scoreboard.
Oracle updates the progress field until the operation is complete. When the
operation is complete, Oracle replaces the current size with the target size and clears
the target size field and the progress field. At the end of the operation, a database
administrator can see how the number of granules was changed. Oracle updates the
initialization parameter values to reflect the updated amount of SGA in use.

Oracle maintains a circular buffer of the last 100 operations made to the scoreboard.
Fixed views show the state of the scoreboard and the current contents of last 100
operations to the scoreboard.

Allocating Granules at Startup At startup, Oracle reads the values in the initialization
parameter file, queries the operating system memory limits, and allocates virtual
address space for the SGA. The initialization parameter SGA_MAX_SIZE specifies
the maximum size of the SGA for the life of the instance in bytes. Its value is
rounded up to the next granule size.

Adding Granules to Components A database administrator grows a component’s SGA
use with ALTER SYSTEM statements to modify the initialization parameter values.
Oracle takes the new size, rounds it up to the nearest multiple of 16MB, and adds or
takes away granules to meet the target size. Oracle must have enough free granules
to satisfy the request. If the current amount of SGA memory is less than SGA_MAX_
SIZE, then Oracle can allocate more granules until the SGA size reaches SGA_MAX_
SIZE.

Note: If you specify a size for a component that is not a multiple
of granule size, then Oracle rounds the specified size up to the
nearest multiple. For example, if the granule size is 4 MB and you
specify DB_CACHE_SIZE as 10 MB, you will actually be allocated
12 MB.
7-6 Oracle9i Database Concepts

System Global Area (SGA) Overview
Database Buffer Cache
The database buffer cache is the portion of the SGA that holds copies of data blocks
read from datafiles. All user processes concurrently connected to the instance share
access to the database buffer cache.

The database buffer cache and the shared SQL cache are logically segmented into
multiple sets. This organization into multiple sets reduces contention on
multiprocessor systems.

Organization of the Database Buffer Cache
The buffers in the cache are organized in two lists: the write list and the least
recently used (LRU) list. The write list holds dirty buffers, which contain data that
has been modified but has not yet been written to disk. The LRU list holds free
buffers, pinned buffers, and dirty buffers that have not yet been moved to the write
list. Free buffers do not contain any useful data and are available for use. Pinned
buffers are currently being accessed.

When an Oracle process accesses a buffer, the process moves the buffer to the most
recently used (MRU) end of the LRU list. As more buffers are continually moved to
the MRU end of the LRU list, dirty buffers age toward the LRU end of the LRU list.

The first time an Oracle user process requires a particular piece of data, it searches
for the data in the database buffer cache. If the process finds the data already in the
cache (a cache hit), it can read the data directly from memory. If the process cannot
find the data in the cache (a cache miss), it must copy the data block from a datafile
on disk into a buffer in the cache before accessing the data. Accessing data through
a cache hit is faster than data access through a cache miss.

See Also:

� Oracle9i Database Administrator’s Guide for information on
allocating memory

� Oracle Enterprise Manager Administrator’s Guide for information
on showing the SGA size with Enterprise Manager

� SQL*Plus User’s Guide and Reference for information on
displaying the SGA size with SQL*Plus

� Oracle9i Database Reference for information on V$SGASTAT

� Your Oracle installation or user’s guide for information specific
to your operating system
Memory Architecture 7-7

System Global Area (SGA) Overview
Before reading a data block into the cache, the process must first find a free buffer.
The process searches the LRU list, starting at the least recently used end of the list.
The process searches either until it finds a free buffer or until it has searched the
threshold limit of buffers.

If the user process finds a dirty buffer as it searches the LRU list, it moves that
buffer to the write list and continues to search. When the process finds a free buffer,
it reads the data block from disk into the buffer and moves the buffer to the MRU
end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a
free buffer, the process stops searching the LRU list and signals the DBW0
background process to write some of the dirty buffers to disk.

The LRU Algorithm and Full Table Scans
When the user process is performing a full table scan, it reads the blocks of the table
into buffers and puts them on the LRU end (instead of the MRU end) of the LRU
list. This is because a fully scanned table usually is needed only briefly, so the blocks
should be moved out quickly to leave more frequently used blocks in the cache.

You can control this default behavior of blocks involved in table scans on a
table-by-table basis. To specify that blocks of the table are to be placed at the MRU
end of the list during a full table scan, use the CACHE clause when creating or
altering a table or cluster. You can specify this behavior for small lookup tables or
large static historical tables to avoid I/O on subsequent accesses of the table.

Size of the Database Buffer Cache
Oracle supports multiple block size in a database. This is the default block size—the
block size used for the system tablespace. You specify the standard block size by
setting the initialization parameter DB_BLOCK_SIZE. Legitimate values are from 2K
to 32K.

To specify the size of the standard block size cache, set the initialization parameter
DB_CACHE_SIZE. Optionally, you can also set the size for two additional buffer
pools, KEEP and RECYCLE, by setting DB_KEEP_CACHE_SIZE and DB_RECYCLE_
CACHE_SIZE. These three parameters are independent of one another.

See Also: "Database Writer Process (DBWn)" on page 8-8 for more
information about DBWn processes

See Also: Oracle9i SQL Reference for information about the
CACHE clause
7-8 Oracle9i Database Concepts

System Global Area (SGA) Overview
The sizes and numbers of non-standard block size buffers are specified by the
following parameters:

DB_2K_CACHE_SIZE
DB_4K_CACHE_SIZE
DB_8K_CACHE_SIZE
DB_16K_CACHE_SIZE
DB_32K_CACHE_SIZE

Each parameter specifies the size of the cache for the corresponding block size.

Example of Setting Block and Cache Sizes
DB_BLOCK_SIZE=4096
DB_CACHE_SIZE=1024M
DB_2K_CACHE_SIZE=256M
DB_8K_CACHE_SIZE=512M

In the preceding example, the parameter DB_BLOCK_SIZE sets the standard block
size of the database to 4K. The size of the cache of standard block size buffers is
1024MB. Additionally, 2K and 8K caches are also configured, with sizes of 256MB
and 512MB, respectively.

The cache has a limited size, so not all the data on disk can fit in the cache. When
the cache is full, subsequent cache misses cause Oracle to write dirty data already in
the cache to disk to make room for the new data. (If a buffer is not dirty, it does not
need to be written to disk before a new block can be read into the buffer.)

See Also: "Multiple Buffer Pools" on page 7-10 for more
information about the KEEP and RECYCLE buffer pools

Note: Platform-specific restrictions regarding the maximum block
size apply, so some of these sizes might not be allowed on some
platforms.

Note: The DB_nK_CACHE_SIZE parameters cannot be used to
size the cache for the standard block size. If the value of DB_
BLOCK_SIZE is nK, it is illegal to set DB_nK_CACHE_SIZE. The
size of the cache for the standard block size is always determined
from the value of DB_CACHE_SIZE.
Memory Architecture 7-9

System Global Area (SGA) Overview
Subsequent access to any data that was written to disk results in additional cache
misses.

The size of the cache affects the likelihood that a request for data results in a cache
hit. If the cache is large, it is more likely to contain the data that is requested.
Increasing the size of a cache increases the percentage of data requests that result in
cache hits.

You can change the size of the buffer cache while the instance is running, without
having to shut down the database. Do this with the ALTER SYSTEM statement. For
more information, see "Control of the SGA’s Use of Memory" on page 7-16.

Use the fixed view V$BUFFER_POOL to track the sizes of the different cache
components and any pending resize operations.

Multiple Buffer Pools
You can configure the database buffer cache with separate buffer pools that either
keep data in the buffer cache or make the buffers available for new data
immediately after using the data blocks. Particular schema objects (tables, clusters,
indexes, and partitions) can then be assigned to the appropriate buffer pool to
control the way their data blocks age out of the cache.

� The KEEP buffer pool retains the schema object’s data blocks in memory.

� The RECYCLE buffer pool eliminates data blocks from memory as soon as they
are no longer needed.

� The DEFAULT buffer pool contains data blocks from schema objects that are not
assigned to any buffer pool, as well as schema objects that are explicitly
assigned to the DEFAULT pool.

The initialization parameters that configure the KEEP and RECYCLE buffer pools are
DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information about tuning the buffer cache

Note: Multiple buffer pools are only available for the standard
block size. Non-standard block size caches have a single DEFAULT
pool.
7-10 Oracle9i Database Concepts

System Global Area (SGA) Overview
Redo Log Buffer
The redo log buffer is a circular buffer in the SGA that holds information about
changes made to the database. This information is stored in redo entries. Redo
entries contain the information necessary to reconstruct, or redo, changes made to
the database by INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP operations.
Redo entries are used for database recovery, if necessary.

Redo entries are copied by Oracle server processes from the user’s memory space to
the redo log buffer in the SGA. The redo entries take up continuous, sequential
space in the buffer. The background process LGWR writes the redo log buffer to the
active online redo log file (or group of files) on disk.

The initialization parameter LOG_BUFFER determines the size (in bytes) of the redo
log buffer. In general, larger values reduce log file I/O, particularly if transactions
are long or numerous. The default setting is either 512 kilobytes (KB) or 128 KB
times the setting of the CPU_COUNT parameter, whichever is greater.

Shared Pool
The shared pool portion of the SGA contains three major areas: library cache,
dictionary cache, buffers for parallel execution messages, and control structures.

See Also:

� Oracle9i Database Performance Tuning Guide and Reference for
more information about multiple buffer pools

� Oracle9i SQL Reference for the syntax of the BUFFER_POOL
clause of the STORAGE clause

See Also:

� "Log Writer Process (LGWR)" on page 8-9 for more information
about how the redo log buffer is written to disk

� Oracle9i Backup and Recovery Concepts for information about
online redo log files and groups

Note: If the initialization parameter PARALLEL_AUTOMATIC_
TUNING is set to true, these buffers are allocated from the large
pool.
Memory Architecture 7-11

System Global Area (SGA) Overview
The total size of the shared pool is determined by the initialization parameter
SHARED_POOL_SIZE. The default value of this parameter is 8MB on 32-bit
platforms and 64MB on 64-bit platforms. Increasing the value of this parameter
increases the amount of memory reserved for the shared pool.

Library Cache
The library cache includes the shared SQL areas, private SQL areas (in the case of a
multiple transaction server), PL/SQL procedures and packages, and control
structures such as locks and library cache handles.

Shared SQL areas are accessible to all users, so the library cache is contained in the
shared pool within the SGA.

Shared SQL Areas and Private SQL Areas
Oracle represents each SQL statement it runs with a shared SQL area and a private
SQL area. Oracle recognizes when two users are executing the same SQL statement
and reuses the shared SQL area for those users. However, each user must have a
separate copy of the statement’s private SQL area.

Shared SQL Areas A shared SQL area contains the parse tree and execution plan for a
given SQL statement. Oracle saves memory by using one shared SQL area for SQL
statements run multiple times, which often happens when many users run the same
application.

Oracle allocates memory from the shared pool when a new SQL statement is
parsed, to store in the shared SQL area. The size of this memory depends on the
complexity of the statement. If the entire shared pool has already been allocated,
Oracle can deallocate items from the pool using a modified LRU (least recently
used) algorithm until there is enough free space for the new statement’s shared SQL
area. If Oracle deallocates a shared SQL area, the associated SQL statement must be
reparsed and reassigned to another shared SQL area at its next execution.

PL/SQL Program Units and the Shared Pool
Oracle processes PL/SQL program units (procedures, functions, packages,
anonymous blocks, and database triggers) much the same way it processes
individual SQL statements. Oracle allocates a shared area to hold the parsed,

See Also:

� "Private SQL Area" on page 7-17

� Oracle9i Database Performance Tuning Guide and Reference
7-12 Oracle9i Database Concepts

System Global Area (SGA) Overview
compiled form of a program unit. Oracle allocates a private area to hold values
specific to the session that runs the program unit, including local, global, and
package variables (also known as package instantiation) and buffers for executing
SQL. If more than one user runs the same program unit, then a single, shared area is
used by all users, while each user maintains a separate copy of his or her private
SQL area, holding values specific to his or her session.

Individual SQL statements contained within a PL/SQL program unit are processed
as described in the previous sections. Despite their origins within a PL/SQL
program unit, these SQL statements use a shared area to hold their parsed
representations and a private area for each session that runs the statement.

Dictionary Cache
The data dictionary is a collection of database tables and views containing reference
information about the database, its structures, and its users. Oracle accesses the data
dictionary frequently during SQL statement parsing. This access is essential to the
continuing operation of Oracle.

The data dictionary is accessed so often by Oracle that two special locations in
memory are designated to hold dictionary data. One area is called the data
dictionary cache, also known as the row cache because it holds data as rows instead
of buffers (which hold entire blocks of data). The other area in memory to hold
dictionary data is the library cache. All Oracle user processes share these two caches
for access to data dictionary information.

Allocation and Reuse of Memory in the Shared Pool
In general, any item (shared SQL area or dictionary row) in the shared pool remains
until it is flushed according to a modified LRU algorithm. The memory for items
that are not being used regularly is freed if space is required for new items that
must be allocated some space in the shared pool. A modified LRU algorithm allows
shared pool items that are used by many sessions to remain in memory as long as
they are useful, even if the process that originally created the item terminates. As a
result, the overhead and processing of SQL statements associated with a multiuser
Oracle system is minimized.

When a SQL statement is submitted to Oracle for execution, Oracle automatically
performs the following memory allocation steps:

See Also:

� Chapter 4, "The Data Dictionary"

� "Library Cache" on page 7-12
Memory Architecture 7-13

System Global Area (SGA) Overview
1. Oracle checks the shared pool to see if a shared SQL area already exists for an
identical statement. If so, that shared SQL area is used for the execution of the
subsequent new instances of the statement. Alternatively, if there is no shared
SQL area for a statement, Oracle allocates a new shared SQL area in the shared
pool. In either case, the user’s private SQL area is associated with the shared
SQL area that contains the statement.

2. Oracle allocates a private SQL area on behalf of the session. The location of the
private SQL area depends on the type of connection established for the session.

Oracle also flushes a shared SQL area from the shared pool in these circumstances:

� When the ANALYZE statement is used to update or delete the statistics of a
table, cluster, or index, all shared SQL areas that contain statements referencing
the analyzed schema object are flushed from the shared pool. The next time a
flushed statement is run, the statement is parsed in a new shared SQL area to
reflect the new statistics for the schema object.

� If a schema object is referenced in a SQL statement and that object is later
modified in any way, the shared SQL area is invalidated (marked invalid), and
the statement must be reparsed the next time it is run.

� If you change a database’s global database name, all information is flushed
from the shared pool.

� The administrator can manually flush all information in the shared pool to
assess the performance (with respect to the shared pool, not the data buffer
cache) that can be expected after instance startup without shutting down the
current instance. The statement ALTER SYSTEM FLUSH SHARED_POOL is used
to do this.

Note: A shared SQL area can be flushed from the shared pool,
even if the shared SQL area corresponds to an open cursor that has
not been used for some time. If the open cursor is subsequently
used to run its statement, Oracle reparses the statement, and a new
shared SQL area is allocated in the shared pool.
7-14 Oracle9i Database Concepts

System Global Area (SGA) Overview
Large Pool
The database administrator can configure an optional memory area called the large
pool to provide large memory allocations for:

� Session memory for the shared server and the Oracle XA interface (used where
transactions interact with more than one database)

� I/O server processes

� Oracle backup and restore operations

� Parallel execution message buffers, if the initialization parameter PARALLEL_
AUTOMATIC_TUNING is set to true (otherwise, these buffers are allocated to
the shared pool)

By allocating session memory from the large pool for shared server, Oracle XA, or
parallel query buffers, Oracle can use the shared pool primarily for caching shared
SQL and avoid the performance overhead caused by shrinking the shared SQL
cache.

In addition, the memory for Oracle backup and restore operations, for I/O server
processes, and for parallel buffers is allocated in buffers of a few hundred kilobytes.
The large pool is better able to satisfy such large memory requests than the shared
pool.

The large pool does not have an LRU list. It is different from reserved space in the
shared pool, which uses the same LRU list as other memory allocated from the
shared pool.

See Also:

� "Shared SQL Areas and Private SQL Areas" on page 7-12 for
more information about the location of the private SQL area

� Chapter 15, "Dependencies Among Schema Objects" for more
information about the invalidation of SQL statements and
dependency issues

� Oracle9i SQL Reference for information about using ALTER
SYSTEM FLUSH SHARED_POOL

� Oracle9i Database Reference for information about V$SQL and
V$SQLAREA dynamic views
Memory Architecture 7-15

System Global Area (SGA) Overview
Control of the SGA’s Use of Memory
Dynamic SGA provides external controls for increasing and decreasing Oracle’s use
of physical memory. Together with the dynamic buffer cache, shared pool, and large
pool, dynamic SGA allows the following:

� The SGA can grow in response to a database administrator statement, up to an
operating system specified maximum and the SGA_MAX_SIZE specification.

� The SGA can shrink in response to a database administrator statement, to an
Oracle prescribed minimum, usually an operating system preferred limit.

� Both the buffer cache and the SGA pools can grow and shrink at runtime
according to some internal, Oracle-managed policy.

Other SGA Initialization Parameters
You can use several initialization parameters to control how the SGA uses memory.

Physical Memory
The LOCK_SGA parameter locks the SGA into physical memory.

SGA Starting Address
The SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_ADDRESS parameters
specify the SGA’s starting address at runtime. These parameters are rarely used. For
64-bit platforms, HI_SHARED_MEMORY_ADDRESS specifies the high order 32 bits of
the 64-bit address.

See Also:

� "Shared Server Architecture" on page 8-15 for information
about allocating session memory from the large pool for the
shared server

� Oracle9i Application Developer’s Guide - Fundamentals for
information about Oracle XA

� Oracle9i Database Performance Planning for more information
about the large pool, reserve space in the shared pool, and I/O
server processes

� "Degree of Parallelism" on page 18-8 for information about
allocating memory for parallel execution
7-16 Oracle9i Database Concepts

Program Global Areas (PGA) Overview
Extended Buffer Cache Mechanism
The USE_INDIRECT_DATA_BUFFERS parameter enables the extended buffer cache
mechanism for 32-bit platforms that can support more than 4 GB of physical
memory.

However, the dynamic buffer cache feature requires every buffer to have a valid
virtual address. This is because the underlying unit of allocation, a granule, is
identified by its virtual address. For this reason, the extended cache feature is not
available in the current version.

Program Global Areas (PGA) Overview
A program global area (PGA) is a memory region which contains data and control
information for a server process. It is a nonshared memory created by Oracle when
a server process is started. Access to it is exclusive to that server process and is read
and written only by Oracle code acting on behalf of it. The total PGA memory
allocated by each server process attached to an Oracle instance is also referred to as
the aggregated PGA memory allocated by the instance.

Content of the PGA
The content of the PGA memory varies, depending on whether the instance is
running the shared server option or not. But generally speaking, the PGA memory
can be classified as follows.

Private SQL Area
A private SQL area contains data such as bind information and runtime memory
structures. Each session that issues a SQL statement has a private SQL area. Each
user that submits the same SQL statement has his or her own private SQL area that

See Also:

� Oracle9i Database Reference for details about the USE_
INDIRECT_DATA_BUFFERS parameter

� Your Oracle installation or user’s guide for information specific
to your operating system

See Also: "Connections and Sessions" on page 8-4 for information
about sessions
Memory Architecture 7-17

Program Global Areas (PGA) Overview
uses a single shared SQL area. Thus, many private SQL areas can be associated with
the same shared SQL area.

The private SQL area of a cursor is itself divided into two areas whose lifetimes are
different:

� The persistent area, which contains, for example, bind information. It is freed
only when the cursor is closed.

� The run-time area, which is freed when the execution is terminated.

Oracle creates the runtime area as the first step of an execute request. For INSERT,
UPDATE, and DELETE statements, Oracle frees the runtime area after the statement
has been run. For queries, Oracle frees the runtime area only after all rows are
fetched or the query is canceled.

The location of a private SQL area depends on the type of connection established for
a session. If a session is connected through a dedicated server, private SQL areas are
located in the server process’s PGA. However, if a session is connected through a
shared server, part of the private SQL area is kept in the SGA.

Cursors and SQL Areas The application developer of an Oracle precompiler program
or OCI program can explicitly open cursors, or handles to specific private SQL
areas, and use them as a named resource throughout the execution of the program.
Recursive cursors that Oracle issues implicitly for some SQL statements also use
shared SQL areas.

The management of private SQL areas is the responsibility of the user process. The
allocation and deallocation of private SQL areas depends largely on which
application tool you are using, although the number of private SQL areas that a user

See Also:

� "Program Global Areas (PGA) Overview" on page 7-17 for
information about the PGA

� "Connections and Sessions" on page 8-4 for more information
about sessions

� "SQL Work Areas" on page 7-19 for information about SELECT
runtimes during a sort, hash-join, bitmap create, or bitmap
merge

� Oracle9i Net Services Administrator’s Guide for an introduction to
shared servers
7-18 Oracle9i Database Concepts

Program Global Areas (PGA) Overview
process can allocate is always limited by the initialization parameter OPEN_
CURSORS. The default value of this parameter is 50.

A private SQL area continues to exist until the corresponding cursor is closed or the
statement handle is freed. Although Oracle frees the runtime area after the
statement completes, the persistent area remains waiting. Application developers
close all open cursors that will not be used again to free the persistent area and to
minimize the amount of memory required for users of the application.

Session Memory
Session memory is the memory allocated to hold a session’s variables (logon
information) and other information related to the session. For a shared server, the
session memory is shared and not private.

SQL Work Areas
For complex queries (for example, decision-support queries), a big portion of the
runtime area is dedicated to work areas allocated by memory-intensive operators
such as the following:

� Sort-based operators (order by, group-by, rollup, window function)

� Hash-join

� Bitmap merge

� Bitmap create

For example, a sort operator uses a work area (sometimes called the sort area) to
perform the in-memory sort of a set of rows. Similarly, a hash-join operator uses a
work area (also called the hash area) to build a hash table from its left input. If the
amount of data to be processed by these two operators does not fit into a work area,
the input data is divided into smaller pieces. This allows some data pieces to be
processed in memory while the rest are spilled to temporary disk storage to be
processed later. Although bitmap operators do not spill to disk when their
associated work area is too small, their complexity is inversely proportional to the
size of their work area. Thus, these operators run faster with larger work area.

The size of a work area can be controlled and tuned. Generally, bigger work areas
can significantly improve the performance of a particular operator at the cost of
higher memory consumption. Optimally, the size of a work area is big enough such
to accommodate the input data and auxiliary memory structures allocated by its

See Also: "Cursors" on page 14-6
Memory Architecture 7-19

Program Global Areas (PGA) Overview
associated SQL operator. If not, response time increases, because part of the input
data must be spilled to temporary disk storage. In the extreme case, if the size of a
work area is far too small compared to the input data size, multiple passes over the
data pieces must be performed. This can dramatically increase the response time of
the operator.

PGA Memory Management for Dedicated Mode
You can automatically and globally manage the size of SQL work areas. The
database administrator simply needs to specify the total size dedicated to PGA
memory for the Oracle instance by setting the initialization parameter PGA_
AGGREGATE_TARGET. The specified number (for example, 2G) is a global target for
the Oracle instance, and Oracle tries to ensure that the total amount of PGA
memory allocated across all database server processes never exceeds this target.

With PGA_AGGREGATE_TARGET, sizing of work areas for all dedicated sessions is
automatic and all *_AREA_SIZE parameters are ignored for these sessions. At any
given time, the total amount of PGA memory available to active work areas on the
instance is automatically derived from the parameter PGA_AGGREGATE_TARGET.
This amount is set to the value of PGA_AGGREGATE_TARGET minus the PGA
memory allocated by other components of the system (for example, PGA memory
allocated by sessions). The resulting PGA memory is then allotted to individual
active work areas based on their specific memory requirement.

Note: In earlier releases, the database administrator controlled the
maximum size of SQL work areas by setting the following
parameters: SORT_AREA_SIZE, HASH_AREA_SIZE, BITMAP_
MERGE_AREA_SIZE and CREATE_BITMAP_AREA_SIZE. Setting
these parameters is difficult, because the maximum work area size
is ideally selected from the data input size and the total number of
work areas active in the system. These two factors vary a lot from
one work area to another and from one time to another. Thus, the
various *_AREA_SIZE parameters are hard to tune under the best
of circumstances.
7-20 Oracle9i Database Concepts

Program Global Areas (PGA) Overview
There are fixed views and columns that provide PGA memory use statistics. Most of
these statistics are enabled when PGA_AGGREGATE_TARGET is set.

� Statistics on allocation and use of work area memory can be viewed in the
following dynamic views:

V$SYSSTAT
V$SESSTAT
V$PGASTAT
V$SQL_WORKAREA
V$SQL_WORKAREA_ACTIVE

� The following three columns in the V$PROCESS view report the PGA memory
allocated and used by an Oracle process:

PGA_USED_MEM
PGA_ALLOCATED_MEM
PGA_MAX_MEM

Note: The initialization parameter WORKAREA_SIZE_POLICY is a
session- and system-level parameter that can take only two values:
MANUAL or AUTO. The default is AUTO. The database administrator
can set PGA_AGGREGATE_TARGET, and then switch back and forth
from auto to manual memory management mode.

Note: The automatic PGA memory management mode only
applies to work areas allocated by dedicated Oracle servers. The
size of work areas allocated by shared Oracle servers is still
controlled by the old *_AREA_SIZE parameters, because these
work areas are allocated mainly in SGA and not in PGA

See Also:

� Oracle9i Database Reference for information about views

� Oracle9i Database Performance Tuning Guide and Reference for
information about using these views
Memory Architecture 7-21

Dedicated and Shared Servers
Dedicated and Shared Servers
Memory allocation depends, in some specifics, on whether the system uses
dedicated or shared server architecture. Table 7–1 shows the differences.

Software Code Areas
Software code areas are portions of memory used to store code that is being run or
can be run. Oracle code is stored in a software area that is typically at a different
location from users’ programs—a more exclusive or protected location.

Software areas are usually static in size, changing only when software is updated or
reinstalled. The required size of these areas varies by operating system.

Software areas are read-only and can be installed shared or nonshared. When
possible, Oracle code is shared so that all Oracle users can access it without having
multiple copies in memory. This results in a saving of real main memory and
improves overall performance.

User programs can be shared or nonshared. Some Oracle tools and utilities (such as
SQL*Forms and SQL*Plus) can be installed shared, but some cannot. Multiple
instances of Oracle can use the same Oracle code area with different databases if
running on the same computer.

Table 7–1 Differences in Memory Allocation Between Dedicated and Shared Servers

Memory Area
Dedicated
Server

Shared
Server

Nature of session memory Private Shared

Location of the persistent area PGA SGA

Location of part of the runtime area for SELECT
statements

PGA SGA

Location of the runtime area for DML/DDL statements PGA PGA

Note: The option of installing software shared is not available for
all operating systems (for example, on PCs operating Windows).

See your Oracle operating system-specific documentation for more
information.
7-22 Oracle9i Database Concepts

Process Archite
8

Process Architecture

This chapter discusses the processes in an Oracle database system and the different
configurations available for an Oracle system. It includes:

� Introduction to Processes

� User Processes Overview

� Oracle Processes Overview

� Shared Server Architecture

� Dedicated Server Configuration

� The Program Interface
cture 8-1

Introduction to Processes
Introduction to Processes
All connected Oracle users must run two modules of code to access an Oracle
database instance.

� Application or Oracle tool: A database user runs a database application (such as
a precompiler program) or an Oracle tool (such as SQL*Plus), which issues SQL
statements to an Oracle database.

� Oracle server code: Each user has some Oracle server code executing on his or
her behalf, which interprets and processes the application’s SQL statements.

These code modules are run by processes. A process is a "thread of control" or a
mechanism in an operating system that can run a series of steps. (Some operating
systems use the terms job or task.) A process normally has its own private memory
area in which it runs.

Multiple-Process Oracle Systems
Multiple-process Oracle (also called multiuser Oracle) uses several processes to
run different parts of the Oracle code and additional processes for the users—either
one process for each connected user or one or more processes shared by multiple
users. Most database systems are multiuser, because one of the primary benefits of a
database is managing data needed by multiple users at the same time.

Each process in an Oracle instance performs a specific job. By dividing the work of
Oracle and database applications into several processes, multiple users and
applications can connect to a single database instance simultaneously while the
system maintains excellent performance.

Types of Processes
The processes in an Oracle system can be categorized into two major groups:

� User processes run the application or Oracle tool code.

� Oracle processes run the Oracle server code. They include server processes and
background processes.

The process structure varies for different Oracle configurations, depending on the
operating system and the choice of Oracle options. The code for connected users can
be configured as a dedicated server or a shared server.

With dedicated server, for each user, the database application is run by a different
process (a user process) than the one that runs the Oracle server code (a dedicated
server process).
8-2 Oracle9i Database Concepts

Introduction to Processes
With shared server, the database application is run by a different process (a user
process) than the one that runs the Oracle server code. Each server process that runs
Oracle server code (a shared server process) can serve multiple user processes.

Figure 8–1 illustrates a dedicated server configuration. Each connected user has a
separate user process, and several background processes run Oracle.

Figure 8–1 An Oracle Instance

Figure 8–1 can represent multiple concurrent users running an application on the
same machine as Oracle. This particular configuration usually runs on a mainframe
or minicomputer.

Oracle
Processes
(background
processes)

User
processesUser User User User

Archiver
(ARC0)

Log
Writer

(LGWR)

Recoverer
(RECO)

Process
Monitor
(PMON)

System
Monitor
(SMON)

Database
Writer

(DBW0)

System Global Area
(SGA)
Process Architecture 8-3

User Processes Overview
User Processes Overview
When a user runs an application program (such as a Pro*C program) or an Oracle
tool (such as Enterprise Manager or SQL*Plus), Oracle creates a user process to run
the user’s application.

Connections and Sessions
Connection and session are closely related to user process but are very different in
meaning.

A connection is a communication pathway between a user process and an Oracle
instance. A communication pathway is established using available interprocess
communication mechanisms (on a computer that runs both the user process and
Oracle) or network software (when different computers run the database
application and Oracle, and communicate through a network).

A session is a specific connection of a user to an Oracle instance through a user
process. For example, when a user starts SQL*Plus, the user must provide a valid
username and password, and then a session is established for that user. A session
lasts from the time the user connects until the time the user disconnects or exits the
database application.

Multiple sessions can be created and exist concurrently for a single Oracle user
using the same username. For example, a user with the username/password of
SCOTT/TIGER can connect to the same Oracle instance several times.

In configurations without the shared server, Oracle creates a server process on
behalf of each user session. However, with the shared server, many user sessions
can share a single server process.

See Also:

� "User Processes Overview" on page 8-4

� "Oracle Processes Overview" on page 8-5

� "Dedicated Server Configuration" on page 8-21

� "Shared Server Architecture" on page 8-15

� Your Oracle operating system-specific documentation for more
details on configuration choices

See Also: "Shared Server Architecture" on page 8-15
8-4 Oracle9i Database Concepts

Oracle Processes Overview
Oracle Processes Overview
This section describes the two types of processes that run the Oracle server code
(server processes and background processes). It also describes the trace files and
alert file, which record database events for the Oracle processes.

Server Processes
Oracle creates server processes to handle the requests of user processes connected
to the instance. In some situations when the application and Oracle operate on the
same machine, it is possible to combine the user process and corresponding server
process into a single process to reduce system overhead. However, when the
application and Oracle operate on different machines, a user process always
communicates with Oracle through a separate server process.

Server processes (or the server portion of combined user/server processes) created
on behalf of each user’s application can perform one or more of the following:

� Parse and run SQL statements issued through the application

� Read necessary data blocks from datafiles on disk into the shared database
buffers of the SGA, if the blocks are not already present in the SGA

� Return results in such a way that the application can process the information

Background Processes
To maximize performance and accommodate many users, a multiprocess Oracle
system uses some additional Oracle processes called background processes.

An Oracle instance can have many background processes; not all are always
present. The background processes in an Oracle instance include the following:

� Database Writer (DBW0 or DBWn)

� Log Writer (LGWR)

� Checkpoint (CKPT)

� System Monitor (SMON)

� Process Monitor (PMON)

� Archiver (ARCn)

� Recoverer (RECO)

� Lock Manager Server (LMS) - Real Application Clusters only
Process Architecture 8-5

Oracle Processes Overview
� Queue Monitor (QMNn)

� Dispatcher (Dnnn)

� Server (Snnn)

On many operating systems, background processes are created automatically when
an instance is started.

Figure 8–2 illustrates how each background process interacts with the different
parts of an Oracle database, and the rest of this section describes each process.

See Also:

� Oracle9i Real Application Clusters Concepts for more information.
Oracle9i Real Application Clusters are not illustrated in
Figure 8–2

� Your operating system-specific documentation for details on
how these processes are created
8-6 Oracle9i Database Concepts

Oracle Processes Overview
Figure 8–2 The Background Processes of a Multiple-Process Oracle Instance

Datafiles

Redo Log
Files

Control
Files

Offline
Storage
Device

SMONPMONRECO

System Global Area

Database
Buffer Cache

Redo Log
Buffer

User
Process

User Processes

D000

User
Process

LGWR

Dedicated
Server

Process

CKPT

DBW0

Legend:

RECO
PMON
SMON
CKPT
ARC0
DBW0
LGWR
D000

Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer
Dispatcher Process

ARC0

Shared
Server

Process

DBW0

ARC0

LGWR
Process Architecture 8-7

Oracle Processes Overview
Database Writer Process (DBWn)
The database writer process (DBWn) writes the contents of buffers to datafiles. The
DBWn processes are responsible for writing modified (dirty) buffers in the database
buffer cache to disk. Although one database writer process (DBW0) is adequate for
most systems, you can configure additional processes (DBW1 through DBW9 and
DBWa through DBWj) to improve write performance if your system modifies data
heavily. These additional DBWn processes are not useful on uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked dirty. A cold
buffer is a buffer that has not been recently used according to the least recently used
(LRU) algorithm. The DBWn process writes cold, dirty buffers to disk so that user
processes are able to find cold, clean buffers that can be used to read new blocks
into the cache. As buffers are dirtied by user processes, the number of free buffers
diminishes. If the number of free buffers drops too low, user processes that must
read blocks from disk into the cache are not able to find free buffers. DBWn
manages the buffer cache so that user processes can always find free buffers.

By writing cold, dirty buffers to disk, DBWn improves the performance of finding
free buffers while keeping recently used buffers resident in memory. For example,
blocks that are part of frequently accessed small tables or indexes are kept in the
cache so that they do not need to be read in again from disk. The LRU algorithm
keeps more frequently accessed blocks in the buffer cache so that when a buffer is
written to disk, it is unlikely to contain data that will be useful soon.

The initialization parameter DB_WRITER_PROCESSES specifies the number of
DBWn processes. The maximum number of DBWn processes is 20. If it is not
specified by the user during startup, Oracle determines how to set DB_BLOCK_
PROCESSES based on the number of CPUs and processor groups.

The DBWn process writes dirty buffers to disk under the following conditions:

� When a server process cannot find a clean reusable buffer after scanning a
threshold number of buffers, it signals DBWn to write. DBWn writes dirty
buffers to disk asynchronously while performing other processing.

� DBWn periodically writes buffers to advance the checkpoint, which is the
position in the redo thread (log) from which instance recovery begins. This log
position is determined by the oldest dirty buffer in the buffer cache.

In all cases, DBWn performs batched (multiblock) writes to improve efficiency. The
number of blocks written in a multiblock write varies by operating system.
8-8 Oracle9i Database Concepts

Oracle Processes Overview
Log Writer Process (LGWR)
The log writer process (LGWR) is responsible for redo log buffer
management—writing the redo log buffer to a redo log file on disk. LGWR writes
all redo entries that have been copied into the buffer since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the
redo log buffer to a redo log file, server processes can then copy new entries over
the entries in the redo log buffer that have been written to disk. LGWR normally
writes fast enough to ensure that space is always available in the buffer for new
entries, even when access to the redo log is heavy.

LGWR writes one contiguous portion of the buffer to disk. LGWR writes:

� A commit record when a user process commits a transaction

� Redo log buffers

– Every three seconds

– When the redo log buffer is one-third full

– When a DBWn process writes modified buffers to disk, if necessary

LGWR writes synchronously to the active mirrored group of online redo log files. If
one of the files in the group is damaged or unavailable, LGWR continues writing to
other files in the group and logs an error in the LGWR trace file and in the system

See Also:

� "Database Buffer Cache" on page 7-7

� Oracle9i Database Performance Tuning Guide and Reference for
advice on setting DB_WRITER_PROCESSES and for information
about how to monitor and tune the performance of a single
DBW0 process or multiple DBWn processes

� Oracle9i Backup and Recovery Concepts

Note: Before DBWn can write a modified buffer, all redo records
associated with the changes to the buffer must be written to disk
(the write-ahead protocol). If DBWn finds that some redo records
have not been written, it signals LGWR to write the redo records to
disk and waits for LGWR to complete writing the redo log buffer
before it can write out the data buffers.
Process Architecture 8-9

Oracle Processes Overview
alert file. If all files in a group are damaged, or the group is unavailable because it
has not been archived, LGWR cannot continue to function.

When a user issues a COMMIT statement, LGWR puts a commit record in the redo
log buffer and writes it to disk immediately, along with the transaction’s redo
entries. The corresponding changes to data blocks are deferred until it is more
efficient to write them. This is called a fast commit mechanism. The atomic write of
the redo entry containing the transaction’s commit record is the single event that
determines the transaction has committed. Oracle returns a success code to the
committing transaction, although the data buffers have not yet been written to disk.

When a user commits a transaction, the transaction is assigned a system change
number (SCN), which Oracle records along with the transaction’s redo entries in
the redo log. SCNs are recorded in the redo log so that recovery operations can be
synchronized in Oracle9i Real Application Clusters and distributed databases.

In times of high activity, LGWR can write to the online redo log file using group
commits. For example, assume that a user commits a transaction. LGWR must write
the transaction’s redo entries to disk, and as this happens, other users issue COMMIT
statements. However, LGWR cannot write to the online redo log file to commit
these transactions until it has completed its previous write operation. After the first
transaction’s entries are written to the online redo log file, the entire list of redo
entries of waiting transactions (not yet committed) can be written to disk in one
operation, requiring less I/O than do transaction entries handled individually.
Therefore, Oracle minimizes disk I/O and maximizes performance of LGWR. If
requests to commit continue at a high rate, then every write (by LGWR) from the
redo log buffer can contain multiple commit records.

Note: Sometimes, if more buffer space is needed, LGWR writes
redo log entries before a transaction is committed. These entries
become permanent only if the transaction is later committed.
8-10 Oracle9i Database Concepts

Oracle Processes Overview
Checkpoint Process (CKPT)
When a checkpoint occurs, Oracle must update the headers of all datafiles to record
the details of the checkpoint. This is done by the CKPT process. The CKPT process
does not write blocks to disk; DBWn always performs that work.

The statistic DBWR checkpoints displayed by the System_Statistics monitor
in Enterprise Manager indicates the number of checkpoint requests completed.

System Monitor Process (SMON)
The system monitor process (SMON) performs recovery, if necessary, at instance
startup. SMON is also responsible for cleaning up temporary segments that are no
longer in use and for coalescing contiguous free extents within dictionary managed
tablespaces. If any terminated transactions were skipped during instance recovery
because of file-read or offline errors, SMON recovers them when the tablespace or
file is brought back online. SMON checks regularly to see whether it is needed.
Other processes can call SMON if they detect a need for it.

With Real Application Clusters, the SMON process of one instance can perform
instance recovery for a failed CPU or instance.

See Also:

� Redo Log Buffer on page 7-11

� "Trace Files and the Alert Log" on page 8-14

� Oracle9i Real Application Clusters Deployment and Performance for
more information about SCNs and how they are used

� Oracle9i Database Administrator’s Guide for more information
about SCNs and how they are used

� Oracle9i Database Performance Tuning Guide and Reference for
information about how to monitor and tune the performance of
LGWR

See Also: Oracle9i Real Application Clusters Administration for
information about CKPT with Real Application Clusters

See Also: Oracle9i Real Application Clusters Administration for more
information about SMON
Process Architecture 8-11

Oracle Processes Overview
Process Monitor Process (PMON)
The process monitor (PMON) performs process recovery when a user process fails.
PMON is responsible for cleaning up the database buffer cache and freeing
resources that the user process was using. For example, it resets the status of the
active transaction table, releases locks, and removes the process ID from the list of
active processes.

PMON periodically checks the status of dispatcher and server processes, and
restarts any that have stopped running (but not any that Oracle has terminated
intentionally). PMON also registers information about the instance and dispatcher
processes with the network listener.

Like SMON, PMON checks regularly to see whether it is needed and can be called if
another process detects the need for it.

Recoverer Process (RECO)
The recoverer process (RECO) is a background process used with the distributed
database configuration that automatically resolves failures involving distributed
transactions. The RECO process of a node automatically connects to other databases
involved in an in-doubt distributed transaction. When the RECO process
reestablishes a connection between involved database servers, it automatically
resolves all in-doubt transactions, removing from each database’s pending
transaction table any rows that correspond to the resolved in-doubt transactions.

If the RECO process fails to connect with a remote server, RECO automatically tries
to connect again after a timed interval. However, RECO waits an increasing amount
of time (growing exponentially) before it attempts another connection. The RECO
process is present only if the instance permits distributed transactions. The number
of concurrent distributed transactions is not limited.

Job Queue Processes
Job queue processes are used for batch processing. They run user jobs. They can be
viewed as a scheduler service that can be used to schedule jobs as PL/SQL
statements or procedures on an Oracle instance. Given a start date and an interval,
the job queue processes try to run the job at the next occurrence of the interval.

Beginning with Oracle9i, job queue processes are managed dynamically. This allows
job queue clients to use more job queue processes when required. The resources
used by the new processes are released when they are idle.

See Also: Oracle9i Database Administrator’s Guide for more
information about distributed transaction recovery
8-12 Oracle9i Database Concepts

Oracle Processes Overview
Dynamic job queue processes can run a large number of jobs concurrently at a given
interval. The job queue processes run user jobs as they are assigned by the CJQ
process. Here’s what happens:

1. The coordinator process, named CJQ0, periodically selects jobs that need to be
run from the system JOB$ table. New jobs selected are ordered by time.

2. The CJQ0 process dynamically spawns job queue slave processes (J000…J999) to
run the jobs.

3. The job queue process runs one of the jobs that was selected by the CJQ process
for execution. The processes run one job at a time.

4. After the process finishes execution of a single job, it polls for more jobs. If no
jobs are scheduled for execution, then it enters a sleep state, from which it
wakes up at periodic intervals and polls for more jobs. If the process does not
find any new jobs, then it aborts after a preset interval.

The init.ora parameter JOB_QUEUE_PROCESSES represents the maximum number
of job queue processes that can concurrently run on an instance. However, clients
should not assume that all job queue processes are available for job execution.

Archiver Processes (ARCn)
The archiver process (ARCn) copies online redo log files to a designated storage
device after a log switch has occurred. ARCn processes are present only when the
database is in ARCHIVELOG mode, and automatic archiving is enabled.

An Oracle instance can have up to 10 ARCn processes (ARC0 to ARC9). The LGWR
process starts a new ARCn process whenever the current number of ARCn
processes is insufficient to handle the workload. The alert file keeps a record of
when LGWR starts a new ARCn process.

If you anticipate a heavy workload for archiving, such as during bulk loading of
data, you can specify multiple archiver processes with the initialization parameter
LOG_ARCHIVE_MAX_PROCESSES. The ALTER SYSTEM statement can change the
value of this parameter dynamically to increase or decrease the number of ARCn
processes. However, you do not need to change this parameter from its default

Note: The coordinator process is not started if the init.ora
parameter JOB_QUEUE_PROCESSES is set to 0.

See Also: Oracle9i Database Administrator’s Guide for more
information about job queues
Process Architecture 8-13

Oracle Processes Overview
value of 1, because the system determines how many ARCn processes are needed,
and LGWR automatically starts up more ARCn processes when the database
workload requires more.

Lock Manager Server Process (LMS)
In Oracle9i Real Application Clusters, a Lock Manager Server process (LMS)
provides inter-instance resource management.

Queue Monitor Processes (QMNn)
The queue monitor process is an optional background process for Oracle Advanced
Queuing, which monitors the message queues. You can configure up to 10 queue
monitor processes. These processes, like the job queue processes, are different from
other Oracle background processes in that process failure does not cause the
instance to fail.

Trace Files and the Alert Log
Each server and background process can write to an associated trace file. When a
process detects an internal error, it dumps information about the error to its trace
file. If an internal error occurs and information is written to a trace file, the
administrator should contact Oracle support.

All filenames of trace files associated with a background process contain the name
of the process that generated the trace file. The one exception to this is trace files
generated by job queue processes (Jnnn).

Additional information in trace files can provide guidance for tuning applications
or an instance. Background processes always write this information to a trace file
when appropriate.

See Also:

� "Trace Files and the Alert Log" on page 8-14

� Oracle9i Backup and Recovery Concepts

� Your operating system-specific documentation for details about
using the ARCn processes

See Also: Oracle9i Real Application Clusters Concepts for more
information about this background process

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more information about Oracle Advanced Queuing
8-14 Oracle9i Database Concepts

Shared Server Architecture
Each database also has an alert.log. The alert file of a database is a chronological
log of messages and errors, including the following:

� All internal errors (ORA-600), block corruption errors (ORA-1578), and
deadlock errors (ORA-60) that occur

� Administrative operations, such as the SQL statements CREATE/ALTER/DROP
DATABASE/TABLESPACE/ROLLBACK SEGMENT and the Enterprise Manager or
SQL*Plus statements STARTUP, SHUTDOWN, ARCHIVE LOG, and RECOVER

� Several messages and errors relating to the functions of shared server and
dispatcher processes

� Errors during the automatic refresh of a materialized view

Oracle uses the alert file to keep a record of these events as an alternative to
displaying the information on an operator’s console. (Many systems also display
this information on the console.) If an administrative operation is successful, a
message is written in the alert file as "completed" along with a time stamp.

Shared Server Architecture
Shared server architecture eliminates the need for a dedicated server process for
each connection. A dispatcher directs multiple incoming network session requests
to a pool of shared server processes. An idle shared server process from a shared
pool of server processes picks up a request from a common queue, which means a
small number of shared servers can perform the same amount of processing as
many dedicated servers. Also, because the amount of memory required for each
user is relatively small, less memory and process management are required, and
more users can be supported.

A number of different processes are needed in a shared server system:

� A network listener process that connects the user processes to dispatchers or
dedicated servers (the listener process is part of Oracle Net Services, not
Oracle).

� One or more dispatcher processes

See Also:

� Oracle9i Database Performance Tuning Guide and Reference for
information about enabling the SQL trace facility

� Oracle9i Database Error Messages for information about error
messages
Process Architecture 8-15

Shared Server Architecture
� One or more shared server processes

Shared server processes require Oracle Net Services or SQL*Net version 2.

When an instance starts, the network listener process opens and establishes a
communication pathway through which users connect to Oracle. Then, each
dispatcher process gives the listener process an address at which the dispatcher
listens for connection requests. At least one dispatcher process must be configured
and started for each network protocol that the database clients will use.

When a user process makes a connection request, the listener examines the request
and determines whether the user process can use a shared server process. If so, the
listener returns the address of the dispatcher process that has the lightest load, and
the user process connects to the dispatcher directly.

Some user processes cannot communicate with the dispatcher, so the network
listener process cannot connect them to a dispatcher. In this case, or if the user
process requests a dedicated server, the listener creates a dedicated server and
establishes an appropriate connection.

Scalability
Oracle’s shared server architecture increases the scalability of applications and the
number of clients simultaneously connected to the database. It can enable existing
applications to scale up without making any changes to the application itself.

Dispatcher Request and Response Queues
A request from a user is a single program interface call that is part of the user’s SQL
statement. When a user makes a call, its dispatcher places the request on the request
queue, where it is picked up by the next available shared server process.

Note: To use shared servers, a user process must connect through
Oracle Net Services or SQL*Net version 2, even if the process runs
on the same machine as the Oracle instance.

See Also:

� "Restricted Operations of the Shared Server" on page 8-20

� Oracle9i Net Services Administrator’s Guide for more information
about the network listener
8-16 Oracle9i Database Concepts

Shared Server Architecture
The request queue is in the SGA and is common to all dispatcher processes of an
instance. The shared server processes check the common request queue for new
requests, picking up new requests on a first-in-first-out basis. One shared server
process picks up one request in the queue and makes all necessary calls to the
database to complete that request.

When the server completes the request, it places the response on the calling
dispatcher’s response queue. Each dispatcher has its own response queue in the SGA.
The dispatcher then returns the completed request to the appropriate user process.

For example, in an order entry system each clerk’s user process connects to a
dispatcher and each request made by the clerk is sent to that dispatcher, which
places the request in the request queue. The next available shared server process
picks up the request, services it, and puts the response in the response queue. When
a clerk’s request is completed, the clerk remains connected to the dispatcher, but the
shared server process that processed the request is released and available for other
requests. While one clerk is talking to a customer, another clerk can use the same
shared server process.

Figure 8–3 illustrates how user processes communicate with the dispatcher across
the program interface and how the dispatcher communicates users’ requests to
shared server processes.
Process Architecture 8-17

Shared Server Architecture
Figure 8–3 The Shared Server Configuration and Shared Server Processes

4
3

6

1

7

Application
Code

System Global Area

User
Process

Database Server

Client Workstation

Shared
Server

Processes

2 5

Dispatcher Processes

Oracle
Server Code

Request
Queues

Response
Queues
8-18 Oracle9i Database Concepts

Shared Server Architecture
Dispatcher Processes (Dnnn)
The dispatcher processes support shared server configuration by allowing user
processes to share a limited number of server processes. With the shared server,
fewer shared server processes are required for the same number of users, Therefore,
the shared server can support a greater number of users, particularly in
client/server environments where the client application and server operate on
different machines.

You can create multiple dispatcher processes for a single database instance. At least
one dispatcher must be created for each network protocol used with Oracle. The
database administrator starts an optimal number of dispatcher processes depending
on the operating system limitation on the number of connections for each process,
and can add and remove dispatcher processes while the instance runs.

In a shared server configuration, a network listener process waits for connection
requests from client applications and routes each to a dispatcher process. If it cannot
connect a client application to a dispatcher, the listener process starts a dedicated
server process, and connects the client application to the dedicated server. The
listener process is not part of an Oracle instance; rather, it is part of the networking
processes that work with Oracle.

Shared Server Processes (Snnn)
Each shared server process serves multiple client requests in the shared server
configuration. Shared server processes and dedicated server processes provide the
same functionality, except shared server processes are not associated with a specific
user process. Instead, a shared server process serves any client request in the shared
server configuration.

Note: Each user process that connects to a dispatcher must do so
through Oracle Net Services or SQL*Net version 2, even if both
processes are running on the same machine.

See Also:

� "Shared Server Architecture" on page 8-15

� Oracle9i Net Services Administrator’s Guide for more information
about the network listener
Process Architecture 8-19

Shared Server Architecture
The PGA of a shared server process does not contain user-related data (which needs
to be accessible to all shared server processes). The PGA of a shared server process
contains only stack space and process-specific variables.

All session-related information is contained in the SGA. Each shared server process
needs to be able to access all sessions’ data spaces so that any server can handle
requests from any session. Space is allocated in the SGA for each session’s data
space. You can limit the amount of space that a session can allocate by setting the
resource limit PRIVATE_SGA to the desired amount of space in the user’s profile.

Oracle dynamically adjusts the number of shared server processes based on the
length of the request queue. The number of shared server processes that can be
created ranges between the values of the initialization parameters SHARED_
SERVERS and MAX_SHARED_SERVERS.

Restricted Operations of the Shared Server
Certain administrative activities cannot be performed while connected to a
dispatcher process, including shutting down or starting an instance and media
recovery. An error message is issued if you attempt to perform these activities while
connected to a dispatcher process.

These activities are typically performed when connected with administrator
privileges. When you want to connect with administrator privileges in a system
configured with shared servers, you must state in your connect string that you want
to use a dedicated server process (SERVER=DEDICATED) instead of a dispatcher
process.

See Also:

� "Program Global Areas (PGA) Overview" on page 7-17 for
more information about the content of a PGA in different types
of instance configurations

� Chapter 22, "Controlling Database Access"for more information
about resource limits and profiles

See Also:

� Your operating system-specific documentation

� Oracle9i Net Services Administrator’s Guide for the proper
connect string syntax
8-20 Oracle9i Database Concepts

Dedicated Server Configuration
Dedicated Server Configuration
Figure 8–4 illustrates Oracle running on two computers using the dedicated server
architecture. In this configuration, a user process runs the database application on
one machine, and a server process runs the associated Oracle server on another
machine.

Figure 8–4 Oracle Using Dedicated Server Processes

The user and server processes are separate, distinct processes. The separate server
process created on behalf of each user process is called a dedicated server process
(or shadow process), because this server process acts only on behalf of the
associated user process.

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server
Process

Oracle
Server Code
Process Architecture 8-21

The Program Interface
This configuration maintains a one-to-one ratio between the number of user
processes and server processes. Even when the user is not actively making a
database request, the dedicated server process remains (though it is inactive and
can be paged out on some operating systems).

Figure 8–4 shows user and server processes running on separate computers
connected across a network. However, the dedicated server architecture is also used
if the same computer runs both the client application and the Oracle server code but
the host operating system could not maintain the separation of the two programs if
they were run in a single process. UNIX is a common example of such an operating
system.

In the dedicated server configuration, the user and server processes communicate
using different mechanisms:

� If the system is configured so that the user process and the dedicated server
process run on the same computer, the program interface uses the host
operating system’s interprocess communication mechanism to perform its job.

� If the user process and the dedicated server process run on different computers,
the program interface provides the communication mechanisms (such as the
network software and Oracle Net Services) between the programs.

� Dedicated server architecture can sometimes result in inefficiency. Consider an
order entry system with dedicated server processes. A customer places an order
as a clerk enters the order into the database. For most of the transaction, the
clerk is talking to the customer while the server process dedicated to the clerk’s
user process remains idle. The server process is not needed during most of the
transaction, and the system is slower for other clerks entering orders. For
applications such as this, the shared server architecture may be preferable.

The Program Interface
The program interface is the software layer between a database application and
Oracle. The program interface:

� Provides a security barrier, preventing destructive access to the SGA by client
user processes

See Also:

� Your operating system-specific documentation

� Oracle9i Net Services Administrator’s Guide

for more information about communication links
8-22 Oracle9i Database Concepts

The Program Interface
� Acts as a communication mechanism, formatting information requests, passing
data, and trapping and returning errors

� Converts and translates data, particularly between different types of computers
or to external user program datatypes

The Oracle code acts as a server, performing database tasks on behalf of an
application (a client), such as fetching rows from data blocks. It consists of several
parts, provided by both Oracle software and operating system-specific software.

Program Interface Structure
The program interface consists of the following pieces:

� Oracle call interface (OCI) or the Oracle runtime library (SQLLIB)

� The client or user side of the program interface (also called the UPI)

� Various Oracle Net Services drivers (protocol-specific communications
software)

� Operating system communications software

� The server or Oracle side of the program interface (also called the OPI)

Both the user and Oracle sides of the program interface run Oracle software, as do
the drivers.

Oracle Net Services is the portion of the program interface that allows the client
application program and the Oracle server to reside on separate computers in your
communication network.

Program Interface Drivers
Drivers are pieces of software that transport data, usually across a network. They
perform operations such as connect, disconnect, signal errors, and test for errors.
Drivers are specific to a communications protocol, and there is always a default
driver.

You can install multiple drivers (such as the asynchronous or DECnet drivers) and
select one as the default driver, but allow an individual user to use other drivers by
specifying the desired driver at the time of connection. Different processes can use
different drivers. A single process can have concurrent connections to a single
database or to multiple databases (either local or remote) using different Oracle Net
Services drivers.
Process Architecture 8-23

The Program Interface
Communications Software for the Operating System
The lowest-level software connecting the user side to the Oracle side of the program
interface is the communications software, which is provided by the host operating
system. DECnet, TCP/IP, LU6.2, and ASYNC are examples. The communication
software can be supplied by Oracle Corporation but is usually purchased separately
from the hardware vendor or a third-party software supplier.

See Also:

� Your system installation and configuration guide for details
about choosing, installing, and adding drivers

� Your system Oracle Net Services documentation for
information about selecting a driver at runtime while accessing
Oracle

� Oracle9i Net Services Administrator’s Guide

See Also: Your Oracle operating system-specific documentation
for more information about the communication software of your
system
8-24 Oracle9i Database Concepts

Database Resource Man
9

Database Resource Management

This chapter describes how Oracle’s Database Resource Manager works to help a
database administrator allocate resources to different groups of users. This chapter
includes the following topics:

� Introduction to the Database Resource Manager

� How the Database Resource Manager Works

� Resource Plans and Resource Consumer Groups

� Resource Allocation Methods and Resource Plan Directives

� Interaction with Operating-System Resource Control
agement 9-1

Introduction to the Database Resource Manager
Introduction to the Database Resource Manager
Traditionally, it has been up to the operating system to regulate resource
management among the various applications running on a system, including Oracle
databases. Before Oracle8i, there was no way to prioritize one Oracle session over
another. The Database Resource Manager gives database administrators more
control over resource management decisions, so that resource allocation can be
aligned with an enterprise’s business objectives.

The Database Resource Manager solves many resource allocation problems that an
operating system does not manage so well:

� Excessive overhead. This results from operating system context switching
between Oracle server processes when the number of server processes is high.

� Inefficient scheduling. The operating system deschedules Oracle database
servers while they hold latches, which is inefficient.

� Inappropriate allocation of resources. The operating system distributes
resources equally among all active processes and is unable to prioritize one task
over another.

� Inability to manage database-specific resources

With Oracle’s Database Resource Manager, a database administrator can:

� Guarantee certain users a minimum amount of processing resources regardless
of the load on the system and the number of users

� Distribute available processing resources by allocating percentages of CPU time
to different users and applications. In a data warehouse, a higher percentage
may be given to ROLAP (relational on-line analytical processing) applications
than to batch jobs.

� Limit the degree of parallelism of any operation performed by members of a
group of users

� Create an active session pool. This pool consists of a specified maximum
number of user sessions allowed to be concurrently active within a group of
users. Additional sessions beyond the maximum are queued for execution, but
you can specify a timeout period, after which queued jobs terminate.

Note: The Database Resource Manager is available with Oracle
Enterprise Edition, beginning with Release 8i.
9-2 Oracle9i Database Concepts

Introduction to the Database Resource Manager
� Allow automatic switching of users from one group to another group based on
administrator-defined criteria. If a member of a particular group of users creates
a session that runs for longer than a specified amount of time, that session can
be automatically switched to another group of users with different resource
requirements.

� Prevent the execution of operations that are estimated to run for a longer time
than a predefined limit

� Create an undo pool. This pool consists of the amount of undo space that can be
consumed in by a group of users.

� Configure an instance to use a particular method of allocating resources. You
can dynamically change the method, for example, from a daytime setup to a
nighttime setup, without having to shut down and restart the instance.

It is thus possible to balance one user's resource consumption against that of other
users and to partition system resources among tasks of varying importance, to
achieve overall enterprise goals.

Database Resource Manager Overview
Resources are allocated to users according to a resource plan specified by the
database administrator. The following terms are used in specifying a resource plan:

A resource plan specifies how the resources are to be distributed among various
users (resource consumer groups).

Resource consumer groups allow the administrator to group user sessions together
by resource requirements. Resource consumer groups are different from user roles;
one database user can have different sessions assigned to different resource
consumer groups.

Resource allocation methods determine what policy to use when allocating for any
particular resource. Resource allocation methods are used by resource plans and
resource consumer groups.

Resource plan directives are a means of assigning consumer groups to particular
plans and partitioning resources among consumer groups by specifying parameters
for each resource allocation method.

See Also: Oracle9i Database Administrator’s Guide for information
about using the Database Resource Manager
Database Resource Management 9-3

Introduction to the Database Resource Manager
The Database Resource Manager also allows for creation of plans within plans,
called subplans. Subplans allow further subdivision of resources among different
users of an application.

Levels provide a mechanism to specify distribution of unused resources among
available users. Up to eight levels of resource allocation can be specified.

Example of a Simple Resource Plan
To illustrate these concepts, take an example of a fictitious company, ABC Inc. ABC
sells electronics consumer goods over the Internet. To ensure the best performance
for online customers, at least 85% of the CPU resources should be allocated to them.
From the remaining resources, 10% should go to users involved in shipping orders
and 5% to billing operations.

To configure an Oracle database to allocate resources in such a way, the database
administrator creates three resource consumer groups:

� ONLINE for online customers

� SHIPPING for shipping users

� BILLING for billing users

The database administrator then creates a resource plan such as the one in
Table 9–1.

The plan shown in Table 9–1 specifies that 85% of CPU cycles be allotted to
ONLINE group sessions, 10% to those of the SHIPPING group and the remaining
5% to the BILLING group. Although this example describes a very simplistic
scenario, the Database Resource Manager provides the database administrator with
a powerful mechanism for implementing controlled resource allocation policies
within an Oracle database.

Table 9–1 Simple Resource Allocation Plan, ABCUSERS

Consumer Group CPU Resource Allocation

ONLINE 85%

SHIPPING 10%

BILLING 5%

See Also: PL/SQL User’s Guide and Reference for information about
PL/SQL code to create these plans
9-4 Oracle9i Database Concepts

How the Database Resource Manager Works
How the Database Resource Manager Works
The Database Resource Manager controls the distribution of resources among
various sessions by controlling the execution schedule inside the database. By
controlling which sessions to run and for how long, the Database Resource Manager
can ensure that resource distribution matches the plan directive and hence, the
business objectives.

Sessions belonging to consumer groups with higher CPU resource allocation are
allowed to use more CPU time than sessions belonging to groups or sub plans with
lower allocation.

Resource Control
The basic objective of the Database Resource Manager is to maximize system
throughput in a way that conforms to business objectives. Consequently, it does not
try to enforce CPU allocation percentage limits as long as consumer groups are
getting the resources they need.

Example of Resource Control
Consider the plan in Table 9–1. If this plan is activated on a system with a single
CPU, any one of the consumer groups can consume up to 100% of CPU resources,
providing other groups do not have enough active sessions to consume their
allocation. Therefore, with no active sessions in the SHIPPING and BILLING
groups, the ONLINE group sessions can use 100% of CPU resources, even though
their allocation limit is set to 85%.

Similarly, if the database is hosted on system with three CPUs and each group has
only one active session, each session runs on one of the three CPUs; in this case,
resource allocation is actually 33.33%, no matter how allocation limits are set.
However, if all the consumer groups have enough active sessions to consume all
available CPU resources, then the Database Resource Manager enforces the
allocation guidelines specified by the plan directive.

Caution: On UNIX platforms, do not use the nice statement to
alter the operating-system run priorities of processes. Use of this
statement can lead to instability and unpredictable behavior of the
Oracle Server. See "Interaction with Operating-System Resource
Control" on page 9-17 for details.
Database Resource Management 9-5

How the Database Resource Manager Works
Effectiveness of the Database Resource Manager
The effect of the Database Resource Manager is noticeable only in busy
environments with high system utilization.

On multiprocessor systems, processor affinity scheduling at the operating system
level can distort CPU allocation on under utilized systems. On a system with
multiple CPUs, if one of the CPUs has resources available while others are fully
utilized, the operating system attempts to migrate processes from the busy
processor's run queue to an under utilized processor. However this does not happen
immediately.

On a fully loaded system with enough processes, processor affinity increases
performance; this is because invalidating the current CPU cache and loading the
new one can be quite expensive. Because most platforms support processor affinity,
enough processes must be run to ensure full system utilization.

Database Integration
The Database Resource Manager is fully integrated into the database security
system. The supplied PL/SQL package DBMS_RESOURCE_MANAGER lets the
database administrator create, update, and delete resource plans and resource
consumer groups. The administrator defines a user's default consumer group and
what privileges the user has (using the DBMS_RESOURCE_MANAGER_PRIVS
package). A user or session can switch resource consumer groups (using DBMS_
SESSION.SWITCH_CURRENT_CONSUMER_GROUP) to change execution priority, if
the user has been granted the privilege to switch to that consumer group. In
addition, users or sessions can be moved from group to group by the database
administrator on a production system, dynamically changing the way CPU
resources are used.

It is very simple to use the Database Resource Manager in an environment where
each application user logs on to the database using a different database username. It
is also not very difficult to implement it where applications use generic database
login. Because Database Resource Manager actually controls resource utilization at
the session level, it is possible to prioritize one session over another, even if both the
sessions belong to the same database user. Therefore, it is possible to switch a
session to the desired consumer group because of the user's application role, using
the DBMS_SESSION.SWITCH_CURRENT_CONSUMER_GROUP procedure, as follows:
9-6 Oracle9i Database Concepts

Resource Plans and Resource Consumer Groups
DECLARE default_group VARCHAR2(30);
BEGIN DBMS_SESSION.SWITCH_CURRENT_CONSUMER_GROUP('desired_consumer_group',
'default_group', false);
END; /

Oracle continues to support user resource limits and profiles used with the
Database Resource Manager. While the Database Resource Manager balances
different requests for service against each other within the defined resource
allocation plan, profiles are used to limits a user's consumption of resources.

The Database Resource Manager and the automatic degree of parallelism (ADOP)
feature are integrated. ADOP attempts to optimize system utilization by
automatically adjusting the degree of parallelism for parallel query operations
based on current system load and the Database Resource Manager degree of
parallelism directive.

Performance Overhead
The Database Resource Manager can effectively manage resources with minimal
overhead. For systems with hundreds of users, Database Resource Manager can
actually improve the performance by reducing context switches and latch
contention.

� Database Resource Manager does not switch process as often as any operating
system’s fair-share scheduler does.

� Database Resource Manager runs fewer processes concurrently and never
context-switches a process that is holding a latch.

Judicious use of the Database Resource Manager should not lead to any
performance degradation. However, the depth or complexity of a resource plan can
impede the process of selecting the process to be run; therefore, it may advisable to
avoid too deep a resource plan. The more levels a plan schema has, the more work
the Database Resource Manager must do to pick a session for execution.

Resource Plans and Resource Consumer Groups
A resource plan is a way to group a set of resource consumer groups together and
specify how resources should be divided among them. Consider the example from
Table 9–1, which can be diagrammed as follows:
Database Resource Management 9-7

Resource Plans and Resource Consumer Groups
Figure 9–1 ABC Resource Allocation Plan, ABCUSERS

Activation of a Resource Plan
You can create as many resource plans as you need in a database. However, only
one plan can be active at any given time. You can activate a resource plan in one of
two ways: persistent and dynamic.

Persistent
Set the value of the RESOURCE_MANAGER_PLAN initialization parameter to the plan
you want to activate. For example, to activate ABC’s simple resource plan,
abcusers, you would modify the initialization parameter file to include the
following line:

RESOURCE_MANAGER_PLAN='ABCUSERS'

When you modify the initialization parameter file, you ensure persistence of the
resource plan across database shutdown. However, changes in the initialization
parameter file take effect only when the database is restarted. Use this method to set
a the default resource plan for the database.

Dynamic
Issue the ALTER SYSTEM SET RESOURCE_MANAGER_PLAN statement. Using the
same example, you would issue the following statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN ='ABCUSERS';

When you issue the ALTER SYSTEM SET RESOURCE_MANAGER_PLAN statement, the
specified plan is activated immediately, without requiring an instance restart.
However, the database reverts to the default setting in the initialization parameter
file the next time it is started.

Billing
(10%)

Online
(85%)

Shipping
(5%)

Users
Plan
9-8 Oracle9i Database Concepts

Resource Plans and Resource Consumer Groups
For example, using the dynamic method an administrator could create two different
plans, for day time and for night time. The day time plan would allocate more
resources to online users, while the night time plan (when online users are not very
active) would ensure higher allocation to batch jobs. Then the database
administrator uses the ALTER SYSTEM statement to toggle back and forth between
day and night plans without interrupting database services.

The ALTER SYSTEM SET RESOURCE_MANAGER_PLAN statement is used to
dynamically activate, change, or deactivate resource plans.

Groups of Resource Plans
You can also use resource plans to group other resource plans. This enables you to
partition resources among different kinds of applications. For example, the ABC
company might need to reserve certain minimum resources to developers and
administrators, so that they can perform critical maintenance operations.

Consider a case where at least 25% of the available CPU cycles must be reserved for
sessions belonging to two resource consumer groups: DEVELOPERS and
ADMINISTRATORS. These CPU cycles should be allocated between DEVELOPERS
and ADMINISTRATORS in a ratio of 60 to 40. To achieve this objective, the database
administrator first creates a maintenance plan with following specifications:

When activated, the plan shown in Table 9–2 ensures that all available resources are
distributed among developers’ and administrators’ sessions in a 60:40 ratio.
However, only 25% of all available resources are to be reserved for maintenance;
75% should made available to the abcusers plan. This can be realized by creating
a top-level plan with abcusers and abcmaint being its members, as shown in
Table 9–3:

See Also: Step 3 of "Interaction with Operating-System Resource
Control" on page 9-18

Table 9–2 Sample Maintenance Plan, ABCMAINT

Consumer Group CPU Resource Allocation

DEVELOPERS 60%

ADMINISTRATORS 40%
Database Resource Management 9-9

Resource Plans and Resource Consumer Groups
The users and maintenance groups become subplans of ABCTOP. The resulting plan
tree is diagrammed in Figure 9–2.

Figure 9–2 Resource Plan Containing Subplans

A subplan or consumer group can have more than one parent. For example, in the
plan shown in Figure 9–2, the consumer group Admin could very well have been
part of both the users and maintenance plans. Because multiple parents are allowed,
you can preserve plan independence: You do not need to change anything in
subplans when you roll them up to a top-level plan.

A plan tree can have as many hierarchical levels as you want. However, as the
number of these levels increase, the overhead associated with resource control
increases; the determination of which process is to be run next has to be performed
at every level that contains subplans. On the other hand, sub plans provide a good
way to partition database resources at a high level among multiple applications and
then repartition them within an application among various users. If a given group
within an application does not consume its allocation, unused resources are made
available to other groups within the same application first. If none of the groups in
an application can consume all the resources made available to them, the unused

Table 9–3 Top Plan, ABCTOP

Subplan CPU Resource Allocation

ABCUSERS 75%

ABCMAINT 25%

Top

Developers
(60%)

Users
(75%)

Billing
(10%)

Maint
(25%)

Admin
(40%)

Online
(85%)

Shipping
(5%)
9-10 Oracle9i Database Concepts

Resource Allocation Methods and Resource Plan Directives
resources are handed back to the parent plan, which can then distribute it among its
subplans.

Resource Allocation Methods and Resource Plan Directives
The Database Resource Manager enables controlled distribution of resources among
consumer groups (inter-group), as well within a consumer group (intra-group),
using allocation methods and plan directives.

� Plan-level resource allocation methods and directives specify how resources
must be distributed among consumer groups.

� Consumer-group methods and directives control resource distribution among
sessions belonging to a consumer group.

When scheduling a session for execution, the Database Resource Manager acts as
follows:

1. Plan resource allocation guidelines and directives determine which consumer
group is to run next.

2. Group-level allocation methods and directives determine which session in the
selected group is dispatched to the CPU run queue.

For example, in case of the ABC Company’s users plan shown in Table 9–1,
plan-level methods and directives specify a resource distribution allowing ONLINE
consumer group sessions to be run 85% of the time, while sessions belonging to
SHIPPING and BILLING groups get 10% and 5% of CPU time, respectively.

Plan-level directives of ABCUSERS ensure that the ONLINE group is picked up
more frequently for execution than the SHIPPING and BILLING groups. However,
the ONLINE group usually has several active sessions waiting for execution.
Group-level directives determine the order in which these sessions are run.

Resource Plan Directives
How resources are allocated to resource consumer groups is specified in resource
allocation directives. The Database Resource Manager provides several means of
allocating resources.

See Also: PL/SQL User’s Guide and Reference for information about
using PL/SQL code to create these plans
Database Resource Management 9-11

Resource Allocation Methods and Resource Plan Directives
CPU Method
This method lets you specify how CPU resources are to be allocated among
consumer groups or subplans. The multiple levels of CPU resource allocation (up to
eight levels) provide a means of prioritizing CPU use within a plan schema. Level 2
gets resources only after level 1 is unable to use all of its resources. Multiple levels
not only provide a way of prioritizing, but they provide a way of explicitly
specifying how all primary and leftover resources are to be used.

Active Session Pool with Queuing
You can control the maximum number of concurrently active sessions allowed
within a consumer group. This maximum designates the active session pool. When
a session cannot be initiated because the pool is full, the session is placed into a
queue. When an active session completes, the first session in the queue can then be
scheduled for execution. You can also specify a timeout period after which a job in
the execution queue (waiting for execution) will timeout, causing it to terminate
with an error.

An entire parallel execution session is counted as one active session.

Degree of Parallelism Limit
*Specifying a parallel degree limit lets you control the maximum degree of
parallelism for any operation within a consumer group.

Automatic Consumer Group Switching
This method lets you control resources by specifying criteria that, if met, causes the
automatic switching of sessions to another consumer group. The criteria used to
determine switching are:

� SWITCH_GROUP—specifies the consumer group to which this session is
switched if the other (following) criteria are met.

� SWITCH_TIME—specifies the length of time that a session can run before it is
switched to another consumer group.

� SWITCH_ESTIMATE—specifies whether Oracle is to use its own estimate of
how long an operation will run.

The Database Resource Manager switches a running session to SWITCH_GROUP if
the session is active for more than SWITCH_TIME seconds. Active means that the
session is running and consuming resources, not waiting idly for user input or
waiting for CPU cycles. The session is allowed to continue running, even if the
active session pool for the new group is full. Under these conditions a consumer
9-12 Oracle9i Database Concepts

Resource Allocation Methods and Resource Plan Directives
group can have more sessions running than specified by its active session pool.
After the session finishes its operation and becomes idle, it is switched back to its
original group.

If SWITCH_ESTIMATE is set to true, then the Database Resource Manager uses a
predicted estimate of how long the operation will take to complete. If Oracle’s
predicted estimate is longer than the value specified as SWITCH_TIME, then Oracle
switches the session before execution starts. If this parameter is not set, the
operation starts normally and only switches groups when other switch criteria are
met.

Execution Time Limit
You can specify a maximum execution time allowed for an operation. If Oracle
estimates that an operation will run longer than the specified maximum execution
time, then the operation is terminated with an error. This error can be trapped and
the operation rescheduled.

Undo Pool
You can specify an undo pool for each consumer group. An undo pool controls the
amount of total undo that can be generated by a consumer group. When the total
undo generated by a consumer group exceeds it’s undo limit, the current DML
statement generating the redo is terminated. No other members of the consumer
group can perform further data manipulation until undo space is freed from the
pool.

CPU Resource Allocation
A database administrator can control resource distribution among sessions in
competing consumer groups by granting resources at up to eight levels of resource
allocation and by specifying how resources are to be distributed among consumer
groups at each of these levels.

The users plan shown in Table 9–1 depicts a simple resource distribution scheme
using a resource allocation at a single level. This plan can be modified to allocate
any unconsumed resources first to administrators (for maintenance operations) and
then to any batch jobs. Table 9–4 shows the modified plan:

Table 9–4 Multilevel Users Plan 1

Consumer Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVEL3

ONLINE 85% 0% 0%
Database Resource Management 9-13

Resource Allocation Methods and Resource Plan Directives
The modified users plan shown in Table 9–4 accomplishes the following:

� CPU_LEVEL1 ensures that at least 85% of CPU resources are available to the
sessions belonging to ONLINE, 10% to SHIPPING, and 5% to BILLING
consumer groups.

� CPU_LEVEL2 offers to the ADMIN consumer group any resources not
consumed by ONLINE, SHIPPING, and BILLING.

� CPU_LEVEL3 makes available to the BATCH consumer group any resources
still left.

Multilevel User Plan 1 meets the stated objective by granting resources among the
consumer groups at different levels. Sessions belonging to ONLINE, SHIPPING and
BILLING groups are always given the first opportunity to run, but their resource
consumption is limited to 85%, 10% and 5%, respectively. Any unused resources are
made available to Level 2 and are distributed among consumer groups in the
proportion of grants made at this level. If unused resources still exist, then they are
made available to the next level down.

However, the ADMIN group might have to wait a long time, if all the groups at
Level 1 are busy. Similarly, the BATCH group might not get to run any sessions at
all, if groups at Level 1 and 2 consume all the resources. Such behavior might not be
acceptable in some environments. What is required is a plan that allocates most
CPU resources to ONLINE, SHIPPING, and BILLING and also ensures availability
of certain minimum CPU cycles to the ADMIN and BATCH groups. The modified
multilevel users plan is shown in Table 9–5:

SHIPPING 10% 0% 0%

BILLING 5% 0% 0%

ADMIN 0% 100% 0%

BATCH 0% 0% 100%

Table 9–5 Multilevel Users Plan 2

Consumer Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVEL3

ONLINE 75% 0% 0%

SHIPPING 10% 0% 0%

Table 9–4 Multilevel Users Plan 1

Consumer Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVEL3
9-14 Oracle9i Database Concepts

Resource Allocation Methods and Resource Plan Directives
The modified multiuser plan shown in Table 9–5 accomplishes the following:

� CPU_LEVEL1 now allocates up to 75% of available CPU time to the ONLINE
group, while SHIPPING gets 10% and BILLING gets 5%.

� CPU_LEVEL2 splits the remaining 10% of CPU time between ADMIN and
BATCH groups in a ratio of 80 to 20. This ensures that ADMIN group sessions
get at least 8% of all available CPU time (80% of 10%); BATCH group sessions
get at least 2%.

Multilevel User Plan 2 guarantees a minimum of 10% of the CPU resources to the
ADMIN and BATCH groups. These Level 2 groups get more CPU time if the
ONLINE, SHIPPING, and BILLING groups do not use all of their allocated
resources. With no active sessions for any Level 1 groups, the ADMIN group
sessions can run 80% of the time, and BATCH group sessions can run 20% of the
time.

CPU Allocation Rules
The multilevel user plans shown in Table 9–4 and Table 9–5 demonstrate that CPU
resource allocation using the Emphasis method follows a set of rules. These rules
are as follows:

1. Sessions in resource consumer groups with nonzero percentage allocation at
Level 1 always get the first opportunity to run.

2. CPU resources are distributed at a given level by specified percentages.

� If one consumer group does not consume its allocated resources, unused
resources are not given to other groups at the same level, but fall through to
the next level.

� After all resource consumer groups at a given level have had a chance to
run, any remaining resources fall through to the next level.

3. The sum of percentages at any given level must be less than or equal to 100.

BILLING 5% 0% 0%

ADMIN 0% 80% 0%

BATCH 0% 20% 0%

Table 9–5 Multilevel Users Plan 2

Consumer Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVEL3
Database Resource Management 9-15

Resource Allocation Methods and Resource Plan Directives
4. After being offered to consumer groups at all levels, any CPU time that is
unused, because of either inactivity or quota restrictions, gets recycled. It is
offered to consumer groups again starting at Level 1.

5. Any levels that have no plan directives explicitly specified (for example, Level 3
in the example) are implied to have 0% for all subplans or consumer groups.

The Database Resource Manager allocates CPU resources among groups that have
active sessions at a given time. It does not use any historical information in deciding
which group to run. For example, perhaps the ONLINE consumer group does not
have any active sessions for two hours. During this period, its share of resources is
available to other consumer groups. Later, when sessions belonging to the ONLINE
consumer group are active, they are still allocated only 75% of CPU resources.
Consumer groups do not accrue credit for the period in which they did not have
any active sessions.

Levels and Priorities
Levels are similar to priorities. Consumer groups at Level 1 are offered resources
before those at lower levels are considered. Table 9–6 illustrates one way of setting
priorities with Database Resource Manager plan directives:

In Table 9–6, sessions belonging to the Medium Priority group or subplan are
allowed to run only when no active sessions are in the High Priority group or
subplan. Similarly, Low Priority sessions get a chance to run only when no active
sessions belong to either the High or Medium priority groups or subplans.

However, a plan like the one shown in Table 9–6 can lead to resource starvation. As
long as the High Priority group can use 100% of the CPU resources, no session
belonging to the Medium or Low priority groups can run at all. In other words, a
set of runaway sessions belonging to the High Priority group could completely stall
processing of Medium and Low priority group sessions.

If this is not the effect you intend, you can create a plan that ensures allocation of at
least minimum resources to all consumer groups by their relative priorities. For
example, you might modify the plan in Table 9–6 as follows:

Table 9–6 Simple Priority Plan

Subplan or Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVEL3

High Priority 100% 0% 0%

Medium Priority 0% 100% 0%

Low Priority 0% 0% 100%
9-16 Oracle9i Database Concepts

Interaction with Operating-System Resource Control
The modified plan in Table 9–7 ensures that while the High Priority group gets most
of the CPU time, other groups are not completely stalled.

Interaction with Operating-System Resource Control
Oracle9i expects a static configuration and allocates internal resources, such as
latches, from available resources detected at database startup. The database might
not perform optimally and can become unstable if resource configuration changes
very frequently. Therefore, operating-system resource control should be used with
Oracle databases judiciously, according to the following guidelines:

1. Operating-system resource control should not be used concurrently with the
Database Resource Manager, because neither of them are aware of each other's
existence. As a result, both the operating system and Database Resource
Manager try to control resource allocation in a manner that causes
unpredictable behavior and instability of Oracle databases.

� If you want to control resource distribution within an instance, use the
Database Resource Manager and turn off operating-system resource
control.

� If you have multiple instances on a node and you want to distribute
resources among them, use operating-system resource control, not the
Database Resource Manager.

2. In an Oracle environment, the use of an operating-system resource manager,
such as Hewlett Packard's Process Resource Manager (PRM) or Sun's Solaris
Resource Manager (SRM), is supported only if all of the following conditions
are met:

Table 9–7 Modified Priority Plan

Subplan or Group CPU_LEVEL1 CPU_LEVEL2 CPU_LEVEL3

High Priority 80% 0% 0%

Medium Priority 10% 0% 0%

Low Priority 10% 0% 0%

Note: Oracle9i does not support the use of both tools
simultaneously. Future releases might allow for their interaction on
a limited scale.
Database Resource Management 9-17

Interaction with Operating-System Resource Control
� Each instance must be assigned to a dedicated operating-system resource
manager group or managed entity.

� The dedicated entity running all the instance's processes must run at one
priority (or resource consumption) level.

� Process priority management must not be enabled.

3. If you chose to use operating-system resource control, make sure you turn off
the Database Resource Manager. By default, the Database Resource Manager is
turned off. If it is not, you can turn it off by issuing the following statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN='';

Also remember to reset this parameter in your initialization parameter file, so
that the Database Resource Manager is not activated the next time the database
is started up.

Dynamic Reconfiguration
Tools such as Sun's processor sets and dynamic system domains work well with an
Oracle database. There is no need to restart an instance if the number of CPUs
changes.

Oracle dynamically detects any change in the number of available CPUs and
reallocates internal resources. On most platforms, Oracle automatically adjusts the
value of CPU_COUNT to the number of available CPUs.

Caution: Please note that management of individual Oracle
processes at different priority levels (for example, using the nice
statement on UNIX platforms) is not supported. Severe
consequences, including instance crashes, can result. You can
expect similar undesirable results if operating-system resource
control is permitted to manage memory on which an Oracle
instance is pinned.

See Also: Oracle9i Database Reference for more information on
CPU_COUNT
9-18 Oracle9i Database Concepts

Part IV

Data

Part IV describes the data involved in database management.

Part IV contains the following chapters:

� Chapter 10, "Schema Objects"

� Chapter 11, "Partitioned Tables and Indexes"

� Chapter 12, "Native Datatypes"

� Chapter 13, "Object Datatypes and Object Views"

Oracle9i Database Concepts

Schema
10

Schema Objects

This chapter discusses the different types of database objects contained in a user’s
schema. It includes:

� Introduction to Schema Objects

� Tables

� Views

� Materialized Views

� Dimensions

� The Sequence Generator

� Synonyms

� Indexes

� Index-Organized Tables

� Application Domain Indexes

� Clusters

� Hash Clusters
Objects 10-1

Introduction to Schema Objects
Introduction to Schema Objects
A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a
single schema. Schema objects can be created and manipulated with SQL and
include the following types of objects:

� Clusters

� Database links

� Database triggers

� Dimensions

� External procedure libraries

� Indexes and index types

� Java classes, Java resources, and Java sources

� Materialized views and materialized view logs

� Object tables, object types, and object views

� Operators

� Sequences

� Stored functions, procedures, and packages

� Synonyms

� Tables and index-organized tables

� Views

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

� Contexts

� Directories

� Profiles

� Roles

� Tablespaces

� Users

� Rollback segments
10-2 Oracle9i Database Concepts

Introduction to Schema Objects
Schema objects are logical data storage structures. Schema objects do not have a
one-to-one correspondence to physical files on disk that store their information.
However, Oracle stores a schema object logically within a tablespace of the
database. The data of each object is physically contained in one or more of the
tablespace’s datafiles. For some objects, such as tables, indexes, and clusters, you
can specify how much disk space Oracle allocates for the object within the
tablespace’s datafiles.

There is no relationship between schemas and tablespaces: a tablespace can contain
objects from different schemas, and the objects for a schema can be contained in
different tablespaces.

Figure 10–1 illustrates the relationship among objects, tablespaces, and datafiles.
Schema Objects 10-3

Introduction to Schema Objects
Figure 10–1 Schema Objects, Tablespaces, and Datafiles

See Also:

� Oracle9i Database Administrator’s Guide

� "Stored Procedures and Functions" on page 14-21

� Chapter 14, "SQL, PL/SQL, and Java"

� Chapter 17, "Triggers"

System Tablespace Data Tablespace

Index

Table

Index

Cluster

Index

Index

Index

Table Index

Index

Table

Index

Index

Index

Index

Index

Table

Index

Index

Table

Database

Drive 1

DBFILE3DBFILE2DBFILE1

Drive 1
10-4 Oracle9i Database Concepts

Tables
Tables
Tables are the basic unit of data storage in an Oracle database. Data is stored in
rows and columns. You define a table with a table name (such as employees) and
set of columns. You give each column a column name (such as employee_id,
last_name, and job_id), a datatype (such as VARCHAR2, DATE, or NUMBER), and
a width. The width can be predetermined by the datatype, as in DATE. If columns
are of the NUMBER datatype, define precision and scale instead of width. A row is a
collection of column information corresponding to a single record.

You can specify rules for each column of a table. These rules are called integrity
constraints. One example is a NOT NULL integrity constraint. This constraint forces
the column to contain a value in every row.

After you create a table, insert rows of data using SQL statements. Table data can
then be queried, deleted, or updated using SQL.

Figure 10–2 shows a sample table named emp.

See Also:

� Chapter 12, "Native Datatypes" for a discussion of the Oracle
datatypes

� Chapter 21, "Data Integrity" for more information about
integrity constraints
Schema Objects 10-5

Tables
Figure 10–2 The EMP Table

How Table Data Is Stored
When you create a table, Oracle automatically allocates a data segment in a
tablespace to hold the table’s future data. You can control the allocation and use of
space for a table’s data segment in the following ways:

� You can control the amount of space allocated to the data segment by setting the
storage parameters for the data segment.

� You can control the use of the free space in the data blocks that constitute the
data segment’s extents by setting the PCTFREE and PCTUSED parameters for
the data segment.

Oracle stores data for a clustered table in the data segment created for the cluster
instead of in a data segment in a tablespace. Storage parameters cannot be specified
when a clustered table is created or altered. The storage parameters set for the
cluster always control the storage of all tables in the cluster.

The tablespace that contains a nonclustered table’s data segment is either the table
owner’s default tablespace or a tablespace specifically named in the CREATE TABLE
statement.

Row Format and Size
Oracle stores each row of a database table containing data for less than 256 columns
as one or more row pieces. If an entire row can be inserted into a single data block,
then Oracle stores the row as one row piece. However, if all of a row’s data cannot

See Also: "User Tablespace Settings and Quotas" on page 22-14

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Column not
allowing nulls

Column
allowing
nulls

Rows Columns

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CLERK
SALESMAN
SALESMAN
MANAGER

7902
7698
7698
7839

17–DEC–88
20–FEB–88
22–FEB–88
02–APR–88

800.00
1600.00
1250.00
2975.00

300.00
300.00
500.00

20
30
30
20

Column names
10-6 Oracle9i Database Concepts

Tables
be inserted into a single data block or an update to an existing row causes the row
to outgrow its data block, Oracle stores the row using multiple row pieces. A data
block usually contains only one row piece for each row. When Oracle must store a
row in more than one row piece, it is chained across multiple blocks.

When a table has more than 255 columns, rows that have data after the 255th
column are likely to be chained within the same block. This is called intra-block
chaining. A chained row’s pieces are chained together using the rowids of the
pieces. With intra-block chaining, users receive all the data in the same block. If the
row fits in the block, users do not see an effect in I/O performance, because no extra
I/O operation is required to retrieve the rest of the row.

Each row piece, chained or unchained, contains a row header and data for all or
some of the row’s columns. Individual columns can also span row pieces and,
consequently, data blocks. Figure 10–3 shows the format of a row piece:
Schema Objects 10-7

Tables
Figure 10–3 The Format of a Row Piece

The row header precedes the data and contains information about:

� Row pieces

� Chaining (for chained row pieces only)

� Columns in the row piece

� Cluster keys (for clustered data only)

A row fully contained in one block has at least 3 bytes of row header. After the row
header information, each row contains column length and data. The column length
requires 1 byte for columns that store 250 bytes or less, or 3 bytes for columns that
store more than 250 bytes, and precedes the column data. Space required for
column data depends on the datatype. If the datatype of a column is variable
length, then the space required to hold a value can grow and shrink with updates to
the data.

Row Header Column Data

Database
Block

Row Piece in a Database Block

Row Overhead

Number of Columns

Cluster Key ID (if clustered)

ROWID of Chained Row Pieces (if any)

Column Length

Column Value
10-8 Oracle9i Database Concepts

Tables
To conserve space, a null in a column only stores the column length (zero). Oracle
does not store data for the null column. Also, for trailing null columns, Oracle does
not even store the column length.

Clustered rows contain the same information as nonclustered rows. In addition,
they contain information that references the cluster key to which they belong.

Rowids of Row Pieces
The rowid identifies each row piece by its location or address. After they are
assigned, a given row piece retains its rowid until the corresponding row is deleted
or exported and imported using the Export and Import utilities. For clustered
tables, if the cluster key values of a row change, then the row keeps the same rowid
but also gets an additional pointer rowid for the new values.

Because rowids are constant for the lifetime of a row piece, it is useful to reference
rowids in SQL statements such as SELECT, UPDATE, and DELETE.

Column Order
The column order is the same for all rows in a given table. Columns are usually
stored in the order in which they were listed in the CREATE TABLE statement, but
this is not guaranteed. For example, if you create a table with a column of datatype

Note: Each row also uses 2 bytes in the data block header’s row
directory.

See Also:

� Oracle9i Database Administrator’s Guide for more information
about clustered rows and tables

� "Clusters" on page 10-63

� "Row Chaining and Migrating" on page 2-7

� "Nulls Indicate Absence of Value" on page 10-10

� "Row Directory" on page 2-5

See Also:

� "Clusters" on page 10-63

� "Physical Rowids" on page 12-17
Schema Objects 10-9

Tables
LONG, then Oracle always stores this column last. Also, if a table is altered so that a
new column is added, then the new column becomes the last column stored.

In general, try to place columns that frequently contain nulls last so that rows take
less space. Note, though, that if the table you are creating includes a LONG column
as well, then the benefits of placing frequently null columns last are lost.

Nulls Indicate Absence of Value
A null is the absence of a value in a column of a row. Nulls indicate missing,
unknown, or inapplicable data. A null should not be used to imply any other value,
such as zero. A column allows nulls unless a NOT NULL or PRIMARY KEY integrity
constraint has been defined for the column, in which case no row can be inserted
without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In
these cases they require 1 byte to store the length of the column (zero).

Trailing nulls in a row require no storage because a new row header signals that the
remaining columns in the previous row are null. For example, if the last three
columns of a table are null, no information is stored for those columns. In tables
with many columns, the columns more likely to contain nulls should be defined last
to conserve disk space.

Most comparisons between nulls and other values are by definition neither true nor
false, but unknown. To identify nulls in SQL, use the IS NULL predicate. Use the
SQL function NVL to convert nulls to non-null values.

Nulls are not indexed, except when the cluster key column value is null or the index
is a bitmap index.

Default Values for Columns
You can assign a default value to a column of a table so that when a new row is
inserted and a value for the column is omitted or keyword DEFAULT is supplied, a
default value is supplied automatically. Default column values work as though an
INSERT statement actually specifies the default value.

See Also:

� Oracle9i SQL Reference for more information about comparisons
using IS NULL and the NVL function

� "Indexes and Nulls" on page 10-31

� "Bitmap Indexes and Nulls" on page 10-52
10-10 Oracle9i Database Concepts

Tables
The datatype of the default literal or expression must match or be convertible to the
column datatype.

If a default value is not explicitly defined for a column, then the default for the
column is implicitly set to NULL.

Default Value Insertion and Integrity Constraint Checking
Integrity constraint checking occurs after the row with a default value is inserted.
For example, in Figure 10–4, a row is inserted into the emp table that does not
include a value for the employee’s department number. Because no value is
supplied for the department number, Oracle inserts the deptno column’s default
value of 20. After inserting the default value, Oracle checks the FOREIGN KEY
integrity constraint defined on the deptno column.

