Oracle9

Data Warehousing Guide

Release 2 (9.2)

March 2002
Part No. A96520-01

ORACLE

Oracle9i Data Warehousing Guide, Release 2 (9.2)

Part No. A96520-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.
Primary Author: Paul Lane

Contributing Authors: Viv Schupmann (Change Data Capture)

Contributors: Patrick Amor, Hermann Baer, Subhransu Basu, Srikanth Bellamkonda, Randy Bello,
Tolga Bozkaya, Benoit Dageville, John Haydu, Lilian Hobbs, Hakan Jakobsson, George Lumpkin, Cetin
Ozbutun, Jack Raitto, Ray Roccaforte, Sankar Subramanian, Gregory Smith, Ashish Thusoo,
Jean-Francois Verrier, Gary Vincent, Andy Witkowski, Zia Ziauddin

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express, Oracle Expert, Oracle Store, Oracle7, Oracle8, Oracle8i,
Oracle9i, Oracle Store, PL/SQL, Pro*C, and SQL*Plus are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Send US YOUIr COMMENTS ...ttt Xix
PIEIAICE ..o XXi
What's New in Data WarehouSING? ... XXXiii
Partl Concepts

1 Data Warehousing Concepts

What iS @ Data WarENOUSE?........c.oiiiiiieiiiie ettt et et be et nbe bbb e 1-2
SUDJECT OFIENTEA. ..ot bbbttt sttt et 1-2
LY (=T | 2= L (=Y o [1-2
(N o]01V70] F=1 1] [T SO USSR 1-3
LI LT 2= U =g 1-3
Contrasting OLTP and Data Warehousing ENVironments............ccococevevencisieninsnsese s 1-3
Data Warehouse ArChItECTUIESooiiiiee e 1-5
Data Warehouse ArchiteCture (BaSiC).........ccueiiiiiiniiiiiriecieicsie s 1-5
Data Warehouse Architecture (with a Staging Area).......ccccocvcvvenineiesesieseieee e 1-6
Data Warehouse Architecture (with a Staging Area and Data Marts)cccccccveeninennne 1-7
Part 1l Logical Design

2 Logical Design in Data Warehouses

Logical Versus Physical Design in Data WarehOoUSES..........ccooiiiriiiiiicceeeeeee e 2-2

Creating @ LOGICal DESIONccuoiieii ettt sttt e e s et e s e sas e b e saeentesaeesreanees 2-2

Data WarehoUSING SCREMAS.........ccuiuiiiiiee bbbttt 2-3
STAI SCNEBIMAS ...t n ettt et nna 2-4
OthEr SCHEMIES......ccviiiiicc bbbttt n s 2-5

Data WarehouSiNG ODJECTS........c.ciiiiiiiiiiie bbbt 2-5
FACT TADIES. ... 2-5
DiIMENSION TADIES ... et 2-6
UNIQUE TABNTITIEIS ...ttt ettt sne e 2-8
] =LA o]] T o 2-8
Example of Data Warehousing Objects and Their Relationships...........ccccooevviiiiininnenn 2-8

Part Il Physical Design

3 Physical Design in Data Warehouses

Moving from Logical to Physical DeSIgN.........cccccveiiiiiiiiice e 3-2
PRYSICAI DESIGN ...ttt b bbbt b et b et bt bttt et 3-2
Physical DeSIGN StIUCTUIEScvoivirieieieeiceeeee sttt s eeneete e snesnenne s 3-4
TADIESPACES ...ttt bbb bbbt bt ettt bt bbb are 3-4
Tables and Partitioned TabIES..........cvoi it 3-5
VIBWUS .ottt bbb bbbtk ek e bbbt bR bR bRt bbbt be et e ne e 3-6
INTEGIILY CONSLIAINTS ...c.viiiicicicce ettt e e e sbe e e sreeaesreesaesreens 3-6
Indexes and Partitioned INAEXEScccoviii ittt be e aesreens 3-6
MALEFTAIIZEA VIBWScoiiiieieeie ettt ettt et et 3-7
DIIMEBNSIONS ...ttt bbbt bbbt b e b e bt nb e b e e b et es e e b e e bt e bt et e et e beebenees 3-7

4 Hardware and I/O Considerations in Data Warehouses

Overview of Hardware and 1/O Considerations in Data Warehousescccoccvcivininennns 4-2
WRHY SEHPE The DatA?.......ccoiviiiieiiieiiee ettt 4-2
YN0} (0] g = L (o] A] o] [Lo OSSP 4-3
MANUAI SEFIPING -ttt bbb bbbt s bt be bt be st sbe e 4-4
Local and GIobal StFPINGcoviiiiiiiei e 4-5
W AN QT A4 T IS 1] o1 o PSSP 4-6

RAID CONFIQUIALIONScoiiiiciicece ettt et e st e s ae e steaneesteaaesteeaesteeeesreens 4-9
RAID O (STFIPING) «.eeveieieeiiiteesiee ettt b ekttt b et 4-10

YA 1 I R €AV, 1T g e T T T) OSSR 4-10

RAID 0+1 (Striping and Mirroring)ccooeoiiriireireiseiseees e 4-10
Striping, Mirroring, and Media RECOVEIYcccviiiieiinesie e snens 4-10
RAID 5.ttt bbb bbb bR E bbbt 4-11
The Importance of SPecific ANAIYSIS. ... e 4-12

Parallelism and Partitioning in Data Warehouses

Overview Of Parallel EXECULION.........ccoiiiiiie ettt 5-2
When to Implement Parallel EXECULION...........covoviieiirc e 5-2
Granules Of ParalleliSIm ... bbb 5-3
BIOCK RANGE GFanUIES ..ottt bbbt 5-3
Partition GFAnUIES.........ccoiiiieie bbbttt 5-4
Partitioning Design CONSIAEIALIONSccecciiiiie ettt 5-4
TYPES OF PArTILIONINGc.eiuiiiitiiitiieieet ettt ettt sr et sb et sn e ane e 5-4
Partitioning and Data Segment COMPIESSIONccvcvvviieiisise e 5-17
PartitioN PrUNINGccooiiiec ettt be et et eeaeenbeaneenre e e sreannes 5-19
PartitioN-WWISE JOINScoiiiiiiie ettt sttt sttt e b e e sesneebe st e 5-21
Miscellaneous Partition OPEratioNscccceiiieirieie e 5-31
PN o Lo [T aTo T == o 1 o] LSS U ST 5-32
DropPPRING PArtitiONS........c.civiuiiiiiiietiieeiesiee ettt et sr et n et sb et b et ab e ene e 5-33
EXChanging PartitioNScooviiiiiiiierisee ettt sneerenre s 5-34
Y o)V AT o T o= U €1 A o] o OSSPSR 5-34
Splitting and Merging Partitions...........ccocoiiiiiinii e 5-35
TrunCating PartitioNscccooiieiiice e e et e snesre e 5-35
(OTo T L= T ol T To [N o= U) 4 (o] o <SSR 5-36
Indexes
BITMAP INOEXES ...ttt bbb bbb e bbb bt b e bt bt bt b st st sbennes 6-2
BItMApP JOIN INAEXES......cuiiiiiicieet bbbttt 6-6
BErEE INAEXES ..ot bbb ekttt st et bbbt b ettt b e ebe e 6-10
Local Indexes Versus Global INAEXES ..o e 6-10

Integrity Constraints
Why Integrity Constraints are Useful in a Data Warehousec.ccccccoevveviiieve e, 7-2

OVENVIEW OF CONSIIAINT STALES......oiiiiii ettt e e s st e e e b e e s s sbae e s sabae s 7-3

Typical Data Warehouse Integrity CONSTraiNTScccooiiiiiiiiniiieceseee s 7-4
UNIQUE Constraints in @ Data WarehOUSEcccceeveiieieiie et 7-4
FOREIGN KEY Constraints in a Data WarehQuUSE..........c.ccoeiiienineicicceeeeees e 7-5
RELY CONSIFAINTS......ciiiiiiiiieie ettt ettt ste sttt ste e te e e e st e e st e stees b e sbeenbesaeeeesaeestesaeesreaneas 7-6
Integrity Constraints and ParalleliSmc..cocveiiiiiiisie e 7-7
Integrity Constraints and PartitionNing...........cccooviiriiiiiciieie e 7-7
VIBW CONSIIAINTS. ... uiiuiiiiicieite ettt ste et te et e st e e s e s be et e ebe e beebeeabeeneesbeeseesbeeseesteestessaens 7-7

8 Materialized Views

vi

Overview of Data Warehousing with Materialized VIeWs............ccoccoieiniiniiniincicies 8-2
Materialized Views for Data WarehoUSES...........ccoccereinriineieneise e 8-2
Materialized Views for Distributed COMPULINGccccoiiiiiiniieieee e 8-3
Materialized Views for Mobile COMPULINGccooiiiiiniireieee e 8-3
The Need for Materialized VIBWS ... e 8-3
Components of SUMMAary ManagemeNnTcoeiiiiiiiniene e e 8-5
Data Warehousing TErmMiNOIOQY ...t 8-7
Materialized View SChema DESIgNccccveieieiieececese et 8-8
(o LT [aTo [N I L - USSP 8-10
Overview of Materialized View Management Taskscccoevreiniineineineiseese e 8-11

Types OFf MaterialiZed VIBWS ..ot e re s 8-12
Materialized Views With AQQregates.........cciviiiieiiiicie et 8-13
Materialized Views Containing ONlY JOINS ... 8-16
Nested MaterialiZEd VIBWS ..ottt 8-18

Creating MaterfaliZEA VIBWSoiviie ettt sra e nne s 8-21
Naming Materialized VIBWScccviiiiiiiii e 8-22
Storage And Data Segment COMPIESSIONcoviveierieierieese s erenes 8-23
BUIIA IMEBTNOAS ... ettt eb et 8-23
ENabling QUETY REWTITE ..ot e 8-24
QUErY REWTItE RESLIICLIONSocvviiiie et ene e 8-24
RETIESN OPTIONS. ...ttt bbb bbb e ettt s et be b b e 8-25
ORDER BY CIAUSE ...ttt sttt bbbttt sttt bbb nenntas 8-31
MaAterialiZEd VIBW LOGSuviiiiiiieieriirieie ettt s se e eneeneenaenenrenneanens 8-31
Using Oracle ENtErprise IMANAGETccccoveiiieieieiere ettt ettt sbe s 8-32
Using Materialized Views with NLS Parameters ..o 8-32

Registering EXisting MaterialiZed VIEWS...........coooiiiieiiiiee et 8-33

Partitioning and Materialized VIBWS..........cocoiiiiiiiiieiic e 8-35
Partition Change TraCKiNgGccccvivieieiirereieeeees e ne e nesnesre e e 8-35
Partitioning a MaterialiZEd VIEWcccocviii ittt 8-39
Partitioning a Prebuilt TabIecoi i 8-40
ROIIING MaterialiZEa VIBWS........ccvieie ettt e ere s 8-41

Materialized Views in OLAP ENVIFONMENTS.........cooiiiiiiiiiiie e e 8-41
OLAP CUDES ... oottt ettt et bbb st ne et et et e e et et te b e te st enenbne 8-41
Specifying OLAP CUbBES iN SQLcviieieieiceese et sne s 8-42
Querying OLAP Cubes in SQL......cciiiieiiiieie ettt e e et esre s 8-43
Partitioning Materialized VIeWs fOr OLAPcccoiiiiiniiieeseee s 8-47
Compressing Materialized VIiews fOr OLAP ... 8-47
Materialized Views With Set OPErators ...t 8-47

Choosing Indexes for Materialized VIEWS..........cccooeiiiiiiinieiiisiesee s 8-49

Invalidating MaterialiZe€d VIBWScccviiiiiiececee et sre s 8-50

Security Issues With MaterialiZed VIEWS.........cccoov i 8-50

Altering MaterialiZEd VIBWS ..o 8-51

Dropping MaterialiZed VIEBWS.........cccoceiieiccececes sttt sne e nne s 8-52

Analyzing Materialized View Capabilities ... 8-52
Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure.........c.ccoceveneierenieieineseseneene 8-53
MV_CAPABILITIES_TABLE.CAPABILITY_NAME DetailScccccoveiinniiniiniieriees 8-56
MV_CAPABILITIES_TABLE Column Detailscccccoriiiiiiiciieesee e 8-58

Dimensions

WHhat are DIMENSTONS?uiiiiiiitiiie ettt bbb e se bbb et e bttt st e s beabesbenbesnen 9-2

Creating DIMENSTONSciiiiiii bbb bbbt b et b bbb e e 9-4
MUILIPIE HIBIAICHIES ...t ne e nre s 9-7
Using Normalized DIimension TabIEScccooiiieiiiii i 9-9

VIEWING DIMENSTIONS. ...ttt bbbttt bbb 9-10
Using The DEMO_DIM PACKAGE........cccierieriiicieeeieee sttt sna s s s e 9-10
Using Oracle ENtErprise MANAGETocveueieiiieiiieieiese sttt sttt sttt sbe e 9-11

Using DIimensions With CONSTIAINTS..........ccoiiiiiiiiiiec e 9-11

Validating DiMENSIONScviiiiiiie et e st e e e s ese e e eneeresresnesreneen 9-12

YN =TT g Lo T 1] g =] 1] Lo g 1SS 9-13

Deleting DIMENSTONS ..ottt bbbttt b b nee 9-14

Vii

Using the DImenSioN WIZArd ..ottt sne e 9-14
Managing the DImension ODJECT ... e 9-14
Creating @ DIMENSION. ..o ettt se et e e e e e eneeneaneenenes 9-17

Part IV Managing the Warehouse Environment

10 Overview of Extraction, Transformation, and Loading

L@ Y] V1=V) = I SRS 10-2
N T e o £ SR S 10-3
DailY OPEIALIONSc.eviiiitiiiiteit ettt bbbt b et b ettt b bbb 10-4
Evolution of the Data WarehoUSEccciveiiiciiiie e 10-4

11 Extraction in Data Warehouses

Overview of Extraction in Data War€hOUSES ..o e 11-2
Introduction to Extraction Methods in Data WarehOuUSesS...........ccocooiienenineiencccee e 11-2
Logical EXtraction MEtNOGS...........ccciiiiiiiiiiicse e 11-3
Physical EXtraction MethOdS...........ccovviiiieicic e et 11-4
Change Data CapTUIE......c..oeiiiiiiie ittt ettt bbb bbbttt be b e 11-5
Data Warehousing EXtraction EXamMPIes..........ccooiiiiiiiiinieee s 11-8
Extraction USIiNG Data FileS........cccceiiiiiccsec st 11-8
Extraction Via Distributed OPerationscccooeieieieiiiieinerceene e 11-11

12 Transportation in Data Warehouses

Overview of Transportation in Data WareNOUSES ..o 12-2
Introduction to Transportation Mechanisms in Data Warehousesccoccovevienncinennns 12-2
Transportation USING FIat FIlES ... 12-2
Transportation Through Distributed Operationsccccooveiiiinenenene e 12-2
Transportation Using Transportable Tablespaces ... 12-3

13 Loading and Transformation

Overview of Loading and Transformation in Data Warehousesccccoocevevevninicnceenienn 13-2
TransformMation FIOW ... 13-2
Loading MECRANISIMSoiiie e te et e st et e e se e beeneesreaneesreeneas 13-5
1@] i o - To [OSSOSO 13-5

viii

14

(=Y g = LI 1K= o] (ST 13-6

OCIH and DiIreCt-Path APISccoiiieiieeeee ettt sttt sresne s 13-8
Dt o101 1 ¥ 2 1] 0T o S 13-8
Transformation MEChANISIMIS ..o 13-9
Transformation USING SQL ..o e 13-9
Transformation USING PLZSQLcvii ittt 13-15
Transformation Using Table FUNCLIONS..........cccoooii i 13-16
Loading and TranSformation SCENAITOS.ceiiiiriiieee e 13-25
Parallel LOAd SCENAIIO.........coeiiiiiiiiieeiese ettt sb e et ene e 13-25
KEY LOOKUP SCENAKTO ...ttt st sttt eb e ene s 13-33
Exception Handling SCENAKTOcviiiiiiiiii e 13-34
PIVOLING SCENATIOS ...t sttt e e e e neereeneeneerenrs 13-35
Maintaining the Data Warehouse
Using Partitioning to Improve Data Warehouse Refreshccccocvivvvinccieccccccecc e 14-2
RETIESN SCENAITOS ...ttt bbb ettt et be b 14-5
Scenarios for Using Partitioning for Refreshing Data Warehousescccocveeieneennn 14-7
Optimizing DML Operations DUring Refresh ... 14-8
Implementing an Efficient MERGE Operationccocooiiiiiinnene e 14-9
Maintaining Referential INtegrity ..o 14-10
Lo 1T i I = SRS 14-11
Refreshing Materialized VIBWScooiiiii it 14-12
COMPIELE REFIESH ... s 14-13
FASE RETTESI .. b et ettt b 14-14
ON COMMIT REFIESNcviiiiiiisie sttt be s 14-14
Manual Refresh Using the DBMS_MVIEW Packageccocooeriinninnieneieneenee e 14-14
Refresh Specific Materialized Views with REFRESH...........c..ccoccooviviininc e, 14-15
Refresh All Materialized Views with REFRESH_ALL_MVIEWS.ccooiiiiiiiiinis 14-16
Refresh Dependent Materialized Views with REFRESH_DEPENDENT..............cccce.e. 14-16
Using Job Queues fOr REFrESh ... 14-18
When Refresh iS POSSIDIE..........coiiii e 14-18
Recommended Initialization Parameters for Parallelismc.ccocooeiiiininiiciicen, 14-18
MONITOrING @ REFIESN ... e ane s 14-19
Checking the Status of a Materialized VIEW...........cccovviiiieiiiie e 14-19
Tips for Refreshing Materialized Views with Aggregates ... 14-19

15

16

Tips for Refreshing Materialized Views Without Aggregates...........ccoceoveveieicieiencenne, 14-22

Tips for Refreshing Nested Materialized VIEWS ..o 14-23
Tips for Fast Refresh With UNION ALLccoovveiicccecr e 14-25
Tips After Refreshing Materialized VIBWS..........cccooiiiiiiiiiiiie e 14-25
Using Materialized Views with Partitioned Tables ... 14-26
Fast Refresh with Partition Change Tracking.........ccccocevvvieiiiiiiicisi e 14-26
Fast Refresh with CONSIDER FRESH.........cccccoiiiiiiie e 14-30
Change Data Capture
ADOoUt Change Data CaptUre.........ccciiiieiiieie sttt st e e e ebe st e b b 15-2
Publish and SUDSCribe MOEL..........cccooviiii s 15-3
Example of a Change Data Capture SYStEMcccivviiiiiiinn e vesese e 15-4
Components and Terminology for Synchronous Change Data Capture............ccccceeeeuenee. 15-5
Installation and IMPIeMENTATION ..o 15-8
Change Data Capture Restriction on Direct-Path INSERTcccccoovvvinenevccceese e, 15-8
1= Tot I | 1 S 15-9
Columns iN & Change TabIe ..o e 15-9
Change Data Capture VIBWS........ccvviiiiiiiieieseeieae et e ettt sae et aesaesensesaeseanessenses 15-10
Synchronous Mode Of Data CaplUre..........coeiiieiiiiiieieese e e 15-12
PUbBlishing Change Data...........ccouieiiiiiiiiiiiee et 15-12
Step 1: Decide which Oracle Instance will be the Source System........cccccocvvevevcicieiinennns 15-12
Step 2: Create the Change Tables that will Contain the Changes............cccooeiiieiiiinns 15-12
Managing Change Tables and SUDSCIHPTIONS..........cccoiiiiiiiiiice e 15-14
Subscribing t0 Change Data........cccccviiieiinieie e erenns 15-15
Steps Required to Subscribe to Change Datacccocveiieiiiiiineiee e 15-15
What Happens to Subscriptions when the Publisher Makes Changes...........cccccceoveenee. 15-19
Export and IMport CONSIAEIatiONSccccviiiereieieciee et ene e sneenens 15-20
Summary Advisor
Overview of the Summary Advisor in the DBMS_OLAP Packageccccocevvvveveiviivcncnnnnn, 16-2
USING the SUMMANY AGVISOLocuiiiiiiee ettt st te e e s teenbenne s 16-6
IAENTIFIEr NUMDEIS ...ttt et r e st ee e 16-7
VA o1 N [oF: Vo 1Y F=Tq = To =T o = o | (RSSO 16-7
Loading a User-Defined WOrKIOadccooveiiiiciiiicc e 16-9
Loading @ Trace WOrKIOadcoiiiiiiiiiicce s 16-12

Loading a SQL Cache WOrkIoadcccco v 16-15

Validating 8@ WOrKIOad..........ccoooiiiiii e 16-17
ReMOVING @ WOTKIOAAcooiieiicc e ne s 16-18
Using Filters with the SUMMary AdVISOr ... 16-18
REMOVING @ FIITET ...t 16-22
Recommending Materialized VIBWS........cccoeicicieiicise s 16-23
SQL SCHIPT GENEIALIONcviiiitiitiite ettt bbbttt n e b b 16-27
SUMMArY Data REPOITcciiiiiiiie it e 16-29
When Recommendations are No Longer REqQUITed..........ccccvovvvreiinieievineneieeieeeeiesnanens 16-31
Stopping the RecOmMmMEeNdation PrOCESS.........coviiiiiriii e 16-32
Summary AdViSOr SAMPIE SESSIONSccciriiiriiirieirie s 16-32
Summary Advisor and Missing StatiStiCS.......ccccvvvveirieiiiiri e 16-37
Summary Advisor Privileges and ORA-30446...........ccccocveveiieeiesieeie e 16-38
Estimating Materialized VIEW SIZe ..o 16-38
ESTIMATE_MVIEW _SIZE Parameterscccoooviiieiienieeiesieseee e eie s esee e seesae e seeseesneens 16-38
Is a Materialized VIeW BeiNg USEA? ..ottt sttt 16-39
DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure........ccccooeeiennncienenineninnen. 16-39
SUMMArY AAVISOr WIZAIU..........coiiiiceie ettt e e renne e 16-40
SUMMATY AVISOT STEPSviviitiitiite ittt bbb bbb et et ene et sbe e 16-41

PartV Warehouse Performance

17

18

Schema Modeling Techniques
Schemas IN Data WarEhOUSEScoiiiiiiiie ettt sne 17-2
THIF NOFMAT FOIM .ottt et e st e st e b e e besaesbeneas 17-2
Optimizing Third Normal FOrm QUETIES.........ccveveiiieie s 17-3
STAN SCRBIMIAS ...ttt b bbbt bt st b et et e st es e b e e bt ebeebesbe b 17-4
SNOWTFIAKE SCHEMASc.eiiiiiiie et sne s 17-5
OPtiMIZING StAr QUETIESvcuveeieieie sttt e ettt st et e te e e aeteseensensereeneesenrenrennens 17-6
TUNING STAr QUETIESviiiiieeie ettt ste st e et e st et e e st et e eseesbeensesteeeestaeseesraesaenraens 17-6
USIiNg Star TranSfOrMatioNccoeiiiiiiiiie et 17-7
SQL for Aggregation in Data Warehouses
Overview of SQL for Aggregation in Data WarehoUSES ... 18-2

Xi

19

Xii

Analyzing Across Multiple DIMENSIONScooiiiiiiiiiiie e 18-3

OPLIMIZEd PerfOrMMANCE.c.iiiiiieeiiiece ettt 18-4
PN AN [[(=T F= L (=T To1=] g T- L (o 1SS 18-5
Interpreting NULLS in EXaMPIEScuoruiiiiiicee et 18-6
ROLLUP ExXtension t0 GROUP BYcoiiiiiiiieieieeeee ettt sne s 18-6
WHEN 10 USE ROLLUP ..ottt bbbt 18-7
ROLLUP SYNTAX ...ttt bbbt bbbttt 18-7
Partial ROIUPcociiieeiicee ettt 18-8
CUBE EXtension t0 GROUP BY ...t 18-10
WHEN 10 USE CUBE........ociiiiitie et bbbttt 18-10
CUBE SYNTAX .1ttt ettt sr e r e e b ene s 18-11
PArtial CUBE ..ottt ettt sttt b bbb 18-12
Calculating Subtotals Without CUBEcccoiiiiiice e 18-13
GROUPING FUNCLIONS ...ttt sttt st bbb ettt ne e s e neenesneens 18-13
GROUPING FUNCLION ...ttt 18-14
When to Use GROUPINGccooiiiiiiiiiiict et 18-16
GROUPING _ID FUNCHION ...ttt sttt 18-17
GROUP_ID FUNCHON ..ottt e ettt sne s e e see s enaeneananneas 18-17
GROUPING SETS EXPFIESSION ...vevitiieiteieiete ettt sb ettt bbb e st e e sesnestesns 18-19
COMPOSITE COIUMNS ...ttt bbbttt nn e 18-21
(070] o7 11T g T=11=To €] {01 U] 011 T 1SS 18-24
Concatenated Groupings and Hierarchical Data Cubes...........ccccooiiiiininiicnciis 18-26
Considerations when Using Aggregation ... 18-28
Hierarchy Handling in ROLLUP and CUBEcccccooviivinin i 18-28
Column Capacity in ROLLUP and CUBE ... 18-29
HAVING Clause Used with GROUP BY EXtENSIONScccooviiriiiniinienie e 18-29
ORDER BY Clause Used with GROUP BY EXIENSIONScccceierireririenieinieeniee e 18-30
Using Other Aggregate Functions with ROLLUP and CUBE.............c.ccccceovveviiicic i, 18-30
Computation Using the WITH ClaUSE.........cccoiiiiiiieee e 18-30
SQL for Analysis in Data Warehouses
Overview of SQL for Analysis in Data WarehoUSES...........cc.ccoieiienieniensense e 19-2
RANKING FUNCLIONScuiiii ettt st et e e e e e e enaeneeneanearennn 19-5
RANK and DENSE_RANK ..ottt 19-5
TOP N RANKING ...ttt b et b e eb e b 19-12

(01U 1 T S RS RSRRRR 19-13
PERCENT_RANK ..ottt ettt sttt sb et b e bbbt ebe e 19-14
INTILE oottt ettt b e b st b et b et bttt e bt et st et st et st e b e st e s et nenaens 19-14
ROW _INUMBER.......ciitittiiei ettt ettt sttt bt s b s e st esaebe e et e e ebe e eteseateneas 19-16
Windowing Aggregate FUNCLIONScccoviieieececiee sttt ene e 19-17
Treatment of NULLS as Input to Window FUNCLIONS ... 19-18
Windowing Functions with Logical OffSet..........ccccccviiiiniiiieieee e 19-18
Cumulative Aggregate FUNCtION EXaMPIEc.covoviivieiiiece e 19-18
Moving Aggregate FUNCLION EXAMPIE ..o 19-19
Centered Aggregate FUNCLION ...ttt 19-20
Windowing Aggregate Functions in the Presence of Duplicates...........cccccoceveveinivinnnns 19-21
Varying Window Size for EaCh ROW ..o 19-22
Windowing Aggregate Functions with Physical OffSets...........c.cccoiiniiniincinciee 19-23
FIRST_VALUE and LAST_VALUE ..ottt 19-24
Reporting Aggregate FUNCLIONS ..ottt 19-24
Reporting Aggregate EXaMPIE ...t 19-26
RATIO _TO_REPORT ...ttt ettt ettt s sb e sb ettt neebe e 19-27
LAG/LEAD FUNCLIONS ...ttt ettt bbb bbb ettt ne b e 19-27
LAGYZLEAD SYNTAX ..0tiiiitiiitiiete ettt sttt a ettt sttt et sttt te st resaesesbenesnens 19-28
FIRST/LAST FUNCLIONS.cutiiiiiieiete ettt sttt st b e 19-28
FIRSTZLAST SYNTAX ... cttietiiieiiiieieiteesteesteesteesteseste et seetesee e seetessesesbesessesesbeeabeseateseeteseeteneas 19-29
FIRST/ZLAST AS Regular AQQregates........cooe ittt 19-29
FIRST/LAST AS RepPOrting AQOregatesScccvveieiereeeeesiesesesesiesiesieseessesaesasssessesessessessesses 19-30
Linear RegresSion FUNCLIONSc.ciiiiiiice ettt sttt sre e e snn e 19-31
REGR _COUNT ..ottt sttt sttt ettt se et e sa et e s b e s e et e s e et e e et e e ebe e eteseetennas 19-32
REGR_AVGY anNd REGR_AVGX ..ottt sttt ebe et 19-32
REGR_SLOPE and REGR_INTERCEPTccciiiit ettt 19-32
REGR _R2....o ittt b e b et ettt ettt et e st et e b s e bR e b e b et se et st rennan 19-32
REGR_SXX, REGR_SYY, and REGR_SXYcccctiitriirieiriee st 19-33
Linear Regression Statistics EXamMPIES.........ccoiiiiiiiic e 19-33
Sample Linear Regression CalCulationcocoviiiiiiiiniisceeeee s 19-34
INVerse Percentile FUNCLIONS. ...ttt 19-34
NOImMal AQQregate SYNTAX........cccccueiiiiiieiieie ettt re et reeae e e besrae b e eneenes 19-35
INverse Percentile RESTIICIIONS ...t e 19-38

