
Oracle9 i

Data Warehousing Guide

Release 2 (9.2)

March 2002

Part No. A96520-01

Oracle9i Data Warehousing Guide, Release 2 (9.2)

Part No. A96520-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Author: Paul Lane

Contributing Authors: Viv Schupmann (Change Data Capture)

Contributors: Patrick Amor, Hermann Baer, Subhransu Basu, Srikanth Bellamkonda, Randy Bello,
Tolga Bozkaya, Benoit Dageville, John Haydu, Lilian Hobbs, Hakan Jakobsson, George Lumpkin, Cetin
Ozbutun, Jack Raitto, Ray Roccaforte, Sankar Subramanian, Gregory Smith, Ashish Thusoo,
Jean-Francois Verrier, Gary Vincent, Andy Witkowski, Zia Ziauddin

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express, Oracle Expert, Oracle Store, Oracle7, Oracle8, Oracle8i,
Oracle9i, Oracle Store, PL/SQL, Pro*C, and SQL*Plus are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xix

Preface .. xxi

What’s New in Data Warehousing? .. xxxiii

Part I Concepts

1 Data Warehousing Concepts

What is a Data Warehouse? ... 1-2
Subject Oriented.. 1-2
Integrated... 1-2
Nonvolatile .. 1-3
Time Variant.. 1-3
Contrasting OLTP and Data Warehousing Environments... 1-3

Data Warehouse Architectures ... 1-5
Data Warehouse Architecture (Basic).. 1-5
Data Warehouse Architecture (with a Staging Area).. 1-6
Data Warehouse Architecture (with a Staging Area and Data Marts) 1-7

Part II Logical Design

2 Logical Design in Data Warehouses

Logical Versus Physical Design in Data Warehouses .. 2-2
iii

Creating a Logical Design ... 2-2
Data Warehousing Schemas.. 2-3

Star Schemas .. 2-4
Other Schemas... 2-5

Data Warehousing Objects.. 2-5
Fact Tables.. 2-5
Dimension Tables ... 2-6
Unique Identifiers ... 2-8
Relationships ... 2-8
Example of Data Warehousing Objects and Their Relationships.. 2-8

Part III Physical Design

3 Physical Design in Data Warehouses

Moving from Logical to Physical Design ... 3-2
Physical Design ... 3-2

Physical Design Structures .. 3-4
Tablespaces .. 3-4
Tables and Partitioned Tables... 3-5
Views .. 3-6
Integrity Constraints .. 3-6
Indexes and Partitioned Indexes .. 3-6
Materialized Views... 3-7
Dimensions .. 3-7

4 Hardware and I/O Considerations in Data Warehouses

Overview of Hardware and I/O Considerations in Data Warehouses 4-2
Why Stripe the Data?.. 4-2
Automatic Striping ... 4-3
Manual Striping .. 4-4
Local and Global Striping.. 4-5
Analyzing Striping ... 4-6

RAID Configurations ... 4-9
RAID 0 (Striping) .. 4-10
iv

RAID 1 (Mirroring)... 4-10
RAID 0+1 (Striping and Mirroring) ... 4-10
Striping, Mirroring, and Media Recovery... 4-10
RAID 5.. 4-11
The Importance of Specific Analysis.. 4-12

5 Parallelism and Partitioning in Data Warehouses

Overview of Parallel Execution.. 5-2
When to Implement Parallel Execution... 5-2

Granules of Parallelism ... 5-3
Block Range Granules .. 5-3
Partition Granules... 5-4

Partitioning Design Considerations ... 5-4
Types of Partitioning.. 5-4
Partitioning and Data Segment Compression.. 5-17
Partition Pruning .. 5-19
Partition-Wise Joins.. 5-21

Miscellaneous Partition Operations ... 5-31
Adding Partitions ... 5-32
Dropping Partitions.. 5-33
Exchanging Partitions .. 5-34
Moving Partitions ... 5-34
Splitting and Merging Partitions.. 5-35
Truncating Partitions ... 5-35
Coalescing Partitions.. 5-36