See Also: Chapter 21, "Data Integrity" for more information about
integrity constraints
Schema Objects 10-11

Tables
Figure 10–4 DEFAULT Column Values

Partitioned Tables
Partitioned tables allow your data to be broken down into smaller, more
manageable pieces called partitions, or even subpartitions. Indexes can be
partitioned in similar fashion. Each partition can be managed individually, and can
operate independently of the other partitions, thus providing a structure that can be
better tuned for availability and performance.

See Also: Chapter 11, "Partitioned Tables and Indexes"

INSERT
INTO

Table DEPT

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Default Value
(if no value is given for
this column, the default
of 20 is used)

Table EMP

Foreign Key

New row to be inserted, without value
for DEPTNO column.

DEPTNO DNAME LOC

Parent Key

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7691 OSTER SALESMAN 7521 06–APR–90 2975.00 400.00

7329
7499
7521
7566
7691

SMITH
ALLEN
WARD
JONES
OSTER

CEO
VP_SALES
MANAGER
SALESMAN
SALESMAN

7329
7499
7521
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90
06–APR–90

9000.00
7500.00
5000.00
2975.00
2975.00

100.00
200.00
400.00
400.00

20
30
30
30
20
10-12 Oracle9i Database Concepts

Tables
Nested Tables
You can create a table with a column whose datatype is another table. That is, tables
can be nested within other tables as values in a column. The Oracle server stores
nested table data out of line from the rows of the parent table, using a store table
that is associated with the nested table column. The parent row contains a unique
set identifier value associated with a nested table instance.

Temporary Tables
In addition to permanent tables, Oracle can create temporary tables to hold
session-private data that exists only for the duration of a transaction or session.

The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table that
can be transaction-specific or session-specific. For transaction-specific temporary
tables, data exists for the duration of the transaction. For session-specific temporary
tables, data exists for the duration of the session. Data in a temporary table is
private to the session. Each session can only see and modify its own data. DML
locks are not acquired on the data of the temporary tables. The LOCK statement has
no effect on a temporary table, because each session has its own private data.

A TRUNCATE statement issued on a session-specific temporary table truncates data
in its own session. It does not truncate the data of other sessions that are using the
same table.

DML statements on temporary tables do not generate redo logs for the data
changes. However, undo logs for the data and redo logs for the undo logs are
generated. Data from the temporary table is automatically dropped in the case of
session termination, either when the user logs off or when the session terminates
abnormally such as during a session or instance failure.

You can create indexes for temporary tables using the CREATE INDEX statement.
Indexes created on temporary tables are also temporary, and the data in the index
has the same session or transaction scope as the data in the temporary table.

You can create views that access both temporary and permanent tables. You can also
create triggers on temporary tables.

The Export and Import utilities can export and import the definition of a temporary
table. However, no data rows are exported even if you use the ROWS clause.

See Also:

� "Nested Tables Description" on page 13-12

� Oracle9i Application Developer’s Guide - Fundamentals
Schema Objects 10-13

Tables
Similarly, you can replicate the definition of a temporary table, but you cannot
replicate its data.

Segment Allocation
Temporary tables use temporary segments. Unlike permanent tables, temporary
tables and their indexes do not automatically allocate a segment when they are
created. Instead, segments are allocated when the first INSERT (or CREATE TABLE
AS SELECT) is performed. This means that if a SELECT, UPDATE, or DELETE is
performed before the first INSERT, then the table appears to be empty.

You can perform DDL statements (ALTER TABLE, DROP TABLE, CREATE INDEX,
and so on) on a temporary table only when no session is currently bound to it. A
session gets bound to a temporary table when an INSERT is performed on it. The
session gets unbound by a TRUNCATE, at session termination, or by doing a COMMIT
or ABORT for a transaction-specific temporary table.

Temporary segments are deallocated at the end of the transaction for
transaction-specific temporary tables and at the end of the session for
session-specific temporary tables.

Parent and Child Transactions
Transaction-specific temporary tables are accessible by user transactions and their
child transactions. However, a given transaction-specific temporary table cannot be
used concurrently by two transactions in the same session, although it can be used
by transactions in different sessions.

If a user transaction does an INSERT into the temporary table, then none of its child
transactions can use the temporary table afterward.

If a child transaction does an INSERT into the temporary table, then at the end of
the child transaction, the data associated with the temporary table goes away. After
that, either the user transaction or any other child transaction can access the
temporary table.

External Tables
You can access data in external sources as if it were in a table in the database. You
can connect to the database and create metadata for the external table, using DDL.
The DDL for an external table consists of two parts: one part that describes the

See Also: "Extents in Temporary Segments" on page 2-11
10-14 Oracle9i Database Concepts

Tables
Oracle column types, another part (the access parameters) which describes the
mapping of the external data to the Oracle data columns.

An external table does not describe any data that is stored in the database. Nor does
it describe how data is stored in the external source. Instead, it describes how the
external table layer needs to present the data to the server. It is the responsibility of
the access driver and the external table layer to do the necessary transformations
required on the data in the data file so that it matches the external table definition.

External tables are read-only; therefore, no DML operations are possible, and no
index can be created on them.

The Access Driver
When the database server needs to access data in an external source, it calls the
appropriate access driver to get the data from an external source in a form that the
database server expects. Oracle provides a default access driver that satisfies most
requirements for accessing data in files.

It is important to remember that the description of the data in the data source is
separate from the definition of the external table. The source file can contain more
or fewer fields than the columns in the table. Also, the datatypes for fields in the
data source can be different from the columns in the table. The access driver takes
care of ensuring the data from the data source is processed so that it matches the
definition of the external table.

Data Loading with External Tables
The main use for external tables is to use them as a row source for loading data into
an actual table in the database. After you create an external table, you can then use a
CREATE TABLE AS SELECT or INSERT INTO ... AS SELECT statement, using the
external table as the source of the SELECT clause.

When you access the external table through a SQL statement, the fields of the
external table can be used just like any other field in a regular table. In particular,
you can use the fields as arguments for any SQL built-in function, PL/SQL function,
or Java function. This lets you manipulate data from the external source. For data
warehousing, you can do more sophisticated transformations in this way than you

Note: You cannot insert data into external tables or update records
in them; external tables are read-only.
Schema Objects 10-15

Views
can with simple datatype conversions. You can also use this mechanism in data
warehousing to do data cleansing.

While external tables cannot contain a column object, constructor functions can be
used to build a column object from attributes in the external table

Parallel Access to External Tables
After the metadata for an external table is created, you can query the external data
directly and in parallel, using SQL. As a result, the external table acts as a view,
which lets you run any SQL query against external data without loading the
external data into the database.

The degree of parallel access to an external table is specified using standard parallel
hints and with the PARALLEL clause. Using parallelism on an external table allows
for concurrent access to the data files that comprise an external table. Whether a
single file is accessed concurrently or not is dependent upon the access driver
implementation, and attributes of the data file(s) being accessed (for example,
record formats).

Views
A view is a tailored presentation of the data contained in one or more tables or other
views. A view takes the output of a query and treats it as a table. Therefore, a view
can be thought of as a stored query or a virtual table. You can use views in most
places where a table can be used.

For example, the employees table has several columns and numerous rows of
information. If you want users to see only five of these columns or only specific
rows, then you can create a view of that table for other users to access.

See Also:

� Oracle9i Database Administrator’s Guide for information about
managing external tables, external connections, and directories

� Oracle9i Database Performance Tuning Guide and Reference for
information about tuning loads from external tables

� Oracle9i Database Utilities for information about import and
export

� Oracle9i SQL Reference for information about creating and
querying external tables
10-16 Oracle9i Database Concepts

Views
Figure 10–5 shows an example of a view called STAFF derived from the base table
employees. Notice that the view shows only five of the columns in the base table.

Figure 10–5 An Example of a View

Because views are derived from tables, they have many similarities. For example,
you can define views with up to 1000 columns, just like a table. You can query
views, and with some restrictions you can update, insert into, and delete from
views. All operations performed on a view actually affect data in some base table of
the view and are subject to the integrity constraints and triggers of the base tables.

How Views are Stored
Unlike a table, a view is not allocated any storage space, nor does a view actually
contain data. Rather, a view is defined by a query that extracts or derives data from
the tables that the view references. These tables are called base tables. Base tables

Note: You cannot explicitly define triggers on views, but you can
define them for the underlying base tables referenced by the view.
Oracle does support definition of logical constraints on views.

See Also: Oracle9i SQL Reference

employee_id last_name job_id

hr_rep
pr_rep
ac_rep
ac_account

marvis
baer
higgins
gietz

203
204
205
206

manager_id

101
101
101
205

hire_date

07–Jun–94
07–Jun–94
07–Jun–94
07–Jun–94

salary

6500
10000
12000
8300

department_id

40
70
110
110

employee_id last_name job_id

hr_rep
pr_rep
ac_rep
ac_account

marvis
baer
higgins
gietz

203
204
205
206

manager_id

101
101
101
205

department_id

40
70
110
110

employees

staffView

Base
Table
Schema Objects 10-17

Views
can in turn be actual tables or can be views themselves (including materialized
views). Because a view is based on other objects, a view requires no storage other
than storage for the definition of the view (the stored query) in the data dictionary.

How Views Are Used
Views provide a means to present a different representation of the data that resides
within the base tables. Views are very powerful because they let you tailor the
presentation of data to different types of users. Views are often used to:

� Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 10–5 shows how the STAFF view does not show the
salary or commission_pct columns of the base table employees.

� Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact
that this information actually originates from several tables.

� Simplify statements for the user

For example, views allow users to select information from multiple tables
without actually knowing how to perform a join.

� Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables
on which the view is based.

� Isolate applications from changes in definitions of base tables

For example, if a view’s defining query references three columns of a four
column table, and a fifth column is added to the table, then the view’s definition
is not affected, and all applications using the view are not affected.

� Express a query that cannot be expressed without using a view

For example, a view can be defined that joins a GROUP BY view with a table, or a
view can be defined that joins a UNION view with a table.

� Save complex queries

For example, a query can perform extensive calculations with table information.
By saving this query as a view, you can perform the calculations each time the
view is queried.
10-18 Oracle9i Database Concepts

Views
Mechanics of Views
Oracle stores a view’s definition in the data dictionary as the text of the query that
defines the view. When you reference a view in a SQL statement, Oracle:

1. Merges the statement that references the view with the query that defines the
view

2. Parses the merged statement in a shared SQL area

3. Executes the statement

Oracle parses a statement that references a view in a new shared SQL area only if no
existing shared SQL area contains a similar statement. Therefore, you get the benefit
of reduced memory use associated with shared SQL when you use views.

Globalization Support Parameters in Views
When Oracle evaluates views containing string literals or SQL functions that have
globalization support parameters as arguments (such as TO_CHAR, TO_DATE, and
TO_NUMBER), Oracle takes default values for these parameters from the
globalization support parameters for the session. You can override these default
values by specifying globalization support parameters explicitly in the view
definition.

Use of Indexes Against Views
Oracle determines whether to use indexes for a query against a view by
transforming the original query when merging it with the view’s defining query.

Consider the following view:

CREATE VIEW employees_view AS
SELECT employee_id, last_name, salary, location_id
FROM employees, departments
WHERE employees.department_id = departments.department_id AND

departments.department_id = 10;

Now consider the following user-issued query:

See Also: Oracle9i SQL Reference for information about the GROUP
BY or UNION views

See Also: Oracle9i Database Globalization Support Guide for
information about globalization support
Schema Objects 10-19

Views
SELECT last_name
FROM employees_view
WHERE employee_id = 9876;

The final query constructed by Oracle is:

SELECT last_name
FROM employees, departments
WHERE employees.department_id = departments.department_id AND

departments.department_id = 10 AND
employees.employee_id = 9876;

In all possible cases, Oracle merges a query against a view with the view’s defining
query and those of any underlying views. Oracle optimizes the merged query as if
you issued the query without referencing the views. Therefore, Oracle can use
indexes on any referenced base table columns, whether the columns are referenced
in the view definition or in the user query against the view.

In some cases, Oracle cannot merge the view definition with the user-issued query.
In such cases, Oracle may not use all indexes on referenced columns.

Dependencies and Views
Because a view is defined by a query that references other objects (tables,
materialized views, or other views), a view depends on the referenced objects.
Oracle automatically handles the dependencies for views. For example, if you drop
a base table of a view and then create it again, Oracle determines whether the new
base table is acceptable to the existing definition of the view.

Updatable Join Views
A join view is defined as a view that has more than one table or view in its FROM
clause (a join) and that does not use any of these clauses: DISTINCT,
AGGREGATION, GROUP BY, START WITH, CONNECT BY, ROWNUM, and set operations
(UNION ALL, INTERSECT, and so on).

An updatable join view is a join view that involves two or more base tables or
views, where UPDATE, INSERT, and DELETE operations are permitted. The data

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about query optimization

See Also: Chapter 15, "Dependencies Among Schema Objects" for
a complete discussion of dependencies in a database
10-20 Oracle9i Database Concepts

Views
dictionary views ALL_UPDATABLE_COLUMNS, DBA_UPDATABLE_COLUMNS, and
USER_UPDATABLE_COLUMNS contain information that indicates which of the view
columns are updatable. In order to be inherently updatable, a view cannot contain any of
the following constructs:

� A set operator

� A DISTINCT operator

� An aggregate or analytic function

� A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

� A collection expression in a SELECT list

� A subquery in a SELECT list

� Joins (with some exceptions). See Oracle9i Database Administrator’s Guide for
details.

Views that are not updatable can be modified using INSTEAD OF triggers.

Object Views
In the Oracle object-relational database, an object view let you retrieve, update,
insert, and delete relational data as if it was stored as an object type. You can also
define views with columns that are object datatypes, such as objects, REFs, and
collections (nested tables and VARRAYs).

Inline Views
An inline view is not a schema object. It is a subquery with an alias (correlation
name) that you can use like a view within a SQL statement.

See Also:

� Oracle9i SQL Reference for further information about updatable
views

� "INSTEAD OF Triggers" on page 17-12

See Also:

� Chapter 13, "Object Datatypes and Object Views"

� Oracle9i Application Developer’s Guide - Fundamentals
Schema Objects 10-21

Materialized Views
For example, this query joins the summary table SUMTAB to an inline view V
defined on the TIME table to obtain T.YEAR, and then rolls up the aggregates in
SUMTAB to the YEAR level:

SELECT v.year, s.prod_name, SUM(s.sum_sales)
FROM sumtab s,

(SELECT DISTINCT t.month, t.year FROM time t) v
WHERE s.month = v.month
GROUP BY v.year, s.prod_name;

Materialized Views
Materialized views are schema objects that can be used to summarize, compute,
replicate, and distribute data. They are suitable in various computing environments
such as data warehousing, decision support, and distributed or mobile computing:

� In data warehouses, materialized views are used to compute and store
aggregated data such as sums and averages. Materialized views in these
environments are typically referred to as summaries because they store
summarized data. They can also be used to compute joins with or without
aggregations. If compatibility is set to Oracle9i or higher, then materialized
views can be used for queries that include filter selections.

Cost-based optimization can use materialized views to improve query
performance by automatically recognizing when a materialized view can and
should be used to satisfy a request. The optimizer transparently rewrites the
request to use the materialized view. Queries are then directed to the
materialized view and not to the underlying detail tables or views.

� In distributed environments, materialized views are used to replicate data at
distributed sites and synchronize updates done at several sites with conflict
resolution methods. The materialized views as replicas provide local access to
data that otherwise has to be accessed from remote sites.

� In mobile computing environments, materialized views are used to download a
subset of data from central servers to mobile clients, with periodic refreshes
from the central servers and propagation of updates by clients back to the
central servers.

Materialized views are similar to indexes in several ways:

� They consume storage space.

See Also: Oracle9i SQL Reference for information about subqueries
10-22 Oracle9i Database Concepts

Materialized Views
� They must be refreshed when the data in their master tables changes.

� They improve the performance of SQL execution when they are used for query
rewrites.

� Their existence is transparent to SQL applications and users.

Unlike indexes, materialized views can be accessed directly using a SELECT
statement. Depending on the types of refresh that are required, they can also be
accessed directly in an INSERT, UPDATE, or DELETE statement.

A materialized view can be partitioned. You can define a materialized view on a
partitioned table and one or more indexes on the materialized view.

Define Constraints on Views
Data warehousing applications recognize multidimensional data in the Oracle
database by identifying Referential Integrity (RI) constraints in the relational
schema. RI constraints represent primary and foreign key relationships among
tables. By querying the Oracle data dictionary, applications can recognize RI
constraints and therefore recognize the multidimensional data in the database. In
some environments, database administrators, for schema complexity or security
reasons, define views on fact and dimension tables. Oracle provides the ability to
constrain views. By allowing constraint definitions between views, database
administrators can propagate base table constraints to the views, thereby allowing
applications to recognize multidimensional data even in a restricted environment.

Only logical constraints, that is, constraints that are declarative and not enforced by
Oracle, can be defined on views. The purpose of these constraints is not to enforce
any business rules but to identify multidimensional data. The following constraints
can be defined on views:

� Primary key constraint

� Unique constraint

� Referential Integrity constraint

See Also:

� "Indexes" on page 10-28

� Chapter 11, "Partitioned Tables and Indexes"

� Oracle9i Data Warehousing Guide for information about
materialized views in a data warehousing environment
Schema Objects 10-23

Materialized Views
Given that view constraints are declarative, DISABLE, NOVALIDATE is the only
valid state for a view constraint. However, the RELY or NORELY state is also
allowed, because constraints on views may be used to enable more sophisticated
query rewrites; a view constraint in the RELY state allows query rewrites to occur
when the rewrite integrity level is set to trusted mode.

Refresh Materialized Views
Oracle maintains the data in materialized views by refreshing them after changes
are made to their master tables. The refresh method can be incremental (fast
refresh) or complete. For materialized views that use the fast refresh method, a
materialized view log or direct loader log keeps a record of changes to the master
tables.

Materialized views can be refreshed either on demand or at regular time intervals.
Alternatively, materialized views in the same database as their master tables can be
refreshed whenever a transaction commits its changes to the master tables.

Materialized View Logs
A materialized view log is a schema object that records changes to a master table’s
data so that a materialized view defined on the master table can be refreshed
incrementally.

Each materialized view log is associated with a single master table. The
materialized view log resides in the same database and schema as its master table.

Note: Although view constraint definitions are declarative in
nature, operations on views are subject to the integrity constraints
defined on the underlying base tables, and constraints on views can
be enforced through constraints on base tables.

See Also:

� Oracle9i Data Warehousing Guide for information about
materialized views and materialized view logs in a
warehousing environment

� Oracle9i Replication for information about materialized views
used for replication
10-24 Oracle9i Database Concepts

The Sequence Generator
Dimensions
A dimension defines hierarchical (parent/child) relationships between pairs of
columns or column sets. Each value at the child level is associated with one and
only one value at the parent level. A hierarchical relationship is a functional
dependency from one level of a hierarchy to the next level in the hierarchy. A
dimension is a container of logical relationships between columns, and it does not
have any data storage assigned to it.

The CREATE DIMENSION statement specifies:

� Multiple LEVEL clauses, each of which identifies a column or column set in the
dimension

� One or more HIERARCHY clauses that specify the parent/child relationships
between adjacent levels

� Optional ATTRIBUTE clauses, each of which identifies an additional column or
column set associated with an individual level

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). To define a dimension over
columns from multiple tables, connect the tables using the JOIN clause of the
HIERARCHY clause.

For example, a normalized time dimension can include a date table, a month table,
and a year table, with join conditions that connect each date row to a month row,
and each month row to a year row. In a fully denormalized time dimension, the
date, month, and year columns are all in the same table. Whether normalized or
denormalized, the hierarchical relationships among the columns need to be
specified in the CREATE DIMENSION statement.

The Sequence Generator
The sequence generator provides a sequential series of numbers. The sequence
generator is especially useful in multiuser environments for generating unique
sequential numbers without the overhead of disk I/O or transaction locking. For

See Also:

� Oracle9i Data Warehousing Guide for information about how
dimensions are used in a warehousing environment

� Oracle9i SQL Reference for information about creating
dimensions
Schema Objects 10-25

The Sequence Generator
example, assume two users are simultaneously inserting new employee rows into
the employees table. By using a sequence to generate unique employee numbers
for the employee_id column, neither user has to wait for the other to enter the
next available employee number. The sequence automatically generates the correct
values for each user.

Therefore, the sequence generator reduces serialization where the statements of
two transactions must generate sequential numbers at the same time. By avoiding
the serialization that results when multiple users wait for each other to generate and
use a sequence number, the sequence generator improves transaction throughput,
and a user’s wait is considerably shorter.

Sequence numbers are Oracle integers of up to 38 digits defined in the database. A
sequence definition indicates general information, such as the following:

� The name of the sequence

� Whether the sequence ascends or descends

� The interval between numbers

� Whether Oracle should cache sets of generated sequence numbers in memory

Oracle stores the definitions of all sequences for a particular database as rows in a
single data dictionary table in the SYSTEM tablespace. Therefore, all sequence
definitions are always available, because the SYSTEM tablespace is always online.

Sequence numbers are used by SQL statements that reference the sequence. You can
issue a statement to generate a new sequence number or use the current sequence
number. After a statement in a user’s session generates a sequence number, the
particular sequence number is available only to that session. Each user that
references a sequence has access to the current sequence number.

Sequence numbers are generated independently of tables. Therefore, the same
sequence generator can be used for more than one table. Sequence number
generation is useful to generate unique primary keys for your data automatically
and to coordinate keys across multiple rows or tables. Individual sequence numbers
can be skipped if they were generated and used in a transaction that was ultimately
rolled back. Applications can make provisions to catch and reuse these sequence
numbers, if desired.
10-26 Oracle9i Database Concepts

Synonyms
Synonyms
A synonym is an alias for any table, view, materialized view, sequence, procedure,
function, or package. Because a synonym is simply an alias, it requires no storage
other than its definition in the data dictionary.

Synonyms are often used for security and convenience. For example, they can do
the following:

� Mask the name and owner of an object

� Provide location transparency for remote objects of a distributed database

� Simplify SQL statements for database users

� Enable restricted access similar to specialized views when exercising
fine-grained access control

You can create both public and private synonyms. A public synonym is owned by the
special user group named PUBLIC and every user in a database can access it. A private
synonym is in the schema of a specific user who has control over its availability to others.

Synonyms are very useful in both distributed and nondistributed database
environments because they hide the identity of the underlying object, including its
location in a distributed system. This is advantageous because if the underlying

Caution: If accountability for all sequence numbers is required,
that is, if your application can never lose sequence numbers, then
you cannot use Oracle sequences and you may choose to store
sequence numbers in database tables.

Be careful when implementing sequence generators using database
tables. Even in a single instance configuration, for a high rate of
sequence values generation, a performance overhead is associated
with the cost of locking the row that stores the sequence value.

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals for
performance implications when using sequences

� Oracle9i SQL Reference for information about the CREATE
SEQUENCE statement
Schema Objects 10-27

Indexes
object must be renamed or moved, then only the synonym needs to be redefined.
Applications based on the synonym continue to function without modification.

Synonyms can also simplify SQL statements for users in a distributed database
system. The following example shows how and why public synonyms are often
created by a database administrator to hide the identity of a base table and reduce
the complexity of SQL statements. Assume the following:

� A table called SALES_DATA is in the schema owned by the user JWARD.

� The SELECT privilege for the SALES_DATA table is granted to PUBLIC.

At this point, you have to query the table SALES_DATA with a SQL statement
similar to the following:

SELECT * FROM jward.sales_data;

Notice how you must include both the schema that contains the table along with the
table name to perform the query.

Assume that the database administrator creates a public synonym with the
following SQL statement:

CREATE PUBLIC SYNONYM sales FOR jward.sales_data;

After the public synonym is created, you can query the table SALES_DATA with a
simple SQL statement:

SELECT * FROM sales;

Notice that the public synonym SALES hides the name of the table SALES_DATA
and the name of the schema that contains the table.

Indexes
Indexes are optional structures associated with tables and clusters. You can create
indexes on one or more columns of a table to speed SQL statement execution on
that table. Just as the index in this manual helps you locate information faster than
if there were no index, an Oracle index provides a faster access path to table data.
Indexes are the primary means of reducing disk I/O when properly used.

You can create many indexes for a table as long as the combination of columns
differs for each index. You can create more than one index using the same columns
if you specify distinctly different combinations of the columns. For example, the
following statements specify valid combinations:
10-28 Oracle9i Database Concepts

Indexes
CREATE INDEX employees_idx1 ON employees (last_name, job_id);
CREATE INDEX employees_idx2 ON employees (job_id, last_name);

You cannot create an index that references only one column in a table if another
such index already exists.

Oracle provides several indexing schemes, which provide complementary
performance functionality:

� B-tree indexes

� B-tree cluster indexes

� Hash cluster indexes

� Reverse key indexes

� Bitmap indexes

� Bitmap Join Indexes

Oracle also provides support for function-based indexes and domain indexes
specific to an application or cartridge.

The absence or presence of an index does not require a change in the wording of
any SQL statement. An index is merely a fast access path to the data. It affects only
the speed of execution. Given a data value that has been indexed, the index points
directly to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.
You can create or drop an index at any time without affecting the base tables or
other indexes. If you drop an index, all applications continue to work. However,
access of previously indexed data can be slower. Indexes, as independent structures,
require storage space.

Oracle automatically maintains and uses indexes after they are created. Oracle
automatically reflects changes to data, such as adding new rows, updating rows, or
deleting rows, in all relevant indexes with no additional action by users.

Retrieval performance of indexed data remains almost constant, even as new rows
are inserted. However, the presence of many indexes on a table decreases the
performance of updates, deletes, and inserts, because Oracle must also update the
indexes associated with the table.

The optimizer can use an existing index to build another index. This results in a
much faster index build.
Schema Objects 10-29

Indexes
Unique and Nonunique Indexes
Indexes can be unique or nonunique. Unique indexes guarantee that no two rows
of a table have duplicate values in the key column (or columns). Nonunique indexes
do not impose this restriction on the column values.

Oracle recommends that unique indexes be created explicitly, and not through
enabling a unique constraint on a table.

Alternatively, you can define UNIQUE integrity constraints on the desired columns.
Oracle enforces UNIQUE integrity constraints by automatically defining a unique
index on the unique key. However, it is advisable that any index that exists for
query performance, including unique indexes, be created explicitly.

Composite Indexes
A composite index (also called a concatenated index) is an index that you create on
multiple columns in a table. Columns in a composite index can appear in any order and
need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
WHERE clause references all or the leading portion of the columns in the composite
index. Therefore, the order of the columns used in the definition is important.
Generally, the most commonly accessed or most selective columns go first.

Figure 10–6 illustrates the VENDOR_PARTS table that has a composite index on the
VENDOR_ID and PART_NO columns.

See Also: Oracle9i Database Administrator’s Guide for information
about creating unique indexes explicitly
10-30 Oracle9i Database Concepts

Indexes
Figure 10–6 Composite Index Example

No more than 32 columns can form a regular composite index. For a bitmap index,
the maximum number columns is 30. A key value cannot exceed roughly half
(minus some overhead) the available data space in a data block.

Indexes and Keys
Although the terms are often used interchangeably, indexes and keys are different.
Indexes are structures actually stored in the database, which users create, alter, and drop
using SQL statements. You create an index to provide a fast access path to table data. Keys
are strictly a logical concept. Keys correspond to another feature of Oracle called integrity
constraints, which enforce the business rules of a database.

Because Oracle uses indexes to enforce some integrity constraints, the terms key
and index are often are used interchangeably. However, do not confuse them with
each other.

Indexes and Nulls
NULL values in indexes are considered to be distinct except when all the non-NULL
values in two or more rows of an index are identical, in which case the rows are
considered to be identical. Therefore, UNIQUE indexes prevent rows containing

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about using composite indexes

See Also: Chapter 21, "Data Integrity"

VENDOR_PARTS
VEND ID PART NO UNIT COST

.25

.39
4.95

.27
5.10
1.33
1.19
5.28

10–440
10–441

457
10–440

457
08–300
08–300

457

1012
1012
1012
1010
1010
1220
1012
1292

Concatenated Index
(index with multiple columns)
Schema Objects 10-31

Indexes
NULL values from being treated as identical. This does not apply if there are no
non-NULL values—in other words, if the rows are entirely NULL.

Oracle does not index table rows in which all key columns are NULL, except in the
case of bitmap indexes or when the cluster key column value is NULL.

Function-Based Indexes
You can create indexes on functions and expressions that involve one or more
columns in the table being indexed. A function-based index computes the value of
the function or expression and stores it in the index. You can create a function-based
index as either a B-tree or a bitmap index.

The function used for building the index can be an arithmetic expression or an
expression that contains a PL/SQL function, package function, C callout, or SQL
function. The expression cannot contain any aggregate functions, and it must be
DETERMINISTIC. For building an index on a column containing an object type, the
function can be a method of that object, such as a map method. However, you
cannot build a function-based index on a LOB column, REF, or nested table column,
nor can you build a function-based index if the object type contains a LOB, REF, or
nested table.

Uses of Function-Based Indexes
Function-based indexes provide an efficient mechanism for evaluating statements
that contain functions in their WHERE clauses. The value of the expression is
computed and stored in the index. When it processes INSERT and UPDATE
statements, however, Oracle must still evaluate the function to process the
statement.

For example, if you create the following index:

CREATE INDEX idx ON table_1 (a + b * (c - 1), a, b);

then Oracle can use it when processing queries such as this:

SELECT a FROM table_1 WHERE a + b * (c - 1) < 100;

See Also: "Bitmap Indexes and Nulls" on page 10-52

See Also:

� "Bitmap Indexes"

� Oracle9i Database Performance Tuning Guide and Reference for
more information about using function-based indexes
10-32 Oracle9i Database Concepts

Indexes
Function-based indexes defined on UPPER(column_name) or LOWER(column_
name) can facilitate case-insensitive searches. For example, the following index:

CREATE INDEX uppercase_idx ON employees (UPPER(first_name));

can facilitate processing queries such as this:

SELECT * FROM employees WHERE UPPER(first_name) = ’RICHARD’;

A function-based index can also be used for a globalization support sort index that
provides efficient linguistic collation in SQL statements.

Optimization with Function-Based Indexes
You must gather statistics about function-based indexes for the optimizer.
Otherwise, the indexes cannot be used to process SQL statements. Rule-based
optimization never uses function-based indexes.

Cost-based optimization can use an index range scan on a function-based index for
queries with expressions in WHERE clause. For example, in this query:

SELECT * FROM t WHERE a + b < 10;

the optimizer can use index range scan if an index is built on a+b. The range scan
access path is especially beneficial when the predicate (WHERE clause) has low
selectivity. In addition, the optimizer can estimate the selectivity of predicates
involving expressions more accurately if the expressions are materialized in a
function-based index.

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the
function-based index. This comparison is case-insensitive and ignores blank spaces.

Dependencies of Function-Based Indexes
Function-based indexes depend on the function used in the expression that defines
the index. If the function is a PL/SQL function or package function, the index is
disabled by any changes to the function specification.

See Also: Oracle9i Database Globalization Support Guide for
information about linguistic indexes

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about gathering statistics
Schema Objects 10-33

Indexes
PL/SQL functions used in defining function-based indexes must be
DETERMINISTIC. The index owner needs to have the EXECUTE privilege on the
defining function. If the EXECUTE privilege is revoked, then the function-based
index is marked DISABLED.

How Indexes Are Stored
When you create an index, Oracle automatically allocates an index segment to hold
the index’s data in a tablespace. You can control allocation of space for an index’s
segment and use of this reserved space in the following ways:

� Set the storage parameters for the index segment to control the allocation of the
index segment’s extents.

� Set the PCTFREE parameter for the index segment to control the free space in
the data blocks that constitute the index segment’s extents.

The tablespace of an index’s segment is either the owner’s default tablespace or a
tablespace specifically named in the CREATE INDEX statement. You do not have to
place an index in the same tablespace as its associated table. Furthermore, you can
improve performance of queries that use an index by storing an index and its table
in different tablespaces located on different disk drives, because Oracle can retrieve
both index and table data in parallel.

Format of Index Blocks
Space available for index data is the Oracle block size minus block overhead, entry
overhead, rowid, and one length byte for each value indexed. The number of bytes
required for the overhead of an index block depends on the operating system.

See Also:

� Oracle9i Database Performance Tuning Guide and Reference for
information about DETERMINISTIC PL/SQL functions

� "Function-Based Index Dependencies" on page 15-8 for more
information about dependencies and privileges for
function-based indexes

See Also: "User Tablespace Settings and Quotas" on page 22-14

See Also: Your Oracle operating system specific documentation
for information about the overhead of an index block
10-34 Oracle9i Database Concepts

Indexes
When you create an index, Oracle fetches and sorts the columns to be indexed and
stores the rowid along with the index value for each row. Then Oracle loads the
index from the bottom up. For example, consider the statement:

CREATE INDEX employees_last_name ON employees(last_name);

Oracle sorts the employees table on the last_name column. It then loads the
index with the last_name and corresponding rowid values in this sorted order.
When it uses the index, Oracle does a quick search through the sorted last_name
values and then uses the associated rowid values to locate the rows having the
sought last_name value.

Although Oracle accepts the keywords ASC, DESC, COMPRESS, and NOCOMPRESS
in the CREATE INDEX statement, they have no effect on index data, which is stored
using rear compression in the branch nodes but not in the leaf nodes.

The Internal Structure of Indexes
Oracle uses B-trees to store indexes to speed up data access. With no indexes, you
have to do a sequential scan on the data to find a value. For n rows, the average
number of rows searched is n/2. Obviously this does not scale very well as data
volumes increase.

Consider an ordered list of the values divided into block-wide ranges (leaf blocks).
The end points of the ranges along with pointers to the blocks can be stored in a
search tree and a value in log(n) time for n entries could be found. This is the basic
principle behind Oracle indexes.

Figure 10–7 illustrates the structure of a B-tree index.
Schema Objects 10-35

Indexes
Figure 10–7 Internal Structure of a B-tree Index

The upper blocks (branch blocks) of a B-tree index contain index data that points to
lower-level index blocks. The lowest level index blocks (leaf blocks) contain every
indexed data value and a corresponding rowid used to locate the actual row. The leaf
blocks are doubly linked. Indexes in columns containing character data are based on the
binary values of the characters in the database character set.

For a unique index, one rowid exists for each data value. For a nonunique index, the
rowid is included in the key in sorted order, so nonunique indexes are sorted by the
index key and rowid. Key values containing all nulls are not indexed, except for
cluster indexes. Two rows can both contain all nulls without violating a unique
index.

Index Properties
The two kinds of blocks:

� Branch blocks for searching

� Leaf blocks that store the values

K
ar

l,
R

O
W

ID

K
at

hy
, R

O
W

ID

K
im

, R
O

W
ID

La
nc

e,
 R

O
W

ID

P
ab

lo
, R

O
W

ID

P
au

la
, R

O
W

ID

P
au

la
, R

O
W

ID

P
et

er
, R

O
W

ID

Lu
is

, R
O

W
ID

M
ar

k,
 R

O
W

ID

M
ar

y,
 R

O
W

ID

M
ik

e,
 R

O
W

ID

M
ik

e,
 R

O
W

ID

N
an

cy
, R

O
W

ID

N
an

cy
 R

O
W

ID

N
an

cy
, R

O
W

ID

N
ic

ol
e,

 R
O

W
ID

N
or

m
, R

O
W

ID

P
hi

l,
R

O
W

ID

P
ie

rr
e,

 R
O

W
ID

R
ac

he
l,

R
O

W
ID

R
aj

iv
, R

O
W

ID

R
ao

ul
, R

O
W

ID

Leaf Blocks

B C C
r

S
am

S
t

S
u

N P P
h

F H K
ar

Branch Blocks

Di Lu Rh
10-36 Oracle9i Database Concepts

Indexes
Branch Blocks Branch blocks store the following:

� The minimum key prefix needed to make a branching decision between two
keys

� The pointer to the child block containing the key

If the blocks have n keys then they have n+1 pointers. The number of keys and
pointers is limited by the block size.

Leaf Blocks All leaf blocks are at the same depth from the root branch block. Leaf
blocks store the following:

� The complete key value for every row

� ROWIDs of the table rows

All key and ROWID pairs are linked to their left and right siblings. They are sorted
by (key, ROWID).

Advantages of B-tree Structure
The B-tree structure has the following advantages:

� All leaf blocks of the tree are at the same depth, so retrieval of any record from
anywhere in the index takes approximately the same amount of time.

� B-tree indexes automatically stay balanced.

� All blocks of the B-tree are three-quarters full on the average.

� B-trees provide excellent retrieval performance for a wide range of queries,
including exact match and range searches.

� Inserts, updates, and deletes are efficient, maintaining key order for fast
retrieval.

� B-tree performance is good for both small and large tables and does not
degrade as the size of a table grows.

See Also: Computer science texts for more information about
B-tree indexes
Schema Objects 10-37

Indexes
How Indexes Are Searched

Index Unique Scan
Index unique scan is one of the most efficient ways of accessing data. This access
method is used for returning the data from B-tree indexes. The optimizer chooses a
unique scan when all columns of a unique (B-tree) index are specified with equality
conditions.

Steps in Index Unique Scans

1. Start with the root block.

2. Search the block keys for the smallest key greater than or equal to the value.

3. If key is greater than the value, then follow the link before this key to the child
block.

4. If key is equal to the value, then follow this link to the child block.

5. If no key is greater than or equal to the value in Step 2, then follow the link after
the highest key in the block.

6. Repeat steps 2 through 4 if the child block is a branch block.

7. Search the leaf block for key equal to the value.

8. If key is found, then return the ROWID.

9. If key is not found, then the row does not exist.

Figure 10–8 shows an example of an index unique scan and is described in the text
that follows the figure.
10-38 Oracle9i Database Concepts

Indexes
Figure 10–8 Example of an Index Unique Scan

If searching for Patrick:

� In the root block, Rh is the smallest key >= Patrick.

� Follow the link before Rh to branch block (N, P, Ph).

� In this block, Ph is the smallest key >= Patrick.

� Follow the link before Ph to leaf block (Pablo, Patrick, Paula, Peter).

� In this block, search for key Patrick = Patrick.

� Found Patrick = Patrick, return (KEY, ROWID).

If searching for Meg:

� In the root block, Rh is the smallest key >= Meg.

� Follow the link before Rh to branch block (N, P, Ph).

� In this block, Mo is the smallest key >= Meg.

� Follow the link before Mo to leaf block (Luis,… , May, Mike).

� In this block, search for key = Meg.

K
ar

l,
R

O
W

ID

K
at

hy
, R

O
W

ID

K
im

, R
O

W
ID

La
nc

e,
 R

O
W

ID

P
ab

lo
, R

O
W

ID

P
at

ric
k,

 R
O

W
ID

P
au

la
, R

O
W

ID

P
et

er
, R

O
W

ID

Lu
is

, R
O

W
ID

M
ar

tin
, R

O
W

ID

M
ar

y,
 R

O
W

ID

M
ay

, R
O

W
ID

M
ik

e,
 R

O
W

ID

M
or

ris
, R

O
W

ID

N
an

cy
 R

O
W

ID

N
ic

k,
 R

O
W

ID

N
ic

ol
e,

 R
O

W
ID

N
or

m
, R

O
W

ID

P
hi

l,
R

O
W

ID

P
ie

rr
e,

 R
O

W
ID

R
ac

he
l,

R
O

W
ID

R
aj

iv
, R

O
W

ID

R
ao

ul
, R

O
W

ID

B C C
r

S
am

S
t

S
u

M
o

P P
h

F H K
ar

Di Lu Rh
Schema Objects 10-39

Indexes
� Did not find key = Meg, return 0 rows.

Index Range Scan
Index range scan is a common operation for accessing selective data. It can be
bounded (bounded on both sides) or unbounded (on one or both sides). Data is
returned in the ascending order of index columns. Multiple rows with identical
values are sorted (in ascending order) by the ROWIDs.

How Index Range Scans Work Index range scans can happen on both unique and
non-unique indexes. B-tree non-unique indexes are identical to the unique B-tree
indexes. However, they allow multiple values for the same key.

For a range scan, you can specify an equality condition. For example:

� name = ‘ALEX’ - start key = ‘ALEX’, end key = ‘ALEX’

Alternatively, specify an interval bounded by start key and end key. For example:

� name LIKE ‘AL%’ - start key = ‘AL, end key < ‘AM’

� order_id BETWEEN 100 AND 120 - start key = 100, end key = 120

Or, specify just a start key or an end key (unbounded range scan). For example:

� order_book_date > SYSDATE - 30 (orders booked in last month)

� employee_hire_date < SYSDATE - 3650 (employees with more than a
decade of service)

Figure 10–9 shows an example of a bounded range scan and is described in the text
that follows the figure.
10-40 Oracle9i Database Concepts

Indexes
Figure 10–9 Example of a Bounded Range Scan

Steps in a Bounded Range Scan

1. Start with the root block.

2. Search the block keys for the smallest key greater than or equal to the start key.

3. If key > start key, then follow the link before this key to the child block.

4. If key = start key, then follow this link to the child block.

5. If no key is greater than or equal to the start key in Step 2, then follow the link
after the highest key in the block.

6. Repeat steps 2 through 4 if the child block is a branch block.

7. Search the leaf block keys for the smallest key greater than or equal to the start
key.

8. While key <= end key:

� If the key columns meet all WHERE clause conditions, then return the (value,
ROWID).

� Follow the link to the right.

K
ar

l,
R

O
W

ID

K
at

hy
, R

O
W

ID

K
im

, R
O

W
ID

La
nc

e,
 R

O
W

ID

P
ab

lo
, R

O
W

ID

P
au

la
, R

O
W

ID

P
au

la
, R

O
W

ID

P
et

er
, R

O
W

ID

Lu
is

, R
O

W
ID

M
ar

k,
 R

O
W

ID

M
ar

y,
 R

O
W

ID

M
ik

e,
 R

O
W

ID

M
ik

e,
 R

O
W

ID

N
an

cy
, R

O
W

ID

N
an

cy
 R

O
W

ID

N
an

cy
, R

O
W

ID

N
ic

ol
e,

 R
O

W
ID

N
or

m
, R

O
W

ID

P
hi

l,
R

O
W

ID

P
ie

rr
e,

 R
O

W
ID

R
ac

he
l,

R
O

W
ID

R
aj

iv
, R

O
W

ID

R
ao

ul
, R

O
W

ID

B C C
r

S
am

S
t

S
u

N P P
h

F H K
ar

Di Lu Rh
Schema Objects 10-41

Indexes
Here, the range scans make use of the fact that all the leaf nodes are linked from left
to right. In Step 7, extra filtering conditions on the index columns can be applied
before accessing the table by ROWID.

Range scans bounded on the left (unbounded on the right) start the same. However,
they do not check for the end point. They continue until they reach the right-most
leaf key.

Range scans bounded on the right traverse the index tree to the left-most leaf key
and then follow step #6 and # 7 until they reach a key greater then the specified
condition.

With range scans using the non-unique B-tree index, if searching for Nancy:

� Start key = ‘Nancy’, end key < ‘Nancy’.

� In the root block, Rh is the smallest key >= start key.

� Follow the link before Rh to branch block (N, P, Ph).

� In this block, P is the smallest key >= start key.

� Follow the link before P to leaf block (Nancy, …, Nicole, Norm).

� In this block, Nancy is the smallest key >= start key.

� Because Nancy <= end key, return the (KEY, ROWID).

� Next key Nancy <= end key, return the (KEY, ROWID).

� Next key Nancy <= end key, return the (KEY, ROWID).

� Next key Nicole > end key, terminate the range scan.

If searching for ‘P%’:

� Start key = ‘P’, end key < ‘Q’.

� In the root block, Rh is the smallest key >= start key.

� Follow the link before Rh to branch block (N, P, Ph).

� In this block, P is the smallest key = start key.

� Follow this link to leaf block (Pablo,…, Peter).

� In this block, Pablo is the smallest key >= start key.

� Because Pablo <= end key, return the (KEY, ROWID).

� Next key Paula <= end key, return the (KEY, ROWID).

� Next key Paula <= end key, return the (KEY, ROWID).
10-42 Oracle9i Database Concepts

Indexes
� Next key Phil <= end key, return the (KEY, ROWID).

� Next key Pierre <= end key, return the (KEY, ROWID).

� Next key Rachel > end key, terminate the range scan.

Index Range Scan Descending

Steps in a Bounded Descending Range Scan For a descending range scan (like with the
normal range scan), specify an equality condition or an interval.

1. Start with the root block.

2. Search the block keys for the biggest key less than or equal to the end key.

3. Follow the link to the child block.

4. If no key is less than or equal to the end key in step 2, then follow the link
before the lowest key in the block.

5. Repeat steps 2 through 4 if the child block is a branch block.

6. Search the leaf block keys for the biggest key less than or equal to the end key.

7. While key >= start key:

� If the key columns meet all WHERE clause conditions, then return the (value,
ROWID).

� Follow the link to the left.

Here, the range scans make use of the fact that all the leaf nodes are linked from
right to left.

Figure 10–10 shows examples of a bounded range scan and is described in the text
that follows the figure.
Schema Objects 10-43

Indexes
Figure 10–10 Examples of Range Scans Using the Non-Unique B-tree Index

If searching for Nancy:

� Start key = ‘Nancy’, end key < ‘Nancy’.

� In the root block, Lu is the biggest key <= end key.

� Follow the link to branch block (N, P, Ph).

� In this branch block, N is the biggest key <= end key.

� Follow the link after N to leaf block (Nancy, …, Nicole, Norm).

� In this leaf block, Nancy is the biggest key <= end key.

� Nancy >= start key, return the (KEY, ROWID).

� Prev key Nancy >= start key, return the (KEY, ROWID).

� Prev key Nancy >= start key, return the (KEY, ROWID).

� Prev key Mike < start key, terminate the range scan.

If searching for ‘P%’:

� Start key = ‘P’, end key < ‘Q’.

K
ar

l,
R

O
W

ID

K
at

hy
, R

O
W

ID

K
im

, R
O

W
ID

La
nc

e,
 R

O
W

ID

P
ab

lo
, R

O
W

ID

P
au

la
, R

O
W

ID

P
au

la
, R

O
W

ID

P
et

er
, R

O
W

ID

Lu
is

, R
O

W
ID

M
ar

k,
 R

O
W

ID

M
ar

y,
 R

O
W

ID

M
ik

e,
 R

O
W

ID

M
ik

e,
 R

O
W

ID

N
an

cy
, R

O
W

ID

N
an

cy
 R

O
W

ID

N
an

cy
, R

O
W

ID

N
ic

ol
e,

 R
O

W
ID

N
or

m
, R

O
W

ID

P
hi

l,
R

O
W

ID

P
ie

rr
e,

 R
O

W
ID

R
ac

he
l,

R
O

W
ID

R
aj

iv
, R

O
W

ID

R
ao

ul
, R

O
W

ID

B C C
r

S
am

S
t

S
u

N P P
h

F H K
ar

Di Lu Rh
10-44 Oracle9i Database Concepts

Indexes
� In the root block key, Lu is the biggest key <= end key.

� Follow the link to branch block (N, P, Ph).

� In this branch block, Ph is the biggest key <= end key.

� Follow the link to leaf block (Phil,…,Raoul).

� In the leaf block, Pierre is the biggest key <= end key.

� Pierre >= start key, return the (KEY, ROWID).

� Prev key Phil >= start key, return the (KEY, ROWID).

� Prev key Peter >= start key, return the (KEY, ROWID).

� Prev key Paula >= start key, return the (KEY, ROWID).

� Prev key Pablo >= start key, return the (KEY, ROWID).

� Prev key Norm < start key, terminate the range scan.

Key Compression
Key compression lets you compress portions of the primary key column values in
an index or index-organized table, which reduces the storage overhead of repeated
values.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If
the key is not defined to have a unique piece, Oracle provides one in the form of a
rowid appended to the grouping piece. Key compression is a method of breaking
off the grouping piece and storing it so it can be shared by multiple unique pieces.

Prefix and Suffix Entries
Key compression breaks the index key into a prefix entry (the grouping piece) and a
suffix entry (the unique piece). Compression is achieved by sharing the prefix
entries among the suffix entries in an index block. Only keys in the leaf blocks of a
B-tree index are compressed. In the branch blocks the key suffix can be truncated,
but the key is not compressed.

Key compression is done within an index block but not across multiple index
blocks. Suffix entries form the compressed version of index rows. Each suffix entry
references a prefix entry, which is stored in the same index block as the suffix entry.

By default, the prefix consists of all key columns excluding the last one. For
example, in a key made up of three columns (column1, column2, column3) the
default prefix is (column1, column2). For a list of values (1,2,3), (1,2,4), (1,2,7),
Schema Objects 10-45

Indexes
(1,3,5), (1,3,4), (1,4,4) the repeated occurrences of (1,2), (1,3) in the prefix are
compressed.

Alternatively, you can specify the prefix length, which is the number of columns in
the prefix. For example, if you specify prefix length 1, then the prefix is column1
and the suffix is (column2, column3). For the list of values (1,2,3), (1,2,4), (1,2,7),
(1,3,5), (1,3,4), (1,4,4) the repeated occurrences of 1 in the prefix are compressed.

The maximum prefix length for a nonunique index is the number of key columns,
and the maximum prefix length for a unique index is the number of key columns
minus one.

Prefix entries are written to the index block only if the index block does not already
contain a prefix entry whose value is equal to the present prefix entry. Prefix entries
are available for sharing immediately after being written to the index block and
remain available until the last deleted referencing suffix entry is cleaned out of the
index block.

Performance and Storage Considerations
Key compression can lead to a huge saving in space, letting you store more keys in
each index block, which can lead to less I/O and better performance.

Although key compression reduces the storage requirements of an index, it can
increase the CPU time required to reconstruct the key column values during an
index scan. It also incurs some additional storage overhead, because every prefix
entry has an overhead of 4 bytes associated with it.

Uses of Key Compression
Key compression is useful in many different scenarios, such as:

� In a nonunique regular index, Oracle stores duplicate keys with the rowid
appended to the key to break the duplicate rows. If key compression is used,
Oracle stores the duplicate key as a prefix entry on the index block without the
rowid. The rest of the rows are suffix entries that consist of only the rowid.

� This same behavior can be seen in a unique index that has a key of the form
(item, time stamp), for example (stock_ticker, transaction_time).
Thousands of rows can have the same stock_ticker value, with
transaction_time preserving uniqueness. On a particular index block a
stock_ticker value is stored only once as a prefix entry. Other entries on the
index block are transaction_time values stored as suffix entries that
reference the common stock_ticker prefix entry.
10-46 Oracle9i Database Concepts

Indexes
� In an index-organized table that contains a VARRAY or NESTED TABLE datatype,
the object ID (OID) is repeated for each element of the collection datatype. Key
compression lets you compress the repeating OID values.

In some cases, however, key compression cannot be used. For example, in a unique
index with a single attribute key, key compression is not possible, because even
though there is a unique piece, there are no grouping pieces to share.

Reverse Key Indexes
Creating a reverse key index, compared to a standard index, reverses the bytes of
each column indexed (except the rowid) while keeping the column order. Such an
arrangement can help avoid performance degradation with Oracle9i Real
Application Clusters where modifications to the index are concentrated on a small
set of leaf blocks. By reversing the keys of the index, the insertions become
distributed across all leaf keys in the index.

Using the reverse key arrangement eliminates the ability to run an index range
scanning query on the index. Because lexically adjacent keys are not stored next to
each other in a reverse-key index, only fetch-by-key or full-index (table) scans can
be performed.

Sometimes, using a reverse-key index can make an OLTP Oracle9i Real Application
Clusters application faster. For example, keeping the index of mail messages in an
e-mail application: some users keep old messages, and the index must maintain
pointers to these as well as to the most recent.

The REVERSE keyword provides a simple mechanism for creating a reverse key
index. You can specify the keyword REVERSE along with the optional index
specifications in a CREATE INDEX statement:

CREATE INDEX i ON t (a,b,c) REVERSE;

You can specify the keyword NOREVERSE to REBUILD a reverse-key index into one
that is not reverse keyed:

ALTER INDEX i REBUILD NOREVERSE;

Rebuilding a reverse-key index without the NOREVERSE keyword produces a
rebuilt, reverse-key index.

See Also: "Index-Organized Tables" on page 10-57
Schema Objects 10-47

Indexes
Bitmap Indexes

The purpose of an index is to provide pointers to the rows in a table that contain a
given key value. In a regular index, this is achieved by storing a list of rowids for
each key corresponding to the rows with that key value. Oracle stores each key
value repeatedly with each stored rowid. In a bitmap index, a bitmap for each key
value is used instead of a list of rowids.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so the bitmap index provides
the same functionality as a regular index even though it uses a different
representation internally. If the number of different key values is small, then bitmap
indexes are very space efficient.

Bitmap indexing efficiently merges indexes that correspond to several conditions in
a WHERE clause. Rows that satisfy some, but not all, conditions are filtered out
before the table itself is accessed. This improves response time, often dramatically.

Benefits for Data Warehousing Applications
Bitmap indexing benefits data warehousing applications which have large amounts
of data and ad hoc queries but a low level of concurrent transactions. For such
applications, bitmap indexing provides:

� Reduced response time for large classes of ad hoc queries

� A substantial reduction of space use compared to other indexing techniques

� Dramatic performance gains even on very low end hardware

� Very efficient parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of space, because the index can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

Note: Bitmap indexes are available only if you have purchased the
Oracle9i Enterprise Edition.

See Oracle9i Database New Features for more information about the
features available in Oracle9i and the Oracle9i Enterprise Edition.
10-48 Oracle9i Database Concepts

Indexes
Bitmap indexes are not suitable for OLTP applications with large numbers of
concurrent transactions modifying the data. These indexes are primarily intended
for decision support in data warehousing applications where users typically query
the data rather than update it.

Bitmap indexes are also not suitable for columns that are primarily queried with
less than or greater than comparisons. For example, a salary column that usually
appears in WHERE clauses in a comparison to a certain value is better served with a
B-tree index. Bitmapped indexes are only useful for AND, OR, NOT, or equality
queries.

Bitmap indexes are integrated with the Oracle cost-based optimization approach
and execution engine. They can be used seamlessly in combination with other
Oracle execution methods. For example, the optimizer can decide to perform a hash
join between two tables using a bitmap index on one table and a regular B-tree
index on the other. The optimizer considers bitmap indexes and other available
access methods, such as regular B-tree indexes and full table scan, and chooses the
most efficient method, taking parallelism into account where appropriate.

Parallel query and parallel DML work with bitmap indexes as with traditional
indexes. Bitmap indexes on partitioned tables must be local indexes. Parallel create
index and concatenated indexes are also supported.

Cardinality
The advantages of using bitmap indexes are greatest for low cardinality columns:
that is, columns in which the number of distinct values is small compared to the
number of rows in the table. If the number of distinct values of a column is less than
1% of the number of rows in the table, or if the values in a column are repeated
more than 100 times, then the column is a candidate for a bitmap index. Even
columns with a lower number of repetitions and thus higher cardinality can be
candidates if they tend to be involved in complex conditions in the WHERE clauses
of queries.

For example, on a table with 1 million rows, a column with 10,000 distinct values is
a candidate for a bitmap index. A bitmap index on this column can out-perform a
B-tree index, particularly when this column is often queried in conjunction with
other columns.

B-tree indexes are most effective for high-cardinality data: that is, data with many
possible values, such as CUSTOMER_NAME or PHONE_NUMBER. In some situations, a
B-tree index can be larger than the indexed data. Used appropriately, bitmap
indexes can be significantly smaller than a corresponding B-tree index.
Schema Objects 10-49

Indexes
In ad hoc queries and similar situations, bitmap indexes can dramatically improve
query performance. AND and OR conditions in the WHERE clause of a query can be
quickly resolved by performing the corresponding Boolean operations directly on
the bitmaps before converting the resulting bitmap to rowids. If the resulting
number of rows is small, the query can be answered very quickly without resorting
to a full table scan of the table.

Bitmap Index Example
Table 10–1 shows a portion of a company’s customer data.

MARITAL_STATUS, REGION, GENDER, and INCOME_LEVEL are all low-cardinality
columns. There are only three possible values for marital status and region, two
possible values for gender, and four for income level. Therefore, it is appropriate to
create bitmap indexes on these columns. A bitmap index should not be created on
CUSTOMER# because this is a high-cardinality column. Instead, use a unique B-tree
index on this column to provide the most efficient representation and retrieval.

Table 10–2 illustrates the bitmap index for the REGION column in this example. It
consists of three separate bitmaps, one for each region.

Table 10–1 Bitmap Index Example

CUSTOMER #
MARITAL_
STATUS REGION GENDER

INCOME_
LEVEL

101 single east male bracket_1

102 married central female bracket_4

103 married west female bracket_2

104 divorced west male bracket_4

105 single central female bracket_2

106 married central female bracket_3
10-50 Oracle9i Database Concepts

Indexes
Each entry or bit in the bitmap corresponds to a single row of the CUSTOMER table.
The value of each bit depends upon the values of the corresponding row in the
table. For instance, the bitmap REGION=’east’ contains a one as its first bit. This is
because the region is east in the first row of the CUSTOMER table. The bitmap
REGION=’east’ has a zero for its other bits because none of the other rows of the
table contain east as their value for REGION.

An analyst investigating demographic trends of the company’s customers can ask,
"How many of our married customers live in the central or west regions?" This
corresponds to the following SQL query:

SELECT COUNT(*) FROM CUSTOMER
WHERE MARITAL_STATUS = ’married’ AND REGION IN (’central’,’west’);

Bitmap indexes can process this query with great efficiency by counting the number
of ones in the resulting bitmap, as illustrated in Figure 10–11. To identify the specific
customers who satisfy the criteria, the resulting bitmap can be used to access the
table.

Table 10–2 Sample Bitmap

REGION=’east’ REGION=’central’ REGION=’west’

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

0 1 0
Schema Objects 10-51

Indexes
Figure 10–11 Executing a Query Using Bitmap Indexes

Bitmap Indexes and Nulls
Bitmap indexes include rows that have NULL values, unlike most other types of
indexes. Indexing of nulls can be useful for some types of SQL statements, such as
queries with the aggregate function COUNT.

Bitmap Indexes and Nulls Example 1

SELECT COUNT(*) FROM employees;

Any bitmap index can be used for this query, because all table rows are indexed,
including those that have NULL data. If NULLs were not indexed, then the optimizer
could only use indexes on columns with NOT NULL constraints.

Bitmap Indexes and Nulls Example 2

SELECT COUNT(*) FROM employees WHERE commission_pct IS NULL;

This query can be optimized with a bitmap index on commission_pct.

Bitmap Indexes and Nulls Example 3

SELECT COUNT(*)
FROM customers
WHERE cust_gender = ’M’ AND cust_state_province != ’CA’;

This query can be answered by finding the bitmap for cust_gender= ’M’ and
subtracting the bitmap for cust_state_province= ’CA’. If cust_state_province can
contain null values (that is, if it does not have a NOT NULL constraint), then the
bitmaps for cust_state_province= ’NULL’ must also be subtracted from the result.

AND OR = AND =

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

0

0

1

status =
'married'

region =
'central'

region =
'west'
10-52 Oracle9i Database Concepts

Indexes
Bitmap Indexes on Partitioned Tables
Like other indexes, you can create bitmap indexes on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table—they cannot
be global indexes. Global bitmap indexes are supported only on nonpartitioned
tables.

Bitmap Join Indexes
A join index is an index on one table that involves columns of one or more different
tables through a join.

The bitmap join index, in its simplest form, is a bitmap index on a table F based on
columns from table D1,...,Dn, where Di joins with F in a star or snowflake
schema as described in "Creation of a Bitmap Join Index" on page 10-56. In the data
warehousing environment, table F is usually a fact table, table Di is usually a
dimension table, and the join condition is an equi-inner join between the primary
key column(s) of the dimension tables and the foreign key column(s) in the fact
table. For simplicity, from now on we call the table whose rowids are bitmapped the
fact table, and the other tables participating in the join of bitmap join index the
dimension tables.

The volume of data that must be joined can be reduced if join indexes are used as
joins have already been precalculated. In addition, join indexes which contain
multiple dimension tables can eliminate bitwise operations which are necessary in
the star transformation with existing bitmap indexes. Finally, bitmap join indexes
are much more efficient in storage than materialized join views which do not
compress rowids of the fact tables.

Four Join Models
The following section describes four join models in the star query framework and
explains how they are addressed by bitmap join indexes. The accompanying figures
are described by SQL statements in the text that follows each figure.

Notation

See Also:

� Chapter 11, "Partitioned Tables and Indexes" for information
about partitioned tables and descriptions of local and global
indexes

� Oracle9i Database Performance Tuning Guide and Reference for
more information about using bitmap indexes
Schema Objects 10-53

Indexes
Fi -- Fact table i
Di -- Dimension table i
pk -- The primary key column on the dimension table
fk -- The fact table column participating in the join with the dimension tables
sales -- The measurement column on the fact table

Figure 10–12 One Dimension Table Column Joins One Fact Table

In Figure 10–12, a bitmap join index on F(D.c1) can be represented by the
following SQL statement:

CREATE BITMAP INDEX bji ON f (d.c1) FROM f, d WHERE d.pk = f.fk

Then the following query can be run by accessing the bitmap join index to avoid the
join operation:

SELECT SUM(f.sales)
FROM d, f
WHERE d.pk = f.fk and d.c1 = 2

Similar to the materialized join view, a bitmap join index computes the join and
stores it as a database object. The difference is that a materialized join view
materializes the join into a table while a bitmap join index materializes the join into
a bitmap index.

Figure 10–13 Two or More Dimension Table Columns Join One Fact Table

Figure 10–13 shows a simple extension of Figure 10–12, requiring a concatenated
bitmap join index to represent it, as follows:

D c1 F
d.pk = f.fk

D c1 c2 F
d.pk = f.fk
10-54 Oracle9i Database Concepts

Indexes
CREATE BITMAP INDEX bji ON f (d.c1, d.c2)
FROM F, d
WHERE d.pk = f.fk;

The result of the following query can be retrieved by accessing the bitmap join
index bji.:

SELECT SUM(f.sales)
FROM d, f
WHERE d.pk = f.fk AND d.c1 = 1 AND d.c2 = 3;

Another query which references only the leading portion of the index key can also
use bitmap join index bji:

SELECT SUM(f.sales)
FROM d, f
WHERE d.pk = f.fk AND d.c1 = 1

Figure 10–14 Multiple Dimension Tables Join One Fact Table

Figure 10–14 shows the third model, which requires a concatenated bitmap join
index:

CREATE BITMAP INDEX bji ON f (d1.c1, d2.c2)
FROM f, d1, d2
WHERE d1.pk = f.fk1 AND d2.pk = f.fk2

D1 c1 D2 c2F
d1.pk = f.fk1 d2.pk = f.fk2
Schema Objects 10-55

Indexes
Figure 10–15 Snow Flake Schema

Figure 10–15 involves joins between two or more dimension tables. It can be
expressed by a bitmap join index. The bitmap join index can be either single or
concatenated depending on the number of columns in the dimension tables to be
indexed. A bitmap join index on d1.c3 with a join between d1 and d2 and a join
between d2 and f can be created as follows:

CREATE BITMAP INDEX bji ON f (d1.c3)
FROM f, d1, d2
WHERE d1.pk = d2.c2 AND d2.pk = f.fk;

A bitmap join index should be able to represent joins of the combination of the
preceding models.

Creation of a Bitmap Join Index
Consider a star or snowflake schema with a single fact table F and multiple
dimension tables D1,.., Dn as defined in "Bitmap Join Indexes" on page 10-53. These
are the restrictions on the bitmap join index on F joined with D1,.., Dn.

� The bitmap join index is on a single table F.

� No table can appear twice in the FROM clause.

� Joins form either star or snowflake schema and all joins are through primary
keys or keys with unique constraints as follows:

� The dimension table column(s) participating the join with the fact table
must be either the primary key column(s) or with the unique constraint

� In the snow flake schema where a join is D1><D2><F, the column(s) on D1
participating in the join D1><D2 must be either the primary key column(s)
or with the unique constraint.

� For a composite primary key on the dimension table, each column of the
key needs to be in the join.

� All joins are equi-inner joins and they are connected by ANDs only.

D1 c3 F
d1.pk = d2.c2

D2 c2
d2.pk = f.fk
10-56 Oracle9i Database Concepts

Index-Organized Tables
� The current restrictions for creating a regular bitmap index also apply to a
bitmap join index. For example, we cannot create a bitmap index with the UNIQUE
attribute. See the Oracle9i SQL Reference for other restrictions.

� A bitmap join index must not be partitioned if the fact table is not partitioned. If
the fact table is partitioned, the corresponding bitmap join index must be local
partitioned with the fact table. Global partitioned bitmap join indexes are not
supported.

Bitmap join index on IOT, functional bitmap join index and temporary bitmap join
index are not yet allowed.

The primary key or unique constraint requirement is a correctness issue of a bitmap
join index. For a regular bitmap index, there is a one-to-one mapping relation
between a bit set in a bitmap and a rowid in the base table. For a bitmap join index,
there should also be a one to one mapping between each row in the result set of the
join and the rowids in the fact table. The primary key or unique constraint is used to
enforce this one-to-one mapping.

Index-Organized Tables
An index-organized table has a storage organization that is a variant of a primary
B-tree. Unlike an ordinary (heap-organized) table whose data is stored as an
unordered collection (heap), data for an index-organized table is stored in a B-tree
index structure in a primary key sorted manner. Besides storing the primary key
column values of an index-organized table row, each index entry in the B-tree stores
the nonkey column values as well.

As shown in Figure 10–16, the index-organized table is somewhat similar to a
configuration consisting of an ordinary table and an index on one or more of the
table columns, but instead of maintaining two separate storage structures, one for
the table and one for the B-tree index, the database system maintains only a single
B-tree index. Also, rather than having a row's rowid stored in the index entry, the
nonkey column values are stored. Thus, each B-tree index entry contains
<primary_key_value, non_primary_key_column_values>.
Schema Objects 10-57

Index-Organized Tables
Figure 10–16 Structure of a Regular Table Compared with an Index-Organized Table

Applications manipulate the index-organized table just like an ordinary table, using
SQL statements. However, the database system performs all operations by
manipulating the corresponding B-tree index.

Table 10–3 summarizes the differences between index-organized tables and
ordinary tables.

Benefits of Index-Organized Tables
Index-organized tables provide faster access to table rows by the primary key or
any key that is a valid prefix of the primary key. Presence of nonkey columns of a
row in the B-tree leaf block itself avoids an additional block access. Also, because
rows are stored in primary key order, range access by the primary key (or a valid
prefix) involves minimum block accesses.

Table 10–3 Comparison of Index-Organized Tables with Ordinary Tables

Ordinary Table Index-Organized Table

Rowid uniquely identifies a row. Primary
key can be optionally specified

Primary key uniquely identifies a row.
Primary key must be specified

Physical rowid in ROWID pseudocolumn
allows building secondary indexes

Logical rowid in ROWID pseudocolumn
allows building secondary indexes

Access is based on rowid Access is based on logical rowid

Sequential scan returns all rows Full-index scan returns all rows

Can be stored in a cluster with other tables Cannot be stored in a cluster

Can contain a column of the LONG datatype
and columns of LOB datatypes

Can contain LOB columns but not LONG
columns

Finance
Invest

5543
6879

Table
Finance 5543
Invest 6879

Index

Regular Table and Index Index-Organized Table

Finance ROWID
Invest ROWID

Index

Table Data Stored
in Index
10-58 Oracle9i Database Concepts

Index-Organized Tables
In order to allow even faster access to frequently accessed columns, you can use a
row overflow storage option (as described later) to push out infrequently accessed
nonkey columns from the B-tree leaf block to an optional (heap-organized) overflow
storage area. This allows limiting the size and content of the portion of a row that is
actually stored in the B-tree leaf block, which may lead to a higher number of rows
in each leaf block and a smaller B-tree.

Unlike a configuration of heap-organized table with a primary key index where
primary key columns are stored both in the table and in the index, there is no such
duplication here because primary key column values are stored only in the B-tree
index.

Because rows are stored in primary key order, a significant amount of additional
storage space savings can be obtained through the use of key compression.

Use of primary-key based logical rowids, as opposed to physical rowids, in
secondary indexes on index-organized tables allows high availability. This is
because, due to the logical nature of the rowids, secondary indexes do not become
unusable even after a table reorganization operation that causes movement of the
base table rows. At the same time, through the use of physical guess in the logical
rowid, it is possible to get secondary index based index-organized table access
performance that is comparable to performance for secondary index based access to
an ordinary table.

Index-Organized Tables with Row Overflow Area
B-tree index entries are usually quite small, because they only consist of the key
value and a ROWID. In index-organized tables, however, the B-tree index entries can
be large, because they consist of the entire row. This may destroy the dense
clustering property of the B-tree index.

Oracle provides the OVERFLOW clause to handle this problem. You can specify an
overflow tablespace so that, if necessary, a row can be divided into the following
two parts that are then stored in the index and in the overflow storage area,
respectively:

See Also:

� "Key Compression" on page 10-45

� "Secondary Indexes on Index-Organized Tables" on page 10-60

� Oracle9i Database Administrator’s Guide for information about
creating and maintaining index-organized tables
Schema Objects 10-59

Index-Organized Tables
� The index entry, containing column values for all the primary key columns, a
physical rowid that points to the overflow part of the row, and optionally a few
of the nonkey columns, and

� The overflow part, containing column values for the remaining nonkey
columns

With OVERFLOW, you can use two clauses, PCTTHRESHOLD and INCLUDING, to
control how Oracle determines whether a row should be stored in two parts and if
so, at which nonkey column to break the row. Using PCTTHRESHOLD, you can
specify a threshold value as a percentage of the block size. If all the nonkey column
values can be accommodated within the specified size limit, the row will not be
broken into two parts. Otherwise, starting with the first nonkey column that cannot
be accommodated, the rest of the nonkey columns are all stored in the row overflow
storage area for the table.

The INCLUDING clause lets you specify a column name so that any nonkey column,
appearing in the CREATE TABLE statement after that specified column, is stored in
the row overflow storage area. Note that additional nonkey columns may
sometimes need to be stored in the overflow due to PCTTHRESHOLD-based limits.

Secondary Indexes on Index-Organized Tables
Secondary index support on index-organized tables provides efficient access to
index-organized table using columns that are not the primary key nor a prefix of the
primary key.

Oracle constructs secondary indexes on index-organized tables using logical row
identifiers (logical rowids) that are based on the table's primary key. A logical
rowid optionally includes a physical guess, which identifies the block location of
the row. Oracle can use these physical guesses to probe directly into the leaf block of
the index-organized table, bypassing the primary key search. Because rows in
index-organized tables do not have permanent physical addresses, the physical
guesses can become stale when rows are moved to new blocks.

For an ordinary table, access by a secondary index involves a scan of the secondary
index and an additional I/O to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use
and accuracy of physical guesses:

� Without physical guesses, access involves two index scans: a secondary index
scan followed by a scan of the primary key index.

See Also: Oracle9i Database Administrator’s Guide for examples of
using the OVERFLOW clause
10-60 Oracle9i Database Concepts

Index-Organized Tables
� With accurate physical guesses, access involves a secondary index scan and an
additional I/O to fetch the data block containing the row.

� With inaccurate physical guesses, access involves a secondary index scan and
an I/O to fetch the wrong data block (as indicated by the physical guess),
followed by a scan of the primary key index.

Bitmap Indexes on Index-Organized Tables
Oracle supports bitmap indexes on index-organized tables. A mapping table is
required for creating bitmap indexes on an index-organized table.

Mapping Table
The mapping table is a heap-organized table that stores logical rowids of the
index-organized table. Specifically, each mapping table row stores one logical rowid
for the corresponding index-organized table row. Thus, the mapping table provides
one-to-one mapping between logical rowids of the index-organized table rows and
physical rowids of the mapping table rows.

A bitmap index on an index-organized table is similar to that on a heap-organized
table except that the rowids used in the bitmap index on an index-organized table
are those of the mapping table as opposed to the base table. There is one mapping
table for each index-organized table and it is used by all the bitmap indexes created
on that index-organized table.

In both heap-organized and index-organized base tables, a bitmap index is accessed
using a search key. If the key is found, the bitmap entry is converted to a physical
rowid. In the case of heap-organized table, this physical rowid is then used to access
the base table. However, in the case of index-organized table, the physical rowid is
then used to access the mapping table. The access to the mapping table yields a
logical rowid. This logical rowid is used to access the index-organized table.

Though a bitmap index on an index-organized table does not store logical rowids, it
is still logical in nature.

See Also: "Logical Rowids" on page 12-21
Schema Objects 10-61

Application Domain Indexes
Partitioned Index-Organized Tables
You can partition an index-organized table by RANGE or HASH on column values.
The partitioning columns must form a subset of the primary key columns. Just like
ordinary tables, local partitioned (prefixed and non-prefixed) index as well as global
partitioned (prefixed) indexes are supported for partitioned index-organized tables.

B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables
UROWID datatype columns can hold logical primary key-based rowids identifying
rows of index-organized tables. Oracle9i supports indexes on UROWID datatypes of
a heap- or index-organized table. The index supports equality predicates on
UROWID columns. For predicates other than equality or for ordering on UROWID
datatype columns, the index is not used.

Index-Organized Table Applications
The superior query performance for primary key based access, high availability
aspects, and reduced storage requirements make index-organized tables ideal for
the following kinds of applications:

� Online Transaction Processing (OLTP)

� Internet (for example, search engines and portals)

� E-Commerce (for example, electronic stores and catalogs)

� Data Warehousing

� Time-series applications

Application Domain Indexes
Oracle provides extensible indexing to accommodate indexes on customized
complex data types such as documents, spatial data, images, and video clips and to

Note: Movement of rows in an index-organized table does not
leave the bitmap indexes built on that index-organized table
unusable. Movement of rows in the index-organized table does
invalidate the physical guess in some of the mapping table's logical
rowid entries. However, the index-organized table can still be
accessed using the primary key.
10-62 Oracle9i Database Concepts

Clusters
make use of specialized indexing techniques. With extensible indexing, you can
encapsulate application-specific index management routines as an indextype
schema object and define a domain index (an application-specific index) on table
columns or attributes of an object type. Extensible indexing also provides efficient
processing of application-specific operators.

The application software, called the cartridge, controls the structure and content of
a domain index. The Oracle server interacts with the application to build, maintain,
and search the domain index. The index structure itself can be stored in the Oracle
database as an index-organized table or externally as a file.

Clusters
Clusters are an optional method of storing table data. A cluster is a group of tables
that share the same data blocks because they share common columns and are often used
together. For example, the employees and departments table share the
department_id column. When you cluster the employees and departments
tables, Oracle physically stores all rows for each department from both the
employees and departments tables in the same data blocks. Figure 10–17 shows
what happens when you cluster the employees and departments tables:

See Also: Oracle9i Data Cartridge Developer’s Guide for information
about using data cartridges within Oracle’s extensibility
architecture
Schema Objects 10-63

Clusters
Figure 10–17 Clustered Table Data

Because clusters store related rows of different tables together in the same data
blocks, properly used clusters offers these benefits:

Related data stored
together, more

efficiently

related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

department_name20 location_id

marketing 1800

employee_id last_name

201
202

Hartstein
Fay

. . .

. . .

. . .

department_name110 location_id

accounting 1700

employee_id last_name

205
206

Higgins
Gietz

. . .

. . .

. . .

Clustered Key
department_id

last_nameemployee_id

201
202
203
204
205
206

department_id

Hartstein
Fay
Mavris
Baer
Higgins
Gietz

20
20
40
70
110
110

. . .

. . .

. . .

. . .

. . .

. . .

. . .

employees

department_namedepartment_id

20
110

location_id

Marketing
Accounting

1800
1700

departments
10-64 Oracle9i Database Concepts

Hash Clusters
� Disk I/O is reduced for joins of clustered tables.

� Access time improves for joins of clustered tables.

� In a cluster, a cluster key value is the value of the cluster key columns for a
particular row. Each cluster key value is stored only once each in the cluster and
the cluster index, no matter how many rows of different tables contain the
value. Therefore, less storage is required to store related table and index data in
a cluster than is necessary in nonclustered table format. For example, in
Figure 10–17, notice how each cluster key (each department_id) is stored just
once for many rows that contain the same value in both the employees and
departments tables.

Hash Clusters
Hash clusters group table data in a manner similar to regular index clusters
(clusters keyed with an index rather than a hash function). However, a row is stored
in a hash cluster based on the result of applying a hash function to the row’s cluster
key value. All rows with the same key value are stored together on disk.

Hash clusters are a better choice than using an indexed table or index cluster when
a table is queried frequently with equality queries (for example, return all rows for
department 10). For such queries, the specified cluster key value is hashed. The
resulting hash key value points directly to the area on disk that stores the rows.

Hashing is an optional way of storing table data to improve the performance of data
retrieval. To use hashing, create a hash cluster and load tables into the cluster.
Oracle physically stores the rows of a table in a hash cluster and retrieves them
according to the results of a hash function.

Oracle uses a hash function to generate a distribution of numeric values, called
hash values, which are based on specific cluster key values. The key of a hash
cluster, like the key of an index cluster, can be a single column or composite key
(multiple column key). To find or store a row in a hash cluster, Oracle applies the
hash function to the row’s cluster key value. The resulting hash value corresponds
to a data block in the cluster, which Oracle then reads or writes on behalf of the
issued statement.

A hash cluster is an alternative to a nonclustered table with an index or an index
cluster. With an indexed table or index cluster, Oracle locates the rows in a table

See Also: Oracle9i Database Administrator’s Guide for information
about creating and managing clusters
Schema Objects 10-65

Hash Clusters
using key values that Oracle stores in a separate index. To find or store a row in an
indexed table or cluster, at least two I/Os must be performed:

� One or more I/Os to find or store the key value in the index

� Another I/O to read or write the row in the table or cluster

See Also: Oracle9i Database Administrator’s Guide for information
about creating and managing hash clusters
10-66 Oracle9i Database Concepts

Partitioned Tables and
11

Partitioned Tables and Indexes

This chapter describes partitioned tables and indexes. It covers the following topics:

� Introduction to Partitioning

� Partitioning Methods

� Partitioned Indexes

� Partitioning to Improve Performance

Note: Oracle supports partitioning only for tables, indexes on
tables, materialized views, and indexes on materialized views.
Oracle does not support partitioning of clustered tables or indexes
on clustered tables.
Indexes 11-1

Introduction to Partitioning
Introduction to Partitioning
Partitioning addresses key issues in supporting very large tables and indexes by
letting you decompose them into smaller and more manageable pieces called
partitions. SQL queries and DML statements do not need to be modified in order to
access partitioned tables. However, after partitions are defined, DDL statements can
access and manipulate individuals partitions rather than entire tables or indexes.
This is how partitioning can simplify the manageability of large database objects.
Also, partitioning is entirely transparent to applications.

Each partition of a table or index must have the same logical attributes, such as
column names, datatypes, and constraints, but each partition can have separate
physical attributes such as pctfree, pctused, and tablespaces.

Partitioning is useful for many different types of applications, particularly
applications that manage large volumes of data. OLTP systems often benefit from
improvements in manageability and availability, while data warehousing systems
benefit from performance and manageability.

Partitioning offers these advantages:

� Partitioning enables data management operations such data loads, index
creation and rebuilding, and backup/recovery at the partition level, rather than
on the entire table. This results in significantly reduced times for these
operations.

� Partitioning improves query performance. In many cases, the results of a query
can be achieved by accessing a subset of partitions, rather than the entire table.
For some queries, this technique (called partition pruning) can provide
order-of-magnitude gains in performance.

� Partitioning can significantly reduce the impact of scheduled downtime for
maintenance operations.

Note: All partitions of a partitioned object must reside in
tablespaces of a single block size.

See Also:

� "Multiple Block Sizes" on page 3-13

� Oracle9i Data Warehousing Guide for more information about
partitioning
11-2 Oracle9i Database Concepts

Introduction to Partitioning
Partition independence for partition maintenance operations lets you perform
concurrent maintenance operations on different partitions of the same table or
index. You can also run concurrent SELECT and DML operations against
partitions that are unaffected by maintenance operations.

� Partitioning increases the availability of mission-critical databases if critical
tables and indexes are divided into partitions to reduce the maintenance
windows, recovery times, and impact of failures.

� Partitioning can be implemented without requiring any modifications to your
applications. For example, you could convert a nonpartitioned table to a
partitioned table without needing to modify any of the SELECT statements or
DML statements which access that table. You do not need to rewrite your
application code to take advantage of partitioning.

Figure 11–1 offers a graphical view of how partitioned tables differ from
nonpartitioned tables.
Partitioned Tables and Indexes 11-3

Introduction to Partitioning
Figure 11–1 A View of Partitioned Tables

Partition Key
Each row in a partitioned table is unambiguously assigned to a single partition. The
partition key is a set of one or more columns that determines the partition for each
row. Oracle9i automatically directs insert, update, and delete operations to the
appropriate partition through the use of the partition key. A partition key:

� Consists of an ordered list of 1 to 16 columns

� Cannot contain a LEVEL, ROWID, or MLSLABEL pseudocolumn or a column of
type ROWID

� Can contain columns that are NULLable

Partitioned Tables
Tables can be partitioned into up to 64,000 separate partitions. Any table can be
partitioned except those tables containing columns with LONG or LONG RAW
datatypes. You can, however, use tables containing columns with CLOB or BLOB
datatypes.

A nonpartitioned table
can have partitioned or
nonpartitioned indexes.

A partitioned table
can have partitioned or
nonpartitioned indexes.

Table 1

January - March January

Table 2

February March
11-4 Oracle9i Database Concepts

Partitioning Methods
Partitioned Index-Organized Tables
You can range partition index-organized tables. This feature is very useful for
providing improved manageability, availability and performance for
index-organized tables. In addition, data cartridges that use index-organized tables
can take advantage of the ability to partition their stored data. Common examples
of this are the Image and interMedia cartridges.

For partitioning an index-organized table:

� Only range and hash partitioning are supported

� Partition columns must be a subset of primary key columns

� Secondary indexes can be partitioned — locally and globally

� OVERFLOW data segments are always equipartitioned with the table partitions

Partitioning Methods
Oracle provides the following partitioning methods:

� Range Partitioning

� List Partitioning

� Hash Partitioning

� Composite Partitioning

Figure 11–2 offers a graphical view of the methods of partitioning.
Partitioned Tables and Indexes 11-5

Partitioning Methods
Figure 11–2 List, Range, and Hash Partitioning

Composite partitioning is a combination of other partitioning methods. Oracle
currently supports range-hash and range-list composite partitioning. Figure 11–3
offers a graphical view of range-hash and range-list composite partitioning.

Range
Partitioning

List
Partitioning

Hash
Partitioning

h1

East Sales Region
New York
Virginia
Florida

West Sales Region
California
Oregon
Hawaii

Central Sales Region
Illinois
Texas
Missouri

January and
February

March and
April

May and
June

July and
August

h2
h3
h4
11-6 Oracle9i Database Concepts

Partitioning Methods
Figure 11–3 Composite Partitioning

Range Partitioning
Range partitioning maps data to partitions based on ranges of partition key values
that you establish for each partition. It is the most common type of partitioning and
is often used with dates. For example, you might want to partition sales data into
monthly partitions.

When using range partitioning, consider the following rules:

� Each partition has a VALUES LESS THAN clause, which specifies a noninclusive
upper bound for the partitions. Any binary values of the partition key equal to
or higher than this literal are added to the next higher partition.

� All partitions, except the first, have an implicit lower bound specified by the
VALUES LESS THAN clause on the previous partition.

� A MAXVALUE literal can be defined for the highest partition. MAXVALUE
represents a virtual infinite value that sorts higher than any other possible value
for the partition key, including the null value.

A typical example is given in the following section. The statement creates a table
(sales_range) that is range partitioned on the sales_date field.

Composite Partitioning
Range-Hash

h1
h2

h3
h4

h1
h2

h3
h4

h2
h3

h1

h4

h1
h2

h3
h4

March and
April

Composite Partitioning
Range - List

January and
February

May and
June

East Sales Region
New York
Virginia
Florida

West Sales Region
California
Oregon
Hawaii

Central Sales Region
Illinois
Texas
Missouri
Partitioned Tables and Indexes 11-7

Partitioning Methods
Range Partitioning Example
CREATE TABLE sales_range
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY RANGE(sales_date)
(
PARTITION sales_jan2000 VALUES LESS THAN(TO_DATE('02/01/2000','DD/MM/YYYY')),
PARTITION sales_feb2000 VALUES LESS THAN(TO_DATE('03/01/2000','DD/MM/YYYY')),
PARTITION sales_mar2000 VALUES LESS THAN(TO_DATE('04/01/2000','DD/MM/YYYY')),
PARTITION sales_apr2000 VALUES LESS THAN(TO_DATE('05/01/2000','DD/MM/YYYY'))
);

List Partitioning
List partitioning enables you to explicitly control how rows map to partitions. You
do this by specifying a list of discrete values for the partitioning key in the
description for each partition. This is different from range partitioning, where a
range of values is associated with a partition and from hash partitioning, where a
hash function controls the row-to-partition mapping. The advantage of list
partitioning is that you can group and organize unordered and unrelated sets of
data in a natural way.

The details of list partitioning can best be described with an example. In this case,
let’s say you want to partition a sales table by region. That means grouping states
together according to their geographical location as in the following example.

List Partitioning Example
CREATE TABLE sales_list
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_state VARCHAR2(20),
sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY LIST(sales_state)
(
PARTITION sales_west VALUES('California', 'Hawaii'),
PARTITION sales_east VALUES ('New York', 'Virginia', 'Florida'),
PARTITION sales_central VALUES('Texas', 'Illinois')
PARTITION sales_other VALUES(DEFAULT)
);
11-8 Oracle9i Database Concepts

Partitioning Methods
A row is mapped to a partition by checking whether the value of the partitioning
column for a row falls within the set of values that describes the partition. For
example, the rows are inserted as follows:

� (10, 'Jones', 'Hawaii', 100, '05-JAN-2000') maps to partition sales_
west

� (21, 'Smith', 'Florida', 150, '15-JAN-2000') maps to partition sales_
east

� (32, 'Lee’, 'Colorado', 130, '21-JAN-2000') does not map to any
partition in the table

Unlike range and hash partitioning, multicolumn partition keys are not supported
for list partitioning. If a table is partitioned by list, the partitioning key can only
consist of a single column of the table.

The DEFAULT partition enables you to avoid specifying all possible values for a
list-partitioned table by using a default partition, so that all rows that do not map to
any other partition do not generate an error.

Hash Partitioning
Hash partitioning enables easy partitioning of data that does not lend itself to range
or list partitioning. It does this with a simple syntax and is easy to implement. It is a
better choice than range partitioning when:

� You do not know beforehand how much data maps into a given range

� The sizes of range partitions would differ quite substantially or would be
difficult to balance manually

� Range partitioning would cause the data to be undesirably clustered

� Performance features such as parallel DML, partition pruning, and
partition-wise joins are important

The concepts of splitting, dropping or merging partitions do not apply to hash
partitions. Instead, hash partitions can be added and coalesced.
Partitioned Tables and Indexes 11-9

Partitioning Methods
Hash Partitioning Example
CREATE TABLE sales_hash
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
week_no NUMBER(2))
PARTITION BY HASH(salesman_id)
PARTITIONS 4
STORE IN (data1, data2, data3, data4);

The preceding statement creates a table sales_hash, which is hash partitioned on
salesman_id field. The tablespace names are data1, data2, data3, and data4.

Composite Partitioning
Composite partitioning partitions data using the range method, and within each
partition, subpartitions it using the hash or list method. Composite range-hash
partitioning provides the improved manageability of range partitioning and the
data placement, striping, and parallelism advantages of hash partitioning.
Composite range-list partitioning provides the manageability of range partitioning
and the explicit control of list partitioning for the subpartitions.

Composite partitioning supports historical operations, such as adding new range
partitions, but also provides higher degrees of parallelism for DML operations and
finer granularity of data placement through subpartitioning.
11-10 Oracle9i Database Concepts

Partitioning Methods
Composite Partitioning Range-Hash Example
CREATE TABLE sales_composite
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY RANGE(sales_date)
SUBPARTITION BY HASH(salesman_id)
SUBPARTITION TEMPLATE(
SUBPARTITION sp1 TABLESPACE data1,
SUBPARTITION sp2 TABLESPACE data2,
SUBPARTITION sp3 TABLESPACE data3,
SUBPARTITION sp4 TABLESPACE data4)
(PARTITION sales_jan2000 VALUES LESS THAN(TO_DATE('02/01/2000','DD/MM/YYYY'))
PARTITION sales_feb2000 VALUES LESS THAN(TO_DATE('03/01/2000','DD/MM/YYYY'))
PARTITION sales_mar2000 VALUES LESS THAN(TO_DATE('04/01/2000','DD/MM/YYYY'))
PARTITION sales_apr2000 VALUES LESS THAN(TO_DATE('05/01/2000','DD/MM/YYYY'))
PARTITION sales_may2000 VALUES LESS THAN(TO_DATE('06/01/2000','DD/MM/YYYY')));

This statement creates a table sales_composite that is range partitioned on the
sales_date field and hash subpartitioned on salesman_id. When you use a
template, Oracle names the subpartitions by concatenating the partition name, an
underscore, and the subpartition name from the template. Oracle places this
subpartition in the tablespace specified in the template. In the previous statement,
sales_jan2000_sp1 is created and placed in tablespace data1 while sales_
jan2000_sp4 is created and placed in tablespace data4. In the same manner,
sales_apr2000_sp1 is created and placed in tablespace data1 while sales_
apr2000_sp4 is created and placed in tablespace data4. Figure 11–4 offers a
graphical view of the previous example.
Partitioned Tables and Indexes 11-11

Partitioning Methods
Figure 11–4 Composite Range-Hash Partitioning

Composite Partitioning Range-List Example
CREATE TABLE bimonthly_regional_sales
(deptno NUMBER,
item_no VARCHAR2(20),
txn_date DATE,
txn_amount NUMBER,
state VARCHAR2(2))
PARTITION BY RANGE (txn_date)
SUBPARTITION BY LIST (state)
SUBPARTITION TEMPLATE(

SUBPARTITION east VALUES('NY', 'VA', 'FL') TABLESPACE ts1,
SUBPARTITION west VALUES('CA', 'OR', 'HI') TABLESPACE ts2,
SUBPARTITION central VALUES('IL', 'TX', 'MO') TABLESPACE ts3)

(
PARTITION janfeb_2000 VALUES LESS THAN (TO_DATE('1-MAR-2000','DD-MON-YYYY')),
PARTITION marapr_2000 VALUES LESS THAN (TO_DATE('1-MAY-2000','DD-MON-YYYY')),
PARTITION mayjun_2000 VALUES LESS THAN (TO_DATE('1-JUL-2000','DD-MON-YYYY'))
);

This statement creates a table bimonthly_regional_sales that is range
partitioned on the txn_date field and list subpartitioned on state. When you use
a template, Oracle names the subpartitions by concatenating the partition name, an
underscore, and the subpartition name from the template. Oracle places this
subpartition in the tablespace specified in the template. In the previous statement,

Sub-1 Sub-1 Sub-1 Sub-1 Sub-1. . .
Range(sales_date)

Sub-2 Sub-2 Sub-2 Sub-2 Sub-2. . .

Sub-3 Sub-3 Sub-3 Sub-3 Sub-3. . .

H
A

S
H

(s
al

es
m

an
_i

d
)

Sub-4 Sub-4 Sub-4 Sub-4 Sub-4. . .
11-12 Oracle9i Database Concepts

Partitioned Indexes
janfeb_2000_east is created and placed in tablespace ts1 while janfeb_
2000_central is created and placed in tablespace ts3. In the same manner,
mayjun_2000_east is placed in tablespace ts1 while mayjun_2000_central is
placed in tablespace ts3. Figure 11–5 offers a graphical view of the table
bimonthly_regional_sales and its 9 individual subpartitions.

Figure 11–5 Composite Range-List Partitioning

When to Partition a Table
Here are some suggestions for when to partition a table:

� Tables greater than 2GB should always be considered for partitioning.

� Tables containing historical data, in which new data is added into the newest
partition. A typical example is a historical table where only the current month's
data is updatable and the other 11 months are read-only.

Partitioned Indexes
Just like partitioned tables, partitioned indexes improve manageability, availability,
performance, and scalability. They can either be partitioned independently (global
indexes) or automatically linked to a table's partitioning method (local indexes).

March and
April

Composite Partitioning
Range - List

January and
February

May and
June

East Sales Region
New York
Virginia
Florida

West Sales Region
California
Oregon
Hawaii

Central Sales Region
Illinois
Texas
Missouri
Partitioned Tables and Indexes 11-13

Partitioned Indexes
Local Partitioned Indexes
Local partitioned indexes are easier to manage than other types of partitioned
indexes. They also offer greater availability and are common in DSS environments.
The reason for this is equipartitioning: each partition of a local index is associated
with exactly one partition of the table. This enables Oracle to automatically keep the
index partitions in sync with the table partitions, and makes each table-index pair
independent. Any actions that make one partition's data invalid or unavailable only
affect a single partition.

You cannot explicitly add a partition to a local index. Instead, new partitions are
added to local indexes only when you add a partition to the underlying table.
Likewise, you cannot explicitly drop a partition from a local index. Instead, local
index partitions are dropped only when you drop a partition from the underlying
table.

A local index can be unique. However, in order for a local index to be unique, the
partitioning key of the table must be part of the index’s key columns. Unique local
indexes are useful for OLTP environments.