Xiii

20

21

Xiv

Hypothetical Rank and Distribution FUNCLIONSccoooiiiiiiiiiiece e 19-38

Hypothetical Rank and DiStribUtion SYNTaX..........ccccveoiiiiiiiiiiincceecseseseees 19-38
WIDTH_BUCKET FUNCLION.ciitiiiiiieisieesie ettt et sne b 19-40
WIDTH_BUCKET SYNTAX...tittitiiiiiiitiieiinietisiee sttt ssese s ssesessessssessssenes 19-40
User-Defined Aggregate FUNCLIONS ...t 19-43
CASE EXPIESSIONS.....cuviuieeieieieite sttt ste st te st st et ese et ese e e aseeseatessease st e s bestestestesee s entenee e eneeneeneanenrenren 19-44
CASE EXAMPIE ...t bbb bbbt ene 19-44
Creating Histograms With User-Defined BUCKELS...........ccocooeriiiiiniinene e 19-45
OLAP and Data Mining
L0] I PSSRSO 20-2
Benefits of OLAP and RDBMS INtegrationcccccoovviieie i 20-2
(D 2= 1 e= WAV T o T o o USSP 20-4
Enabling Data Mining APPLICAtIONS ...t e 20-5
Predictions and INSIGNTScccoiiiiiiccc e e 20-5
Mining Within the Database ArchiteCturecccecviieii i 20-5
JAVA AP .o bbbt b et b e e Rt st e bt bbb nae e 20-7
Using Parallel Execution
Introduction to Parallel EXeCUtion TUNINGccoiiiiiiiiiicee e 21-2
When to Implement Parallel EXECULION..........cvoviiiiiiii e 21-2
Operations That Can Be Parallelized ... 21-3
The Parallel EXeCUution SErVEr POOIccoo i 21-3
How Parallel Execution Servers COMMUNICALEccoveiiireereirecsees e 21-5
Parallelizing SQL StatemMENTS......c.ccviii et eraen 21-6
TYPES OF PAralleliSImocoiiii e 21-11
Parallel QUETYoouiieiiece ettt ettt a ettt e e e e e e e e neereene e 21-11
PAFAHIEI DDLU ...ttt bbb bt bbbt b e 21-13
PArallEel DIMILottt ettt sttt se et e e e neereene e 21-18
Parallel Execution Of FUNCHIONS ..o 21-28
Other Types of ParalleliSm ... 21-29
Initializing and Tuning Parameters for Parallel EXeCULionccccccoviniiinciiciciciee 21-30
Selecting Automated or Manual Tuning of Parallel Executioncccccocevvvevciciviinenns 21-31
Using Automatically Derived Parameter SettingsS........ccccovvvvieiieeiienieie s 21-31
Setting the Degree of ParalleliSIm ... 21-32

How Oracle Determines the Degree of Parallelism for Operations..........ccccceoeoiiiinnne 21-34

Balancing the WOIKIOAdciiiiiiiiiiici e 21-37
Parallelization Rules for SQL StatemMents.........ccovveiiiieieiieiececre ettt 21-38
Enabling Parallelism for Tables and QUETIESccccveiiiiiii e 21-46
Degree of Parallelism and Adaptive Multiuser: How They Interact...........c.ccccoceevnennen. 21-47
Forcing Parallel EXecution fOr @ SESSIONcccccveiveeiiiiese e 21-48
Controlling Performance with the Degree of Parallelismcccccooevviiiiicicni e, 21-48
Tuning General Parameters for Parallel EXeCULION ..o 21-49
Parameters Establishing Resource Limits for Parallel Operations...........cccccccovevvvvvevennne. 21-49
Parameters Affecting Resource CONSUMPLIONccoiiiiiiiinenenene s 21-58
Parameters Related t0 1/O ..o 21-63
Monitoring and Diagnosing Parallel Execution Performance..........c.ccccocvvevvveivcininecnennn, 21-64
IS TNHEIE REQIESSION?.....iiieiiciie ettt sttt et et et e e se e be e st e s teeneesteeneesreennes 21-66
IS There @ Plan Change?.........cco i 21-66
ISThere aParallel PIANT ... e 21-66
IS THhere @ Serial PIANT ... e 21-66
IS There Parallel EXECULIONTcoiiiiiiie ettt 21-67
Is the Workload Evenly DiStriDULEA?cccceeeieiiiceececese e 21-67
Monitoring Parallel Execution Performance with Dynamic Performance Views 21-68
MONItOriNg SESSION STALISTICSc.ecviieiirieiiieee e 21-71
MONItOriNg SYStEM STAtiSTICS......iviiiiiiiercrere e ane s 21-73
Monitoring Operating SYStem StatiStiCS.........cooioiiiiiiiiiii e 21-74
Affinity and Parallel OPerations............ooiii e 21-75
Affinity and Parallel QUETIESocvii i 21-75
Affinity and Parallel DIML..........c.coo oottt 21-76
Miscellaneous Parallel Execution TUNING TIPS ... 21-76
Setting Buffer Cache Size for Parallel Operationsccccocvvivviviivininie s 21-77
Overriding the Default Degree of ParalleliSm............cccovvoviiiiiiiei e 21-77
RewWriting SQL STATEMIENTSciiiiiiieiiieeieeie ettt ene e 21-78
Creating and Populating Tables in Parallelc.cccocv o 21-78
Creating Temporary Tablespaces for Parallel Sort and Hash Join...........cccoceoiiinnnn 21-80
Executing Parallel SQL StatemMeNTS........ccooviiiiiiiiiiieeee e 21-81
Using EXPLAIN PLAN to Show Parallel Operations Plansc.ccocvevevevcvicviciecnennnn, 21-81
Additional Considerations for Parallel DML ... 21-82
Creating Indexes in Parallel ... 21-85

XV

Parallel DIMIL THPS . viteieieeieieeeet ettt sttt b bbb bt sn ettt ne et e ne e 21-87

Incremental Data Loading in Parallelcccooiiiiniiiiiiccs e 21-90
Using Hints with Cost-Based Optimizationcccoceviieieiieiincinsie e 21-92
FIRST_ROWS(N) HINE .o 21-93
Enabling Dynamic Statistic SAMPIING........occoiiiiiic e 21-93

22 Query Rewrite

XVi

OVerview Of QUETY REWTITTE ..ot 22-2
COSE-BASEA REWIIL.... ..ttt ettt st e bbbt sb e sb et b et 22-3
When Does Oracle ReWrite @ QUEIY?cuvoiiiiieiiiiee ettt 22-4

ENabling QUEINY REWTITTEoiiiiiiiiice bbb 22-7
Initialization Parameters for QUErY REWTILEccvcvviii i 22-8
Controlling QUENY REWHIITE...........ciiiie ettt et re e sre s 22-8
Privileges for Enabling QUEIY REWTITE........cooiiiiiiiirce e 22-9
AccUracy Of QUEINY REWIITEcviiiiie ettt e ne e reens 22-10

How Oracle REWITES QUEIIESceeieiieie ettt st st be st e neene e 22-11
Text Match REWTITE MEtNOUS........cci i 22-12
General Query ReWTrite MEthOdS.........cccviiiiieiicc e 22-13
When are Constraints and Dimensions Needed? ... 22-14

Special Cases for QUENY REWIITE ..ot 22-45
Query Rewrite Using Partially Stale Materialized VIeWs.........cccccovivvevincnieiencieiesnennns 22-45
Query Rewrite Using Complex Materialized VIEWSccoocovviiinienincnecceeseas 22-49
Query Rewrite Using Nested Materialized VIEeWS...........ccooveniiiiieniencneeee e 22-50
Query Rewrite When Using GROUP BY EXTENSIONScccovivviviieiennneveneneseeseeeeesaeneas 22-51

Did QUEIY REWTITEE OCCUI?.....ciuiiie ettt ettt s e et s te e testaesaesta e benreebeeneenes 22-56
EXPIAIN PLAN ...t 22-56
DBMS_MVIEW.EXPLAIN_REWRITE Procedure ..o 22-57

Design Considerations for Improving Query Rewrite Capabilities............cccccooeiiiiiininnn 22-63
Query Rewrite Considerations: CONSIIAINTS ..o 22-63
Query Rewrite Considerations: DIMENSIONSccccovieieieiieesiese e seeneas 22-63
Query Rewrite Considerations: OULEE JOINSc.ccvcviiieiiiie e 22-63
Query Rewrite Considerations: TeXt MatCh ... 22-63
Query Rewrite Considerations: AQQregatesccoieivrerieiereeiesiesiesese e seesseseseesseseesesesseas 22-64
Query Rewrite Considerations: Grouping Conditionsccccoviineneneneneiceeeseas 22-64
Query Rewrite Considerations: Expression MatChing.........ccococooveniniincineinec e 22-64

Query Rewrite Considerations: Date FOIAING ... 22-65
Query Rewrite Considerations: STAtiStICS.couviiiiiiiirie s 22-65

Glossary

Index

XVii

Xviii

Send Us Your Comments

Oracle9 j Data Warehousing Guide, Release 2 (9.2)
Part No. A96520-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
« FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Xix

XX

Preface

This manual provides information about Oracle9i’s data warehousing capabilities.
This preface contains these topics:

« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XXi

Audience

Oracle9i Data Warehousing Guide is intended for database administrators, system
administrators, and database application developers who design, maintain, and use
data warehouses.

To use this document, you need to be familiar with relational database concepts,
basic Oracle server concepts, and the operating system environment under which
you are running Oracle.

Organization

XXii

This document contains:
Part 1: Concepts

Chapter 1, Data Warehousing Concepts
This chapter contains an overview of data warehousing concepts.

Part 2: Logical Design

Chapter 2, Logical Design in Data Warehouses
This chapter discusses the logical design of a data warehouse.

Part 3: Physical Design

Chapter 3, Physical Design in Data Warehouses
This chapter discusses the physical design of a data warehouse.

Chapter 4, Hardware and 1/O Considerations in Data Warehouses
This chapter describes some hardware and input-output issues.

Chapter 5, Parallelism and Partitioning in Data Warehouses

This chapter describes the basics of parallelism and partitioning in data
warehouses.

Chapter 6, Indexes
This chapter describes how to use indexes in data warehouses.

Chapter 7, Integrity Constraints
This chapter describes some issues involving constraints.

Chapter 8, Materialized Views

This chapter describes how to use materialized views in data warehouses.

Chapter 9, Dimensions
This chapter describes how to use dimensions in data warehouses.

Part 4. Managing the Warehouse Environment

Chapter 10, Overview of Extraction, Transformation, and Loading
This chapter is an overview of the ETL process.

Chapter 11, Extraction in Data Warehouses
This chapter describes extraction issues.

Chapter 12, Transportation in Data Warehouses
This chapter describes transporting data in data warehouses.

Chapter 13, Loading and Transformation
This chapter describes transforming data in data warehouses.

Chapter 14, Maintaining the Data Warehouse

This chapter describes how to refresh in a data warehousing environment.

Chapter 15, Change Data Capture
This chapter describes how to use Change Data Capture capabilities.

Chapter 16, Summary Advisor
This chapter describes how to use the Summary Advisor utility.

XXili

Part 5: Warehouse Performance

Chapter 17, Schema Modeling Techniques
This chapter describes the schemas useful in data warehousing environments.

Chapter 18, SQL for Aggregation in Data Warehouses
This chapter explains how to use SQL aggregation in data warehouses.

Chapter 19, SQL for Analysis in Data Warehouses
This chapter explains how to use analytic functions in data warehouses.

Chapter 20, OLAP and Data Mining
This chapter describes using analytic services in combination with Oracle9i.

Chapter 21, Using Parallel Execution
This chapter describes how to tune data warehouses using parallel execution.

Chapter 22, Query Rewrite
This chapter describes how to use query rewrite.

Glossary

Related Documentation
For more information, see these Oracle resources:
« Oracle9i Database Performance Tuning Guide and Reference

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

XXiV

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http/Amww.oraclebookshop.conm/
Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/admin/accountimembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit
http://tahiti.oracle.com

For additional information, see:
« The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)
« Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Windows Operating Systems

XXV

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

Italics Italic typeface indicates book titles or Oracle9i Database Concepts

emphasis. Ensure that the recovery catalog and target

database do not reside on the same disk.

UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER

monospace elements supplied by the system. Such column.

(fixed-width) elements include parameters, privileges, .

font datatypes, RMAN keywords, SQL E&%ﬁﬂéﬁﬁg;ﬂtge database by using the
keywords, SQL*Plus or utility commands, ’
packages and methods, as well as Query the TABLE_NAMEolumn in the USER _

system-supplied column names, database TABLESdata dictionary view.

?(?IJ:S“S and structures, usernames, and . 1he pEMS_STATSENERATE_STATS

procedure.
lowercase Lowercase monospace typeface indicates Enter sqlplus to open SQL*Plus.
monospace executables, filenames, directory names, The password is specified in the oraowd file
(fixed-width) and sample user-supplied elements. Such P P P :
font elements include computer and database Back up the datafiles and control files in the
names, net service names, and connect /disk1/oracle/dbs directory.

identifiers, as well as user-supplied
database objects and structures, column L .
names, packages and classes, usernames ﬁ??jelozarlxgﬁltg tcaoblllé mns are in the
and roles, program units, and parameter -aep '

values. Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

The department_id , department_name ,

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. Connect as oe user.

Enter these elements as shown. The JRepUtil class implements these

methods.
lowercase Lowercase italic monospace font You can specify the parallel_clause
italic represents placeholders or variables. Run Uold _release .SQL where old
monospace - oy

(fixed-width) release refers to the release you installed

font prior to upgrading.

XXVi

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[Brackets enclose one or more optional DECIMAL (digits [, precision])
items. Do not enter the brackets.

{3 Braces enclose two or more items, one of {ENABLE | DISABLE}
which is required. Do not enter the braces.

| A vertical bar represents a choice of two {ENABLE | DISABLE}
or more options within brackets or braces. [COMPRESS | NOCOMPRESS]
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the CREATETABLE..AS subquery ;

code that are not directly related to

the examp|e SELECT col1 , col? ey con FROM
« That you can repeat a portion of the employees,
code
Vertical ellipsis points indicate that we SQL> SELECT NAME FROM V$DATAFILE;
have omitted several lines of code not NAME
directly related to the example.
fislidbsttbs_01.dbf
fsl/dbsftbs_02.dbf
fislidbstbs_09.dbf
9 rows selected.
Other notation You must enter symbols other than acctbal NUMBER(11,2);
brackets, braces, vertical bars, and ellipsis acct CONSTANT NUMBER(@4) =3;

points as shown.

XXVil

Convention

Meaning

Example

lialics

Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEMy/stem_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;
terms in uppercase in order to distinguish SE| ECT*FROM USER TABLES:
them from terms you define. Unless terms prop TABLE hremployees;
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.
lowercase Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names sqjplus hrhr
of tables, columns, or files. CREATE USER mjones IDENTIFIED BY ty3MUS;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.
Convention Meaning Example

Choose Start >

How to start a program.

File and directory File and directory names are not case

names

sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks (), slash (/), pipe (]),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

cwinnt\'system32 is the same as
CA\WINNT\SYSTEM32

XXViii

Convention Meaning Example

C:\> Represents the Windows command Coracle\oradata>
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (©). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

Special characters The backslash (\) special character is C:\>exp scottftiger TABLES=emp
sometimes required as an escape QUERY=\'"WHERE job="SALESMAN' and
character for the double quotation mark sg<1600\"
(") special character at the Windows C\>imp SYSTEM/ password FROMUSER=scott

command prompt. Parentheses and the TABLES=(emp, dept)
single quotation mark (’) do not require '

an escape character. Refer to your

Windows operating system

documentation for more information on

escape and special characters.

HOME_NAME Represents the Oracle home name. The C\> net start Oracle HOME_NAMNSListener
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

XXiX

Convention Meaning Example

ORACLE_HOME In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASEFORACLE
and ORACLE _ when you installed Oracle components, HOM¥Edbms\admin directory.
BASE all subdirectories were located under a

top level ORACLE_HOMfirectory that by

default used one of the following names:

. C:\orant for Windows NT
« C:orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOMtirectory. There is a
top level directory called ORACLE _BASE
that by default is C:\oracle . If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE _BASE

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

XXX

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http/Amwwv.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

XXXi

XXX

What's New in Data Warehousing?

This section describes new features of Oracle9i release 2 (9.2) and provides pointers
to additional information. New features information from previous releases is also
retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Data Warehousing:
« Oracle9i Release 2 (9.2) New Features in Data Warehousing

« Oracle9i Release 1 (9.0.1) New Features in Data Warehousing

XXXiii

Oracle9i Release 2 (9.2) New Features in Data Warehousing

XXXIV

Data Segment Compression

You can compress data segments in heap-organized tables, and a typical
example of a heap-organized table you should consider for data segment
compression is partitioned tables. Data segment compression is also useful for
highly redundant data, such as tables with many foreign keys and materialized
views created with the ROLLUPclause. You should avoid compression on tables
with many updates or DML.

See Also: Chapter 8, "Materialized Views"

Materialized View Enhancements

You can now nest materialized views when the materialized view contains joins
and aggregates. Fast refresh is now possible on a materialized views containing
the UNION ALLoperator. Various restrictions were removed in addition to
expanding the situations where materialized views could be effectively used. In
particular, using materialized views in an OLAP environment has been
improved.

See Also: "Overview of Data Warehousing with Materialized
Views" on page 8-2 and "Materialized Views in OLAP
Environments" on page 8-41, and Chapter 14, "Maintaining the
Data Warehouse"

Parallel DML on Non-Partitioned Tables

You can now use parallel DML on non-partitioned tables.

See Also: Chapter 21, "Using Parallel Execution™

Partitioning Enhancements

You can now simplify SQL syntax by using a DEFAULTpartition or a
subpartition template. You can implement SPLIT operations more easily.

See Also: "Partitioning Methods" on page 5-5, Chapter 5,
"Parallelism and Partitioning in Data Warehouses", and Oracle9i
Database Administrator’s Guide

Query Rewrite Enhancements
Text match processing and join equivalence recognition have been improved.
Materialized views containing the UNION ALLoperator can how use query
rewrite.

See Also: Chapter 22, "Query Rewrite"
Range-List Partitioning

You can now subpartition by list range-partitioned tables.

See Also: "Types of Partitioning" on page 5-4

Summary Advisor Enhancements

The Summary Advisor tool and its related DBMS_OLAPackage were improved
S0 you can restrict workloads to a specific schema.

See Also: Chapter 16, "Summary Advisor"

Oracle9i Release 1 (9.0.1) New Features in Data Warehousing

Analytic Functions

Oracle’s analytic capabilities have been improved through the addition of
Inverse percentile, hypothetical distribution, and first/last analytic functions.

See Also: Chapter 19, "SQL for Analysis in Data Warehouses"

Bitmap Join Index

A bitmap join index spans multiple tables and improves the performance of
joins of those tables.

See Also: "Bitmap Indexes" on page 6-2

ETL Enhancements

Oracle’s extraction, transformation, and loading capabilities have been
improved with a MERGEtatement, multi-table inserts, and table functions.

See Also: Chapter 10, "Overview of Extraction, Transformation,
and Loading"

XXXV

XXXVI

Full Outer Joins

Oracle added full support for full outer joins so that you can more easily
express certain complex queries.

See Also: Oracle9i Database Performance Tuning Guide and Reference

Grouping Sets

You can now selectively specify the set of groups that you want to create using
a GROUPING SET8&xpression within a GROUP B¥lause. This allows precise
specification across multiple dimensions without computing the whole CUBE

See Also: Chapter 18, "SQL for Aggregation in Data Warehouses"

List Partitioning

List partitioning offers you precise control over which data belongs in a
particular partition.

See Also: "Partitioning Design Considerations” on page 5-4 and
Oracle9i Database Concepts, and Oracle9i Database Administrator’s
Guide

Materialized View Enhancements

Various restrictions were removed in addition to expanding the situations
where materialized views could be effectively used.

See Also: "Overview of Data Warehousing with Materialized
Views" on page 8-2

Query Rewrite Enhancements

The query rewrite feature, which allows many SQL statements to use
materialized views, thereby improving performance significantly, was
improved significantly. Text match processing and join equivalence recognition
have been improved.

See Also: Chapter 22, "Query Rewrite"

Summary Advisor Enhancements

The Summary Advisor tool and its related DBMS_OLAPackage were improved
so you can specify workloads. In addition, a broader class of schemas is now
supported.

See Also: Chapter 16, "Summary Advisor"

WITH Clause

The WITHclause enables you to reuse a query block in a SELECTstatement
when it occurs more than once within a complex query.

See Also: "Computation Using the WITH Clause" on page 18-30

XXXVii

XXXViii

Part |

Concepts

This section introduces basic data warehousing concepts.
It contains the following chapter:

« Data Warehousing Concepts

1

Data Warehousing Concepts

This chapter provides an overview of the Oracle data warehousing implementation.
It includes:

« What is a Data Warehouse?
« Data Warehouse Architectures

Note that this book is meant as a supplement to standard texts about data
warehousing. This book focuses on Oracle-specific material and does not reproduce
in detail material of a general nature. Two standard texts are:

« The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)
« Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Data Warehousing Concepts 1-1

What is a Data Warehouse?

What is a Data Warehouse?

A data warehouse is a relational database that is designed for query and analysis
rather than for transaction processing. It usually contains historical data derived
from transaction data, but it can include data from other sources. It separates
analysis workload from transaction workload and enables an organization to
consolidate data from several sources.

In addition to a relational database, a data warehouse environment includes an
extraction, transportation, transformation, and loading (ETL) solution, an online
analytical processing (OLAP) engine, client analysis tools, and other applications
that manage the process of gathering data and delivering it to business users.

See Also: Chapter 10, "Overview of Extraction, Transformation,
and Loading"

A common way of introducing data warehousing is to refer to the characteristics of
a data warehouse as set forth by William Inmon:

= Subject Oriented

« Integrated

« Nonvolatile

=« Time Variant

Subject Oriented

Integrated

Data warehouses are designed to help you analyze data. For example, to learn more
about your company’s sales data, you can build a warehouse that concentrates on
sales. Using this warehouse, you can answer questions like "Who was our best
customer for this item last year?" This ability to define a data warehouse by subject
matter, sales in this case, makes the data warehouse subject oriented.

Integration is closely related to subject orientation. Data warehouses must put data
from disparate sources into a consistent format. They must resolve such problems
as naming conflicts and inconsistencies among units of measure. When they achieve
this, they are said to be integrated.

1-2 Oracle9i Data Warehousing Guide

What is a Data Warehouse?

Nonvolatile
Nonvolatile means that, once entered into the warehouse, data should not change.
This is logical because the purpose of a warehouse is to enable you to analyze what
has occurred.

Time Variant

In order to discover trends in business, analysts need large amounts of data. This is
very much in contrast to online transaction processing (OLTP) systems, where
performance requirements demand that historical data be moved to an archive. A
data warehouse’s focus on change over time is what is meant by the term time

variant.

Contrasting OLTP and Data Warehousing Environments
Figure 1-1 illustrates key differences between an OLTP system and a data
warehouse.

Figure 1-1 Contrasting OLTP and Data Warehousing Environments

OLTP Data Warehouse
Complex data
structures Multidimensional
(3NF databases) data structures
Few Indexes Many
Many Joins Some
Normalized Duplicated Denormalized
DBMS Data DBMS
Rare Derived Data Common
and Aggregates

One major difference between the types of system is that data warehouses are not
usually in third normal form (3NF), a type of data normalization common in OLTP

environments.

Data Warehousing Concepts 1-3

What is a Data Warehouse?

Data warehouses and OLTP systems have very different requirements. Here are
some examples of differences between typical data warehouses and OLTP systems:

Workload

Data warehouses are designed to accommodate ad hoc queries. You might not
know the workload of your data warehouse in advance, so a data warehouse
should be optimized to perform well for a wide variety of possible query
operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

Data modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly
or weekly) using bulk data modification techniques. The end users of a data
warehouse do not directly update the data warehouse.

In OLTP systems, end users routinely issue individual data modification
statements to the database. The OLTP database is always up to date, and reflects
the current state of each business transaction.

Schema design

Data warehouses often use denormalized or partially denormalized schemas
(such as a star schema) to optimize query performance.

OLTP systems often use fully normalized schemas to optimize
update/insert/delete performance, and to guarantee data consistency.

Typical operations

A typical data warehouse query scans thousands or millions of rows. For
example, "Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example,
"Retrieve the current order for this customer.”

Historical data

Data warehouses usually store many months or years of data. This is to support
historical analysis.

OLTP systems usually store data from only a few weeks or months. The OLTP
system stores only historical data as needed to successfully meet the
requirements of the current transaction.

1-4 Oracle9i Data Warehousing Guide

Data Warehouse Architectures

Data Warehouse Architectures

Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

« Data Warehouse Architecture (Basic)
« Data Warehouse Architecture (with a Staging Area)

« Data Warehouse Architecture (with a Staging Area and Data Marts)

Data Warehouse Architecture (Basic)
Figure 1-2 shows a simple architecture for a data warehouse. End users directly
access data derived from several source systems through the data warehouse.

Figure 1-2 Architecture of a Data Warehouse

Data Sources Warehouse

Operational
System

l I | Summary [R4y Data
Data

Operational
System

[——]
| m—

Flat Files

In Figure 1-2, the metadata and raw data of a traditional OLTP system is present, as
is an additional type of data, summary data. Summaries are very valuable in data
warehouses because they pre-compute long operations in advance. For example, a
typical data warehouse query is to retrieve something like August sales. A
summary in Oracle is called a materialized view.

Data Warehousing Concepts 1-5

Data Warehouse Architectures

Data Warehouse Architecture (with a Staging Area)
In Figure 1-2, you need to clean and process your operational data before putting it
into the warehouse. You can do this programmatically, although most data
warehouses use a staging area instead. A staging area simplifies building
summaries and general warehouse management. Figure 1-3 illustrates this typical

architecture.

Figure 1-3 Architecture of a Data Warehouse with a Staging Area

Data Staging
Sources Area Warehouse Users

Analysis

A

Operational
System

Summary
Data

| Raw Data

Operational
System

[m—————]
Flat Files Mining

1-6 Oracle9/ Data Warehousing Guide

Data Warehouse Architectures

Data Warehouse Architecture (with a Staging Area and Data Marts)

Although the architecture in Figure 1-3 is quite common, you may want to
customize your warehouse’s architecture for different groups within your
organization. You can do this by adding data marts, which are systems designed for
a particular line of business. Figure 1-4 illustrates an example where purchasing,
sales, and inventories are separated. In this example, a financial analyst might want
to analyze historical data for purchases and sales.