6 Indexes

Bitmap Indexes.. 6-2
Bitmap Join Indexes.. 6-6

B-tree Indexes .. 6-10
Local Indexes Versus Global Indexes ... 6-10

7 Integrity Constraints

Why Integrity Constraints are Useful in a Data Warehouse .. 7-2
v

Overview of Constraint States.. 7-3
Typical Data Warehouse Integrity Constraints ... 7-4

UNIQUE Constraints in a Data Warehouse ... 7-4
FOREIGN KEY Constraints in a Data Warehouse... 7-5
RELY Constraints.. 7-6
Integrity Constraints and Parallelism.. 7-7
Integrity Constraints and Partitioning... 7-7
View Constraints... 7-7

8 Materialized Views

Overview of Data Warehousing with Materialized Views ... 8-2
Materialized Views for Data Warehouses... 8-2
Materialized Views for Distributed Computing .. 8-3
Materialized Views for Mobile Computing.. 8-3
The Need for Materialized Views .. 8-3
Components of Summary Management ... 8-5
Data Warehousing Terminology .. 8-7
Materialized View Schema Design .. 8-8
Loading Data ... 8-10
Overview of Materialized View Management Tasks .. 8-11

Types of Materialized Views .. 8-12
Materialized Views with Aggregates... 8-13
Materialized Views Containing Only Joins .. 8-16
Nested Materialized Views ... 8-18

Creating Materialized Views .. 8-21
Naming Materialized Views ... 8-22
Storage And Data Segment Compression... 8-23
Build Methods ... 8-23
Enabling Query Rewrite .. 8-24
Query Rewrite Restrictions ... 8-24
Refresh Options... 8-25
ORDER BY Clause .. 8-31
Materialized View Logs ... 8-31
Using Oracle Enterprise Manager .. 8-32
Using Materialized Views with NLS Parameters .. 8-32
vi

Registering Existing Materialized Views... 8-33
Partitioning and Materialized Views.. 8-35

Partition Change Tracking .. 8-35
Partitioning a Materialized View ... 8-39
Partitioning a Prebuilt Table ... 8-40
Rolling Materialized Views... 8-41

Materialized Views in OLAP Environments... 8-41
OLAP Cubes.. 8-41
Specifying OLAP Cubes in SQL ... 8-42
Querying OLAP Cubes in SQL... 8-43
Partitioning Materialized Views for OLAP .. 8-47
Compressing Materialized Views for OLAP.. 8-47
Materialized Views with Set Operators .. 8-47

Choosing Indexes for Materialized Views... 8-49
Invalidating Materialized Views ... 8-50
Security Issues with Materialized Views... 8-50
Altering Materialized Views .. 8-51
Dropping Materialized Views.. 8-52
Analyzing Materialized View Capabilities ... 8-52

Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure... 8-53
MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details ... 8-56
MV_CAPABILITIES_TABLE Column Details ... 8-58

9 Dimensions

What are Dimensions? ... 9-2
Creating Dimensions ... 9-4

Multiple Hierarchies .. 9-7
Using Normalized Dimension Tables ... 9-9

Viewing Dimensions.. 9-10
Using The DEMO_DIM Package.. 9-10
Using Oracle Enterprise Manager.. 9-11

Using Dimensions with Constraints... 9-11
Validating Dimensions .. 9-12
Altering Dimensions.. 9-13
Deleting Dimensions ... 9-14
vii

Using the Dimension Wizard ... 9-14
Managing the Dimension Object .. 9-14
Creating a Dimension... 9-17

Part IV Managing the Warehouse Environment

10 Overview of Extraction, Transformation, and Loading

Overview of ETL ... 10-2
ETL Tools .. 10-3

Daily Operations ... 10-4
Evolution of the Data Warehouse .. 10-4

11 Extraction in Data Warehouses

Overview of Extraction in Data Warehouses ... 11-2
Introduction to Extraction Methods in Data Warehouses ... 11-2

Logical Extraction Methods... 11-3
Physical Extraction Methods... 11-4
Change Data Capture... 11-5

Data Warehousing Extraction Examples... 11-8
Extraction Using Data Files ... 11-8
Extraction Via Distributed Operations .. 11-11

12 Transportation in Data Warehouses

Overview of Transportation in Data Warehouses .. 12-2
Introduction to Transportation Mechanisms in Data Warehouses ... 12-2