Figure 11–6 offers a graphical view of local partitioned indexes.

See Also: Oracle9i Data Warehousing Guide for more information
about partitioned indexes
11-14 Oracle9i Database Concepts

Partitioned Indexes
Figure 11–6 Local Partitioned Index

Global Partitioned Indexes
Global partitioned indexes are flexible in that the degree of partitioning and the
partitioning key are independent from the table's partitioning method. They are
commonly used for OLTP environments and offer efficient access to any individual
record.

The highest partition of a global index must have a partition bound, all of whose
values are MAXVALUE. This ensures that all rows in the underlying table can be
represented in the index. Global prefixed indexes can be unique or nonunique.

You cannot add a partition to a global index because the highest partition always
has a partition bound of MAXVALUE. If you wish to add a new highest partition, use
the ALTER INDEX SPLIT PARTITION statement. If a global index partition is
empty, you can explicitly drop it by issuing the ALTER INDEX DROP PARTITION
statement. If a global index partition contains data, dropping the partition causes
the next highest partition to be marked unusable. You cannot drop the highest
partition in a global index.

Partitioned
Indexes

Partitioned
Tables
Partitioned Tables and Indexes 11-15

Partitioned Indexes
Maintenance of Global Partitioned Indexes
By default, the following operations on partitions on a heap-organized table mark
all global indexes as unusable:

ADD (HASH)
COALESCE (HASH)
DROP
EXCHANGE
MERGE
MOVE
SPLIT
TRUNCATE

These indexes can be maintained by appending the clause UPDATE GLOBAL
INDEXES to the SQL statements for the operation. The two advantages to
maintaining global indexes:

� The index remains available and online throughout the operation. Hence no
other applications are affected by this operation.

� The index doesn't have to be rebuilt after the operation.

Example: ALTER TABLE DROP PARTITION P1 UPDATE GLOBAL INDEXES

Figure 11–7 offers a graphical view of global partitioned indexes.

Note: This feature is supported only for heap organized tables.

See Also: Oracle9i SQL Reference for more information about the
UPDATE GLOBAL INDEX clause
11-16 Oracle9i Database Concepts

Partitioned Indexes
Figure 11–7 Global Partitioned Index

Global Nonpartitioned Indexes
Global nonpartitioned indexes behave just like a nonpartitioned index. They are
commonly used in OLTP environments and offer efficient access to any individual
record.

Figure 11–8 offers a graphical view of global nonpartitioned indexes.

Partitioned
Indexes

Partitioned
Tables
Partitioned Tables and Indexes 11-17

Partitioned Indexes
Figure 11–8 Global Nonpartitioned Index

Partitioned Index Examples

Example of Index Creation: Starting Table Used for Examples
CREATE TABLE employees
(employee_id NUMBER(4) NOT NULL,
last_name VARCHAR2(10),
department_id NUMBER(2))
PARTITION BY RANGE (department_id)
(PARTITION employees_part1 VALUES LESS THAN (11) TABLESPACE part1,
PARTITION employees_part2 VALUES LESS THAN (21) TABLESPACE part2,
PARTITION employees_part3 VALUES LESS THAN (31) TABLESPACE part3);

Example of a Local Index Creation
CREATE INDEX employees_local_idx ON employees (employee_id) LOCAL;

Example of a Global Index Creation
CREATE INDEX employees_global_idx ON employees(employee_id);

Example of a Global Partitioned Index Creation
CREATE INDEX employees_global_part_idx ON employees(employee_id)
GLOBAL PARTITION BY RANGE(employee_id)
(PARTITION p1 VALUES LESS THAN(5000),
PARTITION p2 VALUES LESS THAN(MAXVALUE));

Index

Partitioned
Tables
11-18 Oracle9i Database Concepts

Partitioned Indexes
Example of a Partitioned Index-Organized Table Creation
CREATE TABLE sales_range
(
salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
sales_date DATE,
PRIMARY KEY(sales_date, salesman_id))
ORGANIZATION INDEX INCLUDING salesman_id
OVERFLOW TABLESPACE tabsp_overflow
PARTITION BY RANGE(sales_date)
(PARTITION sales_jan2000 VALUES LESS THAN(TO_DATE('02/01/2000','DD/MM/YYYY'))
OVERFLOW TABLESPACE p1_overflow,
PARTITION sales_feb2000 VALUES LESS THAN(TO_DATE('03/01/2000','DD/MM/YYYY'))
OVERFLOW TABLESPACE p2_overflow,
PARTITION sales_mar2000 VALUES LESS THAN(TO_DATE('04/01/2000','DD/MM/YYYY'))
OVERFLOW TABLESPACE p3_overflow,
PARTITION sales_apr2000 VALUES LESS THAN(TO_DATE('05/01/2000','DD/MM/YYYY'))
OVERFLOW TABLESPACE p4_overflow);

Miscellaneous Information about Creating Indexes on Partitioned Tables
You can create bitmap indexes on partitioned tables, with the restriction that the
bitmap indexes must be local to the partitioned table. They cannot be global
indexes.

Global indexes can be unique. Local indexes can only be unique if the partitioning
key is a part of the index key.

Using Partitioned Indexes in OLTP Applications
Here are a few guidelines for OLTP applications:

� Global indexes and unique, local indexes provide better performance than
nonunique local indexes because they minimize the number of index partition
probes.

� Local indexes offer better availability when there are partition or subpartition
maintenance operations on the table.

Using Partitioned Indexes in Data Warehousing and DSS Applications
Here are a few guidelines for data warehousing and DSS applications:
Partitioned Tables and Indexes 11-19

Partitioning to Improve Performance
� Local indexes are preferable because they are easier to manage during data
loads and during partition-maintenance operations.

� Local indexes can improve performance because many index partitions can be
scanned in parallel by range queries on the index key.

Partitioned Indexes on Composite Partitions
Here are a few points to remember when using partitioned indexes on composite
partitions:

� Only range partitioned global indexes are supported.

� Subpartitioned indexes are always local and stored with the table subpartition
by default.

� Tablespaces can be specified at either index or index subpartition levels.

Partitioning to Improve Performance
Partitioning can help you improve performance and manageability. Some topics to
keep in mind when using partitioning for these reasons are:

� Partition Pruning

� Partition-wise Joins

� Parallel DML

Partition Pruning
The Oracle server explicitly recognizes partitions and subpartitions. It then
optimizes SQL statements to mark the partitions or subpartitions that need to be
accessed and eliminates (prunes) unnecessary partitions or subpartitions from
access by those SQL statements. In other words, partition pruning is the skipping of
unnecessary index and data partitions or subpartitions in a query.

For each SQL statement, depending on the selection criteria specified, unneeded
partitions or subpartitions can be eliminated. For example, if a query only involves
March sales data, then there is no need to retrieve data for the remaining eleven
months. Such intelligent pruning can dramatically reduce the data volume,
resulting in substantial improvements in query performance.

If the optimizer determines that the selection criteria used for pruning are satisfied
by all the rows in the accessed partition or subpartition, it removes those criteria
11-20 Oracle9i Database Concepts

Partitioning to Improve Performance
from the predicate list (WHERE clause) during evaluation in order to improve
performance. However, the optimizer cannot prune partitions if the SQL statement
applies a function to the partitioning column (with the exception of the TO_DATE
function). Similarly, the optimizer cannot use an index if the SQL statement applies
a function to the indexed column, unless it is a function-based index.

Pruning can eliminate index partitions even when the underlying table's partitions
cannot be eliminated, but only when the index and table are partitioned on different
columns. You can often improve the performance of operations on large tables by
creating partitioned indexes that reduce the amount of data that your SQL
statements need to access or modify.

Equality, range, LIKE, and IN-list predicates are considered for partition pruning
with range or list partitioning, and equality and IN-list predicates are considered
for partition pruning with hash partitioning.

Partition Pruning Example
We have a partitioned table called orders. The partition key for orders is order_
date. Let’s assume that orders has six months of data, January to June, with a
partition for each month of data. If the following query is run:

SELECT SUM(value)
FROM orders
WHERE order_date BETWEEN '28-MAR-98' AND '23-APR-98'

Partition pruning is achieved by:

� First, partition elimination of January, February, May, and June data partitions.
Then either:

� An index scan of the March and April data partition due to high index
selectivity

or

� A full scan of the March and April data partition due to low index
selectivity

Partition-wise Joins
A partition-wise join is a join optimization that you can use when joining two tables
that are both partitioned along the join column(s). With partition-wise joins, the join
operation is broken into smaller joins that are performed sequentially or in parallel.
Another way of looking at partition-wise joins is that they minimize the amount of
Partitioned Tables and Indexes 11-21

Partitioning to Improve Performance
data exchanged among parallel slaves during the execution of parallel joins by
taking into account data distribution.

Parallel DML
Parallel execution dramatically reduces response time for data-intensive operations
on large databases typically associated with decision support systems and data
warehouses. In addition to conventional tables, you can use parallel query and
parallel DML with range- and hash-partitioned tables. By doing so, you can
enhance scalability and performance for batch operations.

The semantics and restrictions for parallel DML sessions are the same whether you
are using index-organized tables or not.

See Also: Oracle9i Data Warehousing Guide for more information
about partitioning methods and partition-wise joins

See Also: Oracle9i Data Warehousing Guide for more information
about parallel DML and its use with partitioned tables
11-22 Oracle9i Database Concepts

Native D
12

Native Datatypes

This chapter discusses the Oracle built-in datatypes, their properties, and how they
map to non-Oracle datatypes. Topics include:

� Introduction to Oracle Datatypes

� Character Datatypes

� NUMBER Datatype

� DATE Datatype

� LOB Datatypes

� RAW and LONG RAW Datatypes

� ROWID and UROWID Datatypes

� ANSI, DB2, and SQL/DS Datatypes

� XML Datatypes

� URI Datatypes

� Data Conversion
atatypes 12-1

Introduction to Oracle Datatypes
Introduction to Oracle Datatypes
Each column value and constant in a SQL statement has a datatype, which is
associated with a specific storage format, constraints, and a valid range of values.
When you create a table, you must specify a datatype for each of its columns.

Oracle provides the following built-in datatypes:

� Character Datatypes

– CHAR Datatype

– VARCHAR2 and VARCHAR Datatypes

– NCHAR and NVARCHAR2 Datatypes

– LONG Datatype

� NUMBER Datatype

� DATE Datatype

� LOB Datatypes

– BLOB Datatype

– CLOB and NCLOB Datatypes

– BFILE Datatype

� RAW and LONG RAW Datatypes

� ROWID and UROWID Datatypes

– Physical Rowids

– Logical Rowids

– Rowids in Non-Oracle Databases

Note: PL/SQL has additional datatypes for constants and
variables, which include BOOLEAN, reference types, composite
types (collections and records), and user-defined subtypes.
12-2 Oracle9i Database Concepts

Character Datatypes
The following sections that describe each of the built-in datatypes in more detail.

Character Datatypes
The character datatypes store character (alphanumeric) data in strings, with byte
values corresponding to the character encoding scheme, generally called a character
set or code page.

The database’s character set is established when you create the database. Examples
of character sets are 7-bit ASCII (American Standard Code for Information
Interchange), EBCDIC (Extended Binary Coded Decimal Interchange Code), Code
Page 500, Japan Extended UNIX, and Unicode UTF-8. Oracle supports both
single-byte and multibyte encoding schemes.

CHAR Datatype
The CHAR datatype stores fixed-length character strings. When you create a table
with a CHAR column, you must specify a string length (in bytes or characters)
between 1 and 2000 bytes for the CHAR column width. The default is 1 byte. Oracle
then guarantees that:

� When you insert or update a row in the table, the value for the CHAR column
has the fixed length.

� If you give a shorter value, then the value is blank-padded to the fixed length.

� If you give a longer value with trailing blanks, then blanks are trimmed from
the value to the fixed length.

See Also:

� PL/SQL User’s Guide and Reference for information about
PL/SQL datatypes and a summary of the characteristics of each
Oracle datatype

� Oracle9i Application Developer’s Guide - Fundamentals for
information about how to use the built-in datatypes

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals for
information about how to select a character datatype

� Oracle9i Database Globalization Support Guide for more
information about converting character data
Native Datatypes 12-3

Character Datatypes
� If a value is too large, Oracle returns an error.

Oracle compares CHAR values using blank-padded comparison semantics.

VARCHAR2 and VARCHAR Datatypes
The VARCHAR2 datatype stores variable-length character strings. When you create a
table with a VARCHAR2 column, you specify a maximum string length (in bytes or
characters) between 1 and 4000 bytes for the VARCHAR2 column. For each row,
Oracle stores each value in the column as a variable-length field unless a value
exceeds the column’s maximum length, in which case Oracle returns an error. Using
VARCHAR2 and VARCHAR saves on space used by the table.

For example, assume you declare a column VARCHAR2 with a maximum size of 50
characters. In a single-byte character set, if only 10 characters are given for the
VARCHAR2 column value in a particular row, the column in the row’s row piece
stores only the 10 characters (10 bytes), not 50.

Oracle compares VARCHAR2 values using nonpadded comparison semantics.

VARCHAR Datatype
The VARCHAR datatype is synonymous with the VARCHAR2 datatype. To avoid
possible changes in behavior, always use the VARCHAR2 datatype to store
variable-length character strings.

Length Semantics for Character Datatypes
Globalization support allows the use of various character sets for the character
datatypes. Globalization support lets you process single-byte and multibyte
character data and convert between character sets. Client sessions can use client
character sets that are different from the database character set.

Consider the size of characters when you specify the column length for character
datatypes. You must consider this issue when estimating space for tables with
columns that contain character data.

The length semantics of character datatypes can be measured in bytes or characters.

See Also: Oracle9i SQL Reference for details about blank-padded
comparison semantics

See Also: Oracle9i SQL Reference for details about nonpadded
comparison semantics
12-4 Oracle9i Database Concepts

Character Datatypes
� Byte semantics treat strings as a sequence of bytes. This is the default for
character datatypes.

� Character semantics treat strings as a sequence of characters. A character is
technically a codepoint of the database character set.

For single byte character sets, columns defined in character semantics are basically
the same as those defined in byte semantics. Character semantics are useful for
defining varying-width multibyte strings; it reduces the complexity when defining
the actual length requirements for data storage. For example, in a Unicode database
(UTF8), you need to define a VARCHAR2 column that can store up to five Chinese
characters together with five English characters. In byte semantics, this would
require (5*3 bytes) + (1*5 bytes) = 20 bytes; in character semantics, the column
would require 10 characters.

VARCHAR2(20 BYTE) and SUBSTRB(<string>, 1, 20) use byte semantics.
VARCHAR2(10 CHAR) and SUBSTR(<string>, 1, 10) use character semantics.

The parameter NLS_LENGTH_SEMANTICS decides whether a new column of
character datatype uses byte or character semantics. The default length semantic is
byte. If all character datatype columns in a database use byte semantics (or all use
character semantics) then users do not have to worry about which columns use
which semantics. The BYTE and CHAR qualifiers shown earlier should be avoided
when possible, because they lead to mixed-semantics databases. Instead, the NLS_
LENGTH_SEMANTICS initialization parameter should be set appropriately in
INIT.ORA, and columns should use the default semantics.

NCHAR and NVARCHAR2 Datatypes
NCHAR and NVARCHAR2 are Unicode data types that store Unicode character data.
The character set of NCHAR and NVARCHAR2 datatypes can only be either

See Also:

� "Use of Unicode Data in an Oracle Database" on page 12-6

� Oracle9i Database Globalization Support Guide for more
information about Oracle’s globalization support feature

� Oracle9i Application Developer’s Guide - Fundamentals for
information about setting length semantics and choosing the
appropriate Unicode character set.

� Oracle9i Database Migration for information about migrating
existing columns to character semantics
Native Datatypes 12-5

Character Datatypes
AL16UTF16 or UTF8 and is specified at database creation time as the national
character set. AL16UTF16 and UTF8 are both Unicode encoding.

� The NCHAR datatype stores fixed-length character strings that correspond to the
national character set.

� The NVARCHAR2 datatype stores variable length character strings.

When you create a table with an NCHAR or NVARCHAR2 column, the maximum size
specified is always in character length semantics. Character length semantics is the
default and only length semantics for NCHAR or NVARCHAR2.

Example 12–1 Defining Maximum Byte Length of a Column

If national character set is UTF8, the following statement defines the maximum byte
length of 90 bytes:

CREATE TABLE tab1 (col1 NCHAR(30));

This statement creates a column with maximum character length of 30. The
maximum byte length is the multiple of the maximum character length and the
maximum number of bytes in each character.

NCHAR
The maximum length of an NCHAR column is 2000 bytes. It can hold up to 2000
characters. The actual data is subject to the maximum byte limit of 2000. The two
size constraints must be satisfied simultaneously at run time.

NVARCHAR2
The maximum length of an NVARCHAR2 column is 4000 bytes. It can hold up to 4000
characters. The actual data is subject to the maximum byte limit of 4000. The two
size constraints must be satisfied simultaneously at run time.

Use of Unicode Data in an Oracle Database
Unicode is an effort to have a unified encoding of every character in every language
known to man. It also provides a way to represent privately-defined characters. A
database column that stores Unicode can store text written in any language.

See Also: Oracle9i Database Globalization Support Guide for more
information about the NCHAR and NVARCHAR2 datatypes
12-6 Oracle9i Database Concepts

Character Datatypes
Oracle users deploying globalized applications have a strong need to store Unicode
data in Oracle databases. They need a datatype which is guaranteed to be Unicode
regardless of the database character set.

Oracle supports a reliable Unicode data type through NCHAR, NVARCHAR2, and
NCLOB. These data types are guaranteed to be Unicode encoding and always use
character length semantics. The character sets used by NCHAR/NVARCHAR2 can be
either UTF8 or AL16UTF16, depending on the setting of the national character set
when the database is created. These data types allow character data in Unicode to
be stored in a database that may or may not use Unicode as database character set.

Implicit Type Conversion
In addition to all the implicit conversions for CHAR/VARCHAR2, Oracle also
supports implicit conversion for NCHAR/NVARCHAR2. Implicit conversion between
CHAR/VARCHAR2 and NCHAR/NVARCHAR2 is also supported.

LOB Character Datatypes
The LOB datatypes for character data are CLOB and NCLOB. They can store up to 4
gigabytes of character data (CLOB) or national character set data (NCLOB). LOB
datatypes are intended to replace the LONG datatype functionality.

LONG Datatype

Columns defined as LONG can store variable-length character data containing up to
2 gigabytes of information. LONG data is text data that is to be appropriately
converted when moving among different systems.

See Also: "LOB Datatypes" on page 12-13

Note: The LONG datatype is provided for backward compatibility
with existing applications. In new applications, use CLOB and
NCLOB datatypes for large amounts of character data.
Native Datatypes 12-7

NUMBER Datatype
LONG datatype columns are used in the data dictionary to store the text of view
definitions. You can use LONG columns in SELECT lists, SET clauses of UPDATE
statements, and VALUES clauses of INSERT statements.

NUMBER Datatype
The NUMBER datatype stores fixed and floating-point numbers. Numbers of
virtually any magnitude can be stored and are guaranteed portable among different
systems operating Oracle, up to 38 digits of precision.

The following numbers can be stored in a NUMBER column:

� Positive numbers in the range 1 x 10-130 to 9.99...9 x 10125 with up to 38
significant digits

� Negative numbers from -1 x 10-130 to 9.99...99 x 10125 with up to 38 significant
digits

� Zero

� Positive and negative infinity (generated only by importing from an Oracle
Version 5 database)

For numeric columns, you can specify the column as:

column_name NUMBER

Optionally, you can also specify a precision (total number of digits) and scale
(number of digits to the right of the decimal point):

column_name NUMBER (precision, scale)

If a precision is not specified, the column stores values as given. If no scale is
specified, the scale is zero.

Oracle guarantees portability of numbers with a precision equal to or less than 38
digits. You can specify a scale and no precision:

column_name NUMBER (*, scale)

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals for
information about the restrictions on the LONG datatype

� "RAW and LONG RAW Datatypes" on page 12-15 for
information about the LONG RAW datatype
12-8 Oracle9i Database Concepts

NUMBER Datatype
In this case, the precision is 38, and the specified scale is maintained.

When you specify numeric fields, it is a good idea to specify the precision and scale.
This provides extra integrity checking on input.

Table 12–1 shows examples of how data would be stored using different
scale factors.

If you specify a negative scale, Oracle rounds the actual data to the specified
number of places to the left of the decimal point. For example, specifying (7,-2)
means Oracle rounds to the nearest hundredths, as shown in Table 12–1.

For input and output of numbers, the standard Oracle default decimal character is a
period, as in the number 1234.56. The decimal is the character that separates the
integer and decimal parts of a number. You can change the default decimal
character with the initialization parameter NLS_NUMERIC_CHARACTERS. You can
also change it for the duration of a session with the ALTER SESSION statement. To
enter numbers that do not use the current default decimal character, use the TO_
NUMBER function.

Internal Numeric Format
Oracle stores numeric data in variable-length format. Each value is stored in
scientific notation, with 1 byte used to store the exponent and up to 20 bytes to store
the mantissa. The resulting value is limited to 38 digits of precision. Oracle does not
store leading and trailing zeros. For example, the number 412 is stored in a format
similar to 4.12 x 102, with 1 byte used to store the exponent(2) and 2 bytes used to
store the three significant digits of the mantissa(4,1,2). Negative numbers include
the sign in their length.

Table 12–1 How Scale Factors Affect Numeric Data Storage

Input Data Specified As Stored As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER(*,1) 7456123.9

7,456,123.89 NUMBER(9) 7456124

7,456,123.89 NUMBER(9,2) 7456123.89

7,456,123.89 NUMBER(9,1) 7456123.9

7,456,123.89 NUMBER(6) (not accepted, exceeds precision)

7,456,123.89 NUMBER(7,-2) 7456100
Native Datatypes 12-9

DATE Datatype
Taking this into account, the column size in bytes for a particular numeric data
value NUMBER(p), where p is the precision of a given value, can be calculated using
the following formula:

ROUND((length(p)+s)/2))+1

where s equals zero if the number is positive, and s equals 1 if the number is
negative.

Zero and positive and negative infinity (only generated on import from Version 5
Oracle databases) are stored using unique representations. Zero and negative
infinity each require 1 byte; positive infinity requires 2 bytes.

DATE Datatype
The DATE datatype stores point-in-time values (dates and times) in a table. The
DATE datatype stores the year (including the century), the month, the day, the
hours, the minutes, and the seconds (after midnight).

Oracle can store dates in the Julian era, ranging from January 1, 4712 BCE through
December 31, 4712 CE (Common Era). Unless BCE ('BC' in the format mask) is
specifically used, CE date entries are the default.

Oracle uses its own internal format to store dates. Date data is stored in fixed-length
fields of seven bytes each, corresponding to century, year, month, day, hour, minute,
and second.

For input and output of dates, the standard Oracle date format is DD-MON-YY, as
follows:

’13-NOV-92’

You can change this default date format for an instance with the parameter NLS_
DATE_FORMAT. You can also change it during a user session with the ALTER
SESSION statement. To enter dates that are not in standard Oracle date format, use
the TO_DATE function with a format mask:

TO_DATE (’November 13, 1992’, ’MONTH DD, YYYY’)

Oracle stores time in 24-hour format—HH:MI:SS. By default, the time in a date
field is 00:00:00 A.M. (midnight) if no time portion is entered. In a time-only
entry, the date portion defaults to the first day of the current month. To enter the
time portion of a date, use the TO_DATE function with a format mask indicating the
time portion, as in:
12-10 Oracle9i Database Concepts

DATE Datatype
INSERT INTO birthdays (bname, bday) VALUES
(’ANDY’,TO_DATE(’13-AUG-66 12:56 A.M.’,’DD-MON-YY HH:MI A.M.’));

Use of Julian Dates
Julian dates allow continuous dating by the number of days from a common
reference. (The reference is 01-01-4712 years BCE, so current dates are somewhere in
the 2.4 million range.) A Julian date is nominally a noninteger, the fractional part
being a portion of a day. Oracle uses a simplified approach that results in integer
values. Julian dates can be calculated and interpreted differently. The calculation
method used by Oracle results in a seven-digit number (for dates most often used),
such as 2449086 for 08-APR-93.

The format mask ’J’ can be used with date functions (TO_DATE or TO_CHAR) to
convert date data into Julian dates. For example, the following query returns all
dates in Julian date format:

SELECT TO_CHAR (hire_date, ’J’) FROM employees;

You must use the TO_NUMBER function if you want to use Julian dates in
calculations. You can use the TO_DATE function to enter Julian dates:

INSERT INTO employees (hire_date) VALUES (TO_DATE(2448921, ’J’));

Date Arithmetic
Oracle date arithmetic takes into account the anomalies of the calendars used
throughout history. For example, the switch from the Julian to the Gregorian
calendar, 15-10-1582, eliminated the previous 10 days (05-10-1582 through
14-10-1582). The year 0 does not exist.

You can enter missing dates into the database, but they are ignored in date
arithmetic and treated as the next "real" date. For example, the next day after
04-10-1582 is 15-10-1582, and the day following 05-10-1582 is also 15-10-1582.

Note: Oracle Julian dates might not be compatible with Julian
dates generated by other date algorithms.

Note: This discussion of date arithmetic might not apply to all
countries’ date standards (such as those in Asia).
Native Datatypes 12-11

DATE Datatype
Centuries and the Year 2000
Oracle stores year data with the century information. For example, the Oracle
database stores 1996 or 2001, and not simply 96 or 01. The DATE datatype always
stores a four-digit year internally, and all other dates stored internally in the
database have four digit years. Oracle utilities such as import, export, and recovery
also deal with four-digit years.

Daylight Savings Support
Oracle9i provides daylight savings support for DATETIME datatypes in the server.
You can insert and query DATETIME values based on local time in a specific region.
The DATETIME datatypes TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE are time-zone aware.

Time Zones
You can include the time zone in your date/time data and provides support for
fractional seconds. Three new datatypes are added to DATE, with the following
differences:

TIMESTAMP WITH LOCAL TIME ZONE is stored in the database time zone. When a
user selects the data, the value is adjusted to the user’s session time zone.

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals for more
information about centuries and date format masks

� Oracle9i SQL Reference for information about date format codes

Datatype Time Zone Fractional Seconds

DATE No No

TIMESTAMP No Yes

TIMESTAMP
WITH TIME ZONE

Explicit Yes

TIMESTAMP
WITH LOCAL TIME ZONE

Relative Yes
12-12 Oracle9i Database Concepts

LOB Datatypes
Example:
A San Francisco database has system time zone = -8:00. When a New York client
(session time zone = -5:00) inserts into or selects from the San Francisco database,
TIMESTAMP WITH LOCAL TIME ZONE data is adjusted as follows:

� The New York client inserts TIMESTAMP’1998-1-23 6:00:00-5:00’ into a
TIMESTAMP WITH LOCAL TIME ZONE column in the San Francisco database.
The inserted data is stored in San Francisco as binary value 1998-1-23
3:00:00.

� When the New York client selects that inserted data from the San Francisco
database, the value displayed in New York is ‘1998-1-23 6:00:00’.

� A San Francisco client, selecting the same data, see the value ’1998-1-23
3:00:00’.

LOB Datatypes
The LOB datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store large blocks
of unstructured data (such as text, graphic images, video clips, and sound
waveforms) up to 4 gigabytes in size. They provide efficient, random, piece-wise
access to the data. Oracle Corporation recommends that you always use LOB
datatypes over LONG datatypes.

You can perform parallel queries (but not parallel DML or DDL) on LOB columns.

LOB datatypes differ from LONG and LONG RAW datatypes in several ways. For
example:

� A table can contain multiple LOB columns but only one LONG column.

Note: To avoid unexpected results in your DML operations on
datatime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the database time zone or the session time
zone has not been set manually, Oracle uses the operating system
time zone by default. If the operating system time zone is not a
valid Oracle time zone, Oracle uses UTC as the default value.

See Also: Oracle9i SQL Reference for details about the syntax of
creating and entering data in time stamp columns
Native Datatypes 12-13

LOB Datatypes
� A table containing one or more LOB columns can be partitioned, but a table
containing a LONG column cannot be partitioned.

� The maximum size of a LOB is 4 gigabytes, but the maximum size of a LONG is 2
gigabytes.

� LOBs support random access to data, but LONGs support only sequential access.

� LOB datatypes (except NCLOB) can be attributes of a user-defined object type
but LONG datatypes cannot.

� Temporary LOBs that act like local variables can be used to perform
transformations on LOB data. Temporary internal LOBs (BLOBs, CLOBs, and
NCLOBs) are created in the user’s temporary tablespace and are independent of
tables. For LONG datatypes, however, no temporary structures are available.

� Tables with LOB columns can be replicated, but tables with LONG columns
cannot.

SQL statements define LOB columns in a table and LOB attributes in a user-defined
object type. When defining LOBs in a table, you can explicitly specify the tablespace
and storage characteristics for each LOB.

LOB datatypes can be stored inline (within a table), out-of-line (within a tablespace,
using a LOB locator), or in an external file (BFILE datatypes).

With compatibility set to Oracle9i or higher, you can use LOBs with SQL VARCHAR
operators and functions.

BLOB Datatype
The BLOB datatype stores unstructured binary data in the database. BLOBs can store
up to 4 gigabytes of binary data.

BLOBs participate fully in transactions. Changes made to a BLOB value by the
DBMS_LOB package, PL/SQL, or the OCI can be committed or rolled back.
However, BLOB locators cannot span transactions or sessions.

See Also:

� Oracle9i SQL Reference for a complete list of differences between
the LOB datatypes and the LONG and LONG RAW datatypes

� Oracle9i Application Developer’s Guide - Large Objects (LOBs)for
more information about LOB storage and LOB locators
12-14 Oracle9i Database Concepts

RAW and LONG RAW Datatypes
CLOB and NCLOB Datatypes
The CLOB and NCLOB datatypes store up to 4 gigabytes of character data in the
database. CLOBs store database character set data and NCLOBs store Unicode
national character set data. For varying-width database character sets, the CLOB
value is stored in the database using the two-byte Unicode character set, which has
a fixed width. Oracle translates the stored Unicode value to the character set
requested on the client or on the server, which can be fixed-width or varying width.
When you insert data into a CLOB column using a varying-width character set,
Oracle converts the data into Unicode before storing it in the database.

CLOBs and NCLOBs participate fully in transactions. Changes made to a CLOB or
NCLOB value by the DBMS_LOB package, PL/SQL, or the OCI can be committed or
rolled back. However, CLOB and NCLOB locators cannot span transactions or
sessions.

You cannot create an object type with NCLOB attributes, but you can specify NCLOB
parameters in a method for an object type.

BFILE Datatype
The BFILE datatype stores unstructured binary data in operating-system files
outside the database. A BFILE column or attribute stores a file locator that points to
an external file containing the data. BFILEs can store up to 4 gigabytes of data.

BFILEs are read-only; you cannot modify them. They support only random (not
sequential) reads, and they do not participate in transactions. The underlying
operating system must maintain the file integrity, security, and durability for
BFILEs. The database administrator must ensure that the file exists and that Oracle
processes have operating-system read permissions on the file.

RAW and LONG RAW Datatypes

See Also: Oracle9i Database Globalization Support Guide for more
information about national character set data and the Unicode
character set

Note: The LONG RAW datatype is provided for backward
compatibility with existing applications. For new applications, use
the BLOB and BFILE datatypes for large amounts of binary data.
Native Datatypes 12-15

ROWID and UROWID Datatypes
The RAW and LONG RAW datatypes are used for data that is not to be interpreted (not
converted when moving data between different systems) by Oracle. These
datatypes are intended for binary data or byte strings. For example, LONG RAW can
be used to store graphics, sound, documents, or arrays of binary data. The
interpretation depends on the use.

RAW is a variable-length datatype like the VARCHAR2 character datatype, except
Oracle Net Services (which connects user sessions to the instance) and the Import
and Export utilities do not perform character conversion when transmitting RAW or
LONG RAW data. In contrast, Oracle Net Services and Import/Export automatically
convert CHAR, VARCHAR2, and LONG data between the database character set and
the user session character set (set by the NLS_LANGUAGE parameter of the ALTER
SESSION statement), if the two character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR data,
the binary data is represented in hexadecimal form with one hexadecimal character
representing every four bits of RAW data. For example, one byte of RAW data with
bits 11001011 is displayed and entered as ’CB.’

LONG RAW data cannot be indexed, but RAW data can be indexed.

ROWID and UROWID Datatypes
Oracle uses a ROWID datatype to store the address (rowid) of every row in the
database.

� Physical rowids store the addresses of rows in ordinary tables (excluding
index-organized tables), clustered tables, table partitions and subpartitions,
indexes, and index partitions and subpartitions.

� Logical rowids store the addresses of rows in index-organized tables.

A single datatype called the universal rowid, or UROWID, supports both logical and
physical rowids, as well as rowids of foreign tables such as non-Oracle tables
accessed through a gateway.

A column of the UROWID datatype can store all kinds of rowids. The value of the
COMPATIBLE initialization parameter must be set to 8.1 or higher to use UROWID
columns.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information about other restrictions on the LONG RAW datatype

See Also: "Rowids in Non-Oracle Databases" on page 12-23
12-16 Oracle9i Database Concepts

ROWID and UROWID Datatypes
The ROWID Pseudocolumn
Each table in an Oracle database internally has a pseudocolumn named ROWID.
This pseudocolumn is not evident when listing the structure of a table by executing
a SELECT * FROM ... statement, or a DESCRIBE ... statement using SQL*Plus, nor
does the pseudocolumn take up space in the table. However, each row’s address can
be retrieved with a SQL query using the reserved word ROWID as a column name,
for example:

SELECT ROWID, last_name FROM employees;

You cannot set the value of the pseudocolumn ROWID in INSERT or UPDATE
statements, and you cannot delete a ROWID value. Oracle uses the ROWID values in
the pseudocolumn ROWID internally for the construction of indexes.

You can reference rowids in the pseudocolumn ROWID like other table columns
(used in SELECT lists and WHERE clauses), but rowids are not stored in the database,
nor are they database data. However, you can create tables that contain columns
having the ROWID datatype, although Oracle does not guarantee that the values of
such columns are valid rowids. The user must ensure that the data stored in the
ROWID column truly is a valid ROWID.

Physical Rowids
Physical rowids provide the fastest possible access to a row of a given table. They
contain the physical address of a row (down to the specific block) and allow you to
retrieve the row in a single block access. Oracle guarantees that as long as the row
exists, its rowid does not change. These performance and stability qualities make
rowids useful for applications that select a set of rows, perform some operations on
them, and then access some of the selected rows again, perhaps with the purpose of
updating them.

Every row in a nonclustered table is assigned a unique rowid that corresponds to
the physical address of a row’s row piece (or the initial row piece if the row is
chained among multiple row pieces). In the case of clustered tables, rows in
different tables that are in the same data block can have the same rowid.

A row’s assigned rowid remains unchanged unless the row is exported and
imported using the Import and Export utilities. When you delete a row from a table
and then commit the encompassing transaction, the deleted row’s associated rowid
can be assigned to a row inserted in a subsequent transaction.

A physical rowid datatype has one of two formats:

See Also: "How Rowids Are Used" on page 12-21
Native Datatypes 12-17

ROWID and UROWID Datatypes
� The extended rowid format supports tablespace-relative data block addresses
and efficiently identifies rows in partitioned tables and indexes as well as
nonpartitioned tables and indexes. Tables and indexes created by an Oracle8i
(or higher) server always have extended rowids.

� A restricted rowid format is also available for backward compatibility with
applications developed with Oracle7 or earlier releases.

Extended Rowids
Extended rowids use a base 64 encoding of the physical address for each row
selected. The encoding characters are A-Z, a-z, 0-9, +, and /. For
example, the following query:

SELECT ROWID, last_name FROM employees WHERE department_id = 20;

can return the following row information:

ROWID LAST_NAME
------------------ ----------
AAAAaoAATAAABrXAAA BORTINS
AAAAaoAATAAABrXAAE RUGGLES
AAAAaoAATAAABrXAAG CHEN
AAAAaoAATAAABrXAAN BLUMBERG

An extended rowid has a four-piece format, OOOOOOFFFBBBBBBRRR:

� OOOOOO: The data object number that identifies the database segment
(AAAAao in the example). Schema objects in the same segment, such as a cluster
of tables, have the same data object number.

� FFF: The tablespace-relative datafile number of the datafile that contains the
row (file AAT in the example).

� BBBBBB: The data block that contains the row (block AAABrX in the
example). Block numbers are relative to their datafile, not tablespace. Therefore,
two rows with identical block numbers could reside in two different datafiles of
the same tablespace.

� RRR: The row in the block.

You can retrieve the data object number from data dictionary views USER_
OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. For example, the following query
returns the data object number for the employees table in the SCOTT schema:

SELECT DATA_OBJECT_ID FROM DBA_OBJECTS
WHERE OWNER = ’SCOTT’ AND OBJECT_NAME = ’EMPLOYEES’;
12-18 Oracle9i Database Concepts

ROWID and UROWID Datatypes
You can also use the DBMS_ROWID package to extract information from an extended
rowid or to convert a rowid from extended format to restricted format (or vice
versa).

Restricted Rowids
Restricted rowids use a binary representation of the physical address for each row
selected. When queried using SQL*Plus, the binary representation is converted to a
VARCHAR2/hexadecimal representation. The following query:

SELECT ROWID, last_name FROM employees
WHERE department_id = 30;

can return the following row information:

ROWID ENAME
------------------ ----------
00000DD5.0000.0001 KRISHNAN
00000DD5.0001.0001 ARBUCKLE
00000DD5.0002.0001 NGUYEN

As shown, a restricted rowid’s VARCHAR2/hexadecimal representation is in a
three-piece format, block.row.file:

� The data block that contains the row (block DD5 in the example). Block
numbers are relative to their datafile, not tablespace. Therefore, two rows with
identical block numbers could reside in two different datafiles of the same
tablespace.

� The row in the block that contains the row (rows 0, 1, 2 in the example). Row
numbers of a given block always start with 0.

� The datafile that contains the row (file 1 in the example). The first datafile of
every database is always 1, and file numbers are unique within a database.

Examples of Rowid Use
You can use the function SUBSTR to break the data in a rowid into its components.
For example, you can use SUBSTR to break an extended rowid into its four
components (database object, file, block, and row):

SELECT ROWID,

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information about the DBMS_ROWID package
Native Datatypes 12-19

ROWID and UROWID Datatypes
SUBSTR(ROWID,1,6) "OBJECT",
SUBSTR(ROWID,7,3) "FIL",
SUBSTR(ROWID,10,6) "BLOCK",
SUBSTR(ROWID,16,3) "ROW"
FROM products;

ROWID OBJECT FIL BLOCK ROW
------------------ ------ --- ------ ----
AAAA8mAALAAAAQkAAA AAAA8m AAL AAAAQk AAA
AAAA8mAALAAAAQkAAF AAAA8m AAL AAAAQk AAF
AAAA8mAALAAAAQkAAI AAAA8m AAL AAAAQk AAI

Or you can use SUBSTR to break a restricted rowid into its three components (block,
row, and file):

SELECT ROWID, SUBSTR(ROWID,15,4) "FILE",
SUBSTR(ROWID,1,8) "BLOCK",
SUBSTR(ROWID,10,4) "ROW"
FROM products;

ROWID FILE BLOCK ROW
------------------ ---- -------- ----
00000DD5.0000.0001 0001 00000DD5 0000
00000DD5.0001.0001 0001 00000DD5 0001
00000DD5.0002.0001 0001 00000DD5 0002

Rowids can be useful for revealing information about the physical storage of a
table’s data. For example, if you are interested in the physical location of a table’s
rows (such as for table striping), the following query of an extended rowid tells how
many datafiles contain rows of a given table:

SELECT COUNT(DISTINCT(SUBSTR(ROWID,7,3))) "FILES" FROM tablename;

FILES

2

See Also:

� Oracle9i SQL Reference

� PL/SQL User’s Guide and Reference

� Oracle9i Database Performance Tuning Guide and Reference

for more examples using rowids
12-20 Oracle9i Database Concepts

ROWID and UROWID Datatypes
How Rowids Are Used
Oracle uses rowids internally for the construction of indexes. Each key in an index
is associated with a rowid that points to the associated row’s address for fast access.
End users and application developers can also use rowids for several important
functions:

� Rowids are the fastest means of accessing particular rows.

� Rowids can be used to see how a table is organized.

� Rowids are unique identifiers for rows in a given table.

Before you use rowids in DML statements, they should be verified and guaranteed
not to change. The intended rows should be locked so they cannot be deleted.
Under some circumstances, requesting data with an invalid rowid could cause a
statement to fail.

You can also create tables with columns defined using the ROWID datatype. For
example, you can define an exception table with a column of datatype ROWID to
store the rowids of rows in the database that violate integrity constraints. Columns
defined using the ROWID datatype behave like other table columns: values can be
updated, and so on. Each value in a column defined as datatype ROWID requires six
bytes to store pertinent column data.

Logical Rowids
Rows in index-organized tables do not have permanent physical addresses—they
are stored in the index leaves and can move within the block or to a different block
as a result of insertions. Therefore their row identifiers cannot be based on physical
addresses. Instead, Oracle provides index-organized tables with logical row
identifiers, called logical rowids, that are based on the table’s primary key. Oracle
uses these logical rowids for the construction of secondary indexes on
index-organized tables.

Each logical rowid used in a secondary index can include a physical guess, which
identifies the block location of the row in the index-organized table at the time the
guess was made; that is, when the secondary index was created or rebuilt.

Oracle can use guesses to probe into the leaf block directly, bypassing the full key
search. This ensures that rowid access of nonvolatile index-organized tables gives
comparable performance to the physical rowid access of ordinary tables. In a
volatile table, however, if the guess becomes stale the probe can fail, in which case a
primary key search must be performed.
Native Datatypes 12-21

ROWID and UROWID Datatypes
The values of two logical rowids are considered equal if they have the same
primary key values but different guesses.

Comparison of Logical Rowids with Physical Rowids
Logical rowids are similar to the physical rowids in the following ways:

� Logical rowids are accessible through the ROWID pseudocolumn.

You can use the ROWID pseudocolumn to select logical rowids from an
index-organized table. The SELECT ROWID statement returns an opaque
structure, which internally consists of the table’s primary key and the physical
guess (if any) for the row, along with some control information.

You can access a row using predicates of the form WHERE ROWID = value,
where value is the opaque structure returned by SELECT ROWID.

� Access through the logical rowid is the fastest way to get to a specific row,
although it can require more than one block access.

� A row’s logical rowid does not change as long as the primary key value does
not change. This is less stable than the physical rowid, which stays immutable
through all updates to the row.

� Logical rowids can be stored in a column of the UROWID datatype

One difference between physical and logical rowids is that logical rowids cannot be
used to see how a table is organized.

Guesses in Logical Rowids
When a row’s physical location changes, the logical rowid remains valid even if it
contains a guess, although the guess could become stale and slow down access to
the row. Guess information cannot be updated dynamically. For secondary indexes
on index-organized tables, however, you can rebuild the index to obtain fresh
guesses. Note that rebuilding a secondary index on an index-organized table
involves reading the base table, unlike rebuilding an index on an ordinary table.

Note: An opaque type is one whose internal structure is not
known to the database. The database provides storage for the type.
The type designer can provide access to the contents of the type by
implementing functions, typically 3GL routines.

See Also: "ROWID and UROWID Datatypes" on page 12-16
12-22 Oracle9i Database Concepts

ANSI, DB2, and SQL/DS Datatypes
Collect index statistics with the DBMS_STATS package or ANALYZE statement to
keep track of the staleness of guesses, so Oracle does not use them unnecessarily.
This is particularly important for applications that store rowids with guesses
persistently in a UROWID column, then retrieve the rowids later and use them to
fetch rows.

When you collect index statistics with the DBMS_STATS package or ANALYZE
statement, Oracle checks whether the existing guesses are still valid and records the
percentage of stale/valid guesses in the data dictionary. After you rebuild a
secondary index (recomputing the guesses), collect index statistics again.

In general, logical rowids without guesses provide the fastest possible access for a
highly volatile table. If a table is static or if the time between getting a rowid and
using it is sufficiently short to make row movement unlikely, logical rowids with
guesses provide the fastest access.

Rowids in Non-Oracle Databases
Oracle database applications can be run against non-Oracle database servers using
SQL*Connect or the Oracle Transparent Gateway. In such cases, the format of
rowids varies according to the characteristics of the non-Oracle system.
Furthermore, no standard translation to VARCHAR2/hexadecimal format is
available. Programs can still use the ROWID datatype. However, they must use a
nonstandard translation to hexadecimal format of length up to 256 bytes.

Rowids of a non-Oracle database can be stored in a column of the UROWID datatype.

ANSI, DB2, and SQL/DS Datatypes
SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from IBM’s products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name that differs from the Oracle datatype name, records it as the
name of the datatype of the column, and then stores the column’s data in an Oracle
datatype based on the conversions shown in Table 12–2 and Table 12–3.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about collecting statistics

See Also:

� Oracle Call Interface Programmer’s Guide for further details on
handling rowids with non-Oracle systems

� "ROWID and UROWID Datatypes" on page 12-16
Native Datatypes 12-23

ANSI, DB2, and SQL/DS Datatypes
Table 12–2 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER(n)

CHAR(n)

CHAR(n)

CHARACTER VARYING(n)

CHAR VARYING(n)

VARCHAR(n)

NATIONAL CHARACTER(n)

NATIONAL CHAR(n)

NCHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n)

NATIONAL CHAR VARYING(n)

NCHAR VARYING(n)

NVARCHAR2(n)

NUMERIC(p,s)

DECIMAL(p,s)a

NUMBER(p,s)

INTEGER

INT

SMALLINT

NUMBER(38)

FLOAT(b)b

DOUBLE PRECISIONc

REALd

NUMBER

aThe NUMERIC and DECIMAL datatypes can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

cThe DOUBLE PRECISION datatype is a floating-point number with binary precision 126.
dThe REAL datatype is a floating-point number with a binary precision of 63, or 18 decimal.
12-24 Oracle9i Database Concepts

XML Datatypes
Do not define columns with the following SQL/DS and DB2 datatypes, because
they have no corresponding Oracle datatype:

� GRAPHIC

� LONG VARGRAPHIC

� VARGRAPHIC

� TIME

Note that data of type TIME can also be expressed as Oracle DATE data.

XML Datatypes
Oracle provides the XMLType datatype to handle XML data.

XMLType Datatype
XMLType can be used like any other user-defined type. XMLType can be used as the
datatype of columns in tables and views. Variables of XMLType can be used in
PL/SQL stored procedures as parameters, return values, and so on. You can also
use XMLType in PL/SQL, SQL and Java, and through JDBC and OCI.

Table 12–3 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype

CHARACTER(n) CHAR(n)

VARCHAR(n) VARCHAR(n)

LONG VARCHAR(n) LONG

DECIMAL(p,s)a NUMBER(p,s)

INTEGER

SMALLINT

NUMBER(38)

FLOAT(b)b NUMBER

aThe DECIMAL datatype can specify only fixed-point numbers. For this datatype, s defaults to
0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.
Native Datatypes 12-25

URI Datatypes
A number of useful functions that operate on XML content have been provided.
Many of these are provided both as SQL functions and as member functions of
XMLType. For example, function extract() extracts a specific node(s) from an
XMLType instance.

You can use XMLType in SQL queries in the same way as any other user-defined
datatypes in the system.

URI Datatypes
A URI, or uniform resource identifier, is a generalized kind of URL. Like a URL, it
can reference any document, and can reference a specific part of a document. It is
more general than a URL because it has a powerful mechanism for specifying the
relevant part of the document.

By using UriType, you can do the following:

� Create table columns that point to data inside or outside the database.

� Query the database columns using functions provided by UriType.

Data Conversion
In some cases, Oracle supplies data of one datatype where it expects data of a
different datatype. This is allowed when Oracle can automatically convert the data
to the expected datatype. These are some of the functions used:

TO_NUMBER()
TO_CHAR()
TO_NCHAR()
TO_DATE()

See Also:

� Oracle9i XML Developer’s Kits Guide - XDK

� Oracle9i XML Database Developer’s Guide - Oracle XML DB

� Oracle9i Application Developer’s Guide - Advanced Queuing for
information about using XMLType with Oracle Advanced
Queuing

� Chapter 1, "Introduction to the Oracle Server"

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB
12-26 Oracle9i Database Concepts

Data Conversion
TO_CLOB()
TO_NCLOB()
CHARTOROWID()
ROWIDTOCHAR()
ROWIDTONCHAR()
HEXTORAW()
RAWTOHEX()
RAWTONHEX()
REFTOHEX()

See Also: Oracle9i SQL Reference for the rules for implicit datatype
conversions
Native Datatypes 12-27

Data Conversion
12-28 Oracle9i Database Concepts

Object Datatypes and Obje
13

Object Datatypes and Object Views

Object types and other user-defined datatypes let you define datatypes that model
the structure and behavior of the data in their applications. An object view is a
virtual object table.

This chapter contains the following major sections:

� Introduction to Object Datatypes

� Object Datatype Categories

� Type Inheritance

� User-Defined Aggregate Functions

� Application Interfaces

� Datatype Evolution

� Introduction to Object Views
ct Views 13-1

Introduction to Object Datatypes
Introduction to Object Datatypes
Relational database management systems (RDBMSs) are the standard tool for
managing business data. They provide reliable access to huge amounts of data for
millions of businesses around the world every day.

Oracle is an object-relational database management system (ORDBMS), which
means that users can define additional kinds of data—specifying both the structure
of the data and the ways of operating on it—and use these types within the
relational model. This approach adds value to the data stored in a database. Object
datatypes make it easier for application developers to work with complex data such
as images, audio, and video. Object types store structured business data in its
natural form and allow applications to retrieve it that way. For that reason, they
work efficiently with applications developed using object-oriented programming
techniques.

Complex Data Models
The Oracle server lets you define complex business models in SQL and make them
part of your database schema. Applications that manage and share your data need
only contain the application logic, not the data logic.

Complex Data Model Example
For example, your firm might use purchase orders to organize its purchasing,
accounts payable, shipping, and accounts receivable functions.

A purchase order contains an associated supplier or customer and an indefinite
number of line items. In addition, applications often need dynamically computed
status information about purchase orders. For example, you may need the current
value of the shipped or unshipped line items.

Later sections of this chapter show how you can define a schema object, called an
object type, that serves as a template for all purchase order data in your
applications. An object type specifies the elements, called attributes, that make up a
structured data unit, such as a purchase order. Some attributes, such as the list of
line items, can be other structured data units. The object type also specifies the
operations, called methods, you can perform on the data unit, such as determining
the total value of a purchase order.

You can create purchase orders that match the template and store them in table
columns, just as you would numbers or dates.
13-2 Oracle9i Database Concepts

Object Datatype Categories
You can also store purchase orders in object tables, where each row of the table
corresponds to a single purchase order and the table columns are the purchase
order’s attributes.

Because the logic of the purchase order’s structure and behavior is in your schema,
your applications do not need to know the details and do not have to keep up with
most changes.

Oracle uses schema information about object types to achieve substantial
transmission efficiencies. A client-side application can request a purchase order
from the server and receive all the relevant data in a single transmission. The
application can then, without knowing storage locations or implementation details,
navigate among related data items without further transmissions from the server.

Multimedia Datatypes
Many efficiencies of database systems arise from their optimized management of
basic datatypes like numbers, dates, and characters. Facilities exist for comparing
values, determining their distributions, building efficient indexes, and performing
other optimizations.

Text, video, sound, graphics, and spatial data are examples of important business
entities that do not fit neatly into those basic types. Oracle Enterprise Edition
supports modeling and implementation of these complex datatypes.

Object Datatype Categories
There are two categories of object datatypes:

� Object types

� Collection types

Object datatypes use the built-in datatypes and other user-defined datatypes as the
building blocks for datatypes that model the structure and behavior of data in
applications.

Object types are schema objects. Their use is subject to the same kinds of
administrative control as other schema objects.

See Also:

� Chapter 12, "Native Datatypes"

� Oracle9i Application Developer’s Guide - Object-Relational Features
Object Datatypes and Object Views 13-3

Object Datatype Categories
Object Types
Object types are abstractions of the real-world entities—for example, purchase
orders—that application programs deal with. An object type is a schema object with
three kinds of components:

� A name, which serves to identify the object type uniquely within that schema

� Attributes, which model the structure and state of the real-world entity.
Attributes are built-in types or other user-defined types.

� Methods, which are functions or procedures written in PL/SQL or Java and
stored in the database, or written in a language such as C and stored externally.
Methods implement operations the application can perform on the real-world
entity.

An object type is a template. A structured data unit that matches the template is
called an object.

Purchase Order Example
Here is an example of how you can define object types called external_person,
lineitem, and purchase_order.

The object types external_person and lineitem have attributes of built-in
types. The object type purchase_order has a more complex structure, which
closely matches the structure of real purchase orders.

The attributes of purchase_order are id, contact, and lineitems. The
attribute contact is an object, and the attribute lineitems is a nested table.

CREATE TYPE external_person AS OBJECT (
name VARCHAR2(30),
phone VARCHAR2(20));

CREATE TYPE lineitem AS OBJECT (
item_name VARCHAR2(30),
quantity NUMBER,
unit_price NUMBER(12,2));

CREATE TYPE lineitem_table AS TABLE OF lineitem;
13-4 Oracle9i Database Concepts

Object Datatype Categories
CREATE TYPE purchase_order AS OBJECT (
id NUMBER,
contact external_person,
lineitems lineitem_table,

MEMBER FUNCTION
get_value RETURN NUMBER);

This is a simplified example. It does not show how to specify the body of the
method get_value, nor does it show the full complexity of a real purchase order.

An object type is a template. Defining it does not result in storage allocation. You
can use lineitem, external_person, or purchase_order in SQL statements
in most of the same places you can use types like NUMBER or VARCHAR2.

For example, you can define a relational table to keep track of your contacts:

CREATE TABLE contacts (
contact external_person
date DATE);

The contacts table is a relational table with an object type defining one of its
columns. Objects that occupy columns of relational tables are called column
objects.

Types of Methods
Methods of an object type model the behavior of objects. The methods of an object
type broadly fall into these categories:

� A Member method is a function or a procedure that always has an implicit
SELF parameter as its first parameter, whose type is the containing object type.

� A Static method is a function or a procedure that does not have an implicit
SELF parameter. Such methods can be invoked by qualifying the method with
the type name, as in TYPE_NAME.METHOD(). Static methods are useful for
specifying user-defined constructors or cast methods.

See Also:

� "Nested Tables Description" on page 13-12

� "Row Objects and Column Objects" on page 13-8

� Oracle9i Application Developer’s Guide - Object-Relational Features
for a complete purchase order example
Object Datatypes and Object Views 13-5

Object Datatype Categories
� Comparison methods are used for comparing instances of objects.

Oracle supports the choice of implementing type methods in PL/SQL, Java, and C.

In the example, purchase_order has a method named get_value. Each
purchase order object has its own get_value method. For example, if x and y are
PL/SQL variables that hold purchase order objects and w and z are variables that
hold numbers, the following two statements can leave w and z with different
values:

w = x.get_value();
z = y.get_value();

After those statements, w has the value of the purchase order referred to by variable
x; z has the value of the purchase order referred to by variable y.

The term x.get_value () is an invocation of the method get_value. Method
definitions can include parameters, but get_value does not need them, because it
finds all of its arguments among the attributes of the object to which its invocation
is tied. That is, in the first of the sample statements, it computes its value using the
attributes of purchase order x. In the second it computes its value using the
attributes of purchase order y. This is called the selfish style of method invocation.

Every object type also has one implicitly defined method that is not tied to specific
objects, the object type’s constructor method.

Object Type Constructor Methods Every object type has a system-defined constructor
method; that is, a method that makes a new object according to the object type’s
specification. The name of the constructor method is the name of the object type. Its
parameters have the names and types of the object type’s attributes. The constructor
method is a function. It returns the new object as its value.

For example, the expression:

purchase_order(
1000376,
external_person ("John Smith","1-800-555-1212"),
NULL)

represents a purchase order object with the following attributes:

id 1000376
contact external_person("John Smith","1-800-555-1212")
lineitems NULL
13-6 Oracle9i Database Concepts

Object Datatype Categories
The expression external_person ("John Smith", "1-800-555-1212") is
an invocation of the constructor function for the object type external_person.
The object that it returns becomes the contact attribute of the purchase order.

You can also define your own constructor functions to use in place of the
constructor functions that the system implicitly defines for every object type.

Comparison Methods Methods play a role in comparing objects. Oracle has facilities
for comparing two data items of a given built-in type (for example, two numbers),
and determining whether one is greater than, equal to, or less than the other. Oracle
cannot, however, compare two items of an arbitrary user-defined type without
further guidance from the definer. Oracle provides two ways to define an order
relationship among objects of a given object type: map methods and order methods.

Map methods use Oracle’s ability to compare built-in types. Suppose, for example,
that you have defined an object type called rectangle, with attributes height
and width. You can define a map method area that returns a number, namely the
product of the rectangle’s height and width attributes. Oracle can then compare
two rectangles by comparing their areas.

Order methods are more general. An order method uses its own internal logic to
compare two objects of a given object type. It returns a value that encodes the order
relationship. For example, it could return -1 if the first is smaller, 0 if they are equal,
and 1 if the first is larger.

Suppose, for example, that you have defined an object type called address, with
attributes street, city, state, and zip. Greater than and less than may have no
meaning for addresses in your application, but you may need to perform complex
computations to determine when two addresses are equal.

In defining an object type, you can specify either a map method or an order method
for it, but not both. If an object type has no comparison method, Oracle cannot
determine a greater than or less than relationship between two objects of that type.
It can, however, attempt to determine whether two objects of the type are equal.

Oracle compares two objects of a type that lacks a comparison method by
comparing corresponding attributes:

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features
Object Datatypes and Object Views 13-7

Object Datatype Categories
� If all the attributes are non-null and equal, Oracle reports that the objects are
equal.

� If there is an attribute for which the two objects have unequal non-null values,
Oracle reports them unequal.

� Otherwise, Oracle reports that the comparison is not available (null).

Object Tables
An object table is a special kind of table that holds objects and provides a relational
view of the attributes of those objects.

For example, the following statement defines an object table for objects of the
external_person type defined earlier:

CREATE TABLE external_person_table OF external_person;

Oracle lets you view this table in two ways:

� A single column table in which each entry is an external_person object.

� A multicolumn table in which each of the attributes of the object type
external_person, namely name and phone, occupies a column

For example, you can run the following instructions:

INSERT INTO external_person_table VALUES (
"John Smith",
"1-800-555-1212");

SELECT VALUE(p) FROM external_person_table p
WHERE p.name = "John Smith";

The first instruction inserts an external_person object into external_person_
table as a multicolumn table. the second selects from external_person_table
as a single column table.

Row Objects and Column Objects Objects that appear in object tables are called row
objects. Objects that appear in table columns or as attributes of other objects are
called column objects.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for examples of how to specify and use comparison
methods
13-8 Oracle9i Database Concepts

Object Datatype Categories
Object Identifiers
Every row object in an object table has an associated logical object identifier (OID).
Oracle assigns a unique system-generated identifier of length 16 bytes as the OID
for each row object by default.

The OID column of an object table is a hidden column. Although the OID value in
itself is not very meaningful to an object-relational application, Oracle uses this
value to construct object references to the row objects. Applications need to be
concerned with only object references that are used for fetching and navigating
objects.

The purpose of the OID for a row object is to uniquely identify it in an object table.
To do this Oracle implicitly creates and maintains an index on the OID column of an
object table. The system-generated unique identifier has many advantages, among
which are the unambiguous identification of objects in a distributed and replicated
environment.

Primary-Key Based Object Identifiers For applications that do not require the
functionality provided by globally unique system-generated identifiers, storing 16
extra bytes with each object and maintaining an index on it may not be efficient.
Oracle allows the option of specifying the primary key value of a row object as the
object identifier for the row object.

Primary-key based identifiers also have the advantage of enabling a more efficient
and easier loading of the object table. By contrast, system-generated object
identifiers need to be remapped using some user-specified keys, especially when
references to them are also stored persistently.

Object Views Description
An object view is a virtual object table. Its rows are row objects. Oracle materializes
object identifiers, which it does not store persistently, from primary keys in the
underlying table or view.

REFs
In the relational model, foreign keys express many-to-one relationships. Oracle
object types provide a more efficient means of expressing many-to-one relationships
when the "one" side of the relationship is a row object.

Oracle provides a built-in datatype called REF to encapsulate references to row
objects of a specified object type. From a modeling perspective, REFs provide the

See Also: "Introduction to Object Views" on page 13-23
Object Datatypes and Object Views 13-9

Object Datatype Categories
ability to capture an association between two row objects. Oracle uses object
identifiers to construct such REFs.

You can use a REF to examine or update the object it refers to. You can also use a
REF to obtain a copy of the object it refers to. The only changes you can make to a
REF are to replace its contents with a reference to a different object of the same
object type or to assign it a null value.

Scoped REFs In declaring a column type, collection element, or object type attribute
to be a REF, you can constrain it to contain only references to a specified object table.
Such a REF is called a scoped REF. Scoped REFs require less storage space and
allow more efficient access than unscoped REFs.

Dangling REFs It is possible for the object identified by a REF to become unavailable
through either deletion of the object or a change in privileges. Such a REF is called
dangling. Oracle SQL provides a predicate (called IS DANGLING) to allow testing
REFs for this condition.

Dereference REFs Accessing the object referred to by a REF is called dereferencing
the REF. Oracle provides the DEREF operator to do this. Dereferencing a dangling
REF results in a null object.

Oracle provides implicit dereferencing of REFs. For example, consider the
following:

CREATE TYPE person AS OBJECT (
name VARCHAR2(30),
manager REF person);

If x represents an object of type PERSON, then the expression:

x.manager.name

represents a string containing the name attribute of the person object referred to by
the manager attribute of x. The previous expression is a shortened form of:

y.name, where y = DEREF(x.manager)

Obtain REFs You can obtain a REF to a row object by selecting the object from its
object table and applying the REF operator. For example, you can obtain a REF to
the purchase order with identification number 1000376 as follows:
13-10 Oracle9i Database Concepts

Object Datatype Categories
DECLARE OrderRef REF to purchase_order;

SELECT REF(po) INTO OrderRef
FROM purchase_order_table po
WHERE po.id = 1000376;

Collection Types
Each collection type describes a data unit made up of an indefinite number of
elements, all of the same datatype. The collection types are array types and table
types.

Array types and table types are schema objects. The corresponding data units are
called VARRAYs and nested tables. When there is no danger of confusion, we often
refer to the collection types as VARRAYs and nested tables.

Collection types have constructor methods. The name of the constructor method is
the name of the type, and its argument is a comma separated list of the new
collection’s elements. The constructor method is a function. It returns the new
collection as its value.

An expression consisting of the type name followed by empty parentheses
represents a call to the constructor method to create an empty collection of that
type. An empty collection is different from a null collection.

VARRAYs
An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
element’s position in the array.

The number of elements in an array is the size of the array. Oracle allows arrays to
be of variable size, which is why they are called VARRAYs. You must specify a
maximum size when you declare the array type.

For example, the following statement declares an array type:

CREATE TYPE prices AS VARRAY(10) OF NUMBER(12,2);

The VARRAYs of type prices have no more than 10 elements, each of datatype
NUMBER(12,2).

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for examples of how to use REFs
Object Datatypes and Object Views 13-11

Object Datatype Categories
Creating an array type does not allocate space. It defines a datatype, which you can
use as:

� The datatype of a column of a relational table

� An object type attribute

� A PL/SQL variable, parameter, or function return type.

A VARRAY is normally stored in line; that is, in the same tablespace as the other data
in its row. If it is sufficiently large, however, Oracle stores it as a BLOB.

Nested Tables Description
A nested table is an unordered set of data elements, all of the same datatype. It has
a single column, and the type of that column is a built-in type or an object type. If
an object type, the table can also be viewed as a multicolumn table, with a column
for each attribute of the object type. If compatibility is set to Oracle9i or higher,
nested tables can contain other nested tables.

For example, in the purchase order example, the following statement declares the
table type used for the nested tables of line items:

CREATE TYPE lineitem_table AS TABLE OF lineitem;

A table type definition does not allocate space. It defines a type, which you can use
as:

� The datatype of a column of a relational table

� An object type attribute

� A PL/SQL variable, parameter, or function return type

When a table type appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the
nested table data in a single table, which it associates with the enclosing relational
or object table. For example, the following statement defines an object table for the
object type purchase_order:

CREATE TABLE purchase_order_table OF purchase_order
NESTED TABLE lineitems STORE AS lineitems_table;

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information about using VARRAYs
13-12 Oracle9i Database Concepts

Type Inheritance
The second line specifies lineitems_table as the storage table for the
lineitems attributes of all of the purchase_order objects in purchase_
order_table.

A convenient way to access the elements of a nested table individually is to use a
nested cursor.

Type Inheritance
An object type can be created as a subtype of an existing object type. A single
inheritance model is supported: the subtype can be derived from only one parent
type. A type inherits all the attributes and methods of its direct supertype. It can
add new attributes and methods, and it can override any of the inherited methods.

Figure 13–1 illustrates two subtypes, Student_t and Employee_t, created under
Person_t.

Figure 13–1 A Type Hierarchy

Furthermore, a subtype can itself be refined by defining another subtype under it,
thus building up type hierarchies. In the preceding diagram, PartTimeStudent_t
is derived from subtype Student_t.

FINAL and NOT FINAL Types
A type declaration must have the NOT FINAL keyword, if you want it to have
subtypes. The default is that the type is FINAL; that is, no subtypes can be created
for the type. This allows for backward compatibility.

See Also:

� Oracle9i Database Reference for information about nested cursors

� Oracle9i Application Developer’s Guide - Object-Relational Features
for more information about using nested tables

Person_t

Employee_t

PartTimeStudent_t

Student_t
Object Datatypes and Object Views 13-13

Type Inheritance
Example of Creating a NOT FINAL Object Type
CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
name VARCHAR2(30),
address VARCHAR2(100)) NOT FINAL;

Person_t is declared to be a NOT FINAL type. This enables definition of subtypes
of Person_t.

FINAL types can be altered to be NOT FINAL. In addition, NOT FINAL types with no
subtypes can be altered to be FINAL.

NOT INSTANTIABLE Types and Methods
A type can be declared to be NOT INSTANTIABLE. This implies that there is no
constructor (default or user-defined) for the type. Thus, it is not possible to
construct instances of this type. The typical use would be define instantiable
subtypes for such a type, as follows:

CREATE TYPE Address_t AS OBJECT(...) NOT INSTANTIABLE NOT FINAL;
CREATE TYPE USAddress_t UNDER Address_t(...);
CREATE TYPE IntlAddress_t UNDER Address_t(...);

A method of a type can be declared to be NOT INSTANTIABLE. Declaring a method
as NOT INSTANTIABLE means that the type is not providing an implementation for
that method. Furthermore, a type that contains any non-instantiable methods must
necessarily be declared NOT INSTANTIABLE.

For example:

CREATE TYPE T AS OBJECT
(
x NUMBER,
NOT INSTANTIABLE MEMBER FUNCTION func1() RETURN NUMBER

) NOT INSTANTIABLE;

A subtype of a NOT INSTANTIABLE type can override any of the non-instantiable
methods of the supertype and provide concrete implementations. If there are any
non-instantiable methods remaining, the subtype must also necessarily be declared
NOT INSTANTIABLE.

A non-instantiable subtype can be defined under an instantiable supertype.
Declaring a non-instantiable type to be FINAL is not allowed.

See Also: PL/SQL User’s Guide and Reference
13-14 Oracle9i Database Concepts

User-Defined Aggregate Functions
User-Defined Aggregate Functions
Oracle supports a fixed set of aggregate functions, such as MAX, MIN, and SUM.
These is also a mechanism to implement new aggregate functions with user-defined
aggregation logic.

Why Have User-Defined Aggregate Functions?
User-defined aggregate functions (UDAGs) refer to aggregate functions with
user-specified aggregation semantics. Users can create a new aggregate function
and provide the aggregation logic through a set of routines. After it is created, the
user-defined aggregate function can be used in SQL DML statements in a manner
similar to built-in aggregates. The Oracle server evaluates the UDAG by invoking
the user-provided aggregation routines appropriately.

Databases are increasingly being used to store complex data such as image, spatial,
audio, video, and so on. The complex data is typically stored in the database using
object types, opaque types, or LOBs. User-defined aggregates are primarily useful in
specifying aggregation over such new domains of data.

Furthermore, UDAGs can be used to create new aggregate functions over
traditional scalar data types for financial or scientific applications. Because it is not
possible to provide native support for all forms of aggregates, it is desirable to
provide application developers with a flexible mechanism to add new aggregate
functions.

Creation and Use of UDAGs
The following is the procedure for implementing user-defined aggregates:

1. Implement the ODCIAggregate interface routines as methods of an object
type.

See Also:

� Oracle9i Data Cartridge Developer’s Guide for information about
implementing user-defined aggregates

� Oracle9i Data Warehousing Guide for more information about
using UDAGs in data warehousing

� Chapter 12, "Native Datatypes" for more information on
opaque types
Object Datatypes and Object Views 13-15

User-Defined Aggregate Functions
2. Create a UDAG, using the CREATE FUNCTION statement and specify the
implementation type created in Step 1:

CREATE FUNCTION MyUDAG ... AGGREGATE USING MyUDAGRoutines;

3. Use the UDAG in SQL DML statements the same way you use built-in
aggregates:

SELECT col1, MyUDAG(col2) FROM tab GROUP BY col1;

How Do Aggregate Functions Work?
An aggregate function conceptually takes a set of values as input and returns a
single value. The sets of values for aggregation are typically identified using a
GROUP BY clause. For example:

SELECT AVG(T.Sales)
FROM AnnualSales T
GROUP BY T.State

The evaluation of an aggregate function can be decomposed into three primitive
operations. Considering the preceding example of AVG(), they are:

1. Initialize : initialize the computation

runningSum = 0; runningCount = 0;

2. Iterate : process new input value

runningSum += inputval; runningCount++;

3. Terminate : compute the result

return (runningSum/runningCount);

The variables runningSum and runningCount, in the preceding example,
determine the state of the aggregation. Thus, the aggregation context can be viewed
as an object that contains runningSum and runningCount attributes. The
Initialize method initializes the aggregation context, Iterate updates it and
Terminate method uses the context to return the resultant aggregate value.

In addition, we require one more primitive operation to merge two aggregation
contexts and create a new context. This operation is needed to combine the results
of aggregation over subsets and obtain the aggregate over the entire set. This
situation can arise during both serial and parallel evaluations of the aggregate.

4. Merge: combine the two aggregation contexts and return a single context
13-16 Oracle9i Database Concepts

Application Interfaces
runningSum = runningSum1 + runningSum2;
runningCount = runningCount1 + runningCount2;

Oracle lets you register new aggregate functions by providing specific
implementations for these primitive operations.

Application Interfaces
Oracle provides several facilities for using object datatypes in application programs:

� SQL

� PL/SQL

� Pro*C/C++

� OCI

� OTT

� JPublisher

� JDBC

� SQLJ

SQL
Oracle SQL data definition language provides the following support for object
datatypes:

� Defining object types, nested tables, and arrays

� Specifying privileges

� Specifying table columns of object types

� Creating object tables

Oracle SQL data manipulation language provides the following support for object
datatypes:

� Querying and updating objects and collections

� Manipulating REFs

See Also: Oracle9i SQL Reference for a complete description of
SQL syntax
Object Datatypes and Object Views 13-17

Application Interfaces
PL/SQL
PL/SQL is a procedural language that extends SQL. It offers features such as
packages, data encapsulation, information hiding, overloading, and exception
handling. Most stored procedures are written in PL/SQL.

PL/SQL allows use from within functions and procedures of the SQL features that
support object types. The parameters and variables of PL/SQL functions and
procedures can be of user-defined types.

PL/SQL provides all the capabilities necessary to implement the methods
associated with object types. These methods (functions and procedures) reside on
the server as part of a user’s schema.

Pro*C/C++
The Oracle Pro*C/C++ precompiler allows programmers to use object datatypes in
C and C++ programs. Pro*C developers can use the Object Type Translator to map
Oracle object types and collections into C datatypes to be used in the Pro*C
application.

Pro*C provides compile time type checking of object types and collections and
automatic type conversion from database types to C datatypes. Pro*C includes an
EXEC SQL syntax to create and destroy objects and offers two ways to access objects
in the server:

� SQL statements and PL/SQL functions or procedures embedded in Pro*C
programs

� A simple interface to the object cache, where objects can be accessed by
traversing pointers, then modified and updated on the server

See Also: PL/SQL User’s Guide and Reference for a complete
description of PL/SQL

See Also:

� "OCI" on page 13-20

� Pro*C/C++ Precompiler Programmer’s Guide for a complete
description of the Pro*C precompiler
13-18 Oracle9i Database Concepts

Application Interfaces
Dynamic Creation and Access of Type Descriptions
Oracle provides a C API to enable dynamic creation and access of type descriptions.
Additionally, you can create transient type descriptions, type descriptions that are
not stored persistently in the DBMS.

The C API enables creation and access of LNOCIAnyData and LNOCIAnyDataSet.

� The LNOCIAnyData type models a self descriptive (with regard to type) data
instance of a given type.

� The LNOCIAnyDataSet type models a set of data instances of a given type.

Oracle also provides SQL data types (in Oracle’s Open Type System) that
correspond to these data types.

� SYS.ANYTYPE corresponds to LNOCIType

� SYS.ANYDATA corresponds to LNOCIAnyData

� SYS.ANYDATASET corresponds to LNOCIAnyDataSet

You can create database table columns and SQL queries on such data.

The new C API uses the following terms:

� Transient types - Type descriptions (type metadata) that are not stored
persistently in the database.

� Persistent types - SQL types created using the CREATE TYPE SQL statement.
Their type descriptions are stored persistently in the database.

� Self-descriptive data - Data encapsulating type information along with the
actual contents. The ANYDATA type (LNOCIAnyData) models such data. A data
value of any SQL type can be converted to an ANYDATA, which can be
converted back to the old data value. An incorrect conversion attempt results in
an exception.

� Self-descriptive MultiSet - Encapsulation of a set of data instances (all of the
same type), along with their type description.

See Also:

� Oracle9i Application Developer’s Guide - Object-Relational Features

� Oracle Call Interface Programmer’s Guide
Object Datatypes and Object Views 13-19

Application Interfaces
OCI
The Oracle call interface (OCI) is a set of C language interfaces to the Oracle server.
It provides programmers great flexibility in using the server’s capabilities.

An important component of OCI is a set of calls to allow application programs to
use a workspace called the object cache. The object cache is a memory block on the
client side that allows programs to store entire objects and to navigate among them
without round trips to the server.

The object cache is completely under the control and management of the application
programs using it. The Oracle server has no access to it. The application programs
using it must maintain data coherency with the server and protect the workspace
against simultaneous conflicting access.

LNOCI provides functions to:

� Access objects on the server using SQL

� Access, manipulate and manage objects in the object cache by traversing
pointers or REFs

� Convert Oracle dates, strings and numbers to C data types

� Manage the size of the object cache’s memory

� Create transient type descriptions. Transient type descriptions are not stored
persistently in the DBMS. Compatibility must be set to Oracle9i or higher.

LNOCI improves concurrency by allowing individual objects to be locked. It
improves performance by supporting complex object retrieval.

LNOCI developers can use the object type translator to generate the C datatypes
corresponding to a Oracle object types.

OTT
The Oracle type translator (OTT) is a program that automatically generates C
language structure declarations corresponding to object types. OTT facilitates using
the Pro*C precompiler and the OCI server access package.

See Also: Oracle Call Interface Programmer’s Guide

See Also:

� Oracle Call Interface Programmer’s Guide

� Pro*C/C++ Precompiler Programmer’s Guide
13-20 Oracle9i Database Concepts

Application Interfaces
JPublisher
Java Publisher (JPublisher) is a program that automatically generates Java class
definitions corresponding to object types in the database. Java Publisher facilitates
using SQLJ and the JDBC server access package.

JDBC
Java Database Connectivity (JDBC) is a set of Java interfaces to the Oracle server.
Oracle’s JDBC:

� Allows access to objects and collection types defined in the database from Java
programs through dynamic SQL

� Provides for translation of types defined in the database into Java classes
through default or customizable mappings

SQLJ
SQLJ allows developers to use object datatypes in Java programs. Developers can
use JPublisher to map Oracle object and collection types into Java classes to be used
in the application.

SQLJ provides access to server objects using SQL statements embedded in the Java
code. SQLJ provides compile-time type checking of object types and collections in
the SQL statements.

The syntax is based on an ANSI standard (SQLJ Consortium).

SQLJ Object Types
You can specify Java classes as SQL user-defined object types. You can define
columns or rows of this SQLJ type. You can also query and manipulate the objects
of this type as if they were SQL primitive types.

Additionally, you can do the following:

� Make the static fields of a class visible in SQL

� Allow the user to call a Java constructor

� Maintain the dependency between the Java class and its corresponding type

See Also: Oracle9i JPublisher User’s Guide

See Also: Oracle9i JDBC Developer’s Guide and Reference
Object Datatypes and Object Views 13-21

Datatype Evolution
Datatype Evolution
An object datatype can be referenced by any of the following schema objects:

� Table or subtable

� Type or subtype

� Program unit (PL/SQL block): procedure, function, package, trigger

� Indextype

� View (including object view)

� Functional index

� Operator

When any of these objects references a type, either directly or indirectly through
another type or subtype, it becomes a dependent object on that type. Whenever a
type is modified, all dependent program units, views, operators and indextypes are
marked invalid. The next time each of these invalid objects is referenced, it is
revalidated, using the new type definition. If it is recompiled successfully, then it
becomes valid and can be used again.

When a type has either type or table dependents, altering a type definition becomes
more complicated because existing persistent data relies on the current type
definition.

You can change an object type and propagate the type change to its dependent
types and tables. ALTER TYPE lets you add or drop methods and attributes from
existing types and optionally propagate the changes to dependent types, tables, and
even the table data. You can also modify certain attributes of a type.

See Also:

� Oracle9i SQL Reference

� Oracle9i Application Developer’s Guide - Object-Relational Features

� Oracle9i SQLJ Developer’s Guide and Reference
13-22 Oracle9i Database Concepts

Introduction to Object Views
Introduction to Object Views
Just as a view is a virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from
data—of either built-in or user-defined types—stored in the columns of relational or
object tables in the database.

Object views provide the ability to offer specialized or restricted access to the data
and objects in a database. For example, you can use an object view to provide a
version of an employee object table that does not have attributes containing
sensitive data and does not have a deletion method.

Object views allow the use of relational data in object-oriented applications. They
let users:

� Try object-oriented programming techniques without converting existing tables

� Convert data gradually and transparently from relational tables to
object-relational tables

� Use legacy RDBMS data with existing object-oriented applications

Advantages of Object Views
Using object views can lead to better performance. Relational data that make up a
row of an object view traverse the network as a unit, potentially saving many round
trips.

You can fetch relational data into the client-side object cache and map it into C or
C++ structures so 3GL applications can manipulate it just like native structures.

Object views provide a gradual upgrade path for legacy data. They provide for
co-existence of relational and object-oriented applications, and they make it easier

See Also:

� Oracle9i SQL Reference for details about syntax

� PL/SQL User’s Guide and Reference for details about type
specification and body compilation

� Oracle9i Application Developer’s Guide - Object-Relational Features
for details about managing type versions
Object Datatypes and Object Views 13-23

Introduction to Object Views
to introduce object-oriented applications to existing relational data without having
to make a drastic change from one paradigm to another.

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Thus you can use different in-memory object representations
for different applications without changing the way you store the data in the
database.

How Object Views Are Defined
Conceptually, the process of defining an object view is simple. It consists of the
following actions:

� Defining an object type to be represented by rows of the object view.

� Writing a query that specifies which data in which relational tables contain the
attributes for objects of that type.

� Specifying an object identifier, based on attributes of the underlying data, to
allow REFs to the objects (rows) of the object view.

The object identifier corresponds to the unique object identifier that Oracle
generates automatically for rows of object tables. In the case of object views,
however, the declaration must specify something that is unique in the underlying
data (for example, a primary key).

If the object view is based on a table or another object view and you do not specify
an object identifier, Oracle uses the object identifier from the original table or object
view.

If you want to be able to update a complex object view, you might need to take
another action:

� Write an INSTEAD OF trigger procedure for Oracle to run whenever an
application program tries to update data in the object view.

After doing these four things, you can use an object view just like an object table.

For example, the following SQL statements define an object view:

CREATE TABLE emp_table (
empnum NUMBER (5),
ename VARCHAR2 (20),
salary NUMBER (9, 2),
job VARCHAR2 (20));
13-24 Oracle9i Database Concepts

Introduction to Object Views
CREATE TYPE employee_t AS OBJECT(
empno NUMBER (5),
ename VARCHAR2 (20),
salary NUMBER (9, 2),
job VARCHAR2 (20));

CREATE VIEW emp_view1 OF employee_t
WITH OBJECT OID (empno) AS

SELECT e.empnum, e.ename, e.salary, e.job
FROM emp_table e
WHERE job = ’Developer’;

The object view looks to the user like an object table whose underlying type is
employee_t. Each row contains an object of type employee_t. Each row has a
unique object identifier.

Oracle constructs the object identifier based on the specified key. In most cases, it is
the primary key of the base table. If the query that defines the object view involves
joins, however, you must provide a key across all tables involved in the joins, so
that the key still uniquely identifies rows of the object view.

Use of Object Views
Data in the rows of an object view can come from more than one table, but the
object still traverses the network in one operation. When the instance is in the client
side object cache, it appears to the programmer as a C or C++ structure or as a
PL/SQL object variable. You can manipulate it like any other native structure.

Note: Columns in the WITH OBJECT OID clause (empno in the
example) must also be attributes of the underlying object type
(employee_t in the example). This makes it easy for trigger
programs to identify the corresponding row in the base table
uniquely.

See Also:

� Oracle9i Database Administrator’s Guide for specific directions for
defining object views

� "Updates of Object Views" on page 13-26 for more information
about writing an INSTEAD OF trigger
Object Datatypes and Object Views 13-25

Introduction to Object Views
You can refer to object views in SQL statements the same way you refer to an object
table. For example, object views can appear in a SELECT list, in an UPDATE SET
clause, or in a WHERE clause. You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use
for objects from object tables. For example, you can use LNOCIObjectPin() for
pinning a REF and LNOCIObjectFlush() for flushing an object to the server.
When you update or flush to the server an object in an object view, Oracle updates
the object view.

Updates of Object Views
You can update, insert, and delete the data in an object view using the same SQL
DML you use for object tables. Oracle updates the base tables of the object view if
there is no ambiguity.

A view is not updatable if its view query contains joins, set operators, aggregate
functions, GROUP BY, or DISTINCT. If a view query contains pseudocolumns or
expressions, the corresponding view columns are not updatable. Object views often
involve joins.

To overcome these obstacles Oracle provides INSTEAD OF triggers. They are called
INSTEAD OF triggers because Oracle runs the trigger body instead of the actual
DML statement.

INSTEAD OF triggers provide a transparent way to update object views or relational
views. You write the same SQL DML (INSERT, DELETE, and UPDATE) statements
as for an object table. Oracle invokes the appropriate trigger instead of the SQL
statement, and the actions specified in the trigger body take place.

Updates of Nested Table Columns in Views
A nested table can be modified by inserting new elements and updating or deleting
existing elements. Nested table columns that are virtual or synthesized, as in a view,

See Also: Oracle Call Interface Programmer’s Guide for more
information about OCI calls

See Also:

� Oracle9i Application Developer’s Guide - Object-Relational Features
for a purchase order/line item example that uses an INSTEAD
OF trigger

� Chapter 17, "Triggers"
13-26 Oracle9i Database Concepts

Introduction to Object Views
are not usually updatable. To overcome this, Oracle allows INSTEAD OF triggers to
be created on these columns.

The INSTEAD OF trigger defined on a nested table column of a view is fired when
the column is modified. If the entire collection is replaced by an update of the
parent row, then the INSTEAD OF trigger on the nested table column is not fired.

View Hierarchies
An object view can be created as a subview of another object view. The type of the
superview must be the immediate supertype of the type of the object view being
created. Thus, you can build an object view hierarchy which has a one-to-one
correspondence to the type hierarchy. This does not imply that every view hierarchy
must span the entire corresponding type hierarchy. The view hierarchy can be
rooted at any subtype of the type hierarchy. Furthermore, it does not have to
encompass the entire subhierarchy.

Figure 13–2 Multiple View Hierarchies

By default, the rows of an object view in a view hierarchy include all the rows of all
its subviews (direct and indirect) projected over the columns of the given view.

Only one object view can be created as a subview of a given view corresponding to
the given subtype; that is, the same view cannot participate in many different view
hierarchies. An object view can be created as a subview of only one superview;
multiple inheritance is not supported.

The subview inherits the object identifier (OID) from its superview and cannot be
explicitly specified in any subview.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
a purchase order/line item example that uses an INSTEAD OF
trigger on a nested table column

VH1 VH2
Object Datatypes and Object Views 13-27

Introduction to Object Views
13-28 Oracle9i Database Concepts

Part V

Data Access

Part V describes how to use transactions consisting of SQL statements to access data
in an Oracle database. It also describes the procedural language constructs that
provide additional functionality for data access.

Part V contains the following chapters:

� Chapter 14, "SQL, PL/SQL, and Java"

� Chapter 15, "Dependencies Among Schema Objects"

� Chapter 16, "Transaction Management"

� Chapter 17, "Triggers"

Oracle9i Database Concepts

SQL, PL/SQL, an
14

SQL, PL/SQL, and Java

This chapter provides an overview of the Structured Query Language (SQL),
PL/SQL, Oracle’s procedural extension to SQL, and Java. The chapter includes:

� SQL Overview

� PL/SQL Overview

� Java Overview

See Also:

� Oracle9i SQL Reference

� PL/SQL User’s Guide and Reference
d Java 14-1

SQL Overview
SQL Overview
SQL is a database access, nonprocedural language. Users describe in SQL what they
want done, and the SQL language compiler automatically generates a procedure to
navigate the database and perform the desired task.

IBM Research developed and defined SQL, and ANSI/ISO has refined SQL as the
standard language for relational database management systems.The minimal
conformance level for SQL-99 is known as Core. Core SQL-99 is a superset of
SQL-92 Entry Level specification. Oracle9i is broadly compatible with the SQL-99
Core specification.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL language,
and Oracle tools and applications provide additional statements. The Oracle tools
SQL*Plus and Oracle Enterprise Manager let you run any ANSI/ISO standard SQL
statement against an Oracle database, as well as additional statements or functions
that are available for those tools.

Oracle SQLJ lets applications programmers embed static SQL operations in Java
code in a way that is compatible with the Java design philosophy. A SQLJ program
is a Java program containing embedded static SQL statements that comply with the
ANSI-standard SQLJ Language Reference syntax.

Although some Oracle tools and applications simplify or mask SQL use, all
database operations are performed using SQL. Any other data access method
circumvents the security built into Oracle and potentially compromise data security
and integrity.

SQL Statements
All operations performed on the information in an Oracle database are run using
SQL statements. A statement consists partially of SQL reserved words, which have

See Also:

� Oracle9i SQL Reference for detailed information about SQL
statements and other parts of SQL (such as operators,
functions, and format models)

� Oracle Enterprise Manager Administrator’s Guide

� SQL*Plus User’s Guide and Reference for SQL*Plus statements,
including their distinction from SQL statements

� Oracle9i SQLJ Developer’s Guide and Reference for information
about embedding SQL operations in Java code
14-2 Oracle9i Database Concepts

SQL Overview
special meaning in SQL and cannot be used for any other purpose. For example,
SELECT and UPDATE are reserved words and cannot be used as table names.

A SQL statement is a computer program or instruction. The statement must be the
equivalent of a complete SQL sentence, as in:

SELECT last_name, department_id FROM employees;

Only a complete SQL statement can be run. A fragment such as the following
generates an error indicating that more text is required before a SQL statement can
run:

SELECT last_name

Oracle SQL statements are divided into the following categories:

� Data Manipulation Language Statements

� Data Definition Language Statements

� Transaction Control Statements

� Session Control Statements

� System Control Statements

� Embedded SQL Statements

Data Manipulation Language Statements
Data manipulation language (DML) statements query or manipulate data in
existing schema objects. They enable you to:

� Retrieve data from one or more tables or views (SELECT); fetches can be
scrollable (see "Scrollable Cursors" on page 14-7)

� Add new rows of data into a table or view (INSERT)

� Change column values in existing rows of a table or view (UPDATE)

� Update or insert rows conditionally into a table or view (MERGE)

� Remove rows from tables or views (DELETE)

� See the execution plan for a SQL statement (EXPLAIN PLAN)

� Lock a table or view, temporarily limiting other users’ access (LOCK TABLE)

See Also: Chapter 17, "Triggers" for more information about
using SQL statements in PL/SQL program units
SQL, PL/SQL, and Java 14-3

SQL Overview
DML statements are the most frequently used SQL statements. Some examples of
DML statements are:

SELECT last_name, manager_id, commission_pct + salary FROM employees;

INSERT INTO employees VALUES
(1234, ’DAVIS’, ’SALESMAN’, 7698, ’14-FEB-1988’, 1600, 500, 30);

DELETE FROM employees WHERE last_name IN (’WARD’,’JONES’);

Data Definition Language Statements
Data definition language (DDL) statements define, alter the structure of, and drop
schema objects. DDL statements enable you to:

� Create, alter, and drop schema objects and other database structures, including
the database itself and database users (CREATE, ALTER, DROP)

� Change the names of schema objects (RENAME)

� Delete all the data in schema objects without removing the objects’ structure
(TRUNCATE)

� Grant and revoke privileges and roles (GRANT, REVOKE)

� Turn auditing options on and off (AUDIT, NOAUDIT)

� Add a comment to the data dictionary (COMMENT)

DDL statements implicitly commit the preceding and start a new transaction. Some
examples of DDL statements are:

CREATE TABLE plants
(COMMON_NAME VARCHAR2 (15), LATIN_NAME VARCHAR2 (40));

DROP TABLE plants;

GRANT SELECT ON employees TO scott;

REVOKE DELETE ON employees FROM scott;

See Also:

� Chapter 22, "Controlling Database Access"

� Chapter 23, "Privileges, Roles, and Security Policies"

� Chapter 24, "Auditing"
14-4 Oracle9i Database Concepts

SQL Overview
Transaction Control Statements
Transaction control statements manage the changes made by DML statements and
group DML statements into transactions. They enable you to:

� Make a transaction’s changes permanent (COMMIT)

� Undo the changes in a transaction, either since the transaction started or since a
savepoint (ROLLBACK)

� Set a point to which you can roll back (SAVEPOINT)

� Establish properties for a transaction (SET TRANSACTION)

Session Control Statements
Session control statements manage the properties of a particular user’s session. For
example, they enable you to:

� Alter the current session by performing a specialized function, such as enabling
and disabling the SQL trace facility (ALTER SESSION)

� Enable and disable roles (groups of privileges) for the current session (SET
ROLE)

System Control Statements
System control statements change the properties of the Oracle server instance. The
only system control statement is ALTER SYSTEM. It enables you to change settings
(such as the minimum number of shared servers), kill a session, and perform other
tasks.

Embedded SQL Statements
Embedded SQL statements incorporate DDL, DML, and transaction control
statements within a procedural language program. They are used with the Oracle
precompilers. Embedded SQL statements enable you to:

� Define, allocate, and release cursors (DECLARE CURSOR, OPEN, CLOSE)

� Specify a database and connect to Oracle (DECLARE DATABASE, CONNECT)

� Assign variable names (DECLARE STATEMENT)

� Initialize descriptors (DESCRIBE)

� Specify how error and warning conditions are handled (WHENEVER)

� Parse and run SQL statements (PREPARE, EXECUTE, EXECUTE IMMEDIATE)
SQL, PL/SQL, and Java 14-5

SQL Overview
� Retrieve data from the database (FETCH)

Identification of Nonstandard SQL
Oracle provides extensions to the standard SQL database language with integrity
enhancement. The Federal Information Processing Standard for SQL (FIPS 127-2)
requires vendors to supply a method for identifying SQL statements that use such
extensions. You can identify or flag Oracle extensions in interactive SQL, the Oracle
precompilers, or SQL*Module by using the FIPS flagger.

If you are concerned with the portability of your applications to other
implementations of SQL, use the FIPS flagger.

Recursive SQL
When a DDL statement is issued, Oracle implicitly issues recursive SQL statements
that modify data dictionary information. Users need not be concerned with the
recursive SQL internally performed by Oracle.

Cursors
A cursor is a handle or name for a private SQL area—an area in memory in which a
parsed statement and other information for processing the statement are kept.

Although most Oracle users rely on the automatic cursor handling of the Oracle
utilities, the programmatic interfaces offer application designers more control over
cursors. In application development, a cursor is a named resource available to a
program and can be used specifically to parse SQL statements embedded within the
application.

Each user session can open multiple cursors up to the limit set by the initialization
parameter OPEN_CURSORS. However, applications should close unneeded cursors
to conserve system memory. If a cursor cannot be opened due to a limit on the
number of cursors, then the database administrator can alter the OPEN_CURSORS
initialization parameter.