Figure 1-4 Architecture of a Data Warehouse with a Staging Area and Data Marts

Data Staging
Sources Area

Operational
System

Operational
System

———

Flat Files

Warehouse

S
Metadata

mary
ta

Raw Data

Data
Marts Users
¢ [:.
—
Purchasing Analysis

3

L <
Inventory Mining

Note: Data marts are an important part of many warehouses, but
they are not the focus of this book.

See Also:

regarding data marts

Data Mart Suites documentation for further information

Data Warehousing Concepts 1-7

Data Warehouse Architectures

1-8 Oracle9/ Data Warehousing Guide

Part |

Logical Design

This section deals with the issues in logical design in a data warehouse.
It contains the following chapter:

« Logical Design in Data Warehouses

2

Logical Design in Data Warehouses

This chapter tells you how to design a data warehousing environment and includes
the following topics:

Logical Versus Physical Design in Data Warehouses

Creating a Logical Design
Data Warehousing Schemas

Data Warehousing Objects

Logical Design in Data Warehouses 2-1

Logical Versus Physical Design in Data Warehouses

Logical Versus Physical Design in Data Warehouses

Your organization has decided to build a data warehouse. You have defined the
business requirements and agreed upon the scope of your application, and created a
conceptual design. Now you need to translate your requirements into a system
deliverable. To do so, you create the logical and physical design for the data
warehouse. You then define:

« The specific data content

« Relationships within and between groups of data

« The system environment supporting your data warehouse
« The data transformations required

« The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the
logical design, you look at the logical relationships among the objects. In the
physical design, you look at the most effective way of storing and retrieving the
objects as well as handling them from a transportation and backup/recovery
perspective.

Orient your design toward the needs of the end users. End users typically want to
perform analysis and look at aggregated data, rather than at individual
transactions. However, end users might not know what they need until they see it.
In addition, a well-planned design allows for growth and changes as the needs of
users change and evolve.

By beginning with the logical design, you focus on the information requirements
and save the implementation details for later.

Creating a Logical Design

A logical design is conceptual and abstract. You do not deal with the physical
implementation details yet. You deal only with defining the types of information
that you need.

One technique you can use to model your organization's logical information
requirements is entity-relationship modeling. Entity-relationship modeling involves
identifying the things of importance (entities), the properties of these things
(attributes), and how they are related to one another (relationships).

The process of logical design involves arranging data into a series of logical
relationships called entities and attributes. An entity represents a chunk of

2-2 Oracle9i Data Warehousing Guide

Data Warehousing Schemas

information. In relational databases, an entity often maps to a table. An attribute is
a component of an entity that helps define the uniqueness of the entity. In relational
databases, an attribute maps to a column.

To be sure that your data is consistent, you need to use unique identifiers. A unique
identifier is something you add to tables so that you can differentiate between the
same item when it appears in different places. In a physical design, this is usually a
primary key.

While entity-relationship diagramming has traditionally been associated with
highly normalized models such as OLTP applications, the technique is still useful
for data warehouse design in the form of dimensional modeling. In dimensional
modeling, instead of seeking to discover atomic units of information (such as
entities and attributes) and all of the relationships between them, you identify
which information belongs to a central fact table and which information belongs to
its associated dimension tables. You identify business subjects or fields of data,
define relationships between business subjects, and name the attributes for each
subject.

See Also: Chapter 9, "Dimensions" for further information
regarding dimensions

Your logical design should result in (1) a set of entities and attributes corresponding
to fact tables and dimension tables and (2) a model of operational data from your
source into subject-oriented information in your target data warehouse schema.

You can create the logical design using a pen and paper, or you can use a design
tool such as Oracle Warehouse Builder (specifically designed to support modeling
the ETL process) or Oracle Designer (a general purpose modeling tool).

See Also: Oracle Designer and Oracle Warehouse Builder
documentation sets

Data Warehousing Schemas

A schema is a collection of database objects, including tables, views, indexes, and
synonyms. You can arrange schema objects in the schema models designed for data
warehousing in a variety of ways. Most data warehouses use a dimensional model.

The model of your source data and the requirements of your users help you design
the data warehouse schema. You can sometimes get the source model from your
company's enterprise data model and reverse-engineer the logical data model for
the data warehouse from this. The physical implementation of the logical data

Logical Design in Data Warehouses 2-3

Data Warehousing Schemas

warehouse model may require some changes to adapt it to your system
parameters—size of machine, number of users, storage capacity, type of network,
and software.

Star Schemas

The star schema is the simplest data warehouse schema. It is called a star schema
because the diagram resembles a star, with points radiating from a center. The
center of the star consists of one or more fact tables and the points of the star are the
dimension tables, as shown in Figure 2-1.

Figure 2-1 Star Schema

products times

sales
(amount_sold,
quantity_sold)

Fact Table
customers channels

Dimension Table Dimension Table

The most natural way to model a data warehouse is as a star schema, only one join
establishes the relationship between the fact table and any one of the dimension
tables.

A star schema optimizes performance by keeping queries simple and providing fast
response time. All the information about each level is stored in one row.

Note: Oracle Corporation recommends that you choose a star
schema unless you have a clear reason not to.

2-4 Oracle9i Data Warehousing Guide

Data Warehousing Objects

Other Schemas

Some schemas in data warehousing environments use third normal form rather
than star schemas. Another schema that is sometimes useful is the snowflake
schema, which is a star schema with normalized dimensions in a tree structure.

See Also: Chapter 17, "Schema Modeling Techniques" for further
information regarding star and snowflake schemas in data
warehouses and Oracle9i Database Concepts for further conceptual
material

Data Warehousing Objects

Fact Tables

Fact tables and dimension tables are the two types of objects commonly used in
dimensional data warehouse schemas.

Fact tables are the large tables in your warehouse schema that store business
measurements. Fact tables typically contain facts and foreign keys to the dimension
tables. Fact tables represent data, usually numeric and additive, that can be
analyzed and examined. Examples include sales , cost , and profit

Dimension tables, also known as lookup or reference tables, contain the relatively
static data in the warehouse. Dimension tables store the information you normally
use to contain queries. Dimension tables are usually textual and descriptive and
you can use them as the row headers of the result set. Examples are customers or
products

A fact table typically has two types of columns: those that contain numeric facts
(often called measurements), and those that are foreign keys to dimension tables. A
fact table contains either detail-level facts or facts that have been aggregated. Fact
tables that contain aggregated facts are often called summary tables. A fact table
usually contains facts with the same level of aggregation. Though most facts are
additive, they can also be semi-additive or non-additive. Additive facts can be
aggregated by simple arithmetical addition. A common example of this is sales.
Non-additive facts cannot be added at all. An example of this is averages.
Semi-additive facts can be aggregated along some of the dimensions and not along
others. An example of this is inventory levels, where you cannot tell what a level
means simply by looking at it.

Logical Design in Data Warehouses 2-5

Data Warehousing Objects

Creating a New Fact Table

You must define a fact table for each star schema. From a modeling standpoint, the
primary key of the fact table is usually a composite key that is made up of all of its
foreign keys.

Dimension Tables

A dimension is a structure, often composed of one or more hierarchies, that
categorizes data. Dimensional attributes help to describe the dimensional value.
They are normally descriptive, textual values. Several distinct dimensions,
combined with facts, enable you to answer business questions. Commonly used
dimensions are customers, products, and time.

Dimension data is typically collected at the lowest level of detail and then
aggregated into higher level totals that are more useful for analysis. These natural
rollups or aggregations within a dimension table are called hierarchies.

Hierarchies

Hierarchies are logical structures that use ordered levels as a means of organizing
data. A hierarchy can be used to define data aggregation. For example, in a time
dimension, a hierarchy might aggregate data from the month level to the quarter
level to the year level. A hierarchy can also be used to define a navigational drill
path and to establish a family structure.

Within a hierarchy, each level is logically connected to the levels above and below it.
Data values at lower levels aggregate into the data values at higher levels. A
dimension can be composed of more than one hierarchy. For example, in the
product dimension, there might be two hierarchies—one for product categories
and one for product suppliers.

Dimension hierarchies also group levels from general to granular. Query tools use
hierarchies to enable you to drill down into your data to view different levels of
granularity. This is one of the key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business
structures. For example, a divisional multilevel sales organization.

Hierarchies impose a family structure on dimension values. For a particular level
value, a value at the next higher level is its parent, and values at the next lower level
are its children. These familial relationships enable analysts to access data quickly.

2-6 Oracle9/ Data Warehousing Guide

Data Warehousing Objects

Levels A level represents a position in a hierarchy. For example, a time dimension
might have a hierarchy that represents data at the month , quarter , and year
levels. Levels range from general to specific, with the root level as the highest or
most general level. The levels in a dimension are organized into one or more
hierarchies.

Level Relationships Level relationships specify top-to-bottom ordering of levels from
most general (the root) to most specific information. They define the parent-child
relationship between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For
example, the database can aggregate an existing sales revenue on a quarterly base to
a yearly aggregation when the dimensional dependencies between quarter and year
are known.

Typical Dimension Hierarchy
Figure 2-2 illustrates a dimension hierarchy based on customers

Figure 2-2 Typical Levels in a Dimension Hierarchy

region
1

subregion

country_name

customer

See Also: Chapter 9, "Dimensions" and Chapter 22, "Query
Rewrite" for further information regarding hierarchies

Logical Design in Data Warehouses 2-7

Data Warehousing Objects

Unique Identifiers

Unique identifiers are specified for one distinct record in a dimension table.
Atrtificial unique identifiers are often used to avoid the potential problem of unique
identifiers changing. Unique identifiers are represented with the # character. For
example, #customer_id

Relationships

Relationships guarantee business integrity. An example is that if a business sells
something, there is obviously a customer and a product. Designing a relationship
between the sales information in the fact table and the dimension tables products
and customers enforces the business rules in databases.

Example of Data Warehousing Objects and Their Relationships

Figure 2-3 illustrates a common example of a sales fact table and dimension tables
customers , products , promotions ,times , and channels

Figure 2-3 Typical Data Warehousing Objects

Relationship
roducts customers
#F;)tprod id Fact Table #eust_id
B sales cust_last_name
i cust_city -
glrjgé—l% cust_state_province} Hierarchy
times channels
. . promotions i i
Dimension Table Dimension Table

Dimension Table

2-8 Oracle9/ Data Warehousing Guide

Part |l

Physical Design

This section deals with the physical design of a data warehouse.

It contains the following chapters:

Physical Design in Data Warehouses

Hardware and 1/0 Considerations in Data Warehouses
Parallelism and Partitioning in Data Warehouses
Indexes

Integrity Constraints

Materialized Views

Dimensions

3

Physical Design in Data Warehouses

This chapter describes the physical design of a data warehousing environment, and
includes the following topics:

« Moving from Logical to Physical Design

« Physical Design

Physical Design in Data Warehouses 3-1

Moving from Logical to Physical Design

Moving from Logical to Physical Design

Logical design is what you draw with a pen and paper or design with Oracle
Warehouse Builder or Designer before building your warehouse. Physical design is
the creation of the database with SQL statements.

During the physical design process, you convert the data gathered during the
logical design phase into a description of the physical database structure. Physical
design decisions are mainly driven by query performance and database
maintenance aspects. For example, choosing a partitioning strategy that meets
common query requirements enables Oracle to take advantage of partition pruning,
a way of narrowing a search before performing it.

See Also:

« Chapter 5, "Parallelism and Partitioning in Data Warehouses"
for further information regarding partitioning

« Oracle9i Database Concepts for further conceptual material
regarding all design matters

Physical Design

During the logical design phase, you defined a model for your data warehouse
consisting of entities, attributes, and relationships. The entities are linked together
using relationships. Attributes are used to describe the entities. The unique
identifier (UID) distinguishes between one instance of an entity and another.

Figure 3-1 offers you a graphical way of looking at the different ways of thinking
about logical and physical designs.

3-2 Oracle9i Data Warehousing Guide

Physical Design

Figure 3—1 Logical Design Compared with Physical Design

Logical Physical (as Tablespaces)
1 1 1
Entities Tables Indexes
1 1 1
)] Integrity Materialized
Relationships Constraints Views
- Primary Key
] - Foreign Key I
- Not Null
Attributes Dimensions
| —_— |
[Columns
Unique T
Identifiers

During the physical design process, you translate the expected schemas into actual
database structures. At this time, you have to map:

Entities to tables

Relationships to foreign key constraints

Attributes to columns

Primary unique identifiers to primary key constraints

Unique identifiers to unique key constraints

Physical Design in Data Warehouses 3-3

Physical Design

Physical Design Structures

Tablespaces

Once you have converted your logical design to a physical one, you will need to
create some or all of the following structures:

« Tablespaces

« Tables and Partitioned Tables
« Views

« Integrity Constraints

« Dimensions

Some of these structures require disk space. Others exist only in the data dictionary.
Additionally, the following structures may be created for performance
improvement:

« Indexes and Partitioned Indexes

« Materialized Views

A tablespace consists of one or more datafiles, which are physical structures within
the operating system you are using. A datafile is associated with only one
tablespace. From a design perspective, tablespaces are containers for physical
design structures.

Tablespaces need to be separated by differences. For example, tables should be
separated from their indexes and small tables should be separated from large tables.
Tablespaces should also represent logical business units if possible. Because a
tablespace is the coarsest granularity for backup and recovery or the transportable
tablespaces mechanism, the logical business design affects availability and
maintenance operations.

See Also: Chapter 4, "Hardware and 1/0 Considerations in Data
Warehouses" for further information regarding tablespaces

3-4 Oracle9i Data Warehousing Guide

Physical Design

Tables and Partitioned Tables

Tables are the basic unit of data storage. They are the container for the expected
amount of raw data in your data warehouse.

Using partitioned tables instead of nonpartitioned ones addresses the key problem
of supporting very large data volumes by allowing you to decompose them into
smaller and more manageable pieces. The main design criterion for partitioning is
manageability, though you will also see performance benefits in most cases because
of partition pruning or intelligent parallel processing. For example, you might
choose a partitioning strategy based on a sales transaction date and a monthly
granularity. If you have four years’ worth of data, you can delete a month’s data as
it becomes older than four years with a single, quick DDL statement and load new
data while only affecting 1/48th of the complete table. Business questions regarding
the last quarter will only affect three months, which is equivalent to three partitions,
or 3/48ths of the total volume.

Partitioning large tables improves performance because each partitioned piece is
more manageable. Typically, you partition based on transaction dates in a data
warehouse. For example, each month, one month’s worth of data can be assigned its
own partition.

Data Segment Compression

You can save disk space by compressing heap-organized tables. A typical type of
heap-organized table you should consider for data segment compression is
partitioned tables.

To reduce disk use and memory use (specifically, the buffer cache), you can store
tables and partitioned tables in a compressed format inside the database. This often
leads to a better scaleup for read-only operations. Data segment compression can
also speed up query execution. There is, however, a cost in CPU overhead.

Data segment compression should be used with highly redundant data, such as
tables with many foreign keys. You should avoid compressing tables with much
update or other DML activity. Although compressed tables or partitions are
updatable, there is some overhead in updating these tables, and high update
activity may work against compression by causing some space to be wasted.

See Also: Chapter 5, "Parallelism and Partitioning in Data
Warehouses" and Chapter 14, "Maintaining the Data Warehouse"
for information regarding data segment compression and
partitioned tables

Physical Design in Data Warehouses 3-5

Physical Design

Views

A view is a tailored presentation of the data contained in one or more tables or
other views. A view takes the output of a query and treats it as a table. Views do not
require any space in the database.

See Also: Oracle9i Database Concepts

Integrity Constraints

Integrity constraints are used to enforce business rules associated with your
database and to prevent having invalid information in the tables. Integrity
constraints in data warehousing differ from constraints in OLTP environments. In
OLTP environments, they primarily prevent the insertion of invalid data into a
record, which is not a big problem in data warehousing environments because
accuracy has already been guaranteed. In data warehousing environments,
constraints are only used for query rewrite. NOT NULLconstraints are particularly
common in data warehouses. Under some specific circumstances, constraints need
space in the database. These constraints are in the form of the underlying unique

index.

See Also: Chapter 7, "Integrity Constraints" and Chapter 22,
"Query Rewrite"

Indexes and Partitioned Indexes

Indexes are optional structures associated with tables or clusters. In addition to the
classical B-tree indexes, bitmap indexes are very common in data warehousing
environments. Bitmap indexes are optimized index structures for set-oriented
operations. Additionally, they are necessary for some optimized data access
methods such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning
strategy is not dependent upon the table structure. Partitioning indexes makes it
easier to manage the warehouse during refresh and improves query performance.

See Also: Chapter 6, "Indexes" and Chapter 14, "Maintaining the
Data Warehouse"

3-6 Oracle9/ Data Warehousing Guide

Physical Design

Materialized Views

Dimensions

Materialized views are query results that have been stored in advance so
long-running calculations are not necessary when you actually execute your SQL
statements. From a physical design point of view, materialized views resemble
tables or partitioned tables and behave like indexes.

See Also: Chapter 8, "Materialized Views"

A dimension is a schema object that defines hierarchical relationships between
columns or column sets. A hierarchical relationship is a functional dependency
from one level of a hierarchy to the next one. A dimension is a container of logical
relationships and does not require any space in the database. A typical dimension is
city, state (or province), region, and country.

See Also: Chapter 9, "Dimensions”

Physical Design in Data Warehouses 3-7

Physical Design

3-8 Oracle9i Data Warehousing Guide

A

Hardware and I/O Considerations in Data
Warehouses

This chapter explains some of the hardware and 1/0 issues in a data warehousing
environment and includes the following topics:

« Overview of Hardware and 1/0 Considerations in Data Warehouses

« RAID Configurations

Hardware and I/O Considerations in Data Warehouses 4-1

Overview of Hardware and 1/0 Considerations in Data Warehouses

Overview of Hardware and 1/0O Considerations in Data Warehouses

Data warehouses are normally very concerned with I/0 performance. This is in
contrast to OLTP systems, where the potential bottleneck depends on user
workload and application access patterns. When a system is constrained by 170
capabilities, it is /0O bound, or has an 1/0 bottleneck. When a system is constrained
by having limited CPU resources, it is CPU bound, or has a CPU bottleneck.

Database architects frequently use RAID (Redundant Arrays of Inexpensive Disks)
systems to overcome 1/0 bottlenecks and to provide higher availability. RAID can
be implemented in several levels, ranging from 0 to 7. Many hardware vendors
have enhanced these basic levels to lessen the impact of some of the original
restrictions at a given RAID level. The most common RAID levels are discussed
later in this chapter.

Why Stripe the Data?

To avoid 1/0 bottlenecks during parallel processing or concurrent query access, all
tablespaces accessed by parallel operations should be striped. Striping divides the
data of a large table into small portions and stores them on separate datafiles on
separate disks. As shown in Figure 4-1, tablespaces should always stripe over at least
as many devices as CPUs. In this example, there are four CPUs, two controllers, and
five devices containing tablespaces.

Figure 4-1 Striping Objects Over at Least as Many Devices as CPUs

l:ControIIer:I_\ l:ControIIer 2:|

N N N—— N—

il 1 1 1 — tablespace 1
N N N——1 N——1

2 2 2 2 | tablespace 2
N N N N

3 3 3 3 | tablespace 3
N N N——"1 N——1

4 4 4 4 +— tablespace 4
N N N N

5 5 5 5 — tablespace 5
N - = =

See Also: Oracle9i Database Concepts for further details about disk
striping

4-2 Oracle9i Data Warehousing Guide

Overview of Hardware and 1/0 Considerations in Data Warehouses

You should stripe tablespaces for tables, indexes, rollback segments, and temporary
tablespaces. You must also spread the devices over controllers, 1/0 channels, and
internal buses. To make striping effective, you must make sure that enough
controllers and other 1/0 components are available to support the bandwidth of
parallel data movement into and out of the striped tablespaces.

You can use RAID systems or you can perform striping manually through careful
data file allocation to tablespaces.

The striping of data across physical drives has several consequences besides
balancing I/0. One additional advantage is that logical files can be created that are
larger than the maximum size usually supported by an operating system. There are
disadvantages however. Striping means that it is no longer possible to locate a
single datafile on a specific physical drive. This can cause the loss of some
application tuning capabilities. Also, it can cause database recovery to be more
time-consuming. If a single physical disk in a RAID array needs recovery, all the
disks that are part of that logical RAID device must be involved in the recovery.

Automatic Striping

Automatic striping is usually flexible and easy to manage. It supports many
scenarios such as multiple users running sequentially or as single users running in
parallel. Two main advantages make automatic striping preferable to manual
striping, unless the system is very small or availability is the main concern:

« For parallel scan operations (such as full table scan or fast full scan), operating
system striping increases the number of disk seeks. Nevertheless, this is largely
offset by the large 1/0 size (DB_BLOCK_SIZE* MULTIBLOCK_READ_COUINT
which should enable this operation to reach the maximum 170 throughput for
your platform. This maximum is in general limited by the number of controllers
or 1/0 buses of the platform, not by the number of disks (unless you have a
small configuration or are using large disks).

« For index probes (for example, within a nested loop join or parallel index range
scan), operating system striping enables you to avoid hot spots by evenly
distributing 1/0 across the disks.

Oracle Corporation recommends using a large stripe size of at least 64 KB. Stripe
size must be at least as large as the 1/0 size. If stripe size is larger than I/0 size by a
factor of two or four, then trade-offs may arise. The large stripe size can be
advantageous because it lets the system perform more sequential operations on
each disk; it decreases the number of seeks on disk. Another advantage of large
stripe sizes is that more users can work on the system without affecting each other.
The disadvantage is that large stripes reduce the 1/0 parallelism, so fewer disks are

Hardware and I/O Considerations in Data Warehouses 4-3

Overview of Hardware and 1/0 Considerations in Data Warehouses

simultaneously active. If you encounter problems, increase the 1/0 size of scan
operations (for example, from 64 KB to 128 KB), instead of changing the stripe size.
The maximum 1/0 size is platform-specific (in a range, for example, of 64 KB to 1
MB).

With automatic striping, from a performance standpoint, the best layout is to stripe
data, indexes, and temporary tablespaces across all the disks of your platform. This
layout is also appropriate when you have little information about system usage. To
increase availability, it may be more practical to stripe over fewer disks to prevent a
single disk value from affecting the entire data warehouse. However, for better
performance, it is crucial to stripe all objects over multiple disks. In this way,
maximum 1/0 performance (both in terms of throughput and in number of 1/0s
per second) can be reached when one object is accessed by a parallel operation. If
multiple objects are accessed at the same time (as in a multiuser configuration),
striping automatically limits the contention.

Manual Striping

You can use manual striping on all platforms. To do this, add multiple files to each
tablespace, with each file on a separate disk. If you use manual striping correctly,
your system’s performance improves significantly. However, you should be aware
of several drawbacks that can adversely affect performance if you do not stripe
correctly.

When using manual striping, the degree of parallelism (DOP) is more a function of
the number of disks than of the number of CPUs. First, it is necessary to have one
server process for each datafile to drive all the disks and limit the risk of
experiencing 1/0 bottlenecks. Second, manual striping is very sensitive to datafile
size skew, which can affect the scalability of parallel scan operations. Third, manual
striping requires more planning and set-up effort than automatic striping.

Note: Oracle Corporation recommends that you choose automatic
striping unless you have a clear reason not to.

4-4 Oracle9i Data Warehousing Guide

Overview of Hardware and 1/0 Considerations in Data Warehouses

Local and Global Striping

Local striping, which applies only to partitioned tables and indexes, is a form of
non-overlapping, disk-to-partition striping. Each partition has its own set of disks
and files, as illustrated in Figure 4-2. Disk access does not overlap, nor do files.

An advantage of local striping is that if one disk fails, it does not affect other
partitions. Moreover, you still have some striping even if you have data in only one
partition.

A disadvantage of local striping is that you need many disks to implement it—each
partition requires multiple disks of its own. Another major disadvantage is that
when partitions are reduced to a few or even a single partition, the system retains
limited 170 bandwidth. As a result, local striping is not optimal for parallel
operations. For this reason, consider local striping only if your main concern is
availability, rather than parallel execution.

Figure 4-2 Local Striping

Partition 1 Partition 2

Stripe 1 Stripe 3
Stripe 2 Stripe 4

Hardware and I/O Considerations in Data Warehouses 4-5

Overview of Hardware and 1/0 Considerations in Data Warehouses

Global striping, illustrated in Figure 4-3, entails overlapping disks and partitions.

Figure 4-3 Global Striping

Partition 1 Partition 2

T]
—

Stripe 1
Stripe 2

Global striping is advantageous if you have partition pruning and need to access
data in only one partition. Spreading the data in that partition across many disks
improves performance for parallel execution operations. A disadvantage of global
striping is that if one disk fails, all partitions are affected if the disks are not
mirrored.

See Also: Oracle9i Database Concepts for information on disk
striping and partitioning. For MPP systems, see your operating
system specific Oracle documentation regarding the advisability of
disabling disk affinity when using operating system striping

Analyzing Striping
Two considerations arise when analyzing striping issues for your applications. First,
consider the cardinality of the relationships among the objects in a storage system.
Second, consider what you can optimize in your striping effort: full table scans,
general tablespace availability, partition scans, or some combinations of these goals.
Cardinality and optimization are discussed in the following section.

4-6 Oracle9i Data Warehousing Guide

Overview of Hardware and 1/0 Considerations in Data Warehouses

Cardinality of Storage Object Relationships
To analyze striping, consider the relationships illustrated in Figure 4-4.

Figure 4-4 Cardinality of Relationships

1 1

s f
table artitions AN tablespace £ files
p V4 p <

/N\°
W 3

n
< devices

Figure 4-4 shows the cardinality of the relationships among objects in a typical
Oracle storage system. For every table there may be:

« p partitions, shown in Figure 4-4 as a one-to-many relationship

« S partitions for every tablespace, shown in Figure 4-4 as a many-to-one
relationship

« ffiles for every tablespace, shown in Figure 4-4 as a one-to-many relationship

« mfiles to n devices, shown in Figure 4-4 as a many-to-many relationship

Striping Goals
You can stripe an object across devices to achieve one of three goals:

« Goal 1: To optimize full table scans, place a table on many devices.
« Goal 2: To optimize availability, restrict the tablespace to a few devices.

« Goal 3: To optimize partition scans, achieve intra-partition parallelism by
placing each partition on many devices.

To attain both Goals 1 and 2 (having the table reside on many devices, with the
highest possible availability), maximize the number of partitions p and minimize
the number of partitions for each tablespace s.

To maximize Goal 1 but with minimal intra-partition parallelism, place each
partition in its own tablespace. Do not used striped files, and use one file for each
tablespace.

To minimize Goal 2 and thereby minimize availability, set f and n equal to 1. When
you minimize availability, you maximize intra-partition parallelism. Goal 3 conflicts
with Goal 2 because you cannot simultaneously maximize the formula for Goal 3

Hardware and I/O Considerations in Data Warehouses 4-7

Overview of Hardware and 1/0 Considerations in Data Warehouses

and minimize the formula for Goal 2. You must compromise to achieve some of the
benefits of both goals.

Striping Goal 1: Optimize Full Table Scans
Having a table reside on many devices ensures scalable full table scans.

To calculate the optimal number of devices for each table, use this formula:

pxfxn
sXm

Number of devices per table =

You can do this by having t partitions, with every partition in its own tablespace, if
every tablespace has one file, and these files are not striped.

tx1/px1x1, uptotdevices

If the table is not partitioned, but is in one tablespace in one file, stripe it over n
devices.

1 x 1 X n devices

There are a maximum of t partitions, every partition in its own tablespace, f files in
each tablespace, each tablespace on a striped device:

t x f X n devices

Striping Goal 2: Optimize Availability

Restricting each tablespace to a small number of devices and having as many
partitions as possible helps you achieve high availability.

Number of devices per tablespace = fxn

Availability is maximized when f =n =m =1 and p is much greater than 1.