Transportation Using Flat Files .. 12-2
Transportation Through Distributed Operations .. 12-2
Transportation Using Transportable Tablespaces ... 12-3

13 Loading and Transformation

Overview of Loading and Transformation in Data Warehouses ... 13-2
Transformation Flow.. 13-2

Loading Mechanisms ... 13-5
SQL*Loader ... 13-5
viii

External Tables.. 13-6
OCI and Direct-Path APIs ... 13-8
Export/Import .. 13-8

Transformation Mechanisms .. 13-9
Transformation Using SQL ... 13-9
Transformation Using PL/SQL.. 13-15
Transformation Using Table Functions... 13-16

Loading and Transformation Scenarios.. 13-25
Parallel Load Scenario.. 13-25
Key Lookup Scenario ... 13-33
Exception Handling Scenario ... 13-34
Pivoting Scenarios .. 13-35

14 Maintaining the Data Warehouse

Using Partitioning to Improve Data Warehouse Refresh ... 14-2
Refresh Scenarios .. 14-5
Scenarios for Using Partitioning for Refreshing Data Warehouses 14-7

Optimizing DML Operations During Refresh ... 14-8
Implementing an Efficient MERGE Operation .. 14-9
Maintaining Referential Integrity... 14-10
Purging Data ... 14-11

Refreshing Materialized Views ... 14-12
Complete Refresh ... 14-13
Fast Refresh ... 14-14
ON COMMIT Refresh.. 14-14
Manual Refresh Using the DBMS_MVIEW Package .. 14-14
Refresh Specific Materialized Views with REFRESH.. 14-15
Refresh All Materialized Views with REFRESH_ALL_MVIEWS 14-16
Refresh Dependent Materialized Views with REFRESH_DEPENDENT......................... 14-16
Using Job Queues for Refresh... 14-18
When Refresh is Possible... 14-18
Recommended Initialization Parameters for Parallelism... 14-18
Monitoring a Refresh ... 14-19
Checking the Status of a Materialized View... 14-19
Tips for Refreshing Materialized Views with Aggregates ... 14-19
ix

Tips for Refreshing Materialized Views Without Aggregates ... 14-22
Tips for Refreshing Nested Materialized Views .. 14-23
Tips for Fast Refresh with UNION ALL ... 14-25
Tips After Refreshing Materialized Views.. 14-25

Using Materialized Views with Partitioned Tables ... 14-26
Fast Refresh with Partition Change Tracking... 14-26
Fast Refresh with CONSIDER FRESH... 14-30

15 Change Data Capture

About Change Data Capture... 15-2
Publish and Subscribe Model.. 15-3
Example of a Change Data Capture System ... 15-4
Components and Terminology for Synchronous Change Data Capture 15-5

Installation and Implementation ... 15-8
Change Data Capture Restriction on Direct-Path INSERT... 15-8

Security ... 15-9
Columns in a Change Table .. 15-9
Change Data Capture Views ... 15-10
Synchronous Mode of Data Capture... 15-12
Publishing Change Data.. 15-12

Step 1: Decide which Oracle Instance will be the Source System...................................... 15-12
Step 2: Create the Change Tables that will Contain the Changes...................................... 15-12

Managing Change Tables and Subscriptions .. 15-14
Subscribing to Change Data ... 15-15

Steps Required to Subscribe to Change Data ... 15-15
What Happens to Subscriptions when the Publisher Makes Changes............................. 15-19

Export and Import Considerations .. 15-20

16 Summary Advisor

Overview of the Summary Advisor in the DBMS_OLAP Package .. 16-2
Using the Summary Advisor .. 16-6

Identifier Numbers ... 16-7
Workload Management ... 16-7
Loading a User-Defined Workload.. 16-9
Loading a Trace Workload .. 16-12
x

Loading a SQL Cache Workload .. 16-15
Validating a Workload... 16-17
Removing a Workload ... 16-18
Using Filters with the Summary Advisor ... 16-18
Removing a Filter ... 16-22
Recommending Materialized Views.. 16-23
SQL Script Generation ... 16-27
Summary Data Report ... 16-29
When Recommendations are No Longer Required... 16-31
Stopping the Recommendation Process.. 16-32
Summary Advisor Sample Sessions .. 16-32
Summary Advisor and Missing Statistics ... 16-37
Summary Advisor Privileges and ORA-30446... 16-38