See Also:

� Pro*C/C++ Precompiler Programmer’s Guide

� Pro*COBOL Precompiler Programmer’s Guide

� SQL*Module for Ada Programmer’s Guide
14-6 Oracle9i Database Concepts

SQL Overview
Some statements (primarily DDL statements) require Oracle to implicitly issue
recursive SQL statements, which also require recursive cursors. For example, a
CREATE TABLE statement causes many updates to various data dictionary tables to
record the new table and columns. Recursive calls are made for those recursive
cursors; one cursor can run several recursive calls. These recursive cursors also use
shared SQL areas.

Scrollable Cursors
Execution of a cursor puts the results of the query into a set of rows called the result
set, which can be fetched sequentially or nonsequentially. Scrollable cursors are
cursors in which fetches and DML operations do not need to be forward sequential
only. Interfaces exist to fetch previously fetched rows, to fetch the nth row in the
result set, and to fetch the nth row from the current position in the result set.

Shared SQL
Oracle automatically notices when applications send similar SQL statements to the
database. The SQL area used to process the first occurrence of the statement is
shared—that is, used for processing subsequent occurrences of that same statement.
Therefore, only one shared SQL area exists for a unique statement. Because shared
SQL areas are shared memory areas, any Oracle process can use a shared SQL area.
The sharing of SQL areas reduces memory use on the database server, thereby
increasing system throughput.

In evaluating whether statements are similar or identical, Oracle considers SQL
statements issued directly by users and applications as well as recursive SQL
statements issued internally by a DDL statement.

Parsing
Parsing is one stage in the processing of a SQL statement. When an application
issues a SQL statement, the application makes a parse call to Oracle. During the
parse call, Oracle:

� Checks the statement for syntactic and semantic validity

See Also: Oracle Call Interface Programmer’s Guide for more
information about using scrollable cursors in OCI

See Also: Oracle9i Application Developer’s Guide - Fundamentals
and Oracle9i Database Performance Tuning Guide and Reference for
more information about shared SQL
SQL, PL/SQL, and Java 14-7

SQL Overview
� Determines whether the process issuing the statement has privileges to run it

� Allocates a private SQL area for the statement

Oracle also determines whether there is an existing shared SQL area containing the
parsed representation of the statement in the library cache. If so, the user process
uses this parsed representation and runs the statement immediately. If not, Oracle
generates the parsed representation of the statement, and the user process allocates
a shared SQL area for the statement in the library cache and stores its parsed
representation there.

Note the difference between an application making a parse call for a SQL statement
and Oracle actually parsing the statement. A parse call by the application
associates a SQL statement with a private SQL area. After a statement has been
associated with a private SQL area, it can be run repeatedly without your
application making a parse call. A parse operation by Oracle allocates a shared SQL
area for a SQL statement. Once a shared SQL area has been allocated for a
statement, it can be run repeatedly without being reparsed.

Both parse calls and parsing can be expensive relative to execution, so perform
them as seldom as possible.

SQL Processing
This section introduces the basics of SQL processing. Topics include:

� SQL Statement Execution

� DML Statement Processing

� DDL Statement Processing

� Control of Transactions

SQL Statement Execution
Figure 14–1 outlines the stages commonly used to process and run a SQL statement.
In some cases, Oracle can run these stages in a slightly different order. For example,
the DEFINE stage could occur just before the FETCH stage, depending on how you
wrote your code.

For many Oracle tools, several of the stages are performed automatically. Most
users need not be concerned with or aware of this level of detail. However, this
information could be useful when writing Oracle applications.

See Also: "PL/SQL Overview" on page 14-16
14-8 Oracle9i Database Concepts

SQL Overview
Figure 14–1 The Stages in Processing a SQL Statement

yes

yes

bind?reparse? no

OPEN

PARSE

query?

EXECUTE

PARALLELIZE

query?

execute
others?

CLOSE

yes

no

no

no

no

yes yes

no
no yes

describe?

DEFINE

more?

more?

BIND

more?

FETCH

more?no yes

no yes

yes

yes

no

DESCRIBE
SQL, PL/SQL, and Java 14-9

SQL Overview
DML Statement Processing
This section provides an example of what happens during the execution of a SQL
statement in each stage of DML statement processing.

Assume that you are using a Pro*C program to increase the salary for all employees
in a department. The program you are using has connected to Oracle and you are
connected to the proper schema to update the employees table. You can embed the
following SQL statement in your program:

EXEC SQL UPDATE employees SET salary = 1.10 * salary
WHERE department_id = :department_id;

Department_id is a program variable containing a value for department number.
When the SQL statement is run, the value of department_id is used, as provided
by the application program.

The following stages are necessary for each type of statement processing:

� Stage 1: Create a Cursor

� Stage 2: Parse the Statement

� Stage 5: Bind Any Variables

� Stage 7: Run the Statement

� Stage 9: Close the Cursor

Optionally, you can include another stage:

� Stage 6: Parallelize the Statement

Queries (SELECTs) require several additional stages, as shown in Figure 14–1:

� Stage 3: Describe Results of a Query

� Stage 4: Define Output of a Query

� Stage 8: Fetch Rows of a Query

Stage 1: Create a Cursor A program interface call creates a cursor. The cursor is
created independent of any SQL statement: it is created in expectation of any SQL
statement. In most applications, cursor creation is automatic. However, in
precompiler programs, cursor creation can either occur implicitly or be explicitly
declared.

See Also: "Query Processing" on page 14-11
14-10 Oracle9i Database Concepts

SQL Overview
Stage 2: Parse the Statement During parsing, the SQL statement is passed from the
user process to Oracle, and a parsed representation of the SQL statement is loaded
into a shared SQL area. Many errors can be caught during this stage of statement
processing.

Parsing is the process of:

� Translating a SQL statement, verifying it to be a valid statement

� Performing data dictionary lookups to check table and column definitions

� Acquiring parse locks on required objects so that their definitions do not change
during the statement’s parsing

� Checking privileges to access referenced schema objects

� Determining the optimal execution plan for the statement

� Loading it into a shared SQL area

� Routing all or part of distributed statements to remote nodes that contain
referenced data

Oracle parses a SQL statement only if a shared SQL area for an similar SQL
statement does not exist in the shared pool. In this case, a new shared SQL area is
allocated, and the statement is parsed.

The parse stage includes processing requirements that need to be done only once no
matter how many times the statement is run. Oracle translates each SQL statement
only once, reexecuting that parsed statement during subsequent references to the
statement.

Although parsing a SQL statement validates that statement, parsing only identifies
errors that can be found before statement execution. Thus, some errors cannot be
caught by parsing. For example, errors in data conversion or errors in data (such as
an attempt to enter duplicate values in a primary key) and deadlocks are all errors
or situations that can be encountered and reported only during the execution stage.

Query Processing Queries are different from other types of SQL statements because,
if successful, they return data as results. Whereas other statements simply return
success or failure, a query can return one row or thousands of rows. The results of a
query are always in tabular format, and the rows of the result are fetched
(retrieved), either a row at a time or in groups.

See Also: "Shared SQL" on page 14-7
SQL, PL/SQL, and Java 14-11

SQL Overview
Several issues relate only to query processing. Queries include not only explicit
SELECT statements but also the implicit queries (subqueries) in other SQL
statements. For example, each of the following statements requires a query as a part
of its execution:

INSERT INTO table SELECT...

UPDATE table SET x = y WHERE...

DELETE FROM table WHERE...

CREATE table AS SELECT...

In particular, queries:

� Require read consistency

� Can use temporary segments for intermediate processing

� Can require the describe, define, and fetch stages of SQL statement processing.

Stage 3: Describe Results of a Query The describe stage is necessary only if the
characteristics of a query’s result are not known; for example, when a query is
entered interactively by a user. In this case, the describe stage determines the
characteristics (datatypes, lengths, and names) of a query’s result.

Stage 4: Define Output of a Query In the define stage for queries, you specify the
location, size, and datatype of variables defined to receive each fetched value.
Oracle performs datatype conversion if necessary.

Stage 5: Bind Any Variables At this point, Oracle knows the meaning of the SQL
statement but still does not have enough information to run the statement. Oracle
needs values for any variables listed in the statement; in the example, Oracle needs
a value for department_id. The process of obtaining these values is called
binding variables.

A program must specify the location (memory address) where the value can be
found. End users of applications may be unaware that they are specifying bind
variables, because the Oracle utility can simply prompt them for a new value.

Because you specify the location (binding by reference), you need not rebind the
variable before reexecution. You can change its value and Oracle looks up the value
on each execution, using the memory address.
14-12 Oracle9i Database Concepts

SQL Overview
You must also specify a datatype and length for each value (unless they are implied
or defaulted) if Oracle needs to perform datatype conversion.

Stage 6: Parallelize the Statement Oracle can parallelize queries (SELECTs, INSERTs,
UPDATEs, MERGEs, DELETEs), and some DDL operations such as index creation,
creating a table with a subquery, and operations on partitions. Parallelization causes
multiple server processes to perform the work of the SQL statement so it can
complete faster.

Stage 7: Run the Statement At this point, Oracle has all necessary information and
resources, so the statement is run. If the statement is a query or an INSERT
statement, no rows need to be locked because no data is being changed. If the
statement is an UPDATE or DELETE statement, however, all rows that the statement
affects are locked from use by other users of the database until the next COMMIT,
ROLLBACK, or SAVEPOINT for the transaction. This ensures data integrity.

For some statements you can specify a number of executions to be performed. This
is called array processing. Given n number of executions, the bind and define
locations are assumed to be the beginning of an array of size n.

Stage 8: Fetch Rows of a Query In the fetch stage, rows are selected and ordered (if
requested by the query), and each successive fetch retrieves another row of the
result until the last row has been fetched.

Stage 9: Close the Cursor The final stage of processing a SQL statement is closing the
cursor.

See Also:

� Oracle Call Interface Programmer’s Guide

� Pro*C/C++ Precompiler Programmer’s Guide (see "Dynamic SQL
Method 4")

� Pro*COBOL Precompiler Programmer’s Guide (see "Dynamic SQL
Method 4")

for more information about specifying a datatype and length for a
value

See Also: Chapter 18, "Parallel Execution of SQL Statements"
SQL, PL/SQL, and Java 14-13

SQL Overview
DDL Statement Processing
The execution of DDL statements differs from the execution of DML statements and
queries, because the success of a DDL statement requires write access to the data
dictionary. For these statements, parsing (Stage 2) actually includes parsing, data
dictionary lookup, and execution.

Transaction management, session management, and system management SQL
statements are processed using the parse and run stages. To rerun them, simply
perform another execute.

Control of Transactions
In general, only application designers using the programming interfaces to Oracle
are concerned with the types of actions that should be grouped together as one
transaction. Transactions must be defined so that work is accomplished in logical
units and data is kept consistent. A transaction should consist of all of the necessary
parts for one logical unit of work, no more and no less.

� Data in all referenced tables should be in a consistent state before the
transaction begins and after it ends.

� Transactions should consist of only the SQL statements that make one
consistent change to the data.

For example, a transfer of funds between two accounts (the transaction or logical
unit of work) should include the debit to one account (one SQL statement) and the
credit to another account (one SQL statement). Both actions should either fail or
succeed together as a unit of work; the credit should not be committed without the
debit. Other unrelated actions, such as a new deposit to one account, should not be
included in the transfer of funds transaction.

In addition to determining which types of actions form a transaction, when you
design an application you must also determine when it is useful to use the BEGIN_
DISCRETE_TRANSACTION procedure to improve the performance of short,
non-distributed transactions.

The Optimizer Overview
The optimizer determines the most efficient way to run a SQL statement. This is an
important step in the processing of any data manipulation language (DML)
statement: SELECT, INSERT, UPDATE, MERGE, or DELETE. There are often many
different ways to run a SQL statement; for example, by varying the order in which

See Also: "Discrete Transaction Management" on page 16-11
14-14 Oracle9i Database Concepts

SQL Overview
tables or indexes are accessed. The procedure Oracle uses to run a statement can
greatly affect how quickly the statement runs. The optimizer considers many factors
among alternative access paths. It can use either a cost-based or a rule-based
approach. In general, always use the cost-based approach. The rule-based approach
is available for the benefit of existing applications.

You can influence the optimizer's choices by setting the optimizer approach and
goal. You can also gather statistics for the cost-based optimizer (CBO), using the
PL/SQL package DBMS_STATS.

Sometimes the application designer, who has more information about a particular
application's data than is available to the optimizer, can choose a more effective way
to run a SQL statement. The application designer can use hints in SQL statements to
specify how the statement should be run.

Execution Plans
To run a DML statement, Oracle might need to perform many steps. Each of these
steps either retrieves rows of data physically from the database or prepares them in
some way for the user issuing the statement. The combination of the steps Oracle
uses to run a statement is called an execution plan. An execution plan includes an
access method for each table that the statement accesses and an ordering of the
tables (the join order). The steps of the execution plan are not performed in the
order in which they are numbered.

Stored Outlines Stored outlines are abstractions of an execution plan generated by
the optimizer at the time the outline was created and are represented primarily as a
set of hints. When the outline is subsequently used, these hints are applied at

Note: The optimizer might not make the same decisions from one
version of Oracle to the next. In recent versions, the optimizer
might make different decisions based on better information
available to it.

See Also:

� Oracle9i Supplied PL/SQL Packages and Types Reference for information
about using DBMS_STATS

� Oracle9i Database Performance Tuning Guide and Reference for
more information about the cost-based optimizer, the
rule-based optimizer, and the extensible optimizer
SQL, PL/SQL, and Java 14-15

PL/SQL Overview
various stages of compilation. Outline data is stored in the OUTLN schema. You can
tune execution plans by editing stored outlines.

Editing Stored Outlines The outline is cloned into the user’s schema at the onset of the
outline editing session. All subsequent editing operations are performed on that
clone until the user is satisfied with the edits and chooses to publicize them. In this
way, any editing done by the user does not impact the rest of the user community,
which would continue to use the public version of the outline until the edits are
explicitly saved.

PL/SQL Overview
PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL enables you to
mix SQL statements with procedural constructs. With PL/SQL, you can define and
run PL/SQL program units such as procedures, functions, and packages.

PL/SQL program units generally are categorized as anonymous blocks and stored
procedures.

An anonymous block is a PL/SQL block that appears within your application and
it is not named or stored in the database. In many applications, PL/SQL blocks can
appear wherever SQL statements can appear.

A stored procedure is a PL/SQL block that Oracle stores in the database and can be
called by name from an application. When you create a stored procedure, Oracle
parses the procedure and stores its parsed representation in the database. Oracle
also lets you create and store functions (which are similar to procedures) and
packages (which are groups of procedures and functions).

See Also: Oracle9i Database Performance Tuning Guide and Reference
for details about execution plans and using stored outlines

See Also:

"Java Overview" on page 14-31

Chapter 17, "Triggers"
14-16 Oracle9i Database Concepts

PL/SQL Overview
How PL/SQL Runs

Native Execution
For best performance on computationally intensive program units, compile the
source code of PL/SQL program units stored in the database directly to object code
for the given platform. (This object code is linked into the Oracle server.)

Interpreted Execution
In versions earlier than Oracle9i, PL/SQL source code was always compiled into a
so-called bytecode representation, which is executed by a portable virtual machine
implemented as part of the Oracle Server, and also in products such as Oracle
Forms. Starting with Oracle9i, you can choose between native execution and
interpreted execution

The PL/SQL engine is the tool you use to define, compile, and run PL/SQL
program units. This engine is a special component of many Oracle products,
including the Oracle server.

While many Oracle products have PL/SQL components, this section specifically
covers the program units that can be stored in an Oracle database and processed
using the Oracle server PL/SQL engine. The PL/SQL capabilities of each Oracle
tool are described in the appropriate tool's documentation.

Figure 14–2 illustrates the PL/SQL engine contained in Oracle server.

See Also: PL/SQL User’s Guide and Reference
SQL, PL/SQL, and Java 14-17

PL/SQL Overview
Figure 14–2 The PL/SQL Engine and the Oracle Server

The program unit is stored in a database. When an application calls a procedure
stored in the database, Oracle loads the compiled program unit into the shared pool
in the system global area (SGA). The PL/SQL and SQL statement executors work
together to process the statements within the procedure.

The following Oracle products contain a PL/SQL engine:

� Oracle server

� Oracle Forms (version 3 and later)

� SQL*Menu (version 5 and later)

� Oracle Reports (version 2 and later)

� Oracle Graphics version 2 and later)

SQL Statement
Executor

Database
Application

Oracle Server

SGA PL/SQL Engine

SQL

Procedural
Statement
Executor

Program code

Program code

Prodedure call

Program code

Program code

Database

Procedure

Begin
 Procedural
 Procedural
 SQL
 Prodedural
SQL
END;
14-18 Oracle9i Database Concepts

PL/SQL Overview
You can call a stored procedure from another PL/SQL block, which can be either an
anonymous block or another stored procedure. For example, you can call a stored
procedure from Oracle Forms (version 3 or later).

Also, you can pass anonymous blocks to Oracle from applications developed with
these tools:

� Oracle precompilers (including user exits)

� Oracle Call Interfaces (OCIs)

� SQL*Plus

� Oracle Enterprise Manager

Language Constructs for PL/SQL
PL/SQL blocks can include the following PL/SQL language constructs:

� Variables and constants

� Cursors

� Exceptions

This section gives a general description of each construct.

Variables and Constants
Variables and constants can be declared within a procedure, function, or package. A
variable or constant can be used in a SQL or PL/SQL statement to capture or
provide a value when one is needed.

Cursors
Cursors can be declared explicitly within a procedure, function, or package to
facilitate record-oriented processing of Oracle data. Cursors also can be declared
implicitly (to support other data manipulation actions) by the PL/SQL engine.

See Also: PL/SQL User’s Guide and Reference

Note: Some interactive tools, such as SQL*Plus, let you define
variables in your current session. You can use such variables just as
you would variables declared within procedures or packages.

See Also: "Scrollable Cursors" on page 14-7
SQL, PL/SQL, and Java 14-19

PL/SQL Overview
Exceptions
PL/SQL lets you explicitly handle internal and user-defined error conditions, called
exceptions, that arise during processing of PL/SQL code. Internal exceptions are
caused by illegal operations, such as division by zero, or Oracle errors returned to
the PL/SQL code. User-defined exceptions are explicitly defined and signaled
within the PL/SQL block to control processing of errors specific to the application
(for example, debiting an account and leaving a negative balance).

When an exception is raised, the execution of the PL/SQL code stops, and a routine
called an exception handler is invoked. Specific exception handlers can be written
for any internal or user-defined exception.

Dynamic SQL in PL/SQL
PL/SQL can run dynamic SQL statements whose complete text is not known until
runtime. Dynamic SQL statements are stored in character strings that are entered
into, or built by, the program at runtime. This enables you to create general purpose
procedures. For example, dynamic SQL lets you create a procedure that operates on
a table whose name is not known until runtime.

You can write stored procedures and anonymous PL/SQL blocks that include
dynamic SQL in two ways:

� By embedding dynamic SQL statements in the PL/SQL block

� By using the DBMS_SQL package

Additionally, you can issue DML or DDL statements using dynamic SQL. This
helps solve the problem of not being able to statically embed DDL statements in
PL/SQL. For example, you can choose to issue a DROP TABLE statement from
within a stored procedure by using the EXECUTE IMMEDIATE statement or the
PARSE procedure supplied with the DBMS_SQL package.

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals for a
comparison of the two approaches to dynamic SQL

� PL/SQL User’s Guide and Reference for details about dynamic
SQL

� Oracle9i Supplied PL/SQL Packages and Types Reference
14-20 Oracle9i Database Concepts

PL/SQL Overview
PL/SQL Program Units
Oracle lets you access and manipulate database information using procedural
schema objects called PL/SQL program units. Procedures, functions, and packages
are all examples of PL/SQL program units.

Stored Procedures and Functions
A procedure or function is a schema object that consists of a set of SQL statements
and other PL/SQL constructs, grouped together, stored in the database, and run as
a unit to solve a specific problem or perform a set of related tasks. Procedures and
functions permit the caller to provide parameters that can be input only, output
only, or input and output values. Procedures and functions let you combine the ease
and flexibility of SQL with the procedural functionality of a structured
programming language.

Procedures and functions are identical except that functions always return a single
value to the caller, while procedures do not. For simplicity, procedure as used in the
remainder of this chapter means procedure or function.

You can run a procedure or function interactively by:

� Using an Oracle tool, such as SQL*Plus

� Calling it explicitly in the code of a database application, such as an Oracle
Forms or precompiler application

� Calling it explicitly in the code of another procedure or trigger

Figure 14–3 illustrates a simple procedure that is stored in the database and called
by several different database applications.

See Also:

� Pro*C/C++ Precompiler Programmer’s Guide for information
about how to call stored C or C++ procedures

� Pro*COBOL Precompiler Programmer’s Guide for information
about how to call stored COBOL procedures

� Other programmer’s guides for information about how to call
stored procedures of specific kinds of application
SQL, PL/SQL, and Java 14-21

PL/SQL Overview
Figure 14–3 Stored Procedure

The stored procedure in Figure 14–3, which inserts an employee record into the
employees table, is shown in Figure 14–4.

Database
Applications

Program code
.
.
Program code
.
hire_employees(...);
.
Program code

Program
.
.
Program code
.
hire_employees(...);
.
Program code

code

Program code
.
.
Program code
.
hire_employees(...);
.
Program code

hire_employees(...)

BEGIN
.
.
END;

Database

Stored
Procedure
14-22 Oracle9i Database Concepts

PL/SQL Overview
Figure 14–4 Stored Procedure Example

All of the database applications in Figure 14–3 call the hire_employees
procedure. Alternatively, a privileged user can use Oracle Enterprise Manager or
SQL*Plus to run the hire_employees procedure using the following statement:

EXECUTE hire_employees ('TSMITH', 'CLERK', 1037, SYSDATE, \ 500, NULL, 20);

This statement places a new employee record for TSMITH in the employees table.

Benefits of Procedures Stored procedures provide advantages in the following areas:

� Security with definer-rights procedures

Stored procedures can help enforce data security. You can restrict the database
operations that users can perform by allowing them to access data only through
procedures and functions that run with the definer’s privileges.

For example, you can grant users access to a procedure that updates a table but
not grant them access to the table itself. When a user invokes the procedure, the
procedure runs with the privileges of the procedure's owner. Users who have
only the privilege to run the procedure (but not the privileges to query, update,
or delete from the underlying tables) can invoke the procedure, but they cannot
manipulate table data in any other way.

See Also: PL/SQL User’s Guide and Reference

See Also: "Dependency Tracking for Stored Procedures" on
page 14-26

Procedure hire_employees (last_name VARCHAR2, job_id VARCHAR2,
manager_id NUMBER, hire_date DATE, salary NUMBER,
commission_pct NUMBER, department_id NUMBER)

BEGIN
.
.
INSERT INTO employees VALUES
(emp_sequence.NEXTVAL, last_name, job_id, manager_id
hire_date, salary, commission_pct, department_id);
.
.
END;
SQL, PL/SQL, and Java 14-23

PL/SQL Overview
� Inherited privileges and schema context with invoker-rights procedures

An invoker-rights procedure inherits privileges and schema context from the
procedure that calls it. In other words, an invoker-rights procedure is not tied to
a particular user or schema, and each invocation of an invoker-rights procedure
operates in the current user’s schema with the current user’s privileges.
Invoker-rights procedures make it easy for application developers to centralize
application logic, even when the underlying data is divided among user
schemas.

For example, a a user who runs an update procedure on the employees table
as a manager can update salary, whereas a user who runs the same procedure as
a clerk can be restricted to updating address data.

� Improved performance

– The amount of information that must be sent over a network is small
compared with issuing individual SQL statements or sending the text of an
entire PL/SQL block to Oracle, because the information is sent only once
and thereafter invoked when it is used.

– A procedure's compiled form is readily available in the database, so no
compilation is required at execution time.

– If the procedure is already present in the shared pool of the system global
area (SGA), then retrieval from disk is not required, and execution can
begin immediately.

� Memory allocation

Because stored procedures take advantage the shared memory capabilities of
Oracle, only a single copy of the procedure needs to be loaded into memory for
execution by multiple users. Sharing the same code among many users results
in a substantial reduction in Oracle memory requirements for applications.

� Improved productivity

Stored procedures increase development productivity. By designing
applications around a common set of procedures, you can avoid redundant
coding and increase your productivity.

For example, procedures can be written to insert, update, or delete employee
records from the employees table. These procedures can then be called by any
application without rewriting the SQL statements necessary to accomplish these
tasks. If the methods of data management change, only the procedures need to
be modified, not all of the applications that use the procedures.
14-24 Oracle9i Database Concepts

PL/SQL Overview
� Integrity

Stored procedures improve the integrity and consistency of your applications.
By developing all of your applications around a common group of procedures,
you can reduce the likelihood of committing coding errors.

For example, you can test a procedure or function to guarantee that it returns an
accurate result and, once it is verified, reuse it in any number of applications
without testing it again. If the data structures referenced by the procedure are
altered in any way, only the procedure needs to be recompiled. Applications
that call the procedure do not necessarily require any modifications.

Procedure Guidelines Use the following guidelines when designing stored
procedures:

� Define procedures to complete a single, focused task. Do not define long
procedures with several distinct subtasks, because subtasks common to many
procedures can be duplicated unnecessarily in the code of several procedures.

� Do not define procedures that duplicate the functionality already provided by
other features of Oracle. For example, do not define procedures to enforce
simple data integrity rules that you could easily enforce using declarative
integrity constraints.

Anonymous PL/SQL Blocks Compared with Stored Procedures A stored procedure is
created and stored in the database as a schema object. Once created and compiled, it
is a named object that can be run without recompiling. Additionally, dependency
information is stored in the data dictionary to guarantee the validity of each stored
procedure.

As an alternative to a stored procedure, you can create an anonymous PL/SQL
block by sending an unnamed PL/SQL block to the Oracle server from an Oracle
tool or an application. Oracle compiles the PL/SQL block and places the compiled
version in the shared pool of the SGA, but it does not store the source code or
compiled version in the database for reuse beyond the current instance. Shared SQL
allows anonymous PL/SQL blocks in the shared pool to be reused and shared until
they are flushed out of the shared pool.

In either case, moving PL/SQL blocks out of a database application and into
database procedures stored either in the database or in memory, you avoid
unnecessary procedure recompilations by Oracle at runtime, improving the overall
performance of the application and Oracle.
SQL, PL/SQL, and Java 14-25

PL/SQL Overview
Standalone Procedures Stored procedures not defined within the context of a
package are called standalone procedures. Procedures defined within a package are
considered a part of the package.

Dependency Tracking for Stored Procedures A stored procedure depends on the objects
referenced in its body. Oracle automatically tracks and manages such dependencies.
For example, if you alter the definition of a table referenced by a procedure, the
procedure must be recompiled to validate that it will continue to work as designed.
Usually, Oracle automatically administers such dependency management.

External Procedures A PL/SQL procedure executing on an Oracle server can call an
external procedure or function that is written in the C programming language and
stored in a shared library. The C routine runs in a separate address space from that
of the Oracle server.

Table Functions Table functions are functions that can produce a set of rows as
output. In other words, table functions return a collection type instance (nested
table and VARRAY datatypes). You can use a table function in place of a regular table
in the FROM clause of a SQL statement.

Oracle allows table functions to pipeline results (act like an Oracle rowsource) out
of the functions. This can be achieved by either providing an implementation of the
ODCITable interface, or using native PL/SQL instructions.

Pipelining helps to improve the performance of a number of applications, such as
Oracle Warehouse Builder (OWB) and cartridges groups.

The ETL (Extraction-Transformation-Load) process in data warehouse building
extracts data from an OLTP system. The extracted data passes through a sequence
of transformations (written in procedural languages, such as PL/SQL) before it is
loaded into a data warehouse.

Oracle also allows parallel execution of table and non-table functions. Parallel
execution provides the following extensions:

See Also: "PL/SQL Packages" on page 14-27 for information
about the advantages of packages

See Also: Chapter 15, "Dependencies Among Schema Objects" for
more information about dependency tracking

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about external procedures
14-26 Oracle9i Database Concepts

PL/SQL Overview
� Functions can directly accept a set of rows corresponding to a subquery
operand.

� A set of input rows can be partitioned among multiple instances of a parallel
function. The function developer specifies how the input rows should be
partitioned between parallel instances of the function.

Thus, table functions are similar to views. However, instead of defining the
transform declaratively in SQL, you define it procedurally in PL/SQL. This is
especially valuable for the arbitrarily complex transformations typically required in
ETL.

PL/SQL Packages
A package is a group of related procedures and functions, together with the cursors
and variables they use, stored together in the database for continued use as a unit.
Similar to standalone procedures and functions, packaged procedures and functions
can be called explicitly by applications or users.

You create a package in two parts: the specification and the body. The package
specification declares all public constructs of the package and the body defines all
constructs (public and private) of the package. This separation of the two parts
provides the following advantages:

� You have more flexibility in the development cycle. You can create
specifications and reference public procedures without actually creating the
package body.

� You can alter procedure bodies contained within the package body separately
from their publicly declared specifications in the package specification. As long
as the procedure specification does not change, objects that reference the altered
procedures of the package are never marked invalid. That is, they are never
marked as needing recompilation.

Figure 14–5 illustrates a package that encapsulates a number of procedures used to
manage an employee database.

See Also:

� Oracle9i Data Cartridge Developer’s Guide

� PL/SQL User’s Guide and Reference

for detailed accounts of table functions
SQL, PL/SQL, and Java 14-27

PL/SQL Overview
Figure 14–5 A Stored Package

Database applications explicitly call packaged procedures as necessary. After being
granted the privileges for the employees_management package, a user can

Database Applications employees_management

fire_employees(...)

BEGIN
.
.
END;

hire_employees(...)

BEGIN
.
.
END;

salary_raise(...)

BEGIN
.
.
END;

Program code
.
employees_management.fire_employees(...);

Program code
.
Program code
.
employees_management.hire_employees(...);
.
Program code

Program code
.
employees_management.hire_employees(...);

Program code
.
Program code
.
employees_management.salary_raise(...);
.
Program code

Database
14-28 Oracle9i Database Concepts

PL/SQL Overview
explicitly run any of the procedures contained in it. For example, Oracle Enterprise
Manager or SQL*Plus can issue the following statement to run the hire_
employees package procedure:

EXECUTE employees_management.hire_employees ('TSMITH', 'CLERK', 1037, SYSDATE,
500, NULL, 20);

Benefits of Packages Packages provide advantages in the following areas:

� Encapsulation of related procedures and variables

Stored packages allow you to encapsulate or group stored procedures,
variables, datatypes, and so forth in a single named, stored unit in the database.
This provides better organization during the development process.
Encapsulation of procedural constructs also makes privilege management
easier. Granting the privilege to use a package makes all constructs of the
package accessible to the grantee.

� Declaration of public and private procedures, variables, constants, and cursors

The methods of package definition allow you to specify which variables,
cursors, and procedures are public and private. Public means that it is directly
accessible to the user of a package. Private means that it is hidden from the user
of a package.

For example, a package can contain 10 procedures. You can define the package
so that only three procedures are public and therefore available for execution by
a user of the package. The remainder of the procedures are private and can only
be accessed by the procedures within the package. Do not confuse public and
private package variables with grants to PUBLIC.

� Better performance

An entire package is loaded into memory when a procedure within the package
is called for the first time. This load is completed in one operation, as opposed
to the separate loads required for standalone procedures. Therefore, when calls

See Also:

� PL/SQL User’s Guide and Reference

� Oracle9i Supplied PL/SQL Packages and Types Reference

See Also: Chapter 22, "Controlling Database Access" for more
information about grants to PUBLIC
SQL, PL/SQL, and Java 14-29

PL/SQL Overview
to related packaged procedures occur, no disk I/O is necessary to run the
compiled code already in memory.

A package body can be replaced and recompiled without affecting the
specification. As a result, schema objects that reference a package's constructs
(always through the specification) need not be recompiled unless the package
specification is also replaced. By using packages, unnecessary recompilations
can be minimized, resulting in less impact on overall database performance.

PL/SQL Collections and Records
Many programming techniques use collection types such as arrays, bags, lists,
nested tables, sets, and trees. To support these techniques in database applications,
PL/SQL provides the datatypes TABLE and VARRAY, which allow you to declare
index-by tables, nested tables and variable-size arrays.

Collections
A collection is an ordered group of elements, all of the same type. Each element has
a unique subscript that determines its position in the collection.

Collections work like the arrays found in most third-generation programming
languages. Also, collections can be passed as parameters. So, you can use them to
move columns of data into and out of database tables or between client-side
applications and stored subprograms.

Records
You can use the %ROWTYPE attribute to declare a record that represents a row in a
table or a row fetched from a cursor. But, with a user-defined record, you can
declare fields of your own.

Records contain uniquely named fields, which can have different datatypes.
Suppose you have various data about an employee such as name, salary, and hire
date. These items are dissimilar in type but logically related. A record containing a
field for each item lets you treat the data as a logical unit.

PL/SQL Server Pages
PL/SQL Server Pages (PSP) are server-side Web pages (in HTML or XML) with
embedded PL/SQL scripts marked with special tags. To produce dynamic Web

See Also: PL/SQL User’s Guide and Reference for detailed
information on using collections and records
14-30 Oracle9i Database Concepts

Java Overview
pages, developers have usually written CGI programs in C or Perl that fetch data
and produce the entire Web page within the same program. The development and
maintenance of such dynamic pages is costly and time-consuming.

Scripting fulfills the demand for rapid development of dynamic Web pages. Small
scripts can be embedded in HTML pages without changing their basic HTML
identity. The scripts contain the logic to produce the dynamic portions of HTML
pages and are run when the pages are requested by the users.

The separation of HTML content from application logic makes script pages easier to
develop, debug, and maintain. The simpler development model, along the fact that
scripting languages usually demand less programming skill, enables Web page
writers to develop dynamic Web pages.

There are two kinds of embedded scripts in HTML pages: client-side scripts and
server-side scripts. Client-side scripts are returned as part of the HTML page and
are run in the browser. They are mainly used for client-side navigation of HTML
pages or data validation. Server-side scripts, while also embedded in the HTML
pages, are run on the server side. They fetch and manipulate data and produce
HTML content that is returned as part of the page. PSP scripts are server-side
scripts.

A PL/SQL gateway receives HTTP requests from an HTTP client, invokes a
PL/SQL stored procedure as specified in the URL, and returns the HTTP output to
the client. A PL/SQL Server Page is processed by a PSP compiler, which compiles
the page into a PL/SQL stored procedure. When the procedure is run by the
gateway, it generates the Web page with dynamic content. PSP is built on one of two
existing PL/SQL gateways:

� PL/SQL Cartridge of Oracle Application Server

� WebDB

Java Overview
Java has emerged as the object-oriented programming language of choice, because it
is object-oriented and efficient for application-level programs. It includes the
following features:

� A Java virtual machine (JVM), which provides the fundamental basis for
platform independence

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about PL/SQL Server Pages
SQL, PL/SQL, and Java 14-31

Java Overview
� Automated storage management techniques, the most visible of which is
garbage collection

� Language syntax that borrows from C and enforces strong typing

Java and Object-Oriented Programming Terminology
This section covers some basic terminology of Java application development in the
Oracle environment. The terms should be familiar to experienced Java
programmers.

Classes
All object-oriented programming languages support the concept of a class. As with
a table definition, a class provides a template for objects that share common
characteristics. Each class can contain the following:

� Attributes—static or instance variables that each object of a particular class
possesses

� Methods—you can invoke methods defined by the class or inherited by any
classes extended from the class

When you create an object from a class, you are creating an instance of that class.
The instance contains the fields of an object, which are known as its data, or state.

Figure 14–6 shows an example of an Employee class defined with two attributes:
last name (lastName) and employee identifier (ID).
14-32 Oracle9i Database Concepts

Java Overview
Figure 14–6 Classes and Instances

When you create an instance, the attributes store individual and private information
relevant only to the employee. That is, the information contained within an
employee instance is known only for that single employee. The example in
Figure 14–6 shows two instances of employee—Smith and Jones. Each instance
contains information relevant to the individual employee.

Attributes Attributes within an instance are known as fields. Instance fields are
analogous to the fields of a relational table row. The class defines the fields, as well
as the type of each field. You can declare fields in Java to be static, public, private,
protected, or default access.

� Public, private, protected, or default access fields are created within each
instance.

� Static fields are like global variables in that the information is available to all
instances of the employee class.

The language specification defines the rules of visibility of data for all fields. Rules
of visibility define under what circumstances you can access the data in these fields.

Methods The class also defines the methods you can invoke on an instance of that
class. Methods are written in Java and define the behavior of an object. This
bundling of state and behavior is the essence of encapsulation, which is a feature of
all object-oriented programming languages. If you define an Employee class,
declaring that each employee’s id is a private field, other objects can access that

Employee
id = 372 74 3215
last name = Jones

Employee
id = 215 63 2179
last name = Smith

fields
private String id
public String lastName
...

methods
private getId ()
public setId (String anId)
...

public class Employee

new Employee()

new Employee()

Each instance of Employee
holds its own state. You can
access that state only if the
creator of the class defines
it in a way that provides
access to you.

Employee class defines the
fields that instances hold
(state) and methods you
can invoke on instances
of Employee (behavior).
SQL, PL/SQL, and Java 14-33

Java Overview
private field only if a method returns the field. In this example, an object could
retrieve the employee’s identifier by invoking the Employee.getId() method.

In addition, with encapsulation, you can declare that the
Employee.getId()method is private, or you can decide not to write an
Employee.getId() method. Encapsulation helps you write programs that are
reusable and not misused. Encapsulation makes public only those features of an
object that are declared public; all other fields and methods are private. Private
fields and methods can be used for internal object processing.

Class Hierarchy
Java defines classes within a large hierarchy of classes. At the top of the hierarchy is
the Object class. All classes in Java inherit from the Object class at some level, as
you walk up through the inheritance chain of superclasses. When we say Class B
inherits from Class A, each instance of Class B contains all the fields defined in class
B, as well as all the fields defined in Class A. For example, in Figure 14–7, the
FullTimeEmployee class contains the id and lastName fields defined in the
Employee class, because it inherits from the Employee class. In addition, the
FullTimeEmployee class adds another field, bonus, which is contained only
within FullTimeEmployee.

You can invoke any method on an instance of Class B that was defined in either
Class A or B. In our employee example, the FullTimeEmployee instance can
invoke methods defined only within its own class, or methods defined within the
Employee class.
14-34 Oracle9i Database Concepts

Java Overview
Figure 14–7 Using Inheritance to Localize Behavior and State

Instances of Class B are substitutable for instances of Class A, which makes
inheritance another powerful construct of object-oriented languages for improving
code reuse. You can create new classes that define behavior and state where it
makes sense in the hierarchy, yet make use of pre-existing functionality in class
libraries.

Interfaces
Java supports only single inheritance; that is, each class has one and only one class
from which it inherits. If you must inherit from more than one source, Java provides
the equivalent of multiple inheritance, without the complications and confusion
that usually accompany it, through interfaces. Interfaces are similar to classes;
however, interfaces define method signatures, not implementations. The methods
are implemented in classes declared to implement an interface. Multiple inheritance
occurs when a single class simultaneously supports many interfaces.

class Employee
id
last name

class PartTime Employee
schedule

class FullTime Employee
bonus

class ExemptEmployee
salaryToDate()

class NonExemptEmployee
salaryToDate()

Each FullTimeEmployee is
considered "exempt" if he
works for a monthly salary,
or "non-exempt" if he
works at an hourly rate.
Each one computes
salaryToDate differently.

PartTimeEmployees have
to track their schedules,
while Full-TimeEmployees
are eligible for bonuses.

Employee class has two subclasses, PartTimeEmployee
and FullTimeEmployee, rather than using attributes of
Employee to differentiate between different Employee types.
Note: We could have made Employee an interface.
SQL, PL/SQL, and Java 14-35

Java Overview
Polymorphism
Assume in our Employee example that the different types of employees must be
able to respond with their compensation to date. Compensation is computed
differently for different kinds of employees.

� FullTimeEmployees are eligible for a bonus

� NonExemptEmployees get overtime pay

In traditional procedural languages, you would write a long switch statement, with
the different possible cases defined.

switch: (employee.type) {
case: Employee
return employee.salaryToDate;
case: FullTimeEmployee
return employee.salaryToDate + employee.bonusToDate
...
If you add a new kind of Employee, you must update your switch statement. If you
modify your data structure, you must modify all switch statements that use it.

In an object-oriented language such as Java, you implement a method,
compensationToDate(), for each subclass of Employee class that requires any
special treatment beyond what is already defined in Employee class. For example,
you could implement the compensationToDate() method of
NonExemptEmployee, as follows:

private float compensationToDate() {
return super.compensationToDate() + this.overtimeToDate();
}

You implement FullTimeEmployee’s method, as follows:

private float compensationToDate() {
return super.compensationToDate() + this.bonusToDate();
}

The common usage of the method name compensationToDate() lets you invoke
the identical method on different classes and receive different results, without
knowing the type of employee you are using. You do not have to write a special
method to handle FullTimeEmployees and PartTimeEmployees. Thisability
for the different objects to respond to the identical message in different ways is
known as polymorphism.

In addition, you could create an entirely new class that does not inherit from
Employee at all—Contractor—and implement a compensationToDate()
14-36 Oracle9i Database Concepts

Java Overview
method in it. A program that calculates total payroll to date would iterate over all
people on payroll, regardless of whether they were full-time, part-time, or
contractors, and add up the values returned from invoking the
compensationToDate() method on each. You can safely make changes to the
individual compensationToDate() methods with the knowledge that callers of
the methods will work correctly. For example, you can safely add new fields to
existing classes.

The Java Virtual Machine (JVM)
As with other high-level computer languages, your Java source compiles to
low-level machine instructions. In Java, these instructions are known as bytecodes
(because their size is uniformly one byte of storage). Most other languages—such as
C—compile to machine-specific instructions—such as instructions specific to an
Intel or HP processor. Your Java source compiles to a standard,
platform-independent set of bytecodes, which interacts with a Java virtual machine
(JVM). The JVM is a separate program that is optimized for the specific platform on
which you execute your Java code. Figure 14–8 illustrates how Java can maintain
platform independence. Your Java source is compiled into bytecodes, which are
platform independent. Each platform has installed a JVM that is specific to its
operating system. The Java bytecodes from your source get interpreted through the
JVM into appropriate platform dependent actions.
SQL, PL/SQL, and Java 14-37

Java Overview
Figure 14–8 Java Component Structure

When you develop a Java program, you use predefined core class libraries written
in the Java language. The Java core class libraries are logically divided into
packages that provide commonly-used functionality, such as basic language
support (java.lang), I/O (java.io), and network access (java.net). Together, the
JVM and core class libraries provide a platform on which Java programmers can
develop with the confidence that any hardware and operating system that supports
Java will execute their program. This concept is what drives the “write once, run
anywhere” idea of Java.

Figure 14–9 illustrates how Oracle’s Java applications sit on top of the Java core
class libraries, which in turn sit on top of the JVM. Because Oracle’s Java support
system is located within the database, the JVM interacts with the Oracle database
libraries, instead of directly with the operating system.

Java Applications

Java Virtual Machine

Operating System
14-38 Oracle9i Database Concepts

Java Overview
Figure 14–9 Java Component Structure

Sun Microsystems furnishes publicly available specifications for both the Java
language and the JVM. The Java Language Specification (JLS) defines things such as
syntax and semantics; the JVM specification defines the necessary low-level
behavior for the “machine” that executes the bytecodes. In addition, Sun
Microsystems provides a compatibility test suite for JVM implementors to
determine if they have complied with the specifications. This test suite is known as
the Java Compatibility Kit (JCK). Oracle’s JVM implementation complies fully with
JCK. Part of the overall Java strategy is that an openly specified standard, together
with a simple way to verify compliance with that standard, allows vendors to offer
uniform support for Java across all platforms.

Why Use Java in Oracle?
The only reason that you are allowed to write and load Java applications within the
database is because it is a safe language. Java has been developed to prevent anyone
from tampering with the operating system that the Java code resides in. Some

Java Server Applications

Oracle Database JVM

Oracle-Supported Java APIs:
SQLJ, JDBC

Java Core Class Libraries

Oracle Database Libraries

Operating System
SQL, PL/SQL, and Java 14-39

Java Overview
languages, such as C, can introduce security problems within the database; Java,
because of its design, is a safe language to allow within the database.

Although the Java language presents many advantages to developers, providing an
implementation of a JVM that supports Java server applications in a scalable
manner is a challenge. This section discusses some of these challenges.

� Multithreading

� Automated Storage Management

� Footprint

� Performance

� Dynamic Class Loading

Multithreading
Multithreading support is often cited as one of the key scalability features of the
Java language. Certainly, the Java language and class libraries make it simpler to
write shared server applications in Java than many other languages, but it is still a
daunting task in any language to write reliable, scalable shared server code.

As a database server, Oracle efficiently schedules work for thousands of users. The
Oracle JVM uses the facilities of the RDBMS server to concurrently schedule Java
execution for thousands of users. Although Oracle supports Java language level
threads required by the JLS and JCK, using threads within the scope of the database
will not increase your scalability. Using the embedded scalability of the database
eliminates the need for writing shared server Java servers. You should use the
database’s facilities for scheduling users by writing single-threaded Java
applications. The database takes care of the scheduling between each application;
thus, you achieve scalability without having to manage threads. You can still write
shared server Java applications, but multiple Java threads does not increase your
server’s performance.

One difficulty multithreading imposes on Java is the interaction of threads and
automated storage management, or garbage collection. The garbage collector
executing in a generic JVM has no knowledge of which Java language threads are
executing or how the underlying operating system schedules them.

� Non-Oracle9i model—A single user maps to a single Java language level
thread; the same single garbage collector manages all garbage from all users.
Different techniques typically deal with allocation and collection of objects of
varying lifetimes and sizes. The result in a heavily shared server application is,
at best, dependent upon operating system support for native threads, which can
14-40 Oracle9i Database Concepts

Java Overview
be unreliable and limited in scalability. High levels of scalability for such
implementations have not been convincingly demonstrated.

� Oracle9i JVM model—Even when thousands of users connect to the server and
execute the same Java code, each user experiences it as if he is executing his
own Java code on his own Java virtual machine. The responsibility of the Oracle
JVM is to make use of operating system processes and threads, using the
scalable approach of the Oracle RDBMS. As a result of this approach, the JVM’s
garbage collector is more reliable and efficient because it never collects garbage
from more than one user at any time.

Automated Storage Management
Garbage collection is a major feature of Java’s automated storage management,
eliminating the need for Java developers to allocate and free memory explicitly.
Consequently, this eliminates a large source of memory leaks that commonly plague
C and C++ programs. There is a price for such a benefit: garbage collection
contributes to the overhead of program execution speed and footprint. Although
many papers have been written qualifying and quantifying the trade-off, the overall
cost is reasonable, considering the alternatives.

Garbage collection imposes a challenge to the JVM developer seeking to supply a
highly scalable and fast Java platform. The Oracle JVM meets these challenges in
the following ways:

� The Oracle JVM uses the Oracle scheduling facilities, which can manage
multiple users efficiently.

� Garbage collection is performs consistently for multiple users because garbage
collection is focused on a single user within a single session. The Oracle JVM
enjoys a huge advantage because the burden and complexity of the memory
manager’s job does not increase as the number of users increases. The memory
manager performs the allocation and collection of objects within a single
session—which typically translates to the activity of a single user.

� The Oracle JVM uses different garbage collection techniques depending on the
type of memory used. These techniques provide high efficiency and low
overhead.

Footprint
The footprint of an executing Java program is affected by many factors:

� Size of the program itself—how many classes and methods and how much code
they contain.
SQL, PL/SQL, and Java 14-41

Java Overview
� Complexity of the program—the amount of core class libraries that the Oracle
JVM uses as the program executes, as opposed to the program itself.

� Amount of state the JVM uses—how many objects the JVM allocates, how large
they are, and how many must be retained across calls.

� Ability of the garbage collector and memory manager to deal with the demands
of the executing program, which is often non-deterministic. The speed with
which objects are allocated and the way they are held on to by other objects
influences the importance of this factor.

From a scalability perspective, the key to supporting many concurrent clients is a
minimum user session footprint. The Oracle JVM keeps the user session footprint to
a minimum by placing all read-only data for users, such as Java bytecodes, in
shared memory. Appropriate garbage collection algorithms are applied against call
and session memories to maintain a small footprint for the user’s session. The
Oracle JVM uses three types of garbage collection algorithms to maintain the user’s
session memory:

� Generational scavenging for short-lived objects

� Mark and lazy sweep collection for objects that exist for the life of a single call

� Copying collector for long-lived objects—objects that live across calls within a
session

Performance
Oracle JVM performance is enhanced by implementing a native compiler.

How Native Compilers Improve Performance Java executes platform-independent
bytecodes on top of a JVM, which in turn interacts with the specific hardware
platform. Any time you add levels within software, your performance is degraded.
Because Java requires going through an intermediary to interpret
platform-independent bytecodes, a degree of inefficiency exists for Java
applications that does not exists within a platform-dependent language, such as C.
To address this issue, several JVM suppliers create native compilers. Native
compilers translate Java bytecodes into platform-dependent native code, which
eliminates the interpreter step and improves performance.

The following table describes two methods for native compilation.
14-42 Oracle9i Database Concepts

Java Overview
Oracle uses static compilation to deliver its core Java class libraries: the ORB and
JDBC code in natively compiled form. It is applicable across all the platforms Oracle
supports, whereas a JIT approach requires low-level, processor-dependent code to
be written and maintained for each platform. You can use this native compilation
technology with your own Java code.

Dynamic Class Loading
Another strong feature of Java is dynamic class loading. The class loader loads
classes from the disk (and places them in the JVM-specific memory structures
necessary for interpretation) only as they are used during program execution. The
class loader locates the classes in the CLASSPATH and loads them during program
execution. This approach, which works well for applets, poses the following
problems in a server environment:

Native Compilation
Method Description

Just-In-Time (JIT)
Compilation

JIT compilers quickly compile Java bytecodes to native
(platform-specific) machine code during runtime. This
does not produce an executable to be executed on the
platform; instead, it provides platform-dependent code
from Java bytecodes that is executed directly after it is
translated. This should be used for Java code that is run
frequently, which will be executed at speeds closer to
languages such as C.

Static Compilation Static compilation translates Java bytecodes to
platform-independent C code before runtime. Then a
standard C compiler compiles the C code into an
executable for the target platform. This approach is more
suitable for Java applications that are modified
infrequently. This approach takes advantage of the mature
and efficient platform-specific compilation technology
found in modern C compilers.
SQL, PL/SQL, and Java 14-43

Java Overview
Oracle’s Java Application Strategy
One appeal of Java is its ubiquity and the growing number of programmers capable
of developing applications using it. Oracle furnishes enterprise application
developers with an end-to-end Java solution for creating, deploying, and managing
Java applications. The total solution consists of client-side and server-side
programmatic interfaces, tools to support Java development, and a Java virtual
machine integrated with the Oracle database server. All these products are
compatible with Java standards.

In addition to the Oracle JVM, the Java programming environment consists of the
following:

Problem Description Solution

Predictability The class loading operation
places a severe penalty on
first-time execution. A simple
program can cause the Oracle
JVM to load many core classes
to support its needs. A
programmer cannot easily
predict or determine the
number of classes loaded.

The Oracle JVM loads classes
dynamically, just as with any other
Java virtual machine. The same
one-time class loading speed hit is
encountered. However, because
the classes are loaded into shared
memory, no other users of those
classes will cause the classes to
load again—they will simply use
the same pre-loaded classes.

Reliability A benefit of dynamic class
loading is that it supports
program updating. For
example, you would update
classes on a server, and clients
who download the program
and load it dynamically see the
update whenever they next
use the program. Server
programs tend to emphasize
reliability. As a developer, you
must know that every client
executes a specific program
configuration. You do not
want clients to inadvertently
load some classes that you did
not intend them to load.

Oracle separates the upload and
resolve operation from the class
loading operation at runtime. You
upload Java code you developed
to the server using the loadjava
utility. Instead of using
CLASSPATH, you specify a resolver
at installation time. The resolver is
analogous to CLASSPATH, but lets
you specify the schemas in which
the classes reside. This separation
of resolution from class loading
means you always know what
program users execute.
14-44 Oracle9i Database Concepts

Java Overview
� Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call a Java
stored procedure from a PL/SQL package; you can call PL/SQL procedures
from a Java stored procedure.

� SQL data can be accessed through JDBC and SQLJ programming interfaces.

� Tools and scripts used in assisting in development, class loading, and class
management.

Java Stored Procedures
If you are a PL/SQL programmer exploring Java, you will be interested in Java
stored procedures. A Java stored procedure is a program you write in Java to
execute in the server, exactly as a PL/SQL stored procedure. You invoke it directly
with products like SQL*Plus, or indirectly with a trigger. You can access it from any
Oracle Net client—OCI, PRO*, JDBC, or SQLJ.

The Oracle9i Java Stored Procedures Developer’s Guide explains how to write
stored procedures in Java, how to access them from PL/SQL, and how to access
PL/SQL functionality from Java.

In addition, you can use Java to develop powerful programs independently of
PL/SQL. Oracle provides a fully-compliant implementation of the Java
programming language and JVM.

PL/SQL Integration and Oracle RDBMS Functionality
You can invoke existing PL/SQL programs from Java and invoke Java programs
from PL/SQL. This solution protects and leverages your existing investment while
opening up the advantages and opportunities of Java-based Internet computing.

Oracle offers two different application programming interfaces (APIs) for Java
developers to access SQL data—JDBC and SQLJ. Both APIs are available on client
and server, so you can deploy the same code in either place.

� JDBC Drivers—used to build client/server 2-tier applications

� SQLJ – Embedded SQL in Java—used to access static SQL. You must know the
name of the columns

JDBC Drivers JDBC is a database access protocol that enables you to connect to a
database and then prepare and execute SQL statements against the database. Core
Java class libraries provide only one JDBC API. JDBC is designed, however, to allow
SQL, PL/SQL, and Java 14-45

Java Overview
vendors to supply drivers that offer the necessary specialization for a particular
database. Oracle delivers the following three distinct JDBC drivers.

SQLJ – Embedded SQL in Java Oracle has worked with other vendors, including IBM,
Tandem, Sybase, and Sun Microsystems, to develop a standard way to embed SQL
statements in Java programs—SQLJ. This work has resulted in a new standard
(ANSI x.3.135.10-1998) for a simpler and more highly productive programming API
than JDBC. A user writes applications to this higher-level API and then employs a
preprocessor to translate the program to standard Java source with JDBC calls. At
runtime, the program can communicate with multi-vendor databases using
standard JDBC drivers.

SQLJ provides a simple, but powerful, way to develop both client-side and
middle-tier applications that access databases from Java. You can use it in stored
procedures, triggers, methods within the Oracle environment. In addition, you can
combine SQLJ programs with JDBC.

Driver Description

JDBC Thin Driver You can use the JDBC Thin driver to write 100% pure
Java applications and applets that access Oracle SQL
data. The JDBC Thin driver is especially well-suited to
Web browser-based applications and applets, because
you can dynamically download it from a Web page just
like any other Java applet.

JDBC Oracle Call
Interface Driver

The JDBC Oracle Call Interface (OCI) driver accesses
Oracle-specific native code (that is, non-Java) libraries
on the client or middle tier, providing a richer set of
functionality and some performance boost compared to
the JDBC Thin driver, at the cost of significantly larger
size and client-side installation.

JDBC Server-side Internal
Driver

Oracle uses the server-side internal driver when Java
code executes on the server. It allows Java applications
executing in the server’s JVM to access locally defined
data (that is, on the same machine and in the same
process) with JDBC. It provides a further performance
boost because of its ability to use underlying Oracle
RDBMS libraries directly, without the overhead of an
intervening network connection between your Java
code and SQL data. By supporting the same Java-SQL
interface on the server, Oracle8i does not require you to
rework code when deploying it.
14-46 Oracle9i Database Concepts

Java Overview
The SQLJ translator is a Java program that translates embedded SQL in Java source
code to pure JDBC-based Java code. Because Oracle provides a complete Java
environment, you cannot only compile SQLJ programs on a client for execution on
the server, but you can compile them directly on the server. The adherence of Oracle
to Internet standards lets you choose the development style that fits your needs.

See Also: Oracle9i SQLJ Developer’s Guide and Reference
SQL, PL/SQL, and Java 14-47

Java Overview
14-48 Oracle9i Database Concepts

Dependencies Among Schema
15

Dependencies Among Schema Objects

The definitions of some objects, including views and procedures, reference other
objects, such as tables. As a result, the objects being defined are dependent on the
objects referenced in their definitions. This chapter discusses the dependencies
among schema objects and how Oracle automatically tracks and manages these
dependencies. It includes:

� Introduction to Dependency Issues

� Resolution of Schema Object Dependencies

� Object Name Resolution

� Shared SQL Dependency Management

� Local and Remote Dependency Management
Objects 15-1

Introduction to Dependency Issues
Introduction to Dependency Issues
Some types of schema objects can reference other objects as part of their definition.
For example, a view is defined by a query that references tables or other views. A
procedure’s body can include SQL statements that reference other objects of a
database. An object that references another object as part of its definition is called a
dependent object, while the object being referenced is a referenced object.
Figure 15–1 illustrates the different types of dependent and referenced objects:

Figure 15–1 Types of Possible Dependent and Referenced Schema Objects

If you alter the definition of a referenced object, dependent objects may or may not
continue to function without error, depending on the type of alteration. For
example, if you drop a table, no view based on the dropped table is usable.

Oracle automatically records dependencies among objects to alleviate the complex
job of dependency management for the database administrator and users. For
example, if you alter a table on which several stored procedures depend, Oracle
automatically recompiles the dependent procedures the next time the procedures
are referenced (runrun or compiled against).

To manage dependencies among schema objects, all of the schema objects in a
database have a status.

� Valid schema objects have been compiled and can be immediately used when
referenced.

� Invalid schema objects must be compiled before they can be used.

Dependent Objects

Table

View

Procedure

Function

Package Specification

Package Body

Database Trigger

User-Defined Object
and Collection Types

Referenced Objects

Table

View

Sequence

Synonym

Procedure

Function

Package Specification

User-Defined Object
and Collection Types
15-2 Oracle9i Database Concepts

Introduction to Dependency Issues
� For procedures, functions, and packages, this means compiling the schema
object.

� For views, this means that the view must be reparsed, using the current
definition in the data dictionary.

Only dependent objects can be invalid. Tables, sequences, and synonyms are
always valid.

If a view, procedure, function, or package is invalid, Oracle may have attempted
to compile it, but errors relating to the object occurred. For example, when
compiling a view, one of its base tables might not exist, or the correct privileges
for the base table might not be present. When compiling a package, there might
be a PL/SQL or SQL syntax error, or the correct privileges for a referenced
object might not be present. Schema objects with such problems remain invalid.

Oracle automatically tracks specific changes in the database and records the
appropriate status for related objects in the data dictionary.

Status recording is a recursive process. Any change in the status of a referenced
object changes the status not only for directly dependent objects, but also for
indirectly dependent objects.

For example, consider a stored procedure that directly references a view. In effect,
the stored procedure indirectly references the base tables of that view. Therefore, if
you alter a base table, the view is invalidated, which then invalidates the stored
procedure. Figure 15–2 illustrates indirect dependencies:
Dependencies Among Schema Objects 15-3

Resolution of Schema Object Dependencies
Figure 15–2 Indirect Dependencies

Resolution of Schema Object Dependencies
When a schema object is referenced directly in a SQL statement or indirectly
through a reference to a dependent object, Oracle checks the status of the object
explicitly specified in the SQL statement and any referenced objects, as necessary.
Oracle’s action depends on the status of the objects that are directly and indirectly
referenced in a SQL statement:

� If every referenced object is valid, then Oracle runs the SQL statement
immediately without any additional work.

� If any referenced view or procedure (including a function or package) is invalid,
then Oracle automatically attempts to compile the object.

– If all invalid referenced objects can be compiled successfully, then they are
compiled and Oracle runs the SQL statement.

– If an invalid object cannot be compiled successfully, then it remains invalid.
Oracle returns an error and rolls back the transaction containing the SQL
statement.

Table employees

Table departments

View employees_
departments

Function
add_employees

Dependent
Object

Referenced by
add_employees

(Dependent Object)

Referenced by
employees_departments

ALTER TABLE employees . . . ;

INVALID

INVALID
15-4 Oracle9i Database Concepts

Resolution of Schema Object Dependencies
Compilation of Views and PL/SQL Program Units
A view or PL/SQL program unit can be compiled and made valid if the following
conditions are satisfied:

� The definition of the view or program unit must be correct. All of the SQL and
PL/SQL statements must be proper constructs.

� All referenced objects must be present and of the expected structure. For
example, if the defining query of a view includes a column, the column must be
present in the base table.

� The owner of the view or program unit must have the necessary privileges for
the referenced objects. For example, if a SQL statement in a procedure inserts a
row into a table, the owner of the procedure must have the INSERT privilege
for the referenced table.

Views and Base Tables
A view depends on the base tables or views referenced in its defining query. If the
defining query of a view is not explicit about which columns are referenced, for
example, SELECT * FROM table, then the defining query is expanded when stored
in the data dictionary to include all columns in the referenced base table at that
time.

If a base table or view of a view is altered, renamed, or dropped, then the view is
invalidated, but its definition remains in the data dictionary along with the
privileges, synonyms, other objects, and other views that reference the invalid view.

An attempt to use an invalid view automatically causes Oracle to recompile the
view dynamically. After replacing the view, the view might be valid or invalid,
depending on the following conditions:

Note: Oracle attempts to recompile an invalid object dynamically
only if it has not been replaced since it was detected as invalid. This
optimization eliminates unnecessary recompilations.

Note: Whenever you create a table, index, and view, and then
drop the index, all objects dependent on that table are invalidated,
including views, packages, package bodies, functions, and
procedures.
Dependencies Among Schema Objects 15-5

Resolution of Schema Object Dependencies
� All base tables referenced by the defining query of a view must exist. If a base
table of a view is renamed or dropped, the view is invalidated and cannot be
used. References to invalid views cause the referencing statement to fail. The
view can be compiled only if the base table is renamed to its original name or
the base table is re-created.

� If a base table is altered or re-created with the same columns, but the datatype
of one or more columns in the base table is changed, then any dependent view
can be recompiled successfully.

� If a base table of a view is altered or re-created with at least the same set of
columns, then the view can be validated. The view cannot be validated if the
base table is re-created with new columns and the view references columns no
longer contained in the re-created table. The latter point is especially relevant in
the case of views defined with a SELECT * FROM table query, because the
defining query is expanded at view creation time and permanently stored in the
data dictionary.

Program Units and Referenced Objects
Oracle automatically invalidates a program unit when the definition of a referenced
object is altered. For example, assume that a standalone procedure includes several
statements that reference a table, a view, another standalone procedure, and a
public package procedure. In that case, the following conditions hold:

� If the referenced table is altered, then the dependent procedure is invalidated.

� If the base table of the referenced view is altered, then the view and the
dependent procedure are invalidated.

� If the referenced standalone procedure is replaced, then the dependent
procedure is invalidated.

� If the body of the referenced package is replaced, then the dependent procedure
is not affected. However, if the specification of the referenced package is
replaced, then the dependent procedure is invalidated. This is a mechanism for
minimizing dependencies among procedures and referenced objects by using
packages.

� Whenever you create a table, index, and view, and then drop the index, all
objects dependent on that table are invalidated, including views, packages,
package bodies, functions, and procedures.
15-6 Oracle9i Database Concepts

Resolution of Schema Object Dependencies
Data Warehousing Considerations
Some data warehouses drop indexes on tables at night to facilitate faster loads.
However, all views dependent on the table whose index is dropped get invalidated.
This means that subsequently running any package that reference these dropped
views will invalidate the package.

Remember that whenever you create a table, index, and view, and then drop the
index, all objects dependent on that table are invalidated, including views,
packages, package bodies, functions, and procedures. This protects updatable join
views.

To make the view valid again, use one of the following statements:

SELECT * FROM vtest;

or

ALTER VIEW vtest compile

Session State and Referenced Packages
Each session that references a package construct has its own instance of that
package, including a persistent state of any public and private variables, cursors,
and constants. All of a session’s package instantiations including state can be lost if
any of the session’s instantiated packages are subsequently invalidated and
recompiled.

Security Authorizations
Oracle notices when a DML object or system privilege is granted to or revoked from
a user or PUBLIC and automatically invalidates all the owner’s dependent objects.
Oracle invalidates the dependent objects to verify that an owner of a dependent
object continues to have the necessary privileges for all referenced objects.
Internally, Oracle notes that such objects do not have to be recompiled. Only
security authorizations need to be validated, not the structure of any objects. This
optimization eliminates unnecessary recompilations and prevents the need to
change a dependent object’s time stamp.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information about forcing the recompilation of an invalid view or
program unit
Dependencies Among Schema Objects 15-7

Resolution of Schema Object Dependencies
Function-Based Index Dependencies
Function-based indexes depend on functions used in the expression that defines the
index. If a PL/SQL function or package function is changed, then the index is
marked as disabled.

This section discusses requirements for function-based indexes and what happens
when a function is changed in any manner, such as when it is dropped or privileges
to use it are revoked.

Requirements
To create a function-based index:

� The following initialization parameters must be defined:

– QUERY_REWRITE_INTEGRITY must be set to TRUSTED

– QUERY_REWRITE_ENABLED must be set to TRUE

– COMPATIBLE must set to 8.1.0.0.0 or a greater value

� The user must be granted CREATE INDEX and QUERY REWRITE, or CREATE ANY
INDEX and GLOBAL QUERY REWRITE.

To use a function-based index:

� The table must be analyzed after the index is created.

� The query must be guaranteed not to need any NULL values from the indexed
expression, because NULL values are not stored in indexes.

The following sections describe additional requirements.

DETERMINISTIC Functions
Any user-written function used in a function-based index must have been declared
with the DETERMINISTIC keyword to indicate that the function will always return
the same output return value for any given set of input argument values, now and
in the future.

Privileges on the Defining Function
The index owner needs the EXECUTE privilege on the function used to define a
function-based index. If the EXECUTE privilege is revoked, Oracle marks the index

See Also: "Function-Based Indexes" on page 10-32

See Also: Oracle9i Database Performance Tuning Guide and Reference
15-8 Oracle9i Database Concepts

Object Name Resolution
DISABLED. The index owner does not need the EXECUTE WITH GRANT OPTION
privilege on this function to grant SELECT privileges on the underlying table.

Resolve Dependencies of Function-Based Indexes
A function-based index depends on any function that it is using. If the function or
the specification of a package containing the function is redefined (or if the index
owner’s EXECUTE privilege is revoked), then the following conditions hold:

� The index is marked as DISABLED.

� Queries on a DISABLED index fail if the optimizer chooses to use the index.

� DML operations on a DISABLED index fail unless the index is also marked
UNUSABLE and the initialization parameter SKIP_UNUSABLE_INDEXES is set
to true.

To re-enable the index after a change to the function, use the ALTER INDEX ...
ENABLE statement.

Object Name Resolution
Object names referenced in SQL statements can consist of several pieces, separated
by periods. The following describes how Oracle resolves an object name.

1. Oracle attempts to qualify the first piece of the name referenced in the SQL
statement. For example, in hr.employees, hr is the first piece. If there is only
one piece, then the one piece is considered the first piece.

a. In the current schema, Oracle searches for an object whose name matches
the first piece of the object name. If it does not find such an object, then it
continues with step b.

b. Oracle searches for a public synonym that matches the first piece of the
name. If it does not find one, then it continues with step c.

c. Oracle searches for a schema whose name matches the first piece of the
object name. If it finds one, then it returns to step b, now using the second
piece of the name as the object to find in the qualified schema. If the second
piece does not correspond to an object in the previously qualified schema or
there is not a second piece, then Oracle returns an error.

If no schema is found in step c, then the object cannot be qualified and Oracle
returns an error.
Dependencies Among Schema Objects 15-9

Shared SQL Dependency Management
2. A schema object has been qualified. Any remaining pieces of the name must
match a valid part of the found object. For example, if
hr.employees.department_id is the name, then hr is qualified as a schema,
employees is qualified as a table, and department_id must correspond to a
column (because employees is a table). If employees is qualified as a
package, then department_id must correspond to a public constant, variable,
procedure, or function of that package.

Because of how Oracle resolves references, it is possible for an object to depend on
the nonexistence of other objects. This situation occurs when the dependent object
uses a reference that would be interpreted differently were another object present.

Shared SQL Dependency Management
In addition to managing dependencies among schema objects, Oracle also manages
dependencies of each shared SQL area in the shared pool. If a table, view, synonym,
or sequence is created, altered, or dropped, or a procedure or package specification
is recompiled, all dependent shared SQL areas are invalidated. At a subsequent
execution of the cursor that corresponds to an invalidated shared SQL area, Oracle
reparses the SQL statement to regenerate the shared SQL area.

Local and Remote Dependency Management
Tracking dependencies and completing necessary recompilations are performed
automatically by Oracle. Local dependency management occurs when Oracle
manages dependencies among the objects in a single database. For example, a
statement in a procedure can reference a table in the same database.

Remote dependency management occurs when Oracle manages dependencies in
distributed environments across a network. For example, an Oracle Forms trigger
can depend on a schema object in the database. In a distributed database, a local
view’s defining query can reference a remote table.

Management of Local Dependencies
Oracle manages all local dependencies using the database’s internal dependency
table, which keeps track of each schema object’s dependent objects. When a
referenced object is modified, Oracle uses the depends-on table to identify
dependent objects, which are then invalidated.

See Also: Oracle9i Database Administrator’s Guide
15-10 Oracle9i Database Concepts

Local and Remote Dependency Management
For example, assume a stored procedure UPDATE_SAL references the table
JWARD.employees. If the definition of the table is altered in any way, the status of
every object that references JWARD.employees is changed to INVALID, including
the stored procedure UPDATE_SAL. As a result, the procedure cannot be run until it
has been recompiled and is valid. Similarly, when a DML privilege is revoked from
a user, every dependent object in the user’s schema is invalidated. However, an
object that is invalid because authorization was revoked can be revalidated by
"reauthorization," in which case it does not require full recompilation.

Management of Remote Dependencies
Oracle also manages application-to-database and distributed database
dependencies. For example, an Oracle Forms application might contain a trigger
that references a table, or a local stored procedure might call a remote procedure in
a distributed database system. The database system must account for dependencies
among such objects. Oracle uses different mechanisms to manage remote
dependencies, depending on the objects involved.

Dependencies Among Local and Remote Database Procedures
Dependencies among stored procedures including functions, packages, and triggers
in a distributed database system are managed using time stamp checking or
signature checking.

The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE determines
whether time stamps or signatures govern remote dependencies.

Time stamp Checking In the time stamp checking dependency model, whenever a
procedure is compiled or recompiled its time stamp (the time it is created, altered,
or replaced) is recorded in the data dictionary. The time stamp is a record of the
time the procedure is created, altered, or replaced. Additionally, the compiled
version of the procedure contains information about each remote procedure that it
references, including the remote procedure’s schema, package name, procedure
name, and time stamp.

When a dependent procedure is used, Oracle compares the remote time stamps
recorded at compile time with the current time stamps of the remotely referenced
procedures. Depending on the result of this comparison, two situations can occur:

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
details about managing remote dependencies with time stamps or
signatures
Dependencies Among Schema Objects 15-11

Local and Remote Dependency Management
� The local and remote procedures run without compilation if the time stamps
match.

� The local procedure is invalidated if any time stamps of remotely referenced
procedures do not match, and an error is returned to the calling environment.
Furthermore, all other local procedures that depend on the remote procedure
with the new time stamp are also invalidated. For example, assume several
local procedures call a remote procedure, and the remote procedure is
recompiled. When one of the local procedures is run and notices the different
time stamp of the remote procedure, every local procedure that depends on the
remote procedure is invalidated.

Actual time stamp comparison occurs when a statement in the body of a local
procedure runs a remote procedure. Only at this moment are the time stamps
compared using the distributed database’s communications link. Therefore, all
statements in a local procedure that precede an invalid procedure call might run
successfully. Statements subsequent to an invalid procedure call do not run at all.
Compilation is required. However, any DML statements run before the invalid
procedure call are rolled back.

Signature Checking Oracle provides the additional capability of remote dependencies
using signatures. The signature capability affects only remote dependencies. Local
dependencies are not affected, as recompilation is always possible in this
environment.

The signature of a procedure contains information about the following items:

� Name of the package, procedure, or function

� Base types of the parameters

� Modes of the parameters (IN, OUT, and IN OUT)

If the signature dependency model is in effect, a dependency on a remote program
unit causes an invalidation of the dependent unit if the dependent unit contains a
call to a procedure in the parent unit, and the signature of this procedure has been
changed in an incompatible manner. A program unit can be a package, stored
procedure, stored function, or trigger.

Note: Only the types and modes of parameters are significant. The
name of the parameter does not affect the signature.
15-12 Oracle9i Database Concepts

Local and Remote Dependency Management
Dependencies Among Other Remote Schema Objects
Oracle does not manage dependencies among remote schema objects other than
local-procedure-to-remote-procedure dependencies.

For example, assume that a local view is created and defined by a query that
references a remote table. Also assume that a local procedure includes a SQL
statement that references the same remote table. Later, the definition of the table is
altered.

As a result, the local view and procedure are never invalidated, even if the view or
procedure is used after the table is altered, and even if the view or procedure now
returns errors when used In this case, the view or procedure must be altered
manually so that errors are not returned. In such cases, lack of dependency
management is preferable to unnecessary recompilations of dependent objects.

Dependencies of Applications
Code in database applications can reference objects in the connected database. For
example, OCI, precompiler, and SQL*Module applications can submit anonymous
PL/SQL blocks. Triggers in Oracle Forms applications can reference a schema
object.

Such applications are dependent on the schema objects they reference. Dependency
management techniques vary, depending on the development environment.

See Also: Manuals for your application development tools and
your operating system for more information about managing the
remote dependencies within database applications
Dependencies Among Schema Objects 15-13

Local and Remote Dependency Management
15-14 Oracle9i Database Concepts

Transaction Mana
16

Transaction Management

This chapter defines a transaction and describes how you can manage your work
using transactions. It includes:

� Introduction to Transactions

� Transaction Management Overview

� Discrete Transaction Management

� Autonomous Transactions
gement 16-1

Introduction to Transactions
Introduction to Transactions
A transaction is a logical unit of work that contains one or more SQL statements. A
transaction is an atomic unit. The effects of all the SQL statements in a transaction
can be either all committed (applied to the database) or all rolled back (undone
from the database).

A transaction begins with the first executable SQL statement. A transaction ends
when it is committed or rolled back, either explicitly with a COMMIT or ROLLBACK
statement or implicitly when a DDL statement is issued.

To illustrate the concept of a transaction, consider a banking database. When a bank
customer transfers money from a savings account to a checking account, the
transaction can consist of three separate operations:

� Decrement the savings account

� Increment the checking account

� Record the transaction in the transaction journal

Oracle must allow for two situations. If all three SQL statements can be performed
to maintain the accounts in proper balance, the effects of the transaction can be
applied to the database. However, if a problem such as insufficient funds, invalid
account number, or a hardware failure prevents one or two of the statements in the
transaction from completing, the entire transaction must be rolled back so that the
balance of all accounts is correct.

Figure 16–1 illustrates the banking transaction example.
16-2 Oracle9i Database Concepts

Introduction to Transactions
Figure 16–1 A Banking Transaction

Statement Execution and Transaction Control
A SQL statement that runs successfully is different from a committed transaction.
Executing successfully means that a single statement was:

� Parsed

� Found to be a valid SQL construction

� Run without error as an atomic unit. For example, all rows of a multirow
update are changed.

However, until the transaction that contains the statement is committed, the
transaction can be rolled back, and all of the changes of the statement can be
undone. A statement, rather than a transaction, runs successfully.

Transaction Begins

Transaction Ends

UPDATE savings_accounts
 SET balance = balance - 500
 WHERE account = 3209;

UPDATE checking_accounts
 SET balance = balance + 500
 WHERE account = 3208;

INSERT INTO journal VALUES
 (journal_seq.NEXTVAL, '1B'
 3209, 3208, 500);

COMMIT WORK;

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction
Transaction Management 16-3

Introduction to Transactions
Committing means that a user has explicitly or implicitly requested that the
changes in the transaction be made permanent. An explicit request means that the
user issued a COMMIT statement. An implicit request can be made through normal
termination of an application or in data definition language, for example. The
changes made by the SQL statements of your transaction become permanent and
visible to other users only after your transaction has been committed. Only other
users’ transactions that started after yours will see the committed changes.

You can name a transaction using the SET TRANSACTION ... NAME statement before
you start the transaction. This makes it easier to monitor long-running transactions
and to resolve in-doubt distributed transactions.

Statement-Level Rollback
If at any time during execution a SQL statement causes an error, all effects of the
statement are rolled back. The effect of the rollback is as if that statement had never
been run. This operation is a statement-level rollback.

Errors discovered during SQL statement execution cause statement-level rollbacks.
An example of such an error is attempting to insert a duplicate value in a primary
key. Single SQL statements involved in a deadlock (competition for the same data)
can also cause a statement-level rollback. Errors discovered during SQL statement
parsing, such as a syntax error, have not yet been run, so they do not cause a
statement-level rollback.

A SQL statement that fails causes the loss only of any work it would have
performed itself. It does not cause the loss of any work that preceded it in the current
transaction. If the statement is a DDL statement, then the implicit commit that
immediately preceded it is not undone.

The user can also request a statement-level rollback by issuing a ROLLBACK
statement.

See Also: "Transaction Naming" on page 16-9

Note: Users cannot directly refer to implicit savepoints in rollback
statements.

See Also: "Deadlocks" on page 20-19
16-4 Oracle9i Database Concepts

Transaction Management Overview
Resumable Space Allocation
Oracle provides a means for suspending, and later resuming, the execution of large
database operations in the event of space allocation failures. This enables an
administrator to take corrective action, instead of the Oracle database server
returning an error to the user. After the error condition is corrected, the suspended
operation automatically resumes. This feature is called resumable space allocation
and the statements that are affected are called resumable statements.

A statement runs in a resumable mode only when the client explicitly enables
resumable semantics for the session using the ALTER SESSION statement.

Resumable space allocation is suspended when one of the following conditions
occur:

� Out of space condition

� Maximum extents reached condition

� Space quota exceeded condition

For nonresumable space allocation, these conditions result in errors and the
statement is rolled back.

Suspending a statement automatically results in suspending the transaction. Thus
all transactional resources are held through a statement suspend and resume.

When the error condition disappears (for example, as a result of user intervention or
perhaps sort space released by other queries), the suspended statement
automatically resumes execution.

Transaction Management Overview
A transaction in Oracle begins when the first executable SQL statement is
encountered. An executable SQL statement is a SQL statement that generates calls
to an instance, including DML and DDL statements.

When a transaction begins, Oracle assigns the transaction to an available undo
tablespace or rollback segment to record the rollback entries for the new transaction.

A transaction ends when any of the following occurs:

� A user issues a COMMIT or ROLLBACK statement without a SAVEPOINT clause.

See Also: Oracle9i Database Administrator’s Guide for information
about enabling resumable space allocation, what conditions are
correctable, and what statements can be made resumable.
Transaction Management 16-5

Transaction Management Overview
� A user runs a DDL statement such as CREATE, DROP, RENAME, or ALTER. If the
current transaction contains any DML statements, Oracle first commits the
transaction, and then runs and commits the DDL statement as a new, single
statement transaction.

� A user disconnects from Oracle. The current transaction is committed.

� A user process terminates abnormally. The current transaction is rolled back.

After one transaction ends, the next executable SQL statement automatically starts
the following transaction.

Commit Transactions
Committing a transaction means making permanent the changes performed by the
SQL statements within the transaction.

Before a transaction that modifies data is committed, the following has occurred:

� Oracle has generated rollback segment records in buffers in the SGA that store
rollback segment data. The rollback information contains the old data values
changed by the SQL statements of the transaction.

� Oracle has generated redo log entries in the redo log buffer of the SGA. The
redo log record contains the change to the data block and the change to the
rollback block. These changes may go to disk before a transaction is committed.

� The changes have been made to the database buffers of the SGA. These changes
may go to disk before a transaction is committed.

When a transaction is committed, the following occurs:

Note: Applications should always explicitly commit or roll back
transactions before program termination.

Note: The data changes for a committed transaction, stored in
the database buffers of the SGA, are not necessarily written
immediately to the datafiles by the database writer (DBWn)
background process. This writing takes place when it is most
efficient for the database to do so. It can happen before the
transaction commits or, alternatively, it can happen some time after
the transaction commits.
16-6 Oracle9i Database Concepts

Transaction Management Overview
1. The internal transaction table for the associated rollback segment records that
the transaction has committed, and the corresponding unique system change
number (SCN) of the transaction is assigned and recorded in the table.

2. The log writer process (LGWR) writes redo log entries in the SGA’s redo log
buffers to the online redo log file. It also writes the transaction’s SCN to the
online redo log file. This atomic event constitutes the commit of the transaction.

3. Oracle releases locks held on rows and tables.

4. Oracle marks the transaction complete.

Rollback of Transactions
Rolling back means undoing any changes to data that have been performed by SQL
statements within an uncommitted transaction. Oracle uses undo tablespaces or
rollback segments to store old values. The redo log contains a record of changes.

Oracle lets you roll back an entire uncommitted transaction. Alternatively, you can
roll back the trailing portion of an uncommitted transaction to a marker called a
savepoint.

All types of rollbacks use the same procedures:

� Statement-level rollback (due to statement or deadlock execution error)

� Rollback to a savepoint

� Rollback of a transaction due to user request

� Rollback of a transaction due to abnormal process termination

� Rollback of all outstanding transactions when an instance terminates
abnormally

� Rollback of incomplete transactions during recovery

In rolling back an entire transaction, without referencing any savepoints, the
following occurs:

1. Oracle undoes all changes made by all the SQL statements in the transaction by
using the corresponding undo tablespace or rollback segment.

See Also:

� "Overview of Locking Mechanisms" on page 20-3

� "Oracle Processes Overview" on page 8-5 for more information
about the background processes LGWR and DBWn
Transaction Management 16-7

Transaction Management Overview
2. Oracle releases all the transaction’s locks of data.

3. The transaction ends.

Savepoints In Transactions
You can declare intermediate markers called savepoints within the context of a
transaction. Savepoints divide a long transaction into smaller parts.

Using savepoints, you can arbitrarily mark your work at any point within a long
transaction. You then have the option later of rolling back work performed before
the current point in the transaction but after a declared savepoint within the
transaction. For example, you can use savepoints throughout a long complex series
of updates, so if you make an error, you do not need to resubmit every statement.

Savepoints are similarly useful in application programs. If a procedure contains
several functions, then you can create a savepoint before each function begins.
Then, if a function fails, it is easy to return the data to its state before the function
began and re-run the function with revised parameters or perform a recovery
action.

After a rollback to a savepoint, Oracle releases the data locks obtained by rolled
back statements. Other transactions that were waiting for the previously locked
resources can proceed. Other transactions that want to update previously locked
rows can do so.

When a transaction is rolled back to a savepoint, the following occurs:

1. Oracle rolls back only the statements run after the savepoint.

2. Oracle preserves the specified savepoint, but all savepoints that were
established after the specified one are lost.

3. Oracle releases all table and row locks acquired since that savepoint but retains
all data locks acquired previous to the savepoint.

The transaction remains active and can be continued.

See Also:

� "Savepoints In Transactions" on page 16-8

� "Overview of Locking Mechanisms" on page 20-3

� Oracle9i Recovery Manager User’s Guide for information about
what happens to committed and uncommitted changes during
recovery
16-8 Oracle9i Database Concepts

Transaction Management Overview
Transaction Naming
You can name a transaction, using a simple and memorable text string. This name is
a reminder of what the transaction is about. Transaction names replace commit
comments for distributed transactions, with the following advantages:

� It is easier to monitor long-running transactions and to resolve in-doubt
distributed transactions.

� You can view transaction names along with transaction IDs in applications. For
example, a database administrator can view transaction names in Enterprise
Manager when monitoring system activity.

� Transaction names are written to the transaction auditing redo record, if
compatibility is set to Oracle9i or higher.

� LogMiner can use transaction names to search for a specific transaction from
transaction auditing records in the redo log.

� You can use transaction names to find a specific transaction in data dictionary
tables, such as V$TRANSACTION.

How Transactions Are Named
Name a transaction using the SET TRANSACTION ... NAME statement before you
start the transaction.

When you name a transaction, you associate the transaction’s name with its ID.
Transaction names do not have to be unique; different transactions can have the
same transaction name at the same time by the same owner. You can use any name
that enables you to distinguish the transaction.

Commit Comment
In previous releases, you could associate a comment with a transaction by using a
commit comment. However, a comment can be associated with a transaction only
when a transaction is being committed.

Note: Whenever a session is waiting on a transaction, a rollback to
savepoint does not free row locks. To make sure a transaction
doesn’t hang if it cannot obtain a lock, use

FOR UPDATE ... NOWAIT

before issuing UPDATE or DELETE statements.
Transaction Management 16-9

Transaction Management Overview
Commit comments are still supported for backward compatibility. However, Oracle
Corporation strongly recommends that you use transaction names. Commit
comments are ignored in named transactions.

The Two-Phase Commit Mechanism
In a distributed database, Oracle must coordinate transaction control over a
network and maintain data consistency, even if a network or system failure occurs.

A distributed transaction is a transaction that includes one or more statements that
update data on two or more distinct nodes of a distributed database.

A two-phase commit mechanism guarantees that all database servers participating
in a distributed transaction either all commit or all roll back the statements in the
transaction. A two-phase commit mechanism also protects implicit DML operations
performed by integrity constraints, remote procedure calls, and triggers.

The Oracle two-phase commit mechanism is completely transparent to users who
issue distributed transactions. In fact, users need not even know the transaction is
distributed. A COMMIT statement denoting the end of a transaction automatically
triggers the two-phase commit mechanism to commit the transaction. No coding or
complex statement syntax is required to include distributed transactions within the
body of a database application.

The recoverer (RECO) background process automatically resolves the outcome of
in-doubt distributed transactions—distributed transactions in which the commit
was interrupted by any type of system or network failure. After the failure is
repaired and communication is reestablished, the RECO process of each local Oracle
server automatically commits or rolls back any in-doubt distributed transactions
consistently on all involved nodes.

In the event of a long-term failure, Oracle allows each local administrator to
manually commit or roll back any distributed transactions that are in doubt as a

Note: In a future release, commit comments will be deprecated.

See Also:

� Oracle9i Database Administrator’s Guide for more information
about distributed transactions

� Oracle9i SQL Reference for more information about transaction
naming syntax
16-10 Oracle9i Database Concepts

Discrete Transaction Management
result of the failure. This option enables the local database administrator to free any
locked resources that are held indefinitely as a result of the long-term failure.

If a database must be recovered to a point in the past, Oracle’s recovery facilities
enable database administrators at other sites to return their databases to the earlier
point in time also. This operation ensures that the global database remains
consistent.

Discrete Transaction Management
Application developers can improve the performance of short, nondistributed
transactions by using the BEGIN_DISCRETE_TRANSACTION procedure. This
procedure streamlines transaction processing so that short transactions can run
more rapidly.

During a discrete transaction, all changes made to any data are deferred until the
transaction commits. Of course, other concurrent transactions are unable to see the
uncommitted changes of a transaction whether the transaction is discrete or not.

The following events occur during a discrete transaction:

1. Oracle generates redo information, but stores it in a separate location in
memory.

2. When the transaction issues a commit request, Oracle writes the redo
information to the redo log file along with other group commits.

3. Oracle applies the changes to the database block directly to the block.

4. Oracle returns control to the application after the commit completes.

This transaction design eliminates the need to generate undo information, because
the block is not modified until the transaction is committed, and the redo
information is stored in the redo log buffers.

There is no interaction between discrete transactions, which always generate redo,
and the NOLOGGING mode, which applies only to direct path operations. Discrete
transactions can therefore be issued against tables that have the NOLOGGING
attribute set.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about the BEGIN_DISCRETE_TRANSACTION
procedure
Transaction Management 16-11

Autonomous Transactions
Autonomous Transactions
Autonomous transactions are independent transactions that can be called from
within another transaction. An autonomous transaction lets you leave the context of
the calling transaction, perform some SQL operations, commit or roll back those
operations, and then return to the calling transaction’s context and continue with
that transaction.

Once invoked, an autonomous transaction is totally independent of the main
transaction that called it. It does not see any of the uncommitted changes made by
the main transaction and does not share any locks or resources with the main
transaction. Changes made by an autonomous transaction become visible to other
transactions upon commit of the autonomous transactions.

One autonomous transaction can call another. There are no limits, other than
resource limits, on how many levels of autonomous transactions can be called.

Deadlocks are possible between an autonomous transaction and its calling
transaction. Oracle detects such deadlocks and returns an error. The application
developer is responsible for avoiding deadlock situations.

Autonomous transactions are useful for implementing actions that need to be
performed independently, regardless of whether the calling transaction commits or
rolls back, such as transaction logging and retry counters.

Autonomous PL/SQL Blocks
You can call autonomous transactions from within a PL/SQL block. Use the pragma
AUTONOMOUS_TRANSACTION. A pragma is a compiler directive. You can declare
the following kinds of PL/SQL blocks to be autonomous:

� Stored procedure or function

� Local procedure or function

� Package

� Type method

� Top-level anonymous block

When an autonomous PL/SQL block is entered, the transaction context of the caller
is suspended. This operation ensures that SQL operations performed in this block
(or other blocks called from it) have no dependence or effect on the state of the
caller’s transaction context.
16-12 Oracle9i Database Concepts

Autonomous Transactions
When an autonomous block invokes another autonomous block or itself, the called
block does not share any transaction context with the calling block. However, when
an autonomous block invokes a non-autonomous block (that is, one that is not
declared to be autonomous), the called block inherits the transaction context of the
calling autonomous block.

Transaction Control Statements in Autonomous Blocks
Transaction control statements in an autonomous PL/SQL block apply only to the
currently active autonomous transaction. Examples of such statements are:

SET TRANSACTION
COMMIT
ROLLBACK
SAVEPOINT
ROLLBACK TO SAVEPOINT

Similarly, transaction control statements in the main transaction apply only to that
transaction and not to any autonomous transaction that it calls. For example, rolling
back the main transaction to a savepoint taken before the beginning of an
autonomous transaction does not roll back the autonomous transaction.

See Also: PL/SQL User’s Guide and Reference

See Also: PL/SQL User’s Guide and Reference
Transaction Management 16-13

Autonomous Transactions
16-14 Oracle9i Database Concepts

17

Triggers

This chapter discusses triggers, which are procedures written in PL/SQL, Java, or C
that run (fire) implicitly whenever a table or view is modified or when some user
actions or database system actions occur. You can write triggers that fire whenever
one of the following operations occurs: DML statements on a particular schema
object, DDL statements issued within a schema or database, user logon or logoff
events, server errors, database startup, or instance shutdown.

This chapter includes:

� Introduction to Triggers

� Parts of a Trigger

� Types of Triggers

� Trigger Execution
Triggers 17-1

Introduction to Triggers
Introduction to Triggers
Oracle lets you define procedures called triggers that run implicitly when an
INSERT, UPDATE, or DELETE statement is issued against the associated table or, in
some cases, against a view, or when database system actions occur. These
procedures can be written in PL/SQL or Java and stored in the database, or they can
be written as C callouts.

Triggers are similar to stored procedures. A trigger stored in the database can
include SQL and PL/SQL or Java statements to run as a unit and can invoke stored
procedures. However, procedures and triggers differ in the way that they are
invoked. A procedure is explicitly run by a user, application, or trigger. Triggers are
implicitly fired by Oracle when a triggering event occurs, no matter which user is
connected or which application is being used.

Figure 17–1 shows a database application with some SQL statements that implicitly
fire several triggers stored in the database. Notice that the database stores triggers
separately from their associated tables.
17-2 Oracle9i Database Concepts

Introduction to Triggers
Figure 17–1 Triggers

A trigger can also call out to a C procedure, which is useful for computationally
intensive operations.

The events that fire a trigger include the following:

� DML statements that modify data in a table (INSERT, UPDATE, or DELETE)

� DDL statements

� System events such as startup, shutdown, and error messages

� User events such as logon and logoff

Note: Oracle Forms can define, store, and run triggers of a
different sort. However, do not confuse Oracle Forms triggers with
the triggers discussed in this chapter.

Applications

Database

Update Trigger

BEGIN
. . .

Insert Trigger

BEGIN
. . .

Delete Trigger

BEGIN
. . .

Table t

UPDATE t SET . . . ;

INSERT INTO t . . . ;

DELETE FROM t . . . ;
Triggers 17-3

Introduction to Triggers
How Triggers Are Used
Triggers supplement the standard capabilities of Oracle to provide a highly
customized database management system. For example, a trigger can restrict DML
operations against a table to those issued during regular business hours. You can
also use triggers to:

� Automatically generate derived column values

� Prevent invalid transactions

� Enforce complex security authorizations

� Enforce referential integrity across nodes in a distributed database

� Enforce complex business rules

� Provide transparent event logging

� Provide auditing

� Maintain synchronous table replicates

� Gather statistics on table access

� Modify table data when DML statements are issued against views

� Publish information about database events, user events, and SQL statements to
subscribing applications

Some Cautionary Notes about Triggers
Although triggers are useful for customizing a database, use them only when
necessary. Excessive use of triggers can result in complex interdependencies, which
can be difficult to maintain in a large application. For example, when a trigger fires,
a SQL statement within its trigger action potentially can fire other triggers, resulting
in cascading triggers. This can produce unintended effects. Figure 17–2 illustrates
cascading triggers.