4-8 Oracle9i Data Warehousing Guide

RAID Configurations

Striping Goal 3: Optimize Partition Scans

Achieving intra-partition parallelism is advantageous because partition scans are
scalable. To do this, place each partition on many devices.

fxn

Number of devices per partition =
sXxm

Partitions can reside in a tablespace that can have many files. You can have either a
striped file or many files for each tablespace.

RAID Configurations

RAID systems, also called disk arrays, can be hardware- or software-based systems.
The difference between the two is how CPU processing of 1/0 requests is handled.
In software-based RAID systems, the operating system or an application level
handles the 1/0 request, while in hardware-based RAID systems, disk controllers
handle 1/0 requests. RAID usage is transparent to Oracle. All the features specific
to a given RAID configuration are handled by the operating system and Oracle does
not need to worry about them.

Primary logical database structures have different access patterns during read and
write operations. Therefore, different RAID implementations will be better suited
for these structures. The purpose of this chapter is to discuss some of the basic
decisions you must make when designing the physical layout of your data
warehouse implementation. It is not meant as a replacement for operating system
and storage documentation or a consultant’s analysis of your 1/0 requirements.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information regarding RAID

There are advantages and disadvantages to using RAID, and those depend on the
RAID level under consideration and the specific system in question. The most
common configurations in data warehouses are:

« RAID 0 (Striping)

« RAID 1 (Mirroring)

« RAID 0+1 (Striping and Mirroring)
« RAID5S

Hardware and I/O Considerations in Data Warehouses 4-9

RAID Configurations

RAID 0 (Striping)

RAID 0 is a non-redundant disk array, so there will be data loss with any disk
failure. If something on the disk becomes corrupted, you cannot restore or
recalculate that data. RAID 0 provides the best write throughput performance
because it never updates redundant information. Read throughput is also quite
good, but you can improve it by combining RAID 0 with RAID 1.

Oracle does not recommend using RAID 0 systems without RAID 1 because the loss
of one disk in the array will affect the complete system and make it unavailable.
RAID 0 systems are used mainly in environments where performance and capacity
are the primary concerns rather than availability.

RAID 1 (Mirroring)

RAID 1 provides full data redundancy by complete mirroring of all files. If a disk
failure occurs, the mirrored copy is used to transparently service the request. RAID
1 mirroring requires twice as much disk space as there is data. In general, RAID 1 is
most useful for systems where complete redundancy of data is required and disk
space is not an issue. For large datafiles or systems with less disk space, RAID 1
may not be feasible, because it requires twice as much disk space as there is data.
Writes under RAID 1 are no faster and no slower than usual. Reading data can be
faster than on a single disk because the system can choose to read the data from the
disk that can respond faster.

RAID 0+1 (Striping and Mirroring)

RAID 0+1 offers the best performance of all RAID systems, but costs the most
because you double the number of drives. Basically, it combines the performance of
RAID 0 and the fault tolerance of RAID 1. You should consider RAID 0+1 for
datafiles with high write rates, for example, table datafiles, and online and archived
redo log files.

Striping, Mirroring, and Media Recovery

Striping affects media recovery. Loss of a disk usually means loss of access to all
objects stored on that disk. If all datafiles in a database are striped over all disks,
then loss of any disk stops the entire database. Furthermore, you may need to
restore all these database files from backups, even if each file has only a small
fraction of its total data stored on the failed disk.

Often, the same system that provides striping also provides mirroring. With the
declining price of disks, mirroring can provide an effective supplement to, but not a

4-10 Oracle9i Data Warehousing Guide

RAID Configurations

RAID 5

substitute for, backups and log archives. Mirroring can help your system recover
from disk failures more quickly than using a backup, but mirroring is not as robust.
Mirroring does not protect against software faults and other problems against
which an independent backup would protect your system.

You can effectively use mirroring if you are able to reload read-only data from the
original source tapes. If you have a disk failure, restoring data from backups can
involve lengthy downtime, whereas restoring from a mirrored disk enables your
system to get back online quickly or even stay online while the crashed disk is
replaced and resynchronized.

RAID 5 systems provide redundancy for the original data while storing parity
information as well. The parity information is striped over all disks in the system to
avoid a single disk as a bottleneck during write operations. The 1/0 throughput of
RAID 5 systems depends upon the implementation and the striping size. For a
typical RAID 5 system, the throughput is normally lower than RAID 0 + 1
configurations. In particular, the performance for high concurrent write operations
such as parallel load can be poor.

Many vendors use memory (as battery-backed cache) in front of the disks to
increase throughput and to become comparable to RAID 0+1. Contact your disk
array vendor for specific details.

Hardware and I/O Considerations in Data Warehouses 4-11

RAID Configurations

The Importance of Specific Analysis

A data warehouse’s requirements are at many levels, and resolving a problem at
one level can cause problems with another. For example, resolving a problem with
guery performance during the ETL process can affect load performance. You cannot
simply maximize query performance at the expense of an unrealistic load time. If
you do, your implementation will fail. In addition, a particular process is dependent
upon the warehouse’s architecture. If you decide to change something in your
system, it can cause performance to become unacceptable in another part of the
warehousing process. An example of this is switching from using database files to
flat files during the loading process. Flat files can have different read performance.

This chapter is not meant as a replacement for operating system and storage
documentation. Your system’s requirements will require detailed analysis prior to
implementation. Only a detailed data warehouse architecture and 1/0 analysis will
help you when deciding hardware and 1/0 strategies.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for details regarding how to analyze 1/0 requirements

4-12 Oracle9i Data Warehousing Guide

D

Parallelism and Partitioning in Data
Warehouses

Data warehouses often contain large tables and require techniques both for
managing these large tables and for providing good query performance across these
large tables. This chapter discusses two key methodologies for addressing these
needs: parallelism and partitioning.

These topics are discussed:

« Overview of Parallel Execution

« Granules of Parallelism

« Partitioning Design Considerations

« Miscellaneous Partition Operations

Note: Parallel execution is available only with the Oracle9i
Enterprise Edition.

Parallelism and Partitioning in Data Warehouses 5-1

Overview of Parallel Execution

Overview of Parallel Execution

Parallel execution dramatically reduces response time for data-intensive operations
on large databases typically associated with decision support systems (DSS) and
data warehouses. You can also implement parallel execution on certain types of
online transaction processing (OLTP) and hybrid systems. Parallel execution is
sometimes called parallelism. Simply expressed, parallelism is the idea of breaking
down a task so that, instead of one process doing all of the work in a query, many
processes do part of the work at the same time. An example of this is when four
processes handle four different quarters in a year instead of one process handling
all four quarters by itself. The improvement in performance can be quite high. In
this case, each quarter will be a partition, a smaller and more manageable unit of an
index or table.

See Also: Oracle9i Database Concepts for further conceptual
information regarding parallel execution

When to Implement Parallel Execution

The most common use of parallel execution is in DSS and data warehousing
environments. Complex queries, such as those involving joins of several tables or
searches of very large tables, are often best executed in parallel.

Parallel execution is useful for many types of operations that access significant
amounts of data. Parallel execution improves processing for:

« Large table scans and joins

= Creation of large indexes

« Partitioned index scans

« Bulkinserts, updates, and deletes
« Aggregations and copying

You can also use parallel execution to access object types within an Oracle database.
For example, use parallel execution to access LOBs (large objects).

Parallel execution benefits systems that have all of the following characteristics:
« Symmetric multi-processors (SMP), clusters, or massively parallel systems
« Sufficient I/0 bandwidth

« Underutilized or intermittently used CPUs (for example, systems where CPU
usage is typically less than 30%)

5-2 Oracle9/ Data Warehousing Guide

Granules of Parallelism

« Sufficient memory to support additional memory-intensive processes such as
sorts, hashing, and 1/0 buffers

If your system lacks any of these characteristics, parallel execution might not
significantly improve performance. In fact, parallel execution can reduce system
performance on overutilized systems or systems with small 1/0 bandwidth.

See Also: Chapter 21, "Using Parallel Execution" for further
information regarding parallel execution requirements

Granules of Parallelism

Different parallel operations use different types of parallelism. The optimal physical
database layout depends on the parallel operations that are most prevalent in your
application or even of the necessity of using partitions.

The basic unit of work in parallelism is a called a granule. Oracle divides the
operation being parallelized (for example, a table scan, table update, or index
creation) into granules. Parallel execution processes execute the operation one
granule at a time. The number of granules and their size correlates with the degree
of parallelism (DOP). It also affects how well the work is balanced across query
server processes. There is no way you can enforce a specific granule strategy as
Oracle makes this decision internally.

Block Range Granules

Block range granules are the basic unit of most parallel operations, even on
partitioned tables. Therefore, from an Oracle perspective, the degree of parallelism
is not related to the number of partitions.

Block range granules are ranges of physical blocks from a table. The number and
the size of the granules are computed during runtime by Oracle to optimize and
balance the work distribution for all affected parallel execution servers. The number
and size of granules are dependent upon the size of the object and the DOP. Block
range granules do not depend on static preallocation of tables or indexes. During
the computation of the granules, Oracle takes the DOP into account and tries to
assign granules from different datafiles to each of the parallel execution servers to
avoid contention whenever possible. Additionally, Oracle considers the disk affinity
of the granules on MPP systems to take advantage of the physical proximity
between parallel execution servers and disks.

When block range granules are used predominantly for parallel access to a table or
index, administrative considerations (such as recovery or using partitions for

Parallelism and Partitioning in Data Warehouses 5-3

Partitioning Design Considerations

deleting portions of data) might influence partition layout more than performance
considerations.

Partition Granules

Partitioning

When Oracle uses partition granules, a query server process works on an entire
partition or subpartition of a table or index. Because partition granules are statically
determined by the structure of the table or index when a table or index is created,
partition granules do not give you the flexibility in parallelizing an operation that
block granules do. The maximum allowable DOP is the number of partitions. This
might limit the utilization of the system and the load balancing across parallel
execution servers.

When Oracle uses partition granules for parallel access to a table or index, you
should use a relatively large number of partitions (ideally, three times the DOP), so
that Oracle can effectively balance work across the query server processes.

Partition granules are the basic unit of parallel index range scans and of parallel
operations that modify multiple partitions of a partitioned table or index. These
operations include parallel creation of partitioned indexes, and parallel creation of
partitioned tables.

See Also: Oracle9i Database Concepts for information on disk
striping and partitioning

Design Considerations

In conjunction with parallel execution, partitioning can improve performance in
data warehouses. The following are the main design considerations for partitioning:

« Types of Partitioning
« Partition Pruning

« Partition-Wise Joins

Types of Partitioning

This section describes the partitioning features that significantly enhance data
access and improve overall application performance. This is especially true for
applications that access tables and indexes with millions of rows and many
gigabytes of data.

5-4 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

Partitioned tables and indexes facilitate administrative operations by enabling these
operations to work on subsets of data. For example, you can add a new partition,
organize an existing partition, or drop a partition and cause less than a second of
interruption to a read-only application.

Using the partitioning methods described in this section can help you tune SQL
statements to avoid unnecessary index and table scans (using partition pruning).
You can also improve the performance of massive join operations when large
amounts of data (for example, several million rows) are joined together by using
partition-wise joins. Finally, partitioning data greatly improves manageability of
very large databases and dramatically reduces the time required for administrative
tasks such as backup and restore.

Granularity can be easily added or removed to the partitioning scheme by splitting
partitions. Thus, if a table’s data is skewed to fill some partitions more than others,
the ones that contain more data can be split to achieve a more even distribution.
Partitioning also allows one to swap partitions with a table. By being able to easily
add, remove, or swap a large amount of data quickly, swapping can be used to keep
a large amount of data that is being loaded inaccessible until loading is completed,
or can be used as a way to stage data between different phases of use. Some
examples are current day’s transactions or online archives.

See Also: Oracle9i Database Concepts for an introduction to the
ideas behind partitioning

Partitioning Methods
Oracle offers four partitioning methods:

« Range Partitioning

« Hash Partitioning

« List Partitioning

« Composite Partitioning

Each partitioning method has different advantages and design considerations.
Thus, each method is more appropriate for a particular situation.

Parallelism and Partitioning in Data Warehouses 5-5

Partitioning Design Considerations

Range Partitioning Range partitioning maps data to partitions based on ranges of
partition key values that you establish for each partition. It is the most common
type of partitioning and is often used with dates. For example, you might want to
partition sales data into monthly partitions.

Range partitioning maps rows to partitions based on ranges of column values.
Range partitioning is defined by the partitioning specification for a table or index in
PARTITION BY RANGE (column_list) and by the partitioning specifications
for each individual partition in VALUES LESS THAN (value_list) , Where
column_list is an ordered list of columns that determines the partition to which a
row or an index entry belongs. These columns are called the partitioning columns.
The values in the partitioning columns of a particular row constitute that row’s
partitioning key.

value_list is an ordered list of values for the columns in the column list. Each
value must be either a literal or a TO_DATEor RPADfunction with constant
arguments. Only the VALUES LESS THAMNIause is allowed. This clause specifies a
non-inclusive upper bound for the partitions. All partitions, except the first, have an
implicit low value specified by the VALUES LESS THANteral on the previous
partition. Any binary values of the partition key equal to or higher than this literal
are added to the next higher partition. Highest partition being where MAXVALUE
literal is defined. Keyword, MAXVALUErepresents a virtual infinite value that sorts
higher than any other value for the data type, including the null value.

The following statement creates a table sales_range that is range partitioned on
the sales_date field:

CREATE TABLE sales _range

(salesman_id NUMBER(5),

salesman_name VARCHAR2(30),

sales_amount NUMBER(10),

sales date DATE)

COMPRESS

PARTITION BY RANGE(sales_date)

(

PARTITION sales_jan2000 VALUES LESS THAN(TO_DATE(02/01/2000,DDIMM/YYYYY),
PARTITION sales_feb2000 VALUES LESS THAN(TO_DATE(03/01/2000,DDIMM/YYYY?),
PARTITION sales_mar2000 VALUES LESS THAN(TO_DATE(04/01/2000,DDIMM/YYYY),
PARTITION sales_apr2000 VALUES LESS THAN(TO_DATE('05/01/2000, DD/IMM/YYYY"))

)

5-6 Oracle9/ Data Warehousing Guide

Partitioning Design Considerations

Note: This table was created with the COMPRESEeyword, thus
all partitions inherit this attribute.

See Also: Oracle9i SQL Reference for partitioning syntax and the
Oracle9i Database Administrator’s Guide for more examples

Hash Partitioning Hash partitioning maps data to partitions based on a hashing
algorithm that Oracle applies to a partitioning key that you identify. The hashing
algorithm evenly distributes rows among partitions, giving partitions
approximately the same size. Hash partitioning is the ideal method for distributing
data evenly across devices. Hash partitioning is a good and easy-to-use alternative
to range partitioning when data is not historical and there is no obvious column or
column list where logical range partition pruning can be advantageous.

Oracle uses a linear hashing algorithm and to prevent data from clustering within
specific partitions, you should define the number of partitions by a power of two
(for example, 2, 4, 8).

The following statement creates a table sales_hash , which is hash partitioned on
the salesman_id field:

CREATE TABLE sales_hash
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
week no NUMBER(2)
PARTITION BY HASH(salesman id)
PARTITIONS 4,

See Also: Oracle9i SQL Reference for partitioning syntax and the
Oracle9i Database Administrator’s Guide for more examples

Note: You cannot define alternate hashing algorithms for
partitions.

List Partitioning List partitioning enables you to explicitly control how rows map to
partitions. You do this by specifying a list of discrete values for the partitioning
column in the description for each partition. This is different from range
partitioning, where a range of values is associated with a partition and with hash
partitioning, where you have no control of the row-to-partition mapping. The

Parallelism and Partitioning in Data Warehouses 5-7

Partitioning Design Considerations

advantage of list partitioning is that you can group and organize unordered and
unrelated sets of data in a natural way. The following example creates a list
partitioned table grouping states according to their sales regions:

CREATE TABLE sales list

(salesman_id NUMBER(5),

salesman_name VARCHAR2(30),

sales state VARCHAR2(20),

sales_amount NUMBER(10),

sales date DATE)

PARTITION BY LIST(sales_state)

(

PARTITION sales west VALUES(Califomia’, Hawaii) COMPRESS,
PARTITION sales_east VALUES(New York, Virginia, Florida),
PARTITION sales_central VALUES(Texas), 'llinois))

)

Partition sales_west is furthermore created as a single compressed partition
within sales_list . For details about partitioning and compression, see
"Partitioning and Data Segment Compression” on page 5-17.

An additional capability with list partitioning is that you can use a default partition,
so that all rows that do not map to any other partition do not generate an error. For
example, modifying the previous example, you can create a default partition as
follows:

CREATE TABLE sales list

(salesman_id NUMBER(5),

salesman_name VARCHAR2(30),

sales state VARCHAR2(20),

sales_amount NUMBER(10),

sales date DATE)

PARTITION BY LIST(sales_state)

(

PARTITION sales_west VALUES(Califomia’, Hawai),
PARTITION sales_east VALUES (New York, Virginia', 'Florida)),
PARTITION sales_central VALUES(Texas), 'llinois))
PARTITION sales_other VALUES(DEFAULT)

)

See Also: Oracle9i SQL Reference for partitioning syntax,
"Partitioning and Data Segment Compression” on page 5-17 for
information regarding data segment compression, and the Oracle9i
Database Administrator’s Guide for more examples

5-8 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

Composite Partitioning Composite partitioning combines range and hash or list
partitioning. Oracle first distributes data into partitions according to boundaries
established by the partition ranges. Then, for range-hash partitioning, Oracle uses a
hashing algorithm to further divide the data into subpartitions within each range
partition. For range-list partitioning, Oracle divides the data into subpartitions
within each range partition based on the explicit list you chose.

Index Partitioning

You can choose whether or not to inherit the partitioning strategy of the underlying
tables. You can create both local and global indexes on a table partitioned by range,
hash, or composite methods. Local indexes inherit the partitioning attributes of
their related tables. For example, if you create a local index on a composite table,
Oracle automatically partitions the local index using the composite method.

Oracle supports only range partitioning for global partitioned indexes. You cannot
partition global indexes using the hash or composite partitioning methods.

See Also: Chapter 6, "Indexes"”

Performance Issues for Range, List, Hash, and Composite Partitioning
This section describes performance issues for:

« When to Use Range Partitioning

« When to Use Hash Partitioning

= When to Use List Partitioning

« When to Use Composite Range-Hash Partitioning

« When to Use Composite Range-List Partitioning

When to Use Range Partitioning Range partitioning is a convenient method for
partitioning historical data. The boundaries of range partitions define the ordering
of the partitions in the tables or indexes.

Range partitioning organizes data by time intervals on a column of type DATE
Thus, most SQL statements accessing range partitions focus on timeframes. An
example of this is a SQL statement similar to "select data from a particular period in
time." In such a scenario, if each partition represents data for one month, the query
"find data of month 98-DEC" needs to access only the December partition of year 98.
This reduces the amount of data scanned to a fraction of the total data available, an
optimization method called partition pruning.

Parallelism and Partitioning in Data Warehouses 5-9

Partitioning Design Considerations

Range partitioning is also ideal when you periodically load new data and purge old
data. It is easy to add or drop partitions.

It is common to keep a rolling window of data, for example keeping the past 36
months’ worth of data online. Range partitioning simplifies this process. To add
data from a new month, you load it into a separate table, clean it, index it, and then
add it to the range-partitioned table using the EXCHANGE PARTITIONtatement, all
while the original table remains online. Once you add the new partition, you can
drop the trailing month with the DROP PARTITIONstatement. The alternative to
using the DROP PARTITIONstatement can be to archive the partition and make it
read only, but this works only when your partitions are in separate tablespaces.

In conclusion, consider using range partitioning when:

« \ery large tables are frequently scanned by a range predicate on a good
partitioning column, such as ORDER_DATBr PURCHASE_DATPartitioning
the table on that column enables partition pruning.

« You want to maintain a rolling window of data.

=« You cannot complete administrative operations, such as backup and restore, on
large tables in an allotted time frame, but you can divide them into smaller
logical pieces based on the partition range column.

The following example creates the table sales for a period of two years, 1999 and
2000, and partitions it by range according to the column s_salesdate to separate
the data into eight quarters, each corresponding to a partition.

CREATE TABLE sales
(s_productid NUMBER,
s saledate DATE,
s custid NUMBER,
s_totalprice NUMBER)
PARTITION BY RANGE(s_saledate)
(PARTITION sal99g1 VALUES LESS THAN (TO_DATE(01-APR-1999, DD-MON-YYYY),
PARTITION sal99q2 VALUES LESS THAN (TO_DATE(01-JUL-1999, DD-MON-YYYYY),
PARTITION sal99qg3 VALUES LESS THAN (TO_DATE(01-OCT-1999, DD-MON-YYYY),
PARTITION sal99g4 VALUES LESS THAN (TO_DATE(01-JAN-2000, DD-MON-YYYYY),
PARTITION sal00gl VALUES LESS THAN (TO_DATE(01-APR-2000, DD-MON-YYYY)),
PARTITION sal00g2 VALUES LESS THAN (TO_DATE(01-JUL-2000, DD-MON-YYYY?),
PARTITION sal00g3 VALUES LESS THAN (TO_DATE(01-OCT-2000','DD-MON-YYYY),
PARTITION sal00g4 VALUES LESS THAN (TO_DATE(01-JAN-2001','DD-MON-YYYY"));

When to Use Hash Partitioning The way Oracle distributes data in hash partitions does

not correspond to a business or a logical view of the data, as it does in range
partitioning. Consequently, hash partitioning is not an effective way to manage

5-10 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

historical data. However, hash partitions share some performance characteristics
with range partitions. For example, partition pruning is limited to equality
predicates. You can also use partition-wise joins, parallel index access, and parallel
DML.

See Also: "Partition-Wise Joins" on page 5-21

As a general rule, use hash partitioning for these purposes:

« Toimprove the availability and manageability of large tables or to enable
parallel DML in tables that do not store historical data.

« To avoid data skew among partitions. Hash partitioning is an effective means of
distributing data because Oracle hashes the data into a number of partitions,
each of which can reside on a separate device. Thus, data is evenly spread over
a sufficient number of devices to maximize 1/0 throughput. Similarly, you can
use hash partitioning to distribute evenly data among the nodes of an MPP
platform that uses Oracle Real Application Clusters.

« Ifitis important to use partition pruning and partition-wise joins according to a
partitioning key that is mostly constrained by a distinct value or value list.

Note: In hash partitioning, partition pruning uses only equality or
IN -list predicates.

If you add or merge a hashed partition, Oracle automatically rearranges the rows to
reflect the change in the number of partitions and subpartitions. The hash function
that Oracle uses is especially designed to limit the cost of this reorganization.
Instead of reshuffling all the rows in the table, Oracles uses an "add partition” logic
that splits one and only one of the existing hashed partitions. Conversely, Oracle
coalesces a partition by merging two existing hashed partitions.

Although the hash function’s use of "add partition" logic dramatically improves the
manageability of hash partitioned tables, it means that the hash function can cause a
skew if the number of partitions of a hash partitioned table, or the number of
subpartitions in each partition of a composite table, is not a power of two. In the
worst case, the largest partition can be twice the size of the smallest. So for optimal
performance, create a number of partitions and subpartitions for each partition that
is a power of two. For example, 2, 4, 8, 16, 32, 64, 128, and so on.

Parallelism and Partitioning in Data Warehouses 5-11

Partitioning Design Considerations

The following example creates four hashed partitions for the table sales_hash
using the column s_productid as the partition key:

CREATE TABLE sales_hash

(s_productid NUMBER,

s saledate DATE,

s custid NUMBER,

s_totalprice NUMBER)
PARTITION BY HASH(s_productid)
PARTITIONS 4;

Specify partition names if you want to choose the names of the partitions.
Otherwise, Oracle automatically generates internal names for the partitions. Also,
you can use the STORE INclause to assign hash partitions to tablespaces in a
round-robin manner.

See Also: Oracle9i SQL Reference for partitioning syntax and the
Oracle9i Database Administrator’s Guide for more examples

When to Use List Partitioning You should use list partitioning when you want to
specifically map rows to partitions based on discrete values.

Unlike range and hash partitioning, multi-column partition keys are not supported
for list partitioning. If a table is partitioned by list, the partitioning key can only
consist of a single column of the table.

When to Use Composite Range-Hash Partitioning Composite range-hash partitioning
offers the benefits of both range and hash partitioning. With composite range-hash
partitioning, Oracle first partitions by range. Then, within each range, Oracle creates
subpartitions and distributes data within them using the same hashing algorithm it
uses for hash partitioned tables.

Data placed in composite partitions is logically ordered only by the boundaries that
define the range level partitions. The partitioning of data within each partition has
no logical organization beyond the identity of the partition to which the
subpartitions belong.

Consequently, tables and local indexes partitioned using the composite range-hash
method:

« Support historical data at the partition level

« Support the use of subpartitions as units of parallelism for parallel operations
such as PDML or space management and backup and recovery

5-12 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

« Areeligible for partition pruning and partition-wise joins on the range and hash
dimensions

Using Composite Range-Hash Partitioning Use the composite range-hash partitioning
method for tables and local indexes if:

« Partitions must have a logical meaning to efficiently support historical data

« The contents of a partition can be spread across multiple tablespaces, devices,
or nodes (of an MPP system)

= You require both partition pruning and partition-wise joins even when the
pruning and join predicates use different columns of the partitioned table

« You require a degree of parallelism that is greater than the number of partitions
for backup, recovery, and parallel operations

Most large tables in a data warehouse should use range partitioning. Composite
partitioning should be used for very large tables or for data warehouses with a
well-defined need for these conditions. When using the composite method, Oracle
stores each subpartition on a different segment. Thus, the subpartitions may have
properties that differ from the properties of the table or from the partition to which
the subpartitions belong.

The following example partitions the table sales range_hash by range on the
column s_saledate to create four partitions that order data by time. Then, within
each range partition, the data is further subdivided into 16 subpartitions by hash on
the column s_productid

CREATE TABLE sales_range_hash(
s_productid NUMBER,
s saledate DATE,
s custid NUMBER,
s_totalprice NUMBER)
PARTITION BY RANGE (s_saledate)
SUBPARTITION BY HASH (s_productid) SUBPARTITIONS 8
(PARTITION sal99q1 VALUES LESS THAN (TO_DATE(01-APR-1999, DD-MON-YYYY"),
PARTITION sal99qg2 VALUES LESS THAN (TO_DATE(01-JUL-1999, DD-MON-YYYYY),
PARTITION sal99g3 VALUES LESS THAN (TO_DATE(01-OCT-1999, 'DD-MON-YYYY"),
PARTITION sal99g4 VALUES LESS THAN (TO_DATE(01-JAN-2000',' DD-MON-YYYY"));

Each hashed subpartition contains sales data for a single quarter ordered by
product code. The total number of subpartitions is 4x8 or 32.

Parallelism and Partitioning in Data Warehouses 5-13

Partitioning Design Considerations

In addition to this syntax, you can create subpartitions by using a subpartition
template. This offers better ease in naming and control of location for tablespaces
and subpartitions. The following statement illustrates this:

CREATE TABLE sales_range_hash(
s_productid NUMBER,
s saledate DATE,
s cusid NUMBER,
s_totalprice NUMBER)
PARTITION BY RANGE (s_saledate)
SUBPARTITION BY HASH (s_productid)
SUBPARTITION TEMPLATE(
SUBPARTITION sp1 TABLESPACE thsl,
SUBPARTITION sp2 TABLESPACE ths2,
SUBPARTITION sp3 TABLESPACE ths3,
SUBPARTITION sp4 TABLESPACE ths4,
SUBPARTITION sp5 TABLESPACE ths5,
SUBPARTITION sp6 TABLESPACE ths6,
SUBPARTITION sp7 TABLESPACE ths7,
SUBPARTITION sp8 TABLESPACE ths8)
(PARTITION sal99g1 VALUES LESS THAN (TO_DATE(01-APR-1999, 'DD-MON-YYYY),
PARTITION sal99g2 VALUES LESS THAN (TO_DATE(01-JUL-1999, 'DD-MON-YYYY),
PARTITION sal99q3 VALUES LESS THAN (TO_DATE(01-OCT-1999, ' DD-MON-YYYY")),
PARTITION sal99g4 VALUES LESS THAN (TO_DATE(01-JAN-2000', DD-MON-YYYY)));

In this example, every partition has the same number of subpartitions. A sample
mapping for sal99qgl s illustrated in Table 5-1. Similar mappings exist for
sal99g2 through sal99g4 .