Estimating Materialized View Size ... 16-38
ESTIMATE_MVIEW_SIZE Parameters ... 16-38

Is a Materialized View Being Used? ... 16-39
DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure... 16-39

Summary Advisor Wizard... 16-40
Summary Advisor Steps.. 16-41

Part V Warehouse Performance

17 Schema Modeling Techniques

Schemas in Data Warehouses ... 17-2
Third Normal Form .. 17-2

Optimizing Third Normal Form Queries.. 17-3
Star Schemas .. 17-4

Snowflake Schemas .. 17-5
Optimizing Star Queries ... 17-6

Tuning Star Queries ... 17-6
Using Star Transformation.. 17-7

18 SQL for Aggregation in Data Warehouses

Overview of SQL for Aggregation in Data Warehouses ... 18-2
xi

Analyzing Across Multiple Dimensions ... 18-3
Optimized Performance... 18-4
An Aggregate Scenario .. 18-5
Interpreting NULLs in Examples ... 18-6

ROLLUP Extension to GROUP BY .. 18-6
When to Use ROLLUP ... 18-7
ROLLUP Syntax .. 18-7
Partial Rollup... 18-8

CUBE Extension to GROUP BY ... 18-10
When to Use CUBE... 18-10
CUBE Syntax ... 18-11
Partial CUBE.. 18-12
Calculating Subtotals Without CUBE .. 18-13

GROUPING Functions .. 18-13
GROUPING Function .. 18-14
When to Use GROUPING ... 18-16
GROUPING_ID Function .. 18-17
GROUP_ID Function.. 18-17

GROUPING SETS Expression ... 18-19
Composite Columns ... 18-21
Concatenated Groupings ... 18-24

Concatenated Groupings and Hierarchical Data Cubes... 18-26
Considerations when Using Aggregation .. 18-28

Hierarchy Handling in ROLLUP and CUBE .. 18-28
Column Capacity in ROLLUP and CUBE... 18-29
HAVING Clause Used with GROUP BY Extensions .. 18-29
ORDER BY Clause Used with GROUP BY Extensions ... 18-30
Using Other Aggregate Functions with ROLLUP and CUBE.. 18-30

Computation Using the WITH Clause.. 18-30

19 SQL for Analysis in Data Warehouses

Overview of SQL for Analysis in Data Warehouses .. 19-2
Ranking Functions.. 19-5

RANK and DENSE_RANK ... 19-5
Top N Ranking .. 19-12
xii

Bottom N Ranking.. 19-12
CUME_DIST.. 19-13
PERCENT_RANK... 19-14
NTILE ... 19-14
ROW_NUMBER.. 19-16

Windowing Aggregate Functions .. 19-17
Treatment of NULLs as Input to Window Functions ... 19-18
Windowing Functions with Logical Offset... 19-18
Cumulative Aggregate Function Example ... 19-18
Moving Aggregate Function Example .. 19-19
Centered Aggregate Function... 19-20
Windowing Aggregate Functions in the Presence of Duplicates 19-21
Varying Window Size for Each Row ... 19-22
Windowing Aggregate Functions with Physical Offsets.. 19-23
FIRST_VALUE and LAST_VALUE ... 19-24

Reporting Aggregate Functions ... 19-24
Reporting Aggregate Example ... 19-26
RATIO_TO_REPORT... 19-27

LAG/LEAD Functions .. 19-27
LAG/LEAD Syntax .. 19-28

FIRST/LAST Functions.. 19-28
FIRST/LAST Syntax... 19-29
FIRST/LAST As Regular Aggregates.. 19-29
FIRST/LAST As Reporting Aggregates .. 19-30

Linear Regression Functions .. 19-31
REGR_COUNT ... 19-32
REGR_AVGY and REGR_AVGX ... 19-32
REGR_SLOPE and REGR_INTERCEPT.. 19-32
REGR_R2.. 19-32
REGR_SXX, REGR_SYY, and REGR_SXY... 19-33
Linear Regression Statistics Examples... 19-33
Sample Linear Regression Calculation.. 19-34