See Also:

� Chapter 14, "SQL, PL/SQL, and Java" for information on the
similarities of triggers to stored procedures

� "The Triggering Event or Statement" on page 17-7

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
examples of trigger uses
17-4 Oracle9i Database Concepts

Introduction to Triggers
Figure 17–2 Cascading Triggers

Triggers Compared with Declarative Integrity Constraints
You can use both triggers and integrity constraints to define and enforce any type of
integrity rule. However, Oracle Corporation strongly recommends that you use
triggers to constrain data input only in the following situations:

� To enforce referential integrity when child and parent tables are on different
nodes of a distributed database

etc.

Fires the
INSERT_T2
Trigger

Fires the
UPDATE_T1
Trigger

SQL Statement

UPDATE t1 SET ...;

INSERT_T2 Trigger

BEFORE INSERT ON t2
FOR EACH ROW
BEGIN

.

.
INSERT INTO ... VALUES (...);
.
.

END;

UPDATE_T1 Trigger

BEFORE UPDATE ON t1
FOR EACH ROW
BEGIN
 .
 .
 INSERT INTO t2 VALUES (...);
 .
 .
END;
Triggers 17-5

Parts of a Trigger
� To enforce complex business rules not definable using integrity constraints

� When a required referential integrity rule cannot be enforced using the
following integrity constraints:

– NOT NULL, UNIQUE

– PRIMARY KEY

– FOREIGN KEY

– CHECK

– DELETE CASCADE

– DELETE SET NULL

Parts of a Trigger
A trigger has three basic parts:

� A triggering event or statement

� A trigger restriction

� A trigger action

Figure 17–3 represents each of these parts of a trigger and is not meant to show
exact syntax. The sections that follow explain each part of a trigger in greater detail.

See Also: "How Oracle Enforces Data Integrity" on page 21-4 for
more information about integrity constraints
17-6 Oracle9i Database Concepts

Parts of a Trigger
Figure 17–3 The REORDER Trigger

The Triggering Event or Statement
A triggering event or statement is the SQL statement, database event, or user event
that causes a trigger to fire. A triggering event can be one or more of the following:

� An INSERT, UPDATE, or DELETE statement on a specific table (or view, in
some cases)

� A CREATE, ALTER, or DROP statement on any schema object

� A database startup or instance shutdown

� A specific error message or any error message

� A user logon or logoff

For example, in Figure 17–3, the triggering statement is:

... UPDATE OF parts_on_hand ON inventory ...
This statement means that when the parts_on_hand column of a row in the
inventory table is updated, fire the trigger. When the triggering event is an

Triggering Statement

Trigger Restriction

AFTER UPDATE OF parts_on_hand ON inventory

WHEN (new.parts_on_hand < new.reorder_point)

FOR EACH ROW
DECLARE
 NUMBER X;
BEGIN
 SELECT COUNT(*) INTO X
 FROM pending_orders
 WHERE part_no=:new.part_no;

IF x = 0
THEN
 INSERT INTO pending_orders
 VALUES (new.part_no, new.reorder_quantity, sysdate);
 END IF;
END;

/* a dummy variable for counting */

/* query to find out if part has already been */
/* reordered–if yes, x=1, if no, x=0 */

/* part has not been reordered yet, so reorder */

/* part has already been reordered */

Triggered Action
Triggers 17-7

Parts of a Trigger
UPDATE statement, you can include a column list to identify which columns must
be updated to fire the trigger. You cannot specify a column list for INSERT and
DELETE statements, because they affect entire rows of information.

A triggering event can specify multiple SQL statements:

... INSERT OR UPDATE OR DELETE OF inventory ...

This part means that when an INSERT, UPDATE, or DELETE statement is issued
against the inventory table, fire the trigger. When multiple types of SQL
statements can fire a trigger, you can use conditional predicates to detect the type of
triggering statement. In this way, you can create a single trigger that runs different
code based on the type of statement that fires the trigger.

Trigger Restriction
A trigger restriction specifies a Boolean expression that must be true for the trigger
to fire. The trigger action is not run if the trigger restriction evaluates to false or
unknown. In the example, the trigger restriction is:

new.parts_on_hand < new.reorder_point

Consequently, the trigger does not fire unless the number of available parts is less
than a present reorder amount.

Trigger Action
A trigger action is the procedure (PL/SQL block, Java program, or C callout) that
contains the SQL statements and code to be run when the following events occur:

� A triggering statement is issued.

� The trigger restriction evaluates to true.

Like stored procedures, a trigger action can:

� Contain SQL, PL/SQL, or Java statements

� Define PL/SQL language constructs such as variables, constants, cursors,
exceptions

� Define Java language constructs

� Call stored procedures
17-8 Oracle9i Database Concepts

Types of Triggers
If the triggers are row triggers, the statements in a trigger action have access to
column values of the row being processed by the trigger. Correlation names provide
access to the old and new values for each column.

Types of Triggers
This section describes the different types of triggers:

� Row Triggers and Statement Triggers

� BEFORE and AFTER Triggers

� INSTEAD OF Triggers

� Triggers on System Events and User Events

Row Triggers and Statement Triggers
When you define a trigger, you can specify the number of times the trigger action is
to be run:

� Once for every row affected by the triggering statement, such as a trigger fired
by an UPDATE statement that updates many rows

� Once for the triggering statement, no matter how many rows it affects

Row Triggers
A row trigger is fired each time the table is affected by the triggering statement. For
example, if an UPDATE statement updates multiple rows of a table, a row trigger is
fired once for each row affected by the UPDATE statement. If a triggering statement
affects no rows, a row trigger is not run.

Row triggers are useful if the code in the trigger action depends on data provided
by the triggering statement or rows that are affected. For example, Figure 17–3
illustrates a row trigger that uses the values of each row affected by the triggering
statement.

Statement Triggers
A statement trigger is fired once on behalf of the triggering statement, regardless of
the number of rows in the table that the triggering statement affects, even if no rows
are affected. For example, if a DELETE statement deletes several rows from a table, a
statement-level DELETE trigger is fired only once.
Triggers 17-9

Types of Triggers
Statement triggers are useful if the code in the trigger action does not depend on the
data provided by the triggering statement or the rows affected. For example, use a
statement trigger to:

� Make a complex security check on the current time or user

� Generate a single audit record

BEFORE and AFTER Triggers
When defining a trigger, you can specify the trigger timing—whether the trigger
action is to be run before or after the triggering statement. BEFORE and AFTER
apply to both statement and row triggers.

BEFORE and AFTER triggers fired by DML statements can be defined only on tables,
not on views. However, triggers on the base tables of a view are fired if an INSERT,
UPDATE, or DELETE statement is issued against the view. BEFORE and AFTER
triggers fired by DDL statements can be defined only on the database or a schema,
not on particular tables.

BEFORE Triggers
BEFORE triggers run the trigger action before the triggering statement is run. This
type of trigger is commonly used in the following situations:

� When the trigger action determines whether the triggering statement should be
allowed to complete. Using a BEFORE trigger for this purpose, you can
eliminate unnecessary processing of the triggering statement and its eventual
rollback in cases where an exception is raised in the trigger action.

� To derive specific column values before completing a triggering INSERT or
UPDATE statement.

AFTER Triggers
AFTER triggers run the trigger action after the triggering statement is run.

See Also:

� "INSTEAD OF Triggers" on page 17-12

� "Triggers on System Events and User Events" on page 17-14 for
information about how BEFORE and AFTER triggers can be
used to publish information about DML and DDL statements
17-10 Oracle9i Database Concepts

Types of Triggers
Trigger Type Combinations
Using the options listed previously, you can create four types of row and statement
triggers:

� BEFORE statement trigger

Before executing the triggering statement, the trigger action is run.

� BEFORE row trigger

Before modifying each row affected by the triggering statement and before
checking appropriate integrity constraints, the trigger action is run, if the trigger
restriction was not violated.

� AFTER row trigger

After modifying each row affected by the triggering statement and possibly
applying appropriate integrity constraints, the trigger action is run for the
current row provided the trigger restriction was not violated. Unlike BEFORE
row triggers, AFTER row triggers lock rows.

� AFTER statement trigger

After executing the triggering statement and applying any deferred integrity
constraints, the trigger action is run.

You can have multiple triggers of the same type for the same statement for any
given table. For example, you can have two BEFORE statement triggers for
UPDATE statements on the employees table. Multiple triggers of the same type
permit modular installation of applications that have triggers on the same tables.
Also, Oracle materialized view logs use AFTER row triggers, so you can design
your own AFTER row trigger in addition to the Oracle-defined AFTER row trigger.

You can create as many triggers of the preceding different types as you need for
each type of DML statement, (INSERT, UPDATE, or DELETE).

For example, suppose you have a table, SAL, and you want to know when the table
is being accessed and the types of queries being issued. The following example
contains a sample package and trigger that tracks this information by hour and type
of action (for example, UPDATE, DELETE, or INSERT) on table SAL. The global
session variable STAT.ROWCNT is initialized to zero by a BEFORE statement
trigger. Then it is increased each time the row trigger is run. Finally the statistical
information is saved in the table STAT_TAB by the AFTER statement trigger.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
examples of trigger applications
Triggers 17-11

Types of Triggers
INSTEAD OF Triggers
INSTEAD OF triggers provide a transparent way of modifying views that cannot be
modified directly through DML statements (INSERT, UPDATE, and DELETE). These
triggers are called INSTEAD OF triggers because, unlike other types of triggers,
Oracle fires the trigger instead of executing the triggering statement.

You can write normal INSERT, UPDATE, and DELETE statements against the view
and the INSTEAD OF trigger is fired to update the underlying tables appropriately.
INSTEAD OF triggers are activated for each row of the view that gets modified.

Modify Views
Modifying views can have ambiguous results:

� Deleting a row in a view could either mean deleting it from the base table or
updating some values so that it is no longer selected by the view.

� Inserting a row in a view could either mean inserting a new row into the base
table or updating an existing row so that it is projected by the view.

� Updating a column in a view that involves joins might change the semantics of
other columns that are not projected by the view.

Object views present additional problems. For example, a key use of object views is
to represent master/detail relationships. This operation inevitably involves joins,
but modifying joins is inherently ambiguous.

As a result of these ambiguities, there are many restrictions on which views are
modifiable. An INSTEAD OF trigger can be used on object views as well as relational
views that are not otherwise modifiable.

Even if the view is inherently modifiable, you might want to perform validations on
the values being inserted, updated or deleted. INSTEAD OF triggers can also be
used in this case. Here the trigger code performs the validation on the rows being
modified and if valid, propagate the changes to the underlying tables.

INSTEAD OF triggers also enable you to modify object view instances on the
client-side through OCI. To modify an object materialized by an object view in the
client-side object cache and flush it back to the persistent store, you must specify
INSTEAD OF triggers, unless the object view is inherently modifiable. However, it is
not necessary to define these triggers for just pinning and reading the view object in
the object cache.
17-12 Oracle9i Database Concepts

Types of Triggers
Views That Are Not Modifiable
A view is inherently modifiable if data can be inserted, updated, or deleted
without using INSTEAD OF triggers and if it conforms to the restrictions listed as
follows. If the view query contains any of the following constructs, the view is not
inherently modifiable and you therefore cannot perform inserts, updates, or deletes
on the view:

� Set operators

� Aggregate functions

� GROUP BY, CONNECT BY, or START WITH clauses

� The DISTINCT operator

� Joins (however, some join views are updatable)

If a view contains pseudocolumns or expressions, you can only update the view
with an UPDATE statement that does not refer to any of the pseudocolumns or
expressions.

INSTEAD OF Triggers on Nested Tables
You cannot modify the elements of a nested table column in a view directly with the
TABLE clause. However, you can do so by defining an INSTEAD OF trigger on the
nested table column of the view. The triggers on the nested tables fire if a nested
table element is updated, inserted, or deleted and handle the actual modifications to
the underlying tables.

See Also:

� Chapter 13, "Object Datatypes and Object Views"

� Oracle Call Interface Programmer’s Guide

� Oracle9i Application Developer’s Guide - Fundamentals for an
example of an INSTEAD OF trigger

See Also: "Updatable Join Views" on page 10-20

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals

� Oracle9i SQL Reference for information on the CREATE TRIGGER
statement
Triggers 17-13

Types of Triggers
Triggers on System Events and User Events
You can use triggers to publish information about database events to subscribers.
Applications can subscribe to database events just as they subscribe to messages
from other applications. These database events can include:

� System events

– Database startup and shutdown

– Server error message events

� User events

– User logon and logoff

– DDL statements (CREATE, ALTER, and DROP)

– DML statements (INSERT, DELETE, and UPDATE)

Triggers on system events can be defined at the database level or schema level. For
example, a database shutdown trigger is defined at the database level:

CREATE TRIGGER register_shutdown
ON DATABASE
SHUTDOWN
BEGIN
...
DBMS_AQ.ENQUEUE(...);
...
END;

Triggers on DDL statements or logon/logoff events can also be defined at the
database level or schema level. Triggers on DML statements can be defined on a
table or view. A trigger defined at the database level fires for all users, and a trigger
defined at the schema or table level fires only when the triggering event involves
that schema or table.

Event Publication
Event publication uses the publish-subscribe mechanism of Oracle Advanced
Queuing. A queue serves as a message repository for subjects of interest to various
subscribers. Triggers use the DBMS_AQ package to enqueue a message when specific
system or user events occur.
17-14 Oracle9i Database Concepts

Types of Triggers
Event Attributes
Each event allows the use of attributes within the trigger text. For example, the
database startup and shutdown triggers have attributes for the instance number
and the database name, and the logon and logoff triggers have attributes for the
username. You can specify a function with the same name as an attribute when you
create a trigger if you want to publish that attribute when the event occurs. The
attribute’s value is then passed to the function or payload when the trigger fires. For
triggers on DML statements, the :OLD column values pass the attribute’s value to
the :NEW column value.

System Events
System events that can fire triggers are related to instance startup and shutdown
and error messages. Triggers created on startup and shutdown events have to be
associated with the database. Triggers created on error events can be associated
with the database or with a schema.

� STARTUP triggers fire when the database is opened by an instance. Their
attributes include the system event, instance number, and database name.

� SHUTDOWN triggers fire just before the server starts shutting down an instance.
You can use these triggers to make subscribing applications shut down
completely when the database shuts down. For abnormal instance shutdown,
these triggers cannot be fired. The attributes of SHUTDOWN triggers include the
system event, instance number, and database name.

� SERVERERROR triggers fire when a specified error occurs, or when any error
occurs if no error number is specified. Their attributes include the system event
and error number.

User Events
User events that can fire triggers are related to user logon and logoff, DDL
statements, and DML statements.

Triggers on LOGON and LOGOFF Events LOGON and LOGOFF triggers can be associated
with the database or with a schema. Their attributes include the system event and
username, and they can specify simple conditions on USERID and USERNAME.

See Also:

� Oracle9i Application Developer’s Guide - Advanced Queuing

� Oracle9i Supplied PL/SQL Packages and Types Reference
Triggers 17-15

Types of Triggers
� LOGON triggers fire after a successful logon of a user.

� LOGOFF triggers fire at the start of a user logoff.

Triggers on DDL Statements DDL triggers can be associated with the database or with
a schema. Their attributes include the system event, the type of schema object, and
its name. They can specify simple conditions on the type and name of the schema
object, as well as functions like USERID and USERNAME. DDL triggers include the
following types of triggers:

� BEFORE CREATE and AFTER CREATE triggers fire when a schema object is
created in the database or schema.

� BEFORE ALTER and AFTER ALTER triggers fire when a schema object is altered
in the database or schema.

� BEFORE DROP and AFTER DROP triggers fire when a schema object is dropped
from the database or schema.

Triggers on DML Statements DML triggers for event publication are associated with a
table. They can be either BEFORE or AFTER triggers that fire for each row on which
the specified DML operation occurs. You cannot use INSTEAD OF triggers on views
to publish events related to DML statements—instead, you can publish events using
BEFORE or AFTER triggers for the DML operations on a view’s underlying tables
that are caused by INSTEAD OF triggers.

The attributes of DML triggers for event publication include the system event and
the columns defined by the user in the SELECT list. They can specify simple
conditions on the type and name of the schema object, as well as functions (such as
UID, USER, USERENV, and SYSDATE), pseudocolumns, and columns. The columns
can be prefixed by :OLD and :NEW for old and new values. Triggers on DML
statements include the following triggers:

� BEFORE INSERT and AFTER INSERT triggers fire for each row inserted into the
table.

� BEFORE UPDATE and AFTER UPDATE triggers fire for each row updated in the
table.

� BEFORE DELETE and AFTER DELETE triggers fire for each row deleted from the
table.
17-16 Oracle9i Database Concepts

Trigger Execution
Trigger Execution
A trigger is in either of two distinct modes:

For enabled triggers, Oracle automatically performs the following actions:

� Runs triggers of each type in a planned firing sequence when more than one
trigger is fired by a single SQL statement

� Performs integrity constraint checking at a set point in time with respect to the
different types of triggers and guarantees that triggers cannot compromise
integrity constraints

� Provides read-consistent views for queries and constraints

� Manages the dependencies among triggers and schema objects referenced in the
code of the trigger action

� Uses two-phase commit if a trigger updates remote tables in a distributed
database

� Fires multiple triggers in an unspecified order, if more than one trigger of the
same type exists for a given statement

See Also:

� "Row Triggers" on page 17-9

� "BEFORE and AFTER Triggers" on page 17-10

� Oracle9i Application Developer’s Guide - Fundamentals for more
information about event publication using triggers on system
events and user events

Trigger Mode Definition

Enabled An enabled trigger runs its trigger action if a triggering statement
is issued and the trigger restriction (if any) evaluates to TRUE.

Disabled A disabled trigger does not run its trigger action, even if a
triggering statement is issued and the trigger restriction (if any)
would evaluate to TRUE.
Triggers 17-17

Trigger Execution
The Execution Model for Triggers and Integrity Constraint Checking
A single SQL statement can potentially fire up to four types of triggers:

� BEFORE row triggers

� BEFORE statement triggers

� AFTER row triggers

� AFTER statement triggers

A triggering statement or a statement within a trigger can cause one or more
integrity constraints to be checked. Also, triggers can contain statements that cause
other triggers to fire (cascading triggers).

Oracle uses the following execution model to maintain the proper firing sequence of
multiple triggers and constraint checking:

1. Run all BEFORE statement triggers that apply to the statement.

2. Loop for each row affected by the SQL statement.

a. Run all BEFORE row triggers that apply to the statement.

b. Lock and change row, and perform integrity constraint checking. (The lock
is not released until the transaction is committed.)

c. Run all AFTER row triggers that apply to the statement.

3. Complete deferred integrity constraint checking.

4. Run all AFTER statement triggers that apply to the statement.

The definition of the execution model is recursive. For example, a given SQL
statement can cause a BEFORE row trigger to be fired and an integrity constraint to
be checked. That BEFORE row trigger, in turn, might perform an update that causes
an integrity constraint to be checked and an AFTER statement trigger to be fired.
The AFTER statement trigger causes an integrity constraint to be checked. In this
case, the execution model runs the steps recursively, as follows:

Original SQL statement issued.

1. BEFORE row triggers fired.

a. AFTER statement triggers fired by UPDATE in BEFORE row trigger.

i. Statements of AFTER statement triggers run.

ii. Integrity constraint checked on tables changed by AFTER statement
triggers.
17-18 Oracle9i Database Concepts

Trigger Execution
b. Statements of BEFORE row triggers run.

c. Integrity constraint checked on tables changed by BEFORE row triggers.

2. SQL statement run.

3. Integrity constraint from SQL statement checked.

There are two exceptions to this recursion:

� When a triggering statement modifies one table in a referential constraint
(either the primary key or foreign key table), and a triggered statement modifies
the other, only the triggering statement will check the integrity constraint. This
allows row triggers to enhance referential integrity.

� Statement triggers fired due to DELETE CASCADE and DELETE SET NULL are
fired before and after the user DELETE statement, not before and after the
individual enforcement statements. This prevents those statement triggers from
encountering mutating errors.

An important property of the execution model is that all actions and checks done as
a result of a SQL statement must succeed. If an exception is raised within a trigger,
and the exception is not explicitly handled, all actions performed as a result of the
original SQL statement, including the actions performed by fired triggers, are rolled
back. Thus, integrity constraints cannot be compromised by triggers. The execution
model takes into account integrity constraints and disallows triggers that violate
declarative integrity constraints.

For example, in the previously outlined scenario, suppose that Steps 1 through 8
succeed; however, in Step 9 the integrity constraint is violated. As a result of this
violation, all changes made by the SQL statement (in Step 8), the fired BEFORE row
trigger (in Step 6), and the fired AFTER statement trigger (in Step 4) are rolled
back.

Note: Although triggers of different types are fired in a specific
order, triggers of the same type for the same statement are not
guaranteed to fire in any specific order. For example, all BEFORE
row triggers for a single UPDATE statement may not always fire in
the same order. Design your applications so they do not rely on the
firing order of multiple triggers of the same type.
Triggers 17-19

Trigger Execution
Data Access for Triggers
When a trigger is fired, the tables referenced in the trigger action might be currently
undergoing changes by SQL statements in other users’ transactions. In all cases, the
SQL statements run within triggers follow the common rules used for standalone
SQL statements. In particular, if an uncommitted transaction has modified values
that a trigger being fired either needs to read (query) or write (update), then the
SQL statements in the body of the trigger being fired use the following guidelines:

� Queries see the current read-consistent materialized view of referenced tables
and any data changed within the same transaction.

� Updates wait for existing data locks to be released before proceeding.

The following examples illustrate these points.

Data Access for Triggers Example 1 Assume that the salary_check trigger (body)
includes the following SELECT statement:

SELECT min_salary, max_salary INTO min_salary, max_salary
FROM jobs
WHERE job_title = :new.job_title;

For this example, assume that transaction T1 includes an update to the max_
salary column of the jobs table. At this point, the salary_check trigger is fired
by a statement in transaction T2. The SELECT statement within the fired trigger
(originating from T2) does not see the update by the uncommitted transaction T1,
and the query in the trigger returns the old max_salary value as of the
read-consistent point for transaction T2.

Data Access for Triggers Example 2 Assume that the total_salary trigger maintains
a derived column that stores the total salary of all members in a department:

CREATE TRIGGER total_salary
AFTER DELETE OR INSERT OR UPDATE OF department_id, salary ON employees
FOR EACH ROW BEGIN
/* assume that department_id and salary are non-null fields */
IF DELETING OR (UPDATING AND :old.department_id != :new.department_id)
THEN UPDATE departments
SET total_salary = total_salary - :old.salary
WHERE department_id = :old.department_id;
END IF;
IF INSERTING OR (UPDATING AND :old.department_id != :new.department_id)
THEN UPDATE departments
SET total_salary = total_salary + :new.salary
WHERE department_id = :new.department_id;
17-20 Oracle9i Database Concepts

Trigger Execution
END IF;
IF (UPDATING AND :old.department_id = :new.department_id AND
:old.salary != :new.salary)
THEN UPDATE departments
SET total_salary = total_salary - :old.salary + :new.salary
WHERE department_id = :new.department_id;
END IF;
END;

For this example, suppose that one user’s uncommitted transaction includes an
update to the total_salary column of a row in the departments table. At this
point, the total_salary trigger is fired by a second user’s SQL statement.
Because the uncommitted transaction of the first user contains an update to a
pertinent value in the total_salary column (that is, a row lock is being held), the
updates performed by the total_salary trigger are not run until the transaction
holding the row lock is committed or rolled back. Therefore, the second user waits
until the commit or rollback point of the first user’s transaction.

Storage of PL/SQL Triggers
Oracle stores PL/SQL triggers in compiled form, just like stored procedures. When
a CREATE TRIGGER statement commits, the compiled PL/SQL code, called P code
(for pseudocode), is stored in the database and the source code of the trigger is
flushed from the shared pool.

Execution of Triggers
Oracle runs a trigger internally using the same steps used for procedure execution.
The only subtle difference is that a user has the right to fire a trigger if he or she has
the privilege to run the triggering statement. Other than this, triggers are validated
and run the same way as stored procedures.

Dependency Maintenance for Triggers
Like procedures, triggers depend on referenced objects. Oracle automatically
manages the dependencies of a trigger on the schema objects referenced in its
trigger action. The dependency issues for triggers are the same as those for stored

See Also: PL/SQL User’s Guide and Reference for more information
about compiling and storing PL/SQL code

See Also: PL/SQL User’s Guide and Reference for more information
about stored procedures
Triggers 17-21

Trigger Execution
procedures. Triggers are treated like stored procedures. They are inserted into the
data dictionary.

See Also: Chapter 15, "Dependencies Among Schema Objects"
17-22 Oracle9i Database Concepts

Part VI

Parallel SQL and Direct-Load INSERT

Part VI describes parallel execution of SQL statements and the direct-load INSERT
feature. It contains the following chapters:

� Chapter 18, "Parallel Execution of SQL Statements"

� Chapter 19, "Direct-Path INSERT"

Oracle9i Database Concepts

Parallel Execution of SQL Sta
18

Parallel Execution of SQL Statements

This chapter describes the parallel execution of SQL statements. The topics in this
chapter include:

� Introduction to Parallel Execution

� How Parallel Execution Works

� SQL Operations That Can Be Parallelized

Note: The parallel execution features described in this chapter are
available only if you have purchased the Oracle9i Enterprise Edition.
See Oracle9i Database New Features for information about Oracle9i
Enterprise Edition.
tements 18-1

Introduction to Parallel Execution
Introduction to Parallel Execution
When Oracle runs SQL statements in parallel, multiple processes work together
simultaneously to run a single SQL statement. By dividing the work necessary to
run a statement among multiple processes, Oracle can run the statement more
quickly than if only a single process ran it. This is called parallel execution or
parallel processing.

Parallel execution dramatically reduces response time for data-intensive operations
on large databases typically associated with decision support systems (DSS) and
data warehouses. Symmetric multiprocessing (SMP), clustered systems, and
massively parallel systems (MPP) gain the largest performance benefits from
parallel execution because statement processing can be split up among many CPUs
on a single Oracle system. You can also implement parallel execution on certain
types of online transaction processing (OLTP) and hybrid systems.

Parallelism is the idea of breaking down a task so that, instead of one process doing
all of the work in a query, many processes do part of the work at the same time. An
example of this is when 12 processes handle 12 different months in a year instead of
one process handling all 12 months by itself. The improvement in performance can
be quite high.

Parallel execution helps systems scale in performance by making optimal use of
hardware resources. If your system’s CPUs and disk controllers are already heavily
loaded, you need to alleviate the system’s load or increase these hardware resources
before using parallel execution to improve performance.

Some tasks are not well-suited for parallel execution. For example, many OLTP
operations are relatively fast, completing in mere seconds or fractions of seconds,
and the overhead of utilizing parallel execution would be large, relative to the
overall execution time.

When to Implement Parallel Execution
During business hours, most OLTP systems should probably not use parallel
execution. During off-hours, however, parallel execution can effectively process
high-volume batch operations. For example, a bank can use parallelized batch
programs to perform the millions of updates required to apply interest to accounts.

See Also: Oracle9i Data Warehousing Guide for specific information
on tuning your parameter files and database to take full advantage
of parallel execution
18-2 Oracle9i Database Concepts

Introduction to Parallel Execution
The most common example of using parallel execution is for DSS. Complex queries,
such as those involving joins or searches of very large tables, are often best run in
parallel.

Parallel execution is useful for many types of operations that access significant
amounts of data. Parallel execution improves performance for:

� Queries

� Creation of large indexes

� Bulk inserts, updates, and deletes

� Aggregations and copying

Parallel execution benefits systems that have all of the following characteristics:

� Symmetric multiprocessors (SMP), clusters, or massively parallel systems (for
example, multiple CPUs)

� Sufficient I/O bandwidth

� Under-utilized or intermittently used CPUs (for example, systems where CPU
use is typically less than 30%)

� Sufficient memory to support additional memory-intensive processes such as
sorts, hashing, and I/O buffers

If your system lacks any of these characteristics, parallel execution might not
significantly improve performance. In fact, parallel execution can reduce system
performance on overutilized systems or systems with insufficient I/O bandwidth.

When Not to Implement Parallel Execution
Parallel execution is not normally useful for:

� Environments in which the typical query or transaction is very short (a few
seconds or less). This includes most online transaction systems. Parallel
execution is not useful in these environments because there is a cost associated
with coordinating the parallel execution servers; for short transactions, the cost
of this coordination may outweigh the benefits of parallelism.

� Environments in which the CPU, memory, or I/O resources are already heavily
utilized. Parallel execution is designed to exploit additional available hardware

See Also: Oracle9i Data Warehousing Guide for further information
regarding when to implement parallel execution
Parallel Execution of SQL Statements 18-3

How Parallel Execution Works
resources; if no such resources are available, then parallel execution will not
yield any benefits and indeed may be detrimental to performance.

How Parallel Execution Works
When parallel execution is not used, a single server process performs all necessary
processing for the sequential execution of a SQL statement. For example, to perform
a full table scan (such as SELECT * FROM employees), one process performs the
entire operation, as illustrated in Figure 18–1.

Figure 18–1 Serial Full Table Scan

Parallel execution performs these operations in parallel using multiple parallel
processes. One process, known as the parallel execution coordinator, dispatches
the execution of a statement to several parallel execution servers and coordinates
the results from all of the server processes to send the results back to the user.

Figure 18–2 illustrates several parallel execution servers performing a scan of the
table employees. The table is divided dynamically (dynamic partitioning) into
load units called granules and each granule is read by a single parallel execution
server. The granules are generated by the coordinator. Each granule is a range of
physical blocks of the table employees. The mapping of granules to execution
servers is not static, but is determined at execution time. When an execution server
finishes reading the rows of the table employees corresponding to a granule, it
gets another granule from the coordinator if there are any granules remaining. This
continues till all granules are exhausted, in other words. the entire table
employees has been read. The parallel execution servers send results back to the
parallel execution coordinator, which assembles the pieces into the desired full table
scan.

SELECT *
 FROM EMP;

EMP Table

Serial Process
18-4 Oracle9i Database Concepts

How Parallel Execution Works
Figure 18–2 Parallel Full Table Scan

Given a query plan for a SQL query, the parallel execution coordinator breaks down
each operator in a SQL query into parallel pieces, runs them in the right order as
specified in the query, and then integrates the partial results produced by the
parallel execution servers executing the operators. The number of parallel execution
servers assigned to a single operation is the degree of parallelism (DOP) for an
operation. Multiple operations within the same SQL statement all have the same
degree of parallelism.

Parallelized SQL Statements
Each SQL statement undergoes an optimization and parallelization process when it
is parsed. Therefore, when the data changes, if a more optimal execution plan or
parallelization plan becomes available, Oracle can automatically adapt to the new
situation.

After the optimizer determines the execution plan of a statement, the parallel
execution coordinator determines the parallelization method for each operation in
the execution plan. The coordinator must decide whether an operation can be
performed in parallel and, if so, how many parallel execution servers to enlist. The
number of parallel execution servers used for an operation is the degree of
parallelism.

See Also:

� Oracle9i Data Warehousing Guide for information regarding how
Oracle divides work and handles DOP in multiuser
environments

� Chapter 7, "Memory Architecture" for more information on
granules

SELECT *
 FROM EMP;

EMP Table

Parallel Execution
Coordinator

Parallel Execution
Server
Parallel Execution of SQL Statements 18-5

How Parallel Execution Works
Parallelism Between Operations
To illustrate intra-operation parallelism and inter-operation parallelism, consider
the following statement:

SELECT * FROM employees ORDER BY employee_id;

The execution plan implements a full scan of the employees table followed by a
sorting of the retrieved rows based on the value of the employee_id column. For
the sake of this example, assume the last_name column is not indexed. Also
assume that the degree of parallelism for the query is set to four, which means that
four parallel execution servers can be active for any given operation.

Each of the two operations (scan and sort) performed concurrently is given its own
set of parallel execution servers. Therefore, both operations have parallelism.
Parallelization of an individual operation where the same operation is performed
on smaller sets of rows by parallel execution servers achieves what is termed
intra-operation parallelism. When two operations run concurrently on different
sets of parallel execution servers with data flowing from one operation into the
other, we achieve what is termed inter-operation parallelism.

Due to the producer/consumer nature of the Oracle server’s operations, only two
operations in a given tree need to be performed simultaneously to minimize
execution time.

Figure 18–3 illustrates the parallel execution of our sample query.
18-6 Oracle9i Database Concepts

How Parallel Execution Works
Figure 18–3 Inter-Operation Parallelism and Dynamic Partitioning

As you can see from Figure 18–3, there are actually eight parallel execution servers
involved in the query even though the degree of parallelism is four. This is because
a parent and child operator can be performed at the same time (inter-operation
parallelism).

Also note that all of the parallel execution servers involved in the scan operation
send rows to the appropriate parallel execution server performing the sort
operation. If a row scanned by a parallel execution server contains a value for the
ename column between A and G, that row gets sent to the first ORDER BY parallel
execution server. When the scan operation is complete, the sorting processes can
return the sorted results to the coordinator, which in turn returns the complete
query results to the user.

SELECT *
 FROM emp
 ORDER BY ename;

EMP Table

Parallel
Execution

Coordinator

T - Z

H - M

N - S

A - G

User
Process

Parallel execution
servers for
ORDER BY
operation

Parallel execution
servers for full
table scan

Intra-
Operation
parallelism

Inter-
Operation
parallelism

Intra-
Operation
parallelism
Parallel Execution of SQL Statements 18-7

How Parallel Execution Works
Degree of Parallelism
The parallel execution coordinator may enlist two or more of the instance’s parallel
execution servers to process a SQL statement. The number of parallel execution
servers associated with a single operation is known as the degree of parallelism.

Note that the degree of parallelism applies directly only to intra-operation
parallelism. If inter-operation parallelism is possible, the total number of parallel
execution servers for a statement can be twice the specified degree of parallelism.
No more than two sets of parallel execution servers can run simultaneously. Each
set of parallel execution servers may process multiple operations. Only two sets of
parallel execution servers need to be active to guarantee optimal inter-operation
parallelism.

Parallel execution is designed to effectively use multiple CPUs and disks to answer
queries quickly. When multiple users use parallel execution at the same time, it is
easy to quickly exhaust available CPU, memory, and disk resources.

Oracle provides several ways to manage resource utilization in conjunction with
parallel execution environments, including:

� The adaptive multiuser algorithm, which reduces the degree of parallelism as
the load on the system increases. You can turn this option with the PARALLEL_
ADAPTIVE_MULTI_USER parameter of the ALTER SYSTEM statement or in your
initialization parameter file.

� User resource limits and profiles, which allow you to set limits on the amount
of various system resources available to each user as part of a user’s security
domain.

� The Database Resource Manager, which lets you allocate resources to different
groups of users.

Note: When a set of parallel execution servers completes its
operation, it moves on to operations higher in the data flow. For
example, in the previous diagram, if there was another ORDER BY
operation after the ORDER BY, then the parallel execution servers
performing the table scan perform the second ORDER BY operation
after completing the table scan.
18-8 Oracle9i Database Concepts

How Parallel Execution Works
Parallel Query Intra- and Inter-Operation Example
As an example of parallel query with intra- and inter-operation parallelism,
consider a more complex query:

SELECT /*+ PARALLEL(employees 4) PARALLEL(departments 4) USE_HASH(employees)
ORDERED */

MAX(salary), AVG(salary)
FROM employees, departments
WHERE employees.department_id = departments.department_id
GROUP BY employees.department_id;

Note that hints have been used in the query to force the join order and join method,
and to specify the degree of parallelism (DOP) of the tables employees and
departments. In general, you should let the optimizer determine the order and
method.

The query plan or data flow graph corresponding to this query is illustrated in
Figure 18–4.

See Also:

� Oracle9i Database Reference for information about PARALLEL_
ADAPTIVE_MULTI_USER

� Oracle9i SQL Reference for the syntax of the ALTER SYSTEM SQL
statement

� Oracle9i Data Warehousing Guide
Parallel Execution of SQL Statements 18-9

How Parallel Execution Works
Figure 18–4 Data Flow Diagram for Joining Tables

Given two sets of parallel execution servers SS1 and SS2, the execution of this plan
will proceed as follows: each server set (SS1 and SS2) will have four execution
processes because of the PARALLEL hint in the query that specifies the DOP. In
other words, the DOP will be four because each set of parallel execution servers will
have four processes.

Parallel
Execution

Coordinator

FULL SCAN
employees

FULL SCAN
departments

GROUP
BY

SORT

HASH
JOIN
18-10 Oracle9i Database Concepts

How Parallel Execution Works
Slave set SS1 first scans the table employees while SS2 will fetch rows from SS1
and build a hash table on the rows. In other words, the parent servers in SS2 and the
child servers in SS2 work concurrently: one in scanning employees in parallel, the
other in consuming rows sent to it from SS1 and building the hash table for the hash
join in parallel. This is an example of inter-operation parallelism.

After SS1 has finished scanning the entire table employees (that is, all granules or
task units for employees are exhausted), it scans the table departments in
parallel. It sends its rows to servers in SS2, which then perform the probes to finish
the hash-join in parallel. After SS1 is done scanning the table departments in
parallel and sending the rows to SS2, it switches to performing the GROUP BY in
parallel. This is how two server sets run concurrently to achieve inter-operation
parallelism across various operators in the query tree while achieving
intra-operation parallelism in executing each operation in parallel.

Another important aspect of parallel execution is the re-partitioning of rows while
they are sent from servers in one server set to another. For the query plan in
Figure 18–4, after a server process in SS1 scans a row of employees, which server
process of SS2 should it send it to? The partitioning of rows flowing up the query
tree is decided by the operator into which the rows are flowing into. In this case, the
partitioning of rows flowing up from SS1 performing the parallel scan of
employees into SS2 performing the parallel hash-join is done by hash partitioning
on the join column value. That is, a server process scanning employees computes a
hash function of the value of the column employees.employee_id to decide the
number of the server process in SS2 to send it to. The partitioning method used in
parallel queries is explicitly shown in the EXPLAIN PLAN of the query. Note that the
partitioning of rows being sent between sets of execution servers should not be
confused with Oracle’s partitioning feature whereby tables can be partitioned using
hash, range, and other methods.

See Also: Oracle9i Data Warehousing Guide for examples of using
EXPLAIN PLAN with parallel query
Parallel Execution of SQL Statements 18-11

SQL Operations That Can Be Parallelized
SQL Operations That Can Be Parallelized
Most operations can be parallelized. The following are commonly parallelized to
improve performance:

� Parallel Query

� Parallel DDL

� Parallel DML

� SQL*Loader

Parallel Query
You can parallelize queries and subqueries in SELECT statements, as well as the
query portions of DDL statements and DML statements (INSERT, UPDATE, and
DELETE). However, you cannot parallelize the query portion of a DDL or DML
statement if it references a remote object. When you issue a parallel DML or DDL
statement in which the query portion references a remote object, the operation is
automatically run serially.

Parallel DDL
You can normally use parallel DDL where you use regular DDL. There are,
however, some additional details to consider when designing your database. One
important restriction is that parallel DDL cannot be used on tables with object or
LOB columns.

DDL Statements that can be Parallelized
You can parallelize the CREATE TABLE AS SELECT, CREATE INDEX, and ALTER
INDEX REBUILD statements. If the table is partitioned, you can parallelize ALTER
TABLE MOVE or [SPLIT or COALESCE] statements as well. You can also use
parallelism for ALTER INDEX REBUILD [or SPLIT] when the index is partitioned.

All of these DDL operations can be performed in NOLOGGING mode for either
parallel or serial execution.

See Also: Oracle9i Data Warehousing Guide for specific information
regarding restrictions for parallel DML as well as some
considerations to keep in mind when designing a warehouse

See Also: Oracle9i SQL Reference for information about the syntax
and restrictions for parallel query statements
18-12 Oracle9i Database Concepts

SQL Operations That Can Be Parallelized
The CREATE TABLE statement for an index-organized table can be parallelized
either with or without an AS SELECT clause.

Different parallelism is used for different operations. Parallel create (partitioned)
table as select and parallel create (partitioned) index run with a degree of
parallelism equal to the number of partitions.

Parallel operations require accurate statistics to perform optimally.

Parallel DML
Parallel DML (parallel insert, update, and delete) uses parallel execution
mechanisms to speed up or scale up large DML operations against large database
tables and indexes. You can also use INSERT ... SELECT statements to insert rows
into multiple tables as part of a single DML statement. You can normally use
parallel DML where you use regular DML.

Although data manipulation language (DML) normally includes queries, the term
parallel DML refers only to inserts, updates, upserts and deletes done in parallel.

SQL*Loader
You can parallelize the use of SQL*Loader, where large amounts of data are
routinely encountered. To speed up your loads, you can use a parallel direct-path
load as in the following example:

SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD1.CTL DIRECT=TRUE PARALLEL=TRUE
SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD2.CTL DIRECT=TRUE PARALLEL=TRUE
SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD3.CTL DIRECT=TRUE PARALLEL=TRUE

See Also:

� Oracle9i SQL Reference for information about the syntax and
restrictions for parallel DDL statements

� Oracle9i Application Developer’s Guide - Large Objects (LOBs) for
information about LOB restrictions

See Also:

� Oracle9i SQL Reference for information about the syntax and
restrictions for parallel DML statements

� Oracle9i Data Warehousing Guide for specific information
regarding restrictions for parallel DML as well as some
considerations to keep in mind when designing a warehouse
Parallel Execution of SQL Statements 18-13

SQL Operations That Can Be Parallelized
You can also use a parameter file to achieve the same thing.

An important point to remember is that indexes are not maintained during a
parallel load.

How to Make a Statement Run in Parallel
The way you make a statement run in parallel depends upon the type of parallel
operation. The three types of parallel operation are:

� Parallel Query

� Parallel DDL

� Parallel DML

Parallel Query
To achieve parallelism for SQL query statements, one or more of the tables being
scanned should have a parallel attribute.

Parallel DDL
To achieve parallelism for SQL DDL statements, the parallel clause should be
specified.

Parallel DML
Due to the differences in locking between serial and parallel DML, you must
explicitly enable parallel DML before you can use it. To achieve parallelism for SQL
DML statements, you must first enable parallel DML in your session:

ALTER SESSION ENABLE PARALLEL DML;

Then any DML issued against a table with a parallel attribute will occur in parallel,
if no PDML restrictions are violated. For example:

INSERT INTO mytable SELECT * FROM origtable;

See Also: Oracle9i Database Utilities for information about the
syntax and restrictions for parallel loading
18-14 Oracle9i Database Concepts

SQL Operations That Can Be Parallelized
See Also:

� Oracle9i SQL Reference for information about the syntax to
implement parallelism

� Oracle9i Database Reference for information about the syntax to
implement parallelism from a parameter file

� Oracle9i Data Warehousing Guide for specific information
regarding restrictions for parallel DML
Parallel Execution of SQL Statements 18-15

SQL Operations That Can Be Parallelized
18-16 Oracle9i Database Concepts

Direct-Path
19

Direct-Path INSERT

This chapter describes the Oracle direct-path INSERT feature for serial or parallel
inserts. It also describes the NOLOGGING feature available for direct-path INSERT
and some DDL statements. This chapter’s topics include:

� Introduction to Direct-Path INSERT

� Advantages of Direct-Path INSERT

� Serial and Parallel Direct-Path INSERT

� Direct-Path INSERT Into Partitioned and Nonpartitioned Tables

� Direct-Path INSERT and Logging Mode

� Additional Considerations for Direct-Path INSERT

Note: The parallel direct-path INSERT feature described in this
chapter is available only if you have purchased the Oracle9i
Enterprise Edition. See Oracle9i Database New Features for more
information.

See Also:

� Chapter 18, "Parallel Execution of SQL Statements" for more
information about parallel execution INSERT issues

� Oracle9i Data Warehousing Guide
INSERT 19-1

Introduction to Direct-Path INSERT
Introduction to Direct-Path INSERT
Oracle inserts data into a table in one of two ways:

� During conventional insert operations, Oracle reuses free space in the table,
interleaving newly inserted data with existing data. During such operations,
Oracle also maintains referential integrity constraints.

� During direct-path INSERT operations, Oracle appends the inserted data after
existing data in the table. Data is written directly into datafiles, bypassing the
buffer cache. Free space in the existing data is not reused, and referential
integrity constraints are ignored. These procedures combined can enhance
performance.

You can implement direct-path INSERT operations by using direct-path INSERT
statements or by using Oracle’s direct-path loader utility, SQL*Loader. This section
discusses direct-path INSERT.

Advantages of Direct-Path INSERT
The following are performance benefits of direct-path INSERT:

� During direct-path INSERT, you can disable the logging of redo and undo
entries. Conventional insert operations, in contrast, must always log such
entries, because those operations reuse free space and maintain referential
integrity.

� To create a new table with data from an existing table, you have the choice of
creating the new table and then inserting into it, or executing a CREATE TABLE
... AS SELECT statement. By creating the table and then using direct-path
INSERT operations, you update any indexes defined on the target table during
the insert operation. The table resulting from a CREATE TABLE ... AS SELECT
statement, in contrast, does not have any indexes defined on it; you must define
them later.

See Also:

� Oracle9i Database Utilities for information on direct-path load
and SQL*Loader

� Oracle9i SQL Reference for a list of direct-path INSERT
restrictions
19-2 Oracle9i Database Concepts

Serial and Parallel Direct-Path INSERT
� Direct-path INSERT operations ensure atomicity of the transaction, even when
run in parallel mode. Atomicity cannot be guaranteed during parallel
direct-path loads (using SQL*Loader).

� If errors occur during parallel direct-path loads, some indexes could be marked
UNUSABLE at the end of the load. Parallel direct-path INSERT, in contrast, rolls
back the statement if errors occur during index update.

Serial and Parallel Direct-Path INSERT
When you are inserting in parallel DML mode, direct-path INSERT is the default. In
order to run in parallel DML mode, the following requirements must be met:

� You must have Oracle Enterprise Edition installed.

� You must enable parallel DML in your session. To do this, run the following
statement:

ALTER SESSION { ENABLE | FORCE } PARALLEL DML;

� You must specify the parallel attribute for the target table, either at create time
or subsequently, or you must specify the PARALLEL hint for each insert
operation.

To disable direct-path INSERT, specify the NOAPPEND hint in each INSERT
statement. Doing so overrides parallel DML mode.

When you are inserting in serial mode, you must activate direct-path INSERT by
specifying the APPEND hint in each insert statement, either immediately after the
INSERT keyword, or immediately after the SELECT keyword in the subquery of the
INSERT statement.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information on using hints

Note: Direct-path INSERT supports only the subquery syntax of
the INSERT statement, not the VALUES clause. For more
information on the subquery syntax of INSERT statements, see
Oracle9i SQL Reference.
Direct-Path INSERT 19-3

Direct-Path INSERT Into Partitioned and Nonpartitioned Tables
Direct-Path INSERT Into Partitioned and Nonpartitioned Tables
You can use direct-path INSERT on both partitioned and nonpartitioned tables.

Serial Direct-Path INSERT into Partitioned and Nonpartitioned Tables
The single process inserts data beyond the current high water mark of the table
segment or of each partition segment. (The high-water mark is the level at which
blocks have never been formatted to receive data.) When a COMMIT runs, the
high-water mark is updated to the new value, making the data visible to users.

Parallel Direct-Path INSERT into Partitioned Tables
This situation is analogous to serial direct-path INSERT. Each parallel execution
server is assigned one or more partitions, with no more than one process working
on a single partition. Each parallel execution server inserts data beyond the current
high-water mark of its assigned partition segment(s). When a COMMIT runs, the
high-water mark of each partition segment is updated to its new value, making the
data visible to users.

Parallel Direct-Path INSERT into Nonpartitioned Tables
Each parallel execution server allocates a new temporary segment and inserts data
into that temporary segment. When a COMMIT runs, the parallel execution
coordinator merges the new temporary segments into the primary table segment,
where it is visible to users.

Direct-Path INSERT and Logging Mode
Direct-path INSERT lets you choose whether to log redo and undo information
during the insert operation.

� You can specify logging mode for a table, partition, index, or LOB storage at
create time (in a CREATE statement) or subsequently (in an ALTER statement).

� If you do not specify either LOGGING or NOLOGGING at these times:

� The logging attribute of a partition defaults to the logging attribute of its
table.

� The logging attribute of a table or index defaults to the logging attribute of
the tablespace in which it resides.
19-4 Oracle9i Database Concepts

Additional Considerations for Direct-Path INSERT
� The logging attribute of LOB storage defaults to LOGGING if you specify
CACHE for LOB storage. If you do not specify CACHE, then the logging
attributes defaults to that of the tablespace in which the LOB values resides.

� You set the logging attribute of a tablespace in a CREATE TABLESPACE or
ALTER TABLESPACE statements.

Direct-Path INSERT with Logging
In this mode, Oracle performs full redo logging for instance and media recovery. If
the database is in ARCHIVELOG mode, then you can archive online redo logs to tape.
If the database is in NOARCHIVELOG mode, then you can recover instance crashes
but not disk failures.

Direct-Path INSERT without Logging
In this mode, Oracle inserts data without redo or undo logging. (Some minimal
logging is done to mark new extents invalid, and data dictionary changes are
always logged.) This mode improves performance. However, if you subsequently
must perform media recovery, the extent invalidation records mark a range of
blocks as logically corrupt, because no redo data was logged for them. Therefore, it
is important that you back up the data after such an insert operation.

Additional Considerations for Direct-Path INSERT

Index Maintenance with Direct-Path INSERT
Oracle performs index maintenance at the end of direct-path INSERT operations on
tables (partitioned or nonpartitioned) that have indexes. This index maintenance is
performed by the parallel execution servers for parallel direct-path INSERT or by

Note: If the database or tablespace is in FORCE LOGGING mode,
then direct path INSERT always logs, regardless of the logging or
nologging setting.

See Also:

� Oracle9i Backup and Recovery Concepts for recovery information

� Oracle9i SQL Reference for information on logging mode in
operations other than inserts
Direct-Path INSERT 19-5

Additional Considerations for Direct-Path INSERT
the single process for serial direct-path INSERT. You can avoid the performance
impact of index maintenance by dropping the index before the INSERT operation
and then rebuilding it afterward.

Space Considerations with Direct-Path INSERT
Direct-path INSERT requires more space than conventional-path INSERT, because
direct-path INSERT does not use existing space in the free lists of the segment.

All serial direct-path INSERT operations as well as parallel direct-path INSERT into
partitioned tables insert data above the high-water mark of the affected segment.
This requires some additional space.

Parallel direct-path INSERT into nonpartitioned tables requires even more space,
because it creates a temporary segment for each degree of parallelism. If the
nonpartitioned table is not in a locally managed tablespace in automatic mode, you
can modify the values of the NEXT and PCTINCREASE storage parameter and
MINIMUM EXTENT tablespace parameter to provide sufficient (but not excess)
storage for the temporary segments. Choose values for these parameters so that:

� The size of each extent is not too small (no less than 1 MB). This setting affects
the total number of extents in the object.

� The size of each extent is not so large that the parallel INSERT results in wasted
space on segments that are larger than necessary.

After the direct-path INSERT operation is complete, you can reset these parameters
to settings more appropriate for serial operations.

Locking Considerations with Direct-Path INSERT
During direct-path INSERT, Oracle obtains exclusive locks on the table (or on all
partitions of a partitioned table). As a result, users cannot perform any concurrent
insert, update, or delete operations on the table, and concurrent index creation and
build operations are not permitted. Concurrent queries, however, are supported,
but the query will return only the information before the insert operation.

See Also: Oracle9i SQL Reference for information on setting these
parameters
19-6 Oracle9i Database Concepts

Part VII

Data Protection

Part VII describes how Oracle protects the data in a database and explains what the
database administrator can do to provide additional protection for data.

Part VII contains the following chapters:

� Chapter 20, "Data Concurrency and Consistency"

� Chapter 21, "Data Integrity"

� Chapter 22, "Controlling Database Access"

� Chapter 23, "Privileges, Roles, and Security Policies"

� Chapter 24, "Auditing"

Oracle9i Database Concepts

Data Concurrency and Con
20

Data Concurrency and Consistency

This chapter explains how Oracle maintains consistent data in a multiuser database
environment. The chapter includes:

� Introduction to Data Concurrency and Consistency in a Multiuser Environment

� How Oracle Manages Data Concurrency and Consistency

� How Oracle Locks Data

� Flashback Query
sistency 20-1

Introduction to Data Concurrency and Consistency in a Multiuser Environment
Introduction to Data Concurrency and Consistency in a Multiuser
Environment

In a single-user database, the user can modify data in the database without concern
for other users modifying the same data at the same time. However, in a multiuser
database, the statements within multiple simultaneous transactions can update the
same data. Transactions executing at the same time need to produce meaningful
and consistent results. Therefore, control of data concurrency and data consistency
is vital in a multiuser database.

� Data concurrency means that many users can access data at the same time.

� Data consistency means that each user sees a consistent view of the data,
including visible changes made by the user’s own transactions and transactions
of other users.

To describe consistent transaction behavior when transactions execute at the same
time, database researchers have defined a transaction isolation model called
serializability. The serializable mode of transaction behavior tries to ensure that
transactions execute in such a way that they appear to be executed one at a time, or
serially, rather than concurrently.

While this degree of isolation between transactions is generally desirable, running
many applications in this mode can seriously compromise application throughput.
Complete isolation of concurrently running transactions could mean that one
transaction cannot perform an insert into a table being queried by another
transaction. In short, real-world considerations usually require a compromise
between perfect transaction isolation and performance.

Oracle offers two isolation levels, providing application developers with
operational modes that preserve consistency and provide high performance.

Preventable Phenomena and Transaction Isolation Levels
The ANSI/ISO SQL standard (SQL92) defines four levels of transaction isolation
with differing degrees of impact on transaction processing throughput. These
isolation levels are defined in terms of three phenomena that must be prevented
between concurrently executing transactions.

See Also: Chapter 21, "Data Integrity" for information about data
integrity, which enforces business rules associated with a database
20-2 Oracle9i Database Concepts

Introduction to Data Concurrency and Consistency in a Multiuser Environment
The three preventable phenomena are:

� Dirty reads: A transaction reads data that has been written by another
transaction that has not been committed yet.

� Nonrepeatable (fuzzy) reads: A transaction rereads data it has previously read
and finds that another committed transaction has modified or deleted the data.

� Phantom reads: A transaction re-executes a query returning a set of rows that
satisfies a search condition and finds that another committed transaction has
inserted additional rows that satisfy the condition.

SQL92 defines four levels of isolation in terms of the phenomena a transaction
running at a particular isolation level is permitted to experience. They are shown in
Table 20–1:

Oracle offers the read committed and serializable isolation levels, as well as a
read-only mode that is not part of SQL92. Read committed is the default.

Overview of Locking Mechanisms
In general, multiuser databases use some form of data locking to solve the problems
associated with data concurrency, consistency, and integrity. Locks are mechanisms
that prevent destructive interaction between transactions accessing the same
resource.

Table 20–1 Preventable Read Phenomena by Isolation Level

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

See Also: "How Oracle Manages Data Concurrency and
Consistency" on page 20-4 for a full discussion of read committed
and serializable isolation levels
Data Concurrency and Consistency 20-3

How Oracle Manages Data Concurrency and Consistency
Resources include two general types of objects:

� User objects, such as tables and rows (structures and data)

� System objects not visible to users, such as shared data structures in the
memory and data dictionary rows

How Oracle Manages Data Concurrency and Consistency
Oracle maintains data consistency in a multiuser environment by using a
multiversion consistency model and various types of locks and transactions. The
following topics are discussed in this section:

� Multiversion Concurrency Control

� Statement-Level Read Consistency

� Transaction-Level Read Consistency

� Read Consistency with Real Application Clusters

� Oracle Isolation Levels

� Comparison of Read Committed and Serializable Isolation

� Choice of Isolation Level

Multiversion Concurrency Control
Oracle automatically provides read consistency to a query so that all the data that
the query sees comes from a single point in time (statement-level read consistency).
Oracle can also provide read consistency to all of the queries in a transaction
(transaction-level read consistency).

Oracle uses the information maintained in its rollback segments to provide these
consistent views. The rollback segments contain the old values of data that have
been changed by uncommitted or recently committed transactions. Figure 20–1
shows how Oracle provides statement-level read consistency using data in rollback
segments.

See Also: "How Oracle Locks Data" on page 20-17 for more
information about locks
20-4 Oracle9i Database Concepts

How Oracle Manages Data Concurrency and Consistency
Figure 20–1 Transactions and Read Consistency

As a query enters the execution stage, the current system change number (SCN) is
determined. In Figure 20–1, this system change number is 10023. As data blocks are
read on behalf of the query, only blocks written with the observed SCN are used.
Blocks with changed data (more recent SCNs) are reconstructed from data in the
rollback segments, and the reconstructed data is returned for the query. Therefore,
each query returns all committed data with respect to the SCN recorded at the time
that query execution began. Changes of other transactions that occur during a
query’s execution are not observed, guaranteeing that consistent data is returned for
each query.

Statement-Level Read Consistency
Oracle always enforces statement-level read consistency. This guarantees that all
the data returned by a single query comes from a single point in time—the time that
the query began. Therefore, a query never sees dirty data nor any of the changes
made by transactions that commit during query execution. As query execution

SELECT . . .
(SCN 10023)

10021

10021

10024

10008

10024

10011

10021

10008

10021

Data Blocks

Scan Path

Rollback Segment
Data Concurrency and Consistency 20-5

How Oracle Manages Data Concurrency and Consistency
proceeds, only data committed before the query began is visible to the query. The
query does not see changes committed after statement execution begins.

A consistent result set is provided for every query, guaranteeing data consistency,
with no action on the user’s part. The SQL statements SELECT, INSERT with a
subquery, UPDATE, and DELETE all query data, either explicitly or implicitly, and all
return consistent data. Each of these statements uses a query to determine which
data it will affect (SELECT, INSERT, UPDATE, or DELETE, respectively).

A SELECT statement is an explicit query and can have nested queries or a join
operation. An INSERT statement can use nested queries. UPDATE and DELETE
statements can use WHERE clauses or subqueries to affect only some rows in a table
rather than all rows.

Queries used in INSERT, UPDATE, and DELETE statements are guaranteed a
consistent set of results. However, they do not see the changes made by the DML
statement itself. In other words, the query in these operations sees data as it existed
before the operation began to make changes.

Transaction-Level Read Consistency
Oracle also offers the option of enforcing transaction-level read consistency. When
a transaction executes in serializable mode, all data accesses reflect the state of the
database as of the time the transaction began. This means that the data seen by all
queries within the same transaction is consistent with respect to a single point in
time, except that queries made by a serializable transaction do see changes made by
the transaction itself. Transaction-level read consistency produces repeatable reads
and does not expose a query to phantoms.

Read Consistency with Real Application Clusters
Real Application Clusters use a cache-to-cache block transfer mechanism known as
Cache Fusion to transfer read-consistent images of blocks from one instance to
another. Real Application Clusters does this using high speed, low latency
interconnects to satisfy remote requests for data blocks.

See Also: Oracle9i Real Application Clusters Concepts for more
information
20-6 Oracle9i Database Concepts

How Oracle Manages Data Concurrency and Consistency
Oracle Isolation Levels
Oracle provides these transaction isolation levels.

Set the Isolation Level
Application designers, application developers, and database administrators can
choose appropriate isolation levels for different transactions, depending on the
application and workload. You can set the isolation level of a transaction by using
one of these statements at the beginning of a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION ISOLATION LEVEL READ ONLY;

Isolation Level Description

Read committed This is the default transaction isolation level. Each
query executed by a transaction sees only data that was
committed before the query (not the transaction)
began. An Oracle query never reads dirty
(uncommitted) data.

Because Oracle does not prevent other transactions
from modifying the data read by a query, that data can
be changed by other transactions between two
executions of the query. Thus, a transaction that
executes a given query twice can experience both
nonrepeatable read and phantoms.

Serializable Serializable transactions see only those changes that
were committed at the time the transaction began, plus
those changes made by the transaction itself through
INSERT, UPDATE, and DELETE statements. Serializable
transactions do not experience nonrepeatable reads or
phantoms.

Read-only Read-only transactions see only those changes that
were committed at the time the transaction began and
do not allow INSERT, UPDATE, and DELETE
statements.
Data Concurrency and Consistency 20-7

How Oracle Manages Data Concurrency and Consistency
To save the networking and processing cost of beginning each transaction with a
SET TRANSACTION statement, you can use the ALTER SESSION statement to set the
transaction isolation level for all subsequent transactions:

ALTER SESSION SET ISOLATION_LEVEL SERIALIZABLE;

ALTER SESSION SET ISOLATION_LEVEL READ COMMITTED;

Read Committed Isolation
The default isolation level for Oracle is read committed. This degree of isolation is
appropriate for environments where few transactions are likely to conflict. Oracle
causes each query to execute with respect to its own materialized view time,
thereby permitting nonrepeatable reads and phantoms for multiple executions of a
query, but providing higher potential throughput. Read committed isolation is the
appropriate level of isolation for environments where few transactions are likely to
conflict.

Serializable Isolation
Serializable isolation is suitable for environments:

� With large databases and short transactions that update only a few rows

� Where the chance that two concurrent transactions will modify the same rows is
relatively low

� Where relatively long-running transactions are primarily read-only

Serializable isolation permits concurrent transactions to make only those database
changes they could have made if the transactions had been scheduled to execute
one after another. Specifically, Oracle permits a serializable transaction to modify a
data row only if it can determine that prior changes to the row were made by
transactions that had committed when the serializable transaction began.

To make this determination efficiently, Oracle uses control information stored in the
data block that indicates which rows in the block contain committed and
uncommitted changes. In a sense, the block contains a recent history of transactions
that affected each row in the block. The amount of history that is retained is
controlled by the INITRANS parameter of CREATE TABLE and ALTER TABLE.

See Also: Oracle9i SQL Reference for detailed information on any
of these SQL statements
20-8 Oracle9i Database Concepts

How Oracle Manages Data Concurrency and Consistency
Under some circumstances, Oracle can have insufficient history information to
determine whether a row has been updated by a "too recent" transaction. This can
occur when many transactions concurrently modify the same data block, or do so in
a very short period. You can avoid this situation by setting higher values of
INITRANS for tables that will experience many transactions updating the same
blocks. Doing so enables Oracle to allocate sufficient storage in each block to record
the history of recent transactions that accessed the block.

Oracle generates an error when a serializable transaction tries to update or delete
data modified by a transaction that commits after the serializable transaction began:

ORA-08177: Cannot serialize access for this transaction

When a serializable transaction fails with the "Cannot serialize access" error, the
application can take any of several actions:

� Commit the work executed to that point

� Execute additional (but different) statements (perhaps after rolling back to a
savepoint established earlier in the transaction)

� Roll back the entire transaction

Figure 20–2 shows an example of an application that rolls back and retries the
transaction after it fails with the "Cannot serialize access" error:
Data Concurrency and Consistency 20-9

How Oracle Manages Data Concurrency and Consistency
Figure 20–2 Serializable Transaction Failure

Comparison of Read Committed and Serializable Isolation
Oracle gives the application developer a choice of two transaction isolation levels
with different characteristics. Both the read committed and serializable isolation
levels provide a high degree of consistency and concurrency. Both levels provide the
contention-reducing benefits of Oracle’s read consistency multiversion concurrency
control model and exclusive row-level locking implementation and are designed for
real-world application deployment.

Transaction Set Consistency
A useful way to view the read committed and serializable isolation levels in Oracle
is to consider the following scenario: Assume you have a collection of database
tables (or any set of data), a particular sequence of reads of rows in those tables, and
the set of transactions committed at any particular time. An operation (a query or
a transaction) is transaction set consistent if all its reads return data written by the
same set of committed transactions. An operation is not transaction set consistent if
some reads reflect the changes of one set of transactions and other reads reflect
changes made by other transactions. An operation that is not transaction set
consistent in effect sees the database in a state that reflects no single set of
committed transactions.

LOOP and retry
THEN ROLLBACK;

SET TRANSACTION ISOLATION

SELECT...

SELECT...

UPDATE...

Repeated query sees the same
data, even if it was changed by
another concurrent user

LEVEL SERIALIZABLE

Fails if attempting to update a
row changed and committed by
another transaction since this
transaction began

”Can’t Serialize Access”IF
20-10 Oracle9i Database Concepts

How Oracle Manages Data Concurrency and Consistency
Oracle provides transactions executing in read committed mode with transaction
set consistency for each statement. Serializable mode provides transaction set
consistency for each transaction.

Table 20–2 summarizes key differences between read committed and serializable
transactions in Oracle.

Row-Level Locking
Both read committed and serializable transactions use row-level locking, and both
will wait if they try to change a row updated by an uncommitted concurrent
transaction. The second transaction that tries to update a given row waits for the
other transaction to commit or roll back and release its lock. If that other transaction
rolls back, the waiting transaction, regardless of its isolation mode, can proceed to
change the previously locked row as if the other transaction had not existed.

Table 20–2 Read Committed and Serializable Transactions

Read Committed Serializable

Dirty write Not possible Not possible

Dirty read Not possible Not possible

Nonrepeatable read Possible Not possible

Phantoms Possible Not possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read materialized view time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different-row writers block writers No No

Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to "cannot serialize access" No Yes

Error after blocking transaction terminatess No No

Error after blocking transaction commits No Yes
Data Concurrency and Consistency 20-11

How Oracle Manages Data Concurrency and Consistency
However, if the other blocking transaction commits and releases its locks, a read
committed transaction proceeds with its intended update. A serializable
transaction, however, fails with the error "Cannot serialize access", because the
other transaction has committed a change that was made since the serializable
transaction began.

Referential Integrity
Because Oracle does not use read locks in either read-consistent or serializable
transactions, data read by one transaction can be overwritten by another.
Transactions that perform database consistency checks at the application level
cannot assume that the data they read will remain unchanged during the execution
of the transaction even though such changes are not visible to the transaction.
Database inconsistencies can result unless such application-level consistency checks
are coded with this in mind, even when using serializable transactions.

Distributed Transactions
In a distributed database environment, a given transaction updates data in multiple
physical databases protected by two-phase commit to ensure all nodes or none
commit. In such an environment, all servers, whether Oracle or non-Oracle, that
participate in a serializable transaction are required to support serializable isolation
mode.

If a serializable transaction tries to update data in a database managed by a server
that does not support serializable transactions, the transaction receives an error. The
transaction can roll back and retry only when the remote server does support
serializable transactions.

In contrast, read committed transactions can perform distributed transactions with
servers that do not support serializable transactions.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about referential integrity and serializable
transactions

Note: You can use both read committed and serializable
transaction isolation levels with Real Application Clusters.

See Also: Oracle9i Database Administrator’s Guide
20-12 Oracle9i Database Concepts

How Oracle Manages Data Concurrency and Consistency
Choice of Isolation Level
Application designers and developers should choose an isolation level based on
application performance and consistency needs as well as application coding
requirements.

For environments with many concurrent users rapidly submitting transactions,
designers must assess transaction performance requirements in terms of the
expected transaction arrival rate and response time demands. Frequently, for
high-performance environments, the choice of isolation levels involves a trade-off
between consistency and concurrency.

Application logic that checks database consistency must take into account the fact
that reads do not block writes in either mode.

Oracle isolation modes provide high levels of consistency, concurrency, and
performance through the combination of row-level locking and Oracle’s
multiversion concurrency control system. Readers and writers do not block one
another in Oracle. Therefore, while queries still see consistent data, both read
committed and serializable isolation provide a high level of concurrency for high
performance, without the need for reading uncommitted ("dirty") data.

Read Committed Isolation
For many applications, read committed is the most appropriate isolation level. Read
committed isolation can provide considerably more concurrency with a somewhat
increased risk of inconsistent results due to phantoms and non-repeatable reads for
some transactions.

Many high-performance environments with high transaction arrival rates require
more throughput and faster response times than can be achieved with serializable
isolation. Other environments that supports users with a very low transaction
arrival rate also face very low risk of incorrect results due to phantoms and
nonrepeatable reads. Read committed isolation is suitable for both of these
environments.

Oracle read committed isolation provides transaction set consistency for every
query. That is, every query sees data in a consistent state. Therefore, read committed
isolation will suffice for many applications that might require a higher degree of
isolation if run on other database management systems that do not use multiversion
concurrency control.

Read committed isolation mode does not require application logic to trap the
"Cannot serialize access" error and loop back to restart a transaction. In most
applications, few transactions have a functional need to issue the same query twice,
Data Concurrency and Consistency 20-13

How Oracle Manages Data Concurrency and Consistency
so for many applications protection against phantoms and non-repeatable reads is
not important. Therefore many developers choose read committed to avoid the
need to write such error checking and retry code in each transaction.

Serializable Isolation
Oracle’s serializable isolation is suitable for environments where there is a relatively
low chance that two concurrent transactions will modify the same rows and the
long-running transactions are primarily read-only. It is most suitable for
environments with large databases and short transactions that update only a few
rows.

Serializable isolation mode provides somewhat more consistency by protecting
against phantoms and nonrepeatable reads and can be important where a
read/write transaction executes a query more than once.

Unlike other implementations of serializable isolation, which lock blocks for read
as well as write, Oracle provides nonblocking queries and the fine granularity of
row-level locking, both of which reduce write/write contention. For applications
that experience mostly read/write contention, Oracle serializable isolation can
provide significantly more throughput than other systems. Therefore, some
applications might be suitable for serializable isolation on Oracle but not on
other systems.

All queries in an Oracle serializable transaction see the database as of a single point
in time, so this isolation level is suitable where multiple consistent queries must be
issued in a read/write transaction. A report-writing application that generates
summary data and stores it in the database might use serializable mode because it
provides the consistency that a READ ONLY transaction provides, but also allows
INSERT, UPDATE, and DELETE.

Coding serializable transactions requires extra work by the application developer to
check for the "Cannot serialize access" error and to roll back and retry the
transaction. Similar extra coding is needed in other database management systems
to manage deadlocks. For adherence to corporate standards or for applications that
are run on multiple database management systems, it may be necessary to design
transactions for serializable mode. Transactions that check for serializability failures
and retry can be used with Oracle read committed mode, which does not generate
serializability errors.

Note: Transactions containing DML statements with subqueries
should use serializable isolation to guarantee consistent read.
20-14 Oracle9i Database Concepts

How Oracle Manages Data Concurrency and Consistency
Serializable mode is probably not the best choice in an environment with relatively
long transactions that must update the same rows accessed by a high volume of
short update transactions. Because a longer running transaction is unlikely to be the
first to modify a given row, it will repeatedly need to roll back, wasting work. Note
that a conventional read-locking, pessimistic implementation of serializable mode
would not be suitable for this environment either, because long-running
transactions—even read transactions—would block the progress of short update
transactions and vice versa.)

Application developers should take into account the cost of rolling back and
retrying transactions when using serializable mode. As with read-locking systems,
where deadlocks occur frequently, use of serializable mode requires rolling back the
work done by terminated transactions and retrying them. In a high contention
environment, this activity can use significant resources.

In most environments, a transaction that restarts after receiving the "Cannot
serialize access" error is unlikely to encounter a second conflict with another
transaction. For this reason it can help to execute those statements most likely to
contend with other transactions as early as possible in a serializable transaction.
However, there is no guarantee that the transaction will complete successfully, so
the application should be coded to limit the number of retries.

Although Oracle serializable mode is compatible with SQL92 and offers many
benefits compared with read-locking implementations, it does not provide
semantics identical to such systems. Application designers must take into account
the fact that reads in Oracle do not block writes as they do in other systems.
Transactions that check for database consistency at the application level can require
coding techniques such as the use of SELECT FOR UPDATE. This issue should be
considered when applications using serializable mode are ported to Oracle from
other environments.

Quiesce Database
You can put the system into quiesced state. The system is in quiesced state if there
are no active sessions, other than SYS and SYSTEM. An active session is defined as a
session that is currently inside a transaction, a query, a fetch or a PL/SQL
procedure, or a session that is currently holding any shared resources (for example,
enqueues). Database administrators are the only users who can proceed when the
system is in quiesced state.

Database administrators can perform certain actions in the quiesced state that
cannot be safely done when the system is not quiesced. These actions include:
Data Concurrency and Consistency 20-15

How Oracle Manages Data Concurrency and Consistency
� Actions that might fail if there are concurrent user transactions or queries. For
example, changing the schema of a database table will fail if a concurrent
transaction is accessing the same table.

� Actions whose intermediate effect could be detrimental to concurrent user
transactions or queries. For example:

1. Change the schema of a database table.

2. Update a PL/SQL procedure to a new version that uses this new schema of
the database table.

Between Step 1 and Step 2, the new schema of the table is inconsistent with the
implementation of the PL/SQL procedure. This inconsistency would adversely
affect users concurrently trying to execute the PL/SQL procedure.

For systems that must operate continuously, the ability to perform such actions
without shutting down the database is critical.

The Database Resource Manager blocks all actions that were initiated by a user
other than SYS or SYSTEM while the system is quiesced. Such actions are allowed to
proceed when the system goes back to normal (unquiesced) state. Users do not get
any additional error messages from the quiesced state.

How a Database Is Quiesced The database administrator uses the ALTER SYSTEM
QUIESCE RESTRICTED statement to quiesce the database. Only users SYS and
SYSTEM can issue the ALTER SYSTEM QUIESCE RESTRICTED statement. For all
instances with the database open, issuing this statement has the following effect:

� Oracle instructs the Database Resource Manager in all instances to prevent all
inactive sessions (other than SYS and SYSTEM) from becoming active. No user
other than SYS and SYSTEM can start a new transaction, a new query, a new
fetch, or a new PL/SQL operation.

� Oracle waits for all existing transactions in all instances that were initiated by a
user other than SYS or SYSTEM to finish (either commit or terminate). Oracle
also waits for all running queries, fetches, and PL/SQL procedures in all
instances that were initiated by users other than SYS or SYSTEM and that are
not inside transactions to finish. If a query is carried out by multiple successive
OCI fetches, Oracle does not wait for all fetches to finish. It waits for the current
fetch to finish and then blocks the next fetch. Oracle also waits for all sessions
(other than those of SYS or SYSTEM) that hold any shared resources (such as
enqueues) to release those resources. After all these operations finish, Oracle
places the database into quiesced state and finishes executing the QUIESCE
RESTRICTED statement.
20-16 Oracle9i Database Concepts

How Oracle Locks Data
� If an instance is running in shared server mode, Oracle instructs the Database
Resource Manager to block logins (other than SYS or SYSTEM) on that instance.
If an instance is running in non-shared-server mode, Oracle does not impose
any restrictions on user logins in that instance.

During the quiesced state, you cannot change the Resource Manager plan in any
instance.

The ALTER SYSTEM UNQUIESCE statement puts all running instances back into
normal mode, so that all blocked actions can proceed.

How Oracle Locks Data
Locks are mechanisms that prevent destructive interaction between transactions
accessing the same resource—either user objects such as tables and rows or system
objects not visible to users, such as shared data structures in memory and data
dictionary rows.

In all cases, Oracle automatically obtains necessary locks when executing SQL
statements, so users need not be concerned with such details. Oracle automatically
uses the lowest applicable level of restrictiveness to provide the highest degree of
data concurrency yet also provide fail-safe data integrity. Oracle also allows the user
to lock data manually.

Transactions and Data Concurrency
Oracle provides data concurrency and integrity between transactions using its
locking mechanisms. Because the locking mechanisms of Oracle are tied closely to
transaction control, application designers need only define transactions properly,
and Oracle automatically manages locking.

Keep in mind that Oracle locking is fully automatic and requires no user action.
Implicit locking occurs for all SQL statements so that database users never need to
lock any resource explicitly. Oracle’s default locking mechanisms lock data at the
lowest level of restrictiveness to guarantee data integrity while allowing the highest
degree of data concurrency.

See Also:

� Oracle9i SQL Reference

� Oracle9i Database Administrator’s Guide

See Also: "Types of Locks" on page 20-21
Data Concurrency and Consistency 20-17

How Oracle Locks Data
Modes of Locking
Oracle uses two modes of locking in a multiuser database:

� Exclusive lock mode prevents the associates resource from being shared. This
lock mode is obtained to modify data. The first transaction to lock a resource
exclusively is the only transaction that can alter the resource until the exclusive
lock is released.

� Share lock mode allows the associated resource to be shared, depending on the
operations involved. Multiple users reading data can share the data, holding
share locks to prevent concurrent access by a writer (who needs an exclusive
lock). Several transactions can acquire share locks on the same resource.

Lock Duration
All locks acquired by statements within a transaction are held for the duration of
the transaction, preventing destructive interference including dirty reads, lost
updates, and destructive DDL operations from concurrent transactions. The
changes made by the SQL statements of one transaction become visible only to
other transactions that start after the first transaction is committed.

Oracle releases all locks acquired by the statements within a transaction when you
either commit or roll back the transaction. Oracle also releases locks acquired after a
savepoint when rolling back to the savepoint. However, only transactions not
waiting for the previously locked resources can acquire locks on the now available
resources. Waiting transactions will continue to wait until after the original
transaction commits or rolls back completely.

Data Lock Conversion Versus Lock Escalation
A transaction holds exclusive row locks for all rows inserted, updated, or deleted
within the transaction. Because row locks are acquired at the highest degree of
restrictiveness, no lock conversion is required or performed.

Oracle automatically converts a table lock of lower restrictiveness to one of higher
restrictiveness as appropriate. For example, assume that a transaction uses a
SELECT statement with the FOR UPDATE clause to lock rows of a table. As a result,
it acquires the exclusive row locks and a row share table lock for the table. If the
transaction later updates one or more of the locked rows, the row share table lock is
automatically converted to a row exclusive table lock.

See Also: "Explicit (Manual) Data Locking" on page 20-32
20-18 Oracle9i Database Concepts

How Oracle Locks Data
Lock escalation occurs when numerous locks are held at one level of granularity
(for example, rows) and a database raises the locks to a higher level of granularity
(for example, table). For example, if a single user locks many rows in a table, some
databases automatically escalate the user’s row locks to a single table. The number
of locks is reduced, but the restrictiveness of what is being locked is increased.

Oracle never escalates locks. Lock escalation greatly increases the likelihood of
deadlocks. Imagine the situation where the system is trying to escalate locks on
behalf of transaction T1 but cannot because of the locks held by transaction T2. A
deadlock is created if transaction T2 also requires lock escalation of the same data
before it can proceed.

Deadlocks
A deadlock can occur when two or more users are waiting for data locked by each
other. Deadlocks prevent some transactions from continuing to work. Figure 20–3
illustrates two transactions in a deadlock.

In Figure 20–3, no problem exists at time point A, as each transaction has a row lock
on the row it attempts to update. Each transaction proceeds without being
terminated. However, each tries next to update the row currently held by the other
transaction. Therefore, a deadlock results at time point B, because neither
transaction can obtain the resource it needs to proceed or terminate. It is a deadlock
because no matter how long each transaction waits, the conflicting locks are held.

See Also: "Table Locks (TM)" on page 20-23
Data Concurrency and Consistency 20-19

How Oracle Locks Data
Figure 20–3 Two Transactions in a Deadlock

Deadlock Detection
Oracle automatically detects deadlock situations and resolves them by rolling back
one of the statements involved in the deadlock, thereby releasing one set of the
conflicting row locks. A corresponding message also is returned to the transaction
that undergoes statement-level rollback. The statement rolled back is the one
belonging to the transaction that detects the deadlock. Usually, the signalled
transaction should be rolled back explicitly, but it can retry the rolled-back
statement after waiting.

Deadlocks most often occur when transactions explicitly override the default
locking of Oracle. Because Oracle itself does no lock escalation and does not use
read locks for queries, but does use row-level locking (rather than page-level
locking), deadlocks occur infrequently in Oracle.

Note: In distributed transactions, local deadlocks are detected
by analyzing a "waits for" graph, and global deadlocks are detected
by a time-out. Once detected, nondistributed and distributed
deadlocks are handled by the database and application in the
same way.

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 1000;

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 2000;

ORA–00060:
 deadlock detected while
 waiting for resource

UPDATE emp

 WHERE empno = 2000;

UPDATE emp
 SET mgr = 1342
 WHERE empno = 1000;

 SET mgr = 1342

A

B

C

Transaction 1 (T1) Time Transaction 2 (T2)
20-20 Oracle9i Database Concepts

How Oracle Locks Data
Avoid Deadlocks
Multitable deadlocks can usually be avoided if transactions accessing the same
tables lock those tables in the same order, either through implicit or explicit locks.
For example, all application developers might follow the rule that when both a
master and detail table are updated, the master table is locked first and then the
detail table. If such rules are properly designed and then followed in all
applications, deadlocks are very unlikely to occur.

When you know you will require a sequence of locks for one transaction, consider
acquiring the most exclusive (least compatible) lock first.

Types of Locks
Oracle automatically uses different types of locks to control concurrent access to
data and to prevent destructive interaction between users. Oracle automatically
locks a resource on behalf of a transaction to prevent other transactions from doing
something also requiring exclusive access to the same resource. The lock is released
automatically when some event occurs so that the transaction no longer requires the
resource.

Throughout its operation, Oracle automatically acquires different types of locks at
different levels of restrictiveness depending on the resource being locked and the
operation being performed.

Oracle locks fall into one of three general categories.

The following sections discuss DML locks, DDL locks, and internal locks.

See Also: "Explicit (Manual) Data Locking" on page 20-32 for
more information about manually acquiring locks

Lock Description

DML locks (data locks) DML locks protect data. For example, table locks lock
entire tables, row locks lock selected rows.

DDL locks (dictionary
locks)

DDL locks protect the structure of schema objects—for
example, the definitions of tables and views.

Internal locks and latches Internal locks and latches protect internal database
structures such as datafiles. Internal locks and latches
are entirely automatic.
Data Concurrency and Consistency 20-21

How Oracle Locks Data
DML Locks
The purpose of a DML (data) lock is to guarantee the integrity of data being
accessed concurrently by multiple users. DML locks prevent destructive
interference of simultaneous conflicting DML or DDL operations. For example,
Oracle DML locks guarantee that a specific row in a table can be updated by only
one transaction at a time and that a table cannot be dropped if an uncommitted
transaction contains an insert into the table.

DML operations can acquire data locks at two different levels: for specific rows and
for entire tables.

Row Locks (TX)
The only DML locks Oracle acquires automatically are row-level locks. There is no
limit to the number of row locks held by a statement or transaction, and Oracle does
not escalate locks from the row level to a coarser granularity. Row locking provides
the finest grain locking possible and so provides the best possible concurrency and
throughput.

The combination of multiversion concurrency control and row-level locking means
that users contend for data only when accessing the same rows, specifically:

� Readers of data do not wait for writers of the same data rows.

� Writers of data do not wait for readers of the same data rows unless SELECT ...
FOR UPDATE is used, which specifically requests a lock for the reader.

� Writers only wait for other writers if they attempt to update the same rows at
the same time.

Note: The acronym in parentheses after each type of lock or lock
mode is the abbreviation used in the Locks Monitor of Enterprise
Manager. Enterprise Manager might display TM for any table lock,
rather than indicate the mode of table lock (such as RS or SRX).

Note: Readers of data may have to wait for writers of the same
data blocks in some very special cases of pending distributed
transactions.
20-22 Oracle9i Database Concepts

How Oracle Locks Data
A transaction acquires an exclusive DML lock for each individual row modified by
one of the following statements: INSERT, UPDATE, DELETE, and SELECT with the
FOR UPDATE clause.

A modified row is always locked exclusively so that other users cannot modify the
row until the transaction holding the lock is committed or rolled back. However, if
the transaction dies due to instance failure, block-level recovery makes a row
available before the entire transaction is recovered. Row locks are always acquired
automatically by Oracle as a result of the statements listed previously.

If a transaction obtains a row lock for a row, the transaction also acquires a table
lock for the corresponding table. The table lock prevents conflicting DDL operations
that would override data changes in a current transaction.

Table Locks (TM)
A transaction acquires a table lock when a table is modified in the following DML
statements: INSERT, UPDATE, DELETE, SELECT with the FOR UPDATE clause, and
LOCK TABLE. These DML operations require table locks for two purposes: to reserve
DML access to the table on behalf of a transaction and to prevent DDL operations
that would conflict with the transaction. Any table lock prevents the acquisition of
an exclusive DDL lock on the same table and thereby prevents DDL operations that
require such locks. For example, a table cannot be altered or dropped if an
uncommitted transaction holds a table lock for it.

A table lock can be held in any of several modes: row share (RS), row exclusive
(RX), share (S), share row exclusive (SRX), and exclusive (X). The restrictiveness of a
table lock’s mode determines the modes in which other table locks on the same
table can be obtained and held.

Table 20–3 shows the table lock modes that statements acquire and operations that
those locks permit and prohibit.

See Also: "DDL Locks" on page 20-30
Data Concurrency and Consistency 20-23

How Oracle Locks Data
The following sections explain each mode of table lock, from least restrictive to most
restrictive. They also describe the actions that cause the transaction to acquire a
table lock in that mode and which actions are permitted and prohibited in other
transactions by a lock in that mode.

Row Share Table Locks (RS) A row share table lock (also sometimes called a subshare
table lock, SS) indicates that the transaction holding the lock on the table has
locked rows in the table and intends to update them. A row share table lock is

Table 20–3 Summary of Table Locks

SQL Statement
Mode of
Table Lock

Lock Modes Permitted?

RS RX S SRX X

SELECT...FROM table... none Y Y Y Y Y

INSERT INTO table ... RX Y Y N N N

UPDATE table ... RX Y* Y* N N N

DELETE FROM table ... RX Y* Y* N N N

SELECT ... FROM table
FOR UPDATE OF ...

RS Y* Y* Y* Y* N

LOCK TABLE table IN
ROW SHARE MODE

RS Y Y Y Y N

LOCK TABLE table IN
ROW EXCLUSIVE MODE

RX Y Y N N N

LOCK TABLE table IN
SHARE MODE

S Y N Y N N

LOCK TABLE table IN
SHARE ROW EXCLUSIVE
MODE

SRX Y N N N N

LOCK TABLE table IN
EXCLUSIVE MODE

X N N N N N

RS: row share
RX: row exclusive
S: share
SRX: share row exclusive
X: exclusive

*Yes, if no conflicting row locks are
held by another transaction.
Otherwise, waits occur.

See Also: "Explicit (Manual) Data Locking" on page 20-32
20-24 Oracle9i Database Concepts

How Oracle Locks Data
automatically acquired for a table when one of the following SQL statements is
executed:

SELECT ... FROM table ... FOR UPDATE OF ... ;

LOCK TABLE table IN ROW SHARE MODE;

A row share table lock is the least restrictive mode of table lock, offering the highest
degree of concurrency for a table.

Permitted Operations: A row share table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, other transactions can obtain simultaneous row share, row
exclusive, share, and share row exclusive table locks for the same table.

Prohibited Operations: A row share table lock held by a transaction prevents other
transactions from exclusive write access to the same table using only the following
statement:

LOCK TABLE table IN EXCLUSIVE MODE;

Row Exclusive Table Locks (RX) A row exclusive table lock (also called a subexclusive
table lock, SX) generally indicates that the transaction holding the lock has made
one or more updates to rows in the table. A row exclusive table lock is acquired
automatically for a table modified by the following types of statements:

INSERT INTO table ... ;

UPDATE table ... ;

DELETE FROM table ... ;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share table lock.

Permitted Operations: A row exclusive table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, row exclusive table locks allow multiple transactions to obtain
simultaneous row exclusive and row share table locks for the same table.

Prohibited Operations: A row exclusive table lock held by a transaction prevents other
transactions from manually locking the table for exclusive reading or writing.
Therefore, other transactions cannot concurrently lock the table using the following
statements:
Data Concurrency and Consistency 20-25

How Oracle Locks Data
LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Share Table Locks (S) A share table lock is acquired automatically for the table
specified in the following statement:

LOCK TABLE table IN SHARE MODE;

Permitted Operations: A share table lock held by a transaction allows other
transactions only to query the table, to lock specific rows with SELECT ... FOR
UPDATE, or to execute LOCK TABLE ... IN SHARE MODE statements successfully. No
updates are allowed by other transactions. Multiple transactions can hold share
table locks for the same table concurrently. In this case, no transaction can update
the table (even if a transaction holds row locks as the result of a SELECT statement
with the FOR UPDATE clause). Therefore, a transaction that has a share table lock can
update the table only if no other transactions also have a share table lock on the
same table.

Prohibited Operations: A share table lock held by a transaction prevents other
transactions from modifying the same table and from executing the following
statements:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

Share Row Exclusive Table Locks (SRX) A share row exclusive table lock (also
sometimes called a share-subexclusive table lock, SSX) is more restrictive than a
share table lock. A share row exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

Permitted Operations: Only one transaction at a time can acquire a share row
exclusive table lock on a given table. A share row exclusive table lock held by a
transaction allows other transactions to query or lock specific rows using SELECT
with the FOR UPDATE clause, but not to update the table.

Prohibited Operations: A share row exclusive table lock held by a transaction prevents
other transactions from obtaining row exclusive table locks and modifying the same
table. A share row exclusive table lock also prohibits other transactions from
20-26 Oracle9i Database Concepts

How Oracle Locks Data
obtaining share, share row exclusive, and exclusive table locks, which prevents
other transactions from executing the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Exclusive Table Locks (X) An exclusive table lock is the most restrictive mode of table
lock, allowing the transaction that holds the lock exclusive write access to the table.
An exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN EXCLUSIVE MODE;

Permitted Operations: Only one transaction can obtain an exclusive table lock for a
table. An exclusive table lock permits other transactions only to query the table.

Prohibited Operations: An exclusive table lock held by a transaction prohibits other
transactions from performing any type of DML statement or placing any type of
lock on the table.

DML Locks Automatically Acquired for DML Statements
The previous sections explained the different types of data locks, the modes in
which they can be held, when they can be obtained, when they are obtained, and
what they prohibit. The following sections summarize how Oracle automatically
locks data on behalf of different DML operations.

Table 20–4 summarizes the information in the following sections.
Data Concurrency and Consistency 20-27

How Oracle Locks Data
Default Locking for Queries Queries are the SQL statements least likely to interfere
with other SQL statements because they only read data. INSERT, UPDATE, and
DELETE statements can have implicit queries as part of the statement. Queries
include the following kinds of statements:

SELECT

INSERT ... SELECT ... ;

UPDATE ... ;

DELETE ... ;

They do not include the following statement:

SELECT ... FOR UPDATE OF ... ;

The following characteristics are true of all queries that do not use the FOR UPDATE
clause:

Table 20–4 Locks Obtained By DML Statements

DML Statement Row Locks? Mode of Table Lock

SELECT ... FROM table

INSERT INTO table ... X RX

UPDATE table ... X RX

DELETE FROM table ... X RX

SELECT ... FROM table ...
FOR UPDATE OF ...

X RS

LOCK TABLE table IN ...

ROW SHARE MODE RS

ROW EXCLUSIVE MODE RX

SHARE MODE S

SHARE EXCLUSIVE MODE SRX

EXCLUSIVE MODE X

X: exclusive
RX: row exclusive

RS: row share
S: share
SRX: share row exclusive
20-28 Oracle9i Database Concepts

How Oracle Locks Data
� A query acquires no data locks. Therefore, other transactions can query and
update a table being queried, including the specific rows being queried.
Because queries lacking FOR UPDATE clauses do not acquire any data locks to
block other operations, such queries are often referred to in Oracle as
nonblocking queries.

� A query does not have to wait for any data locks to be released; it can always
proceed. (Queries may have to wait for data locks in some very specific cases of
pending distributed transactions.)

Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE The locking
characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE
statements are as follows:

� The transaction that contains a DML statement acquires exclusive row locks on
the rows modified by the statement. Other transactions cannot update or delete
the locked rows until the locking transaction either commits or rolls back.

� The transaction that contains a DML statement does not need to acquire row
locks on any rows selected by a subquery or an implicit query, such as a query
in a WHERE clause. A subquery or implicit query in a DML statement is
guaranteed to be consistent as of the start of the query and does not see the
effects of the DML statement it is part of.

� A query in a transaction can see the changes made by previous DML statements
in the same transaction, but cannot see the changes of other transactions begun
after its own transaction.

� In addition to the necessary exclusive row locks, a transaction that contains a
DML statement acquires at least a row exclusive table lock on the table that
contains the affected rows. If the containing transaction already holds a share,
share row exclusive, or exclusive table lock for that table, the row exclusive
table lock is not acquired. If the containing transaction already holds a row
share table lock, Oracle automatically converts this lock to a row exclusive
table lock.
Data Concurrency and Consistency 20-29

How Oracle Locks Data
DDL Locks
A data dictionary lock (DDL) protects the definition of a schema object while that
object is acted upon or referred to by an ongoing DDL operation. Recall that a DDL
statement implicitly commits its transaction. For example, assume that a user
creates a procedure. On behalf of the user’s single-statement transaction, Oracle
automatically acquires DDL locks for all schema objects referenced in the procedure
definition. The DDL locks prevent objects referenced in the procedure from being
altered or dropped before the procedure compilation is complete.

Oracle acquires a dictionary lock automatically on behalf of any DDL transaction
requiring it. Users cannot explicitly request DDL locks. Only individual schema
objects that are modified or referenced are locked during DDL operations. The
whole data dictionary is never locked.

DDL locks fall into three categories: exclusive DDL locks, share DDL locks, and
breakable parse locks.

Exclusive DDL Locks
Most DDL operations, except for those listed in the next section, "Share DDL Locks",
require exclusive DDL locks for a resource to prevent destructive interference with
other DDL operations that might modify or reference the same schema object. For
example, a DROP TABLE operation is not allowed to drop a table while an ALTER
TABLE operation is adding a column to it, and vice versa.