Table 5-1 Subpartition Mapping

Subpartition Tablespace
sal99ql_spl tbsl
sal99ql_sp2 ths2
sal99ql_sp3 tbs3
sal99ql_sp4 tbs4
sal99ql_sp5 tbs5
sal99ql_spb6 tbs6
sal99ql_sp7 tbs7
sal99ql_sp8 tbs8

5-14 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

See Also: Oracle9i SQL Reference for details regarding syntax and
restrictions

When to Use Composite Range-List Partitioning Composite range-list partitioning offers
the benefits of both range and list partitioning. With composite range-list
partitioning, Oracle first partitions by range. Then, within each range, Oracle creates
subpartitions and distributes data within them to organize sets of data in a natural
way as assigned by the list.

Data placed in composite partitions is logically ordered only by the boundaries that
define the range level partitions.

Using Composite Range-List Partitioning Use the composite range-list partitioning
method for tables and local indexes if:

« Subpartitions have a logical grouping defined by the user

« The contents of a partition can be spread across multiple tablespaces, devices,
or nodes (of an MPP system)

= You require both partition pruning and partition-wise joins even when the
pruning and join predicates use different columns of the partitioned table

« You require a degree of parallelism that is greater than the number of partitions
for backup, recovery, and parallel operations

Most large tables in a data warehouse should use range partitioning. Composite
partitioning should be used for very large tables or for data warehouses with a
well-defined need for these conditions. When using the composite method, Oracle
stores each subpartition on a different segment. Thus, the subpartitions may have
properties that differ from the properties of the table or from the partition to which
the subpartitions belong.

This statement creates a table quarterly_regional_sales that is range
partitioned on the txn_date field and list subpartitioned on state

CREATE TABLE quarterly regional sales
(deptno NUMBER,

iten_no VARCHAR2(20),

tm_date DATE,

tn_amount NUMBER,

state VARCHAR2(2))

PARTITION BY RANGE (txn_date)
SUBPARTITION BY LIST (state)

(
PARTITION q1_1999 VALUES LESS THAN(TO_DATE(1-APR-1999,DD-MON-YYYYY)

Parallelism and Partitioning in Data Warehouses 5-15

Partitioning Design Considerations

(SUBPARTITION gL 1999 northwest VALUES (OR', WAY),
SUBPARTITION q1_1999 _southwest VALUES (AZ, 'UT, 'NM),
SUBPARTITION gL 1999 northeast VALUES (NY', VM, 'NJ),
SUBPARTITION gL 1999 _southeast VALUES (FL','GAY),
SUBPARTITION gL 1999 northcentral VALUES (SD', WI),
SUBPARTITION g1 1999 southcentral VALUES (NM, TX),
PARTITION g2_1999 VALUES LESS THAN(TO_DATE(1-JUL-1999, DD-MON-YYYY))
(SUBPARTITION g2_1999 northwest VALUES (OR', WAY),
SUBPARTITION q2_1999_southwest VALUES (AZ, 'UT, 'NM),
SUBPARTITION g2_1999_northeast VALUES (NY', VM, 'NJ),
SUBPARTITION g2 1999 southeast VALUES (FL, 'GA),
SUBPARTITION q2_1999 northcentral VALUES (SD', WI),
SUBPARTITION g2_1999_southcentral VALUES (NM, X)),
PARTITION g3_1999 VALUES LESS THAN (TO_DATE(1-OCT-1999, DD-MON-YYYY?)
(SUBPARTITION g3_1999 northwest VALUES (OR', WAY),
SUBPARTITION g3 _1999_southwest VALUES (AZ,'UT,'NM),
SUBPARTITION g3 1999 northeast VALUES (NY', VM, 'NJ),
SUBPARTITION g3 1999 southeast VALUES (FL, 'GA),
SUBPARTITION g3_1999_northcentral VALUES (SD', WI),
SUBPARTITION g3_1999_southcentral VALUES (NM, X)),
PARTITION 41999 VALUES LESS THAN (TO_DATE(1-JAN-2000,DD-MON-YYYY?)
(SUBPARTITION g4_1999_northwest VALUES(OR,, 'WA),
SUBPARTITION g4_1999 southwest VALUES(AZ, 'UT,'NM),
SUBPARTITION ¢4_1999 northeast VALUES(NY', VM, NJ),
SUBPARTITION g4_1999_southeast VALUES(FL', 'GA),
SUBPARTITION g4_1999_northcentral VALUES (SD', WI),
SUBPARTITION ¢4_1999_southcentral VALUES (NM, TX)));

You can create subpartitions in a composite partitioned table using a subpartition
template. A subpartition template simplifies the specification of subpartitions by
not requiring that a subpartition descriptor be specified for every partition in the
table. Instead, you describe subpartitions only once in a template, then apply that
subpartition template to every partition in the table. The following statement
illustrates an example where you can choose the subpartition name and tablespace
locations:

CREATE TABLE quarterly_regional_sales
(deptno NUMBER,

item_no VARCHAR2(20),

tn_date DATE,

tn_amount NUMBER,

state VARCHAR2(2))

PARTITION BY RANGE (tin_date)
SUBPARTITION BY LIST (state)
SUBPARTITION TEMPLATE(

5-16 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

SUBPARTITION northwest VALUES (OR', WA) TABLESPACE ts1,
SUBPARTITION southwest VALUES (AZ, 'UT,'NM) TABLESPACE ts2,
SUBPARTITION northeast VALUES (NY', VM, 'NJ) TABLESPACE ts3,
SUBPARTITION southeast VALUES (FL','GA) TABLESPACE ts4,
SUBPARTITION northcentral VALUES (SD', WI') TABLESPACE ts5,
SUBPARTITION southcentral VALUES (NM, TX) TABLESPACE ts6)

(

PARTITION gL_1999 VALUES LESS THAN(TO_DATE(1-APR-1999, DD-MON-YYYY?),
PARTITION 2_1999 VALUES LESS THAN(TO_DATE(1-JUL-1999,DD-MON-YYYYY),
PARTITION g3_1999 VALUES LESS THAN(TO_DATE(1-OCT-1999,DD-MON-YYYY?),
PARTITION g4_1999 VALUES LESS THAN(TO_DATE(1-JAN-2000,DD-MON-YYYY)));

See Also: Oracle9i SQL Reference for details regarding syntax and
restrictions

Partitioning and Data Segment Compression

You can compress several partitions or a complete partitioned heap-organized table.
You do this by either defining a complete partitioned table as being compressed, or
by defining it on a per-partition level. Partitions without a specific declaration
inherit the attribute from the table definition or, if nothing is specified on table level,
from the tablespace definition.

To decide whether or not a partition should be compressed or stay uncompressed
adheres to the same rules as a nonpartitioned table. However, due to the capability
of range and composite partitioning to separate data logically into distinct
partitions, such a partitioned table is an ideal candidate for compressing parts of the
data (partitions) that are mainly read-only. It is, for example, beneficial in all rolling
window operations as a kind of intermediate stage before aging out old data. With
data segment compression, you can keep more old data online, minimizing the
burden of additional storage consumption.

You can also change any existing uncompressed table partition later on, add new

compressed and uncompressed partitions, or change the compression attribute as
part of any partition maintenance operation that requires data movement, such as
MERGE PARTITIONSPLIT PARTITION , or MOVE PARTITIONThe partitions can
contain data or can be empty.

The access and maintenance of a partially or fully compressed partitioned table are
the same as for a fully uncompressed partitioned table. Everything that applies to
fully uncompressed partitioned tables is also valid for partially or fully compressed
partitioned tables.

Parallelism and Partitioning in Data Warehouses 5-17

Partitioning Design Considerations

See Also: Chapter 3, "Physical Design in Data Warehouses" for a
generic discussion of data segment compression, Chapter 14,
"Maintaining the Data Warehouse" for a sample rolling window
operation with a range-partitioned table, and Oracle9i Database
Performance Tuning Guide and Reference for an example of calculating
the compression ratio

Data Segment Compression and Bitmap Indexes

If you want to use data segment compression on partitioned tables with bitmap
indexes, you need to do the following before you introduce the compression
attribute for the first time:

1. Mark bitmap indexes unusable.
2. Set the compression attribute.
3. Rebuild the indexes.

The first time you make a compressed partition part of an already existing, fully
uncompressed partitioned table, you must either drop all existing bitmap indexes
or mark them UNUSABLBrior to adding a compressed partition. This must be done
irrespective of whether any partition contains any data. It is also independent of the
operation that causes one or more compressed partitions to become part of the
table. This does not apply to a partitioned table having B-tree indexes only.

This rebuilding of the bitmap index structures is necessary to accommodate the
potentially higher number of rows stored for each data block with data segment
compression enabled and must be done only for the first time. All subsequent
operations, whether they affect compressed or uncompressed partitions, or change
the compression attribute, behave identically for uncompressed, partially
compressed, or fully compressed partitioned tables.

To avoid the recreation of any bitmap index structure, Oracle recommends creating
every partitioned table with at least one compressed partition whenever you plan to
partially or fully compress the partitioned table in the future. This compressed
partition can stay empty or even can be dropped after the partition table creation.

Having a partitioned table with compressed partitions can lead to slightly larger
bitmap index structures for the uncompressed partitions. The bitmap index
structures for the compressed partitions, however, are in most cases smaller than
the appropriate bitmap index structure before data segment compression. This
highly depends on the achieved compression rates.

5-18 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

Note: Oracle will raise an error if compression is introduced to an
object for the first time and there are usable bitmap index segments.

Example of Data Segment Compression and Partitioning

The following statement moves and compresses an already existing partition
sales gl 1998 of table sales :

ALTER TABLE sales
MOVE PARTITION sales gl 1998 TABLESPACE ts arch gl 1998 COMPRESS;

If you use the MOVEtatement, the local indexes for partition sales_gl1_1998
become unusable. You have to rebuild them afterward, as follows:

ALTER TABLE sales
MODIFY PARTITION sales_g1 1998 REBUILD UNUSABLE LOCAL INDEXES;

The following statement merges two existing partitions into a new, compressed
partition, residing in a separate tablespace. The local bitmap indexes have to be
rebuilt afterward, as follows:

ALTER TABLE sales MERGE PARTITIONS sales_q1_1998, sales g2 1998
INTO PARTITION sales_1_1998 TABLESPACE ts_arch 1 1998
COMPRESS UPDATE GLOBAL INDEXES;

See Also: Oracle9i Database Performance Tuning Guide and Reference
for details regarding how to estimate the compression ratio when
using data segment compression

Partition Pruning

Partition pruning is an essential performance feature for data warehouses. In
partition pruning, the cost-based optimizer analyzes FROMand WHEREIlauses in
SQL statements to eliminate unneeded partitions when building the partition access
list. This enables Oracle to perform operations only on those partitions that are
relevant to the SQL statement. Oracle prunes partitions when you use range, LIKE ,
equality, and IN -list predicates on the range or list partitioning columns, and when
you use equality and IN -list predicates on the hash partitioning columns.

Partition pruning dramatically reduces the amount of data retrieved from disk and
shortens the use of processing time, improving query performance and resource
utilization. If you partition the index and table on different columns (with a global,

Parallelism and Partitioning in Data Warehouses 5-19

Partitioning Design Considerations

partitioned index), partition pruning also eliminates index partitions even when the
partitions of the underlying table cannot be eliminated.

On composite partitioned objects, Oracle can prune at both the range partition level
and at the hash or list subpartition level using the relevant predicates. Refer to the
table sales_range_hash earlier, partitioned by range on the column s_
salesdate and subpartitioned by hash on column s_productid , and consider
the following example:

SELECT *FROM sales_range_hash
WHERE s_saledate BETWEEN (TO_DATE(01-JUL-1999', DD-MON-YYYY?)) AND
(TO_DATE(01-OCT-1999, 'DD-MON-YYYY?) AND s_productid = 1200;

Oracle uses the predicate on the partitioning columns to perform partition pruning
as follows:

« When using range partitioning, Oracle accesses only partitions sal99g2 and
sal99g3 .

=« When using hash subpartitioning, Oracle accesses only the one subpartition in
each partition that stores the rows with s_productid=1200 . The mapping
between the subpartition and the predicate is calculated based on Oracle’s
internal hash distribution function.

Pruning Using DATE Columns

In the earlier partitioning pruning example, the date value was fully specified as
four digits for the year using the TO_DATEfunction, just as it was in the underlying
table’s range partitioning description. While this is the recommended format for
specifying date values, the optimizer can prune partitions using the predicates on
s_salesdate when you use other formats, as in the following example:

SELECT * FROM sales_range_hash
WHERE s_saledate BETWEEN TO_DATE(01-JUL-99, DD-MON-RR) AND
TO_DATE(01-OCT-99, 'DD-MON-RR) AND s_productid = 1200;

Although this uses the DD-MON-RR format, which is not the same as the base
partition, the optimizer can still prune properly.

If you execute an EXPLAIN PLANstatement on the query, the PARTITION_START
and PARTITION_STOPcolumns of the output table do not specify which partitions
Oracle is accessing. Instead, you see the keyword KEY for both columns. The
keyword KEY for both columns means that partition pruning occurs at run-time. It
can also affect the execution plan because the information about the pruned

5-20 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

partitions is missing compared to the same statement using the same TO_DATE
function than the partition table definition.

Avoiding I/0 Bottlenecks

To avoid 1/0 bottlenecks, when Oracle is not scanning all partitions because some
have been eliminated by pruning, spread each partition over several devices. On
MPP systems, spread those devices over multiple nodes.

Partition-Wise Joins

Partition-wise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel. This
significantly reduces response time and improves the use of both CPU and memory
resources. In Oracle Real Application Clusters environments, partition-wise joins
also avoid or at least limit the data traffic over the interconnect, which is the key to
achieving good scalability for massive join operations.

Partition-wise joins can be full or partial. Oracle decides which type of join to use.

Full Partition-Wise Joins

A full partition-wise join divides a large join into smaller joins between a pair of
partitions from the two joined tables. To use this feature, you must equipartition
both tables on their join keys. For example, consider a large join between a sales
table and a customer table on the column customerid. The query "find the records of
all customers who bought more than 100 articles in Quarter 3 of 1999" is a typical
example of a SQL statement performing such a join. The following is an example of
this:

SELECT ccust_last_ name, COUNT(*)
FROM sales s, customers ¢
WHERE s.cust_id=c.cust_id
AND sitime_id BETWEEN TO_DATE(01-JUL-1999, DD-MON-YYYY’) AND
(TO_DATE(01-OCT-1999, DD-MON-YYYYY))
GROUP BY c.cust_last name HAVING
COUNT(*) > 100;

This large join is typical in data warehousing environments. The entire customer
table is joined with one quarter of the sales data. In large data warehouse
applications, this might mean joining millions of rows. The join method to use in
that case is obviously a hash join. You can reduce the processing time for this hash
join even more if both tables are equipartitioned on the customerid column. This
enables a full partition-wise join.

Parallelism and Partitioning in Data Warehouses 5-21

Partitioning Design Considerations

When you execute a full partition-wise join in parallel, the granule of parallelism, as
described under "Granules of Parallelism” on page 5-3, is a partition. As a result, the
degree of parallelism is limited to the number of partitions. For example, you
require at least 16 partitions to set the degree of parallelism of the query to 16.

You can use various partitioning methods to equipartition both tables on the
column customerid with 16 partitions. These methods are described in these
subsections.

Hash-Hash This is the simplest method: the customers and sales tables are both
partitioned by hash into 16 partitions, on the s_customerid and c_customerid
columns. This partitioning method enables full partition-wise join when the tables
are joined on s_customerid and c_customerid , both representing the same
customer identification number. Because you are using the same hash function to
distribute the same information (customer ID) into the same number of hash
partitions, you can join the equivalent partitions. They are storing the same values.

In serial, this join is performed between pairs of matching hash partitions, one at a
time. When one partition pair has been joined, the join of another partition pair
begins. The join completes when the 16 partition pairs have been processed.

Note: A pair of matching hash partitions is defined as one
partition with the same partition number from each table. For
example, with full partition-wise joins we join partition 0 of sales
with partition 0 of customers , partition 1 of sales with partition
1 of customers , and so on.

Parallel execution of a full partition-wise join is a straightforward parallelization of
the serial execution. Instead of joining one partition pair at a time, 16 partition pairs
are joined in parallel by the 16 query servers. Figure 5-1 illustrates the parallel
execution of a full partition-wise join.

5-22 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

Figure 5-1 Parallel Execution of a Full Partition-wise Join

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
sales : P1 : : P2 : : P3 : : P16 :
1 1 1 1 1 1 1 1
C D D D D D
: o - : : :
customers : P1 : : P2 : : 28 : : P16 :
: o - : : :
L___T___I L___T___I L___T___I L___T___I
Parallel
Execution Server Server Server Server
Servers

In Figure 5-1, assume that the degree of parallelism and the number of partitions
are the same, in other words, 16 for both. Defining more partitions than the degree
of parallelism may improve load balancing and limit possible skew in the
execution. If you have more partitions than query servers, when one query server
completes the join of one pair of partitions, it requests that the query coordinator
give it another pair to join. This process repeats until all pairs have been processed.
This method enables the load to be balanced dynamically when the number of
partition pairs is greater than the degree of parallelism, for example, 64 partitions
with a degree of parallelism of 16.

Note: To guarantee an equal work distribution, the number of
partitions should always be a multiple of the degree of parallelism.

In Oracle Real Application Clusters environments running on shared-nothing or
MPP platforms, placing partitions on nodes is critical to achieving good scalability.
To avoid remote 1/0, both matching partitions should have affinity to the same
node. Partition pairs should be spread over all nodes to avoid bottlenecks and to
use all CPU resources available on the system.

Nodes can host multiple pairs when there are more pairs than nodes. For example,
with an 8-node system and 16 partition pairs, each node receives two pairs.

See Also: Oracle9i Real Application Clusters Concepts for more
information on data affinity

Parallelism and Partitioning in Data Warehouses 5-23

Partitioning Design Considerations

(Composite-Hash)-Hash This method is a variation of the hash-hash method. The
sales table is a typical example of a table storing historical data. For all the reasons
mentioned under the heading "When to Use Range Partitioning” on page 5-9, range
is the logical initial partitioning method.

For example, assume you want to partition the sales table into eight partitions by
range on the column s_salesdate . Also assume you have two years and that each
partition represents a quarter. Instead of using range partitioning, you can use
composite partitioning to enable a full partition-wise join while preserving the
partitioning on s_salesdate . Partition the sales table by rangeons_

salesdate and then subpartition each partition by hash on s_customerid using
16 subpartitions for each partition, for a total of 128 subpartitions. The customers
table can still use hash partitioning with 16 partitions.

When you use the method just described, a full partition-wise join works similarly
to the one created by the hash-hash method. The join is still divided into 16 smaller
joins between hash partition pairs from both tables. The difference is that now each
hash partition in the sales table is composed of a set of 8 subpartitions, one from
each range partition.

Figure 5-2 illustrates how the hash partitions are formed in the sales table. Each
cell represents a subpartition. Each row corresponds to one range partition, for a
total of 8 range partitions. Each range partition has 16 subpartitions. Each column
corresponds to one hash partition for a total of 16 hash partitions; each hash
partition has 8 subpartitions. Note that hash partitions can be defined only if all
partitions have the same number of subpartitions, in this case, 16.

Hash partitions are implicit in a composite table. However, Oracle does not record
them in the data dictionary, and you cannot manipulate them with DDL commands
as you can range partitions.

5-24 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

Figure 5-2 Range and Hash Partitions of a Composite Table
customerid
>
H2 H4 H6 H8 H10 H12 H14 H16
H1 H3 H5 H7 H9 H11 H13 H15

nnn

bededed

|

nnn

222X

woo-o1 —»| [DD DD DD D DD DL
woo-q2 — | [LD DD DILIDI D DD DL
wo9-o3 —» | [LD DD DI D DD DL
g| oo+ — | OO DD O IO CILIE
:| =»-« = [00000000JO000000
2000-@2 —» | [LD D DD DD DD DD CIE
2000-@3 —» | [LD DD DD DD DD LI
2000-@4 —» | [LD DD DD D DD DD

Hash partition #9

(Composite-Hash)-Hash partitioning is effective because it lets you combine
pruning (on s_salesdate) with a full partition-wise join (on customerid). In the
previous example query, pruning is achieved by scanning only the subpartitions
corresponding to Q3 of 1999, in other words, row number 3 in Figure 5-2. Oracle
then joins these subpartitions with the customer table, using a full partition-wise
join.

All characteristics of the hash-hash partition-wise join apply to the composite-hash
partition-wise join. In particular, for this example, these two points are common to
both methods:

« The degree of parallelism for this full partition-wise join cannot exceed 16. Even
though the sales table has 128 subpartitions, it has only 16 hash partitions.

Parallelism and Partitioning in Data Warehouses 5-25

Partitioning Design Considerations

« Therules for data placement on MPP systems apply here. The only difference is
that a hash partition is now a collection of subpartitions. You must ensure that
all these subpartitions are placed on the same node as the matching hash
partition from the other table. For example, in Figure 5-2, store hash partition 9
of the sales table shown by the eight circled subpartitions, on the same node
as hash partition 9 of the customers table.

(Composite-List)-List The (Composite-List)-List method resembles that for
(Composite-Hash)-Hash partition-wise joins.

Composite-Composite (Hash/List Dimension) If needed, you can also partition the
customer table by the composite method. For example, you partition it by range
on a postal code column to enable pruning based on postal code. You then
subpartition it by hash on customerid using the same number of partitions (16) to
enable a partition-wise join on the hash dimension.

Range-Range and List-List You can also join range partitioned tables with range
partitioned tables and list partitioned tables with list partitioned tables in a
partition-wise manner, but this is relatively uncommon. This is more complex to
implement because you must know the distribution of the data before performing
the join. Furthermore, if you do not correctly identify the partition bounds so that
you have partitions of equal size, data skew during the execution may result.

The basic principle for using range-range and list-list is the same as for using
hash-hash: you must equipartition both tables. This means that the number of
partitions must be the same and the partition bounds must be identical. For
example, assume that you know in advance that you have 10 million customers,
and that the values for customerid vary from 1 to 10,000,000. In other words, you
have 10 million possible different values. To create 16 partitions, you can range
partition both tables, sales on c_customerid and customers ons_
customerid . You should define partition bounds for both tables in order to
generate partitions of the same size. In this example, partition bounds should be
defined as 625001, 1250001, 1875001, ... 10000001, so that each partition contains
625000 rows.

Range-Composite, Composite-Composite (Range Dimension) Finally, you can also
subpartition one or both tables on another column. Therefore, the range-composite
and composite-composite methods on the range dimension are also valid for
enabling a full partition-wise join on the range dimension.

5-26 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

Partial Partition-wise Joins

Oracle can perform partial partition-wise joins only in parallel. Unlike full
partition-wise joins, partial partition-wise joins require you to partition only one
table on the join key, not both tables. The partitioned table is referred to as the
reference table. The other table may or may not be partitioned. Partial
partition-wise joins are more common than full partition-wise joins.

To execute a partial partition-wise join, Oracle dynamically repartitions the other
table based on the partitioning of the reference table. Once the other table is
repartitioned, the execution is similar to a full partition-wise join.

The performance advantage that partial partition-wise joins have over joins in
non-partitioned tables is that the reference table is not moved during the join
operation. Parallel joins between non-partitioned tables require both input tables to
be redistributed on the join key. This redistribution operation involves exchanging
rows between parallel execution servers. This is a CPU-intensive operation that can
lead to excessive interconnect traffic in Oracle Real Application Clusters
environments. Partitioning large tables on a join key, either a foreign or primary
key, prevents this redistribution every time the table is joined on that key. Of course,
if you choose a foreign key to partition the table, which is the most common
scenario, select a foreign key that is involved in many queries.

To illustrate partial partition-wise joins, consider the previous sales/customer
example. Assume that s_customer is not partitioned or is partitioned on a column
other than c_customerid . Because sales is often joined with customers on
customerid , and because this join dominates our application workload, partition
sales ons_customerid to enable partial partition-wise join every time
customers and sales are joined. As in full partition-wise join, you have several
alternatives:

Hash/List The simplest method to enable a partial partition-wise join is to partition
sales by hash on c_customerid . The number of partitions determines the
maximum degree of parallelism, because the partition is the smallest granule of
parallelism for partial partition-wise join operations.

The parallel execution of a partial partition-wise join is illustrated in Figure 5-3,
which assumes that both the degree of parallelism and the number of partitions of
sales are 16. The execution involves two sets of query servers: one set, labeled set 1
in Figure 5-3, scans the customers table in parallel. The granule of parallelism for
the scan operation is a range of blocks.

Rows from customers that are selected by the first set, in this case all rows, are
redistributed to the second set of query servers by hashing customerid . For

Parallelism and Partitioning in Data Warehouses 5-27

Partitioning Design Considerations

example, all rows in customers

that could have matching rows in partition P1 of

sales are sent to query server 1 in the second set. Rows received by the second set
of query servers are joined with the rows from the corresponding partitions in
sales . Query server number 1 in the second set joins all customers rows that it
receives with partition P1 of sales .

Figure 5-3

sales

Parallel
execution
server
set 2

Parallel
execution
server
setl

Partial Partition-wise Join

P1 P2 .
v v
X X<

Server

Server

?

?

P16

Server

?

customers

JOIN

re-distribution
hash(c_customerid)

SELECT

Note:

This section is based on range-hash, but it also applies for
range-list partial partition-wise joins.

Considerations for full partition-wise joins also apply to partial partition-wise joins:

« The degree of parallelism does not need to equal the number of partitions. In
Figure 5-3, the query executes with two sets of 16 query servers. In this case,
Oracle assigns 1 partition to each query server of the second set. Again, the
number of partitions should always be a multiple of the degree of parallelism.

5-28 Oracle9i Data Warehousing Guide

Partitioning Design Considerations

« In Oracle Real Application Clusters environments on shared-nothing platforms
(MPPs), each hash partition of sales should preferably have affinity to only
one node in order to avoid remote I/0s. Also, spread partitions over all nodes
to avoid bottlenecks and use all CPU resources available on the system. A node
can host multiple partitions when there are more partitions than nodes.

See Also: Oracle9i Real Application Clusters Concepts for more
information on data affinity

Composite As with full partition-wise joins, the prime partitioning method for the
sales table is to use the range method on column s_salesdate . This is because
sales is atypical example of a table that stores historical data. To enable a partial
partition-wise join while preserving this range partitioning, subpartition sales by
hash on column s_customerid using 16 subpartitions for each partition. Pruning
and partial partition-wise joins can be used together if a query joins customers
and sales and if the query has a selection predicate on s_salesdate

When sales is composite, the granule of parallelism for a partial partition-wise
join is a hash partition and not a subpartition. Refer to Figure 5-2 for an illustration
of a hash partition in a composite table. Again, the number of hash partitions
should be a multiple of the degree of parallelism. Also, on an MPP system, ensure
that each hash partition has affinity to a single node. In the previous example, the
eight subpartitions composing a hash partition should have affinity to the same
node.

Note: This section is based on range-hash, but it also applies for
range-list partial partition-wise joins.

Range Finally, you can use range partitioning on s_customerid to enable a partial
partition-wise join. This works similarly to the hash method, but a side effect of
range partitioning is that the resulting data distribution could be skewed if the size
of the partitions differs. Moreover, this method is more complex to implement
because it requires prior knowledge of the values of the partitioning column that is
also a join key.