Inverse Percentile Functions... 19-34
Normal Aggregate Syntax... 19-35
Inverse Percentile Restrictions.. 19-38
xiii

Hypothetical Rank and Distribution Functions ... 19-38
Hypothetical Rank and Distribution Syntax... 19-38

WIDTH_BUCKET Function.. 19-40
WIDTH_BUCKET Syntax.. 19-40

User-Defined Aggregate Functions ... 19-43
CASE Expressions ... 19-44

CASE Example .. 19-44
Creating Histograms With User-Defined Buckets... 19-45

20 OLAP and Data Mining

OLAP ... 20-2
Benefits of OLAP and RDBMS Integration ... 20-2

Data Mining ... 20-4
Enabling Data Mining Applications .. 20-5
Predictions and Insights .. 20-5
Mining Within the Database Architecture .. 20-5
Java API.. 20-7

21 Using Parallel Execution

Introduction to Parallel Execution Tuning ... 21-2
When to Implement Parallel Execution... 21-2
Operations That Can Be Parallelized ... 21-3
The Parallel Execution Server Pool .. 21-3
How Parallel Execution Servers Communicate ... 21-5
Parallelizing SQL Statements .. 21-6

Types of Parallelism ... 21-11
Parallel Query.. 21-11
Parallel DDL .. 21-13
Parallel DML.. 21-18
Parallel Execution of Functions .. 21-28
Other Types of Parallelism .. 21-29

Initializing and Tuning Parameters for Parallel Execution .. 21-30
Selecting Automated or Manual Tuning of Parallel Execution ... 21-31
Using Automatically Derived Parameter Settings... 21-31
Setting the Degree of Parallelism ... 21-32
xiv

How Oracle Determines the Degree of Parallelism for Operations.................................. 21-34
Balancing the Workload .. 21-37
Parallelization Rules for SQL Statements.. 21-38
Enabling Parallelism for Tables and Queries ... 21-46
Degree of Parallelism and Adaptive Multiuser: How They Interact 21-47
Forcing Parallel Execution for a Session ... 21-48
Controlling Performance with the Degree of Parallelism .. 21-48

Tuning General Parameters for Parallel Execution .. 21-49
Parameters Establishing Resource Limits for Parallel Operations.................................... 21-49
Parameters Affecting Resource Consumption ... 21-58
Parameters Related to I/O .. 21-63

Monitoring and Diagnosing Parallel Execution Performance ... 21-64
Is There Regression?... 21-66
Is There a Plan Change?... 21-66
Is There a Parallel Plan?... 21-66
Is There a Serial Plan? .. 21-66
Is There Parallel Execution? .. 21-67
Is the Workload Evenly Distributed? .. 21-67
Monitoring Parallel Execution Performance with Dynamic Performance Views 21-68
Monitoring Session Statistics .. 21-71
Monitoring System Statistics... 21-73
Monitoring Operating System Statistics.. 21-74

Affinity and Parallel Operations.. 21-75
Affinity and Parallel Queries .. 21-75
Affinity and Parallel DML... 21-76

Miscellaneous Parallel Execution Tuning Tips ... 21-76
Setting Buffer Cache Size for Parallel Operations ... 21-77
Overriding the Default Degree of Parallelism.. 21-77
Rewriting SQL Statements .. 21-78
Creating and Populating Tables in Parallel .. 21-78
Creating Temporary Tablespaces for Parallel Sort and Hash Join.................................... 21-80
Executing Parallel SQL Statements .. 21-81
Using EXPLAIN PLAN to Show Parallel Operations Plans .. 21-81
Additional Considerations for Parallel DML ... 21-82
Creating Indexes in Parallel .. 21-85
xv

Parallel DML Tips... 21-87
Incremental Data Loading in Parallel .. 21-90
Using Hints with Cost-Based Optimization ... 21-92
FIRST_ROWS(n) Hint .. 21-93
Enabling Dynamic Statistic Sampling.. 21-93

22 Query Rewrite

Overview of Query Rewrite.. 22-2
Cost-Based Rewrite... 22-3
When Does Oracle Rewrite a Query? .. 22-4