During the acquisition of an exclusive DDL lock, if another DDL lock is already
held on the schema object by another operation, the acquisition waits until the older
DDL lock is released and then proceeds.

DDL operations also acquire DML locks (data locks) on the schema object to be
modified.

Share DDL Locks
Some DDL operations require share DDL locks for a resource to prevent destructive
interference with conflicting DDL operations, but allow data concurrency for
similar DDL operations. For example, when a CREATE PROCEDURE statement is
executed, the containing transaction acquires share DDL locks for all referenced
tables. Other transactions can concurrently create procedures that reference the
same tables and therefore acquire concurrent share DDL locks on the same tables,
but no transaction can acquire an exclusive DDL lock on any referenced table. No
transaction can alter or drop a referenced table. As a result, a transaction that holds
a share DDL lock is guaranteed that the definition of the referenced schema object
will remain constant for the duration of the transaction.
20-30 Oracle9i Database Concepts

How Oracle Locks Data
A share DDL lock is acquired on a schema object for DDL statements that include
the following statements: AUDIT, NOAUDIT, COMMENT, CREATE [OR REPLACE]
VIEW/ PROCEDURE/PACKAGE/PACKAGE BODY/FUNCTION/ TRIGGER, CREATE
SYNONYM, and CREATE TABLE (when the CLUSTER parameter is not included).

Breakable Parse Locks
A SQL statement (or PL/SQL program unit) in the shared pool holds a parse lock
for each schema object it references. Parse locks are acquired so that the associated
shared SQL area can be invalidated if a referenced object is altered or dropped. A
parse lock does not disallow any DDL operation and can be broken to allow
conflicting DDL operations, hence the name breakable parse lock.

A parse lock is acquired during the parse phase of SQL statement execution and
held as long as the shared SQL area for that statement remains in the shared pool.

Duration of DDL Locks
The duration of a DDL lock depends on its type. Exclusive and share DDL locks last
for the duration of DDL statement execution and automatic commit. A parse lock
persists as long as the associated SQL statement remains in the shared pool.

DDL Locks and Clusters
A DDL operation on a cluster acquires exclusive DDL locks on the cluster and on all
tables and materialized views in the cluster. A DDL operation on a table or
materialized view in a cluster acquires a share lock on the cluster, in addition to a
share or exclusive DDL lock on the table or materialized view. The share DDL lock
on the cluster prevents another operation from dropping the cluster while the first
operation proceeds.

Latches and Internal Locks
Latches and internal locks protect internal database and memory structures. Both
are inaccessible to users, because users have no need to control over their
occurrence or duration. The following section helps to interpret the Enterprise
Manager or SQL*Plus LOCKS and LATCHES monitors.

Latches
Latches are simple, low-level serialization mechanisms to protect shared data
structures in the system global area (SGA). For example, latches protect the list of

See Also: Chapter 15, "Dependencies Among Schema Objects"
Data Concurrency and Consistency 20-31

How Oracle Locks Data
users currently accessing the database and protect the data structures describing the
blocks in the buffer cache. A server or background process acquires a latch for a
very short time while manipulating or looking at one of these structures. The
implementation of latches is operating system dependent, particularly in regard to
whether and how long a process will wait for a latch.

Internal Locks
Internal locks are higher-level, more complex mechanisms than latches and serve a
variety of purposes.

Dictionary Cache Locks These locks are of very short duration and are held on entries
in dictionary caches while the entries are being modified or used. They guarantee
that statements being parsed do not see inconsistent object definitions.

Dictionary cache locks can be shared or exclusive. Shared locks are released when
the parse is complete. Exclusive locks are released when the DDL operation is
complete.

File and Log Management Locks These locks protect various files. For example, one
lock protects the control file so that only one process at a time can change it.
Another lock coordinates the use and archiving of the redo log files. Datafiles are
locked to ensure that multiple instances mount a database in shared mode or that
one instance mounts it in exclusive mode. Because file and log locks indicate the
status of files, these locks are necessarily held for a long time.

Tablespace and Rollback Segment Locks These locks protect tablespaces and rollback
segments. For example, all instances accessing a database must agree on whether a
tablespace is online or offline. Rollback segments are locked so that only one
instance can write to a segment.

Explicit (Manual) Data Locking
Oracle always performs locking automatically to ensure data concurrency, data
integrity, and statement-level read consistency. However, you can override the
Oracle default locking mechanisms. Overriding the default locking is useful in
situations such as these:

� Applications require transaction-level read consistency or repeatable reads. In
other words, queries in them must produce consistent data for the duration of
the transaction, not reflecting changes by other transactions. You can achieve
transaction-level read consistency by using explicit locking, read-only
transactions, serializable transactions, or by overriding default locking.
20-32 Oracle9i Database Concepts

How Oracle Locks Data
� Applications require that a transaction have exclusive access to a resource so
that the transaction does not have to wait for other transactions to complete.

Oracle’s automatic locking can be overridden at the transaction level or the session
level.

At the transaction level, transactions that include the following SQL statements
override Oracle’s default locking:

� The SET TRANSACTION ISOLATION LEVEL statement

� The LOCK TABLE statement (which locks either a table or, when used with
views, the underlying base tables)

� The SELECT ... FOR UPDATE statement

Locks acquired by these statements are released after the transaction commits or
rolls back.

At the session level, a session can set the required transaction isolation level with
the ALTER SESSION statement.

Examples of Concurrency under Explicit Locking
The following illustration shows how Oracle maintains data concurrency, integrity,
and consistency when LOCK TABLE and SELECT with the FOR UPDATE clause
statements are used.

Note: If Oracle’s default locking is overridden at any level, the
database administrator or application developer should ensure that
the overriding locking procedures operate correctly. The locking
procedures must satisfy the following criteria: data integrity is
guaranteed, data concurrency is acceptable, and deadlocks are not
possible or are appropriately handled.

See Also: Oracle9i SQL Reference for detailed descriptions of the
SQL statements LOCK TABLE and SELECT ... FOR UPDATE

Note: For brevity, the message text for ORA-00054 ("resource
busy and acquire with NOWAIT specified") is not included.
User-entered text is in bold.
Data Concurrency and Consistency 20-33

How Oracle Locks Data
Transaction 1
Time
Point Transaction 2

LOCK TABLE scott.dept
IN ROW SHARE MODE;

Statement processed

1

2 DROP TABLE scott.dept;
DROP TABLE scott.dept

*
ORA-00054
(exclusive DDL lock not possible
because of T1’s table lock)

3 LOCK TABLE scott.dept
IN EXCLUSIVE MODE NOWAIT;

ORA-00054

4 SELECT LOC
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

LOC
- - - - - - -
DALLAS
1 row selected

UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T2 has locked same
rows)

5

6 ROLLBACK;
(releases row locks)

1 row processed.
ROLLBACK;

7

LOCK TABLE scott.dept
IN ROW EXCLUSIVE MODE;

Statement processed.

8

9 LOCK TABLE scott.dept
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054
20-34 Oracle9i Database Concepts

How Oracle Locks Data
10 LOCK TABLE scott.dept
IN SHARE ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

11 LOCK TABLE scott.dept
IN SHARE ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

12 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

1 row processed.

13 ROLLBACK;

SELECT loc
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

LOC
- - - - - -
DALLAS
1 row selected.

14

15 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T1 has locked same
rows)

ROLLBACK; 16

17 1 row processed.
(conflicting locks were released)
ROLLBACK;

LOCK TABLE scott.dept
IN SHARE MODE

Statement processed

18

19 LOCK TABLE scott.dept
IN EXCLUSIVE MODE NOWAIT;

ORA-00054

Transaction 1
Time
Point Transaction 2
Data Concurrency and Consistency 20-35

How Oracle Locks Data
20 LOCK TABLE scott.dept
IN SHARE ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

21 LOCK TABLE scott.dept
IN SHARE MODE;

Statement processed.

22 SELECT loc
FROM scott.dept
WHERE deptno = 20;

LOC
- - - - - -
DALLAS
1 row selected.

23 SELECT loc
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

LOC
- - - - - -
DALLAS
1 row selected.

24 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T1 holds
conflicting table lock)

ROLLBACK; 25

26 1 row processed.
(conflicting table lock released)
ROLLBACK;

LOCK TABLE scott.dept
IN SHARE ROW
EXCLUSIVE MODE;

Statement processed.

27

Transaction 1
Time
Point Transaction 2
20-36 Oracle9i Database Concepts

How Oracle Locks Data
28 LOCK TABLE scott.dept
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

29 LOCK TABLE scott.dept
IN SHARE ROW
EXCLUSIVE MODE
NOWAIT;

ORA-00054

30 LOCK TABLE scott.dept
IN SHARE MODE NOWAIT;

ORA-00054

31 LOCK TABLE scott.dept
IN ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

32 LOCK TABLE scott.dept
IN SHARE MODE NOWAIT;

ORA-00054

33 SELECT loc
FROM scott.dept
WHERE deptno = 20;

LOC
- - - - - -
DALLAS
1 row selected.

34 SELECT loc
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

LOC
- - - - - -
DALLAS
1 row selected.

Transaction 1
Time
Point Transaction 2
Data Concurrency and Consistency 20-37

How Oracle Locks Data
35 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T1 holds
conflicting table lock)

UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 20;

(waits because T2 has locked same
rows)

36
(deadlock)

Cancel operation
ROLLBACK;

37

38 1 row processed.

LOCK TABLE scott.dept
IN EXCLUSIVE MODE;

39

40 LOCK TABLE scott.dept
IN EXCLUSIVE MODE;

ORA-00054

41 LOCK TABLE scott.dept
IN ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

42 LOCK TABLE scott.dept
IN SHARE MODE;

ORA-00054

43 LOCK TABLE scott.dept
IN ROW EXCLUSIVE
MODE NOWAIT;

ORA-00054

44 LOCK TABLE scott.dept
IN ROW SHARE MODE
NOWAIT;

ORA-00054

Transaction 1
Time
Point Transaction 2
20-38 Oracle9i Database Concepts

How Oracle Locks Data
45 SELECT loc
FROM scott.dept
WHERE deptno = 20;

LOC
- - - - - -
DALLAS
1 row selected.

46 SELECT loc
FROM scott.dept
WHERE deptno = 20
FOR UPDATE OF loc;

(waits because T1 has conflicting
table lock)

UPDATE scott.dept
SET deptno = 30
WHERE deptno = 20;

1 row processed.

47

COMMIT; 48

49 0 rows selected.
(T1 released conflicting lock)

SET TRANSACTION READ ONLY; 50

SELECT loc
FROM scott.dept
WHERE deptno = 10;

LOC
- - - - - -
BOSTON

51

52 UPDATE scott.dept
SET loc = ’NEW YORK’
WHERE deptno = 10;

1 row processed.

Transaction 1
Time
Point Transaction 2
Data Concurrency and Consistency 20-39

How Oracle Locks Data
SELECT loc
FROM scott.dept
WHERE deptno = 10;

LOC
- - - - - -
BOSTON
(T1 does not see uncommitted
data)

53

54 COMMIT;

SELECT loc
FROM scott.dept
WHERE deptno = 10;

LOC
- - - - - -
(same results seen even after T2
commits)

55

COMMIT; 56

SELECT loc
FROM scott.dept
WHERE deptno = 10;

LOC
- - - - - -
NEW YORK
(committed data is seen)

57

Transaction 1
Time
Point Transaction 2
20-40 Oracle9i Database Concepts

Flashback Query
Oracle Lock Management Services
With Oracle Lock Management services, an application developer can include
statements in PL/SQL blocks that:

� Request a lock of a specific type

� Give the lock a unique name recognizable in another procedure in the same or
in another instance

� Change the lock type

� Release the lock

Because a reserved user lock is the same as an Oracle lock, it has all the Oracle lock
functionality including deadlock detection. User locks never conflict with Oracle
locks, because they are identified with the prefix UL.

The Oracle Lock Management services are available through procedures in the
DBMS_LOCK package.

Flashback Query
Flashback query lets you view and repair historical data. You can perform queries
on the database as of a certain wall clock time or user-specified system commit
number (SCN).

Flashback query uses Oracle's multiversion read-consistency capabilities to restore
data by applying undo as needed. Administrators can configure undo retention by
simply specifying how long undo should be kept in the database. Using flashback
query, a user can query the database as it existed this morning, yesterday, or last
week. The speed of this operation depends only on the amount of data being
queried and the number of changes to the data that need to be backed out.

You set the date and time you want to view. Then, any SQL query you execute
operates on data as it existed at that time. If you are an authorized user, then you
can correct errors and back out the restored data without needing the intervention
of an administrator.

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals for more
information about Oracle Lock Management services

� Oracle9i Supplied PL/SQL Packages and Types Reference for
information about DBMS_LOCK
Data Concurrency and Consistency 20-41

Flashback Query
With the AS OF SQL clause, you can choose different snapshots for each table in the
query. Associating a snapshot with a table is known as table decoration. If you do not
decorate a table with a snapshot, then a default snapshot is used for it. All tables
without a specified snapshot get the same default snapshot.

For example, suppose you want to write a query to find all the new customer
accounts created in the past hour. You could do set operations on two instances of
the same table decorated with different AS OF clauses.

DML and DDL operations can use table decoration to choose snapshots within
subqueries. Operations such as INSERT TABLE AS SELECT and CREATE TABLE AS
SELECT can be used with table decoration in the subqueries to repair tables from
which rows have been mistakenly deleted. Table decoration can be any arbitrary
expression: a bind variable, a constant, a string, date operations, and so on. You can
open a cursor and dynamically bind a snapshot value (a timestamp or an SCN) to
decorate a table with.

Flashback Query Benefits
� Application Transparency

Packaged applications, like report generation tools that only do queries, can run
in flashback query mode by using logon triggers. Applications can run
transparently without requiring changes to code. All the constraints that the
application needs to be satisfied are guaranteed to hold good, because ther is a
consistent version of the database as of the flashback query time.

� Application Performance

If an application requires recovery actions, it can do so by saving SCNs and
flashing back to those SCNs. This is a lot easier and faster than saving data sets
and restoring them later, which would be required if the application were to do
explicit versioning. Using flashback query, there are no costs for logging that
would be incurred by explicit versioning.

� Online Operation

Flashback query is an online operation. Concurrent DMLs and queries from
other sessions are permitted while an object is being queried inside flashback
query.The speed of these operations is unaffected. Moreover, different sessions
can flash back to different flashback times or SCNs on the same object
concurrently. The speed of the flashback query itself depends on the amount of

See Also: Oracle9i SQL Reference for information on the AS OF
clause
20-42 Oracle9i Database Concepts

Flashback Query
undo that needs to be applied, which is proportional to how far back in time the
query goes.

� Easy Manageability

There is no additional management on the part of the user, except setting the
appropriate retention interval, having the right privileges, and so on. No
additional logging has to be turned on, because past versions are constructed
automatically, as needed.

Some Uses of Flashback Query

Self-Service Repair
Perhaps you accidentally deleted some important rows from a table and wanted to
recover the deleted rows. To do the repair, you can move backward in time and see
the missing rows and re-insert the deleted row into the current table.

Notes:

� Flashback query does not undo anything. It is only a query
mechanism. You can take the output from a flashback query
and perform an undo yourself in many circumstances.

� Flashback query does not tell you what changed. LogMiner
does that.

� Flashback query can be used to undo changes and can be very
efficient if you know the rows that need to be moved back in
time. You can in theory use it to move a full table back in time
but this is very expensive if the table is large since it involves a
full table copy.

� Flashback query does not work through DDL operations that
modify columns, or drop or truncate tables.

� LogMiner is very good for getting change history, but it gives
you changes in terms of deltas (insert, update, delete), not in
terms of the before and after image of a row. These can be
difficult to deal with in some applications.
Data Concurrency and Consistency 20-43

Flashback Query
E-Mail or Voice Mail Applications
You might have deleted mail in the past. Using flashback query, you can restore the
deleted mail by moving back in time and re-inserting the deleted message into the
current message box.

Account Balances
You can view account prior account balances as of a certain day in the month.

Packaged Applications
Packaged applications (like report generation tools) can make use of flashback
query without any changes to application logic. Any constraints that the application
expects are guaranteed to be satisfied, because users see a consistent version of the
Database as of the given time or SCN.

In addition, flashback query could be used after examination of audit information
to see the before-image of the data. In DSS enviornments, it could be used for
extraction of data as of a consistent point in time from OLTP systems.

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals for more
information about using flashback query

� Oracle9i Supplied PL/SQL Packages and Types Reference for a
description of the DBMS_FLASHBACK package

� Oracle9i Database Administrator’s Guide for information about
undo tablespaces and setting retention period
20-44 Oracle9i Database Concepts

Data
21

Data Integrity

This chapter explains how to use integrity constraints to enforce the business rules
associated with your database and prevent the entry of invalid information into
tables. The chapter includes:

� Introduction to Data Integrity

� Introduction to Integrity Constraints

� Types of Integrity Constraints

� The Mechanisms of Constraint Checking

� Deferred Constraint Checking

� Constraint States
Integrity 21-1

Introduction to Data Integrity
Introduction to Data Integrity
It is important that data adhere to a predefined set of rules, as determined by the
database administrator or application developer. As an example of data integrity,
consider the tables employees and departments and the business rules for the
information in each of the tables, as illustrated in Figure 21–1.

Figure 21–1 Examples of Data Integrity

Note that some columns in each table have specific rules that constrain the data
contained within them.

Table DEPT

EMPNO ENAME SAL COMM DEPTNO

Table EMP

DEPTNO DNAME LOC

Each row must have a value
for the ENAME column

Each value in the DNAME
column must be unique

Each value in the
DEPTNO column
must match a value in
the DEPTNO column
of the DEPT table

Each row must have a value
for the EMPNO column, and
the value must be unique

Each value in the SAL column
must be less than 10,000

... Other Columns ...

20
30

RESEARCH
SALES

DALLAS
CHICAGO

6666
7329
7499
7521

MULDER
SMITH
ALLEN
WARD

5500.00
9000.00
7500.00
5000.00

100.00
200.00
400.00

20
20
30
30

7566 JONES 2975.00 30
21-2 Oracle9i Database Concepts

Introduction to Data Integrity
Types of Data Integrity
This section describes the rules that can be applied to table columns to enforce
different types of data integrity.

Null Rule
A null is a rule defined on a single column that allows or disallows inserts or
updates of rows containing a null (the absence of a value) in that column.

Unique Column Values
A unique value defined on a column (or set of columns) allows the insert or update
of a row only if it contains a unique value in that column (or set of columns).

Primary Key Values
A primary key value defined on a key (a column or set of columns) specifies that
each row in the table can be uniquely identified by the values in the key.

Referential Integrity Rules
A rule defined on a key (a column or set of columns) in one table that guarantees
that the values in that key match the values in a key in a related table (the
referenced value).

Referential integrity also includes the rules that dictate what types of data
manipulation are allowed on referenced values and how these actions affect
dependent values. The rules associated with referential integrity are:

� Restrict: Disallows the update or deletion of referenced data.

� Set to Null: When referenced data is updated or deleted, all associated
dependent data is set to NULL.

� Set to Default: When referenced data is updated or deleted, all associated
dependent data is set to a default value.

� Cascade: When referenced data is updated, all associated dependent data is
correspondingly updated. When a referenced row is deleted, all associated
dependent rows are deleted.

� No Action: Disallows the update or deletion of referenced data. This differs
from RESTRICT in that it is checked at the end of the statement, or at the end of
the transaction if the constraint is deferred. (Oracle uses No Action as its default
action.)
Data Integrity 21-3

Introduction to Data Integrity
Complex Integrity Checking
Complex integrity checking is a user-defined rule for a column (or set of columns)
that allows or disallows inserts, updates, or deletes of a row based on the value it
contains for the column (or set of columns).

How Oracle Enforces Data Integrity
Oracle enables you to define and enforce each type of data integrity rule defined in
the previous section. Most of these rules are easily defined using integrity
constraints or database triggers.

Integrity Constraints Description
An integrity constraint is a declarative method of defining a rule for a column of a
table. Oracle supports the following integrity constraints:

� NOT NULL constraints for the rules associated with nulls in a column

� UNIQUE key constraints for the rule associated with unique column values

� PRIMARY KEY constraints for the rule associated with primary identification
values

� FOREIGN KEY constraints for the rules associated with referential integrity.
Oracle supports the use of FOREIGN KEY integrity constraints to define the
referential integrity actions, including:

– Update and delete No Action

– Delete CASCADE

– Delete SET NULL

� CHECK constraints for complex integrity rules

Note: You cannot enforce referential integrity using declarative
integrity constraints if child and parent tables are on different
nodes of a distributed database. However, you can enforce
referential integrity in a distributed database using database
triggers (see next section).
21-4 Oracle9i Database Concepts

Introduction to Integrity Constraints
Database Triggers
Oracle also lets you enforce integrity rules with a non-declarative approach using
database triggers (stored database procedures automatically invoked on insert,
update, or delete operations).

Introduction to Integrity Constraints
Oracle uses integrity constraints to prevent invalid data entry into the base tables of
the database. You can define integrity constraints to enforce the business rules you
want to associate with the information in a database. If any of the results of a DML
statement execution violate an integrity constraint, then Oracle rolls back the
statement and returns an error.

For example, assume that you define an integrity constraint for the salary column
of the employees table. This integrity constraint enforces the rule that no row in
this table can contain a numeric value greater than 10,000 in this column. If an
INSERT or UPDATE statement attempts to violate this integrity constraint, then
Oracle rolls back the statement and returns an information error message.

The integrity constraints implemented in Oracle fully comply with ANSI
X3.135-1989 and ISO 9075-1989 standards.

Advantages of Integrity Constraints
This section describes some of the advantages that integrity constraints have over
other alternatives, which include:

� Enforcing business rules in the code of a database application

� Using stored procedures to completely control access to data

� Enforcing business rules with triggered stored database procedures

See Also: Chapter 17, "Triggers" for examples of triggers used to
enforce data integrity

Note: Operations on views (and synonyms for tables) are subject
to the integrity constraints defined on the underlying base tables.

See Also: Chapter 17, "Triggers"
Data Integrity 21-5

Introduction to Integrity Constraints
Declarative Ease
Define integrity constraints using SQL statements. When you define or alter a table,
no additional programming is required. The SQL statements are easy to write and
eliminate programming errors. Oracle controls their functionality. For these reasons,
declarative integrity constraints are preferable to application code and database
triggers. The declarative approach is also better than using stored procedures,
because the stored procedure solution to data integrity controls data access, but
integrity constraints do not eliminate the flexibility of ad hoc data access.

Centralized Rules
Integrity constraints are defined for tables (not an application) and are stored in the
data dictionary. Any data entered by any application must adhere to the same
integrity constraints associated with the table. By moving business rules from
application code to centralized integrity constraints, the tables of a database are
guaranteed to contain valid data, no matter which database application
manipulates the information. Stored procedures cannot provide the same advantage
of centralized rules stored with a table. Database triggers can provide this benefit,
but the complexity of implementation is far greater than the declarative approach
used for integrity constraints.

Maximum Application Development Productivity
If a business rule enforced by an integrity constraint changes, then the administrator
need only change that integrity constraint and all applications automatically adhere
to the modified constraint. In contrast, if the business rule were enforced by the
code of each database application, developers would have to modify all application
source code and recompile, debug, and test the modified applications.

Immediate User Feedback
Oracle stores specific information about each integrity constraint in the data
dictionary. You can design database applications to use this information to provide
immediate user feedback about integrity constraint violations, even before Oracle
executes and checks the SQL statement. For example, a SQL*Forms application can
use integrity constraint definitions stored in the data dictionary to check for
violations as values are entered into the fields of a form, even before the application
issues a statement.

Superior Performance
The semantics of integrity constraint declarations are clearly defined, and
performance optimizations are implemented for each specific declarative rule. The
21-6 Oracle9i Database Concepts

Types of Integrity Constraints
Oracle query optimizer can use declarations to learn more about data to improve
overall query performance. (Also, taking integrity rules out of application code and
database triggers guarantees that checks are only made when necessary.)

Flexibility for Data Loads and Identification of Integrity Violations
You can disable integrity constraints temporarily so that large amounts of data can
be loaded without the overhead of constraint checking. When the data load is
complete, you can easily enable the integrity constraints, and you can automatically
report any new rows that violate integrity constraints to a separate exceptions table.

The Performance Cost of Integrity Constraints
The advantages of enforcing data integrity rules come with some loss in
performance. In general, the cost of including an integrity constraint is, at most, the
same as executing a SQL statement that evaluates the constraint.

Types of Integrity Constraints
You can use the following integrity constraints to impose restrictions on the input of
column values:

� NOT NULL Integrity Constraints

� UNIQUE Key Integrity Constraints

� PRIMARY KEY Integrity Constraints

� Referential Integrity Constraints

� CHECK Integrity Constraints

NOT NULL Integrity Constraints
By default, all columns in a table allow nulls. Null means the absence of a value. A
NOT NULL constraint requires a column of a table contain no null values. For
example, you can define a NOT NULL constraint to require that a value be input in
the last_name column for every row of the employees table.

Figure 21–2 illustrates a NOT NULL integrity constraint.
Data Integrity 21-7

Types of Integrity Constraints
Figure 21–2 NOT NULL Integrity Constraints

UNIQUE Key Integrity Constraints
A UNIQUE key integrity constraint requires that every value in a column or set of
columns (key) be unique—that is, no two rows of a table have duplicate values in a
specified column or set of columns.

For example, in Figure 21–3 a UNIQUE key constraint is defined on the DNAME
column of the departments table to disallow rows with duplicate department
names.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

NOT NULL CONSTRAINT

Absence of NOT
(no row may contain a null
value for this column)

NULL Constraint
(any row can contain
null for this column)

Table EMP

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP_SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30
21-8 Oracle9i Database Concepts

Types of Integrity Constraints
Figure 21–3 A UNIQUE Key Constraint

Unique Keys
The columns included in the definition of the UNIQUE key constraint are called the
unique key. Unique key is often incorrectly used as a synonym for the terms
UNIQUE key constraint or UNIQUE index. However, note that key refers only to
the column or set of columns used in the definition of the integrity constraint.

If the UNIQUE key consists of more than one column, that group of columns is said
to be a composite unique key. For example, in Figure 21–4 the customer table has
a UNIQUE key constraint defined on the composite unique key: the area and
phone columns.

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

UNIQUE Key Constraint
(no row may duplicate a value
in the constraint's column)

This row violates the UNIQUE key constraint,
because "SALES" is already present in another
row; therefore, it is not allowed in the table.

This row is allowed because a null value is
entered for the DNAME column; however, if a
NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

20
30
40

RESEARCH
SALES
MARKETING

DALLAS
NEW YORK
BOSTON

50

60

SALES NEW YORK

BOSTON
Data Integrity 21-9

Types of Integrity Constraints
Figure 21–4 A Composite UNIQUE Key Constraint

This UNIQUE key constraint lets you enter an area code and telephone number any
number of times, but the combination of a given area code and given telephone
number cannot be duplicated in the table. This eliminates unintentional duplication
of a telephone number.

UNIQUE Key Constraints and Indexes
Oracle enforces unique integrity constraints with indexes. For example, in
Figure 21–4, Oracle enforces the UNIQUE key constraint by implicitly creating a
unique index on the composite unique key. Therefore, composite UNIQUE key
constraints have the same limitations imposed on composite indexes: up to 32
columns can constitute a composite unique key.

INSERT
INTO

CUSTNO CUSTNAME AREA PHONE

Table CUSTOMER

Composite UNIQUE
Key Constraint
(no row may duplicate
a set of values
in the key)

This row violates the UNIQUE key
constraint, because "415/506-7000"
is already present in another row;
therefore, it is not allowed in the table

This row is allowed because a null
value is entered for the AREA
column; however, if a NOT NULL
constraint is also defined on the
AREA column, then this row is
not allowed.

230
245
257

OFFICE SUPPLIES
ORACLE CORP
INTERNAL SYSTEMS

303
415
303

506–7000
506–7000
341–8100

268

270

AEA CONSTRUCTION

WW MANUFACTURING

415 506–7000

506–7000

... Other Columns ...
21-10 Oracle9i Database Concepts

Types of Integrity Constraints
If a usable index exists when a unique key constraint is created, the constraint uses
that index rather than implicitly creating a new one.

Combine UNIQUE Key and NOT NULL Integrity Constraints
In Figure 21–3 and Figure 21–4, UNIQUE key constraints allow the input of nulls
unless you also define NOT NULL constraints for the same columns. In fact, any
number of rows can include nulls for columns without NOT NULL constraints
because nulls are not considered equal to anything. A null in a column (or in all
columns of a composite UNIQUE key) always satisfies a UNIQUE key constraint.

Columns with both unique keys and NOT NULL integrity constraints are common.
This combination forces the user to enter values in the unique key and also
eliminates the possibility that any new row’s data will ever conflict with an existing
row’s data.

PRIMARY KEY Integrity Constraints
Each table in the database can have at most one PRIMARY KEY constraint. The
values in the group of one or more columns subject to this constraint constitute the
unique identifier of the row. In effect, each row is named by its primary key values.

The Oracle implementation of the PRIMARY KEY integrity constraint guarantees that
both of the following are true:

� No two rows of a table have duplicate values in the specified column or set of
columns.

� The primary key columns do not allow nulls. That is, a value must exist for the
primary key columns in each row.

Note: If compatibility is set to Oracle9i or higher, then the total
size in bytes of a key value can be almost as large as a full block. In
previous releases key size could not exceed approximately half the
associated database’s block size.

Note: Because of the search mechanism for UNIQUE constraints on
more than one column, you cannot have identical values in the
non-null columns of a partially null composite UNIQUE key
constraint.
Data Integrity 21-11

Types of Integrity Constraints
Primary Keys
The columns included in the definition of a table’s PRIMARY KEY integrity
constraint are called the primary key. Although it is not required, every table should
have a primary key so that:

� Each row in the table can be uniquely identified

� No duplicate rows exist in the table

Figure 21–5 illustrates a PRIMARY KEY constraint in the departments table and
examples of rows that violate the constraint.

Figure 21–5 A Primary Key Constraint

PRIMARY KEY Constraints and Indexes
Oracle enforces all PRIMARY KEY constraints using indexes. In Figure 21–5, the
primary key constraint created for the department_id column is enforced by the
implicit creation of:

� A unique index on that column

� A NOT NULL constraint for that column

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

PRIMARY KEY
(no row may duplicate a value in the
key and no null values are allowed)

This row is not allowed because "20" duplicates
an existing value in the primary key.

This row is not allowed because it contains
a null value for the primary key.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

20 MARKETING

FINANCE

DALLAS

NEW YORK
21-12 Oracle9i Database Concepts

Types of Integrity Constraints
Oracle enforces primary key constraints using indexes, and composite primary key
constraints are limited to 32 columns, which is the same limitation imposed on
composite indexes. The name of the index is the same as the name of the constraint.
Also, you can specify the storage options for the index by including the ENABLE
clause in the CREATE TABLE or ALTER TABLE statement used to create the
constraint. If a usable index exists when a primary key constraint is created, then
the primary key constraint uses that index rather than implicitly creating a new one.

Referential Integrity Constraints
Different tables in a relational database can be related by common columns, and the
rules that govern the relationship of the columns must be maintained. Referential
integrity rules guarantee that these relationships are preserved.

The following terms are associated with referential integrity constraints.

A referential integrity constraint requires that for each row of a table, the value in
the foreign key matches a value in a parent key.

Figure 21–6 shows a foreign key defined on the department_id column of the
employees table. It guarantees that every value in this column must match a value
in the primary key of the departments table (also the department_id column).
Therefore, no erroneous department numbers can exist in the department_id
column of the employees table.

Foreign keys can be defined as multiple columns. However, a composite foreign key
must reference a composite primary or unique key with the same number of
columns and the same datatypes. Because composite primary and unique keys are
limited to 32 columns, a composite foreign key is also limited to 32 columns.

Term Definition

Foreign key The column or set of columns included in the definition of the
referential integrity constraint that reference a referenced key.

Referenced key The unique key or primary key of the same or different table
that is referenced by a foreign key.

Dependent or child table The table that includes the foreign key. Therefore, it is the
table that is dependent on the values present in the
referenced unique or primary key.

Referenced or parent table The table that is referenced by the child table’s foreign key. It
is this table’s referenced key that determines whether specific
inserts or updates are allowed in the child table.
Data Integrity 21-13

Types of Integrity Constraints
Figure 21–6 Referential Integrity Constraints

Self-Referential Integrity Constraints
Another type of referential integrity constraint, shown in Figure 21–7, is called a
self-referential integrity constraint. This type of foreign key references a parent key

7571

7571

FORD

FORD

MANAGER

MANAGER

7499

7499

23–FEB–90

23–FEB–90

5,000.00

5,000.00

200.00

200.00

40

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

Parent Key
Primary key of
referenced table

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Referenced or

Dependent or Child Table

Parent Table

Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of
referenced table)

This row violates the referential
constraint because "40" is not
present in the referenced table's
primary key; therefore, the row
is not allowed in the table.

This row is allowed in the table
because a null value is entered
in the DEPTNO column;
however, if a not null constraint
is also defined for this column,
this row is not allowed.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
300.00
500.00

100.00
200.00
400.00

20
30
30
20
21-14 Oracle9i Database Concepts

Types of Integrity Constraints
in the same table.

In Figure 21–7, the referential integrity constraint ensures that every value in the
manager_id column of the employees table corresponds to a value that currently
exists in the employee_id column of the same table, but not necessarily in the
same row, because every manager must also be an employee. This integrity
constraint eliminates the possibility of erroneous employee numbers in the
manager_id column.

Figure 21–7 Single Table Referential Constraints

Nulls and Foreign Keys
The relational model permits the value of foreign keys either to match the
referenced primary or unique key value, or be null. If any column of a composite
foreign key is null, then the non-null portions of the key do not have to match any
corresponding portion of a parent key.

INSERT
INTO

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Dependent or
Child TableReferenced or

Parent Table

This row violates the referential
constraint, because "7331" is
not present in the referenced
table's primary key; therefore,
it is not allowed in the table.

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7329
7499
7521

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30

Primary Key
of referenced table

Foreign Key
(values in dependent table must match a value in
unique key or primary key of referenced table)

7571 FORD MANAGER 7331 23–FEB–90 5,000.00 200.00 30
Data Integrity 21-15

Types of Integrity Constraints
Actions Defined by Referential Integrity Constraints
Referential integrity constraints can specify particular actions to be performed on
the dependent rows in a child table if a referenced parent key value is modified. The
referential actions supported by the FOREIGN KEY integrity constraints of Oracle
are UPDATE and DELETE NO ACTION, and DELETE CASCADE.

Update and Delete No Action The No Action (default) option specifies that referenced
key values cannot be updated or deleted if the resulting data would violate a
referential integrity constraint. For example, if a primary key value is referenced by
a value in the foreign key, then the referenced primary key value cannot be deleted
because of the dependent data.

Delete Cascade A delete cascades when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to also
be deleted. For example, if a row in a parent table is deleted, and this row’s primary
key value is referenced by one or more foreign key values in a child table, then the
rows in the child table that reference the primary key value are also deleted from
the child table.

Delete Set Null A delete sets null when rows containing referenced key values are
deleted, causing all rows in child tables with dependent foreign key values to set
those values to null. For example, if employee_id references manager_id in the
TMP table, then deleting a manager causes the rows for all employees working for
that manager to have their manager_id value set to null.

Note: Other referential actions not supported by FOREIGN KEY
integrity constraints of Oracle can be enforced using database
triggers.

See Chapter 17, "Triggers" for more information.
21-16 Oracle9i Database Concepts

Types of Integrity Constraints
DML Restrictions with Respect to Referential Actions Table 21–1 outlines the DML
statements allowed by the different referential actions on the primary/unique key
values in the parent table, and the foreign key values in the child table.

Concurrency Control, Indexes, and Foreign Keys
You almost always index foreign keys. The only exception is when the matching
unique or primary key is never updated or deleted.

Oracle maximizes the concurrency control of parent keys in relation to dependent
foreign key values. You can control what concurrency mechanisms are used to
maintain these relationships, and, depending on the situation, this can be highly
beneficial. The following sections explain the possible situations and give
recommendations for each.

No Index on the Foreign Key Figure 21–8 illustrates the locking mechanisms used by
Oracle when no index is defined on the foreign key and when rows are being
updated or deleted in the parent table. Inserts into the parent table do not require
any locks on the child table.

Oracle no longer requires a share lock on unindexed foreign keys when doing an
update or delete on the primary key. It still obtains the table-level share lock, but
then releases it immediately after obtaining it. If multiple primary keys are update
or deleted, the lock is obtained and released once for each row.

In previous releases, a share lock of the entire child table was required until the
transaction containing the DELETE statement for the parent table was committed. If
the foreign key specifies ON DELETE CASCADE, then the DELETE statement resulted

Table 21–1 DML Statements Allowed by Update and Delete No Action

DML Statement Issued Against Parent Table Issued Against Child Table

INSERT Always OK if the parent key value is
unique.

OK only if the foreign key
value exists in the parent key
or is partially or all null.

UPDATE No Action Allowed if the statement does not
leave any rows in the child table
without a referenced parent key
value.

Allowed if the new foreign
key value still references a
referenced key value.

DELETE No Action Allowed if no rows in the child table
reference the parent key value.

Always OK.

DELETE Cascade Always OK. Always OK.

DELETE Set Null Always OK. Always OK.
Data Integrity 21-17

Types of Integrity Constraints
in a table-level share-subexclusive lock on the child table. A share lock of the entire
child table was also required for an UPDATE statement on the parent table that
affected any columns referenced by the child table. Share locks allow reading only.
Therefore, no INSERT, UPDATE, or DELETE statements could be issued on the child
table until the transaction containing the UPDATE or DELETE was committed.
Queries were allowed on the child table.

INSERT, UPDATE, and DELETE statements on the child table do not acquire any
locks on the parent table, although INSERT and UPDATE statements wait for a
row-lock on the index of the parent table to clear.
21-18 Oracle9i Database Concepts

Types of Integrity Constraints
Figure 21–8 Locking Mechanisms When No Index Is Defined on the Foreign Key

Index on the Foreign Key Figure 21–9 illustrates the locking mechanisms used by
Oracle when an index is defined on the foreign key, and new rows are inserted,
updated, or deleted in the child table.

Notice that no table locks of any kind are acquired on the parent table or any of its
indexes as a result of the insert, update, or delete. Therefore, any type of DML
statement can be issued on the parent table, including inserts, updates, deletes, and
queries.

This situation is preferable if there is any update or delete activity on the parent
table while update activity is taking place on the child table. Inserts, updates, and
deletes on the parent table do not require any locks on the child table, although

Row 1 Key 1

Table Parent

Row 2 Key 2

Row 4 Key 4

Row 1 Key 1

Table Child

Row 2 Key 1

Row 3 Key 3

Row 4 Key 2

Key 1

Index

Key 2

Key 4

Exclusive row lock acquired

Newly updated row

Row 5 Key 2

Key 3Row 3 Key 3

Share lock acquired
Data Integrity 21-19

Types of Integrity Constraints
updates and deletes will wait for row-level locks on the indexes of the child table to
clear.

Figure 21–9 Locking Mechanisms When Index Is Defined on the Foreign Key

If the child table specifies ON DELETE CASCADE, then deletes from the parent table
can result in deletes from the child table. In this case, waiting and locking rules are
the same as if you deleted yourself from the child table after performing the delete
from the parent table.

CHECK Integrity Constraints
A CHECK integrity constraint on a column or set of columns requires that a specified
condition be true or unknown for every row of the table. If a DML statement results

Row 1 Key 1

Table Parent

Row 2 Key 2

Row 3 Key 3

Row 4 Key 4

Row 1 Key 1

Table Child

Row 2 Key 1

Row 3 Key 3

Row 4 Key 2

Key 1

Index

Key 2

Key 3

Key 4

Key 1

Index

Key 1

Key 2

Key 3Row 5 Key 2

Key 2

Exclusive row lock acquired

Newly updated row
21-20 Oracle9i Database Concepts

The Mechanisms of Constraint Checking
in the condition of the CHECK constraint evaluating to false, then the statement is
rolled back.

The Check Condition
CHECK constraints enable you to enforce very specific integrity rules by specifying a
check condition. The condition of a CHECK constraint has some limitations:

� It must be a Boolean expression evaluated using the values in the row being
inserted or updated, and

� It cannot contain subqueries; sequences; the SQL functi

� SYSDATE, UID, USER, or USERENV; or the pseudocolumns LEVEL or ROWNUM.

In evaluating CHECK constraints that contain string literals or SQL functions with
globalization support parameters as arguments (such as TO_CHAR, TO_DATE, and
TO_NUMBER), Oracle uses the database globalization support settings by default.
You can override the defaults by specifying globalization support parameters
explicitly in such functions within the CHECK constraint definition.

Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column in
its definition. There is no limit to the number of CHECK constraints that you can
define on a column.

If you create multiple CHECK constraints for a column, design them carefully so
their purposes do not conflict. Do not assume any particular order of evaluation of
the conditions. Oracle does not verify that CHECK conditions are not mutually
exclusive.

The Mechanisms of Constraint Checking
To know what types of actions are permitted when constraints are present, it is
useful to understand when Oracle actually performs the checking of constraints. To
illustrate this, an example or two is helpful. Assume the following:

� The employees table has been defined as in Figure 21–7 on page 21-15.

� The self-referential constraint makes the entries in the manager_id column
dependent on the values of the employee_id column. For simplicity, the rest

See Also: Oracle9i Database Globalization Support Guide for more
information on globalization support features
Data Integrity 21-21

The Mechanisms of Constraint Checking
of this discussion addresses only the employee_id and manager_id columns
of the employees table.

Consider the insertion of the first row into the employees table. No rows currently
exist, so how can a row be entered if the value in the manager_id column cannot
reference any existing value in the employee_id column? Three possibilities for
doing this are:

� A null can be entered for the manager_id column of the first row, assuming
that the manager_id column does not have a NOT NULL constraint defined
on it. Because nulls are allowed in foreign keys, this row is inserted successfully
into the table.

� The same value can be entered in both the employee_id and manager_id
columns. This case reveals that Oracle performs its constraint checking after the
statement has been completely executed. To allow a row to be entered with the
same values in the parent key and the foreign key, Oracle must first execute the
statement (that is, insert the new row) and then check to see if any row in the
table has an employee_id that corresponds to the new row’s manager_id.

� A multiple row INSERT statement, such as an INSERT statement with nested
SELECT statement, can insert rows that reference one another. For example, the
first row might have employee_id as 200 and manager_id as 300, while the
second row might have employee_id as 300 and manager_id as 200.

This case also shows that constraint checking is deferred until the complete
execution of the statement. All rows are inserted first, then all rows are checked
for constraint violations. You can also defer the checking of constraints until the
end of the transaction.

Consider the same self-referential integrity constraint in this scenario. The company
has been sold. Because of this sale, all employee numbers must be updated to be the
current value plus 5000 to coordinate with the new company’s employee numbers.
Because manager numbers are really employee numbers, these values must also
increase by 5000 (see Figure 21–10).
21-22 Oracle9i Database Concepts

The Mechanisms of Constraint Checking
Figure 21–10 The EMP Table Before Updates

UPDATE employees
SET employee_id = employee_id + 5000,

manager_id = manager_id + 5000;

Even though a constraint is defined to verify that each manager_id value matches
an employee_id value, this statement is legal because Oracle effectively performs
its constraint checking after the statement completes. Figure 21–11 shows that
Oracle performs the actions of the entire SQL statement before any constraints are
checked.

Figure 21–11 Constraint Checking

The examples in this section illustrate the constraint checking mechanism during
INSERT and UPDATE statements. The same mechanism is used for all types of DML
statements, including UPDATE, INSERT, and DELETE statements.

The examples also used self-referential integrity constraints to illustrate the
checking mechanism. The same mechanism is used for all types of constraints,
including the following:

� NOT NULL

� UNIQUE key

� PRIMARY KEY

EMPNO MGR

210
211
212

210
211

Update to
second row

Update to
second row

Update to
third row

Constraints
checked

EMPNO MGR EMPNO MGR EMPNO MGR

5210
211
212

210
211

5210
5211
5212

5210
52115210

211

5210
5211
212
Data Integrity 21-23

Deferred Constraint Checking
� All types of FOREIGN KEY constraints

� CHECK constraints

Default Column Values and Integrity Constraint Checking
Default values are included as part of an INSERT statement before the statement is
parsed. Therefore, default column values are subject to all integrity constraint
checking.

Deferred Constraint Checking
You can defer checking constraints for validity until the end of the transaction.

� A constraint is deferred if the system checks that it is satisfied only on commit.
If a deferred constraint is violated, then commit causes the transaction to roll
back.

� If a constraint is immediate (not deferred), then it is checked at the end of each
statement. If it is violated, the statement is rolled back immediately.

If a constraint causes an action (for example, delete cascade), that action is always
taken as part of the statement that caused it, whether the constraint is deferred or
immediate.

Constraint Attributes
You can define constraints as either deferrable or not deferrable, and either
initially deferred or initially immediate. These attributes can be different for each
constraint. You specify them with keywords in the CONSTRAINT clause:

� DEFERRABLE or NOT DEFERRABLE

� INITIALLY DEFERRED or INITIALLY IMMEDIATE

Constraints can be added, dropped, enabled, disabled, or validated. You can also
modify a constraint’s attributes.

See Also: "Deferred Constraint Checking" on page 21-24
21-24 Oracle9i Database Concepts

Deferred Constraint Checking
SET CONSTRAINTS Mode
The SET CONSTRAINTS statement makes constraints either DEFERRED or
IMMEDIATE for a particular transaction (following the ANSI SQL92 standards in
both syntax and semantics). You can use this statement to set the mode for a list of
constraint names or for ALL constraints.

The SET CONSTRAINTS mode lasts for the duration of the transaction or until
another SET CONSTRAINTS statement resets the mode.

SET CONSTRAINTS ... IMMEDIATE causes the specified constraints to be checked
immediately on execution of each constrained statement. Oracle first checks any
constraints that were deferred earlier in the transaction and then continues
immediately checking constraints of any further statements in that transaction, as
long as all the checked constraints are consistent and no other SET CONSTRAINTS
statement is issued. If any constraint fails the check, an error is signaled. At that
point, a COMMIT causes the whole transaction to roll back.

The ALTER SESSION statement also has clauses to SET CONSTRAINTS IMMEDIATE
or DEFERRED. These clauses imply setting ALL deferrable constraints (that is, you
cannot specify a list of constraint names). They are equivalent to making a SET
CONSTRAINTS statement at the start of each transaction in the current session.

Making constraints immediate at the end of a transaction is a way of checking
whether COMMIT can succeed. You can avoid unexpected rollbacks by setting
constraints to IMMEDIATE as the last statement in a transaction. If any constraint
fails the check, you can then correct the error before committing the transaction.

The SET CONSTRAINTS statement is disallowed inside of triggers.

SET CONSTRAINTS can be a distributed statement. Existing database links that have
transactions in process are told when a SET CONSTRAINTS ALL statement occurs,
and new links learn that it occurred as soon as they start a transaction.

See Also:

� Oracle9i SQL Reference for information about constraint
attributes and their default values

� "Constraint States" on page 21-26

� "Constraint State Modification" on page 21-27
Data Integrity 21-25

Constraint States
Unique Constraints and Indexes
A user sees inconsistent constraints, including duplicates in unique indexes, when
that user’s transaction produces these inconsistencies.

You can place deferred unique and foreign key constraints on materialized views,
allowing fast and complete refresh to complete successfully.

Deferrable unique constraints always use nonunique indexes. When you remove a
deferrable constraint, its index remains. This is convenient because the storage
information remains available after you disable a constraint. Not-deferrable unique
constraints and primary keys also use a nonunique index if the nonunique index is
placed on the key columns before the constraint is enforced.

Constraint States
You can enable or disable integrity constraints at the table level using the CREATE
TABLE or ALTER TABLE statement. You can also set constraints to VALIDATE or
NOVALIDATE, in any combination with ENABLE or DISABLE, where:

� ENABLE ensures that all incoming data conforms to the constraint

� DISABLE allows incoming data, regardless of whether it conforms to the
constraint

� VALIDATE ensures that existing data conforms to the constraint

� NOVALIDATE means that some existing data may not conform to the constraint

In addition:

� ENABLE VALIDATE is the same as ENABLE. The constraint is checked and is
guaranteed to hold for all rows.

� ENABLE NOVALIDATE means that the constraint is checked, but it does not have
to be true for all rows. This allows existing rows to violate the constraint, while
ensuring that all new or modified rows are valid.

In an ALTER TABLE statement, ENABLE NOVALIDATE resumes constraint
checking on disabled constraints without first validating all data in the table.

� DISABLE NOVALIDATE is the same as DISABLE. The constraint is not checked
and is not necessarily true.

� DISABLE VALIDATE disables the constraint, drops the index on the constraint,
and disallows any modification of the constrained columns.
21-26 Oracle9i Database Concepts

Constraint States
For a UNIQUE constraint, the DISABLE VALIDATE state enables you to load
data efficiently from a nonpartitioned table into a partitioned table using the
EXCHANGE PARTITION clause of the ALTER TABLE statement.

Transitions between these states are governed by the following rules:

� ENABLE implies VALIDATE, unless NOVALIDATE is specified.

� DISABLE implies NOVALIDATE, unless VALIDATE is specified.

� VALIDATE and NOVALIDATE do not have any default implications for the
ENABLE and DISABLE states.

� When a unique or primary key moves from the DISABLE state to the ENABLE
state, if there is no existing index, a unique index is automatically created.
Similarly, when a unique or primary key moves from ENABLE to DISABLE and
it is enabled with a unique index, the unique index is dropped.

� When any constraint is moved from the NOVALIDATE state to the VALIDATE
state, all data must be checked. (This can be very slow.) However, moving from
VALIDATE to NOVALIDATE simply forgets that the data was ever checked.

� Moving a single constraint from the ENABLE NOVALIDATE state to the ENABLE
VALIDATE state does not block reads, writes, or other DDL statements. It can be
done in parallel.

Constraint State Modification
You can use the MODIFY CONSTRAINT clause of the ALTER TABLE statement to
change the following constraint states:

� DEFERRABLE or NOT DEFERRABLE

� INITIALLY DEFERRED or INITIALLY IMMEDIATE

� RELY or NORELY

� USING INDEX ...

� ENABLE or DISABLE

� VALIDATE or NOVALIDATE

� EXCEPTIONS INTO ...

See Also: Oracle9i Database Administrator’s Guide for more
information about how to use the ENABLE, DISABLE, VALIDATE,
and NOVALIDATE CONSTRAINT clauses.
Data Integrity 21-27

Constraint States
See Also: Oracle9i SQL Reference for information about these
constraint states
21-28 Oracle9i Database Concepts

Controlling Database
22

Controlling Database Access

This chapter explains how to control access to an Oracle database. It includes the
following sections:

� Introduction to Database Security

� Schemas, Database Users, and Security Domains

� User Authentication

� Oracle Internet Directory

� User Tablespace Settings and Quotas

� The User Group PUBLIC

� User Resource Limits and Profiles
Access 22-1

Introduction to Database Security
Introduction to Database Security
Database security entails allowing or disallowing user actions on the database and
the objects within it. Oracle uses schemas and security domains to control access to
data and to restrict the use of various database resources.

Oracle provides comprehensive discretionary access control. Discretionary access
control regulates all user access to named objects through privileges. A privilege is
permission to access a named object in a prescribed manner; for example,
permission to query a table. Privileges are granted to users at the discretion of other
users—hence the term discretionary access control.

Schemas, Database Users, and Security Domains
A user (sometimes called a username) is a name defined in the database that can
connect to and access objects. A schema is a named collection of objects, such as
tables, views, clusters, procedures, and packages. Schemas and users help database
administrators manage database security.

Enterprise users are managed in a directory and can be given access to multiple
schemas and databases without having to create an account or schema in each
database. This arrangement is simpler for users and for DBAs and also offers better
security because their privileges can be altered in one place.

When creating a new database user or altering an existing one, the security
administrator must make several decisions concerning a user’s security domain.
These include:

� Whether user authentication information is maintained by the database, the
operating system, or a network authentication service

� Settings for the user’s default and temporary tablespaces

� A list of tablespaces accessible to the user, if any, and the associated quotas for
each listed tablespace

� The user’s resource limit profile; that is, limits on the amount of system
resources available to the user

� The privileges, roles, and security policies that provide the user with
appropriate access to schema objects needed to perform database operations

This chapter describes the first four security domain options listed.

See Also: Chapter 23, "Privileges, Roles, and Security Policies"
22-2 Oracle9i Database Concepts

User Authentication
User Authentication
To prevent unauthorized use of a database username, Oracle provides user
validation through several different methods for normal database users. You can
perform authentication by:

� The operating system

� A network service

� The associated Oracle database

� The Oracle database of a middle-tier application that performs transactions on
behalf of the user

� The Secure Socket Layer (SSL) protocol

For simplicity, one method is usually used to authenticate all users of a database.
However, Oracle allows use of all methods within the same database instance.

Oracle also encrypts passwords during transmission to ensure the security of
network authentication.

Oracle requires special authentication procedures for database administrators,
because they perform special database operations.

Note: The information in this chapter applies to all user-defined
database users. It does not apply to the special database users SYS
and SYSTEM. Settings for these users’ security domains should
never be altered.

See Also:

� Chapter 23, "Privileges, Roles, and Security Policies"

� Oracle Advanced Security Administrator’s Guide for more
information about enterprise users

� Oracle9i Database Administrator’s Guide for more information
about the special users SYS and SYSTEM, and for information
about security administrators
Controlling Database Access 22-3

User Authentication
Authentication by the Operating System
Some operating systems permit Oracle to use information maintained by the
operating system to authenticate users. The benefits of authentication by the
operating system are:

� Users can connect to Oracle more conveniently, without specifying a username
or password. For example, a user can invoke SQL*Plus and skip the username
and password prompts by entering

SQLPLUS /

� Control over user authorization is centralized in the operating system. Oracle
need not store or manage user passwords. However, Oracle still maintains
usernames in the database.

� Username entries in the database and operating system audit trails correspond.

If the operating system is used to authenticate database users, some special
considerations arise with respect to distributed database environments and
database links.

Authentication by the Network
Oracle supports the following methods of authentication by the network.

Third Party-Based Authentication Technologies
If network authentication services are available to you (such as DCE, Kerberos, or
SESAME), Oracle can accept authentication from the network service. To use a
network authentication service with Oracle, you need Oracle9i Enterprise Edition
with the Oracle Advanced Security option.

See Also:

� Oracle9i Database Administrator’s Guide

� Your Oracle operating system-specific documentation for more
information about authenticating by way of your operating
system
22-4 Oracle9i Database Concepts

User Authentication
Public Key Infrastructure-Based Authentication
Authentication systems based on public key cryptography systems issue digital
certificates to user clients, which use them to authenticate directly to servers in the
enterprise without direct involvement of an authentication server. Oracle provides a
public key infrastructure (PKI) for using public keys and certificates. It consists of
the following components:

� Authentication and secure session key management using Secure Sockets Layer
(SSL).

� Oracle Call Interface (OCI) and PL/SQL functions to sign user-specified data
using a private key and certificate, and verify the signature on data using a
trusted certificate.

� A trusted certificate, which is a third-party identity that is trusted. The trust is
used when an identity is being validated as the entity it claims to be. Typically,
the certificate authorities you trust issue user certificates. If there are several
levels of trusted certificates, a trusted certificate at a lower level in the certificate
chain does not need to have all its higher level certificates reverified.

� Oracle wallets, which are data structures that contain a user private key, a user
certificate, and a set of trust points (the list of root certificates the user trusts).

� Oracle Wallet Manager, which is a standalone Java application used to manage
and edit the security credentials in Oracle wallets. Wallet Manager:

� Protects user keys

� Manages X.509v3 certificates on Oracle clients and servers

� Generates a public-private key pair and creates a certificate request for
submission to a certificate authority

� Installs a certificate for the entity

� Configures trusted certificates for the entity

See Also:

� Oracle9i Database Administrator’s Guide for more information
about network authentication. If you use a network
authentication service, some special considerations arise for
network roles and database links.

� Oracle Advanced Security Administrator’s Guide for information
about the Oracle Advanced Security option
Controlling Database Access 22-5

User Authentication
� Opens a wallet to enable access to PKI-based services

� Creates a wallet that can be opened using the Oracle Enterprise Login
Assistant

� X.509v3 certificates that you obtain from a certificate authority outside of
Oracle. It is created when an entity’s public key is signed by a trusted entity (a
certificate authority outside of Oracle). The certificate ensures that the entity’s
information is correct and the public key belongs to the entity. The certificates
are loaded into Oracle wallets to enable authentication.

� Oracle Enterprise Security Manager, which provides centralized privilege
management to make administration easier and increase your level of security.
Oracle Enterprise Security Manager lets you store and retrieve roles from Oracle
Internet Directory if the roles support the Lightweight Directory Access
Protocol (LDAP). Oracle Enterprise Security Manager may also allow you to
store roles in other LDAP v3-compliant directory servers if they can support the
installation of the Oracle schema and related Access Control Lists.

� Oracle Internet Directory, which is an LDAP v3-compliant directory built on
the Oracle9i database. It lets you manage the user and system configuration
environment, including security attributes and privileges, for users
authenticated using X.509 certificates. Oracle Internet Directory enforces
attribute-level access control, allowing the directory to restrict read, write, or
update privileges on specific attributes to specific named users (for example, an
enterprise security administrator). It also supports protection and
authentication of directory queries and responses through SSL encryption.

� Oracle Enterprise Login Assistant, which is a Java-based tool for opening and
closing a user wallet in order to enable or disable secure SSL-based
communications for an application. This tool provides a subset of the
functionality proved by Oracle Wallet Manager. The wallet must be configured
with Oracle Wallet Manager first.

Oracle’s public key infrastructure is illustrated in Figure 22–1.
22-6 Oracle9i Database Concepts

User Authentication
Figure 22–1 Oracle Public Key Infrastructure

Remote Authentication
Oracle supports remote authentication of users through Remote Dial-In User
Service (RADIUS), a standard lightweight protocol used for user authentication,
authorization, and accounting.

Note: To use public key infrastructure-based authentication with
Oracle, you need Oracle9i Enterprise Edition with the Oracle
Advanced Security option.

Note: To use remote authentication of users through RADIUS
with Oracle, you need Oracle9i Enterprise Edition with the
Advanced Security option.

Oracle Enterprise
Security Manager

Manages enterprise
users and

enterprise roles

Wallet

Oracle Wallet
Manager

Creates keys and
manages credential

preferences

Oracle
Internet

Directory

Wallet

Stores users, roles,
databases,

configuration
information,

ACLs

Oracle9i
Server

Wallet

Oracle9i
Server

Wallet

Oracle Net Services,
over SSL

LDAP on SSL

LDAP on SSL
Controlling Database Access 22-7

User Authentication
Authentication by the Oracle Database
Oracle can authenticate users attempting to connect to a database by using
information stored in that database.

When Oracle uses database authentication, you create each user with an associated
password. A user provides the correct password when establishing a connection to
prevent unauthorized use of the database. Oracle stores a user’s password in the
data dictionary in an encrypted format. A user can change his or her password at
any time.

Password Encryption While Connecting
To protect password confidentiality, Oracle lets you encrypt passwords during
network (client/server and server/server) connections. If you enable this
functionality on the client and server machines, Oracle encrypts passwords using a
modified DES (Data Encryption Standard) algorithm before sending them across
the network. It is strongly recommended that you enable password encryption for
connections to protect your passwords from network intrusion.

Account Locking
Oracle can lock a user’s account if the user fails to login to the system within a
specified number of attempts. Depending on how the account is configured, it can
be unlocked automatically after a specified time interval or it must be unlocked by
the database administrator.

The CREATE PROFILE statement configures the number of failed logins a user can
attempt and the amount of time the account remains locked before automatic
unlock.

The database administrator can also lock accounts manually. When this occurs, the
account cannot be unlocked automatically but must be unlocked explicitly by the
database administrator.

See Also: Oracle Advanced Security Administrator’s Guide for
information about Oracle Advanced Security

See Also: Oracle9i Database Administrator’s Guide for more
information about encrypting passwords in network systems

See Also: "Profiles" on page 22-20
22-8 Oracle9i Database Concepts

User Authentication
Password Lifetime and Expiration
Password lifetime and expiration options allow the database administrator to
specify a lifetime for passwords, after which time they expire and must be changed
before a login to the account can be completed. On first attempt to login to the
database account after the password expires, the user’s account enters the grace
period, and a warning message is issued to the user every time the user tries to
login until the grace period is over.

The user is expected to change the password within the grace period. If the
password is not changed within the grace period, the account is locked and no
further logins to that account are allowed without assistance by the database
administrator.

The database administrator can also set the password state to expired. When this
happens, the user’s account status is changed to expired, and the user or the
database administrator must change the password before the user can log in to the
database.

Password History
The password history option checks each newly specified password to ensure that a
password is not reused for the specified amount of time or for the specified number
of password changes. The database administrator can configure the rules for
password reuse with CREATE PROFILE statements.

Password Complexity Verification
Complexity verification checks that each password is complex enough to provide
reasonable protection against intruders who try to break into the system by
guessing passwords.

The Oracle default password complexity verification routine requires that each
password:

� Be a minimum of four characters in length

� Not equal the userid

� Include at least one alphabet character, one numeric character, and one
punctuation mark

� Not match any word on an internal list of simple words like welcome, account,
database, user, and so on

� Differ from the previous password by at least three characters
Controlling Database Access 22-9

User Authentication
Multitier Authentication and Authorization
In a multitier environment, Oracle controls the security of middle-tier applications
by limiting their privileges, preserving client identities through all tiers, and
auditing actions taken on behalf of clients. In applications that use a heavy middle
tier, such as a transaction processing monitor, it is important to be able to preserve
the identity of the client connecting to the middle tier. Yet one advantage of a
middle tier is connection pooling, which allows multiple users to access a data
server without each of them needing a separate connection. In such environments,
you need to be able to set up and break down connections very quickly. For these
environments, Oracle offers the creation of lightweight sessions through the Oracle
Call Interface. These lightweight sessions allow each user to be authenticated by a
database password without the overhead of a separate database connection, as well
as preserving the identity of the real user through the middle tier.

You can create lightweight sessions with or without passwords. If a middle tier is
outside or on a firewall, it would be appropriate to establish the lightweight session
with passwords for each lightweight user session. For an internal application server,
it might be appropriate to create a lightweight session that does not require
passwords.

Clients, Application Servers, and Database Servers
In a multitier architecture environment, an application server provides data for
clients and serves as an interface between clients and one or more database servers.

This architecture lets you use an application server to validate the credentials of a
client, such as a web browser. In addition, the database server can audit operations
performed by the application server and operations performed by the application
server on behalf of the client. For example, an operation performed by the
application server on behalf of the client might be a request for information to be
displayed on the client whereas an operation performed by the application server
might be a request for a connection to the database server.

Authentication in a multitier environment is based on trust regions, including the
following:

� The client provides proof of authentication to the application server, typically
using a password or an X.509 certificate.

� The application server verifies the client authentication and then authenticates
itself to the database server.
22-10 Oracle9i Database Concepts

User Authentication
� The database server checks the application server authentication, verifies that
the client exists, and verifies that the application server has the privilege to
connect for this client.

Application servers can also enable roles for the client on whose behalf it is
connecting. The application server can obtain these roles from a directory, which
thus serves as an authorization repository. The application server can only request
that these roles be enabled. The database verifies that:

� The client has these roles by checking its internal role repository.

� The application server has the privilege to connect on behalf of the user, using
these roles for the user.

Figure 22–2 shows an example of multitier authentication.

Figure 22–2 Multitier Authentication

SSL to login Proxies user identity

User

Application
Server

Wallet

Oracle
Internet

Directory Wallet

Oracle 8i
Server

Wallet

Get roles
from LDAP
and log in

user
Controlling Database Access 22-11

User Authentication
Security Issues for Middle-Tier Applications
There are a number of security issues for middle-tier applications:

� Accountability: The database server must be able to distinguish between the
actions of a client and the actions an application takes on behalf of a client. It
must be possible to audit both kinds of actions.

� Differentiation: The database server must be able to distinguish between a web
server transaction, a web server transaction on behalf of a browser client, and a
client accessing the database directly.

� Least privilege: Users and middle tiers should be given the fewest privileges
necessary to do their jobs.

Identity Issues in a Multitier Environment
Multitier authentication maintains the identify of the client through all tiers of the
connection. This is necessary because if the identity of the originating client is lost, it
is not possible to maintain useful audit records. In addition, it is not possible to
distinguish operations performed by the application server on behalf of the client
from those done by the application server for itself.

Restricted Privileges in a Multitier Environment
Privileges in a multitier environment are limited to what is necessary to perform the
requested operation.

Client Privileges Client privileges are as limited as possible in a multitier
environment. Operations are performed on behalf of the client by the application
server.

Application Server Privileges Application server privileges in a multitier environment
are limited so that the application server cannot perform unwanted or unneeded
operations while performing a client operation.

Authentication by the Secure Socket Layer Protocol
The Secure Socket Layer (SSL) protocol is an application layer protocol. It can be
used for user authentication to a database, independent of global user management
in Oracle Internet Directory. That is, users can use SSL to authenticate to the
database without implying anything about their directory access. However, if you

See Also: Oracle9i Database Administrator’s Guide for more
information about multitier authentication
22-12 Oracle9i Database Concepts

User Authentication
wish to use the enterprise user functionality to manage users and their privileges in
a directory, the user must use SSL to authenticate to the database. A parameter in
the initialization file governs which use of SSL is expected.

Authentication of Database Administrators
Database administrators perform special operations (such as shutting down or
starting up a database) that should not be performed by normal database users.
Oracle provides a more secure authentication scheme for database administrator
usernames.

You can choose between operating system authentication or password files to
authenticate database administrators.

Figure 22–3 illustrates the choices you have for database administrator
authentication schemes, depending on whether you administer your database
locally (on the same machine on which the database resides) or if you administer
many different database machines from a single remote client.

Figure 22–3 Database Administrator Authentication Methods

On most operating systems, operating system authentication for database
administrators involves placing the operating system username of the database
administrator in a special group (on UNIX systems, this is the dba group) or giving
that operating system username a special process right.

Use a password file

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS
authentication

Do you
want to use OS
authentication?

Do you
have a secure

connection?
Controlling Database Access 22-13

Oracle Internet Directory
The database uses password files to keep track of database usernames who have
been granted the SYSDBA and SYSOPER privileges.

� SYSOPER lets database administrators perform STARTUP, SHUTDOWN, ALTER
DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and
RECOVER, and includes the RESTRICTED SESSION privilege.

� SYSDBA contains all system privileges with ADMIN OPTION, and the SYSOPER
system privilege. Permits CREATE DATABASE and time-based recovery.

Oracle Internet Directory
Oracle Internet Directory is a directory service implemented as an application on
the Oracle database. It enables retrieval of information about dispersed users and
network resources. Oracle Internet Directory combines Lightweight Directory
Access Protocol (LDAP), version 3, the open Internet standard directory access
protocol, with the high performance, scalability, robustness, and availability of the
Oracle Server.

Oracle Internet Directory includes the following:

� Oracle directory server, which responds to client requests for information about
people and resources, and to updates of that information, using a multitier
architecture directly over TCP/IP

� Oracle directory replication server, which replicates LDAP data between Oracle
directory servers

� Oracle Directory Manager, a graphical user interface administration tool

� A variety of command line administration and data management tools

User Tablespace Settings and Quotas
As part of every user’s security domain, the database administrator can set several
options regarding tablespace use:

See Also:

� Your Oracle operating system-specific documentation for
information about operating system authentication of database
administrators

� Oracle9i Database Administrator’s Guide

See Also: Oracle Internet Directory Administrator’s Guide
22-14 Oracle9i Database Concepts

User Tablespace Settings and Quotas
� Default Tablespace Option

� Temporary Tablespace Option

� Tablespace Access and Quotas

Default Tablespace Option
When a user creates a schema object without specifying a tablespace to contain the
object, Oracle places the object in the user’s default tablespace. You set a user’s
default tablespace when the user is created, and you can change it after the user has
been created.

Temporary Tablespace Option
When a user executes a SQL statement that requires the creation of a temporary
segment, Oracle allocates that segment in the user’s temporary tablespace.

Tablespace Access and Quotas
You can assign to each user a tablespace quota for any tablespace of the database.
Doing so can accomplish two things:

� You allow the user to use the specified tablespace to create schema objects, if the
user has the appropriate privileges.

� You can limit the amount of space allocated for storage of a user’s schema
objects in the specified tablespace.

By default, each user has no quota on any tablespace in the database. Therefore, if
the user has the privilege to create some type of schema object, he or she must also
have been either assigned a tablespace quota in which to create the object or been
given the privilege to create that object in the schema of another user who was
assigned a sufficient tablespace quota.

You can assign two types of tablespace quotas to a user: a quota for a specific
amount of disk space in the tablespace (specified in bytes, kilobytes, or megabytes),
or a quota for an unlimited amount of disk space in the tablespace. You should
assign specific quotas to prevent a user’s objects from consuming too much space in
a tablespace.

Tablespace quotas and temporary segments have no effect on each other:
Controlling Database Access 22-15

The User Group PUBLIC
� Temporary segments do not consume any quota that a user might possess. The
schema objects that Oracle automatically creates in temporary segments are
owned by SYS and therefore are not subject to quotas.

� Temporary segments can be created in a tablespace for which a user has no
quota.

You can assign a tablespace quota to a user when you create that user, and you can
change that quota or add a different quota later.

Revoke a user’s tablespace access by altering the user’s current quota to zero. With
a quota of zero, the user’s objects in the revoked tablespace remain, but the objects
cannot be allocated any new space.

The User Group PUBLIC
Each database contains a user group called PUBLIC. The PUBLIC user group
provides public access to specific schema objects, such as tables and views, and
provides all users with specific system privileges. Every user automatically belongs
to the PUBLIC user group.

As members of PUBLIC, users can see (select from) all data dictionary tables
prefixed with USER and ALL. Additionally, a user can grant a privilege or a role to
PUBLIC. All users can use the privileges granted to PUBLIC.

You can grant or revoke any system privilege, object privilege, or role to PUBLIC.
However, to maintain tight security over access rights, grant only privileges and
roles that are of interest to all users to PUBLIC.

Granting and revoking some system and object privileges to and from PUBLIC can
cause every view, procedure, function, package, and trigger in the database to be
recompiled.

PUBLIC has the following restrictions:

� You cannot assign tablespace quotas to PUBLIC, although you can assign the
UNLIMITED TABLESPACE system privilege to PUBLIC.

� You can create database links and synonyms as PUBLIC (using CREATE
PUBLIC DATABASE LINK/SYNONYM), but no other schema object can be owned
by PUBLIC. For example, the following statement is not legal:

CREATE TABLE public.employees ... ;
22-16 Oracle9i Database Concepts

User Resource Limits and Profiles
User Resource Limits and Profiles
You can set limits on the amount of various system resources available to each user
as part of a user’s security domain. By doing so, you can prevent the uncontrolled
consumption of valuable system resources such as CPU time.

This resource limit feature is very useful in large, multiuser systems, where system
resources are very expensive. Excessive consumption of these resources by one or
more users can detrimentally affect the other users of the database. In single-user or
small-scale multiuser database systems, the system resource feature is not as
important, because users’ consumption of system resources is less likely to have
detrimental impact.

You manage a user’s resource limits and password management preferences with
his or her profile—a named set of resource limits that you can assign to that user.
Each Oracle database can have an unlimited number of profiles. Oracle allows the
security administrator to enable or disable the enforcement of profile resource limits
universally.

If you set resource limits, a slight degradation in performance occurs when users
create sessions. This is because Oracle loads all resource limit data for the user when
a user connects to a database.

Types of System Resources and Limits
Oracle can limit the use of several types of system resources, including CPU time
and logical reads. In general, you can control each of these resources at the session
level, the call level, or both.

� Session Level

Note: Rollback segments can be created with the keyword
PUBLIC, but these are not owned by the PUBLIC user group. All
rollback segments are owned by SYS.

See Also:

� Chapter 2, "Data Blocks, Extents, and Segments"

� Chapter 23, "Privileges, Roles, and Security Policies"

See Also: Oracle9i Database Administrator’s Guide for information
about security administrators
Controlling Database Access 22-17

User Resource Limits and Profiles
Each time a user connects to a database, a session is created. Each session
consumes CPU time and memory on the computer that executes Oracle. You can set
several resource limits at the session level.

If a user exceeds a session-level resource limit, Oracle terminates (rolls back) the
current statement and returns a message indicating the session limit has been
reached. At this point, all previous statements in the current transaction are
intact, and the only operations the user can perform are COMMIT, ROLLBACK, or
disconnect (in this case, the current transaction is committed). All other
operations produce an error. Even after the transaction is committed or rolled
back, the user can accomplish no more work during the current session.

� Call Level

Each time a SQL statement is executed, several steps are taken to process the
statement. During this processing, several calls are made to the database as part
of the different execution phases. To prevent any one call from using the system
excessively, Oracle lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, Oracle halts the processing of the
statement, rolls back the statement, and returns an error. However, all previous
statements of the current transaction remain intact, and the user’s session
remains connected.

CPU Time
When SQL statements and other types of calls are made to Oracle, an amount of
CPU time is necessary to process the call. Average calls require a small amount of
CPU time. However, a SQL statement involving a large amount of data or a
runaway query can potentially consume a large amount of CPU time, reducing CPU
time available for other processing.

To prevent uncontrolled use of CPU time, you can limit the CPU time for each call
and the total amount of CPU time used for Oracle calls during a session. The limits
are set and measured in CPU one-hundredth seconds (0.01 seconds) used by a call
or a session.

Logical Reads
Input/output (I/O) is one of the most expensive operations in a database system.
SQL statements that are I/O intensive can monopolize memory and disk use and
cause other database operations to compete for these resources.

To prevent single sources of excessive I/O, Oracle let you limit the logical data
block reads for each call and for each session. Logical data block reads include data
22-18 Oracle9i Database Concepts

User Resource Limits and Profiles
block reads from both memory and disk. The limits are set and measured in number
of block reads performed by a call or during a session.

Other Resources
Oracle also provides for the limitation of several other resources at the session level:

� You can limit the number of concurrent sessions for each user. Each user can
create only up to a predefined number of concurrent sessions.

� You can limit the idle time for a session. If the time between Oracle calls for a
session reaches the idle time limit, the current transaction is rolled back, the
session is aborted, and the resources of the session are returned to the system.
The next call receives an error that indicates the user is no longer connected to
the instance. This limit is set as a number of elapsed minutes.

� You can limit the elapsed connect time for each session. If a session’s duration
exceeds the elapsed time limit, the current transaction is rolled back, the session
is dropped, and the resources of the session are returned to the system. This
limit is set as a number of elapsed minutes.

� You can limit the amount of private SGA space (used for private SQL areas) for
a session. This limit is only important in systems that use the shared server
configuration. Otherwise, private SQL areas are located in the PGA. This limit is
set as a number of bytes of memory in an instance’s SGA. Use the characters K
or M to specify kilobytes or megabytes.

Note: Shortly after a session is aborted because it has exceeded an
idle time limit, the process monitor (PMON) background process
cleans up after the aborted session. Until PMON completes this
process, the aborted session is still counted in any session/user
resource limit.

Note: Oracle does not constantly monitor the elapsed idle time or
elapsed connection time. Doing so would reduce system
performance. Instead, it checks every few minutes. Therefore, a
session can exceed this limit slightly (for example, by five minutes)
before Oracle enforces the limit and aborts the session.
Controlling Database Access 22-19

User Resource Limits and Profiles
Profiles
A profile is a named set of specified resource limits that can be assigned to a valid
username of an Oracle database. Profiles provide for easy management of resource
limits. Profiles are also the way in which you administer password policy.

When to Use Profiles
You need to create and manage user profiles only if resource limits are a
requirement of your database security policy. To use profiles, first categorize the
related types of users in a database. Just as roles are used to manage the privileges
of related users, profiles are used to manage the resource limits of related users.
Determine how many profiles are needed to encompass all types of users in a
database and then determine appropriate resource limits for each profile.

Determine Values for Resource Limits of a Profile
Before creating profiles and setting the resource limits associated with them, you
should determine appropriate values for each resource limit. You can base these
values on the type of operations a typical user performs. For example, if one class of
user does not normally perform a high number of logical data block reads, then set
the LOGICAL_READS_PER_SESSION and LOGICAL_READS_PER_CALL limits
conservatively.

Usually, the best way to determine the appropriate resource limit values for a given
user profile is to gather historical information about each type of resource usage.
For example, the database or security administrator can use the AUDIT SESSION
clause to gather information about the limits CONNECT_TIME, LOGICAL_READS_
PER_SESSION, and LOGICAL_READS_PER_CALL.

You can gather statistics for other limits using the Monitor feature of Oracle
Enterprise Manager (or SQL*Plus), specifically the Statistics monitor.

See Also: Oracle9i Database Administrator’s Guide for instructions
about enabling and disabling resource limits

See Also: Chapter 24, "Auditing"
22-20 Oracle9i Database Concepts

Privileges, Roles, and Security
23

Privileges, Roles, and Security Policies

This chapter explains how you can control users’ ability to execute system
operations and to access schema objects by using privileges, roles, and security
policies. The chapter includes:

� Introduction to Privileges

� Introduction to Roles

� Fine-Grained Access Control

� Application Context

� Secure Application Roles
Policies 23-1

Introduction to Privileges
Introduction to Privileges
A privilege is a right to execute a particular type of SQL statement or to access
another user’s object. Some examples of privileges include the right to:

� Connect to the database (create a session)

� Create a table

� Select rows from another user’s table

� Execute another user’s stored procedure

You grant privileges to users so these users can accomplish tasks required for their
job. You should grant a privilege only to a user who absolutely requires the
privilege to accomplish necessary work. Excessive granting of unnecessary
privileges can compromise security. A user can receive a privilege in two different
ways:

� You can grant privileges to users explicitly. For example, you can explicitly
grant the privilege to insert records into the employees table to the user
SCOTT.

� You can also grant privileges to a role (a named group of privileges), and then
grant the role to one or more users. For example, you can grant the privileges to
select, insert, update, and delete records from the employees table to the role
named clerk, which in turn you can grant to the users scott and brian.

Because roles allow for easier and better management of privileges, you should
normally grant privileges to roles and not to specific users.

There are two distinct categories of privileges:

� System privileges

� Schema object privileges

System Privileges
A system privilege is the right to perform a particular action, or to perform an
action on any schema objects of a particular type. For example, the privileges to
create tablespaces and to delete the rows of any table in a database are system
privileges. There are over 60 distinct system privileges.

See Also: Oracle9i Database Administrator’s Guide for a complete
list of all system and schema object privileges, as well as
instructions for privilege management
23-2 Oracle9i Database Concepts

Introduction to Privileges
Grant and Revoke System Privileges
You can grant or revoke system privileges to users and roles. If you grant system
privileges to roles, then you can use the roles to manage system privileges. For
example, roles permit privileges to be made selectively available.

Use either of the following to grant or revoke system privileges to users and roles:

� Oracle Enterprise Manager Console

� The SQL statements GRANT and REVOKE

Who Can Grant or Revoke System Privileges?
Only users who have been granted a specific system privilege with the ADMIN
OPTION or users with the system privileges GRANT ANY PRIVILEGE or GRANT ANY
OBJECT PRIVILEGE can grant or revoke system privileges to other users.

Schema Object Privileges
A schema object privilege is a privilege or right to perform a particular action on a
specific schema object:

� Table

� View

� Sequence

� Procedure

� Function

� Package

Different object privileges are available for different types of schema objects. For
example, the privilege to delete rows from the departments table is an object
privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not
have associated object privileges. Their use is controlled with system privileges. For

Note: In general, you grant system privileges only to
administrative personnel and application developers. End users
normally do not require the associated capabilities.
Privileges, Roles, and Security Policies 23-3

Introduction to Privileges
example, to alter a cluster, a user must own the cluster or have the ALTER ANY
CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges. That is,
the object privileges granted for a table, view, sequence, procedure, function, or
package apply whether referencing the base object by name or using a synonym.

For example, assume there is a table jward.emp with a synonym named
jward.employee and the user jward issues the following statement:

GRANT SELECT ON emp TO swilliams;

The user swilliams can query jward.emp by referencing the table by name or
using the synonym jward.employee:

SELECT * FROM jward.emp;
SELECT * FROM jward.employee;

If you grant object privileges on a table, view, sequence, procedure, function, or
package to a synonym for the object, the effect is the same as if no synonym were
used. For example, if jward wanted to grant the SELECT privilege for the emp table
to swilliams, jward could issue either of the following statements:

GRANT SELECT ON emp TO swilliams;
GRANT SELECT ON employee TO swilliams;

If a synonym is dropped, all grants for the underlying schema object remain in
effect, even if the privileges were granted by specifying the dropped synonym.

Grant and Revoke Schema Object Privileges
Schema object privileges can be granted to and revoked from users and roles. If you
grant object privileges to roles, you can make the privileges selectively available.
Object privileges for users and roles can be granted or revoked using the following:

� The SQL statements GRANT and REVOKE, respectively

� The Add Privilege to Role/User dialog box and the Revoke Privilege from
Role/User dialog box of Oracle Enterprise Manager.

Who Can Grant Schema Object Privileges?
A user automatically has all object privileges for schema objects contained in his or
her schema. A user can grant any object privilege on any schema object he or she
owns to any other user or role. A user with the GRANT ANY OBJECT PRIVILEGE can
grant or revoke any specified object privilege to another user with or without the
23-4 Oracle9i Database Concepts

Introduction to Privileges
GRANT OPTION of the GRANT statement. Otherwise, the grantee can use the
privilege, but cannot grant it to other users.

For example, assume user SCOTT has a table named t2:

SQL>GRANT grant any object privilege TO U1;
SQL> connect u1/u1
Connected.
SQL> GRANT select on scott.t2 \TO U2;
SQL> SELECT GRANTEE, OWNER, GRANTOR, PRIVILEGE, GRANTABLE FROM DBA_TAB_PRIVS
WHERE TABLE_NAME = 'employees';

GRANTEE OWNER
------------------------------ ------------------------------
GRANTOR PRIVILEGE GRA
------------------------------ -- ---
U2 SCOTT
SCOTT SELECT NO

Table Security
Schema object privileges for tables allow table security at the level of DML and
DDL operations.

Data Manipulation Language Operations
You can grant privileges to use the DELETE, INSERT, SELECT, and UPDATE DML
operations on a table or view. Grant these privileges only to users and roles that
need to query or manipulate a table’s data.

You can restrict INSERT and UPDATE privileges for a table to specific columns of the
table. With selective INSERT, a privileged user can insert a row with values for the
selected columns. All other columns receive NULL or the column’s default value.
With selective UPDATE, a user can update only specific column values of a row.
Selective INSERT and UPDATE privileges are used to restrict a user’s access to
sensitive data.

For example, if you do not want data entry users to alter the salary column of the
employees table, selective INSERT or UPDATE privileges can be granted that
exclude the salary column. Alternatively, a view that excludes the salary
column could satisfy this need for additional security.

See Also: Oracle9i SQL Reference
Privileges, Roles, and Security Policies 23-5

Introduction to Privileges
Data Definition Language Operations
The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be
performed on a table. Because these privileges allow other users to alter or create
dependencies on a table, you should grant privileges conservatively. A user
attempting to perform a DDL operation on a table may need additional system or
object privileges. For example, to create a trigger on a table, the user requires both
the ALTER TABLE object privilege for the table and the CREATE TRIGGER system
privilege.

As with the INSERT and UPDATE privileges, the REFERENCES privilege can be
granted on specific columns of a table. The REFERENCES privilege enables the
grantee to use the table on which the grant is made as a parent key to any foreign
keys that the grantee wishes to create in his or her own tables. This action is
controlled with a special privilege because the presence of foreign keys restricts the
data manipulation and table alterations that can be done to the parent key.
A column-specific REFERENCES privilege restricts the grantee to using the named
columns (which, of course, must include at least one primary or unique key of the
parent table).

View Security
Schema object privileges for views allow various DML operations, which actually
affect the base tables from which the view is derived. DML object privileges for
tables can be applied similarly to views.

Privileges Required to Create Views
To create a view, you must meet the following requirements:

� You must have been granted one of the following system privileges, either
explicitly or through a role:

– The CREATE VIEW system privilege (to create a view in your schema)

– The CREATE ANY VIEW system privilege (to create a view in another user’s
schema)

� You must have been explicitly granted one of the following privileges:

See Also: Oracle9i SQL Reference for more information about these
DML operations

See Also: Chapter 21, "Data Integrity" for more information about
primary keys, unique keys, and integrity constraints
23-6 Oracle9i Database Concepts

Introduction to Privileges
– The SELECT, INSERT, UPDATE, or DELETE object privileges on all base
objects underlying the view

– The SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or
DELETE ANY TABLE system privileges

� Additionally, in order to grant other users access to your view, you must have
received object privileges to the base objects with the GRANT OPTION clause or
appropriate system privileges with the ADMIN OPTION clause. If you have not,
grantees cannot access your view.

Increase Table Security with Views
To use a view, you require appropriate privileges only for the view itself. You do not
require privileges on base objects underlying the view.

Views add two more levels of security for tables, column-level security and
value-based security:

� A view can provide access to selected columns of base tables. For example, you
can define a view on the employees table to show only the employee_id,
last_name, and manager_id columns:

CREATE VIEW employees_manager AS
SELECT last_name, employee_id, manager_id FROM employees;

� A view can provide value-based security for the information in a table. A
WHERE clause in the definition of a view displays only selected rows of base
tables. Consider the following two examples:

CREATE VIEW lowsal AS
SELECT * FROM employees
WHERE salary < 10000;

The LOWSAL view allows access to all rows of the employees table that have a
salary value less than 10000. Notice that all columns of the employees table are
accessible in the LOWSAL view.

CREATE VIEW own_salary AS
SELECT last_name, salary
FROM employees
WHERE last_name = USER;

See Also: Oracle9i SQL Reference
Privileges, Roles, and Security Policies 23-7

Introduction to Privileges
In the own_salary view, only the rows with an last_name that matches the
current user of the view are accessible. The own_salary view uses the user
pseudocolumn, whose values always refer to the current user. This view
combines both column-level security and value-based security.

Procedure Security
The only schema object privilege for procedures, including standalone procedures
and functions as well as packages, is EXECUTE. Grant this privilege only to users
who need to execute a procedure or compile another procedure that calls it.

Procedure Execution and Security Domains
A user with the EXECUTE object privilege for a specific procedure can execute the
procedure or compile a program unit that references the procedure. No runtime
privilege check is made when the procedure is called. A user with the EXECUTE ANY
PROCEDURE system privilege can execute any procedure in the database.

A user can be granted privileges through roles to execute procedures.

Additional privileges on referenced objects are required for invoker-rights
procedures, but not for definer-rights procedures.

Definer Rights A user of a definer-rights procedure requires only the privilege to
execute the procedure and no privileges on the underlying objects that the
procedure accesses, because a definer-rights procedure operates under the security
domain of the user who owns the procedure, regardless of who is executing it. The
procedure’s owner must have all the necessary object privileges for referenced
objects. Fewer privileges have to be granted to users of a definer-rights procedure,
resulting in tighter control of database access.

You can use definer-rights procedures to control access to private database objects
and add a level of database security. By writing a definer-rights procedure and
granting only EXECUTE privilege to a user, the user can be forced to access the
referenced objects only through the procedure.

At runtime, the privileges of the owner of a definer-rights stored procedure are
always checked before the procedure is executed. If a necessary privilege on a
referenced object has been revoked from the owner of a definer-rights procedure,
then the procedure cannot be executed by the owner or any other user.

See Also: "PL/SQL Blocks and Roles" on page 23-21
23-8 Oracle9i Database Concepts

Introduction to Privileges
Invoker Rights An invoker-rights procedure executes with all of the invoker’s
privileges. Roles are enabled unless the invoker-rights procedure was called directly
or indirectly by a definer-rights procedure. A user of an invoker-rights procedure
needs privileges (either directly or through a role) on objects that the procedure
accesses through external references that are resolved in the invoker’s schema.

The invoker needs privileges at runtime to access program references embedded in
DML statements or dynamic SQL statements, because they are effectively
recompiled at runtime.

For all other external references, such as direct PL/SQL function calls, the owner’s
privileges are checked at compile time, and no runtime check is made. Therefore,
the user of an invoker-rights procedure needs no privileges on external references
outside DML or dynamic SQL statements. Alternatively, the developer of an
invoker-rights procedure only needs to grant privileges on the procedure itself, not
on all objects directly referenced by the invoker-rights procedure.

Many packages provided by Oracle, such as most of the DBMS_* packages, run
with invoker rights—they do not run as the owner (SYS) but rather as the current
user. However, some exceptions exist such as the DBMS_RLS package.

You can create a software bundle that consists of multiple program units, some with
definer rights and others with invoker rights, and restrict the program entry points
(controlled step-in). A user who has the privilege to execute an entry-point
procedure can also execute internal program units indirectly, but cannot directly call
the internal programs.

Note: Trigger execution follows the same patterns as
definer-rights procedures. The user executes a SQL statement,
which that user is privileged to execute. As a result of the SQL
statement, a trigger is fired. The statements within the triggered
action temporarily execute under the security domain of the user
that owns the trigger.

See Also: Chapter 17, "Triggers"

See Also:

� "Fine-Grained Access Control" on page 23-24

� Oracle9i Supplied PL/SQL Packages and Types Reference for
detailed documentation of the Oracle supplied packages
Privileges, Roles, and Security Policies 23-9

Introduction to Privileges
System Privileges Needed to Create or Alter a Procedure
To create a procedure, a user must have the CREATE PROCEDURE or CREATE ANY
PROCEDURE system privilege. To alter a procedure, that is, to manually recompile a
procedure, a user must own the procedure or have the ALTER ANY PROCEDURE
system privilege.

The user who owns the procedure also must have privileges for schema objects
referenced in the procedure body. To create a procedure, you must have been
explicitly granted the necessary privileges (system or object) on all objects
referenced by the procedure. You cannot have obtained the required privileges
through roles. This includes the EXECUTE privilege for any procedures that are
called inside the procedure being created.

Triggers also require that privileges to referenced objects be granted explicitly to the
trigger owner. Anonymous PL/SQL blocks can use any privilege, whether the
privilege is granted explicitly or through a role.

Packages and Package Objects
A user with the EXECUTE object privilege for a package can execute any public
procedure or function in the package and access or modify the value of any public
package variable. Specific EXECUTE privileges cannot be granted for a package’s
constructs. Therefore, you may find it useful to consider two alternatives for
establishing security when developing procedures, functions, and packages for a
database application. These alternatives are described in the following examples.

Packages and Package Objects Example 1 This example shows four procedures created
in the bodies of two packages.

CREATE PACKAGE BODY hire_fire AS
PROCEDURE hire(...) IS
BEGIN
INSERT INTO employees . . .

END hire;
PROCEDURE fire(...) IS
BEGIN
DELETE FROM employees . . .

END fire;
END hire_fire;

CREATE PACKAGE BODY raise_bonus AS
PROCEDURE give_raise(...) IS
BEGIN
UPDATE employees SET salary = . . .
23-10 Oracle9i Database Concepts

Introduction to Privileges
END give_raise;
PROCEDURE give_bonus(...) IS
BEGIN
UPDATE employees SET bonus = . . .

END give_bonus;
END raise_bonus;

Access to execute the procedures is given by granting the EXECUTE privilege for the
package, using the following statements:

GRANT EXECUTE ON hire_fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Granting EXECUTE privilege granted for a package provides uniform access to all
package objects.

Packages and Package Objects Example 2 This example shows four procedure
definitions within the body of a single package. Two additional standalone
procedures and a package are created specifically to provide access to the
procedures defined in the main package.

CREATE PACKAGE BODY employee_changes AS
PROCEDURE change_salary(...) IS BEGIN ... END;
PROCEDURE change_bonus(...) IS BEGIN ... END;
PROCEDURE insert_employee(...) IS BEGIN ... END;
PROCEDURE delete_employee(...) IS BEGIN ... END;

END employee_changes;

CREATE PROCEDURE hire
BEGIN
employee_changes.insert_employee(...)

END hire;

CREATE PROCEDURE fire
BEGIN
employee_changes.delete_employee(...)

END fire;

PACKAGE raise_bonus IS
PROCEDURE give_raise(...) AS
BEGIN
employee_changes.change_salary(...)

END give_raise;

PROCEDURE give_bonus(...)
Privileges, Roles, and Security Policies 23-11

Introduction to Privileges
BEGIN
employee_changes.change_bonus(...)

END give_bonus;

Using this method, the procedures that actually do the work (the procedures in the
employee_changes package) are defined in a single package and can share
declared global variables, cursors, on so on. By declaring top-level procedures
hire and fire, and an additional package raise_bonus, you can grant selective
EXECUTE privileges on procedures in the main package:

GRANT EXECUTE ON hire, fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Type Security
This section describes privileges for types, methods, and objects.

System Privileges for Named Types
Oracle defines system privileges shown in Table 23–1 for named types (object types,
VARRAYs, and nested tables):

The CONNECT and RESOURCE roles include the CREATE TYPE system privilege. The
DBA role includes all of these privileges.

Object Privileges
The only object privilege that applies to named types is EXECUTE. If the EXECUTE
privilege exists on a named type, a user can use the named type to:

� Define a table

� Define a column in a relational table

Table 23–1 System Privileges for Named Types

Privilege Allows you to...

CREATE TYPE Create named types in your own schemas.

CREATE ANY TYPE Create a named type in any schema.

ALTER ANY TYPE Alter a named type in any schema.