Benefits of Partition-Wise Joins
Partition-wise joins offer benefits described in this section:

= Reduction of Communications Overhead

« Reduction of Memory Requirements

Parallelism and Partitioning in Data Warehouses 5-29

Partitioning Design Considerations

Reduction of Communications Overhead When executed in parallel, partition-wise joins
reduce communications overhead. This is because, in the default case, parallel
execution of a join operation by a set of parallel execution servers requires the
redistribution of each table on the join column into disjoint subsets of rows. These
disjoint subsets of rows are then joined pair-wise by a single parallel execution
server.

Oracle can avoid redistributing the partitions because the two tables are already
partitioned on the join column. This enables each parallel execution server to join a
pair of matching partitions.

This improved performance from using parallel execution is even more noticeable
in Oracle Real Application Clusters configurations with internode parallel
execution. Partition-wise joins dramatically reduce interconnect traffic. Using this
feature is for large DSS configurations that use Oracle Real Application Clusters.

Currently, most Oracle Real Application Clusters platforms, such as MPP and SMP
clusters, provide limited interconnect bandwidths compared with their processing
powers. Ideally, interconnect bandwidth should be comparable to disk bandwidth,
but this is seldom the case. As a result, most join operations in Oracle Real
Application Clusters experience high interconnect latencies without parallel
execution of partition-wise joins.

Reduction of Memory Requirements Partition-wise joins require less memory than the
equivalent join operation of the complete data set of the tables being joined.

In the case of serial joins, the join is performed at the same time on a pair of
matching partitions. If data is evenly distributed across partitions, the memory
requirement is divided by the number of partitions. There is no skew.

In the parallel case, memory requirements depend on the number of partition pairs
that are joined in parallel. For example, if the degree of parallelism is 20 and the
number of partitions is 100, 5 times less memory is required because only 20 joins of
two partitions are performed at the same time. The fact that partition-wise joins
require less memory has a direct effect on performance. For example, the join
probably does not need to write blocks to disk during the build phase of a hash join.

Performance Considerations for Parallel Partition-Wise Joins
The cost-based optimizer weighs the advantages and disadvantages when deciding
whether or not to use partition-wise joins.

« Inrange partitioning where partition sizes differ, data skew increases response
time; some parallel execution servers take longer than others to finish their
joins. Oracle recommends the use of hash (sub)partitioning to enable

5-30 Oracle9i Data Warehousing Guide

Miscellaneous Partition Operations

partition-wise joins because hash partitioning, if the number of partitions is a
power of two, limits the risk of skew.

The number of partitions used for partition-wise joins should, if possible, be a
multiple of the number of query servers. With a degree of parallelism of 16, for
example, you can have 16, 32, or even 64 partitions. If there is an even number
of partitions, some parallel execution servers are used less than others. For
example, if there are 17 evenly distributed partition pairs, only one pair will
work on the last join, while the other pairs will have to wait. This is because, in
the beginning of the execution, each parallel execution server works on a
different partition pair. At the end of this first phase, only one pair is left. Thus,
a single parallel execution server joins this remaining pair while all other
parallel execution servers are idle.

Sometimes, parallel joins can cause remote I/0s. For example, on Oracle Real
Application Clusters environments running on MPP configurations, if a pair of
matching partitions is not collocated on the same node, a partition-wise join
requires extra internode communication due to remote 1/0. This is because
Oracle must transfer at least one partition to the node where the join is
performed. In this case, it is better to explicitly redistribute the data than to use
a partition-wise join.

Miscellaneous Partition Operations

The following partition operations are needed on a regular basis:

Adding Partitions

Dropping Partitions
Exchanging Partitions

Moving Partitions

Splitting and Merging Partitions
Truncating Partitions

Coalescing Partitions

Parallelism and Partitioning in Data Warehouses 5-31

Miscellaneous Partition Operations

Adding Partitions

Different types of partitions require slightly different syntax when being added.
Basic topics are:

« Adding a Partition to a Range-Partitioned Table
« Adding a Partition to a Hash-Partitioned Table
« Adding a Partition to a List-Partitioned Table

Adding a Partition to a Range-Partitioned Table

Use the ALTER TABLE ... ADD PARTITION statement to add a new partition to
the "high" end (the point after the last existing partition). To add a partition at the
beginning or in the middle of a table, use the SPLIT PARTITION clause.

For example, consider the table, sales , which contains data for the current month
in addition to the previous 12 months. On January 1, 1999, you add a partition for
January, which is stored in tablespace tsx .

ALTER TABLE sales
ADD PARTITION jan96 VALUES LESS THAN (01-FEB-1999)
TABLESPACE tsx;

You cannot add a partition to a range-partitioned table that has a MAXVALUE
partition, but you can split the MAXVALUpartition. By doing so, you effectively
create a new partition defined by the values that you specify, and a second partition
that remains the MAXVALUBpartition.

Local and global indexes associated with the range-partitioned table remain usable.

Adding a Partition to a Hash-Partitioned Table

When you add a partition to a hash-partitioned table, Oracle populates the new
partition with rows rehashed from an existing partition (selected by Oracle) as
determined by the hash function.

The following statements show two ways of adding a hash partition to table
scubagear . Choosing the first statement adds a new hash partition whose
partition name is system generated, and which is placed in the table’s default
tablespace. The second statement also adds a new hash partition, but that partition
is explicitly named p_named and is created in tablespace gear5 .

ALTER TABLE scubagear ADD PARTITION;
ALTER TABLE scubagear
ADD PARTITION p_named TABLESPACE gear5;

5-32 Oracle9i Data Warehousing Guide

Miscellaneous Partition Operations

Adding a Partition to a List-Partitioned Table

The following statement illustrates adding a new patrtition to a list-partitioned table.
In this example, physical attributes and NOLOGGIN@re specified for the partition
being added.

ALTER TABLE gql_sales_by region
ADD PARTITION ¢1._nonmainland VALUES (HI, PR)
STORAGE (INITIAL 20K NEXT 20K) TABLESPACE ths_3
NOLOGGING;

Any value in the set of literal values that describe the partition being added must
not exist in any of the other partitions of the table.

You cannot add a partition to a list-partitioned table that has a default partition, but
you can split the default partition. By doing so, you effectively create a new
partition defined by the values that you specify, and a second partition that remains
the default partition.

Local and global indexes associated with the list-partitioned table remain usable.

Dropping Partitions

You can drop partitions from range, composite, list, or composite range-list
partitioned tables. For hash-partitioned tables, or hash subpartitions of range-hash
partitioned tables, you must perform a coalesce operation instead.

Dropping a Table Partition
Use one of the following statements to drop a table partition or subpartition:

« ALTER TABLE ... DROP PARTITION to drop a table partition

« ALTER TABLE ... DROP SUBPARTITION to drop a subpartition of a
range-list partitioned table

A typical example of dropping a partition containing data and referential integrity
objects is as follows:

ALTER TABLE sales

DISABLE CONSTRAINT dname_salesl;
ALTER TABLE sales DROP PARTITTION dec98;
ALTER TABLE sales

ENABLE CONSTRAINT dname_sales1;

In this example, you disable the integrity constraints, issue the ALTER TABLE ...
DROP PARTITION statement, then enable the integrity constraints. This method is

Parallelism and Partitioning in Data Warehouses 5-33

Miscellaneous Partition Operations

most appropriate for large tables where the partition being dropped contains a
significant percentage of the total data in the table.

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

Exchanging Partitions

You can convert a partition (or subpartition) into a nonpartitioned table, and a
nonpartitioned table into a partition (or subpartition) of a partitioned table by
exchanging their data segments. You can also convert a hash-partitioned table into a
partition of a range-hash partitioned table, or convert the partition of the
range-hash partitioned table into a hash-partitioned table. Similarly, you can
convert a list-partitioned table into a partition of a range-list partitioned table, or
convert the partition of the range-list partitioned table into a list-partitioned table

A typical example of exchanging into a nonpartitioned table follows. In this
example, table stocks can be range, hash, or list partitioned.

ALTER TABLE stocks
EXCHANGE PARTITION p3 WITH stock_table_3;

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

Moving Partitions

Use the MOVE PARTITIONCclause to move a partition. For example, to move the
most active partition to a tablespace that resides on its own disk (in order to balance
I/0) and to not log the action, issue the following statement:

ALTER TABLE parts MOVE PARTITION depot2
TABLESPACE ts094 NOLOGGING;

This statement always drops the partition’s old segment and creates a new segment,
even if you do not specify a new tablespace.

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

5-34 Oracle9i Data Warehousing Guide

Miscellaneous Partition Operations

Splitting and Merging Partitions
The SPLIT PARTITION clause of the ALTER TABLEor ALTER INDEXstatement is
used to redistribute the contents of a partition into two new partitions. Consider
doing this when a partition becomes too large and causes backup, recovery, or
maintenance operations to take a long time to complete. You can also use the SPLIT
PARTITION clause to redistribute the 1/0 load.

This clause cannot be used for hash partitions or subpartitions.
A typical example is to split a range-partitioned table as follows:

ALTER TABLE vet_cats SPLIT PARTITION
fee_katyat (100) INTO (PARTITION
fee_katyl .., PARTITION fee_Katy2..);
ALTER INDEX JAF1 REBUILD PARTITION fee_Katy1;
ALTER INDEX JAF1 REBUILD PARTITION fee_Katy?;
ALTER INDEX VET REBUILD PARTITION vet_parta;
ALTER INDEX VET REBUILD PARTITION vet_parth;

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

Use the ALTER TABLE ... MERGE PARTITIONS statement to merge the contents
of two partitions into one partition. The two original partitions are dropped, as are
any corresponding local indexes.

You cannot use this statement for a hash-partitioned table or for hash subpartitions
of a range-hash partitioned table.

The following statement merges two subpartitions of a table partitioned using
range-list method into a new subpartition located in tablespace tbs_west

ALTER TABLE quarterly_regional_sales
MERGE SUBPARTITIONS q1_1999 northwest, ol 1999 _southwest
INTO SUBPARTITION q1._1999 west
TABLESPACE ths_west;

Truncating Partitions

Use the ALTER TABLE ... TRUNCATE PARTITION statement to remove all rows
from a table partition. Truncating a partition is similar to dropping a partition,
except that the partition is emptied of its data, but not physically dropped.

Parallelism and Partitioning in Data Warehouses 5-35

Miscellaneous Partition Operations

You cannot truncate an index partition. However, if there are local indexes defined
for the table, the ALTER TABLE TRUNCATE PARTITION statement truncates the
matching partition in each local index.

The following example illustrates a partition that contains data and has referential
integrity constraints:

ALTER TABLE sales

DISABLE CONSTRAINT dname_salesl;
ALTER TABLE sales TRUNCATE PARTITTION dec94;
ALTER TABLE sales

ENABLE CONSTRAINT dname_sales];

In this example, you disable the integrity constraints, issue the ALTER TABLE ...
TRUNCATE PARTITIONstatement, then re-enable the integrity constraints.

This method is most appropriate for large tables where the partition being
truncated contains a significant percentage of the total data in the table.

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

Coalescing Partitions

Coalescing partitions is a way of reducing the number of partitions in a
hash-partitioned table, or the number of subpartitions in a range-hash partitioned
table. When a hash partition is coalesced, its contents are redistributed into one or
more remaining partitions determined by the hash function. The specific partition
that is coalesced is selected by Oracle, and is dropped after its contents have been
redistributed.

The following statement illustrates a typical case of reducing by one the number of
partitions in a table:

ALTER TABLE ouul
COALESCE PARTITION,;

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

5-36 Oracle9i Data Warehousing Guide

6

Indexes

This chapter describes how to use indexes in a data warehousing environment and
discusses the following types of index:

Bitmap Indexes
B-tree Indexes

Local Indexes Versus Global Indexes

See Also: Oracle9i Database Concepts for general information
regarding indexing

Indexes 6-1

Bitmap Indexes

Bitmap Indexes

Bitmap indexes are widely used in data warehousing environments. The
environments typically have large amounts of data and ad hoc queries, but a low
level of concurrent DML transactions. For such applications, bitmap indexing
provides:

« Reduced response time for large classes of ad hoc queries
« Reduced storage requirements compared to other indexing techniques

« Dramatic performance gains even on hardware with a relatively small number
of CPUs or a small amount of memory

« Efficient maintenance during parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of space because the indexes can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

Note: Bitmap indexes are available only if you have purchased the
Oracle9i Enterprise Edition. See Oracle9i Database New Features for
more information about the features available in Oracle9i and the
Oracle9i Enterprise Edition.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of rowids for each key corresponding to the rows with
that key value. In a bitmap index, a bitmap for each key value replaces a list of
rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so that the bitmap index
provides the same functionality as a regular index. If the number of different key
values is small, bitmap indexes save space.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHEREIlause. Rows that satisfy some, but not all, conditions are filtered out before
the table itself is accessed. This improves response time, often dramatically.

6-2 Oracle9/ Data Warehousing Guide

Bitmap Indexes

Benefits for Data Warehousing Applications

Bitmap indexes are primarily intended for data warehousing applications where
users query the data rather than update it. They are not suitable for OLTP
applications with large numbers of concurrent transactions modifying the data.

Parallel query and parallel DML work with bitmap indexes as they do with
traditional indexes. Bitmap indexing also supports parallel create indexes and
concatenated indexes.

See Also: Chapter 17, "Schema Modeling Techniques" for further
information about using bitmap indexes in data warehousing
environments

Cardinality

The advantages of using bitmap indexes are greatest for columns in which the ratio
of the number of distinct values to the number of rows in the table is under 1%. We
refer to this ratio as the degree of cardinality. A gender column, which has only
two distinct values (male and female), is ideal for a bitmap index. However, data
warehouse administrators also build bitmap indexes on columns with higher
cardinalities.

For example, on a table with one million rows, a column with 10,000 distinct values
is a candidate for a bitmap index. A bitmap index on this column can outperform a
B-tree index, particularly when this column is often queried in conjunction with
other indexed columns. In fact, in a typical data warehouse environments, a bitmap
index can be considered for any non-unique column.

B-tree indexes are most effective for high-cardinality data: that is, for data with
many possible values, such as customer_name or phone_number . In a data
warehouse, B-tree indexes should be used only for unique columns or other
columns with very high cardinalities (that is, columns that are almost unique). The
majority of indexes in a data warehouse should be bitmap indexes.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
guery performance. ANDand ORconditions in the WHERIElause of a query can be
resolved quickly by performing the corresponding Boolean operations directly on
the bitmaps before converting the resulting bitmap to rowids. If the resulting
number of rows is small, the query can be answered quickly without resorting to a
full table scan.

Indexes 6-3

Bitmap Indexes

Example 6-1 Bitmap Index
The following shows a portion of a company's customers table.

SELECT cust_id, cust_gender, cust_marital_status, cust_income_level
FROM customers;

CUST_ID CCUST_MARITAL_STATUS CUST_INCOME_LEVEL

70F D: 70,000 - 89,999

80 F married H: 150,000 - 169,999
90 M single H: 150,000 - 169,999
100F I: 170,000 - 189,999
110 F maried C:50,000-69,999
120 Msingle F: 110,000 - 129,999
130M J: 190,000 - 249,999

140 M married G:130,000- 149,999

Because cust_gender , cust_marital_status ,and cust_income_level areall
low-cardinality columns (there are only three possible values for marital status and
region, two possible values for gender, and 12 for income level), bitmap indexes are
ideal for these columns. Do not create a bitmap index on cust_id because this is a
unique column. Instead, a unique B-tree index on this column provides the most
efficient representation and retrieval.

Table 6-1 illustrates the bitmap index for the cust_gender column in this
example. It consists of two separate bitmaps, one for gender.

Table 6-1 Sample Bitmap Index

gender="M' gender="F'

cust_id 70
cust_id 80
cust_id 90
cust_id 100
cust_id 110
cust_id 120
cust_id 130
cust_id 140

P B B O O +» O O
o O O B kP O kR B

6-4 Oracle9/ Data Warehousing Guide

Bitmap Indexes

Each entry (or bit) in the bitmap corresponds to a single row of the customers
table. The value of each bit depends upon the values of the corresponding row in
the table. For instance, the bitmap cust_gender="F' contains a one as its first bit
because the region is east in the first row of the customers table. The bitmap
cust_gender="F' has a zero for its third bit because the gender of the third row
isnot F.

An analyst investigating demographic trends of the company's customers might
ask, "How many of our married customers have an income level of G or H?" This
corresponds to the following SQL query:

SELECT COUNT(*) FROM customers
WHERE cust_marital_status ='married’
AND cust_income_level IN (H: 150,000 - 169,999, 'G: 130,000 - 149,999);

Bitmap indexes can efficiently process this query by merely counting the number of
ones in the bitmap illustrated in Figure 6-1. The result set will be found by using
bitmap or merge operations without the necessity of a conversion to rowids. To
identify additional specific customer attributes that satisfy the criteria, use the
resulting bitmap to access the table after a bitmap to rowid conversion.

Figure 6-1 Executing a Query Using Bitmap Indexes

status = region = region =

'married’ ‘central’ ‘west'

0 0 0 0 0 0
1 1 0 1 1 1
1 AND 0 OR 1 = 1 AND 1 = 1
0 0 1 0 1 0
0 1 0 0 1 0
1 1 0 1 1 1

Bitmap Indexes and Nulls

Unlike most other types of indexes, bitmap indexes include rows that have NULL
values. Indexing of nulls can be useful for some types of SQL statements, such as
gueries with the aggregate function COUNT

Indexes 6-5

Bitmap Indexes

Example 6-2 Bitmap Index
SELECT COUNT(*) FROM customers WHERE cust_marital_status IS NULL;

This query uses a bitmap index on cust_marital_status . Note that this query
would not be able to use a B-tree index.

SELECT COUNT(*) FROM employees;

Any bitmap index can be used for this query because all table rows are indexed,
including those that have NULL data. If nulls were not indexed, the optimizer would
be able to use indexes only on columns with NOT NULL constraints.

Bitmap Indexes on Partitioned Tables

You can create bitmap indexes on partitioned tables but they must be local to the
partitioned table—they cannot be global indexes. (Global bitmap indexes are
supported only on nonpartitioned tables). Bitmap indexes on partitioned tables
must be local indexes.

See Also: "Index Partitioning" on page 5-9

Bitmap Join Indexes

In addition to a bitmap index on a single table, you can create a bitmap join index,
which is a bitmap index for the join of two or more tables. A bitmap join index is a
space efficient way of reducing the volume of data that must be joined by
performing restrictions in advance. For each value in a column of a table, a bitmap
join index stores the rowids of corresponding rows in one or more other tables. In a
data warehousing environment, the join condition is an equi-inner join between the
primary key column or columns of the dimension tables and the foreign key
column or columns in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views,
an alternative for materializing joins in advance. This is because the materialized
join views do not compress the rowids of the fact tables.

6-6 Oracle9/ Data Warehousing Guide

Bitmap Indexes

Example 6-3 Bitmap Join Index: Example 1

Using the example in "Bitmap Index" on page 6-4, create a bitmap join index with
the following sales table:

SELECT time_id, cust _id, amount FROM sales;

TIME_ID CUST_ID AMOUNT
01-JANO8 29700 2291
01-JAN98 3380 114
01-JAN98 67830 553
01-JAN-98 179330 0
01-JANG8 127520 195
01-JANO8 33030 280

CREATE BITMAP INDEX sales_cust_gender_hjix
ON sales(customers.cust_gender)

FROM sales, customers

WHERE sales.cust id = customers.cust_id
LOCAL;

The following query shows how to use this bitmap join index and illustrates its
bitmap pattern:

SELECT sales.ime _id, customers.cust_gender, sales.amount
FROM sales, customers
WHERE sales.cust_id = customers.cust id;

TIME_ID CAMOUNT
01-JAN98M 2201
01-JANG8F 114
01-JAN98M 553
01-JAN-98 M 0
01-JANO8M 195
01-JAN98M 280
01-JAN98M 32

Indexes 6-7

Bitmap Indexes

Table 6-2 illustrates the bitmap join index in this example:

Table 6-2 Sample Bitmap Join Index

cust_gender='"M" cust_gender='F'

sales record 1
sales record 2
sales record 3
sales record 4
sales record 5

sales record 6

[N N L =
O O o o o r o

sales record 7

You can create other bitmap join indexes using more than one column or more than
one table, as shown in these examples.

Example 6-4 Bitmap Join Index: Example 2

You can create a bitmap join index on more than one column, as in the following
example, which uses customers(gender, marital_status)

CREATE BITMAP INDEX sales_cust_gender_ms_hjix

ON sales(customers.cust_gender, customers.cust marital_status)
FROM sales, customers

WHERE sales.cust_id = customers.cust _id

LOCAL NOLOGGING;

Example 6-5 Bitmap Join Index: Example 3

You can create a bitmap join index on more than one table, as in the following,
which uses customers(gender) and products(category)

CREATE BITMAP INDEX sales_c_gender_p _cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products

WHERE sales.cust _id = customers.cust_id

AND sales.prod_id = products.prod_id

LOCAL NOLOGGING;

6-8 Oracle9/ Data Warehousing Guide

Bitmap Indexes

Example 6—6 Bitmap Join Index: Example 4

You can create a bitmap join index on more than one table, in which the indexed
column is joined to the indexed table by using another table. For example, we can
build an index on countries.country_name , even though the countries table
is not joined directly to the sales table. Instead, the countries table is joined to
the customers table, which is joined to the sales table. This type of schema is
commonly called a snowflake schema.

CREATE BITMAP INDEX sales_c_gender_p _cat_hjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products

WHERE sales.cust id = customers.cust_id

AND sales.prod_id = products.prod_id

LOCAL NOLOGGING;

Bitmap Join Index Restrictions

Join results must be stored, therefore, bitmap join indexes have the following
restrictions:

« Parallel DML is currently only supported on the fact table. Parallel DML on one
of the participating dimension tables will mark the index as unusable.

« Only one table can be updated concurrently by different transactions when
using the bitmap join index.

= No table can appear twice in the join.

« You cannot create a bitmap join index on an index-organized table or a
temporary table.

= The columns in the index must all be columns of the dimension tables.

« The dimension table join columns must be either primary key columns or have
unique constraints.

« If adimension table has composite primary key, each column in the primary
key must be part of the join.

See Also: Oracle9i SQL Reference for further details

Indexes 6-9

B-tree Indexes

B-tree Indexes

A B-tree index is organized like an upside-down tree. The bottom level of the index
holds the actual data values and pointers to the corresponding rows, much as the
index in a book has a page number associated with each index entry.

See Also: Oracle9i Database Concepts for an explanation of B-tree
structures

In general, use B-tree indexes when you know that your typical query refers to the
indexed column and retrieves a few rows. In these queries, it is faster to find the
rows by looking at the index. However, using the book index analogy, if you plan to
look at every single topic in a book, you might not want to look in the index for the
topic and then look up the page. It might be faster to read through every chapter in
the book. Similarly, if you are retrieving most of the rows in a table, it might not
make sense to look up the index to find the table rows. Instead, you might want to
read or scan the table.

B-tree indexes are most commonly used in a data warehouse to index unique or
near-unique keys. In many cases, it may not be necessary to index these columns in
a data warehouse, because unique constraints can be maintained without an index,
and because typical data warehouse queries may not work better with such indexes.
Bitmap indexes should be more common than B-tree indexes in most data
warehouse environments.

Local Indexes Versus Global Indexes

B-tree indexes on partitioned tables can be global or local. With Oracle8i and earlier
releases, Oracle recommended that global indexes not be used in data warehouse
environments because a partition DDL statement (for example, ALTER TABLE...
DROP PARTITION would invalidate the entire index, and rebuilding the index is
expensive. In Oracle9i, global indexes can be maintained without Oracle marking
them as unusable after DDL. This enhancement makes global indexes more
effective for data warehouse environments.

However, local indexes will be more common than global indexes. Global indexes
should be used when there is a specific requirement which cannot be met by local
indexes (for example, a unique index on a non-partitioning key, or a performance
requirement).

Bitmap indexes on partitioned tables are always local.

See Also: "Types of Partitioning" on page 5-4 for further details

6-10 Oracle9i Data Warehousing Guide

v

Integrity Constraints

This chapter describes integrity constraints, and discusses:
« Why Integrity Constraints are Useful in a Data Warehouse
« Overview of Constraint States

« Typical Data Warehouse Integrity Constraints

Integrity Constraints 7-1

Why Integrity Constraints are Useful in a Data Warehouse

Why Integrity Constraints are Useful in a Data Warehouse

Integrity constraints provide a mechanism for ensuring that data conforms to
guidelines specified by the database administrator. The most common types of
constraints include:

« UNIQUEconstraints
To ensure that a given column is unique
« NOT NULLconstraints
To ensure that no null values are allowed
« FOREIGN KEYonstraints
To ensure that two keys share a primary key to foreign key relationship
Constraints can be used for these purposes in a data warehouse:
« Data cleanliness

Constraints verify that the data in the data warehouse conforms to a basic level
of data consistency and correctness, preventing the introduction of dirty data.

« Query optimization

The Oracle database utilizes constraints when optimizing SQL queries.
Although constraints can be useful in many aspects of query optimization,
constraints are particularly important for query rewrite of materialized views.

Unlike data in many relational database environments, data in a data warehouse is
typically added or modified under controlled circumstances during the extraction,
transformation, and loading (ETL) process. Multiple users normally do not update
the data warehouse directly, as they do in an OLTP system.

See Also: Chapter 10, "Overview of Extraction, Transformation,
and Loading"

Many significant constraint features have been introduced for data warehousing.
Readers familiar with Oracle's constraint functionality in Oracle7 and Oracle8
should take special note of the functionality described in this chapter. In fact, many
Oracle7-based and Oracle8-based data warehouses lacked constraints because of
concerns about constraint performance. Newer constraint functionality addresses
these concerns.

7-2 Oracle9i Data Warehousing Guide

Overview of Constraint States

Overview of Constraint States

To understand how best to use constraints in a data warehouse, you should first
understand the basic purposes of constraints. Some of these purposes are:

Enforcement

In order to use a constraint for enforcement, the constraint must be in the
ENABLEstate. An enabled constraint ensures that all data modifications upon a
given table (or tables) satisfy the conditions of the constraints. Data
modification operations which produce data that violates the constraint fail
with a constraint violation error.

Validation

To use a constraint for validation, the constraint must be in the VALIDATE state.
If the constraint is validated, then all data that currently resides in the table
satisfies the constraint.

Note that validation is independent of enforcement. Although the typical
constraint in an operational system is both enabled and validated, any
constraint could be validated but not enabled or vice versa (enabled but not
validated). These latter two cases are useful for data warehouses.

Belief

In some cases, you will know that the conditions for a given constraint are true,
so you do not need to validate or enforce the constraint. However, you may
wish for the constraint to be present anyway to improve query optimization
and performance. When you use a constraint in this way, it is called a belief or
RELY constraint, and the constraint must be in the RELYstate. The RELY state
provides you with a mechanism for telling Oracle9i that a given constraint is
believed to be true.

Note that the RELY state only affects constraints that have not been validated.

Integrity Constraints 7-3

Typical Data Warehouse Integrity Constraints

Typical Data Warehouse Integrity Constraints

This section assumes that you are familiar with the typical use of constraints. That
is, constraints that are both enabled and validated. For data warehousing, many
users have discovered that such constraints may be prohibitively costly to build and
maintain. The topics discussed are:

« UNIQUE Constraints in a Data Warehouse

«» FOREIGN KEY Constraints in a Data Warehouse
« RELY Constraints

« Integrity Constraints and Parallelism

« Integrity Constraints and Partitioning

« View Constraints

UNIQUE Constraints in a Data Warehouse

A UNIQUEconstraint is typically enforced using a UNIQUEindex. However, in a
data warehouse whose tables can be extremely large, creating a unique index can be
costly both in processing time and in disk space.