Enabling Query Rewrite .. 22-7
Initialization Parameters for Query Rewrite .. 22-8
Controlling Query Rewrite.. 22-8
Privileges for Enabling Query Rewrite.. 22-9
Accuracy of Query Rewrite ... 22-10

How Oracle Rewrites Queries .. 22-11
Text Match Rewrite Methods.. 22-12
General Query Rewrite Methods.. 22-13
When are Constraints and Dimensions Needed? .. 22-14

Special Cases for Query Rewrite ... 22-45
Query Rewrite Using Partially Stale Materialized Views... 22-45
Query Rewrite Using Complex Materialized Views ... 22-49
Query Rewrite Using Nested Materialized Views... 22-50
Query Rewrite When Using GROUP BY Extensions .. 22-51

Did Query Rewrite Occur?.. 22-56
Explain Plan... 22-56
DBMS_MVIEW.EXPLAIN_REWRITE Procedure ... 22-57

Design Considerations for Improving Query Rewrite Capabilities..................................... 22-63
Query Rewrite Considerations: Constraints... 22-63
Query Rewrite Considerations: Dimensions .. 22-63
Query Rewrite Considerations: Outer Joins ... 22-63
Query Rewrite Considerations: Text Match ... 22-63
Query Rewrite Considerations: Aggregates ... 22-64
Query Rewrite Considerations: Grouping Conditions ... 22-64
Query Rewrite Considerations: Expression Matching.. 22-64
xvi

Query Rewrite Considerations: Date Folding .. 22-65
Query Rewrite Considerations: Statistics.. 22-65

Glossary

Index
xvii

xviii

Send Us Your Comments

Oracle9 i Data Warehousing Guide, Release 2 (9.2)

Part No. A96520-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
■ Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xix

xx

Preface

This manual provides information about Oracle9i’s data warehousing capabilities.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xxi

Audience
Oracle9i Data Warehousing Guide is intended for database administrators, system
administrators, and database application developers who design, maintain, and use
data warehouses.

To use this document, you need to be familiar with relational database concepts,
basic Oracle server concepts, and the operating system environment under which
you are running Oracle.

Organization
This document contains:

Part 1: Concepts

Chapter 1, Data Warehousing Concepts
This chapter contains an overview of data warehousing concepts.

Part 2: Logical Design

Chapter 2, Logical Design in Data Warehouses
This chapter discusses the logical design of a data warehouse.

Part 3: Physical Design

Chapter 3, Physical Design in Data Warehouses
This chapter discusses the physical design of a data warehouse.

Chapter 4, Hardware and I/O Considerations in Data Warehouses
This chapter describes some hardware and input-output issues.

Chapter 5, Parallelism and Partitioning in Data Warehouses
This chapter describes the basics of parallelism and partitioning in data
warehouses.

Chapter 6, Indexes
This chapter describes how to use indexes in data warehouses.
xxii

Chapter 7, Integrity Constraints
This chapter describes some issues involving constraints.

Chapter 8, Materialized Views
This chapter describes how to use materialized views in data warehouses.

Chapter 9, Dimensions
This chapter describes how to use dimensions in data warehouses.

Part 4: Managing the Warehouse Environment

Chapter 10, Overview of Extraction, Transformation, and Loading
This chapter is an overview of the ETL process.

Chapter 11, Extraction in Data Warehouses
This chapter describes extraction issues.

Chapter 12, Transportation in Data Warehouses
This chapter describes transporting data in data warehouses.

Chapter 13, Loading and Transformation
This chapter describes transforming data in data warehouses.

Chapter 14, Maintaining the Data Warehouse
This chapter describes how to refresh in a data warehousing environment.

Chapter 15, Change Data Capture
This chapter describes how to use Change Data Capture capabilities.

Chapter 16, Summary Advisor
This chapter describes how to use the Summary Advisor utility.
xxiii

Part 5: Warehouse Performance

Chapter 17, Schema Modeling Techniques
This chapter describes the schemas useful in data warehousing environments.

Chapter 18, SQL for Aggregation in Data Warehouses
This chapter explains how to use SQL aggregation in data warehouses.

Chapter 19, SQL for Analysis in Data Warehouses
This chapter explains how to use analytic functions in data warehouses.

Chapter 20, OLAP and Data Mining
This chapter describes using analytic services in combination with Oracle9i.