DROP ANY TYPE Drop a named type in any schema.

EXECUTE ANY TYPE Use and reference a named type in any schema.
23-12 Oracle9i Database Concepts

Introduction to Privileges
� Declare a variable or parameter of the named type

The EXECUTE privilege permits a user to invoke the type's methods, including the
type constructor. This is similar to EXECUTE privilege on a stored PL/SQL
procedure.

Method Execution Model
Method execution is the same as any other stored PL/SQL procedure.

Privileges Required to Create Types and Tables Using Types
To create a type, you must meet the following requirements:

� You must have the CREATE TYPE system privilege to create a type in your
schema or the CREATE ANY TYPE system privilege to create a type in another
user's schema. These privileges can be acquired explicitly or through a role.

� The owner of the type must have been explicitly granted the EXECUTE object
privileges to access all other types referenced within the definition of the type,
or have been granted the EXECUTE ANY TYPE system privilege. The owner
cannot have obtained the required privileges through roles.

� If the type owner intends to grant access to the type to other users, the owner
must have received the EXECUTE privileges to the referenced types with the
GRANT OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN
OPTION. If not, the type owner has insufficient privileges to grant access on the
type to other users.

To create a table using types, you must meet the requirements for creating a table
and these additional requirements:

� The owner of the table must have been explicitly granted the EXECUTE object
privileges to access all types referenced by the table, or have been granted the
EXECUTE ANY TYPE system privilege. The owner cannot have obtained the
required privileges through roles.

� If the table owner intends to grant access to the table to other users, the owner
must have received the EXECUTE privileges to the referenced types with the
GRANT OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN
OPTION. If not, the table owner has insufficient privileges to grant access on the
type to other users.

See Also: "Procedure Security" on page 23-8
Privileges, Roles, and Security Policies 23-13

Introduction to Privileges
Privileges Required to Create Types and Tables Using Types Example
Assume that three users exist with the CONNECT and RESOURCE roles:

� user1

� user2

� user3

User1 performs the following DDL in his schema:

CREATE TYPE type1 AS OBJECT (
attr1 NUMBER);

CREATE TYPE type2 AS OBJECT (
attr2 NUMBER);

GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

User2 performs the following DDL in his schema:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (
attr3 user1.type2);

CREATE TABLE tab2 (
col1 user1.type2);

The following statements succeed because user2 has EXECUTE privilege on
user1's TYPE2 with the GRANT OPTION:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant fails because user2 does not have EXECUTE privilege
on user1's TYPE1 with the GRANT OPTION:

GRANT SELECT ON tab1 TO user3;

User3 can successfully perform the following statements:

CREATE TYPE type4 AS OBJECT (
attr4 user2.type3);

CREATE TABLE tab3 OF type4;

See Also: "Table Security" on page 23-5 for the requirements for
creating a table
23-14 Oracle9i Database Concepts

Introduction to Privileges
Privileges on Type Access and Object Access
Existing column-level and table-level privileges for DML statements apply to both
column objects and row objects. Oracle defines the privileges shown in Table 23–2
for object tables:

Similar table privileges and column privileges apply to column objects. Retrieving
instances does not in itself reveal type information. However, clients must access
named type information in order to interpret the type instance images. When a
client requests such type information, Oracle checks for EXECUTE privilege on the
type.

Consider the following schema:

CREATE TYPE emp_type (
eno NUMBER, ename CHAR(31), eaddr addr_t);

CREATE TABLE emp OF emp_t;

and the following two queries:

SELECT VALUE(emp) FROM emp;
SELECT eno, ename FROM emp;

For either query, Oracle checks the user's SELECT privilege for the emp table. For
the first query, the user needs to obtain the emp_type type information to interpret
the data. When the query accesses the emp_type type, Oracle checks the user's
EXECUTE privilege.

Execution of the second query, however, does not involve named types, so Oracle
does not check type privileges.

Additionally, using the schema from the previous section, user3 can perform the
following queries:

SELECT tab1.col1.attr2 FROM user2.tab1 tab1;
SELECT attr4.attr3.attr2 FROM tab3;

Table 23–2 Privileges for Object Tables

Privilege Allows you to...

SELECT Access an object and its attributes from the table

UPDATE Modify the attributes of the objects that make up the table’s rows

INSERT Create new objects in the table

DELETE Delete rows
Privileges, Roles, and Security Policies 23-15

Introduction to Privileges
Note that in both SELECT statements, user3 does not have explicit privileges on
the underlying types, but the statement succeeds because the type and table owners
have the necessary privileges with the GRANT OPTION.

Oracle checks privileges on the following events, and returns an error if the client
does not have the privilege for the action:

� Pinning an object in the object cache using its REF value causes Oracle to check
SELECT privilege on the containing object table.

� Modifying an existing object or flushing an object from the object cache causes
Oracle to check UPDATE privilege on the destination object table.

� Flushing a new object causes Oracle to check INSERT privilege on the
destination object table.

� Deleting an object causes Oracle to check DELETE privilege on the destination
table.

� Pinning an object of named type causes Oracle to check EXECUTE privilege on
the object.

Modifying an object's attributes in a client 3GL application causes Oracle to update
the entire object. Hence, the user needs UPDATE privilege on the object table.
UPDATE privilege on only certain columns of the object table is not sufficient, even if
the application only modifies attributes corresponding to those columns. Therefore,
Oracle does not support column level privileges for object tables.

Type Dependencies
As with stored objects such as procedures and tables, types being referenced by
other objects are called dependencies. There are some special issues for types
depended upon by tables. Because a table contains data that relies on the type
definition for access, any change to the type causes all stored data to become
inaccessible. Changes that can cause this effect are when necessary privileges
required by the type are revoked or the type or dependent types are dropped. If
either of these actions occur, then the table becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges can automatically become valid
and accessible if the required privileges are granted again. A table that is invalid
because a dependent type has been dropped can never be accessed again, and the
only permissible action is to drop the table.

Because of the severe effects which revoking a privilege on a type or dropping a
type can cause, the SQL statements REVOKE and DROP TYPE by default implement a
restrict semantics. This means that if the named type in either statement has table or
23-16 Oracle9i Database Concepts

Introduction to Roles
type dependents, then an error is received and the statement aborts. However, if the
FORCE clause for either statement is used, the statement always succeeds, and if
there are depended-upon tables, they are invalidated.

Introduction to Roles
Oracle provides for easy and controlled privilege management through roles. Roles
are named groups of related privileges that you grant to users or other roles. Roles
are designed to ease the administration of end-user system and schema object
privileges. However, roles are not meant to be used for application developers,
because the privileges to access schema objects within stored programmatic
constructs need to be granted directly.

These following properties of roles enable easier privilege management within a
database:

See Also: Oracle9i Database Reference for details about using the
REVOKE, DROP TYPE, and FORCE clauses

Property Description

Reduced privilege
administration

Rather than granting the same set of privileges explicitly to
several users, you can grant the privileges for a group of
related users to a role, and then only the role needs to be
granted to each member of the group.

Dynamic privilege
management

If the privileges of a group must change, only the privileges
of the role need to be modified. The security domains of all
users granted the group’s role automatically reflect the
changes made to the role.

Selective availability of
privileges

You can selectively enable or disable the roles granted to a
user. This allows specific control of a user’s privileges in any
given situation.

Application awareness The data dictionary records which roles exist, so you can
design applications to query the dictionary and automatically
enable (or disable) selective roles when a user attempts to
execute the application by way of a given username.

Application-specific security You can protect role use with a password. Applications can
be created specifically to enable a role when supplied the
correct password. Users cannot enable the role if they do not
know the password.
Privileges, Roles, and Security Policies 23-17

Introduction to Roles
Database administrators often create roles for a database application. The DBA
grants a secure application role all privileges necessary to run the application. The
DBA then grants the secure application role to other roles or users. An application
can have several different roles, each granted a different set of privileges that allow
for more or less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the
privileges granted to the role. Typically, an application is designed so that when it
starts, it enables the proper role. As a result, an application user does not need to
know the password for an application’s role.

Common Uses for Roles
In general, you create a role to serve one of two purposes:

� To manage the privileges for a database application

� To manage the privileges for a user group

Figure 23–1 and the sections that follow describe the two uses of roles.

See Also:

� "Data Definition Language Statements and Roles" on
page 23-22 for information about restrictions for procedures

� Oracle9i Application Developer’s Guide - Fundamentals for
instructions for enabling roles from an application
23-18 Oracle9i Database Concepts

Introduction to Roles
Figure 23–1 Common Uses for Roles

Application Roles
You grant an application role all privileges necessary to run a given database
application. Then, you grant the secure application role to other roles or to specific
users. An application can have several different roles, with each role assigned a
different set of privileges that allow for more or less data access while using the
application.

User Roles
You create a user role for a group of database users with common privilege
requirements. You manage user privileges by granting secure application roles and
privileges to the user role and then granting the user role to appropriate users.

The Mechanisms of Roles
Database roles have the following functionality:

� A role can be granted system or schema object privileges.

� A role can be granted to other roles. However, a role cannot be granted to itself
and cannot be granted circularly. For example, role A cannot be granted to role B
if role B has previously been granted to role A.

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users
Privileges, Roles, and Security Policies 23-19

Introduction to Roles
� Any role can be granted to any database user.

� Each role granted to a user is, at a given time, either enabled or disabled. A
user’s security domain includes the privileges of all roles currently enabled for
the user and excludes the privileges of any roles currently disabled for the user.
Oracle allows database applications and users to enable and disable roles to
provide selective availability of privileges.

� An indirectly granted role is a role granted to a role. It can be explicitly enabled
or disabled for a user. However, by enabling a role that contains other roles, you
implicitly enable all indirectly granted roles of the directly granted role.

Grant and Revoke Roles
You grant or revoke roles from users or other roles using the following options:

� The Grant System Privileges/Roles dialog box and Revoke System
Privileges/Roles dialog box of Oracle Enterprise Manager

� The SQL statements GRANT and REVOKE

Privileges are granted to and revoked from roles using the same options. Roles can
also be granted to and revoked from users using the operating system that executes
Oracle, or through network services.

Who Can Grant or Revoke Roles?
Any user with the GRANT ANY ROLE system privilege can grant or revoke any role
except a global role to or from other users or roles of the database. You should grant
this system privilege conservatively because it is very powerful.

Any user granted a role with the ADMIN OPTION can grant or revoke that role to or
from other users or roles of the database. This option allows administrative powers
for roles on a selective basis.

See Also: Oracle9i Database Administrator’s Guide for detailed
instructions about role management

See Also: Oracle9i Database Administrator’s Guide for information
about global roles
23-20 Oracle9i Database Concepts

Introduction to Roles
Role Names
Within a database, each role name must be unique, and no username and role name
can be the same. Unlike schema objects, roles are not contained in any schema.
Therefore, a user who creates a role can be dropped with no effect on the role.

Security Domains of Roles and Users
Each role and user has its own unique security domain. A role’s security domain
includes the privileges granted to the role plus those privileges granted to any roles
that are granted to the role.

A user’s security domain includes privileges on all schema objects in the
corresponding schema, the privileges granted to the user, and the privileges of roles
granted to the user that are currently enabled. (A role can be simultaneously
enabled for one user and disabled for another.) A user’s security domain also
includes the privileges and roles granted to the user group PUBLIC.

PL/SQL Blocks and Roles
The use of roles in a PL/SQL block depends on whether it is an anonymous block
or a named block (stored procedure, function, or trigger), and whether it executes
with definer rights or invoker rights.

Named Blocks with Definer Rights
All roles are disabled in any named PL/SQL block (stored procedure, function, or
trigger) that executes with definer rights. Roles are not used for privilege checking
and you cannot set roles within a definer-rights procedure.

The SESSION_ROLES view shows all roles that are currently enabled. If a named
PL/SQL block that executes with definer rights queries SESSION_ROLES, the query
does not return any rows.

Anonymous Blocks with Invoker Rights
Named PL/SQL blocks that execute with invoker rights and anonymous PL/SQL
blocks are executed based on privileges granted through enabled roles. Current
roles are used for privilege checking within an invoker-rights PL/SQL block, and
you can use dynamic SQL to set a role in the session.

See Also: Oracle9i Database Reference
Privileges, Roles, and Security Policies 23-21

Introduction to Roles
Data Definition Language Statements and Roles
A user requires one or more privileges to successfully execute a data definition
language (DDL) statement, depending on the statement. For example, to create a
table, the user must have the CREATE TABLE or CREATE ANY TABLE system
privilege. To create a view of another user’s table, the creator requires the CREATE
VIEW or CREATE ANY VIEW system privilege and either the SELECT object
privilege for the table or the SELECT ANY TABLE system privilege.

Oracle avoids the dependencies on privileges received by way of roles by restricting
the use of specific privileges in certain DDL statements. The following rules outline
these privilege restrictions concerning DDL statements:

� All system privileges and schema object privileges that permit a user to perform
a DDL operation are usable when received through a role. For example:

– System Privileges: the CREATE TABLE, CREATE VIEW and CREATE
PROCEDURE privileges.

– Schema Object Privileges: the ALTER and INDEX privileges for a table.

Exception: The REFERENCES object privilege for a table cannot be used to define
a table’s foreign key if the privilege is received through a role.

� All system privileges and object privileges that allow a user to perform a DML
operation that is required to issue a DDL statement are not usable when
received through a role. For example:

– A user who receives the SELECT ANY TABLE system privilege or the
SELECT object privilege for a table through a role can use neither
privilege to create a view on another user’s table.

The following example further clarifies the permitted and restricted uses of
privileges received through roles:

Assume that a user is:

� Granted a role that has the CREATE VIEW system privilege

See Also:

� PL/SQL User’s Guide and Reference for an explanation of invoker
and definer rights

� "Dynamic SQL in PL/SQL" on page 14-20
23-22 Oracle9i Database Concepts

Introduction to Roles
� Granted a role that has the SELECT object privilege for the employees table,
but the user is indirectly granted the SELECT object privilege for the
employees table

� Directly granted the SELECT object privilege for the departments table

Given these directly and indirectly granted privileges:

� The user can issue SELECT statements on both the employees and
departments tables.

� Although the user has both the CREATE VIEW and SELECT privilege for the
employees table through a role, the user cannot create a usable view on the
employees table, because the SELECT object privilege for the employees
table was granted through a role. Any views created will produce errors when
accessed.

� The user can create a view on the departments table, because the user has the
CREATE VIEW privilege through a role and the SELECT privilege for the
departments table directly.

Predefined Roles
The following roles are defined automatically for Oracle databases:

� CONNECT

� RESOURCE

� DBA

� EXP_FULL_DATABASE

� IMP_FULL_DATABASE

These roles are provided for backward compatibility to earlier versions of Oracle
and can be modified in the same manner as any other role in an Oracle database.

The Operating System and Roles
In some environments, you can administer database security using the operating
system. The operating system can be used to manage the granting (and revoking) of
database roles and to manage their password authentication. This capability is not
available on all operating systems.

See Also: Your operating system specific Oracle documentation
for details on managing roles through the operating system
Privileges, Roles, and Security Policies 23-23

Fine-Grained Access Control
Roles in a Distributed Environment
When you use roles in a distributed database environment, you must ensure that all
needed roles are set as the default roles for a distributed (remote) session. You
cannot enable roles when connecting to a remote database from within a local
database session. For example, you cannot execute a remote procedure that
attempts to enable a role at the remote site.

Fine-Grained Access Control
Fine-grained access control lets you implement security policies with functions and
then associate those security policies with tables, views, or synonyms. The database
server automatically enforces those security policies, no matter how the data is
accessed (for example, by ad hoc queries).

You can:

� Use different policies for SELECT, INSERT, UPDATE, and DELETE.

� Use security policies only where you need them (for example, on salary
information).

� Use more than one policy for each table, including building on top of base
policies in packaged applications.

� Distinguish policies between different applications, by using policy groups. Each
policy group indicates a set of policies that belong to an application.

The database administrator designates an application context, called a driving
context, to indicate the policy group in effect. When tables, views, or synonyms are
accessed, the fine-grained access control engine looks up the driving context to
determine the policy group in effect and enforces all the associated policies that
belong to that policy group.

The PL/SQL package DBMS_RLS let you administer your security policies. Using
this package, you can add, drop, enable, disable, and refresh the policies you create.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide

See Also:

� Oracle9i Supplied PL/SQL Packages and Types Reference for
information about package implementation

� Oracle9i Application Developer’s Guide - Fundamentals for
information and examples on establishing security policies
23-24 Oracle9i Database Concepts

Application Context
Dynamic Predicates
The function or package that implements the security policy you create returns a
predicate (a WHERE condition). This predicate controls access as set out by the
policy. Rewritten queries are fully optimized and shareable.

Application Context
Application context facilitates the implementation of fine-grained access control. It
lets you implement security policies with functions and then associate those
security policies with applications. Each application can have its own
application-specific context. Users are not allowed to arbitrarily change their
context (for example, through SQL*Plus).

Application contexts permit flexible, parameter-based access control, based on
attributes of interest to an application. For example, context attributes for a human
resources application could include "position," "organizational unit," and "country,"
whereas attributes for an order-entry control might be "customer number" and
"sales region".

You can:

� Base predicates on context values

� Use context values within predicates, as bind variables

� Set user attributes

� Access user attributes

To define an application context:

1. Create a PL/SQL package with functions that validate and set the context for
your application. You may want to use an event trigger on login to set the initial
context for logged-in users.

2. Use CREATE CONTEXT to specify a unique context name and associate it with
the PL/SQL package you created.

3. Do one of the following:

� Reference the application context in a policy function implementing
fine-grained access control.

� Create an event trigger on login to set the initial context for a user. For
example, you could query a user’s employee number and set this as an
"employee number" context value.
Privileges, Roles, and Security Policies 23-25

Secure Application Roles
4. Reference the application context.

Secure Application Roles
Oracle provides secure application roles, which are roles that can be enabled only
by authorized PL/SQL packages. This mechanism restricts the enabling of roles to
the invoking application.

In previous releases, passwords were either embedded in the source code or stored
in a table. Application developers no longer need to secure a role by embedding
passwords inside applications. Instead, they create a secure application role and
specify which PL/SQL package is authorized to enable the role. Package identity is
used to determine whether there are sufficient privileges to enable the roles. The
application performs authentication before enabling the role.

The application can perform customized authorization, such as checking whether
the user has connected through a proxy, before enabling the role.

Creation of Secure Application Roles
Secure application roles are created by using the CREATE ROLE ... IDENTIFIED
USING statement. Here is an example:

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

This indicates the following:

� The role admin_role to be created is a secure application role.

� The role can only be enabled by any module defined inside the PL/SQL
package hr.admin.

You must have the system privilege CREATE ROLE to execute this statement.

See Also:

� PL/SQL User’s Guide and Reference

� Oracle9i Supplied PL/SQL Packages and Types Reference

� Oracle9i Application Developer’s Guide - Fundamentals

Note: Because of the restriction that users cannot change security
domain inside definer’s right procedures, secure application roles
can only be enabled inside invoker’s right procedures.
23-26 Oracle9i Database Concepts

Secure Application Roles
Roles that are enabled inside an Invoker’s Right procedure remain in effect even
after the procedure exits. Therefore, you can have a dedicated procedure that deals
with enabling the role for the rest of the session to use.

See Also:

� Oracle9i SQL Reference

� PL/SQL User’s Guide and Reference

� Oracle9i Supplied PL/SQL Packages and Types Reference

� Oracle9i Application Developer’s Guide - Fundamentals
Privileges, Roles, and Security Policies 23-27

Secure Application Roles
23-28 Oracle9i Database Concepts

24

Auditing

This chapter discusses the auditing feature of Oracle. It includes:

� Introduction to Auditing

� Statement Auditing

� Privilege Auditing

� Schema Object Auditing

� Fine-Grained Auditing

� Focus Statement, Privilege, and Schema Object Auditing

� Audit in a Multitier Environment
Auditing 24-1

Introduction to Auditing
Introduction to Auditing
Auditing is the monitoring and recording of selected user database actions.
Auditing is normally used to:

� Investigate suspicious activity. For example, if an unauthorized user is deleting
data from tables, the security administrator might decide to audit all
connections to the database and all successful and unsuccessful deletions of
rows from all tables in the database.

� Monitor and gather data about specific database activities. For example, the
database administrator can gather statistics about which tables are being
updated, how many logical I/Os are performed, or how many concurrent users
connect at peak times.

Features of Auditing
This section outlines the features of the Oracle auditing mechanism.

Types of Auditing
Oracle supports three general types of auditing:

Type of Auditing Description

Statement auditing The selective auditing of SQL statements with respect to only
the type of statement, not the specific schema objects on
which it operates. Statement auditing options are typically
broad, auditing the use of several types of related actions for
each option. For example, AUDIT TABLE tracks several DDL
statements regardless of the table on which they are issued.
You can set statement auditing to audit selected users or
every user in the database.

Privilege auditing The selective auditing of the use of powerful system
privileges to perform corresponding actions, such as AUDIT
CREATE TABLE. Privilege auditing is more focused than
statement auditing because it audits only the use of the target
privilege. You can set privilege auditing to audit a selected
user or every user in the database.

Schema object auditing The selective auditing of specific statements on a particular
schema object, such as AUDIT SELECT ON employees.
Schema object auditing is very focused, auditing only a
specific statement on a specific schema object. Schema object
auditing always applies to all users of the database.
24-2 Oracle9i Database Concepts

Introduction to Auditing
Focus of Auditing
Oracle allows audit options to be focused or broad. You can audit:

� Successful statement executions, unsuccessful statement executions, or both

� Statement executions once in each user session or once every time the statement
is executed

� Activities of all users or of a specific user

Audit Records and the Audit Trail
Audit records include information such as the operation that was audited, the user
performing the operation, and the date and time of the operation. Audit records can
be stored in either a data dictionary table, called the database audit trail, or an
operating system audit trail.

The database audit trail is a single table named SYS.AUD$ in the SYS schema of
each Oracle database’s data dictionary. Several predefined views are provided to
help you use the information in this table.

The audit trail records can contain different types of information, depending on the
events audited and the auditing options set. The following information is always
included in each audit trail record, if the information is meaningful to the particular
audit action:

� The user name

� The session identifier

� The terminal identifier

� The name of the schema object accessed

� The operation performed or attempted

� The completion code of the operation

� The date and time stamp

� The system privileges used

Fine-grained auditing Fine-grained auditing allows the monitoring of data access
based on content.

Type of Auditing Description
Auditing 24-3

Introduction to Auditing
The operating system audit trail is encoded and not readable, but it is decoded in
data dictionary files and error messages.

� Action code describes the operation performed or attempted. The AUDIT_
ACTIONS data dictionary table contains a list of these codes and their
descriptions.

� Privileges used describes any system privileges used to perform the operation.
The SYSTEM_PRIVILEGE_MAP table lists all of these codes and their
descriptions.

� Completion code describes the result of the attempted operation. Successful
operations return a value of zero, and unsuccessful operations return the Oracle
error code describing why the operation was unsuccessful.

Mechanisms for Auditing
This section explains the mechanisms used by the Oracle auditing features.

When Are Audit Records Generated?
The recording of audit information can be enabled or disabled. This functionality
allows any authorized database user to set audit options at any time but reserves
control of recording audit information for the security administrator.

When auditing is enabled in the database, an audit record is generated during the
execute phase of statement execution.

SQL statements inside PL/SQL program units are individually audited, as
necessary, when the program unit is executed.

The generation and insertion of an audit trail record is independent of a user’s
transaction. Therefore, even if a user’s transaction is rolled back, the audit trail
record remains committed.

See Also:

� Oracle9i Database Administrator’s Guide for instructions for
creating and using predefined views

� Oracle9i Database Error Messages for a list of completion codes
24-4 Oracle9i Database Concepts

Introduction to Auditing
Events Always Audited to the Operating System Audit Trail
Regardless of whether database auditing is enabled, Oracle always records some
database-related actions into the operating system audit trail:

� At instance startup, an audit record is generated that details the operating
system user starting the instance, the user’s terminal identifier, the date and
time stamp, and whether database auditing was enabled or disabled. This
information is recorded into the operating system audit trail because the
database audit trail is not available until after startup has successfully
completed. Recording the state of database auditing at startup further prevents
an administrator from restarting a database with database auditing disabled so
that they are able to perform unaudited actions.

� At instance shutdown, an audit record is generated that details the operating
system user shutting down the instance, the user’s terminal identifier, the date
and time stamp.

� During connections with administrator privileges, an audit record is generated
that details the operating system user connecting to Oracle with administrator
privileges. This provides accountability of users connected with administrator
privileges.

Note: Operations by the SYS user and by users connected through
SYSDBA or SYSOPER can be fully audited with the AUDIT_SYS_
OPERATIONS initialization parameter. Successful SQL statements
from SYS are audited indiscriminately.

The audit records for sessions established by the user SYS or
connections with administrative privileges are sent to an operating
system location. Sending them to a location separate from the usual
database audit trail in the SYS schema provides for greater auditing
security.

See Also:

� Oracle9i Database Administrator’s Guide for instructions on
enabling and disabling auditing

� Chapter 14, "SQL, PL/SQL, and Java" for information about the
different phases of SQL statement processing and shared SQL
Auditing 24-5

Introduction to Auditing
On operating systems that do not make an audit trail accessible to Oracle, these
audit trail records are placed in an Oracle audit trail file in the same directory as
background process trace files.

When Do Audit Options Take Effect?
Statement and privilege audit options in effect at the time a database user connects
to the database remain in effect for the duration of the session. A session does not
see the effects of statement or privilege audit options being set or changed. The
modified statement or privilege audit options take effect only when the current
session is ended and a new session is created. In contrast, changes to schema object
audit options become effective for current sessions immediately.

Audit in a Distributed Database
Auditing is site autonomous. An instance audits only the statements issued by
directly connected users. A local Oracle node cannot audit actions that take place in
a remote database. Because remote connections are established through the user
account of a database link, the remote Oracle node audits the statements issued
through the database link’s connection.

Audit to the Operating System Audit Trail
Oracle allows audit trail records to be directed to an operating system audit trail if
the operating system makes such an audit trail available to Oracle. On some other
operating systems, these audit records are written to a file outside the database,
with a format similar to other Oracle trace files.

Oracle allows certain actions that are always audited to continue, even when the
operating system audit trail (or the operating system file containing audit records)
is unable to record the audit record. The usual cause of this is that the operating
system audit trail or the file system is full and unable to accept new records.

System administrators configuring operating system auditing should ensure that
the audit trail or the file system does not fill completely. Most operating systems

See Also: Your operating system specific Oracle documentation
for more information about the operating system audit trail

See Also: Oracle9i Database Administrator’s Guide

See Also: Your operating system specific Oracle documentation,
to see if this feature has been implemented on your operating
system
24-6 Oracle9i Database Concepts

Privilege Auditing
provide administrators with sufficient information and warning to ensure this does
not occur. Note, however, that configuring auditing to use the database audit trail
removes this vulnerability, because the Oracle server prevents audited events from
occurring if the audit trail is unable to accept the database audit record for the
statement.

Statement Auditing
Statement auditing is the selective auditing of related groups of statements that fall
into two categories:

� DDL statements, regarding a particular type of database structure or schema
object, but not a specifically named structure or schema object (for example,
AUDIT TABLE audits all CREATE and DROP TABLE statements)

� DML statements, regarding a particular type of database structure or schema
object, but not a specifically named structure or schema object (for example,
AUDIT SELECT TABLE audits all SELECT ... FROM TABLE/VIEW statements,
regardless of the table or view)

Statement auditing can be broad or focused, auditing the activities of all database
users or the activities of only a select list of database users.

Privilege Auditing
Privilege auditing is the selective auditing of the statements allowed using a system
privilege. For example, auditing of the SELECT ANY TABLE system privilege audits
users’ statements that are executed using the SELECT ANY TABLE system privilege.
You can audit the use of any system privilege.

In all cases of privilege auditing, owner privileges and schema object privileges are
checked before system privileges. If the owner and schema object privileges suffice
to permit the action, the action is not audited.

If similar statement and privilege audit options are both set, only a single audit
record is generated. For example, if the statement clause TABLE and the system
privilege CREATE TABLE are both audited, only a single audit record is generated
each time a table is created.

Privilege auditing is more focused than statement auditing because each option
audits only specific types of statements, not a related list of statements. For
example, the statement auditing clause TABLE audits CREATE TABLE, ALTER
TABLE, and DROP TABLE statements, while the privilege auditing option CREATE
Auditing 24-7

Schema Object Auditing
TABLE audits only CREATE TABLE statements. This is because only the CREATE
TABLE statement requires the CREATE TABLE privilege.

Like statement auditing, privilege auditing can audit the activities of all database
users or the activities of a select list of database users.

Schema Object Auditing
Schema object auditing is the selective auditing of specific DML statements
(including queries) and GRANT and REVOKE statements for specific schema objects.
Schema object auditing audits the operations permitted by schema object privileges,
such as SELECT or DELETE statements on a given table, as well as the GRANT and
REVOKE statements that control those privileges.

You can audit statements that reference tables, views, sequences, standalone stored
procedures and functions, and packages. Procedures in packages cannot be audited
individually.

Statements that reference clusters, database links, indexes, or synonyms are not
audited directly. However, you can audit access to these schema objects indirectly
by auditing the operations that affect the base table.

Schema object audit options are always set for all users of the database. These
options cannot be set for a specific list of users. You can set default schema object
audit options for all auditable schema objects.

Schema Object Audit Options for Views and Procedures
Views and procedures (including stored functions, packages, and triggers) reference
underlying schema objects in their definition. Therefore, auditing with respect to
views and procedures has several unique characteristics. Multiple audit records can
be generated as the result of using a view or a procedure: The use of the view or
procedure is subject to enabled audit options, and the SQL statements issued as a
result of using the view or procedure are subject to the enabled audit options of the
base schema objects (including default audit options).

Consider the following series of SQL statements:

AUDIT SELECT ON employees;

CREATE VIEW employees_departments AS
SELECT employee_id, last_name, department_id

See Also: Oracle9i SQL Reference for information about auditable
schema objects
24-8 Oracle9i Database Concepts

Fine-Grained Auditing
FROM employees, departments
WHERE employees.department_id = departments.department_id;

AUDIT SELECT ON employees_departments;

SELECT * FROM employees_departments;

As a result of the query on employees_departments, two audit records are
generated: one for the query on the employees_departments view and one for
the query on the base table employees (indirectly through the employees_
departments view). The query on the base table departments does not generate
an audit record because the SELECT audit option for this table is not enabled. All
audit records pertain to the user that queried the employees_departments view.

The audit options for a view or procedure are determined when the view or
procedure is first used and placed in the shared pool. These audit options remain
set until the view or procedure is flushed from, and subsequently replaced in, the
shared pool. Auditing a schema object invalidates that schema object in the cache
and causes it to be reloaded. Any changes to the audit options of base schema
objects are not observed by views and procedures in the shared pool.

Continuing with the previous example, if auditing of SELECT statements is turned
off for the employees table, use of the employees_departments view no longer
generates an audit record for the employees table.

Fine-Grained Auditing
Fine-grained auditing allows the monitoring of data access based on content. A
built-in audit mechanism in the database prevents users from by-passing the audit.
Oracle triggers can potentially monitor DML actions such as INSERT, UPDATE, and
DELETE. However, monitoring on SELECT is costly and might not work for certain
cases. In addition, users might want to define their own alert action in addition to
just inserting an audit record into the audit trail. This feature provides an extensible
interface to audit SELECT statements on tables and views.

The DBMS_FGA package administers these value-based audit policies. Using DBMS_
FGA, the security administrator creates an audit policy on the target table. If any of
the rows returned from a query block matches the audit condition (these rows are
referred to as interested rows), then an audit event entry, including username, SQL
text, bind variable, policy name, session ID, time stamp, and other attributes, is
inserted into the audit trail. As part of the extensibility framework, administrators
can also optionally define an appropriate event handler, an audit event handler, to
Auditing 24-9

Focus Statement, Privilege, and Schema Object Auditing
process the event; for example, the audit event handler could send an alert page to
the administrator.

Focus Statement, Privilege, and Schema Object Auditing
Oracle lets you focus statement, privilege, and schema object auditing in three
areas:

� Successful and unsuccessful executions of the audited SQL statement

� BY SESSION and BY ACCESS auditing

� For specific users or for all users in the database (statement and privilege
auditing only)

Successful and Unsuccessful Statement Executions Auditing
For statement, privilege, and schema object auditing, Oracle allows the selective
auditing of successful executions of statements, unsuccessful attempts to execute
statements, or both. Therefore, you can monitor actions even if the audited
statements do not complete successfully.

You can audit an unsuccessful statement execution only if a valid SQL statement is
issued but fails because of lack of proper authorization or because it references a
nonexistent schema object. Statements that failed to execute because they simply
were not valid cannot be audited. For example, an enabled privilege auditing
option set to audit unsuccessful statement executions audits statements that use the
target system privilege but have failed for other reasons (such as when CREATE
TABLE is set but a CREATE TABLE statement fails due to lack of quota for the
specified tablespace).

Using either form of the AUDIT statement, you can include:

� The WHENEVER SUCCESSFUL clause, to audit only successful executions of the
audited statement

� The WHENEVER NOT SUCCESSFUL clause, to audit only unsuccessful executions
of the audited statement

� Neither of the previous clauses, to audit both successful and unsuccessful
executions of the audited statement

See Also: Oracle9i Application Developer’s Guide - Fundamentals
24-10 Oracle9i Database Concepts

Focus Statement, Privilege, and Schema Object Auditing
BY SESSION and BY ACCESS Clauses of Audit Statement
Most auditing options can be set to indicate how audit records should be generated
if the audited statement is issued multiple times in a single user session. This
section describes the distinction between the BY SESSION and BY ACCESS clauses
of the AUDIT statement.

BY SESSION
For any type of audit (schema object, statement, or privilege), BY SESSION inserts
only one audit record in the audit trail, for each user and schema object, during the
session that includes an audited action.

A session is the time between when a user connects to and disconnects from an
Oracle database.

BY SESSION Example 1 Assume the following:

� The SELECT TABLE statement auditing option is set BY SESSION.

� JWARD connects to the database and issues five SELECT statements against the
table named departments and then disconnects from the database.

� SWILLIAMS connects to the database and issues three SELECT statements
against the table employees and then disconnects from the database.

In this case, the audit trail contains two audit records for the eight SELECT
statements— one for each session that issued a SELECT statement.

BY SESSION Example 2 Alternatively, assume the following:

� The SELECT TABLE statement auditing option is set BY SESSION.

� JWARD connects to the database and issues five SELECT statements against the
table named departments, and three SELECT statements against the table
employees, and then disconnects from the database.

In this case, the audit trail contains two records—one for each schema object against
which the user issued a SELECT statement in a session.

See Also: Oracle9i SQL Reference
Auditing 24-11

Focus Statement, Privilege, and Schema Object Auditing
BY ACCESS
Setting audit BY ACCESS inserts one audit record into the audit trail for each
execution of an auditable operation within a cursor. Events that cause cursors to be
reused include the following:

� An application, such as Oracle Forms, holding a cursor open for reuse

� Subsequent execution of a cursor using new bind variables

� Statements executed within PL/SQL loops where the PL/SQL engine optimizes
the statements to reuse a single cursor

Note that auditing is not affected by whether a cursor is shared. Each user creates
her or his own audit trail records on first execution of the cursor.

For example, assume that:

� The SELECT TABLE statement auditing option is set BY ACCESS.

� JWARD connects to the database and issues five SELECT statements against the
table named departments and then disconnects from the database.

� SWILLIAMS connects to the database and issues three SELECT statements
against the table departments and then disconnects from the database.

The single audit trail contains eight records for the eight SELECT statements.

Defaults and Excluded Operations
The AUDIT statement lets you specify either BY SESSION or BY ACCESS. However,
several audit options can be set only BY ACCESS, including:

� All statement audit options that audit DDL statements

� All privilege audit options that audit DDL statements

For all other audit options, BY SESSION is used by default.

Note: If you use the BY SESSION clause when directing audit
records to the operating system audit trail, Oracle generates and
stores an audit record each time an access is made. Therefore, in
this auditing configuration, BY SESSION is equivalent to BY
ACCESS.
24-12 Oracle9i Database Concepts

Audit in a Multitier Environment
Audit By User
Statement and privilege audit options can audit statements issued by any user or
statements issued by a specific list of users. By focusing on specific users, you can
minimize the number of audit records generated.

Audit By User Example To audit statements by the users SCOTT and BLAKE that query
or update a table or view, issue the following statements:

AUDIT SELECT TABLE, UPDATE TABLE
BY scott, blake;

Audit in a Multitier Environment
In a multitier environment, Oracle preserves the identity of a client through all tiers.
This enables auditing of actions taken on behalf of the client. To do so, use the BY
proxy clause in your AUDIT statement.

This clause allows you a few options. You can:

� Audit SQL statements issued by the specific proxy on its own behalf

� Audit statements executed on behalf of a specified user or users

� Audit all statements executed on behalf of any user

The middle tier can set the light-weight user identity in a database session so that it
will show up in audit trail. You use OCI or PL/SQL to set the client identifier.

See Also: Oracle9i SQL Reference for more information about
auditing by user

See Also:

� Oracle9i Application Developer’s Guide - Fundamentals

� Oracle Call Interface Programmer’s Guide

� PL/SQL User’s Guide and Reference
Auditing 24-13

Audit in a Multitier Environment
24-14 Oracle9i Database Concepts

Operating System Specific Inform
A

Operating System Specific Information

This manual occasionally refers to other Oracle manuals that contain detailed
information for using Oracle on a specific operating system. These Oracle manuals
are often called installation and configuration guides, although the exact name can
vary on different operating systems.

This appendix lists all the references in this manual to operating system specific
Oracle manuals, and lists the operating system-dependent initialization parameters.
If you are using Oracle on multiple operating systems, this appendix can help you
ensure that your applications are portable across these operating systems.
ation A-1

Operating system specific topics in this manual are listed alphabetically as follows.

� Administrator privileges, prerequisites: "Connection with Administrator
Privileges" on page 5-3; connect string syntax: Oracle9i Net Services
Administrator’s Guide

� Auditing: "Events Always Audited to the Operating System Audit Trail" on
page 24-5 and "Audit to the Operating System Audit Trail" on page 24-6

� Authenticating DBAs: "Connection with Administrator Privileges" on page 5-3
and "Authentication of Database Administrators" on page 22-13

� Authenticating users: "Authentication by the Operating System" on page 22-13

� Background processes, ARCn: "Archiver Processes (ARCn)" on page 8-13 and
the Oracle9i Backup and Recovery Concepts

� Background processes, creating: "Background Processes" on page 8-5

� Background processes, DBWn processes: "Database Writer Process (DBWn)" on
page 8-8

� Client/server communication: "Dedicated Server Configuration" on page 8-21

� Communication software: "Communications Software for the Operating
System" on page 8-24

� Configuring Oracle: "Types of Processes" on page 8-2; for dedicated server
(two-task Oracle), see "Dedicated Server Configuration" on page 8-21; for
shared server, see "Shared Server Architecture" on page 8-15

� Data blocks, size of: "Data Blocks Overview" on page 2-3

� Datafiles, size of file header: "Datafiles Overview" on page 3-18

� Dedicated server, requesting for administrative operations: "Restricted
Operations of the Shared Server" on page 8-20

� Indexes, overhead of index blocks: "Format of Index Blocks" on page 10-34

� Operating system audit trails: On operating systems that do not make an audit
trail accessible to Oracle, these audit trail records are placed in an Oracle audit
trail file in the same directory as background process trace files.

Oracle allows audit trail records to be directed to an operating system audit
trail if the operating system makes such an audit trail available to Oracle. On
some other operating systems, these audit records are written to a file outside
the database, with a format similar to other Oracle trace files.
A-2 Oracle9i Database Concepts

Check your platform-specific Oracle documentation to see if this feature has
been implemented on your operating system.

� Oracle Net Services, choosing and installing network drivers: "Program
Interface Drivers" on page 8-23

� Oracle Net Services, drivers included in Oracle Net Services software: "How
Oracle Net Services Works" on page 6-8; also, the Oracle9i Net Services
Administrator’s Guide

� Password files and authentication schemes: "Authentication of Database
Administrators" on page 22-13

� Program global areas (PGAs): "SQL Work Areas" on page 7-19

� Role management by the operating system: "The Operating System and Roles"
on page 23-23

� Software code areas, shared or unshared: "Software Code Areas" on page 7-22
Operating System Specific Information A-3

A-4 Oracle9i Database Concepts

Information on Deprecated Fea
B

Information on Deprecated Features

This appendix contains information the following topics:

� Allocating Extents in Dictionary Managed Tablespaces

� Introduction to Rollback Segments

� PCTFREE, PCTUSED, and Row Chaining

If you created your database with an earlier version of Oracle, then you could be
using these features. Locally managed tablespaces are recommended over
dictionary managed tablespaces, and automatic undo space management is
recommended over manual undo space management, which uses rollback segment.
tures B-1

Allocating Extents in Dictionary Managed Tablespaces
Allocating Extents in Dictionary Managed Tablespaces
Prior to Oracle8i, all tablespaces were created as dictionary managed. Dictionary
managed tablespaces rely on data dictionary tables to track space utilization.
Beginning with Oracle8i, you could create locally managed tablespaces, which use
bitmaps (instead of data dictionary tables) to track used and free space. Because of
the better performance and greater ease of management of locally managed
tablespaces, the default for non-SYSTEM permanent tablespaces is locally managed
whenever the type of extent management is not explicitly specified.

If you created your database with an earlier version of Oracle, then you could be
using dictionary managed tablespaces. With dictionary managed tablespaces,
Oracle controls the allocation of incremental extents for a given segment as follows:

1. Oracle searches through the free space (in the tablespace that contains the
segment) for the first free, contiguous set of data blocks of an incremental
extent’s size or larger, using the following algorithm:

a. Oracle searches for a contiguous set of data blocks that matches the size of
new extent plus one block to reduce internal fragmentation. (The size is
rounded up to the size of the minimal extent for that tablespace, if
necessary.) For example, if a new extent requires 19 data blocks, then Oracle
searches for exactly 20 contiguous data blocks. If the new extent is five or
fewer blocks, Oracle does not add an extra block to the request.

b. If an exact match is not found, then Oracle then searches for a set of
contiguous data blocks greater than the amount needed. If Oracle finds a
group of contiguous blocks that is at least five blocks greater than the size
of the extent needed, then it splits the group of blocks into separate extents,
one of which is the size it needs. If Oracle finds a group of blocks that is
larger than the size it needs, but less than five blocks larger, then it allocates
all the contiguous blocks to the new extent.

In this example, if Oracle does not find a set of exactly 20 contiguous data
blocks, then Oracle searches for a set of contiguous data blocks greater than
20. If the first set it finds contains 25 or more blocks, then it breaks up the
blocks and allocates 20 of them to the new extent and leaves the remaining
five or more blocks as free space. Otherwise, it allocates all of the blocks
(between 21 and 24) to the new extent.

Note: Oracle Corporation strongly recommends that you use
locally managed tablespaces.
B-2 Oracle9i Database Concepts

Introduction to Rollback Segments
c. If Oracle does not find an equal or larger set of contiguous data blocks, then
it coalesces any free, adjacent data blocks in the corresponding tablespace to
form larger sets of contiguous data blocks. (The SMON background process
also periodically coalesces adjacent free space.) After coalescing the data
blocks in a tablespace, Oracle performs the searches described in 1a and 1b
again.

d. If an extent cannot be allocated after the second search, then Oracle tries to
resize the files by autoextension. If Oracle cannot resize the files, then it
returns an error.

2. After Oracle finds and allocates the necessary free space in the tablespace, it
allocates a portion of the free space that corresponds to the size of the
incremental extent. If Oracle finds a larger amount of free space than was
required for the extent, then Oracle leaves the remainder as free space (no
smaller than five contiguous blocks).

3. Oracle updates the segment header and data dictionary to show that a new
extent has been allocated and that the allocated space is no longer free.

The blocks of a newly allocated extent, although they were free, may not be empty
of old data. Usually, Oracle formats the blocks of a newly allocated extent when it
starts using the extent, but only as needed (starting with the blocks on the segment
free list). In a few cases, however, such as when a database administrator forces
allocation of an incremental extent with the ALLOCATE EXTENT clause of an ALTER
TABLE or ALTER CLUSTER statement, Oracle formats the blocks in the extent when
it allocates the extent.

Introduction to Rollback Segments
In earlier releases, undo space management was performed using rollback
segments. This method is now called manual undo management mode. Manual
undo management mode is supported under any compatibility level. Use it when
you need to run Oracle9i to take advantage of some new features, but are not yet
not ready to convert to automatic undo management mode.

Note: Although manual undo management mode is supported,
Oracle Corporation strongly recommends that you run in automatic
undo management mode.
Information on Deprecated Features B-3

Introduction to Rollback Segments
Each database contains one or more rollback segments. A rollback segment records
the old values of data that were changed by each transaction (whether or not
committed). Rollback segments provide read consistency, roll back transactions, and
recover the database.

Contents of a Rollback Segment
Information in a rollback segment consists of several rollback entries. Among other
information, a rollback entry includes block information (the file number and block
ID corresponding to the data that was changed) and the data as it existed before an
operation in a transaction. Oracle links rollback entries for the same transaction, so
the entries can be found easily if necessary for transaction rollback.

Neither database users nor administrators can access or read rollback segments.
Only Oracle can write to or read them. (They are owned by the user SYS, no
matter which user creates them.)

How Rollback Entries Are Logged
Rollback entries change data blocks in the rollback segment, and Oracle records all
changes to data blocks, including rollback entries, in the redo log. This second
recording of the rollback information is very important for active transactions (not
yet committed or rolled back) at the time of a system crash. If a system crash occurs,
then Oracle automatically restores the rollback segment information, including the
rollback entries for active transactions, as part of instance or media recovery. When
recovery is complete, Oracle performs the actual rollbacks of transactions that had
been neither committed nor rolled back at the time of the system crash.

Note: Oracle Corporation strongly recommends using automatic
undo management. This section is included only for backward
compatibility with previous releases.

See Also:

� "Automatic Undo Management" on page 2-16

� "Multiversion Concurrency Control" on page 20-4 for
information about read consistency

� "Rollback of Transactions" on page 16-7
B-4 Oracle9i Database Concepts

Introduction to Rollback Segments
When Rollback Information Is Required
For each rollback segment, Oracle maintains a transaction table—a list of all
transactions that use the associated rollback segment and the rollback entries for
each change performed by these transactions. Oracle uses the rollback entries in a
rollback segment to perform a transaction rollback and to create read-consistent
results for queries.

Rollback segments record the data prior to change for each transaction. For every
transaction, Oracle links each new change to the previous change. If you must roll
back the transaction, then Oracle applies the changes in a chain to the data blocks in
an order that restores the data to its previous state.

Similarly, when Oracle needs to provide a read-consistent set of results for a query,
it can use information in rollback segments to create a set of data consistent with
respect to a single point in time.

Transactions and Rollback Segments
Each time a user’s transaction begins, the transaction is assigned to a rollback
segment in one of two ways:

� Oracle can assign a transaction automatically to the next available rollback
segment. The transaction assignment occurs when you issue the first DML or
DDL statement in the transaction. Oracle never assigns read-only transactions
(transactions that contain only queries) to a rollback segment, regardless of
whether the transaction begins with a SET TRANSACTION READ ONLY
statement.

� An application can assign a transaction explicitly to a specific rollback segment.
At the start of a transaction, an application developer or user can specify a
particular rollback segment that Oracle should use when executing the
transaction. This lets the application developer or user select a large or small
rollback segment, as appropriate for the transaction.

For the duration of a transaction, the associated user process writes rollback
information only to the assigned rollback segment.

When you commit a transaction, Oracle releases the rollback information but does
not immediately destroy it. The information remains in the rollback segment to
create read-consistent views of pertinent data for queries that started before the
transaction committed. To guarantee that rollback data is available for as long as
possible for such views, Oracle writes the extents of rollback segments sequentially.
When the last extent of the rollback segment becomes full, Oracle continues writing
rollback data by wrapping around to the first extent in the segment. A long-running
Information on Deprecated Features B-5

Introduction to Rollback Segments
transaction (idle or active) can require a new extent to be allocated for the rollback
segment.

See Figure B–1 on page B-7, Figure B–2 on page B-8, and Figure B–3 on page B-9 for
more information about how transactions use the extents of a rollback segment.

Each rollback segment can handle a fixed number of transactions from one instance.
Unless you explicitly assign transactions to particular rollback segments, Oracle
distributes active transactions across available rollback segments so that all rollback
segments are assigned approximately the same number of active transactions.
Distribution does not depend on the size of the available rollback segments.
Therefore, in environments where all transactions generate the same amount of
rollback information, all rollback segments can be the same size.

When you create a rollback segment, you can specify storage parameters to control
the allocation of extents for that segment. Each rollback segment must have at least
two extents allocated.

One transaction writes sequentially to a single rollback segment. Each transaction
writes to only one extent of the rollback segment at any given time. Many active
transactions can write concurrently to a single rollback segment—even the same
extent of a rollback segment. However, each data block in a rollback segment’s
extent can contain information for only a single transaction.

When a transaction runs out of space in the current extent and needs to continue
writing, Oracle finds an available extent of the same rollback segment in one of
two ways:

� It can reuse an extent already allocated to the rollback segment.

� It can acquire (and allocate) a new extent for the rollback segment.

The first transaction that needs to acquire more rollback space checks the next
extent of the rollback segment. If the next extent of the rollback segment does not
contain information from an active transaction, Oracle makes it the current extent,
and all transactions that need more space from then on can write rollback
information to the new current extent.

Note: The number of transactions that a rollback segment can
handle is a function of the data block size, which depends on the
operating system.

See your Oracle operating system-specific documentation for more
information.
B-6 Oracle9i Database Concepts

Introduction to Rollback Segments
Figure B–1 illustrates two transactions, T1 and T2, which begin writing in the third
extent (E3) and continue writing to the fourth extent (E4) of a rollback segment.

Figure B–1 Use of Allocated Extents in a Rollback Segment

As the transactions continue writing and fill the current extent, Oracle checks the
next extent already allocated for the rollback segment to determine if it is available.
In Figure B–2, when E4 is completely full, T1 and T2 continue any further writing to
the next extent allocated for the rollback segment that is available. In this figure, E1
is the next extent. This figure shows the cyclical nature of extent use in rollback
segments.

E1

E2

E3

E4

E1

E2

E3

E4
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .

Rollback Segment

Active extent without space

Non-active extent with space

T2

T1
Information on Deprecated Features B-7

Introduction to Rollback Segments
Figure B–2 Cyclical Use of the Allocated Extents in a Rollback Segment

To continue writing rollback information for a transaction, Oracle always tries to
reuse the next extent in the ring first. However, if the next extent contains data from
an active transaction, then Oracle must allocate a new extent. Oracle can allocate
new extents for a rollback segment until the number of extents reaches the value set
for the rollback segment’s storage parameter MAXEXTENTS.

Figure B–3 shows a new extent allocated for a rollback segment. The uncommitted
transactions are long running (either idle, active, or persistent in-doubt distributed
transactions). At this time, they are writing to the fourth extent, E4, in the rollback
segment. However, when E4 is completely full, the transactions cannot continue

E
1

E
2

E
3

E
4

E1

E2

E3

E4
E

1

E
2

E
3

E
4

E2

E3

E4

E1

Rollback Segment

Active extent without space

Non-active extent with space

T1

T2
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .
B-8 Oracle9i Database Concepts

Introduction to Rollback Segments
further writing to the next extent in sequence, E1, because it contains active rollback
entries. Therefore, Oracle allocates a new extent, E5, for this rollback segment, and
the transactions continue writing to this new extent.

Figure B–3 Allocation of a New Extent for a Rollback Segment

How Extents Are Deallocated from a Rollback Segment
When you drop a rollback segment, Oracle returns all extents of the rollback
segment to its tablespace. The returned extents are then available to other segments
in the tablespace.

When you create or alter a rollback segment, you can use the storage parameter
OPTIMAL (which applies only to rollback segments) to specify the optimal size of the
segment in bytes. If a transaction needs to continue writing rollback information

E2

E3

E4

E5

E1

New Extent

Active extent without space

Non-active extent with space

Rollback Segment

T1

T2
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .
Information on Deprecated Features B-9

Introduction to Rollback Segments
from one extent to another extent in the rollback segment, Oracle compares the
current size of the rollback segment to the segment’s optimal size. If the rollback
segment is larger than its optimal size, and if the extents immediately following the
extent just filled are inactive, then Oracle deallocates consecutive nonactive extents
from the rollback segment until the total size of the rollback segment is equal to or
close to, but not less than, its optimal size. Oracle always frees the oldest inactive
extents, as these are the least likely to be used by consistent reads.

A rollback segment’s OPTIMAL setting cannot be less than the combined space
allocated for the minimum number of extents for the segment. For example:

(INITIAL + NEXT + NEXT + ... up to MINEXTENTS) bytes

The Rollback Segment SYSTEM
Oracle creates an initial rollback segment called SYSTEM whenever a database is
created. This segment is in the SYSTEM tablespace and uses that tablespace’s default
storage parameters. You cannot drop the SYSTEM rollback segment. An instance
always acquires the SYSTEM rollback segment in addition to any other rollback
segments it needs.

With multiple rollback segments, Oracle tries to use the SYSTEM rollback segment
only for special system transactions and distributes user transactions among other
rollback segments. If there are too many transactions for the nonSYSTEM rollback
segments, then Oracle uses the SYSTEM segment as necessary. In general, after
database creation, create at least one additional rollback segment in the SYSTEM
tablespace.

Oracle Instances and Types of Rollback Segments
When an Oracle instance opens a database, it must acquire one or more rollback
segments so that the instance can handle rollback information produced by
subsequent transactions. An instance can acquire both private and public rollback
segments. A private rollback segment is acquired explicitly by an instance when
the instance opens a database. Public rollback segments form a pool of rollback
segments that any instance requiring a rollback segment can use.

Any number of private and public rollback segments can exist in a database. As an
instance opens a database, the instance attempts to acquire one or more rollback
segments according to the following rules:

1. The instance must acquire at least one rollback segment. If the instance is the
only instance accessing the database, it acquires the SYSTEM segment. If the
instance is one of several instances accessing the database in a Real Application
Clusters environment, then it acquires the SYSTEM rollback segment and at
B-10 Oracle9i Database Concepts

Introduction to Rollback Segments
least one other rollback segment. If it cannot, Oracle returns an error, and the
instance cannot open the database.

2. The instance always attempts to acquire at least the number of rollback
segments equal to the quotient of the values for the following initialization
parameters:

CEIL(TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT)

CEIL is a SQL function that returns the smallest integer greater than or equal to
the numeric input. In the previous example, if TRANSACTIONS equal 155 and
TRANSACTIONS_PER_ROLLBACK_SEGMENT equal 10, then the instance tries to
acquire at least 16 rollback segments. (However, an instance can open the
database even if the instance cannot acquire the number of rollback segments
given by the division in the previous example.)

3. After acquiring the SYSTEM rollback segment, the instance next tries to
acquire all private rollback segments specified by the instance’s ROLLBACK_
SEGMENTS parameter. If one instance in Oracle Real Application Clusters opens
a database and attempts to acquire a private rollback segment already claimed
by another instance, the second instance trying to acquire the rollback segment
receives an error during startup. An error is also returned if an instance
attempts to acquire a private rollback segment that does not exist.

4. If the instance has acquired enough private rollback segments in step 3, then no
further action is required. However, if an instance requires more rollback
segments, then the instance attempts to acquire public rollback segments.

After an instance claims a public rollback segment, no other instance can use
that segment until either the rollback segment is taken offline or the instance
that claimed the rollback segment is shut down.

A database used by Oracle9i Real Application Clusters can have both public and
private segments. Use of private segments is recommended.

Note: The TRANSACTIONS_PER_ROLLBACK_SEGMENT
parameter does not limit the number of transactions that can use a
rollback segment. Rather, it determines the number of rollback
segments an instance attempts to acquire when opening a database.
Information on Deprecated Features B-11

Introduction to Rollback Segments
Rollback Segment States
A rollback segment is always in one of several states, depending on whether it is
offline, acquired by an instance, involved in an unresolved transaction, in need of
recovery, or dropped. The state of the rollback segment determines whether it can
be used in transactions, as well as which administrative procedures a database
administrator can perform on it.

The rollback segment states are:

The data dictionary table DBA_ROLLBACK_SEGS lists the state of each rollback
segment, along with other rollback information.

Figure B–4 shows how a rollback segment moves from one state to another.

See Also:

� Oracle9i Real Application Clusters Concepts

� Oracle9i Real Application Clusters Administration

for more information about rollback segment use with Real
Application Clusters

OFFLINE Has not been acquired (brought online) by any instance.

ONLINE Has been acquired (brought online) by an instance and
can contain data from active transactions.

NEEDS RECOVERY Contains data from uncommitted transactions that cannot
be rolled back (because the data files involved are
inaccessible) or is corrupted.

PARTLY AVAILABLE Contains data from an in-doubt transaction (that is, an
unresolved distributed transaction).

INVALID Has been dropped. (The space once allocated to this
rollback segment is later used when a new rollback
segment is created.)
B-12 Oracle9i Database Concepts

Introduction to Rollback Segments
Figure B–4 Rollback Segment States and State Transitions

PARTLY AVAILABLE and NEEDS RECOVERY Rollback Segments The PARTLY REMOVE_
AVAILABLE and NEEDS RECOVERY states are very similar. A rollback segment in
either state usually contains data from an unresolved transaction.

PARTLY
AVAILABLE

OFFLINE INVALID

NEEDS
RECOVERYONLINE

Network failure
causes transaction
holding data to be
in-doubt

Media failure
makes data
inaccessible,
or segment
is corrupted

Data is
successfully
recovered

Rollback
segment
is brought
offline

Rollback segment is dropped

Distributed
transaction
is resolved

Rollback
segment is
brought
online

Rollback
segment
is dropped

In-doubt
transaction
is resolved

Media failure makes data held by
in-doubt transaction inaccessible
Information on Deprecated Features B-13

Introduction to Rollback Segments
� A PARTLY REMOVE_AVAILABLE rollback segment is being used by an in-doubt
distributed transaction that cannot be resolved because of a network failure. A
NEEDS RECOVERY rollback segment is being used by a transaction (local or
distributed) that cannot be resolved because of a local media failure, such as a
missing or corrupted datafile, or is itself corrupted.

� Oracle or a database administrator can bring a PARTLY REMOVE_AVAILABLE
rollback segment online. In contrast, you must take a NEEDS RECOVERY
rollback segment OFFLINE before it can be brought online. (If you recover the
database and thereby resolve the transaction, then Oracle automatically changes
the state of the NEEDS RECOVERY rollback segment to OFFLINE.)

� A database administrator can drop a NEEDS RECOVERY rollback segment. (This
lets the database administrator drop corrupted segments.) A PARTLY REMOVE_
AVAILABLE segment cannot be dropped. You must first resolve the in-doubt
transaction, either automatically by the RECO process or manually.

If you bring a PARTLY REMOVE_AVAILABLE rollback segment online (by a
statement or during instance startup), then Oracle can use it for new transactions.
However, the in-doubt transaction still holds some of its transaction table entries, so
the number of new transactions that can use the rollback segment is limited.

Until you resolve the in-doubt transaction, the transaction continues to hold the
extents it acquired in the rollback segment, preventing other transactions from
using them. Thus, the rollback segment may need to acquire new extents for the
active transactions, and therefore grow. To prevent the rollback segment from
growing, a database administrator can create a new rollback segment for
transactions to use until the in-doubt transaction is resolved, rather than bring the
PARTLY REMOVE_AVAILABLE segment online.

Deferred Rollback Segments
When a tablespace goes offline so that transactions cannot be rolled back
immediately, Oracle writes to a deferred rollback segment. The deferred rollback
segment contains the rollback entries that could not be applied to the tablespace, so
that they can be applied when the tablespace comes back online. These segments

See Also:

� Oracle9i Database Administrator’s Guide for information about
failures in distributed transactions

� "When Rollback Information Is Required" on page B-5 for
information on the transaction table
B-14 Oracle9i Database Concepts

PCTFREE, PCTUSED, and Row Chaining
disappear as soon as the tablespace is brought back online and recovered. Oracle
automatically creates deferred rollback segments in the SYSTEM tablespace.

High Water Mark
The high water mark is the boundary between used and unused space in a
segment. As requests for new free blocks that cannot be satisfied by existing free
lists are received, the block to which the high water mark points becomes a used
block, and the high water mark is advanced to the next block. In other words, the
segment space to the left of the high water mark is used, and the space to the right
of it is unused.

Figure B–5 shows a segment consisting of three extents containing 10K, 20K, and
30K of space, respectively. The high water mark is in the middle of the second
extent. Thus, the segment contains 20K of used space to the left of the high water
mark, and 40K of unused space to the right of the high water mark.

Figure B–5 High Water Mark

PCTFREE, PCTUSED, and Row Chaining
For manually managed tablespaces, two space management parameters, PCTFREE
and PCTUSED, enable you to control the use of free space for inserts and updates to
the rows in all the data blocks of a particular segment. Specify these parameters
when you create or alter a table or cluster (which has its own data segment). You
can also specify the storage parameter PCTFREE when creating or altering an index
(which has its own index segment).

Extent 1 Extent 3

10K 30K

UNUSED SPACE = 40K

High
Water
Mark

Segment

20K

Extent 2
Information on Deprecated Features B-15

PCTFREE, PCTUSED, and Row Chaining
The PCTFREE Parameter The PCTFREE parameter sets the minimum percentage of a
data block to be reserved as free space for possible updates to rows that already
exist in that block. For example, assume that you specify the following parameter
within a CREATE TABLE statement:

PCTFREE 20

This states that 20% of each data block in this table’s data segment be kept free and
available for possible updates to the existing rows already within each block. New
rows can be added to the row data area, and corresponding information can be
added to the variable portions of the overhead area, until the row data and
overhead total 80% of the total block size. Figure B–6 illustrates PCTFREE.

Note: This discussion does not apply to LOB datatypes (BLOB,
CLOB, NCLOB, and BFILE). They do not use the PCTFREE storage
parameter or free lists.

See "LOB Datatypes" on page 12-13 for more information.
B-16 Oracle9i Database Concepts

PCTFREE, PCTUSED, and Row Chaining
Figure B–6 PCTFREE

The PCTUSED Parameter The PCTUSED parameter sets the minimum percentage of a
block that can be used for row data plus overhead before new rows are added to the
block. After a data block is filled to the limit determined by PCTFREE, Oracle
considers the block unavailable for the insertion of new rows until the percentage of
that block falls below the parameter PCTUSED. Until this value is achieved, Oracle
uses the free space of the data block only for updates to rows already contained in
the data block. For example, assume that you specify the following parameter in a
CREATE TABLE statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is considered unavailable
for the insertion of any new rows until the amount of used space in the block falls to
39% or less (assuming that the block’s used space has previously reached
PCTFREE). Figure B–7 illustrates this.

PCTFREE = 20
Data Block

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block
Information on Deprecated Features B-17

PCTFREE, PCTUSED, and Row Chaining
Figure B–7 PCTUSED

How PCTFREE and PCTUSED Work Together PCTFREE and PCTUSED work together to
optimize the use of space in the data blocks of the extents within a data segment.
Figure B–8 illustrates the interaction of these two parameters.

61% Free
Space

No new rows are
inserted until amount
of used space falls
below 40%

PCTUSED = 40
Data Block
B-18 Oracle9i Database Concepts

PCTFREE, PCTUSED, and Row Chaining
Figure B–8 Maintaining the Free Space of Data Blocks with PCTFREE and PCTUSED

In a newly allocated data block, the space available for inserts is the block size
minus the sum of the block overhead and free space (PCTFREE). Updates to existing
data can use any available space in the block. Therefore, updates can reduce the
available space of a block to less than PCTFREE, the space reserved for updates but
not accessible to inserts.

Rows are
inserted up to
80% only,
because
PCTFREE
specifies that
20% of the
block must
remain open
for updates of
existing rows.
This cycle
continues . . .

Updates to
exisiting rows
use the free
space
reserved in
the block.
No new rows
can be
inserted into
the block
until the
amount of
used
space is 39%
or less.

After the
amount of
used space
falls below
40%, new
rows can
again be
inserted into
this block.

Rows are
inserted up to
80% only,
because
PCTFREE
specifies that
20% of the
block must
remain open
for updates of
existing rows.

1

3

2

4

Information on Deprecated Features B-19

PCTFREE, PCTUSED, and Row Chaining
For each data and index segment, Oracle maintains one or more free lists—lists of
data blocks that have been allocated for that segment’s extents and have free space
greater than PCTFREE. These blocks are available for inserts. When you issue an
INSERT statement, Oracle checks a free list of the table for the first available data
block and uses it if possible. If the free space in that block is not large enough to
accommodate the INSERT statement, and the block is at least PCTUSED, then Oracle
takes the block off the free list. Multiple free lists for each segment can reduce
contention for free lists when concurrent inserts take place.

After you issue a DELETE or UPDATE statement, Oracle processes the statement and
checks to see if the space being used in the block is now less than PCTUSED. If it is,
then the block goes to the beginning of the transaction free list, and it is the first of
the available blocks to be used in that transaction. When the transaction commits,
free space in the block becomes available for other transactions.
B-20 Oracle9i Database Concepts

Glossary

AFTER trigger

When defining a trigger, you can specify the trigger timing—whether the trigger
action is to be executed before or after the triggering statement.

AFTER triggers execute the trigger action after the triggering statement is executed.

BEFORE and AFTER apply to both statement and row triggers.

See Also: trigger

architecture

See: Oracle architecture

archived redo log

Optionally, filled online redo files can be archived before being reused, creating an
archived redo log. Archived (offline) redo log files constitute the archived redo log.

See Also: redo log

background process

Background processes consolidate functions that would otherwise be handled by
multiple Oracle programs running for each user process. The background processes
asynchronously perform I/O and monitor other Oracle processes to provide
increased parallelism for better performance and reliability.

Oracle creates a set of background processes for each instance.

See Also: instance, process, Oracle process, user process
Glossary-1

BEFORE trigger

When defining a trigger, you can specify the trigger timing—whether the trigger
action is to be executed before or after the triggering statement.

BEFORE triggers execute the trigger action before the triggering statement is
executed.

BEFORE and AFTER apply to both statement and row triggers.

See Also: trigger

buffer cache

The database buffer cache is the portion of the SGA that holds copies of data blocks
read from data files. All user processes concurrently connected to the instance share
access to the database buffer cache.

See Also: system global area (SGA)

byte semantics

The length of string is measured in bytes.

character semantics

The length of string is measured in characters.

CHECK constraint

A CHECK integrity constraint on a column or set of columns requires that a
specified condition be true or unknown for every row of the table. If a DML
statement results in the condition of the CHECK constraint evaluating to false, then
the statement is rolled back.

client

In client/server architecture, the front-end database application, which interacts
with a user through the keyboard, display, and pointing device such as a mouse.
The client portion has no data access responsibilities. It concentrates on requesting,
processing, and presenting data managed by the server portion.

See Also: client/server architecture, server

client/server architecture

Software architecture based on a separation of processing between two CPUs, one
acting as the client in the transaction, requesting and receiving services, and the
other as the server that provides services in a transaction.
Glossary-2

cluster

Optional structure for storing table data. Clusters are groups of one or more tables
physically stored together because they share common columns and are often used
together. Because related rows are physically stored together, disk access time
improves.

column

Vertical space in a database table that represents a particular domain of data. A
column has a column name and a specific datatype. For example, in a table of
employee information, all of the employees' dates of hire would constitute one
column.

See Also: row, table

commit

Make permanent changes to data (inserts, updates, deletes) in the database. Before
changes are committed, both the old and new data exist so that changes can be
stored or the data can be restored to its prior state.

See Also: roll back

concurrency

Simultaneous access of the same data by many users. A multiuser database
management system must provide adequate concurrency controls, so that data
cannot be updated or changed improperly, compromising data integrity.

See Also: data consistency

connection

Communication pathway between a user process and an Oracle instance.

See Also: session, user process

control file

A file that records the physical structure of a database and contains the database
name, the names and locations of associated databases and online redo log files, the
time stamp of the database creation, the current log sequence number, and
checkpoint information.

See Also: physical structures, redo log
Glossary-3

database

Collection of data that is treated as a unit. The purpose of a database is to store and
retrieve related information.

database buffer

One of several types of memory structures that stores information within the
system global area. Database buffers store the most recently used blocks of data.

See Also: system global area (SGA)

database buffer cache

Memory structure in the system global area that stores the most recently used
blocks of data.

See Also: system global area (SGA)

database link

A named schema object that describes a path from one database to another.
Database links are implicitly used when a reference is made to a global object name
in a distributed database.

database writer process (DBWn)

An Oracle background process that writes the contents of buffers to data files. The
DBWn processes are responsible for writing modified (dirty) buffers in the database
buffer cache to disk.

See Also: buffer cache

data block

Smallest logical unit of data storage in an Oracle database. Also called logical
blocks, Oracle blocks, or pages. One data block corresponds to a specific number of
bytes of physical database space on disk.

See Also: extent, segment

data consistency

In a multiuser environment, where many users can access data at the same time
(concurrency), data consistency means that each user sees a consistent view of the
data, including visible changes made by the user’s own transactions and
transactions of other users.

See Also: concurrency
Glossary-4

data dictionary

The central set of tables and views that are used as a read-only reference about a
particular database. A data dictionary stores such information as:

� The logical and physical structure of the database

� Valid users of the database

� Information about integrity constraints

� How much space is allocated for a schema object and how much of it is in use

A data dictionary is created when a database is created and is automatically
updated when the structure of the database is updated.

data integrity

Business rules that dictate the standards for acceptable data. These rules are applied
to a database by using integrity constraints and triggers to prevent the entry of
invalid information into tables.

See Also: integrity constraint, trigger

data file

A physical operating system file on disk that was created by Oracle and contains
data structures such as tables and indexes. A data file can only belong to one
database.

See Also: index, physical structures

data segment

Each nonclustered table has a data segment. All of the table’s data is stored in the
extents of its data segment. For a partitioned table, each partition has a data
segment.

Each cluster has a data segment. The data of every table in the cluster is stored in
the cluster’s data segment.

See Also: cluster, extent, segment

DBTZ

Database time zone.

dedicated server

A database server configuration in which a server process handles requests for a
single user process.
Glossary-5

See Also: shared server

dispatcher processes (Dnnn)

Optional background processes, present only when a shared server configuration is
used. At least one dispatcher process is created for every communication protocol in
use (D000, . . ., Dnnn). Each dispatcher process is responsible for routing requests
from connected user processes to available shared server processes and returning
the responses back to the appropriate user processes.

See Also: shared server

distributed processing

Software architecture that uses more than one computer to divide the processing for
a set of related jobs. Distributed processing reduces the processing load on a single
computer.

DDL

Data definition language. Includes statements like CREATE/ALTER TABLE/INDEX,
which define or change data structure.

DML

Data manipulation language. Includes statements like INSERT, UPDATE, and
DELETE, which change data in tables.

DOP

The degree of parallelism of an operation.

Enterprise Manager

An Oracle system management tool that provides an integrated solution for
centrally managing your heterogeneous environment. It combines a graphical
console, Oracle Management Servers, Oracle Intelligent Agents, common services,
and administrative tools for managing Oracle products.

extent

Second level of logical database storage. An extent is a specific number of
contiguous data blocks allocated for storing a specific type of information.

See Also: data block, segment
Glossary-6

flashback query

Uses Oracle's multiversion read-consistency capabilities to restore data by applying
undo as needed. You can view and repair historical data, and you can perform
queries on the database as of a certain wall clock time or user-specified system
commit number (SCN).

foreign key

Integrity constraint that requires each value in a column or set of columns to match
a value in a related table’s UNIQUE or PRIMARY KEY.

FOREIGN KEY integrity constraints also define referential integrity actions that
dictate what Oracle should do with dependent data if the data it references is
altered.

See Also: integrity constraint, primary key

index

Optional structure associated with tables and clusters. You can create indexes on
one or more columns of a table to speed SQL statement execution on that table.

See Also: cluster

index segment

Each index has an index segment that stores all of its data. For a partitioned index,
each partition has an index segment.

See Also: index, segment

indextype

An object that registers a new indexing scheme by specifying the set of supported
operators and routines that manage a domain index.

instance

A system global area (SGA) and the Oracle background processes constitute an
Oracle instance. Every time a database is started, a system global area is allocated
and Oracle background processes are started. The SGA is deallocated when the
instance shuts down.

See Also: background process, system global area (SGA)

integrity

See: data integrity
Glossary-7

integrity constraint

Declarative method of defining a rule for a column of a table. Integrity constraints
enforce the business rules associated with a database and prevent the entry of
invalid information into tables.

key

Column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the different tables and
columns of a relational database.

See Also: integrity constraint, foreign key, primary key

large pool

Optional area in the system global area that provides large memory allocations for
Oracle backup and restore operations, I/O server processes, and session memory
for the shared server and Oracle XA.

See Also: system global area (SGA), process, shared server, Oracle XA

LogMiner

A tool that lets administrators use SQL to read, analyze, and interpret log files. It
can view any redo log file, online or archived. The Oracle Enterprise Manager
application Oracle9i LogMiner Viewer adds a GUI-based interface.

log writer process (LGWR)

The log writer process (LGWR) is responsible for redo log buffer
management—writing the redo log buffer to a redo log file on disk. LGWR writes
all redo entries that have been copied into the buffer since the last time it wrote.

See Also: redo log

logical structures

Logical structures of an Oracle database include tablespaces, schema objects, data
blocks, extents, and segments. Because the physical and logical structures are
separate, the physical storage of data can be managed without affecting the access
to logical storage structures.

See Also: physical structures

materialized view

A materialized view provides indirect access to table data by storing the results of a
query in a separate schema object.
Glossary-8

See Also: view

NOT NULL constraint

Data integrity constraint that requires a column of a table contain no null values.

See Also: NULL value

NULL value

Absence of a value in a column of a row. Nulls indicate missing, unknown, or
inapplicable data. A null should not be used to imply any other value, such as zero.

object type

An object type consists of two parts: a spec and a body. The type body always
depends on its type spec.

offline redo log

See: archived redo log

online redo log

The online redo log is a set of two or more online redo log files that record all
changes made to the database, including both uncommitted and committed
changes. Redo entries are temporarily stored in redo log buffers of the system
global area, and the background process LGWR writes the redo entries sequentially
to an online redo log file.

See Also: redo log, system global area (SGA), background process, log writer
process (LGWR)

operator

In memory management, the term operator refers to a data flow operator, such as a
sort, hash join, or bitmap merge.

Oracle architecture

Memory and process structures used by an Oracle server to manage a database.

See Also: database, process, server

Oracle process

Oracle processes run the Oracle server code. They include server processes and
background processes.

See Also: process, server process, background process, user process
Glossary-9

Oracle XA

The Oracle XA library is an external interface that allows global transactions to be
coordinated by a transaction manager other than the Oracle server.

partition

A smaller and more manageable piece of a table or index.

physical structures

Physical database structures of an Oracle database include data files, redo log files,
and control files.

See Also: logical structures

PL/SQL

Oracle’s procedural language extension to SQL. PL/SQL enables you to mix SQL
statements with procedural constructs. With PL/SQL, you can define and execute
PL/SQL program units such as procedures, functions, and packages.

See Also: SQL

primary key

The column or set of columns included in the definition of a table’s PRIMARY KEY
constraint. A primary key’s values uniquely identify the rows in a table. Only one
primary key can be defined for each table.

See Also: PRIMARY KEY constraint

PRIMARY KEY constraint

Integrity constraint that disallows duplicate values and nulls in a column or set of
columns.

See Also: integrity constraint

priority inversion

Priority inversion occurs when a high priority job is executed with lower amount of
resources than a low priority job. Thus the expected priority is "inverted."
Glossary-10

process

Each process in an Oracle instance performs a specific job. By dividing the work of
Oracle and database applications into several processes, multiple users and
applications can connect to a single database instance simultaneously.

See Also: Oracle process, user process

program global area (PGA)

A memory buffer that contains data and control information for a server process. A
PGA is created by Oracle when a server process is started. The information in a
PGA depends on the Oracle configuration.

query block

A self-contained DML against a table. A query block can be a top-level DML or a
subquery.

See Also: DML

read consistency

In a multiuser environment, Oracle's read consistency ensures that

� The set of data seen by a statement remains constant throughout statement
execution (statement-level read consistency).

� Readers and writer of database data do not wait for other writers or other
readers of the same data. Writers of database data wait only for other writers
who are updating identical rows in concurrent transactions.

See Also: concurrency, data consistency

Real Application Clusters

Option with Oracle9i Enterprise Edition that allows multiple concurrent instances
to share a single physical database.

See Also: instance

Recovery Manager (RMAN)

An Oracle utility that manages backup and recovery operations, creates backups of
database files (datafiles, control files, and archived redo log files), and restores or
recovers a database from backups.
Glossary-11

redo log

A set of files that protect altered database data in memory that has not been written
to the datafiles. The redo log can consist of two parts: the online redo log and the
archived redo log.

See Also: online redo log, archived redo log

redo log buffer

Memory structure in the system global area that stores redo entries—a log of
changes made to the database. The redo entries stored in the redo log buffers are
written to an online redo log file, which is used if database recovery is necessary.

See Also: system global area (SGA)

referential integrity

A rule defined on a key (a column or set of columns) in one table that guarantees
that the values in that key match the values in a key in a related table (the
referenced value).

Referential integrity also includes the rules that dictate what types of data
manipulation are allowed on referenced values and how these actions affect
dependent values.

See Also: key

roll back

Undo any changes to data that have been performed by SQL statements within an
uncommitted transaction. After a transaction has been committed, it cannot be
rolled back.

Oracle uses rollback segments to store old values. The redo log contains a record of
changes.

See Also: commit, transaction, rollback segment

rollback segment

Logical database structure created by the database administrator to temporarily
store undo information. Rollback segments store old data changed by SQL
statements in a transaction until it is committed.

See Also: commit, logical structures, segment
Glossary-12

row

Set of attributes or values pertaining to one entity or record in a table. A row is a
collection of column information corresponding to a single record.

See Also: column, table

ROWID

A globally unique identifier for a row in a database. It is created at the time the row
is inserted into a table, and destroyed when it is removed from a table.

schema

Collection of database objects, including logical structures such as tables, views,
sequences, stored procedures, synonyms, indexes, clusters, and database links. A
schema has the name of the user who controls it.

See Also: logical structures

SDTZ

Current session time zone.

segment

Third level of logical database storage. A segment is a set of extents, each of which
has been allocated for a specific data structure, and all of which are stored in the
same tablespace.

See Also: extent, data block

sequence

A sequence generates a serial list of unique numbers for numeric columns of a
database’s tables.

server

In a client/server architecture, the computer that runs Oracle software and handles
the functions required for concurrent, shared data access. The server receives and
processes the SQL and PL/SQL statements that originate from client applications.

See Also: client, client/server architecture

server process

Server processes handle requests from connected user processes. A server process is
in charge of communicating with the user process and interacting with Oracle to
carry out requests of the associated user process.
Glossary-13

See Also: process, user process

session

Specific connection of a user to an Oracle instance through a user process. A session
lasts from the time the user connects until the time the user disconnects or exits the
database application.

See Also: connection, instance, user process

shared pool

Portion of the system global area that contains shared memory constructs such as
shared SQL areas. A shared SQL area is required to process every unique SQL
statement submitted to a database.

See Also: system global area (SGA), SQL

shared server

A database server configuration that allows many user processes to share a small
number of server processes, minimizing the number of server processes and
maximizing the use of available system resources.

See Also: dedicated server

SQL

Structured Query Language, a nonprocedural language to access data. Users
describe in SQL what they want done, and the SQL language compiler
automatically generates a procedure to navigate the database and perform the
desired task.

See Also: SQL*Plus, PL/SQL

SQL*Plus

Oracle tool used to execute SQL statements against an Oracle database. Oracle SQL
includes many extensions to the ANSI/ISO standard SQL language.

See Also: SQL, PL/SQL

subtype

In the hierarchy of user-defined datatypes, a subtype is always a dependent on its
supertype.

supertype

See: subtype
Glossary-14

synonym

An alias for a table, view, sequence, or program unit.

system global area (SGA)

A group of shared memory structures that contain data and control information for
one Oracle database instance. If multiple users are concurrently connected to the
same instance, then the data in the instance’s SGA is shared among the users.
Consequently, the SGA is sometimes referred to as the shared global area.

See Also: instance

table

Basic unit of data storage in an Oracle database. Table data is stored in rows and
columns.

See Also: column, row

tablespace

A database storage unit that groups related logical structures together.

See Also: logical structures

temporary segment

Temporary segments are created by Oracle when a SQL statement needs a
temporary work area to complete execution. When the statement finishes execution,
the temporary segment’s extents are returned to the system for future use.

See Also: extent, segment

transaction

Logical unit of work that contains one or more SQL statements. All statements in a
transaction are committed or rolled back together.

See Also: commit, roll back

trigger

Stored database procedure automatically invoked whenever a table or view is
modified, for example by INSERT, UPDATE, or DELETE operations.
Glossary-15

Unicode

A way of representing all the characters in all the languages in the world.
Characters are defined as a sequence of codepoints, a base codepoint followed by
any number of surrogates. There are 64K codepoints.

Unicode column

A column of type NCHAR, NVARCHAR2, or NCLOB in Oracle9i or later. It is
guaranteed to be able to hold unicode.

UNIQUE key constraint

A data integrity constraint requiring that every value in a column or set of columns
(key) be unique—that is, no two rows of a table have duplicate values in a specified
column or set of columns.

See Also: integrity constraint, key

user name

The name by which a user is known to the Oracle server and to other users. Every
user name is associated with a password, and both must be entered to connect to an
Oracle database.

user process

User processes execute the application or Oracle tool code.

See Also: process, Oracle process

UTC

Coordinated Universal Time, previously called Greenwich Mean Time, or GMT.

view

A view is a custom-tailored presentation of the data in one or more tables. A view
can also be thought of as a "stored query." Views do not actually contain or store
data; they derive their data from the tables on which they are based.