Suppose that a data warehouse contains a table sales , which includes a column
sales_id .sales_id uniquely identifies a single sales transaction, and the data
warehouse administrator must ensure that this column is unique within the data
warehouse.

One way to create the constraint is as follows:
ALTER TABLE sales ADD CONSTRAINT sales_unigue
UNIQUE(sales _id);

By default, this constraint is both enabled and validated. Oracle implicitly creates a
unique index on sales_id to support this constraint. However, this index can be
problematic in a data warehouse for three reasons:

« The unique index can be very large, because the sales table can easily have
millions or even billions of rows.

« The unique index is rarely used for query execution. Most data warehousing
gueries do not have predicates on unique keys, so creating this index will
probably not improve performance.

7-4 Oracle9/ Data Warehousing Guide

Typical Data Warehouse Integrity Constraints

« Ifsales is partitioned along a column other than sales_id , the unique index
must be global. This can detrimentally affect all maintenance operations on the
sales table.

A unique index is required for unique constraints to ensure that each individual
row modified in the sales table satisfies the UNIQUEconstraint.

For data warehousing tables, an alternative mechanism for unique constraints is
illustrated in the following statement:

ALTER TABLE sales ADD CONSTRAINT sales_unique
UNIQUE (sales_id) DISABLE VALIDATE;

This statement creates a unique constraint, but, because the constraint is disabled, a
unique index is not required. This approach can be advantageous for many data
warehousing environments because the constraint now ensures uniqueness without
the cost of a unique index.

However, there are trade-offs for the data warehouse administrator to consider with
DISABLE VALIDATE constraints. Because this constraint is disabled, no DML
statements that modify the unique column are permitted against the sales table.
You can use one of two strategies for modifying this table in the presence of a
constraint:

« Use DDL to add data to this table (such as exchanging partitions). See the
example in Chapter 14, "Maintaining the Data Warehouse".

« Before modifying this table, drop the constraint. Then, make all necessary data
modifications. Finally, re-create the disabled constraint. Re-creating the
constraint is more efficient than re-creating an enabled constraint. However, this
approach does not guarantee that data added to the sales table while the
constraint has been dropped is unique.

FOREIGN KEY Constraints in a Data Warehouse

In a star schema data warehouse, FOREIGN KEYtonstraints validate the
relationship between the fact table and the dimension tables. A sample constraint
might be:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (sales_time_id) REFERENCES time (time_id)
ENABLE VALIDATE;

Integrity Constraints 7-5

Typical Data Warehouse Integrity Constraints

However, in some situations, you may choose to use a different state for the
FOREIGN KEYonstraints, in particular, the ENABLE NOVALIDATEstate. A data
warehouse administrator might use an ENABLE NOVALIDATEconstraint when
either:

« The tables contain data that currently disobeys the constraint, but the data
warehouse administrator wishes to create a constraint for future enforcement.

« An enforced constraint is required immediately.

Suppose that the data warehouse loaded new data into the fact tables every day, but
refreshed the dimension tables only on the weekend. During the week, the
dimension tables and fact tables may in fact disobey the FOREIGN KEYonstraints.
Nevertheless, the data warehouse administrator might wish to maintain the
enforcement of this constraint to prevent any changes that might affect the
FOREIGN KEYonstraint outside of the ETL process. Thus, you can create the
FOREIGN KEYonstraints every night, after performing the ETL process, as shown
here:

ALTER TABLE sales ADD CONSTRAINT sales_time fk
FOREIGN KEY (sales_time_id) REFERENCES time (time _ic)
ENABLE NOVALIDATE;

ENABLE NOVALIDATEan quickly create an enforced constraint, even when the
constraint is believed to be true. Suppose that the ETL process verifies that a
FOREIGN KEYonstraint is true. Rather than have the database re-verify this
FOREIGN KEYonstraint, which would require time and database resources, the
data warehouse administrator could instead create a FOREIGN KEYtonstraint using
ENABLE NOVALIDATE

RELY Constraints

The ETL process commonly verifies that certain constraints are true. For example, it
can validate all of the foreign keys in the data coming into the fact table. This means
that you can trust it to provide clean data, instead of implementing constraints in
the data warehouse. You create a RELY constraint as follows:

ALTER TABLE sales ADD CONSTRAINT sales_time fk
FOREIGN KEY (sales_time_id) REFERENCES time (time id)
RELY DISABLE NOVALIDATE;

7-6 Oracle9/ Data Warehousing Guide

Typical Data Warehouse Integrity Constraints

RELYconstraints, even though they are not used for data validation, can:

« Enable more sophisticated query rewrites for materialized views. See
Chapter 22, "Query Rewrite" for further details.

« Enable other data warehousing tools to retrieve information regarding
constraints directly from the Oracle data dictionary.

Creating a RELY constraint is inexpensive and does not impose any overhead
during DML or load. Because the constraint is not being validated, no data
processing is necessary to create it.

Integrity Constraints and Parallelism

All constraints can be validated in parallel. When validating constraints on very
large tables, parallelism is often necessary to meet performance goals. The degree of
parallelism for a given constraint operation is determined by the default degree of
parallelism of the underlying table.

Integrity Constraints and Partitioning

You can create and maintain constraints before you partition the data. Later
chapters discuss the significance of partitioning for data warehousing. Partitioning
can improve constraint management just as it does to management of many other
operations. For example, Chapter 14, "Maintaining the Data Warehouse" provides a
scenario creating UNIQUEand FOREIGN KEtonstraints on a separate staging table,
and these constraints are maintained during the EXCHANGE PARTITIOIStatement.

View Constraints

You can create constraints on views. The only type of constraint supported on a
view is a RELYconstraint.

This type of constraint is useful when queries typically access views instead of base
tables, and the DBA thus needs to define the data relationships between views
rather than tables. View constraints are particularly useful in OLAP environments,
where they may enable more sophisticated rewrites for materialized views.

See Also: Chapter 8, "Materialized Views" and Chapter 22,
"Query Rewrite"

Integrity Constraints 7-7

Typical Data Warehouse Integrity Constraints

7-8 Oracle9i Data Warehousing Guide

8

Materialized Views

This chapter introduces you to the use of materialized views and discusses:

Overview of Data Warehousing with Materialized Views
Types of Materialized Views

Creating Materialized Views

Registering Existing Materialized Views
Partitioning and Materialized Views
Materialized Views in OLAP Environments
Choosing Indexes for Materialized Views
Invalidating Materialized Views

Security Issues with Materialized Views
Altering Materialized Views

Dropping Materialized Views

Analyzing Materialized View Capabilities

Materialized Views 8-1

Overview of Data Warehousing with Materialized Views

Overview of Data Warehousing with Materialized Views

Typically, data flows from one or more online transaction processing (OLTP)
databases into a data warehouse on a monthly, weekly, or daily basis. The data is
normally processed in a staging file before being added to the data warehouse.
Data warehouses commonly range in size from tens of gigabytes to a few terabytes.
Usually, the vast majority of the data is stored in a few very large fact tables.

One technique employed in data warehouses to improve performance is the
creation of summaries. Summaries are special kinds of aggregate views that
improve query execution times by precalculating expensive joins and aggregation
operations prior to execution and storing the results in a table in the database. For
example, you can create a table to contain the sums of sales by region and by
product.

The summaries or aggregates that are referred to in this book and in literature on
data warehousing are created in Oracle using a schema object called a materialized
view. Materialized views can perform a number of roles, such as improving query
performance or providing replicated data.

Prior to Oracle8i, organizations using summaries spent a significant amount of time
and effort creating summaries manually, identifying which summaries to create,
indexing the summaries, updating them, and advising their users on which ones to
use. The introduction of summary management in Oracle8i eased the workload of
the database administrator and meant the user no longer needed to be aware of the
summaries that had been defined. The database administrator creates one or more
materialized views, which are the equivalent of a summary. The end user queries
the tables and views at the detail data level. The query rewrite mechanism in the
Oracle server automatically rewrites the SQL query to use the summary tables. This
mechanism reduces response time for returning results from the query. Materialized
views within the data warehouse are transparent to the end user or to the database
application.

Although materialized views are usually accessed through the query rewrite
mechanism, an end user or database application can construct queries that directly
access the summaries. However, serious consideration should be given to whether
users should be allowed to do this because any change to the summaries will affect
the queries that reference them.

Materialized Views for Data Warehouses

In data warehouses, you can use materialized views to precompute and store
aggregated data such as the sum of sales. Materialized views in these environments

8-2 Oracle9/ Data Warehousing Guide

Overview of Data Warehousing with Materialized Views

are often referred to as summaries, because they store summarized data. They can
also be used to precompute joins with or without aggregations. A materialized view
eliminates the overhead associated with expensive joins and aggregations for a
large or important class of queries.

Materialized Views for Distributed Computing

In distributed environments, you can use materialized views to replicate data at
distributed sites and to synchronize updates done at those sites with conflict
resolution methods. The materialized views as replicas provide local access to data
that otherwise would have to be accessed from remote sites. Materialized views are
also useful in remote data marts.

See Also: Oracle9i Replication and Oracle9i Heterogeneous
Connectivity Administrator’s Guide for details on distributed and
mobile computing

Materialized Views for Mobile Computing

You can also use materialized views to download a subset of data from central
servers to mobile clients, with periodic refreshes and updates between clients and
the central servers.

This chapter focuses on the use of materialized views in data warehouses.

See Also: Oracle9i Replication and Oracle9i Heterogeneous
Connectivity Administrator’s Guide for details on distributed and
mobile computing

The Need for Materialized Views

You can use materialized views in data warehouses to increase the speed of queries
on very large databases. Queries to large databases often involve joins between
tables, aggregations such as SUMor both. These operations are expensive in terms
of time and processing power. The type of materialized view you create determines
how the materialized view is refreshed and used by query rewrite.

You can use materialized views in a number of ways, and you can use almost
identical syntax to perform a number of roles. For example, a materialized view can
replicate data, a process formerly achieved by using the CREATE SNAPSHOT
statement. Now CREATE MATERIALIZED VIEVis a synonym for CREATE
SNAPSHOT

Materialized Views 8-3

Overview of Data Warehousing with Materialized Views

Materialized views improve query performance by precalculating expensive join
and aggregation operations on the database prior to execution and storing the
results in the database. The query optimizer automatically recognizes when an
existing materialized view can and should be used to satisfy a request. It then
transparently rewrites the request to use the materialized view. Queries go directly
to the materialized view and not to the underlying detail tables. In general,
rewriting queries to use materialized views rather than detail tables improves
response. Figure 8-1 illustrates how query rewrite works.

Figure 8-1 Transparent Query Rewrite

Oracle9i

Query is
rewritten

o A T
\q‘! O i O Query Results

Generate Plan

User enters Compare plan cost
query v and pick the best

Generate Plan T

When using query rewrite, create materialized views that satisfy the largest number
of queries. For example, if you identify 20 queries that are commonly applied to the
detail or fact tables, then you might be able to satisfy them with five or six
well-written materialized views. A materialized view definition can include any
number of aggregations (SUMCOUNT(x), COUNT(*), COUNT(DISTINCT x), AVG
VARIANCE STDDEVYMIN, and MAX. It can also include any number of joins. If you
are unsure of which materialized views to create, Oracle provides a set of advisory
procedures in the DBMS_OLAPackage to help in designing and evaluating
materialized views for query rewrite. These functions are also known as the
Summary Advisor or the Advisor. Note that the OLAP Summary Advisor is
different. See Oracle9i OLAP User’s Guide for further details regarding the OLAP
Summary Advisor.

8-4 Oracle9/ Data Warehousing Guide

Overview of Data Warehousing with Materialized Views

If a materialized view is to be used by query rewrite, it must be stored in the same
database as the fact or detail tables on which it relies. A materialized view can be
partitioned, and you can define a materialized view on a partitioned table. You can
also define one or more indexes on the materialized view.

Unlike indexes, materialized views can be accessed directly using a SELECT
statement.

Note: The techniques shown in this chapter illustrate how to use
materialized views in data warehouses. Materialized views can also
be used by Oracle Replication. See Oracle9i Replication for further
information.

Components of Summary Management
Summary management consists of:

« Mechanisms to define materialized views and dimensions.

= Arefresh mechanism to ensure that all materialized views contain the latest
data.

« A query rewrite capability to transparently rewrite a query to use a
materialized view.

« A collection of materialized view analysis and advisory functions and
procedures in the DBMS_OLAPackage. Collectively, these functions are called
the Summary Advisor, and are also available as part of Oracle Enterprise
Manager.

See Also: Chapter 16, "Summary Advisor" and Oracle9i OLAP
User’s Guide for OLAP-related schemas

Many large decision support system (DSS) databases have schemas that do not
closely resemble a conventional data warehouse schema, but that still require joins
and aggregates. The use of summary management features imposes no schema
restrictions, and can enable some existing DSS database applications to improve
performance without the need to redesign the database or the application.

Figure 8-2 illustrates the use of summary management in the warehousing cycle.
After the data has been transformed, staged, and loaded into the detail data in the
warehouse, you can invoke the summary management process. First, use the

Materialized Views 8-5

Overview of Data Warehousing with Materialized Views

Advisor to plan how you will use summaries. Then, create summaries and design
how queries will be rewritten.

Figure 8-2 Overview of Summary Management

Operational
Databases Staging
file
Extraction of Data f—
Incremental — ;] ——
Detail Data Transformations —
Summary
Management
- J e S, |
Data Warehouse !
Query :
Rewrite |, MDDB
— ! Data Mart
Incremental —>
Load and Refresh PErétgr?acrgw

Workload
Statistics

Summary Mgmt
Administration

Summary Mgmt
Analysis & Tuning

Multidimensional
Analysis Tools

Understanding the summary management process during the earliest stages of data
warehouse design can yield large dividends later in the form of higher
performance, lower summary administration costs, and reduced storage

requirements.

8-6 Oracle9/ Data Warehousing Guide

Overview of Data Warehousing with Materialized Views

Data Warehousing Terminology
Some basic data warehousing terms are defined as follows:

Dimension tables describe the business entities of an enterprise, represented as
hierarchical, categorical information such as time, departments, locations, and
products. Dimension tables are sometimes called lookup or reference tables.

Dimension tables usually change slowly over time and are not modified on a
periodic schedule. They are used in long-running decision support queries to
aggregate the data returned from the query into appropriate levels of the
dimension hierarchy.

Hierarchies describe the business relationships and common access patterns in
the database. An analysis of the dimensions, combined with an understanding
of the typical work load, can be used to create materialized views.

See Also: Chapter 9, "Dimensions"

Fact tables describe the business transactions of an enterprise. Fact tables are
sometimes called detail tables.

The vast majority of data in a data warehouse is stored in a few very large fact
tables that are updated periodically with data from one or more operational
OLTP databases.

Fact tables include facts (also called measures) such as sales, units, and
inventory.

— Asimple measure is a numeric or character column of one table such as
fact.sales

— A computed measure is an expression involving measures of one table, for
example, fact.revenues - fact.expenses

— A multitable measure is a computed measure defined on multiple tables,
for example, fact_a.revenues - fact_b.expenses

Fact tables also contain one or more foreign keys that organize the business
transactions by the relevant business entities such as time, product, and market.
In most cases, these foreign keys are non-null, form a unique compound key of
the fact table, and each foreign key joins with exactly one row of a dimension
table.

Materialized Views 8-7

Overview of Data Warehousing with Materialized Views

« A materialized view is a precomputed table comprising aggregated and joined
data from fact and possibly from dimension tables. Among builders of data
warehouses, a materialized view is also known as a summary.

Materialized View Schema Design

Summary management can perform many useful functions, including query rewrite
and materialized view refresh, even if your data warehouse design does not follow
these guidelines. However, you will realize significantly greater query execution
performance and materialized view refresh performance benefits and you will
require fewer materialized views if your schema design complies with these
guidelines.

A materialized view definition includes any number of aggregates, as well as any
number of joins. In several ways, a materialized view behaves like an index:

« The purpose of a materialized view is to increase query execution performance.

« The existence of a materialized view is transparent to SQL applications, so that
a DBA can create or drop materialized views at any time without affecting the
validity of SQL applications.

« A materialized view consumes storage space.

« The contents of the materialized view must be updated when the underlying
detail tables are modified.

Schemas and Dimension Tables

In the case of normalized or partially normalized dimension tables (a dimension
that is stored in more than one table), identify how these tables are joined. Note
whether the joins between the dimension tables can guarantee that each child-side
row joins with one and only one parent-side row. In the case of denormalized
dimensions, determine whether the child-side columns uniquely determine the
parent-side (or attribute) columns. These relationships can be enabled with
constraints, using the NOVALIDATEand RELY options if the relationships
represented by the constraints are guaranteed by other means. Note that if the joins
between fact and dimension tables do not support the parent-child relationship
described previously, you still gain significant performance advantages from
defining the dimension with the CREATE DIMENSIONtatement. Another
alternative, subject to some restrictions, is to use outer joins in the materialized view
definition (that is, in the CREATE MATERIALIZED VIEVgtatement).

You must not create dimensions in any schema that does not satisfy these
relationships. Incorrect results can be returned from queries otherwise.

8-8 Oracle9/ Data Warehousing Guide

Overview of Data Warehousing with Materialized Views

See Also: Chapter 9, "Dimensions” and Oracle9i OLAP User’s
Guide for OLAP-related schemas

Materialized View Schema Design Guidelines

Before starting to define and use the various components of summary management,
you should review your schema design to abide by the following guidelines
wherever possible.

Guidelines 1 and 2 are more important than guideline 3. If your schema design does
not follow guidelines 1 and 2, it does not then matter whether it follows guideline 3.
Guidelines 1, 2, and 3 affect both query rewrite performance and materialized view
refresh performance.

Schema Guideline Description

Guideline 1 Dimensions should either be denormalized (each dimension

Dimensions contained in one table) or the joins between tables in a
normalized or partially normalized dimension should
guarantee that each child-side row joins with exactly one
parent-side row. The benefits of maintaining this condition are
described in "Creating Dimensions" on page 9-4.

You can enforce this condition by adding FOREIGN KEYand
NOT NULLconstraints on the child-side join keys and PRIMARY
KEY constraints on the parent-side join keys.

Guideline 2 If dimensions are denormalized or partially denormalized,

Dimensions hierarchical integ_rity must be maintaine(_j between the key
columns of the dimension table. Each child key value must
uniquely identify its parent key value, even if the dimension
table is denormalized. Hierarchical integrity in a denormalized
dimension can be verified by calling the VALIDATE_
DIMENSIONprocedure of the DBMS_OLARPackage.

Guideline 3 Fact and dimension tables should similarly guarantee that each

Dimensions fact table row joins with exactly one dimension table row. This
condition must be declared, and optionally enforced, by adding
FOREIGN KEYand NOT NULLconstraints on the fact key
column(s) and PRIMARY KEtonstraints on the dimension key
column(s), or by using outer joins. In a data warehouse,
constraints are typically enabled with the NOVALIDATEand
RELYclauses to avoid constraint enforcement performance
overhead. See Oracle9i SQL Reference for further details.

Materialized Views 8-9

Overview of Data Warehousing with Materialized Views

Loading Data

Schema Guideline Description

Guideline 4 Incremental loads of your detail data should be done using the
SQL*Loader direct-path option, or any bulk loader utility that
uses Oracle's direct-path interface. This includes INSERT ... AS
SELECTwith the APPENDor PARALLELhints, where the hints
cause the direct loader log to be used during the insert. See
Oracle9i SQL Reference and "Types of Materialized Views" on

Incremental Loads

page 8-12.
Guideline 5 Range/composite partition your tables by a monotonically
Partitions increasing time column if possible (preferably of type DATE.
Guideline 6 After each load and before refreshing your materialized view,
Dimensions use the VALIDATE_DIMENSIONprocedure of the DBMS_MVIEW
package to incrementally verify dimensional integrity.
Guideline 7 If a time dimension appears in the materialized view as a time

column, partition and index the materialized view in the same
manner as you have the fact tables.

Time Dimensions

If you are concerned with the time required to enable constraints and whether any
constraints might be violated, use the ENABLE NOVALIDATHRvith the RELY clause
to turn on constraint checking without validating any of the existing constraints.
The risk with this approach is that incorrect query results could occur if any
constraints are broken. Therefore, as the designer, you must determine how clean
the data is and whether the risk of wrong results is too great.

A popular and efficient way to load data into a warehouse or data mart is to use
SQL*Loader with the DIRECT or PARALLELoption or to use another loader tool
that uses the Oracle direct-path API.

See Also: Oracle9i Database Ultilities for the restrictions and
considerations when using SQL*Loader with the DIRECT or
PARALLELkeywords

Loading strategies can be classified as one-phase or two-phase. In one-phase
loading, data is loaded directly into the target table, quality assurance tests are
performed, and errors are resolved by performing DML operations prior to
refreshing materialized views. If a large number of deletions are possible, then
storage utilization can be adversely affected, but temporary space requirements and

8-10 Oracle9i Data Warehousing Guide

Overview of Data Warehousing with Materialized Views

load time are minimized. The DML that may be required after one-phase loading
causes multitable aggregate materialized views to become unusable in the safest
rewrite integrity level.

In a two-phase loading process:
« Datais first loaded into a temporary table in the warehouse.
« Quality assurance procedures are applied to the data.

« Referential integrity constraints on the target table are disabled, and the local
index in the target partition is marked unusable.

« The data is copied from the temporary area into the appropriate partition of the
target table using INSERT AS SELECTwith the PARALLELor APPENLhint.

« The temporary table is dropped.
« The constraints are enabled, usually with the NOVALIDATEoption.

Immediately after loading the detail data and updating the indexes on the detail
data, the database can be opened for operation, if desired. You can disable query
rewrite at the system level by issuing an ALTER SYSTEM SET QUERY_REWRITE _
ENABLED= false statement until all the materialized views are refreshed.

If QUERY_REWRITE_INTEGRITY set to stale_tolerated , access to the
materialized view can be allowed at the session level to any users who do not
require the materialized views to reflect the data from the latest load by issuing an
ALTER SESSION SET QUERY_REWRITE_INTEGRHAtYue statement. This
scenario does not apply when QUERY_REWRITE_INTEGRITY either enforced
or trusted because the system ensures in these modes that only materialized
views with updated data participate in a query rewrite.

Overview of Materialized View Management Tasks

The motivation for using materialized views is to improve performance, but the
overhead associated with materialized view management can become a significant
system management problem. When reviewing or evaluating some of the necessary
materialized view management activities, consider some of the following:

« ldentifying what materialized views to create initially
« Indexing the materialized views

« Ensuring that all materialized views and materialized view indexes are
refreshed properly each time the database is updated

« Checking which materialized views have been used

Materialized Views 8-11

Types of Materialized Views

« Determining how effective each materialized view has been on workload
performance

« Measuring the space being used by materialized views

« Determining which new materialized views should be created

« Determining which existing materialized views should be dropped

« Archiving old detail and materialized view data that is no longer useful

After the initial effort of creating and populating the data warehouse or data mart,
the major administration overhead is the update process, which involves:

« Periodic extraction of incremental changes from the operational systems

« Transforming the data

« \erifying that the incremental changes are correct, consistent, and complete
« Bulk-loading the data into the warehouse

« Refreshing indexes and materialized views so that they are consistent with the
detail data

The update process must generally be performed within a limited period of time
known as the update window. The update window depends on the update
frequency (such as daily or weekly) and the nature of the business. For a daily
update frequency, an update window of two to six hours might be typical.

You need to know your update window for the following activities:
« Loading the detail data

« Updating or rebuilding the indexes on the detail data

« Performing quality assurance tests on the data

« Refreshing the materialized views

« Updating the indexes on the materialized views

Types of Materialized Views

The SELECTclause in the materialized view creation statement defines the data that
the materialized view is to contain. Only a few restrictions limit what can be
specified. Any number of tables can be joined together. However, they cannot be
remote tables if you wish to take advantage of query rewrite. Besides tables, other
elements such as views, inline views (subqueries in the FROMlause of a SELECT

8-12 Oracle9i Data Warehousing Guide

Types of Materialized Views

statement), subqueries, and materialized views can all be joined or referenced in the
SELECTclause.

The types of materialized views are:
« Materialized Views with Aggregates
« Materialized Views Containing Only Joins

« Nested Materialized Views

Materialized Views with Aggregates

In data warehouses, materialized views normally contain aggregates as shown in
Example 8-1. For fast refresh to be possible, the SELECTIist must contain all of the
GROUP BYolumns (if present), and there must be a COUNT(*) and a
COUNT(column) on any aggregated columns. Also, materialized view logs must be
present on all tables referenced in the query that defines the materialized view. The
valid aggregate functions are: SUMCOUNT(x), COUNT(*), AVG VARIANCE
STDDEWMIN, and MAX and the expression to be aggregated can be any SQL value
expression.

See Also: "Restrictions on Fast Refresh on Materialized Views
with Aggregates" on page 8-28

Fast refresh for a materialized view containing joins and aggregates is possible after
any type of DML to the base tables (direct load or conventional INSERT, UPDATEo or
DELETH. It can be defined to be refreshed ON COMMI®r ON DEMANA REFRESH
ON COMMI[Tmaterialized view will be refreshed automatically when a transaction
that does DML to one of the materialized view’s detail tables commits. The time
taken to complete the commit may be slightly longer than usual when this method
is chosen. This is because the refresh operation is performed as part of the commit
process. Therefore, this method may not be suitable if many users are concurrently
changing the tables upon which the materialized view is based.

Here are some examples of materialized views with aggregates. Note that
materialized view logs are only created because this materialized view will be fast
refreshed.

Example 8-1 Creating a Materialized View: Example 1

CREATE MATERIALIZED VIEW LOG ON products
WITH SEQUENCE, ROWID
(prod_id, prod_name, prod_desc, prod_subcategory, prod_subcat_desc, prod_

Materialized Views 8-13

Types of Materialized Views

category, prod_cat_desc, prod_weight_class, prod_unit_of measure, prod_pack_
size, supplier_id, prod_status, prod_list_price, prod_min_price)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales

WITH SEQUENCE, ROWID

(prod_id, cust_id, ime_id, channel_id, promo_id, quantity sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 8k NEXT 8k PCTINCREASE 0)
BUILD IMMEDIATE
REFRESH FAST
ENABLE QUERY REWRITE
AS SELECT p.prod_name, SUM(@amount_sold) AS dollar_sales,
COUNT(*) AS cnt, COUNT(@mount_sold) AS cnt_amt
FROM sales s, products p
WHERE s.prod_id =p.prod_id

GROUP BY prod_name;

Example 8-1 creates a materialized view product_sales_mv that computes total
number and value of sales for a product. It is derived by joining the tables sales
and products on the column prod_id . The materialized view is populated with
data immediately because the build method is immediate and it is available for use
by query rewrite. In this example, the default refresh method is FAST, which is
allowed because the appropriate materialized view logs have been created on tables
product and sales .

Example 8-2 Creating a Materialized View: Example 2

CREATE MATERIALIZED VIEW product_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
BUILD DEFERRED
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT
p.prod_name,
SUM(@amount_sold) AS dollar_sales
FROM sales s, products p
WHERE s.prod_id =p.prod_id
GROUP BY p.prod_name;

8-14 Oracle9i Data Warehousing Guide

Types of Materialized Views

Example 8-2 creates a materialized view product_sales mv that computes the
sum of sales by prod_name . It is derived by joining the tables store and fact on
the column store_key . The materialized view does not initially contain any data,
because the build method is DEFERREDA complete refresh is required for the first
refresh of a build deferred materialized view. When it is refreshed and once
populated, this materialized view can be used by query rewrite.