Chapter 21, Using Parallel Execution
This chapter describes how to tune data warehouses using parallel execution.

Chapter 22, Query Rewrite
This chapter describes how to use query rewrite.

Glossary

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Database Performance Tuning Guide and Reference

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/
xxiv

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

For additional information, see:

■ The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)

■ Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems
xxv

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.
xxvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;
xxvii

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME =database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

Convention Meaning Example
xxviii

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"
C:\>imp SYSTEM/ password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_NAMETNSListener

Convention Meaning Example
xxix

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn , where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xxx

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.
xxxi

xxxii

What’s New in Data Warehousing?

This section describes new features of Oracle9i release 2 (9.2) and provides pointers
to additional information. New features information from previous releases is also
retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Data Warehousing:

■ Oracle9i Release 2 (9.2) New Features in Data Warehousing

■ Oracle9i Release 1 (9.0.1) New Features in Data Warehousing
xxxiii

Oracle9i Release 2 (9.2) New Features in Data Warehousing
■ Data Segment Compression

You can compress data segments in heap-organized tables, and a typical
example of a heap-organized table you should consider for data segment
compression is partitioned tables. Data segment compression is also useful for
highly redundant data, such as tables with many foreign keys and materialized
views created with the ROLLUPclause. You should avoid compression on tables
with many updates or DML.

■ Materialized View Enhancements

You can now nest materialized views when the materialized view contains joins
and aggregates. Fast refresh is now possible on a materialized views containing
the UNION ALL operator. Various restrictions were removed in addition to
expanding the situations where materialized views could be effectively used. In
particular, using materialized views in an OLAP environment has been
improved.

■ Parallel DML on Non-Partitioned Tables

You can now use parallel DML on non-partitioned tables.

■ Partitioning Enhancements

You can now simplify SQL syntax by using a DEFAULT partition or a
subpartition template. You can implement SPLIT operations more easily.

See Also: Chapter 8, "Materialized Views"

See Also: "Overview of Data Warehousing with Materialized
Views" on page 8-2 and "Materialized Views in OLAP
Environments" on page 8-41, and Chapter 14, "Maintaining the
Data Warehouse"

See Also: Chapter 21, "Using Parallel Execution"

See Also: "Partitioning Methods" on page 5-5, Chapter 5,
"Parallelism and Partitioning in Data Warehouses", and Oracle9i
Database Administrator’s Guide
xxxiv

■ Query Rewrite Enhancements

Text match processing and join equivalence recognition have been improved.
Materialized views containing the UNION ALL operator can now use query
rewrite.

■ Range-List Partitioning

You can now subpartition by list range-partitioned tables.

■ Summary Advisor Enhancements

The Summary Advisor tool and its related DBMS_OLAPpackage were improved
so you can restrict workloads to a specific schema.

Oracle9i Release 1 (9.0.1) New Features in Data Warehousing
■ Analytic Functions

Oracle’s analytic capabilities have been improved through the addition of
Inverse percentile, hypothetical distribution, and first/last analytic functions.

■ Bitmap Join Index

A bitmap join index spans multiple tables and improves the performance of
joins of those tables.

■ ETL Enhancements

Oracle’s extraction, transformation, and loading capabilities have been
improved with a MERGE statement, multi-table inserts, and table functions.

See Also: Chapter 22, "Query Rewrite"

See Also: "Types of Partitioning" on page 5-4

See Also: Chapter 16, "Summary Advisor"

See Also: Chapter 19, "SQL for Analysis in Data Warehouses"

See Also: "Bitmap Indexes" on page 6-2

See Also: Chapter 10, "Overview of Extraction, Transformation,
and Loading"
xxxv

■ Full Outer Joins

Oracle added full support for full outer joins so that you can more easily
express certain complex queries.

■ Grouping Sets

You can now selectively specify the set of groups that you want to create using
a GROUPING SETS expression within a GROUP BY clause. This allows precise
specification across multiple dimensions without computing the whole CUBE.

■ List Partitioning

List partitioning offers you precise control over which data belongs in a
particular partition.

■ Materialized View Enhancements

Various restrictions were removed in addition to expanding the situations
where materialized views could be effectively used.