Like tables, views can be queried, updated, inserted into, and deleted from, with
some restrictions. All operations performed on a view affect the base tables of the
view.
Glossary-16

Index
A
access control, 23-2

discretionary, definition, 1-44
fine-grained access control, 23-24
password encryption, 22-8
privileges, 23-2
roles, 23-17
roles, definition, 1-46

ADMIN OPTION
roles, 23-20
system privileges, 23-3

administrator privileges, 5-3
statement execution audited, 24-5

Advanced Queuing, 1-16
event publication, 17-14
publish-subscribe support, 17-14
queue monitor process, 8-14

AFTER triggers, 17-10
defined, 17-10
when fired, 17-18

aggregate functions
user-defined, 13-15

alert file, 8-14
ARCn processes, 8-13
redo logs, 8-9

alias
qualifying subqueries (inline views), 10-21

ALL_ views, 4-6
ALL_UPDATABLE_COLUMNS view, 10-21
allocation of resources, 9-1
ALTER DATABASE statement, 5-7
ALTER SESSION statement, 14-5

SET CONSTRAINTS DEFERRED clause, 21-25

transaction isolation level, 20-8
ALTER statement, 14-4
ALTER SYSTEM statement, 14-5

dynamic parameters
LOG_ARCHIVE_MAX_PROCESSES, 8-13

ALTER TABLE statement
auditing, 24-7
CACHE clause, 7-8
DEALLOCATE UNUSED clause, 2-10
disable or enable constraints, 21-26
MODIFY CONSTRAINT clause, 21-27
triggers, 17-7
validate or novalidate constraints, 21-26

ALTER USER statement
temporary segments, 2-14

American National Standards Institute (ANSI)
datatypes

conversion to Oracle datatypes, 12-23
datatypes, implicit conversion, 12-24

ANALYZE statement
shared pool, 7-14

anonymous PL/SQL blocks, 14-16, 14-25
applications, 14-19
contrasted with stored procedures, 14-25
dynamic SQL, 14-20
performance, 14-25

ANSI SQL standard
datatypes of, 12-23

ANSI/ISO SQL standard
data concurrency, 20-2
isolation levels, 20-11

applications
application triggers compared with database

triggers, 17-3
Index-1

can find constraint violations, 21-6
context, 23-25
data dictionary references, 4-4
data warehousing, 10-48
database access through, 8-2
dependencies of, 15-11
discrete transactions, 16-11
enhancing security with, 21-6, 23-18
object dependencies and, 15-13
online transaction processing (OLTP)

reverse key indexes, 10-47
processes, 8-4
program interface and, 8-22
roles and, 23-19
security

application context, 23-25
sharing code, 7-22
transaction termination and, 16-6

architecture
client/server, definition, 1-32
overview, 1-21

ARCHIVELOG mode
archiver process (ARCn) and, 8-13

archiver process (ARCn)
described, 8-13
multiple processes, 8-13

ARCn background process, 8-13
array processing, 14-13
arrays

size of VARRAYs, 13-11
variable (VARRAYs), 13-11

asynchronous communication
in message queuing, definition, 1-38

attributes
object types, 13-2, 13-4

attributes of object types, 13-4
AUDIT statement, 14-4

locks, 20-31
auditing, 24-1

audit options, 24-3
audit records, 24-3
audit trails, 24-3

database, 24-3
operating system, 24-5, 24-6

by access, 24-12

mandated for, 24-12
by session, 24-11

prohibited with, 24-12
database and operating-system usernames, 22-4
DDL statements, 24-7
described, 24-2
distributed databases and, 24-6
DML statements, 24-7
fine-grained, 24-9
levels of, listed, 1-48
privilege use, 24-2, 24-7
range of focus, 24-3, 24-10
schema object, 24-2, 24-3, 24-8
security and, 24-7
statement, 24-2, 24-7
successful executions, 24-10
transaction independence, 24-4
types of, 24-2
unsuccessful executions, 24-10
user, 24-13
when options take effect, 24-6

authentication
database administrators, 22-13
described, 22-3
multitier, 22-10
network, 22-4
operating system, 22-4
Oracle, 22-8
public key infrastructure, 22-5
remote, 22-7

automatic segment space management, 2-6
automatic undo management, 2-16

B
back-end of client/server architecture, 6-2
background processes, 8-5

definition, 1-27
described, 8-5
diagrammed, 8-6
trace files for, 8-14

backups
overview, 1-50
types listed, 1-53

bandwidth, 18-3
Index-2

base tables
definition, 1-3

BEFORE triggers, 17-10
defined, 17-10
when fired, 17-18

BFILE datatype, 12-15
binary data

BFILEs, 12-15
BLOBs, 12-14
RAW and LONG RAW, 12-15

bind variables
user-defined types, 13-18

bitmap indexes, 10-48
cardinality, 10-49
nulls and, 10-10, 10-52
parallel query and DML, 10-49

bitmap tablespace management, 3-11
bitmaps

to manage free space, 2-6
BLOBs (binary large objects), 12-14
blocking transactions, 20-11
block-level recovery, 20-23
blocks

anonymous, 14-16, 14-25
database, 2-3

BOOLEAN datatype, 12-2
branch blocks, 10-36
broker, 1-64
B-tree indexes, 10-35

compared with bitmap indexes, 10-48, 10-49
index-organized tables, 10-57

buffer caches, 7-7, 8-8
database, 7-7, 8-8
definition, 1-25
extended buffer cache (32-bit), 7-17
multiple buffer pools, 7-10

buffer pools, 7-10
BUFFER_POOL_KEEP initialization

parameter, 7-10
BUFFER_POOL_RECYCLE initialization

parameter, 7-10
buffers

database buffer cache
incremental checkpoint, 8-8

redo log, 7-11

redo log, definition, 1-25
business rules

enforcing in application code, 21-5
enforcing using stored procedures, 21-5
enforcing with constraints, 21-1

advantages of, 21-5
byte semantics, 12-5

C
CACHE clause, 7-8
Cache Fusion, 20-6
caches

buffer, 7-7
multiple buffer pools, 7-10

cache hit, 7-7
cache miss, 7-7
data dictionary, 4-4, 7-13

location of, 7-11
database buffer, definition, 1-25
library cache, 7-11, 7-12, 7-13
object cache, 13-18, 13-20

object views, 13-25
private SQL area, 7-12
shared SQL area, 7-11, 7-12
writing of buffers, 8-8

calls
Oracle call interface, 8-23

cannot serialize access, 20-11
cardinality, 10-49
CASCADE actions

DELETE statements and, 21-16
century, 12-12
certificate authority, 22-6
chaining of rows, 1-2, 2-7, 10-6
change data capture, 1-60
CHAR datatype, 12-3

ANSI, 12-24
blank-padded comparison semantics, 12-4

CHAR VARYING datatype, ANSI, 12-24
CHARACTER datatype

ANSI, 12-24
DB2, 12-25
SQL/DS, 12-25

character semantics, 12-5
Index-3

character sets
CLOB and NCLOB datatypes, 12-15
column lengths, 12-4
NCHAR and NVARCHAR2, 12-6

CHARACTER VARYING datatype
ANSI, 12-24

CHARTOROWID function
data conversion, 12-27

check constraints, 21-20
checking mechanism, 21-23
defined, 21-20
multiple constraints on a column, 21-21
subqueries prohibited in, 21-21

checkpoint process (CKPT), 8-11
definition, 1-28

checkpoints
checkpoint process (CKPT), 8-11
control files and, 3-21
DBWn process, 8-8, 8-11
incremental, 8-8
statistics on, 8-11

CKPT background process, 8-11
client processes. See user processes
clients

in client/server architecture, definition, 1-32
client/server architectures, 6-2

definition, 1-32
diagrammed, 6-2
distributed processing in, 6-2
overview of, 6-2
program interface, 8-22

CLOB datatype, 12-15
clone databases

mounting, 5-8
cluster keys, 10-65
CLUSTER_DATABASE parameter, 5-7
clustered computer systems

Real Application Clusters, 5-3
clusters

cannot be partitioned, 11-1
definition, 1-3
dictionary locks and, 20-31
hash, 10-65

contrasted with index, 10-65
index

contrasted with hash, 10-65
indexes on, 10-28

cannot be partitioned, 11-1
keys, 10-65

affect indexing of nulls, 10-10
overview of, 10-63
rowids and, 10-9
scans of, 7-8
storage parameters of, 10-6

coalescing extents, 2-11
coalescing free space

extents, B-3
SMON process, 1-28, 8-11

within data blocks, 2-6
collections, 13-11

index-organized tables, 10-59
key compression, 10-47

nested tables, 13-12
variable arrays (VARRAYs), 13-11

columns
cardinality, 10-49
column objects, 13-8
default values for, 10-10
described, 10-5
integrity constraints, 10-5, 10-11, 21-4, 21-7
maximum in concatenated indexes, 10-31
maximum in view or table, 10-17
nested tables, 10-13
order of, 10-9
prohibiting nulls in, 21-7
pseudocolumns

ROWID, 12-17
USER, 23-8

COMMENT statement, 14-4
COMMIT comment

deprecation of, 16-9
COMMIT statement, 14-5

ending a transaction, 16-2
fast commit, 8-10
implied by DDL, 16-2
two-phase commit, 16-10

committing transactions
defined, 16-2
fast commit, 8-10
group commits, 8-10
Index-4

implementation, 8-10
comparison methods, 13-7
compiled PL/SQL

advantages of, 14-24
procedures, 14-25
pseudocode, 17-21
shared pool, 14-18
triggers, 17-21

components
Data Guard, 1-63

composite indexes, 10-30
compression of free space in data blocks, 2-6
compression, index key, 10-45
concatenated indexes, 10-30
concurrency

data, definition, 1-40
described, 20-2
limits on

for each user, 22-19
transactions and, 20-17

configuration of a database
process structure, 8-2

configurations
Data Guard, 1-63

configuring
parameter file, 5-4
process structure, 8-2

CONNECT role, 23-23
connection pooling, 22-10
connections

defined, 8-4
embedded SQL, 14-5
listener process and, 6-9, 8-19
restricting, 5-6
sessions contrasted with, 8-4
with administrator privileges, 5-3

consistency
read consistency, definition, 1-40

consistency of data
See also read consistency

constants
in stored procedures, 14-19

constraints
allowed in views, 10-17
alternatives to, 21-5

applications can find violations, 21-6
CHECK, 21-20
default values and, 21-24
defined, 10-5
disabling temporarily, 21-7
effect on performance, 21-6
ENABLE or DISABLE, 21-26
enforced with indexes, 10-31

PRIMARY KEY, 21-12
UNIQUE, 21-10

FOREIGN KEY, 21-13
integrity

types listed, 1-20
integrity, definition, 1-20
mechanisms of enforcement, 21-21
modifying, 21-27
NOT NULL, 21-7, 21-11
on views, 10-23
PRIMARY KEY, 21-11
referential

effect of updates, 21-16
self-referencing, 21-14

triggers cannot violate, 17-17
triggers contrasted with, 17-5
types listed, 21-1
UNIQUE key, 21-8

partially null, 21-11
VALIDATE or NOVALIDATE, 21-26
what happens when violated, 21-5
when evaluated, 10-11

constructor methods, 13-6
content management, 1-67
contention

for data
deadlocks, 20-19
lock escalation does not occur, 20-19

for rollback segments, B-6
control files, 3-20

changes recorded, 3-21
checkpoints and, 3-21
contents, 3-20
definition, 1-8
how specified, 5-4
multiplexed, 3-22
overview, 3-20
Index-5

used in mounting database, 5-6
converting data

program interface, 8-23
correlation names

inline views, 10-21
cost-based optimization

query rewrite, 10-22
CPU

utilization, 18-3
CPU allocation

rules, 9-15
CPU resources

allocation, 9-5
CPU time limit, 22-18
CPU_COUNT, 9-18
CREATE CLUSTER statement

storage parameters, 2-13
CREATE INDEX statement

storage parameters, 2-13
temporary segments, 2-14

CREATE PACKAGE statement
locks, 20-31

CREATE PROCEDURE statement
locks, 20-31

CREATE statement, 14-4
CREATE SYNONYM statement

locks, 20-31
CREATE TABLE AS SELECT

rules of parallelism
index-organized tables, 18-12, 18-13

CREATE TABLE statement
AS SELECT

compared with direct-path INSERT, 19-2
auditing, 24-7, 24-10
CACHE clause, 7-8
enable or disable constraints, 21-26
examples

column objects, 13-5
nested tables, 13-12
object tables, 13-8, 13-12

locks, 20-31
parallelism

index-organized tables, 18-12, 18-13
storage parameters, 2-13
triggers, 17-7

CREATE TEMPORARY TABLE statement, 10-13
CREATE TRIGGER statement

compiled and stored, 17-21
examples, 17-20
locks, 20-31

CREATE TYPE statement
nested tables, 13-4, 13-12
object types, 13-4
object views, 13-25
VARRAYs, 13-11

CREATE USER statement
temporary segments, 2-14

CREATE VIEW statement
examples

object views, 13-25
locks, 20-31

cursors
creating, 14-10
defined, 14-6
definition, 1-26
embedded SQL, 14-5
maximum number of, 14-6
object dependencies and, 15-10
opening, 7-18, 14-6
private SQL areas and, 7-19, 14-6
recursive, 14-7
recursive SQL and, 14-7
scrollable, 14-7
stored procedures and, 14-19

D
dangling REFs, 13-10
data

access to
concurrent, 20-2
control of, 22-2
fine-grained access control, 23-24
security domains, 22-2

concurrency, definition, 1-40
consistency of

examples of lock behavior, 20-33
locks, 20-3
manual locking, 20-32
read consistency, definition, 1-40
Index-6

repeatable reads, 20-6
transaction level, 20-6
underlying principles, 20-17

how stored in tables, 10-6
integrity of, 10-5, 21-2

CHECK constraints, 21-20
enforcing, 21-4, 21-5
introduction, 1-19
referential, 21-3
types, 21-3

locks on, 20-22
data blocks, 2-2

allocating for extents, B-2
cached in memory, 8-8
coalescing extents, B-3
coalescing free space in blocks, 2-6
controlling free space in, 2-7, B-15
definition, 1-4
format, 2-4
free lists and, B-20
how rows stored in, 1-2, 10-6
overview, 2-2
read-only transactions and, 20-33
row directory, 10-9
shared in clusters, 10-63
shown in rowids, 12-18, 12-19
space available for inserted rows, B-19
stored in the buffer cache, 7-7
writing to disk, 8-8

data conversion
CHARTOROWID function, 12-27
HEXTORAW function, 12-27
program interface, 8-23
RAWTOHEX function, 12-27
RAWTONHEX function, 12-27
REFTOHEX function, 12-27
ROWIDTOCHAR function, 12-27
ROWIDTONCHAR function, 12-27
TO_CHAR function, 12-26
TO_CLOB function, 12-27
TO_DATE function, 12-26
TO_NCHAR function, 12-26
TO_NCLOB function, 12-27
TO_NUMBER function, 12-26

data definition language

auditing, 24-7
definition, 1-11
described, 14-4
embedding in PL/SQL, 14-20
locks, 20-30
parsing with DBMS_SQL, 14-20
processing statements, 14-14
roles and privileges, 23-22

data dictionary
access to, 4-2
ALL prefixed views, 4-6
cache, 7-13

location of, 7-11
content of, 4-2, 7-13
datafiles, 3-8
DBA prefixed views, 4-6
defined, 4-2
definition, 1-32
dependencies tracked by, 15-3
dictionary managed tablespaces, 3-13
DUAL table, 4-6
dynamic performance tables, 4-7
locks, 20-30
owner of, 4-3
prefixes to views of, 4-5
public synonyms for, 4-4
row cache and, 7-13
structure of, 4-2
SYSTEM tablespace, 3-8, 4-2, 4-5
USER prefixed views, 4-5
uses of, 4-3

table and column definitions, 14-11
Data Guard

broker, 1-64
components, 1-63
configurations, 1-63
log apply services

log apply services, 1-63
log transport services

log transport services, 1-63
logical standby databases, 1-64
overview, 1-63
physical standby databases, 1-64

data loading
with external tables, 10-15
Index-7

data locks
conversion, 20-18
duration of, 20-17
escalation, 20-18

data manipulation language
auditing, 24-7
definition, 1-11
described, 14-3
locks acquired by, 20-27
parallel DML, 18-13
privileges controlling, 23-5
processing statements, 14-10
serializable isolation for subqueries, 20-14
triggers and, 17-4, 17-20

data models
object-relational principles, 1-32, 1-40

data object number
extended rowid, 12-18

data protection, 1-63
modes, 1-63

data security
definition, 1-43

data segments, 2-12, 10-6
definition, 1-4

data warehousing
architecture, 1-55
bitmap indexes, 10-48
dimension schema objects, 10-25
ETL, 1-54
features, 1-53
hierarchies, 10-25
invalidated views and packages, 15-7
materialized views, 1-58, 10-22
OLAP, 1-54
summaries, 10-22

database administrators (DBAs)
authentication, 22-13
data dictionary views, 4-6
DBA role, 23-23
password files, 22-14

database buffers
after committing transactions, 16-7
buffer cache, 7-7, 8-8
clean, 8-8
committing transactions, 8-10

defined, 7-7
definition, 1-25
dirty, 7-7, 8-8
free, 7-7
multiple buffer pools, 7-10
pinned, 7-7
size of cache, 7-8
writing of, 8-8

database management system (DBMS)
object-relational DBMS, 13-2
principles, 1-32

database object metadata, 4-7
Database Resource Manager, 9-1

active session pool with queuing, 9-12
and operating system control, 9-17
and performance, 9-7
automatic consumer group switching, 9-12
execution time limit, 9-13
introduction, 9-2
multiple level CPU resource allocation, 9-12
resource plans

plan schemas, 9-12
specifying a parallel degree limit, 9-12
terminology, 9-3
undo pool, 9-13

database security
overview, 1-43

database structures
control files, 3-20
data blocks, 2-2, 2-3
data dictionary, 4-1
datafiles, 3-1, 3-18
extents, 2-2, 2-8
memory, 7-1
processes, 8-1
revealing with rowids, 12-19
schema objects, 10-3
segments, 2-2, 2-12
tablespaces, 3-1, 3-7

database triggers, 17-1
and information management, 1-14
See also triggers

database writer process (DBWn), 8-8
checkpoints, 8-8
defined, 8-8
Index-8

definition, 1-28
least recently used algorithm (LRU), 8-8
multiple DBWn processes, 8-8
when active, 8-8
write-ahead, 8-9
writing to disk at checkpoints, 8-11

databases
access control

password encryption, 22-8
security domains, 22-2

clone database, 5-8
closing, 5-10

terminating the instance, 5-10
configuring, 5-4
contain schemas, 22-2
distributed

changing global database name, 7-14
nodes of, definition, 1-33

distributed, definition, 1-33
limitations on usage, 22-17
links, definition, 1-3
mounting, 5-6
name stored in control file, 3-20
open and closed, 5-3
opening, 5-8

acquiring rollback segments, B-10
opening read-only, 5-9
scalability, 6-4, 18-2
shutting down, 5-10
standby, 5-7
starting up, 5-2

forced, 5-11
structures

control files, 3-20
data blocks, 2-2, 2-3
data dictionary, 4-1
datafiles, 3-1, 3-18
extents, 2-2, 2-8
logical, 2-1
memory, 7-1
processes, 8-1
revealing with rowids, 12-19
schema objects, 10-3
segments, 2-2, 2-12
tablespaces, 3-1, 3-7

datafiles
contents of, 3-18
data dictionary, 3-8
datafile 1, 3-8

SYSTEM tablespace, 3-8
definition, 1-7
in online or offline tablespaces, 3-19
named in control files, 3-21
overview of, 3-18
read-only, 3-15
relationship to tablespaces, 3-2
shown in rowids, 12-18, 12-19
SYSTEM tablespace, 3-8
taking offline, 3-19
temporary, 3-19

datatypes, 12-2, 12-3
ANSI, 12-23
array types, 13-11
BOOLEAN, 12-2
CHAR, 12-3
character, 12-3, 12-15
collections, 13-11
conversions of

by program interface, 8-23
non-Oracle types, 12-23
Oracle to another Oracle type, 12-26

DATE, 12-10
DB2, 12-23
how they relate to tables, 10-5
in PL/SQL, 12-2
list of available, 12-2
LOB datatypes, 12-13

BFILE, 12-15
BLOB, 12-14
CLOB and NCLOB, 12-15

LONG, 12-7
storage of, 10-9

multimedia, 13-3
NCHAR and NVARCHAR2, 12-6
nested tables, 10-13, 13-12
NUMBER, 12-8
object types, 13-4
RAW and LONG RAW, 12-15
ROWID, 12-16, 12-17
SQL/DS, 12-23
Index-9

summary, 12-3
TIMESTAMP, 12-12
TIMESTAMP WITH LOCAL TIME

ZONE, 12-12
TIMESTAMP WITH TIME ZONE, 12-12
URI, 12-26
user-defined, 13-1, 13-3
VARCHAR, 12-4
VARCHAR2, 12-4
XML, 12-25

DATE datatype, 12-10
arithmetic with, 12-11
changing default format of, 12-10
Julian dates, 12-11
midnight, 12-10

DATETIME datatypes, 12-12
daylight savings support, 12-12
DB_BLOCK_SIZE initialization parameter, 7-8
DB_BLOCK_SIZE parameter

buffer cache, 7-8
DB_CACHE_SIZE initialization parameter, 7-5,

7-6, 7-8, 7-9
DB_CACHE_SIZE parameter

buffer cache, 7-8
system global area size and, 7-5

DB_KEEP_CACHE_SIZE initialization
parameter, 7-8, 7-10

DB_NAME parameter, 3-21
DB_nK_CACHE_SIZE initialization parameter, 7-9
DB_RECYCLY_CACHE_SIZE initialization

parameter, 7-8, 7-10
DB2 datatypes

conversion to Oracle datatypes, 12-25
implicit conversion, 12-25
restrictions on, 12-25

DBA role, 23-23
DBA_ views, 4-6
DBA_UPDATABLE_COLUMNS view, 10-21
DBMS

object-relational DBMS, 13-2
DBMS. See database management system (DBMS)
DBMS_LOCK package, 20-41
DBMS_RLS package

security policies, 23-24
uses definer rights, 23-9

DBMS_SQL package, 14-20
parsing DDL statements, 14-20

DBWn background process, 8-8
DDL. See data definition language (DDL)
deadlocks

avoiding, 20-21
defined, 20-19
detection of, 20-20
distributed transactions and, 20-20

deallocating extents, 2-10
DECIMAL datatype

ANSI, 12-24
DB2, 12-25
SQL/DS, 12-25

decision support systems (DSS)
materialized views, 10-22

dedicated servers, 8-21
compared with shared servers, 8-15

default access driver
for external tables, 10-15

default tablespace
definition, 1-47

default temporary tablespaces, 3-10
specifying, 3-10

default values, 10-10
constraints effect on, 10-11, 21-24

deferred constraints
deferrable or nondeferrable, 21-24
initially deferred or immediate, 21-24

define phase of query processing, 14-12
definer rights

procedure security, 23-8
degree of parallelism, 18-8

parallel SQL, 18-5
delete cascade constraint, 21-16
DELETE statement, 14-3

foreign key references, 21-16
freeing space in data blocks, 2-6
triggers, 17-2, 17-7

denormalized tables, 10-25
dependencies, 15-1

between schema objects, 15-2
function-based indexes, 10-33, 15-8
local, 15-10
managing, 15-1
Index-10

on non-existence of other objects, 15-10
Oracle Forms triggers and, 15-13
privileges and, 15-7
remote objects and, 15-10
shared pool and, 15-10

dereferencing, 13-10
implicit, 13-10

describe phase of query processing, 14-12
DETERMINISTIC functions

function-based indexes, 15-8
dictionary

See data dictionary
dictionary cache locks, 20-32
dictionary managed tablespaces, 3-13
different-row writers block writers, 20-11
dimensions, 10-25

attributes, 10-25
hierarchies, 10-25

join key, 10-25
normalized or denormalized tables, 10-25

direct-path INSERT, 19-2
index maintenance, 19-5
logging mode, 19-4
parallel INSERT, 19-3
parallel load compared with parallel

INSERT, 19-3
serial INSERT, 19-3

dirty buffer, 7-7
incremental checkpoint, 8-8

dirty read, 20-3, 20-11
dirty write, 20-11
DISABLE constraints, 21-26
DISABLED indexes, 15-8, 15-9
disaster recovery, 1-63
discrete transaction management

summary, 16-11
discretionary access control, 22-2

definition, 1-44
disk affinities

disabling with massively parallel
processing, 11-2, 11-14, 11-22

disk failure. See media failure
disk space

controlling allocation for tables, 10-6
datafiles used to allocate, 3-18

dispatcher processes (Dnnn)
definition, 1-29
described, 8-19
limiting SGA space for each session, 22-19
listener process and, 8-19
network protocols and, 8-19
prevent startup and shutdown, 8-20
response queue and, 8-16
user processes connect through Oracle Net

Services, 8-16, 8-19
distributed databases

auditing and, 24-6
client/server architectures and, 6-2
deadlocks and, 20-20
definition, 1-33
dependent schema objects and, 15-10
job queue processes, 8-12
recoverer process (RECO) and, 8-12
remote dependencies, 15-11
server can also be client in, 6-2

distributed processing environment
client/server architecture in, 6-2
data manipulation statements, 14-10
definition, 1-32
described, 6-2
materialized views (snapshots), 10-22

distributed transactions
naming, 16-9
parallel DDL restrictions, 18-12
parallel DML restrictions, 18-12
routing statements to nodes, 14-11
two-phase commit and, 16-10

DML. See data manipulation language (DML)
Dnnn background processes, 8-19

See also dispatcher processes
DOUBLE PRECISION datatype (ANSI), 12-24
drivers, 8-23
DROP statement, 14-4
DROP TABLE statement

auditing, 24-7
triggers, 17-7

DUAL table, 4-6
dynamic partitioning, 18-4
dynamic performance tables (V$ tables), 4-7
dynamic predicates
Index-11

in security policies, 23-25
dynamic SQL

DBMS_SQL package, 14-20
embedded, 14-20

E
editing stored outlines, 14-16
embedded SQL, 14-5

dynamic SQL in PL/SQL, 14-20
ENABLE constraints, 21-26
Enterprise Manager

ALERT file, 8-15
checkpoint statistics, 8-11
executing a package, 14-28
executing a procedure, 14-23
granting roles, 23-20
lock and latch monitors, 20-31
PL/SQL, 14-19
schema object privileges, 23-4
showing size of SGA, 7-5
shutdown, 5-10, 5-11
SQL statements, 14-2
startup, 5-5
statistics monitor, 22-20

enterprise users, 22-2
errors

in embedded SQL, 14-5
tracked in trace files, 8-14

exceptions
during trigger execution, 17-19
raising, 14-20
stored procedures and, 14-20

exclusive locks
row locks (TX), 20-22
RX locks, 20-25
table locks (TM), 20-23

exclusive mode, B-11
execution plans, 14-15

EXPLAIN PLAN, 14-3
location of, 7-12
parsing SQL, 14-11

EXP_FULL_DATABASE role, 23-23
EXPLAIN PLAN statement, 14-3
explicit locking, 20-32

Export utility
definition, 1-8

extended rowid format, 12-18
extents

allocating, 2-9
allocating data blocks for, B-2
allocation to rollback segments

after segment creation, B-8
at segment creation, B-6

as collections of data blocks, 2-8
coalescing, 2-11
deallocation

from rollback segments, B-9
when performed, 2-10

defined, 2-2
definition, 1-4
dictionary managed, 3-13
dropping rollback segments and, B-9
in rollback segments

changing current, B-6
incremental, 2-8
locally managed, 3-11
materialized views, 2-11
overview of, 2-8

external procedures, 14-26
external tables

parallel access, 10-16

F
failures

instance
recovery from, 5-8, 5-10

internal errors
tracked in trace files, 8-14

statement and process, 8-12
types listed, 1-50

fast commit, 8-10
fast refresh, 10-24
fetching rows in a query, 14-13

embedded SQL, 14-6
file management locks, 20-32
files

ALERT and trace files, 8-9, 8-14
initialization parameter, 5-4, 5-5
Index-12

password, 22-14
administrator privileges, 5-3

See also control files, datafiles, redo log files
FINAL and NOT FINAL types, 13-13
fine-grained access control, 23-24
fine-grained auditing, 1-49, 24-9
FIPS standard, 14-6
fixed views, 4-7
flagging of nonstandard features, 14-6
flashback query

overview, 20-41
uses, 20-43

FLOAT datatype
DB2, 12-25
SQL/DS, 12-25

FLOAT datatype (ANSI), 12-24
FORCE LOGGING mode, 19-5
foreign key constraints

changes in parent key values, 21-16
constraint checking, 21-23
deleting parent table rows and, 21-16
maximum number of columns in, 21-13
nulls and, 21-15
share locks, 21-17
updating parent key tables, 21-16
updating tables, 21-17, 21-19

foreign keys
privilege to use parent key, 23-6

fractional seconds, 12-12
free lists, B-20
free space

automatic segment space management, 2-6
coalescing extents, B-3

SMON process, 8-11
coalescing within data blocks, 2-6
free lists, B-20
managing, 2-6
parameters for data blocks, 2-7, B-15
section of data blocks, 2-5

free space management
in-segment, 2-6

front-ends, 6-2
full table scans

LRU algorithm and, 7-8
parallel execution, 18-3, 18-4

function-based indexes, 10-32
dependencies, 10-33, 15-8
DISABLED, 15-8, 15-9
privileges, 10-33, 15-8
UNUSABLE, 15-9

functions
definition, 1-13
function-based indexes, 10-32
PL/SQL, 14-21

contrasted with procedures, 14-21
DETERMINISTIC, 15-8
privileges for, 23-8
roles, 23-21
See also procedures

SQL, 14-2
COUNT, 10-52
in CHECK constraints, 21-21
in views, 10-19
NVL, 10-10

G
Global Cache Service process (LMS), 8-14
global database names

shared pool and, 7-14
global partitioned indexes

maintenance, 11-16
globalization support

character sets for, 12-4
CHECK constraints and, 21-21
NCHAR and NVARCHAR2 datatypes, 12-6
NCLOB datatype, 12-15
views and, 10-19

GRANT ANY PRIVILEGE system privilege, 23-3
GRANT statement, 14-4

locks, 20-31
granted privileges

definition, 1-46
granting

privileges and roles, 23-3
granules, 7-5
GRAPHIC datatype

DB2, 12-25
SQL/DS, 12-25

GROUP BY clause
Index-13

temporary tablespaces, 3-16
group commits, 8-10
guesses in logical rowids, 12-21

staleness, 12-22
statistics for, 12-23

H
handles for SQL statements, 7-18

definition, 1-26
hash clusters, 10-65

contrasted with index, 10-65
headers

of data blocks, 2-4
of row pieces, 10-7

Heterogeneous Services
overview, 1-38

HEXTORAW function
data conversion, 12-27

HI_SHARED_MEMORY_ADDRESS
parameter, 7-16

hierarchical materialized views. See multitier
materialized views

hierarchies, 10-25
join key, 10-25
levels, 10-25

high water mark, B-15
definition, 2-3, B-15
direct-path INSERT, 19-4

I
immediate constraints, 21-24
IMP_FULL_DATABASE role, 23-23
implicit dereferencing, 13-10
Import utility

definition, 1-9
incremental checkpoint, 8-8
incremental refresh, 10-24
index segments, 2-13
indexes, 10-28

bitmap indexes, 10-48, 10-53
nulls and, 10-10
parallel query and DML, 10-49

branch blocks, 10-36

B-tree structure of, 10-35
building

using an existing index, 10-29
cardinality, 10-49
cluster

cannot be partitioned, 11-1
composite, 10-30
concatenated, 10-30
definition, 1-3
described, 10-28
domain, 10-62
enforcing integrity constraints, 21-10, 21-12
extensible, 10-62
function-based, 10-32

dependencies, 10-33, 15-8
DETERMINISTIC functions, 15-8
DISABLED, 15-9
optimization with, 10-33
privileges, 10-33, 15-8

index-organized tables, 10-57
logical rowids, 10-60, 12-21
secondary indexes, 10-60

internal structure of, 10-35
key compression, 10-45
keys and, 10-31

primary key constraints, 21-12
unique key constraints, 21-10

leaf blocks, 10-36
location of, 10-34
LONG RAW datatypes prohibit, 12-16
nonunique, 10-30
nulls and, 10-10, 10-31, 10-52
on complex data types, 10-62
overview of, 10-28
partitioned tables, 10-53
partitions, 11-2
performance and, 10-29
rebuilt after direct-path INSERT, 19-5
reverse key indexes, 10-47
rowids and, 10-36
storage format of, 10-34
unique, 10-30
when used with views, 10-19

index-organized tables, 10-57
benefits, 10-58
Index-14

key compression in, 10-47, 10-59
logical rowids, 10-60, 12-21
parallel CREATE, 18-12, 18-13
secondary indexes on, 10-60

in-doubt transactions, 5-9, B-8
initialization parameter file, 5-4, 5-5

startup, 5-5
initialization parameters

BUFFER_POOL_KEEP, 7-10
BUFFER_POOL_RECYCLE, 7-10
CLUSTER_DATABASE, 5-7
DB_BLOCK_SIZE, 7-8
DB_CACHE_SIZE, 7-5, 7-8
DB_NAME, 3-21
HI_SHARED_MEMORY_ADDRESS, 7-16
LOCK_SGA, 7-16
LOG_ARCHIVE_MAX_PROCESSES, 8-13
LOG_BUFFER, 7-5, 7-11
MAX_SHARED_SERVERS, 8-20
NLS_NUMERIC_CHARACTERS, 12-9
OPEN_CURSORS, 7-18, 14-6
REMOTE_DEPENDENCIES_MODE, 15-11
ROLLBACK_SEGMENTS, B-11
SERVICE_NAMES, 6-9
SHARED_MEMORY_ADDRESS, 7-16
SHARED_POOL_SIZE, 7-5, 7-12
SHARED_SERVERS, 8-20
SKIP_UNUSABLE_INDEXES, 15-9
SORT_AREA_SIZE, 2-14
SQL_TRACE, 8-14
TRANSACTIONS, B-11
TRANSACTIONS_PER_ROLLBACK_

SEGMENT, B-11
UNDO_MANAGEMENT, 5-9
USE_INDIRECT_DATA_BUFFERS, 7-17

initially deferred constraints, 21-24
initially immediate constraints, 21-24
INIT.ORA. See initialization parameter file.
inline views, 10-21

example, 10-21
INSERT statement, 14-3

direct-path INSERT, 19-2
no-logging mode, 19-4

free lists, B-20
triggers, 17-2, 17-7

BEFORE triggers, 17-10
instance failure

definition, 1-51
instance recovery

SMON process, 1-28, 8-11
instances

acquire rollback segments, B-10
associating with databases, 5-3, 5-6
definition, 1-24
described, 5-2
diagrammed, 8-6
memory structures of, 7-2
multiple-process, 8-2
process structure, 8-2
recovery of, 5-10

opening a database, 5-8
SMON process, 8-11

restricted mode, 5-6
service names, 6-9
shutting down, 5-10, 5-11
starting, 5-5
terminating, 5-10

INSTEAD OF triggers, 17-12
nested tables, 13-26
object views, 13-26

INT datatype (ANSI), 12-24
INTEGER datatype

ANSI, 12-24
DB2, 12-25
SQL/DS, 12-25

integrity constraints, 21-2
default column values and, 10-11
definition, 1-20
types listed, 1-20
See also constraints

interMedia, 1-67
internal errors tracked in trace files, 8-14
Internet File System, 1-68
intrablock chaining, 10-7
invoker rights

procedure security, 23-9
supplied packages, 23-9

I/O
parallel execution, 18-3

IS NULL predicate, 10-10
Index-15

ISO SQL standard, 12-23
isolation levels

choosing, 20-13
read committed, 20-8
setting, 20-7, 20-33

J
Java

attributes, 14-33
class hierarchy, 14-34
classes, 14-32
interfaces, 14-35
methods, 14-33
overview, 14-31
polymorphism, 14-36
triggers, 17-1, 17-8

Java object types, 13-21
Java Virtual Machine, 14-37
job queue processes, 8-12

definition, 1-29
jobs, 8-2
join views, 10-20
joins

encapsulated in views, 10-18
views, 10-20

K
key compression, 10-45
keys

cluster, 10-65
defined, 21-9
foreign, 21-13
in constraints, definition, 1-20
indexes and, 10-31

compression, 10-45
PRIMARY KEY constraints, 21-12
reverse key, 10-47
UNIQUE constraints, 21-10

maximum storage for values, 10-31
parent, 21-13, 21-14
primary, 21-11
referenced, 21-13
reverse key indexes, 10-47

unique, 21-8
composite, 21-9, 21-11

L
large pool, 7-15

definition, 1-26
LARGE_POOL_SIZE initialization parameter, 7-5
latches

described, 20-31
LDAP, 22-14
leaf blocks, 10-36
least recently used (LRU) algorithm

database buffers and, 7-7
dictionary cache, 4-4
full table scans and, 7-8
latches, 8-8
shared SQL pool, 7-12, 7-13

LGWR background process, 8-9
library cache, 7-11, 7-12, 7-13
lightweight sessions, 22-10
listener process, 6-9

service names, 6-9
listeners, 6-9, 8-19

service names, 6-9
LMS background process, 8-14
LNOCI, 8-23

anonymous blocks, 14-19
bind variables, 14-13
object cache, 13-20
OCIObjectFlush, 13-26
OCIObjectPin, 13-26

loader access driver, 10-15
LOB datatypes, 12-13

BFILE, 12-15
BLOBs, 12-14
CLOBs and NCLOBs, 12-15
restrictions

parallel DDL, 18-12
local indexes

bitmap indexes
on partitioned tables, 10-53
parallel query and DML, 10-49

locally managed tablespaces, 3-11
LOCK TABLE statement, 14-3
Index-16

LOCK_SGA parameter, 7-16
locking

indexed foreign keys and, 21-19
unindexed foreign keys and, 21-17

locks, 20-3
after committing transactions, 16-7
automatic, 20-17, 20-21
conversion, 20-18
data, 20-22

duration of, 20-17
deadlocks, 20-19, 20-20

avoiding, 20-21
dictionary, 20-30

clusters and, 20-31
duration of, 20-31

dictionary cache, 20-32
DML acquired, 20-29

diagrammed, 20-27
escalation does not occur, 20-19
exclusive table locks (X), 20-27
file management locks, 20-32
how Oracle uses, 20-17
internal, 20-31
latches and, 20-31
log management locks, 20-32
manual, 20-32

examples of behavior, 20-33
object level locking, 13-20
Oracle Lock Management Services, 20-41
overview of, 20-3
parse, 14-11, 20-31
rollback segment, 20-32
row (TX), 20-22
row exclusive locks (RX), 20-25
row share table locks (RS), 20-24
share row exclusive locks (SRX), 20-26
share table locks (S), 20-26
share-subexclusive locks (SSX), 20-26
subexclusive table locks (SX), 20-25
subshare table locks (SS), 20-24
table (TM), 20-23
table lock modes, 20-23
tablespace, 20-32
types of, 20-21
uses for, 1-42

log entries, 1-7
See also redo log files, 1-7

log management locks, 20-32
log switch

archiver process, 8-13
log writer process (LGWR), 8-9

definition, 1-28
group commits, 8-10
redo log buffers and, 7-11
starting new ARCn processes, 8-13
system change numbers, 16-7
write-ahead, 8-9

LOG_ARCHIVE_MAX_PROCESSES
parameter, 8-13

LOG_BUFFER initialization parameter, 7-5
LOG_BUFFER parameter, 7-11

system global area size and, 7-5
logging mode

direct-path INSERT, 19-4
NOARCHIVELOG mode and, 19-5
parallel DDL, 18-12

logical blocks, 2-2
logical database structures

definition, 1-2, 1-3
tablespaces, 3-7

logical reads limit, 22-18
logical rowids, 12-21

index on index-organized table, 10-60
physical guesses, 10-60, 12-21
staleness of guesses, 12-22
statistics for guesses, 12-23

logical standby databases, 1-64
LogMiner, 1-65
LONG datatype

automatically the last column, 10-10
defined, 12-7
storage of, 10-9

LONG RAW datatype, 12-15
indexing prohibited on, 12-16
similarity to LONG datatype, 12-16

LONG VARCHAR datatype
DB2, 12-25
SQL/DS, 12-25

LONG VARGRAPHIC datatype
DB2, 12-25
Index-17

SQL/DS, 12-25
LRU, 7-7, 7-8, 8-8

dictionary cache, 4-4
shared SQL pool, 7-12, 7-13

M
manual locking, 20-32
map methods, 13-7
massively parallel processing

disk affinity, 11-2, 11-14, 11-22
multiple Oracle instances, 5-3

massively parallel systems, 18-3
materialized view logs, 10-24
materialized views, 10-22

deallocating extents, 2-11
definition, 1-58
materialized view logs, 10-24
multitier, definition, 1-35
partitioned, 10-23, 11-1
refresh

job queue processes, 8-12
refreshing, 10-24

MAX_SHARED_SERVERS parameter, 8-20
maximize availability, 1-63
maximize data protection, 1-63
maximize performance, 1-63
media failure

definition, 1-51
memory

allocation for SQL statements, 7-13
content of, 7-2
cursors (statement handles), definition, 1-26
extended buffer cache (32-bit), 7-17
overview of structures, 1-25
processes use of, 8-2
shared SQL areas, 7-12
software code areas, 7-22
stored procedures, 14-24
structures in, 7-2
system global area (SGA)

allocation in, 7-3
initialization parameters, 7-5, 7-16
locking into physical memory, 7-16
SGA size, 7-4

starting address, 7-16
See also system global area

MERGE statement, 14-3
message queuing

publish-subscribe support
event publication, 17-14

queue monitor process, 8-14
metadata

viewing, 4-7
methods

comparison methods, 13-7
constructor methods, 13-6
privileges on, 23-12

methods of object types, 13-4
map methods, 13-7
order methods, 13-7
PL/SQL, 13-18
purchase order example, 13-2, 13-5
selfish style of invocation, 13-6

mobile computing environment
materialized views, 10-22

modes
table lock, 20-23

monitoring user actions, 24-2
MPP. See massively parallel processing
multiblock writes, 8-8
multimedia datatypes, 13-3
multiple-process systems (multiuser systems), 8-2
multiplexing

control files, 3-22
multithreaded server. See shared server
multitier materialized views

definition, 1-35
multiuser environments, 8-2
multiversion concurrency control, 20-5
mutating errors and triggers, 17-19

N
NATIONAL CHAR datatype (ANSI), 12-24
NATIONAL CHAR VARYING datatype

(ANSI), 12-24
NATIONAL CHARACTER datatype (ANSI), 12-24
NATIONAL CHARACTER VARYING datatype

(ANSI), 12-24
Index-18

NCHAR datatype, 12-6
ANSI, 12-24

NCHAR VARYING datatype (ANSI), 12-24
NCLOB datatype, 12-15
nested tables, 10-13, 13-12

index-organized tables, 10-59
key compression, 10-47

INSTEAD OF triggers, 13-26
updating in views, 13-26

network listener process
connection requests, 8-16, 8-19

networks
client/server architecture use of, 6-2
communication protocols, 8-23, 8-24
dispatcher processes and, 8-16, 8-19
drivers, 8-23
listener processes of, 6-9, 8-19
network authentication service, 22-4
Oracle Net Services, 6-7
two-task mode and, 8-22

NLS_DATE_FORMAT parameter, 12-10
NLS_NUMERIC_CHARACTERS parameter, 12-9
NOARCHIVELOG mode

LOGGING mode and, 19-5
NOAUDIT statement, 14-4

locks, 20-31
nodes

of distributed databases, definition, 1-33
NOLOGGING mode

direct-path INSERT, 19-4
parallel DDL, 18-12

nonprefixed indexes, 11-14
nonrepeatable reads, 20-11
nonunique indexes, 10-30
NOREVERSE clause for indexes, 10-47
normalized tables, 10-25
NOT INSTANTIABLE types and methods, 13-14
NOT NULL constraints

constraint checking, 21-23
defined, 21-7
implied by PRIMARY KEY, 21-12
UNIQUE keys and, 21-11

NOVALIDATE constraints, 21-26
NOWAIT parameter

with savepoints, 16-9

nulls
as default values, 10-11
column order and, 10-10
converting to values, 10-10
defined, 10-10
foreign keys and, 21-15
how stored, 10-10
indexes and, 10-10, 10-31, 10-52
inequality in UNIQUE key, 21-11
non-null values for, 10-10
prohibited in primary keys, 21-11
prohibiting, 21-7
UNIQUE key constraints and, 21-11
unknown in comparisons, 10-10

NUMBER datatype, 12-8
internal format of, 12-9
rounding, 12-9

NUMERIC datatype (ANSI), 12-24
NVARCHAR2 datatype, 12-6
NVL function, 10-10

O
object cache

object views, 13-25
OCI, 13-20
Pro*C, 13-18

object identifiers, 13-24, 13-25
collections

key compression, 10-47, 10-59
for object views, 13-24, 13-25
WITH OBJECT OID clause, 13-25

object privileges, 23-3
See also schema object privileges

object tables, 13-3, 13-8
row objects, 13-8
virtual object tables, 13-23

Object Type Translator (OTT), 13-20
object types, 13-2, 13-4

attributes of, 13-2, 13-4
column objects, 13-8
comparison methods for, 13-7
constructor methods for, 13-6
locking in cache, 13-20
methods of, 13-4
Index-19

PL/SQL, 13-18
purchase order example, 13-2, 13-5

object views, 10-21
Oracle type translator, 13-20
purchase order example, 13-2, 13-4
restrictions

parallel DDL, 18-12
row objects, 13-8
SQLJ, 13-21

object views, 10-21
advantages of, 13-23
defining, 13-24
modifiability, 17-12
nested tables, 13-26
object identifiers for, 13-24, 13-25
updating, 13-26
use of INSTEAD OF triggers with, 13-26

object-relational database management
system, 13-2

object-relational database management system
(ORDBMS)

definition, 1-40
principles, 1-32

object-relational DBMS, 13-2
objects

privileges on, 23-12
OID (see Oracle Internet Directory), 22-14
online redo logs

checkpoints, 3-21
recorded in control file, 3-21

online transaction processing (OLTP)
reverse key indexes, 10-47

OPEN_CURSORS parameter, 14-6
managing private SQL areas, 7-18

operating systems
authentication by, 22-4
block size, 2-3
communications software, 8-24
privileges for administrator, 5-3
roles and, 23-23

OPTIMAL storage parameter, B-9
optimization

function-based indexes, 10-33
index build, 10-29
parallel SQL, 18-5

query rewrite, 10-22
in security policies, 23-25

optimizer, 14-14
Oracle

adherence to standards
integrity constraints, 21-5

architecture, overview, 1-21
client/server architecture of, 6-2
configurations of, 8-2

multiple-process Oracle, 8-2
instances, 5-2
processes of, 8-5
scalability of, 6-4
SQL processing, 14-8

Oracle blocks, 2-2
Oracle Call Interface. See OCI
Oracle Certificate Authority, 22-6
Oracle code, 8-2, 8-22
Oracle eLocation, 1-67
Oracle Enterprise Login Assistant, 22-6
Oracle Enterprise Manager. See Enterprise Manager
Oracle Enterprise Security Manager, 22-6
Oracle Forms

object dependencies and, 15-13
PL/SQL, 14-18

Oracle Internet Directory, 6-10, 22-6
Oracle Net Services, 6-7

client/server systems use of, 6-7
overview, 6-7
shared server requirement, 8-16, 8-19

Oracle processes
definition, 1-27

Oracle program interface (OPI), 8-23
Oracle Streams, 1-36

overview, 1-36
Oracle type translator (OTT), 13-20
Oracle Wallet Manager, 22-5
Oracle wallets, 22-5
Oracle XA

session memory in the large pool, 7-15
ORDBMS. See object-relational database

management system (ORDBMS)
order methods, 13-7
OTT. See Object Type Translator (OTT)
Index-20

P
packages, 14-27

advantages of, 14-29
as program units, definition, 1-14
auditing, 24-8
dynamic SQL, 14-20
examples of, 23-10, 23-11
executing, 14-18
for locking, 20-41
private, 14-29
privileges

divided by construct, 23-10
executing, 23-8, 23-10

public, 14-29
session state and, 15-7
shared SQL areas and, 7-12
supplied packages

invoker or definer rights, 23-9
pages, 2-2
parallel access

to external tables, 10-16
parallel DDL

restrictions
LOBs, 18-12
object types, 18-12

parallel DML, 18-13
bitmap indexes, 10-49

parallel execution, 18-2
coordinator, 18-4
full table scans, 18-3
introduction, 18-3
of table functions, 14-26
process classification, 11-2, 11-14, 11-16, 11-22
server, 18-4

index maintenance, 19-5
servers, 18-4
tuning, 18-2
See also parallel SQL

parallel query, 18-12
bitmap indexes, 10-49

parallel SQL, 18-2
coordinator process, 18-4
optimizer, 18-5
Real Application Clusters and, 18-1

server processes, 18-4
direct-path INSERT, 19-5

See also parallel execution
parallelism

degree, 18-8
parameters

initialization, 5-4
locking behavior, 20-21
See also initialization parameters

storage, 2-7, 2-8, B-15
parse trees

construction of, 14-7
in shared SQL area, 7-12

parsing, 14-11
DBMS_SQL package, 14-20
embedded SQL, 14-5
parse calls, 14-8
parse locks, 14-11, 20-31
performed, 14-8
SQL statements, 14-11, 14-20

partitions, 11-2
bitmap indexes, 10-53
dynamic partitioning, 18-4
hash partitioning, 11-9
materialized views, 10-23, 11-1
nonprefixed indexes, 11-14
segments, 2-12, 2-13

passwords
account locking, 22-8
administrator privileges, 5-3
complexity verification, 22-9
connecting with, 8-4
connecting without, 22-4
database user authentication, 22-8
encryption, 22-8
expiration, 22-9
password files, 22-14
password reuse, 22-9
used in roles, 23-18

PCTFREE storage parameter
how it works, B-16
PCTUSED and, B-18

PCTUSED storage parameter
how it works, B-17
PCTFREE and, B-18
Index-21

performance
constraint effects on, 21-6
dynamic performance tables (V$), 4-7
group commits, 8-10
index build, 10-29
packages, 14-29
resource limits and, 22-17
SGA size and, 7-4
sort operations, 3-16

PGA. See program global area (PGA)
PGA_AGGREGATE_TARGET initialization

parameter, 7-20
phantom reads, 20-11
physical database structures

control files, 3-20
datafiles, 3-18
definition, 1-6

physical guesses in logical rowids, 12-21
staleness, 12-22
statistics for, 12-23

physical standby databases, 1-64
pipelined table functions, 14-26
PKI, 22-5
plan

SQL execution, 14-3, 14-11
plan schemas for Database Resource

Manager, 9-12
PL/SQL, 14-16

anonymous blocks, 14-16, 14-25
auditing of statements within, 24-4
bind variables

user-defined types, 13-18
database triggers, 17-1
datatypes, 12-2
dynamic SQL, 14-20
exception handling, 14-20
executing, 14-17
external procedures, 14-26
gateway, 14-31
language constructs, 14-19
native execution, 14-17
object views, 13-25
overview of, 14-16
packages, 14-27
parse locks, 20-31

parsing DDL statements, 14-20
PL/SQL engine, 14-17

products containing, 14-18
program units, 7-12, 14-16, 14-21

compiled, 14-18, 14-25
shared SQL areas and, 7-12

roles in procedures, 23-21
stored procedures, 14-16, 14-21
user locks, 20-41
user-defined datatypes, 13-18

PL/SQL Server Pages, 14-30
PMON background process, 6-9, 8-12
point-in-time recovery

clone database, 5-8
precompilers

anonymous blocks, 14-19
bind variables, 14-13
cursors, 14-10
embedded SQL, 14-5
FIPS flagger, 14-6

predicates
dynamic

in security policies, 23-25
prefixes of data dictionary views, 4-5
PRIMARY KEY constraints, 21-11

constraint checking, 21-23
described, 21-11
indexes used to enforce, 21-12

name of, 21-13
maximum number of columns, 21-13
NOT NULL constraints implied by, 21-12

primary keys, 21-12
advantages of, 21-12
defined, 21-3

private rollback segments, B-10
private SQL areas

cursors and, 7-18
described, 7-12
how managed, 7-18

privileges
administrator, 5-3

statement execution audited, 24-5
auditing use of, 24-7
checked when parsing, 14-11
definition, 1-45
Index-22

function-based indexes, 10-33, 15-8
granted, definition, 1-46
granting, 23-3, 23-4

examples of, 23-10, 23-11
overview of, 23-2
procedures, 23-8

creating and altering, 23-10
executing, 23-8
in packages, 23-10

revoked
object dependencies and, 15-7

revoking, 23-3, 23-4
roles, 23-17

restrictions on, 23-22
schema object, 23-3

DML and DDL operations, 23-5
granting and revoking, 23-4
packages, 23-10
procedures, 23-8

schema object, definition, 1-46
system, 23-2

granting and revoking, 23-3
system, definition, 1-46
to start up or shut down a database, 5-3
trigger privileges, 23-9
views, 23-6

creating, 23-6
using, 23-7

Pro*C/C++
processing SQL statements, 14-10
user-defined datatypes, 13-18

procedures, 14-16, 14-21
advantages of, 14-23
auditing, 24-8
contrasted with anonymous blocks, 14-25
contrasted with functions, 14-21
cursors and, 14-19
definer rights, 23-8

roles disabled, 23-21
definition, 1-13
dependency tracking in, 15-6
examples of, 23-10, 23-11
executing, 14-18
external procedures, 14-26
INVALID status, 15-6

invoker rights, 23-9
roles used, 23-21
supplied packages, 23-9

prerequisites for compilation of, 15-5
privileges

create or alter, 23-10
executing, 23-8
executing in packages, 23-10

security enhanced by, 14-23, 23-8
shared SQL areas and, 7-12
stored procedures, 14-16, 14-17, 14-21
supplied packages

invoker or definer rights, 23-9
triggers, 17-2

process global area (PGA)
See also program global area (PGA)

process monitor process (PMON)
cleans up timed-out sessions, 22-19
described, 8-12

processes, 8-2
archiver (ARCn), 8-13
background, 8-5

diagrammed, 8-6
checkpoint (CKPT), 8-11
checkpoints and, 8-8
classes of parallel execution, 11-2, 11-14, 11-16,

11-22
database writer (DBWn), 8-8
dedicated server, 8-19
definition, 1-26
dispatcher (Dnnn), 8-19
distributed transaction resolution, 8-12
Global Cache Service (LMS), 8-14
job queue, 8-12
listener, 6-9, 8-19

shared servers and, 8-16
log writer (LGWR), 8-9
multiple-process Oracle, 8-2
Oracle, 8-5
Oracle, definition, 1-27
parallel execution coordinator, 18-4
parallel execution servers, 18-4

direct-path INSERT, 19-5
process monitor (PMON), 8-12
queue monitor (QMNn), 8-14
Index-23

recoverer (RECO), 8-12
server, 8-5

dedicated, 8-21
shared, 8-19

shadow, 8-21
shared server, 8-15

client requests and, 8-16
structure, 8-2
system monitor (SMON), 8-11
trace files for, 8-14
user, 8-4

recovery from failure of, 8-12
sharing server processes, 8-19

processing
DDL statements, 14-14
distributed, definition, 1-32
DML statements, 14-10
overview, 14-8
parallel SQL, 18-2
queries, 14-11

profiles
password management, 22-8
user, definition, 1-47
when to use, 22-20

program global area (PGA), 7-17
definition, 1-26
shared server, 8-20
shared servers, 8-20

program interface, 8-22
definition, 1-30
Oracle side (OPI), 8-23
structure of, 8-23
two-task mode in, 8-22
user side (UPI), 8-23

program units, 14-16, 14-21
prerequisites for compilation of, 15-5
shared pool and, 7-12

protection modes, 1-63
proxies, 22-10
pseudocode

triggers, 17-21
pseudocolumns

CHECK constraints prohibit
LEVEL and ROWNUM, 21-21

modifying views, 17-13

ROWID, 12-17
USER, 23-8

PSP. See PL/SQL Server Pages
public key infrastructure, 22-5
public rollback segments, B-10
PUBLIC user group, 22-16, 23-21
publication

DDL statements, 17-16
DML statements, 17-16
logon/logoff events, 17-15
system events

server errors, 17-15
startup/shutdown, 17-15

using triggers, 17-14
publish-subscribe support

event publication, 17-14
triggers, 17-14

purchase order example
object types, 13-2, 13-4

Q
QMNn background process, 8-14
queries

composite indexes, 10-30
default locking of, 20-28
define phase, 14-12
describe phase, 14-12
fetching rows, 14-11
in DML, 14-3
inline views, 10-21
merged with view queries, 10-19
parallel processing, 18-2
phases of, 20-5
processing, 14-11
read consistency of, 20-5
stored as views, 10-16
temporary segments and, 2-14, 14-12
triggers use of, 17-20

query rewrite, 10-22
dynamic predicates in security policies, 23-25

queue monitor process (QMNn), 8-14
definition, 1-30

queuing
publish-subscribe support
Index-24

event publication, 17-14
queue monitor process, 8-14

Quiesce Database, 20-15
quiesce database

uses for, 1-42
quotas

revoking tablespace access and, 22-16
setting to zero, 22-16
SYS user not subject to, 22-16
tablespace, 22-14

temporary segments ignore, 22-15
tablespace, definition, 1-47

R
RADIUS, 22-7
RAW datatype, 12-15
RAWTOHEX function

data conversion, 12-27
RAWTONHEX function

data conversion, 12-27
read committed isolation, 20-8
read consistency, 20-2, 20-4

Cache Fusion, 20-6
definition, 1-40
dirty read, 20-3, 20-11
multiversion consistency model, 20-4
nonrepeatable read, 20-11
phantom read, 20-11
queries, 14-12, 20-4
Real Application Clusters, 20-6
rollback segments and, B-5
statement level, 20-5
subqueries in DML, 20-14
transactions, 20-4, 20-6
triggers and, 17-17, 17-20

read snapshot time, 20-11
read uncommitted, 20-3
readers block writers, 20-11
read-only

databases
opening, 5-9

tablespaces, 3-15
transactions, definition, 1-41

reads

data block
limits on, 22-18

dirty, 20-3
repeatable, 20-6

Real Application Clusters
databases and instances, 5-3
exclusive mode

rollback segments and, B-11
isolation levels, 20-12
lock processes, 8-14
mounting a database using, 5-7
parallel SQL, 18-1
read consistency, 20-6
reverse key indexes, 10-47
shared mode

rollback segments and, B-11
system change numbers, 8-10
system monitor process and, 8-11
temporary tablespaces, 3-16

REAL datatype (ANSI), 12-24
recoverer process (RECO), 8-12

definition, 1-29
in-doubt transactions, 5-9, 16-10

recovery
block-level recovery, 20-23
distributed processing in, 8-12
general overview, 1-50
instance failure, 5-10
instance recovery

SMON process, 1-28, 8-11
media recovery

dispatcher processes, 8-20
of distributed transactions, 5-9
opening a database, 5-8
point-in-time

clone database, 5-8
process recovery, 8-12
required after terminating instance, 5-10
SMON process, 1-28, 8-11

recursive SQL
cursors and, 14-7

redo log buffers
definition, 1-25

redo logs
archiver process (ARCn), 8-13
Index-25

buffer management, 8-9
buffers, 7-11
circular buffer, 8-9
committing a transaction, 8-10
definition, 1-52
files named in control file, 3-21
log sequence numbers

recorded in control file, 3-21
log switch

archiver process, 8-13
log writer process, 7-11, 8-9
multiplexed, definition, 1-7
overview, 1-7
size of buffers, 7-11
when temporary segments in, 2-15
writing buffers, 8-9
written before transaction commit, 8-10

referenced
keys, 21-13
objects

dependencies, 15-2
REFERENCES privilege

when granted through a role, 23-22
referential integrity, 20-12, 21-13

cascade rule, 21-3
examples of, 21-21
PRIMARY KEY constraints, 21-11
restrict rule, 21-3
self-referential constraints, 21-14, 21-21
set to default rule, 21-3
set to null rule, 21-3

refresh
incremental, 10-24
job queue processes, 8-12
materialized views, 10-24

REFs
dangling, 13-10
dereferencing of, 13-10
for rows of object views, 13-24
implicit dereferencing of, 13-10
pinning, 13-26
scoped, 13-10

REFTOHEX function
data conversion, 12-27

relational database management system

(RDBMS), 13-2
SQL, 14-2

remote dependencies, 15-11
remote transactions

parallel DML and DDL restrictions, 18-12
REMOTE_DEPENDENCIES_MODE

parameter, 15-11
RENAME statement, 14-4
repeatable reads, 20-3
replication

definition, 1-35
materialized views (snapshots), 10-22

reserved words, 14-2
resource allocation, 9-1, 9-2

CPU time, 9-13
directives, 9-11
levels and priorities, 9-16
methods, 9-3
multilevel plans, 9-13
plan-level methods, 9-11

resource consumer groups
definition, 9-3

resource consumer-group methods, 9-11
resource consumers

grouping, 9-7
resource limits

call level, 22-18
connect time for each session, 22-19
CPU time limit, 22-18
determining values for, 22-20
idle time in each session, 22-19
logical reads limit, 22-18
number of sessions for each user, 22-19
private SGA space for each session, 22-19

resource plan directives
definition, 9-3

resource plans
activating, 9-8
definition, 9-3
dynamic, 9-8
grouping, 9-8
hierarchical, 9-10
levels, 9-10
performance, 9-10
persistent, 9-8
Index-26

plan schemas, 9-12
RESOURCE role, 23-23
response queues, 8-16
restricted mode

starting instances in, 5-6
restricted rowid format, 12-19
restrictions

parallel DDL, 18-12
remote transactions, 18-12

parallel DML
remote transactions, 18-12

resumable space allocation
overview, 16-5

resumable statements. See resumable space
allocation

REVERSE clause for indexes, 10-47
reverse key indexes, 10-47
REVOKE statement, 14-4

locks, 20-31
rewrite

predicates in security policies, 23-25
using materialized views, 10-22

roles, 23-17
application, 23-19
CONNECT role, 23-23
DBA role, 23-23
DDL statements and, 23-22
definer-rights procedures disable, 23-21
definition, 1-46
dependency management in, 23-22
enabled or disabled, 23-20
EXP_FULL_DATABASE role, 23-23
functionality, 23-2
granting, 23-3, 23-20
IMP_FULL_DATABASE role, 23-23
in applications, 23-18
invoker-rights procedures use, 23-21
managing through operating system, 23-23
naming, 23-21
predefined, 23-23
RESOURCE role, 23-23
restrictions on privileges of, 23-22
revoking, 23-20
schemas do not contain, 23-21
secure application roles, 23-26

security domains of, 23-21
setting in PL/SQL blocks, 23-21
use of passwords with, 23-18
user, 23-19
users capable of granting, 23-20
uses of, 23-18

rollback, 16-7, B-4
definition, 1-17
described, 16-7
ending a transaction, 16-2, 16-7
statement-level, 16-4
to a savepoint, 16-8

rollback entries, B-4
rollback segments, B-4

access to, B-4
acquired during startup, 5-8
allocation of extents for, B-6

new extents, B-8
clashes when acquiring, B-11
committing transactions and, B-5
contention for, B-6
deallocating extents from, B-9
deferred, B-14
dropping, B-9

restrictions on, B-14
how transactions write to, B-6
in-doubt distributed transactions, B-8
invalid, B-12
locks on, 20-32
moving to the next extent of, B-6
number of transactions per, B-6
offline, B-12, B-14
offline tablespaces and, B-14
online, B-12, B-14
overview of, B-4
partly available, B-12
private, B-10
public, B-10
read consistency and, 20-4, B-5
recovery needed for, B-12
states of, B-12
SYSTEM rollback segment, B-10
transactions and, B-5
when acquired, B-10
when used, B-5
Index-27

written circularly, B-5
ROLLBACK statement, 14-5
rolling back, 16-2, 16-7
row cache, 7-13
row data (section of data block), 2-5
row directories, 2-5
row locking, 20-11, 20-22

block-level recovery, 20-23
serializable transactions and, 20-8

row objects, 13-8
row pieces, 1-2, 10-6

headers, 10-8
how identified, 10-9

row triggers, 17-9
when fired, 17-18
See also triggers

ROWID datatype, 12-16, 12-17
extended rowid format, 12-18
restricted rowid format, 12-19

rowids, 10-9
accessing, 12-17
changes in, 12-17
in non-Oracle databases, 12-23
internal use of, 12-17, 12-21
logical, 12-16
logical rowids, 12-21

index on index-organized table, 10-60
physical guesses, 10-60, 12-21
staleness of guesses, 12-22
statistics for guesses, 12-23

of clustered rows, 10-9
physical, 12-16
row migration, 2-7
sorting indexes by, 10-36
universal, 12-16

ROWIDTOCHAR function
data conversion, 12-27

ROWIDTONCHAR function
data conversion, 12-27

row-level locking, 20-11, 20-22
rows, 10-5

addresses of, 10-9
chaining across blocks, 1-2, 2-7, 10-6
clustered, 10-9

rowids of, 10-9

described, 10-5
fetched, 14-11
format of in data blocks, 2-5
headers, 10-7
locking, 20-11, 20-22
locks on, 20-22, 20-24
logical rowids, 12-21

index-organized tables, 10-60
migrating to new block, 2-7
pieces of, 10-7
row objects, 13-8
row-level security, 23-24
shown in rowids, 12-18, 12-19
size of, 10-6
storage format of, 10-6
triggers on, 17-9
when rowid changes, 12-17

S
same-row writers block writers, 20-11
SAVEPOINT statement, 14-5
savepoints, 16-8

described, 16-8
implicit, 16-4
rolling back to, 16-8

scalability
client/server architecture, 6-4
parallel SQL execution, 18-2

scans
full table

LRU algorithm, 7-8
parallel query, 18-3

table scan and CACHE clause, 7-8
schema object privileges, 23-3

definition, 1-46
DML and DDL operations, 23-5
granting and revoking, 23-4
views, 23-6

schema objects, 10-1
auditing, 24-8
creating

tablespace quota required, 22-15
default tablespace for, 22-15
definition, 1-2, 1-32
Index-28

dependencies of, 15-2
and distributed databases, 15-13
and views, 10-20
on non-existence of other objects, 15-10
triggers manage, 17-17

dependent on lost privileges, 15-7
dimensions, 10-25
in a revoked tablespace, 22-16
information in data dictionary, 4-2
list of, 10-2
materialized views, 10-22
privileges on, 23-3
relationship to datafiles, 3-19, 10-3
trigger dependencies on, 17-21
user-defined types, 13-3

schemas, 22-2
contents of, 10-3
contrasted with tablespaces, 10-3
defined, 22-2
definition of, 10-2
user-defined datatypes, 13-18

SCN. See system change numbers
scoped REFs, 13-10
secure application roles, 23-26
security, 22-2

administrator privileges, 5-3
application enforcement of, 23-18
auditing, 24-2, 24-7
data, definition, 1-43
discretionary access control, 22-2
discretionary access control, definition, 1-44
domains, 22-2
domains, definition, 1-45
dynamic predicates, 23-25
enforcement mechanisms listed, 1-44
fine-grained access control, 23-24
overview, 1-43
passwords, 22-8
policies

implementing, 23-25
procedures enhance, 23-8
program interface enforcement of, 8-22
security policies, 23-24
system, 4-3
system, definition, 1-43

views and, 10-18
views enhance, 23-7

security domains, 22-2
definition, 1-45
enabled roles and, 23-20
tablespace quotas, 22-14

segment space management, automatic, 2-6
segments, 2-12

data, 2-12
data, definition, 1-4
deallocating extents from, 2-10
defined, 2-3
definition, 1-4
header block, 2-8
index, 2-13
overview of, 2-12
rollback, B-4
table

high water mark, 19-4
temporary, 2-13, 10-14

allocating, 2-13
cleaned up by SMON, 8-11
dropping, 2-11
ignore quotas, 22-16
operations that require, 2-14
tablespace containing, 2-14

SELECT statement, 14-3
composite indexes, 10-30
subqueries, 14-12
See also queries

selfish style of method invocation, 13-6
sequences, 10-26

auditing, 24-8
CHECK constraints prohibit, 21-21
independence from tables, 10-26
length of numbers, 10-26
number generation, 10-25

server processes, 8-5
listener process and, 6-9

servers
client/server architecture, 6-2
dedicated, 8-21

shared servers contrasted with, 8-15
in client/server architecture, definition, 1-32
shared
Index-29

architecture, 8-3, 8-15
dedicated servers contrasted with, 8-15
processes of, 8-15, 8-19

server-side scripts, 14-31
service names, 6-9
SERVICE_NAMES parameter, 6-9
session control statements, 14-5
SESSION_ROLES view

queried from PL/SQL block, 23-21
sessions

auditing by, 24-11
connections contrasted with, 8-4
defined, 8-4, 24-11
lightweight, 22-10
limits for each user, 22-19
memory allocation in the large pool, 7-15
package state and, 15-7
time limits on, 22-19
when auditing options take effect, 24-6

SET CONSTRAINTS statement
DEFERRABLE or IMMEDIATE, 21-25

SET ROLE statement, 14-5
SET TRANSACTION statement, 14-5

ISOLATION LEVEL, 20-7, 20-33
READ ONLY clause, B-5

SGA. See system global area
SGA_MAX_SIZE initialization parameter, 7-4, 7-16
shadow processes, 8-21
share locks

on foreign keys, 21-17
share table locks (S), 20-26

shared global area (SGA), 7-3
shared mode

rollback segments, B-11
shared pool, 7-11

allocation of, 7-13
ANALYZE statement, 7-14
definition, 1-25
dependency management and, 7-14
described, 7-11
flushing, 7-14
object dependencies and, 15-10
row cache and, 7-13
size of, 7-12

shared server, 8-15

dedicated server contrasted with, 8-15
described, 8-3, 8-15
dispatcher processes, 8-19
limiting private SQL areas, 22-19
Oracle Net Services or SQL*Net V2

requirement, 8-16, 8-19
private SQL areas, 7-18
processes, 8-19
processes needed for, 8-15
restricted operations in, 8-20
session memory in the large pool, 7-15

shared server processes (Snnn), 8-19
described, 8-19

shared SQL areas, 7-12, 14-7
ANALYZE statement, 7-14
definition, 1-25
dependency management and, 7-14
described, 7-12
loading SQL into, 14-11
overview of, 14-7
parse locks and, 20-31
procedures, packages, triggers and, 7-12
size of, 7-12

SHARED_MEMORY_ADDRESS parameter, 7-16
SHARED_POOL_SIZE initialization parameter, 7-5
SHARED_POOL_SIZE parameter, 7-12

system global area size and, 7-5
SHARED_SERVERS parameter, 8-20
shutdown, 5-10, 5-11

abnormal, 5-6, 5-11
deallocation of the SGA, 7-3
prohibited by dispatcher processes, 8-20
steps, 5-10

SHUTDOWN ABORT statement, 5-11
signature checking, 15-11
SKIP_UNUSABLE_INDEXES parameter, 15-9
SMALLINT datatype

ANSI, 12-24
DB2, 12-25
SQL/DS, 12-25

SMON background process, 8-11
See also system monitor process

SMON process, 8-11
software code areas, 7-22

shared by programs and utilities, 7-22
Index-30

sort operations, 3-16
sort segments, 3-16
SORT_AREA_SIZE parameter, 2-14
space management

compression of free space in blocks, 2-6
data blocks, 2-7, B-15
extents, 2-8
PCTFREE, B-16
PCTUSED, B-17
row chaining, 2-7
segments, 2-12

SQL, 14-2
cursors used in, 14-6
data definition language (DDL), 14-4
data manipulation language (DML), 14-3
dynamic SQL, 14-20
embedded, 14-5

user-defined datatypes, 13-18
functions, 14-2

COUNT, 10-52
in CHECK constraints, 21-21
NVL, 10-10

memory allocation for, 7-13
overview of, 14-2
parallel execution, 18-2
parsing of, 14-7
PL/SQL and, 14-16
recursive, 14-6

cursors and, 14-7
reserved words, 14-2
session control statements, 14-5
shared SQL, 14-7
statement-level rollback, 16-4
system control statements, 14-5
transaction control statements, 14-5
transactions and, 16-2, 16-6
types of statements in, 14-3
user-defined datatypes, 13-17

embedded SQL, 13-18
OCI, 13-20

SQL areas
private, 7-12
shared, 7-12, 14-7
shared, definition, 1-25

SQL statements, 14-2, 14-8

array processing, 14-13
auditing, 24-7, 24-10

when records generated, 24-4
creating cursors, 14-10
dictionary cache locks and, 20-32
distributed

routing to nodes, 14-11
embedded, 14-5
execution, 14-8, 14-13
handles, definition, 1-26
number of triggers fired by single, 17-18
parallel execution, 18-2
parallelizing, 18-5
parse locks, 20-31
parsing, 14-11
privileges required for, 23-3
referencing dependent objects, 15-4
resource limits and, 22-18
successful execution, 16-3
transactions, 14-14
triggers on, 17-2, 17-9

triggering events, 17-7
types of, 14-3

SQL*Loader
definition, 1-9
direct load

similar to direct-path INSERT, 19-2
SQL*Menu

PL/SQL, 14-18
SQL*Module

FIPS flagger, 14-6
SQL*Net

See Oracle Net Services
SQL*Plus, 1-21

ALERT file, 8-15
anonymous blocks, 14-19
connecting with, 22-4
executing a package, 14-28
executing a procedure, 14-23
lock and latch monitors, 20-31
session variables, 14-19
showing size of SGA, 7-5
SQL statements, 14-2
statistics monitor, 22-20

SQL_TRACE parameter, 8-14
Index-31

SQL92, 20-2
SQL-99 extensions, 1-59
SQL/DS datatypes

conversion to Oracle datatypes, 12-25
implicit conversion, 12-25
restrictions on, 12-25

SQLJ object types, 13-21
standards

ANSI/ISO, 21-5
isolation levels, 20-2, 20-11

FIPS, 14-6
integrity constraints, 21-5

standby database
mounting, 5-7

startup, 5-2, 5-5
allocation of the SGA, 7-3

starting address, 7-16
forcing, 5-6
prohibited by dispatcher processes, 8-20
restricted mode, 5-6
steps, 5-5

statement failure
definition, 1-50

statement triggers, 17-9
described, 17-9
when fired, 17-18
See also triggers

statement-level read consistency, 20-5
statements

resumable, overview, 16-5
statistics

checkpoint, 8-11
storage

datafiles, 3-18
indexes, 10-34
logical structures, 3-7, 10-3
nulls, 10-10
restricting for users, 22-15
revoking tablespaces and, 22-16
tablespace quotas and, 22-15
triggers, 17-2, 17-21
view definitions, 10-19

STORAGE clause
using, 2-8

storage parameters

OPTIMAL (in rollback segments), B-9
setting, 2-8

stored functions, 14-21
stored outlines, 14-15

editing, 14-16
stored procedures, 14-16, 14-21

calling, 14-21
contrasted with anonymous blocks, 14-25
triggers contrasted with, 17-2
variables and constants, 14-19
See also procedures

Streams. See Oracle Streams
Structured Query Language (SQL), 14-2

See also SQL
structures

data blocks
shown in rowids, 12-19

data dictionary, 4-1
datafiles

shown in rowids, 12-19
locking, 20-30
logical, 2-1

data blocks, 2-2, 2-3
extents, 2-2, 2-8
schema objects, 10-3
segments, 2-2, 2-12
tablespaces, 3-1, 3-7

memory, 7-1
physical

control files, 3-20
datafiles, 3-1, 3-18

processes, 8-1
subqueries, 14-12

CHECK constraints prohibit, 21-21
in DML statements

serializable isolation, 20-14
inline views, 10-21
query processing, 14-12
See also queries

summaries, 10-22
supplied packages

invoker or definer rights, 23-9
symmetric multiprocessors, 18-3
synchronous communication

in message queuing, definition, 1-38
Index-32

synonyms
constraints indirectly affect, 21-5
described, 10-27
for data dictionary views, 4-4
inherit privileges from object, 23-4
private, 10-27
public, 10-27
uses of, 10-27

SYS username
data dictionary tables owned by, 4-3
security domain of, 22-3
statement execution audited, 24-5
temporary schema objects owned by, 22-16
V$ views, 4-7

SYSDBA privilege, 5-3
SYSOPER privilege, 5-3
system change numbers (SCN)

committed transactions, 16-7
defined, 16-7
read consistency and, 20-5
redo logs, 8-10
when determined, 20-5

system control statements, 14-5
system global area (SGA), 7-3

allocating, 5-5
contents of, 7-4
data dictionary cache, 4-4, 7-13
database buffer cache, 7-7
definition, 1-25
diagram, 5-2
fixed, 7-4
large pool, 7-15
limiting private SQL areas, 22-19
overview of, 7-3
redo log buffer, 7-11, 16-6
rollback segments and, 16-6
shared and writable, 7-4
shared pool, 7-11
size of, 7-4

variable parameters, 5-4
when allocated, 7-3

system monitor process (SMON), 8-11
defined, 8-11
definition, 1-28
Real Application Clusters and, 8-11

temporary segment cleanup, 8-11
system privileges, 23-2

ADMIN OPTION, 23-3
definition, 1-46
described, 23-2
granting and revoking, 23-3

SYSTEM rollback segment, B-10
system security

definition, 1-43
SYSTEM tablespace, 3-7

data dictionary stored in, 3-8, 4-2, 4-5
locally managed, 3-7
online requirement of, 3-13
procedures stored in, 3-8

SYSTEM username
security domain of, 22-3

T
table functions, 14-26

parallel execution, 14-26
pipelined, 14-26

tables
affect dependent views, 15-5
auditing, 24-8
base

relationship to views, 10-17
clustered, 10-63
clustered, definition, 1-3
contained in tablespaces, 10-6
controlling space allocation for, 10-6
directories, 2-5
DUAL, 4-6
dynamic partitioning, 18-4
enable or disable constraints, 21-26
external, 10-14
full table scan and buffer cache, 7-8
how data is stored in, 10-6
indexes and, 10-28
index-organized

key compression in, 10-47, 10-59
index-organized tables, 10-57

logical rowids, 10-60, 12-21
integrity constraints, 21-2, 21-5
locks on, 20-23, 20-24, 20-26
Index-33

maximum number of columns in, 10-17
nested tables, 10-13, 13-12
normalized or denormalized, 10-25
object tables, 13-3, 13-8

virtual, 13-23
overview of, 10-5
partitions, 11-2
presented in views, 10-16
privileges on, 23-5
specifying tablespaces for, 10-6
temporary, 10-13

segments in, 2-14
triggers used in, 17-2
validate or novalidate constraints, 21-26
virtual or viewed, 1-3

tablespace point-in-time recovery
clone database, 5-8

tablespaces, 3-7
contrasted with schemas, 10-3
default for object creation, 22-15
default for object creation, definition, 1-47
definition, 1-5
described, 3-7
dictionary managed, 3-13
how specified for tables, 10-6
locally managed, 3-11
locks on, 20-32
moving or copying to another database, 3-17
offline, 3-13, 3-19

and index data, 3-15
remain offline on remount, 3-14

online, 3-13, 3-19
online and offline distinguished, 1-6
overview of, 3-7
quotas on, 22-14, 22-15

limited and unlimited, 22-15
no default, 22-15

quotas, definition, 1-47
read-only, 3-15
relationship to datafiles, 3-2
revoking access from users, 22-16
size of, 3-3
space allocation, 3-11
temporary, 3-16

default for user, 22-15

temporary, definition, 1-47
used for temporary segments, 2-14
See also SYSTEM tablespace

tasks, 8-2
tempfiles, 3-19
temporary segments, 2-14, 10-14

allocating, 2-14
allocation for queries, 2-14
deallocating extents from, 2-11
dropping, 2-11
ignore quotas, 22-16
operations that require, 2-14
tablespace containing, 2-14
when not in redo log, 2-15

temporary tables, 10-13
temporary tablespaces, 3-16

default, 3-10
definition, 1-47

threads
shared server, 8-15, 8-19

three-valued logic (true, false, unknown)
produced by nulls, 10-10

TIME datatype
DB2, 12-25
SQL/DS, 12-25

time stamp checking, 15-11
time zones

in date/time columns, 12-12
TIMESTAMP datatype, 12-12

DB2, 12-25
SQL/DS, 12-25

TIMESTAMP WITH LOCAL TIME ZONE
datatype, 12-12

TIMESTAMP WITH TIME ZONE datatype, 12-12
TO_CHAR function

data conversion, 12-26
globalization support default in CHECK

constraints, 21-21
globalization support default in views, 10-19
Julian dates, 12-11

TO_CLOB function
data conversion, 12-27

TO_DATE function, 12-10
data conversion, 12-26
globalization support default in CHECK
Index-34

constraints, 21-21
globalization support default in views, 10-19
Julian dates, 12-11

TO_NCHAR function
data conversion, 12-26

TO_NCLOB function
data conversion, 12-27

TO_NUMBER function, 12-9
data conversion, 12-26
globalization support default in CHECK

constraints, 21-21
globalization support default in views, 10-19
Julian dates, 12-11

trace files, 8-14
LGWR trace file, 8-9

transaction control statements, 14-5
in autonomous PL/SQL blocks, 16-13

transaction set consistency, 20-10, 20-11
transaction tables, B-5

reset at recovery, 8-12
transactions, 16-1

assigning system change numbers, 16-7
assigning to rollback segments, B-5
autonomous, 16-12

within a PL/SQL block, 16-12
block-level recovery, 20-23
committing, 8-10, 16-4, 16-6

group commits, 8-10
use of rollback segments, B-5

committing, definition, 1-18
concurrency and, 20-17
controlling transactions, 14-14
deadlocks and, 16-4, 20-19
defining and controlling, 14-14
definition, 1-13
described, 16-2
discrete transactions, 14-14, 16-11
distributed

deadlocks and, 20-20
parallel DDL restrictions, 18-12
parallel DML restrictions, 18-12
resolving automatically, 8-12
two-phase commit, 16-10

distribution among rollback segments of, B-6
end of, 16-5

consistent data, 14-14
in-doubt

limit rollback segment access, B-14
resolving automatically, 5-9, 16-10
rollback segments and, B-8
use partly available segments, B-14

naming, 16-9
read consistency of, 20-6
read consistency, definition, 1-41
read-only

not assigned to rollback segments, B-5
read-only, definition, 1-41
redo log files written before commit, 8-10
rollback segments and, B-5
rolling back, 16-7

and offline tablespaces, B-14
partially, 16-8
use of rollback segments, B-5

rolling back, definition, 1-19
savepoints in, 16-8
serializable, 20-7
space used in data blocks for, 2-5
start of, 16-5
statement level rollback and, 16-4
system change numbers, 8-10
terminating the application and, 16-6
transaction control statements, 14-5
triggers and, 17-20
writing to rollback segments, B-6

TRANSACTIONS parameter, B-11
TRANSACTIONS_PER_ROLLBACK_SEGMENT

parameter, B-11
transient type descriptions, 13-19
triggers, 17-1

action, 17-8
timing of, 17-10

AFTER triggers, 17-10
as program units, definition, 1-14
auditing, 24-8
BEFORE triggers, 17-10
cascading, 17-4
compared with Oracle Forms triggers, 17-3
constraints apply to, 17-17
constraints contrasted with, 17-5
data access and, 17-20
Index-35

dependency management of, 15-6, 17-21
enabled triggers, 17-17

enabled or disabled, 17-17
enforcing data integrity with, 21-5
events, 17-7
examples of, 17-20
firing (executing), 17-2, 17-21

privileges required, 17-21
steps involved, 17-17
timing of, 17-18

INSTEAD OF triggers, 17-12
object views and, 13-26

INVALID status, 15-6
Java, 17-8
overview of, 17-2
parts of, 17-6
privileges for executing, 23-9

roles, 23-21
procedures contrasted with, 17-2
prohibited in views, 10-17
publish-subscribe support, 17-14
restrictions, 17-8
row, 17-9
schema object dependencies, 17-17, 17-21
sequence for firing multiple, 17-18
shared SQL areas and, 7-12
statement, 17-9
storage of, 17-21
types of, 17-9
UNKNOWN does not fire, 17-8
uses of, 17-4

TRUNCATE statement, 14-4
two-phase commit

transaction management, 16-10
triggers, 17-17

two-task mode
listener process and, 8-19
network communication and, 8-22
program interface in, 8-22

type descriptions
dynamic creation and access, 13-19
transient, 13-19

type inheritance, 13-13
types

privileges on, 23-12

See datatypes, object types

U
UDAG (User-Defined Aggregate Functions), 13-15
UDAGs (User-Defined Aggregate Functions)

creation and use of, 13-15
Ultra Search, 1-67
undo, 1-5

See also rollback
undo management, automatic, 2-16
undo tablespaces, 3-8
Unicode, 12-3, 12-5, 12-6, 12-15
unique indexes, 10-30
UNIQUE key constraints, 21-8

composite keys, 21-9, 21-11
constraint checking, 21-23
indexes used to enforce, 21-10
maximum number of columns, 21-10
NOT NULL constraints and, 21-11
nulls and, 21-11
size limit of, 21-10

unique keys, 21-9
composite, 21-9, 21-11

UNUSABLE indexes
function-based, 15-9

update no action constraint, 21-16
UPDATE statement, 14-3

foreign key references, 21-16
freeing space in data blocks, 2-6
triggers, 17-2, 17-7

BEFORE triggers, 17-10
updates

object views, 13-26
updatability of object views, 13-26
updatability of views, 10-20, 17-12, 17-13
updatable join views, 10-20
update intensive environments, 20-9

updating tables
with parent keys, 21-17, 21-19

UROWID datatype, 12-16
USE_INDIRECT_DATA_BUFFERS

parameter, 7-17
user processes

connections and, 8-4
Index-36

dedicated server processes and, 8-21
definition, 1-26
sessions and, 8-4
shared server processes and, 8-19

user profiles
definition, 1-47

user program interface (UPI), 8-23
USER pseudocolumn, 23-8
USER_ views, 4-5
USER_UPDATABLE_COLUMNS view, 10-21
User-Defined Aggregate Functions (UDAGs)

creation and use of, 13-15
user-defined aggregate functions (UDAGs), 13-15
user-defined datatypes, 13-1, 13-3

collections, 13-11
nested tables, 13-12
variable arrays (VARRAYs), 13-11

object types, 13-2, 13-4
users, 22-2

access rights, 22-2
auditing, 24-13
authentication of, 22-3
dedicated servers and, 8-21
default tablespaces of, 22-15
enterprise, 22-2
listed in data dictionary, 4-2
locks, 20-41
multiuser environments, 8-2
password encryption, 22-8
processes of, 8-4
profiles of, 22-20
PUBLIC user group, 22-16, 23-21
roles and, 23-17

for types of users, 23-19
schemas of, 22-2
security domains of, 22-2, 23-21
tablespace quotas of, 22-14
temporary tablespaces of, 2-14, 22-15
usernames, 22-2

sessions and connections, 8-4

V
V$BUFFER_POOL view, 7-10
V_$ and V$ views, 4-7

VALIDATE constraints, 21-26
VARCHAR datatype, 12-4

DB2, 12-25
SQL/DS, 12-25

VARCHAR2 datatype, 12-4
non-padded comparison semantics, 12-4
similarity to RAW datatype, 12-16

VARGRAPHIC datatype
DB2, 12-25
SQL/DS, 12-25

variables
bind variables

user-defined types, 13-18
embedded SQL, 14-5
in stored procedures, 14-19
object variables, 13-25

varrays, 13-11
index-organized tables, 10-59

key compression, 10-47
view hierarchies, 13-27
views, 10-16

altering base tables and, 15-5
auditing, 24-8
constraints indirectly affect, 21-5
containing expressions, 17-13
data dictionary

updatable columns, 10-20
definition expanded, 15-5
dependency status of, 15-5
fixed views, 4-7
globalization support parameters in, 10-19
how stored, 10-17
indexes and, 10-19
inherently modifiable, 17-13
inline views, 10-21
INSTEAD OF triggers, 17-12
materialized views, 10-22
materialized views, definition, 1-58
maximum number of columns in, 10-17
modifiable, 17-13
modifying, 17-12
object views, 10-21

updatability, 13-26
overview of, 10-16
prerequisites for compilation of, 15-5
Index-37

privileges for, 23-6
pseudocolumns, 17-13
schema object dependencies, 10-20, 15-4
security applications of, 23-7
SQL functions in, 10-19
triggers prohibited in, 10-17
updatability, 10-20, 13-26, 17-13
uses of, 10-18

W
waits for blocking transaction, 20-11
Wallet Manager, 22-5
wallets, 22-5
warehouse

materialized views, 10-22
Web page scripting, 14-31
WITH OBJECT OID clause, 13-25
write-ahead, 8-9
writers block readers, 20-11

X
X.509 certificates, 22-5
XA

session memory in the large pool, 7-15
XDK, 1-16
XML datatypes, 12-25
XML DB, 1-15
XMLType datatype, 1-16, 12-25

Y
year 2000, 12-12
Index-38

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	Part I� What Is Oracle?
	1 Introduction to the Oracle Server
	Database Structure and Space Management Overview
	Logical Database Structures
	Physical Database Structures
	Data Dictionary Overview

	Data Access Overview
	SQL Overview
	Objects Overview
	PL/SQL Overview
	Java Overview
	XML Overview
	Transactions Overview
	Data Integrity Overview
	SQL*Plus Overview

	Memory Structure and Processes Overview
	An Oracle Instance
	Memory Structures
	Process Architecture
	The Program Interface Mechanism
	An Example of How Oracle Works

	Application Architecture Overview
	Client/Server Architecture
	Multitier Architecture: Application Servers

	Distributed Databases Overview
	Replication Overview
	Streams Overview
	Advanced Queuing Overview
	Heterogeneous Services Overview

	Data Concurrency and Consistency Overview
	Concurrency
	Read Consistency
	Locking Mechanisms
	Quiesce Database

	Database Security Overview
	Security Mechanisms

	Database Administration Overview
	Enterprise Manager Overview
	Database Backup and Recovery Overview

	Data Warehousing Overview
	Differences Between Data Warehouse and OLTP Systems
	Data Warehouse Architecture
	Materialized Views
	OLAP Overview
	Change Data Capture Overview

	High Availability Overview
	Transparent Application Failover
	Online Reorganization Architecture
	Data Guard Overview
	LogMiner Overview
	Real Application Clusters
	Real Application Clusters Guard

	Content Management Overview
	Oracle Internet File System Overview

	Part II� Database Structures
	2 Data Blocks, Extents, and Segments
	Introduction to Data Blocks, Extents, and Segments
	Data Blocks Overview
	Data Block Format
	Free Space Management

	Extents Overview
	When Extents Are Allocated
	Determine the Number and Size of Extents
	How Extents Are Allocated
	When Extents Are Deallocated

	Segments Overview
	Introduction to Data Segments
	Introduction to Index Segments
	Introduction to Temporary Segments
	Automatic Undo Management

	3 Tablespaces, Datafiles, and Control Files
	Introduction to Tablespaces, Datafiles, and Control Files
	Oracle-Managed Files
	Allocate More Space for a Database

	Tablespaces Overview
	The SYSTEM Tablespace
	Undo Tablespaces
	Default Temporary Tablespace
	Using Multiple Tablespaces
	Managing Space in Tablespaces
	Multiple Block Sizes
	Online and Offline Tablespaces
	Read-Only Tablespaces
	Temporary Tablespaces for Sort Operations
	Transport of Tablespaces Between Databases

	Datafiles Overview
	Datafile Contents
	Size of Datafiles
	Offline Datafiles
	Temporary Datafiles

	Control Files Overview
	Control File Contents
	Multiplexed Control Files

	4 The Data Dictionary
	Introduction to the Data Dictionary
	Structure of the Data Dictionary
	SYS, Owner of the Data Dictionary

	How the Data Dictionary Is Used
	How Oracle Uses the Data Dictionary
	How to Use the Data Dictionary

	Dynamic Performance Tables
	Database Object Metadata

	Part III� The Oracle Instance
	5 Database and Instance Startup�and�Shutdown
	Introduction to an Oracle Instance
	The Instance and the Database
	Connection with Administrator Privileges
	Initialization Parameter Files

	Instance and Database Startup
	How an Instance Is Started
	How a Database Is Mounted
	What Happens When You Open a Database

	Database and Instance Shutdown
	Close a Database
	Unmount a Database
	Shut Down an Instance

	6 Application Architecture
	Client/Server Architecture
	Multitier Architecture
	Clients
	Application Servers
	Database Servers

	Oracle Net Services
	How Oracle Net Services Works
	The Listener

	7 Memory Architecture
	Introduction to Oracle Memory Structures
	System Global Area (SGA) Overview
	Dynamic SGA
	Database Buffer Cache
	Redo Log Buffer
	Shared Pool
	Large Pool
	Control of the SGA’s Use of Memory
	Other SGA Initialization Parameters

	Program Global Areas (PGA) Overview
	Content of the PGA
	SQL Work Areas
	PGA Memory Management for Dedicated Mode

	Dedicated and Shared Servers
	Software Code Areas

	8 Process Architecture
	Introduction to Processes
	Multiple-Process Oracle Systems
	Types of Processes

	User Processes Overview
	Connections and Sessions

	Oracle Processes Overview
	Server Processes
	Background Processes
	Trace Files and the Alert Log

	Shared Server Architecture
	Scalability
	Dispatcher Request and Response Queues
	Shared Server Processes (Snnn)
	Restricted Operations of the Shared Server

	Dedicated Server Configuration
	The Program Interface
	Program Interface Structure
	Program Interface Drivers
	Communications Software for the Operating System

	9 Database Resource Management
	Introduction to the Database Resource Manager
	Database Resource Manager Overview
	Example of a Simple Resource Plan

	How the Database Resource Manager Works
	Resource Control
	Database Integration
	Performance Overhead

	Resource Plans and Resource Consumer Groups
	Activation of a Resource Plan
	Groups of Resource Plans

	Resource Allocation Methods and Resource Plan Directives
	Resource Plan Directives
	CPU Resource Allocation

	Interaction with Operating-System Resource Control
	Dynamic Reconfiguration

	Part IV� Data
	10 Schema Objects
	Introduction to Schema Objects
	Tables
	How Table Data Is Stored
	Nulls Indicate Absence of Value
	Default Values for Columns
	Partitioned Tables
	Nested Tables
	Temporary Tables
	External Tables

	Views
	How Views are Stored
	How Views Are Used
	Mechanics of Views
	Dependencies and Views
	Updatable Join Views
	Object Views
	Inline Views

	Materialized Views
	Define Constraints on Views
	Refresh Materialized Views
	Materialized View Logs

	Dimensions
	The Sequence Generator
	Synonyms
	Indexes
	Unique and Nonunique Indexes
	Composite Indexes
	Indexes and Keys
	Indexes and Nulls
	Function-Based Indexes
	How Indexes Are Stored
	How Indexes Are Searched
	Key Compression
	Reverse Key Indexes
	Bitmap Indexes
	Bitmap Join Indexes

	Index-Organized Tables
	Benefits of Index-Organized Tables
	Index-Organized Tables with Row Overflow Area
	Secondary Indexes on Index-Organized Tables
	Bitmap Indexes on Index-Organized Tables
	Partitioned Index-Organized Tables
	B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables
	Index-Organized Table Applications

	Application Domain Indexes
	Clusters
	Hash Clusters

	11 11 Partitioned Tables and Indexes
	Introduction to Partitioning
	Partition Key
	Partitioned Tables
	Partitioned Index-Organized Tables

	Partitioning Methods
	Range Partitioning
	List Partitioning
	Hash Partitioning
	Composite Partitioning
	When to Partition a Table

	Partitioned Indexes
	Local Partitioned Indexes
	Global Partitioned Indexes
	Global Nonpartitioned Indexes
	Partitioned Index Examples
	Miscellaneous Information about Creating Indexes on Partitioned Tables
	Using Partitioned Indexes in OLTP Applications
	Using Partitioned Indexes in Data Warehousing and DSS Applications
	Partitioned Indexes on Composite Partitions

	Partitioning to Improve Performance
	Partition Pruning
	Partition-wise Joins
	Parallel DML

	12 12 Native Datatypes
	Introduction to Oracle Datatypes
	Character Datatypes
	CHAR Datatype
	VARCHAR2 and VARCHAR Datatypes
	Length Semantics for Character Datatypes
	NCHAR and NVARCHAR2 Datatypes
	Use of Unicode Data in an Oracle Database
	LOB Character Datatypes
	LONG Datatype

	NUMBER Datatype
	Internal Numeric Format

	DATE Datatype
	Use of Julian Dates
	Date Arithmetic
	Centuries and the Year 2000
	Daylight Savings Support
	Time Zones

	LOB Datatypes
	BLOB Datatype
	CLOB and NCLOB Datatypes
	BFILE Datatype

	RAW and LONG RAW Datatypes
	ROWID and UROWID Datatypes
	The ROWID Pseudocolumn
	Physical Rowids
	Logical Rowids
	Rowids in Non-Oracle Databases

	ANSI, DB2, and SQL/DS Datatypes
	XML Datatypes
	XMLType Datatype

	URI Datatypes
	Data Conversion

	13 Object Datatypes and Object Views
	Introduction to Object Datatypes
	Complex Data Models
	Multimedia Datatypes

	Object Datatype Categories
	Object Types
	Collection Types

	Type Inheritance
	FINAL and NOT FINAL Types
	NOT INSTANTIABLE Types and Methods

	User-Defined Aggregate Functions
	Why Have User-Defined Aggregate Functions?
	Creation and Use of UDAGs
	How Do Aggregate Functions Work?

	Application Interfaces
	SQL
	PL/SQL
	Pro*C/C++
	OCI
	OTT
	JPublisher
	JDBC
	SQLJ

	Datatype Evolution
	Introduction to Object Views
	Advantages of Object Views
	How Object Views Are Defined
	Use of Object Views
	Updates of Object Views
	Updates of Nested Table Columns in Views
	View Hierarchies

	Part V� Data Access
	14 SQL, PL/SQL, and Java
	SQL Overview
	SQL Statements
	Identification of Nonstandard SQL
	Recursive SQL
	Cursors
	Shared SQL
	Parsing
	SQL Processing
	The Optimizer Overview

	PL/SQL Overview
	How PL/SQL Runs
	Language Constructs for PL/SQL
	PL/SQL Program Units
	PL/SQL Collections and Records
	PL/SQL Server Pages

	Java Overview
	Java and Object-Oriented Programming Terminology
	Class Hierarchy
	Interfaces
	Polymorphism
	The Java Virtual Machine (JVM)
	Why Use Java in Oracle?
	Oracle’s Java Application Strategy

	15 Dependencies Among Schema Objects
	Introduction to Dependency Issues
	Resolution of Schema Object Dependencies
	Compilation of Views and PL/SQL Program Units
	Function-Based Index Dependencies

	Object Name Resolution
	Shared SQL Dependency Management
	Local and Remote Dependency Management
	Management of Local Dependencies
	Management of Remote Dependencies

	16 Transaction Management
	Introduction to Transactions
	Statement Execution and Transaction Control
	Statement-Level Rollback
	Resumable Space Allocation

	Transaction Management Overview
	Commit Transactions
	Rollback of Transactions
	Savepoints In Transactions
	Transaction Naming
	The Two-Phase Commit Mechanism

	Discrete Transaction Management
	Autonomous Transactions
	Autonomous PL/SQL Blocks
	Transaction Control Statements in Autonomous Blocks

	17 Triggers
	Introduction to Triggers
	How Triggers Are Used

	Parts of a Trigger
	The Triggering Event or Statement
	Trigger Restriction
	Trigger Action

	Types of Triggers
	Row Triggers and Statement Triggers
	BEFORE and AFTER Triggers
	INSTEAD OF Triggers
	Triggers on System Events and User Events

	Trigger Execution
	The Execution Model for Triggers and Integrity Constraint Checking
	Data Access for Triggers
	Storage of PL/SQL Triggers
	Execution of Triggers
	Dependency Maintenance for Triggers

	Part VI� Parallel SQL and Direct-Load INSERT
	18 Parallel Execution of SQL Statements
	Introduction to Parallel Execution
	When to Implement Parallel Execution
	When Not to Implement Parallel Execution

	How Parallel Execution Works
	Parallelized SQL Statements
	Degree of Parallelism
	Parallel Query Intra- and Inter-Operation Example

	SQL Operations That Can Be Parallelized
	Parallel Query
	Parallel DDL
	Parallel DML
	SQL*Loader
	How to Make a Statement Run in Parallel

	19 Direct-Path INSERT
	Introduction to Direct-Path INSERT
	Advantages of Direct-Path INSERT
	Serial and Parallel Direct-Path INSERT
	Direct-Path INSERT Into Partitioned and Nonpartitioned Tables
	Serial Direct-Path INSERT into Partitioned and Nonpartitioned Tables
	Parallel Direct-Path INSERT into Partitioned Tables
	Parallel Direct-Path INSERT into Nonpartitioned Tables

	Direct-Path INSERT and Logging Mode
	Direct-Path INSERT with Logging
	Direct-Path INSERT without Logging

	Additional Considerations for Direct-Path INSERT
	Index Maintenance with Direct-Path INSERT
	Space Considerations with Direct-Path INSERT
	Locking Considerations with Direct-Path INSERT

	Part VII� Data Protection
	20 Data Concurrency and Consistency
	Introduction to Data Concurrency and Consistency in a Multiuser Environment
	Preventable Phenomena and Transaction Isolation Levels
	Overview of Locking Mechanisms

	How Oracle Manages Data Concurrency and Consistency
	Multiversion Concurrency Control
	Statement-Level Read Consistency
	Transaction-Level Read Consistency
	Read Consistency with Real Application Clusters
	Oracle Isolation Levels
	Comparison of Read Committed and Serializable Isolation
	Choice of Isolation Level

	How Oracle Locks Data
	Transactions and Data Concurrency
	Deadlocks
	Types of Locks
	DML Locks
	DDL Locks
	Latches and Internal Locks
	Explicit (Manual) Data Locking
	Oracle Lock Management Services

	Flashback Query
	Flashback Query Benefits
	Some Uses of Flashback Query

	21 Data Integrity
	Introduction to Data Integrity
	Types of Data Integrity
	How Oracle Enforces Data Integrity

	Introduction to Integrity Constraints
	Advantages of Integrity Constraints
	The Performance Cost of Integrity Constraints

	Types of Integrity Constraints
	NOT NULL Integrity Constraints
	UNIQUE Key Integrity Constraints
	PRIMARY KEY Integrity Constraints
	Referential Integrity Constraints
	CHECK Integrity Constraints

	The Mechanisms of Constraint Checking
	Default Column Values and Integrity Constraint Checking

	Deferred Constraint Checking
	Constraint Attributes
	SET CONSTRAINTS Mode
	Unique Constraints and Indexes

	Constraint States
	Constraint State Modification

	22 Controlling Database Access
	Introduction to Database Security
	Schemas, Database Users, and Security Domains
	User Authentication
	Authentication by the Operating System
	Authentication by the Network
	Authentication by the Oracle Database
	Multitier Authentication and Authorization
	Authentication by the Secure Socket Layer Protocol
	Authentication of Database Administrators

	Oracle Internet Directory
	User Tablespace Settings and Quotas
	Default Tablespace Option
	Temporary Tablespace Option
	Tablespace Access and Quotas

	The User Group PUBLIC
	User Resource Limits and Profiles
	Types of System Resources and Limits
	Profiles

	23 Privileges, Roles, and Security Policies
	Introduction to Privileges
	System Privileges
	Schema Object Privileges
	Table Security
	View Security
	Procedure Security
	Type Security

	Introduction to Roles
	Common Uses for Roles
	The Mechanisms of Roles
	Grant and Revoke Roles
	Who Can Grant or Revoke Roles?
	Role Names
	Security Domains of Roles and Users
	PL/SQL Blocks and Roles
	Data Definition Language Statements and Roles
	Predefined Roles
	The Operating System and Roles
	Roles in a Distributed Environment

	Fine-Grained Access Control
	Dynamic Predicates

	Application Context
	Secure Application Roles
	Creation of Secure Application Roles

	24 Auditing
	Introduction to Auditing
	Features of Auditing
	Mechanisms for Auditing

	Statement Auditing
	Privilege Auditing
	Schema Object Auditing
	Schema Object Audit Options for Views and Procedures

	Fine-Grained Auditing
	Focus Statement, Privilege, and Schema Object Auditing
	Successful and Unsuccessful Statement Executions Auditing
	BY SESSION and BY ACCESS Clauses of Audit Statement
	Audit By User

	Audit in a Multitier Environment

	A Operating System Specific Information
	B Information on Deprecated Features
	Allocating Extents in Dictionary Managed Tablespaces
	Introduction to Rollback Segments
	PCTFREE, PCTUSED, and Row Chaining

	Glossary
	Index