Example 8-3 Creating a Materialized View: Example 3

CREATE MATERIALIZED VIEW LOG ON sales

WITH SEQUENCE, ROWID

(prod_id, cust _id, time_id, channel_id, promo_id, quantity sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sum_sales

PARALLEL

BUILD IMMEDIATE

REFRESH FAST ON COMMIT

AS

SELECT s.prod_id, stime_id,
COUNT(*) AS count_grp,

SUM(s.amount_sold) AS sum_dollar_sales,
COUNT(s.amount_sold) AS count_dollar_sales,

SUM(s.quantity_sold) AS sum_quantity sales,
COUNT(s.quantity_sold) AS count_quantity _sales

FROM sales s

GROUP BY s.prod_id, stime_id;

Example 8-3 creates a materialized view that contains aggregates on a single table.
Because the materialized view log has been created, the materialized view is fast
refreshable. If DML is applied against the sales table, then the changes will be
reflected in the materialized view when the commit is issued.

Requirements for Using Materialized Views with Aggregates
Table 8-1 illustrates the aggregate requirements for materialized views.

Table 8-1 Requirements for Materialized Views with Aggregates

If aggregate X is present, aggregate Y is required and aggregate Z is optional

X Y 4
COUNT((expr) - -
SUM(expr) COUNT (expr) -

Materialized Views 8-15

Types of Materialized Views

Table 8-1 Requirements for Materialized Views with Aggregates(Cont.)

If aggregate X is present, aggregate Y is required and aggregate Z is optional

X Y z

AVG(expr) COUNT((expr) SUM(expr)

STDDEV/(expr) COUNT (expr) SUM(expr * expr)
SUM(expr)

VARIANCE((expr) COUNT((expr) SUM(expr * expr)
SUM(expr)

Note that COUNT(*) must always be present. Oracle recommends that you include
the optional aggregates in column Z in the materialized view in order to obtain the
most efficient and accurate fast refresh of the aggregates.

Materialized Views Containing Only Joins

Some materialized views contain only joins and no aggregates, such as in
Example 8-4 on page 8-17, where a materialized view is created that joins the
sales table to thetimes and customers tables. The advantage of creating this
type of materialized view is that expensive joins will be precalculated.

Fast refresh for a materialized view containing only joins is possible after any type
of DML to the base tables (direct-path or conventional INSERT, UPDATEo or
DELETB.

A materialized view containing only joins can be defined to be refreshed ON
COMMITor ON DEMANII it is ON COMMIThe refresh is performed at commit time
of the transaction that does DML on the materialized view's detail table. Oracle
does not allow self-joins in materialized join views.

If you specify REFRESH FASTOracle performs further verification of the query
definition to ensure that fast refresh can be performed if any of the detail tables
change. These additional checks are:

« A materialized view log must be present for each detail table.

« The rowids of all the detail tables must appear in the SELECTIist of the
materialized view query definition.

« If there are no outer joins, you may have arbitrary selections and joins in the
WHEREIlause. However, if there are outer joins, the WHERElause cannot have
any selections. Further, if there are outer joins, all the joins must be connected
by ANB and must use the equality (=) operator.

8-16 Oracle9i Data Warehousing Guide

Types of Materialized Views

« If there are outer joins, unique constraints must exist on the join columns of the
inner table. For example, if you are joining the fact table and a dimension table
and the join is an outer join with the fact table being the outer table, there must
exist unique constraints on the join columns of the dimension table.

If some of these restrictions are not met, you can create the materialized view as
REFRESH FORCts take advantage of fast refresh when it is possible. If one of the
tables did not meet all of the criteria, but the other tables did, the materialized view
would still be fast refreshable with respect to the other tables for which all the
criteria are met.

A materialized view log should contain the rowid of the master table. It is not
necessary to add other columns.

To speed up refresh, you should create indexes on the materialized view's columns
that store the rowids of the fact table.

Example 8-4 Materialized View Containing Only Joins

CREATE MATERIALIZED VIEW LOG ON sales
WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON times
WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON customers
WITH ROWID;

CREATE MATERIALIZED VIEW detall_sales mv
PARALLEL BUILD IMMEDIATE
REFRESH FAST
AS
SELECT
srowid "sales_nd", trowid "times_rid", c.rowid "customers_nid",
ccust_id, c.cust last name, s.amount_sold,
s.quantity_sold, s.ime_id
FROM sales s, imest, customers ¢
WHERE s.cust_id=c.cust_id(+) AND

stime_id =ttime_id(+);

In this example, to perform a fast refresh, UNIQUEconstraints should exist on
c.cust_id andttime_id . You should also create indexes on the columns
sales rid ,times_rid ,and customers_rid , as illustrated in the following.
This will improve the refresh performance.

Materialized Views 8-17

Types of Materialized Views

CREATE INDEX mv_ix_salesrid
ON detail_sales mv('sales _rid");

Alternatively, if the previous example did not include the columns times_rid and
customers_id , and if the refresh method was REFRESH FORCEhen this
materialized view would be fast refreshable only if the sales table was updated but
not if the tables times or customers were updated.

CREATE MATERIALIZED VIEW detall_sales mv
PARALLEL
BUILD IMMEDIATE
REFRESH FORCE
AS
SELECT
s.rowid "sales _rid",
ccust_id, ccust last_ name, s.amount_sold,
s.quantity_sold, s.ime_id
FROM sales s, times t, customers ¢
WHERE s.cust_id=c.cust_id(+) AND
sitime_id=ttiime_id(+);

Nested Materialized Views

A nested materialized view is a materialized view whose definition is based on
another materialized view. A nested materialized view can reference other relations
in the database in addition to referencing materialized views.

Why Use Nested Materialized Views?

In a data warehouse, you typically create many aggregate views on a single join (for
example, rollups along different dimensions). Incrementally maintaining these
distinct materialized aggregate views can take a long time, because the underlying
join has to be performed many times.

Using nested materialized views, you can create multiple single-table materialized
views based on a joins-only materialized view and the join is performed just once.
In addition, optimizations can be performed for this class of single-table aggregate
materialized view and thus refresh is very efficient.

Example 8-5 Nested Materialized View

You can create a hested materialized view on materialized views that contain joins
only or joins and aggregates.

8-18 Oracle9i Data Warehousing Guide

Types of Materialized Views

All the underlying objects (materialized views or tables) on which the materialized
view is defined must have a materialized view log. All the underlying objects are
treated as if they were tables. All the existing options for materialized views can be
used, with the exception of ON COMMIT REFRESWhich is not supported for a
nested materialized views that contains joins and aggregates.

Using the tables and their columns from the sh sample schema, the following
materialized views illustrate how nested materialized views can be created.

* create the materialized view logs */

CREATE MATERIALIZED VIEW LOG ON sales
WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON customers
WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON times
WITH ROWID;

Fcreate materialized view join_sales_cust_time as fast refreshable at
COMMIT time ¥/

CREATE MATERIALIZED VIEW join_sales _cust_time

REFRESH FAST ON COMMIT AS

SELECT ccust id, c.cust last name, s.amount_sold, time _id,
tday_number_in_week, s.rowid srid, trowid trid, c.rowid crid

FROM sales s, customers c, imes t

WHERE s.time_id =time_id AND
s.cust_id=c.cust id;

To create a nested materialized view on the table join_sales_cust_time , you
would have to create a materialized view log on the table. Because this will be a
single-table aggregate materialized view on join_sales_cust_time , you need

to log all the necessary columns and use the INCLUDING NEW VALUE8ause.

* create materialized view log on join_sales _cust time */
CREATE MATERIALIZED VIEW LOG ON join_sales_cust time
WITH ROWID (cust_name, day_number_in_week, amount_sold)
INCLUDING NEW VALUES;

* create the single-table aggregate materialized view sum_sales_cust time on

join_sales_cust_time as fast refreshable at COMMIT time */
CREATE MATERIALIZED VIEW sum_sales cust _time

REFRESH FAST ON COMMIT

AS

SELECT COUNT(*) cnt_all, SUM(@amount_sold) sum_sales,
COUNT(@mount_sold)

cnt_sales, cust last name, day_number_in_week

Materialized Views 8-19

Types of Materialized Views

FROM join_sales_cust_time
GROUP BY cust_last name, day_number_in_week;

This schema can be diagrammatically represented as in Figure 8-3.

Figure 8-3 Nested Materialized View Schema

sum_sales_cust_time join_sales_cust_time_prod

join_sales_cust_time

customers sales times products

Nesting Materialized Views with Joins and Aggregates

You can nest materialized views with joins and aggregates, but the ON DEMAND
clause is necessary for FAST REFRESH

Some types of nested materialized views cannot be fast refreshed. Use EXPLAIN_
MVIEWo identify those types of materialized views. Because you have to invoke
the refresh functions manually, ordering has to be taken into account. This is
because the refresh for a materialized view that is built on other materialized views
will use the current state of the other materialized views, whether they are fresh or
not. You can find the dependent materialized views for a particular object using the
PL/SQL function GET_MV_DEPENDENCIES the DBMS_MVIEWackage.

Nested Materialized View Usage Guidelines

You should keep the following in mind when deciding whether to use nested
materialized views:

« If you want to use fast refresh, you should fast refresh all the materialized views
along any chain. It makes little sense to define a fast refreshable materialized
view on top of a materialized view that must be refreshed with a complete
refresh.

« If you want the highest level materialized view to be fresh with respect to the
detail tables, you need to ensure that all materialized views in a tree are

8-20 Oracle9i Data Warehousing Guide

Creating Materialized Views

refreshed in the correct dependency order before refreshing the highest-level.
Oracle does not provide support for automatic refreshing of intermediate
materialized views in a nested hierarchy. If the materialized views under the
highest-level materialized view are stale, refreshing only the highest-level will
succeed, but makes it fresh only with respect to its underlying materialized
view, not the detail tables at the base of the tree.

« When refreshing materialized views, you need to ensure that all materialized
views in a tree are refreshed. If you only refresh the highest-level materialized
view, the materialized views under it will be stale and you must explicitly
refresh them.

Restrictions When Using Nested Materialized Views
The following restrictions exist on the way you can nest materialized views:

« Fast refresh for ON COMMITS not supported for a higher-level materialized
view that contains joins and aggregates.

« DBMS_MVIEW.REFRESAPIs will not automatically refresh nested
materialized views unless explicitly specified. Thus, if monthly_sales mv is
based on sales_mv , you have to refresh sales_mv first, followed by
monthly_sales_mv . Oracle does not automatically refresh monthly_sales_
mvwhen you refresh sales_mv or vice versa.

« Ifyou have atable costs with a materialized view cost_mv based on it, you
cannot then create a prebuilt materialized view on table costs . The result
would make cost_mv a nested materialized view and this method of
conversion is not supported.

Creating Materialized Views

A materialized view can be created with the CREATE MATERIALIZED VIEW
statement or using Oracle Enterprise Manager. Example 8-6 creates the materialized
view cust_sales_mv

Example 8-6 Creating a Materialized View

CREATE MATERIALIZED VIEW cust_sales mv
PCTFREE 0 TABLESPACE demo

STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
PARALLEL

BUILD IMMEDIATE

REFRESH COMPLETE

Materialized Views 8-21

Creating Materialized Views

ENABLE QUERY REWRITE

AS

SELECT c.cust last name,

SUM(amount_sold) AS sum_amount_sold
FROM customers ¢, sales s

WHERE s.cust_id=c.cust_id

GROUP BY c.cust_last_name;

It is not uncommon in a data warehouse to have already created summary or
aggregation tables, and you might not wish to repeat this work by building a new
materialized view. In this case, the table that already exists in the database can be
registered as a prebuilt materialized view. This technique is described in
"Registering Existing Materialized Views" on page 8-33.

Once you have selected the materialized views you want to create, follow these
steps for each materialized view.

1.

Design the materialized view. Existing user-defined materialized views do not
require this step. If the materialized view contains many rows, then, if
appropriate, the materialized view should be partitioned (if possible) and
should match the partitioning of the largest or most frequently updated detail
or fact table (if possible). Refresh performance benefits from partitioning,
because it can take advantage of parallel DML capabilities.

Use the CREATE MATERIALIZED VIEVgtatement to create and, optionally,
populate the materialized view. If a user-defined materialized view already
exists, then use the ON PREBUILT TABLElause in the CREATE MATERIALIZED
VIEWstatement. Otherwise, use the BUILD IMMEDIATE clause to populate the
materialized view immediately, or the BUILD DEFERRERIause to populate the
materialized view later. A BUILD DEFERREDnaterialized view is disabled for
use by query rewrite until the first REFRESHafter which it will be

automatically enabled, provided the ENABLE QUERY REWRITEuse has been
specified.

See Also: Oracle9i SQL Reference for descriptions of the SQL
statements CREATE MATERIALIZED VIEWALTER MATERIALIZED
VIEW and DROP MATERIALIZED VIEW

Naming Materialized Views

The name of a materialized view must conform to standard Oracle naming
conventions. However, if the materialized view is based on a user-defined prebuilt
table, then the name of the materialized view must exactly match that table name.

8-22 Oracle9i Data Warehousing Guide

Creating Materialized Views

If you already have a naming convention for tables and indexes, you might consider
extending this naming scheme to the materialized views so that they are easily
identifiable. For example, instead of naming the materialized view sum_of sales
it could be called sum_of sales mv to denote that this is a materialized view and
not a table or view.

Storage And Data Segment Compression

Build Methods

Unless the materialized view is based on a user-defined prebuilt table, it requires
and occupies storage space inside the database. Therefore, the storage needs for the
materialized view should be specified in terms of the tablespace where it is to reside
and the size of the extents.

If you do not know how much space the materialized view will require, then the
DBMS_OLAP.ESTIMATE_SIZEpackage, which is described in Chapter 16,
"Summary Advisor", can estimate the number of bytes required to store this
uncompressed materialized view. This information can then assist the design team
in determining the tablespace in which the materialized view should reside.

You should use data segment compression with highly redundant data, such as
tables with many foreign keys. This is particularly useful for materialized views
created with the ROLLUPclause. Data segment compression reduces disk use and
memory use (specifically, the buffer cache), often leading to a better scaleup for
read-only operations. Data segment compression can also speed up query
execution.

See Also: Oracle9i SQL Reference for a complete description of
STORAGEemantics, Oracle9i Database Performance Tuning Guide and
Reference, and Chapter 5, "Parallelism and Partitioning in Data
Warehouses" for data segment compression examples

Two build methods are available for creating the materialized view, as shown in
Table 8-2. If you select BUILD IMMEDIATE, the materialized view definition is
added to the schema objects in the data dictionary, and then the fact or detail tables
are scanned according to the SELECTexpression and the results are stored in the
materialized view. Depending on the size of the tables to be scanned, this build
process can take a considerable amount of time.

An alternative approach is to use the BUILD DEFERRERIlause, which creates the
materialized view without data, thereby enabling it to be populated at a later date

Materialized Views 8-23

Creating Materialized Views

using the DBMS_MVIEW.REFRESphckage described in Chapter 14, "Maintaining
the Data Warehouse".

Table 8-2 Build Methods

Build Method Description

BUILD IMMEDIATE Create the materialized view and then populate it with data

BUILD DEFERRED Create the materialized view definition but do not populate it
with data

Enabling Query Rewrite

Before creating a materialized view, you can verify what types of query rewrite are
possible by calling the procedure DBMS_MVIEW.EXPLAIN_MVIEVOnce the
materialized view has been created, you can use DBMS_MVIEW.EXPLAIN_REWRITE
to find out if (or why not) it will rewrite a specific query.

Even though a materialized view is defined, it will not automatically be used by the
guery rewrite facility. You must set the QUERY_REWRITE_ENABLERDItialization
parameter to TRUEbefore using query rewrite. You also must specify the ENABLE
QUERY REWRIT#8ause if the materialized view is to be considered available for
rewriting queries.

If this clause is omitted or specified as DISABLE QUERY REWRIT&hen the
materialized view is created, the materialized view can subsequently be enabled for
query rewrite with the ALTER MATERIALIZED VIEWstatement.

If you define a materialized view as BUILD DEFERREDIt is not eligible for query
rewrite until it is populated with data.

Query Rewrite Restrictions

Query rewrite is not possible with all materialized views. If query rewrite is not
occurring when expected, DBMS_MVIEW.EXPLAIN_REWRITEan help provide

reasons why a specific query is not eligible for rewrite. Also, check to see if your
materialized view satisfies all of the following conditions.

Materialized View Restrictions
You should keep in mind the following restrictions:

« The defining query of the materialized view cannot contain any non-repeatable
expressions (ROWNUNYSDATEnNon-repeatable PL/SQL functions, and so on).

8-24 Oracle9i Data Warehousing Guide

Creating Materialized Views

The query cannot contain any references to RAWor LONG RAWWatatypes or
object REFs.

If the defining query of the materialized view contains set operators (UNION
MINUS and so on), rewrite will use them for full text match rewrite only.

If the materialized view was registered as PREBUILT, the precision of the
columns must agree with the precision of the corresponding SELECT
expressions unless overridden by the WITH REDUCED PRECISIONause.

If the materialized view contains the same table more than once, it is possible to
do a general rewrite, provided the query has the same aliases for the duplicate
tables as the materialized view.

General Query Rewrite Restrictions
You should keep in mind the following restrictions:

Refresh Options

If a query has both local and remote tables, only local tables will be considered
for potential rewrite.

Neither the detail tables nor the materialized view can be owned by SYS

SELECTand GROUP B¥ists, if present, must be the same in the query of the
materialized view.

Aggregate functions must occur only as the outermost part of the expression.
That is, aggregates such as AVG(AVG(x)) or AVG(x) + AVG(x) are not
allowed.

CONNECT B¥lauses are not allowed.

When you define a materialized view, you can specify two refresh options: how to
refresh and what type of refresh. If unspecified, the defaults are assumed as ON
DEMANRNnd FORCE

The two refresh execution modes are: ON COMMIand ON DEMANDepending on
the materialized view you create, some of the options may not be available.
Table 8-3 describes the refersh modes.

Materialized Views 8-25

Creating Materialized Views

Table 8—3 Refresh Modes

Refresh Mode Description

ON COMMIT Refresh occurs automatically when a transaction that modified one of
the materialized view's detail tables commits. This can be specified as
long as the materialized view is fast refreshable (in other words, not
complex). The ON COMMIPrivilege is necessary to use this mode

ON DEMAND Refresh occurs when a user manually executes one of the available
refresh procedures contained in the DBMS_MVIEWackage (REFRESH
REFRESH_ALL_MVIEWREFRESH_DEPENDENT

When a materialized view is maintained using the ON COMMImethod, the time
required to complete the commit may be slightly longer than usual. This is because
the refresh operation is performed as part of the commit process. Therefore this
method may not be suitable if many users are concurrently changing the tables
upon which the materialized view is based.

If you anticipate performing insert, update or delete operations on tables referenced
by a materialized view concurrently with the refresh of that materialized view, and

that materialized view includes joins and aggregation, Oracle recommends you use
ON COMMITast refresh rather than ON DEMANIT3st refresh.

If you think the materialized view did not refresh, check the alert log or trace file.

If a materialized view fails during refresh at COMMITtime, you must explicitly
invoke the refresh procedure using the DBMS_MVIEMWackage after addressing the
errors specified in the trace files. Until this is done, the materialized view will no
longer be refreshed automatically at commit time.

You can specify how you want your materialized views to be refreshed from the
detail tables by selecting one of four options: COMPLETH-AST, FORCEand NEVER
Table 8-4 describes the refresh options.

Table 8-4 Refresh Options

Refresh Option Description

COMPLETE Refreshes by recalculating the materialized view's defining query

FAST Applies incremental changes to refresh the materialized view using
the information logged in the materialized view logs, or from a
SQL*Loader direct-path or a partition maintenance operation

FORCE Applies FASTrefresh if possible; otherwise, it applies COMPLETE
refresh

8-26 Oracle9i Data Warehousing Guide

Creating Materialized Views

Table 8-4 Refresh Options(Cont.)

Refresh Option Description

NEVER Indicates that the materialized view will not be refreshed with the
Oracle refresh mechanisms

Whether the fast refresh option is available depends upon the type of materialized
view. You can call the procedure DBMS_MVIEW.EXPLAIN_MVIEMWS determine
whether fast refresh is possible.

General Restrictions on Fast Refresh
The defining query of the materialized view is restricted as follows:

« The materialized view must not contain references to non-repeating expressions
like SYSDATEand ROWNUM

« The materialized view must not contain references to RAWr LONG RAWata
types.

Restrictions on Fast Refresh on Materialized Views with Joins Only

Defining queries for materialized views with joins only and no aggregates have the
following restrictions on fast refresh:

« All restrictions from "General Restrictions on Fast Refresh" on page 8-27.
« They cannot have GROUP BY¥lauses or aggregates.

« If the WHEREIlause of the query contains outer joins, then unique constraints
must exist on the join columns of the inner join table.

« If there are no outer joins, you can have arbitrary selections and joins in the
WHEREIlause. However, if there are outer joins, the WHERElause cannot have
any selections. Furthermore, if there are outer joins, all the joins must be
connected by AND and must use the equality (=) operator.

« Rowids of all the tables in the FROMist must appear in the SELECTIist of the
query.

« Materialized view logs must exist with rowids for all the base tables in the
FROMist of the query.

Materialized Views 8-27

Creating Materialized Views

Restrictions on Fast Refresh on Materialized Views with Aggregates

Defining queries for materialized views with joins and aggregates have the
following restrictions on fast refresh;

All restrictions from "General Restrictions on Fast Refresh" on page 8-27.

Fast refresh is supported for both ON COMMI&nd ON DEMANDaterialized views,
however the following restrictions apply:

All tables in the materialized view must have materialized view logs, and the
materialized view logs must:

« Contain all columns from the table referenced in the materialized view.
. Specify with ROWIDand INCLUDING NEW VALUES

« Specify the SEQUENCElause if the table is expected to have a mix of
inserts/direct-loads, deletes, and updates.

Only SUMCOUNJTAVG STDDEWARIANCE MIN and MAXare supported for fast
refresh.

COUNT(*) must be specified.

For each aggregate AGG(expr) , the corresponding COUNT(expr) must be
present.

If VARIANCE(expr) or STDDEV(expr) is specified, COUNT(expr) and
SUM(expr) must be specified. Oracle recommends that SUM(expr *expr) be
specified. See Table 8-1 on page 8-15 for further details.

The SELECTIist must contain all GROUP B¥olumns.

If the materialized view has one of the following, then fast refresh is supported
only on conventional DML inserts and direct loads.

« Materialized views with MIN or MAXaggregates

« Materialized views which have SUM(expr) but no COUNT(expr)
« Materialized views without COUNT(*)

Such a materialized view is called an insert-only materialized view.

The COMPATIBILITY parameter must be set to 9.0 if the materialized aggregate
view has inline views, outer joins, self joins or grouping sets and FAST
REFRESHs specified during creation. Note that all other requirements for fast
refresh specified previously must also be satisfied.

8-28 Oracle9i Data Warehousing Guide

Creating Materialized Views

Materialized views with named views or subqueries in the FROMIlause can be
fast refreshed provided the views can be completely merged. For information
on which views will merge, refer to the Oracle9i Database Performance Tuning
Guide and Reference.

If there are no outer joins, you may have arbitrary selections and joins in the
WHERElause.

Materialized aggregate views with outer joins are fast refreshable after
conventional DML and direct loads, provided only the outer table has been
modified. Also, unique constraints must exist on the join columns of the inner
join table. If there are outer joins, all the joins must be connected by AND and
must use the equality (=) operator.

For materialized views with CUBE ROLLUPGrouping Sets, or concatenation of
them, the following restrictions apply:

« The SELECTIist should contain grouping distinguisher that can either be a
GROUPING_ IDfunction on all GROUP B¥xpressions or GROUPING
functions one for each GROUP B¥xpression. For example, if the GROUP BY
clause of the materialized view is "GROUP BY CUBE(a, b)", then the
SELECTIist should contain either "GROUPING_ID(a, b) "or
"GROUPING(a) AND GROUPING(b) for the materialized view to be fast
refreshable.

« GROUP B¥hould not result in any duplicate groupings. For example,
"GROUP BY a, ROLLUP(a, b) "is not fast refreshable because it results
in duplicate groupings "(a), (a, b), AND (a) "

Restrictions on Fast Refresh on Materialized Views With the UNION ALL
Operator

Materialized views with the UNION ALLset operator support the REFRESH FAST
option if the following conditions are satisfied:

The defining query must have the UNION ALLoperator at the top level.

The UNION ALLoperator cannot be embedded inside a subquery, with one
exception: The UNION ALLcan be in a subquery in the FROMIlause provided
the defining query is of the form SELECT * FROM (view or subquery with
UNION ALL as in the following example:

CREATE VIEW view_with_unionall_mv

AS

(SELECT c.rowid crid, c.cust_id, 2 umarker
FROM customers c

Materialized Views 8-29

Creating Materialized Views

WHERE c.cust _last hame ='Smith’
UNION ALL

SELECT c.rowid crid, c.cust _id, 3 umarker
FROM customers ¢

WHERE c.cust_last name ='Jones));

CREATE MATERIALIZED VIEW unionall_inside_view_mv
REFRESH FAST ON DEMAND

AS

SELECT * FROM view_with_unionall;

Note that the view view_with_unionall_mv satisfies all requirements for
fast refresh.

« Each query block in the UNION ALLquery must satisfy the requirements of a
fast refreshable materialized view with aggregates or a fast refreshable
materialized view with joins.

The appropriate materialized view logs must be created on the tables as
required for the corresponding type of fast refreshable materialized view.

Note that Oracle also allows the special case of a single table materialized view
with joins only provided the ROWIDcolumn has been included in the SELECT
list and in the materialized view log. This is shown in the defining query of the
view view_with_unionall_mv

« The SELECTIist of each query must include a maintenance column, called a
UNION ALLmarker. The UNION ALLcolumn must have a distinct constant
numeric or string value in each UNION ALLbranch. Further, the marker column
must appear in the same ordinal position in the SELECTIist of each query
block.

« Some features such as outer joins, insert-only aggregate materialized view
gueries and remote tables are not supported for materialized views with UNION
ALL.

« Partition Change Tracking-based refresh is not supported for UNION ALL
materialized views.

« The compatibility initialization parameter must be set to 9.2.0 to create a fast
refreshable materialized view with UNION ALL

8-30 Oracle9i Data Warehousing Guide

Creating Materialized Views

ORDER BY Clause

An ORDER B¥lause is allowed in the CREATE MATERIALIZED VIEVgtatement. It
is used only during the initial creation of the materialized view. It is not used
during a full refresh or a fast refresh.

To improve the performance of queries against large materialized views, store the
rows in the materialized view in the order specified in the ORDER BY¥lause. This
initial ordering provides physical clustering of the data. If indexes are built on the
columns by which the materialized view is ordered, accessing the rows of the
materialized view using the index often reduces the time for disk 1/0 due to the
physical clustering.

The ORDER BY¥lause is not considered part of the materialized view definition. As a
result, there is no difference in the manner in which Oracle detects the various types
of materialized views (for example, materialized join views with no aggregates). For
the same reason, query rewrite is not affected by the ORDER B¥lause. This feature
is similar to the CREATE TABLE.. ORDER BYapability that exists in Oracle.

Materialized View Logs

Materialized view logs are required if you want to use fast refresh. They are defined
using a CREATE MATERIALIZED VIEW LO&atement on the base table that is to be
changed. They are not created on the materialized view. For fast refresh of
materialized views, the definition of the materialized view logs must specify the
ROWICxlause. In addition, for aggregate materialized views, it must also contain
every column in the table referenced in the materialized view, the INCLUDING NEW
VALUESclause and the SEQUENCElause.

An example of a materialized view log is shown as follows where one is created on
the table sales .

CREATE MATERIALIZED VIEW LOG ON sales

WITH ROWID

(prod_id, cust _id, ime _id, channel_id, promo_id, quantity sold, amount_sold)
INCLUDING NEW VALUES;

Oracle recommends that the keyword SEQUENCHEe included in your materialized
view log statement unless you are sure that you will never perform a mixed DML
operation (a combination of INSERT, UPDATEor DELETEoperations on multiple
tables).

The boundary of a mixed DML operation is determined by whether the
materialized view is ON