■ Query Rewrite Enhancements

The query rewrite feature, which allows many SQL statements to use
materialized views, thereby improving performance significantly, was
improved significantly. Text match processing and join equivalence recognition
have been improved.

See Also: Oracle9i Database Performance Tuning Guide and Reference

See Also: Chapter 18, "SQL for Aggregation in Data Warehouses"

See Also: "Partitioning Design Considerations" on page 5-4 and
Oracle9i Database Concepts, and Oracle9i Database Administrator’s
Guide

See Also: "Overview of Data Warehousing with Materialized
Views" on page 8-2

See Also: Chapter 22, "Query Rewrite"
xxxvi

■ Summary Advisor Enhancements

The Summary Advisor tool and its related DBMS_OLAPpackage were improved
so you can specify workloads. In addition, a broader class of schemas is now
supported.

■ WITH Clause

The WITH clause enables you to reuse a query block in a SELECT statement
when it occurs more than once within a complex query.

See Also: Chapter 16, "Summary Advisor"

See Also: "Computation Using the WITH Clause" on page 18-30
xxxvii

xxxviii

Part I

 Concepts

This section introduces basic data warehousing concepts.

It contains the following chapter:

■ Data Warehousing Concepts

Data Warehousing Con
1

Data Warehousing Concepts

This chapter provides an overview of the Oracle data warehousing implementation.
It includes:

■ What is a Data Warehouse?

■ Data Warehouse Architectures

Note that this book is meant as a supplement to standard texts about data
warehousing. This book focuses on Oracle-specific material and does not reproduce
in detail material of a general nature. Two standard texts are:

■ The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)

■ Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)
cepts 1-1

What is a Data Warehouse?
What is a Data Warehouse?
A data warehouse is a relational database that is designed for query and analysis
rather than for transaction processing. It usually contains historical data derived
from transaction data, but it can include data from other sources. It separates
analysis workload from transaction workload and enables an organization to
consolidate data from several sources.

In addition to a relational database, a data warehouse environment includes an
extraction, transportation, transformation, and loading (ETL) solution, an online
analytical processing (OLAP) engine, client analysis tools, and other applications
that manage the process of gathering data and delivering it to business users.

A common way of introducing data warehousing is to refer to the characteristics of
a data warehouse as set forth by William Inmon:

■ Subject Oriented

■ Integrated

■ Nonvolatile

■ Time Variant

Subject Oriented
Data warehouses are designed to help you analyze data. For example, to learn more
about your company’s sales data, you can build a warehouse that concentrates on
sales. Using this warehouse, you can answer questions like "Who was our best
customer for this item last year?" This ability to define a data warehouse by subject
matter, sales in this case, makes the data warehouse subject oriented.

Integrated
Integration is closely related to subject orientation. Data warehouses must put data
from disparate sources into a consistent format. They must resolve such problems
as naming conflicts and inconsistencies among units of measure. When they achieve
this, they are said to be integrated.

See Also: Chapter 10, "Overview of Extraction, Transformation,
and Loading"
1-2 Oracle9i Data Warehousing Guide

What is a Data Warehouse?
Nonvolatile
Nonvolatile means that, once entered into the warehouse, data should not change.
This is logical because the purpose of a warehouse is to enable you to analyze what
has occurred.

Time Variant
In order to discover trends in business, analysts need large amounts of data. This is
very much in contrast to online transaction processing (OLTP) systems, where
performance requirements demand that historical data be moved to an archive. A
data warehouse’s focus on change over time is what is meant by the term time
variant.

Contrasting OLTP and Data Warehousing Environments
Figure 1–1 illustrates key differences between an OLTP system and a data
warehouse.

Figure 1–1 Contrasting OLTP and Data Warehousing Environments

One major difference between the types of system is that data warehouses are not
usually in third normal form (3NF), a type of data normalization common in OLTP
environments.

Few

Rare

Normalized
DBMS

Many

Indexes

Derived Data
and Aggregates

Duplicated
Data

Joins

Many

Complex data
structures

(3NF databases)
Multidimensional
data structures

OLTP Data Warehouse

Common

Denormalized
DBMS

Some
Data Warehousing Concepts 1-3

What is a Data Warehouse?
Data warehouses and OLTP systems have very different requirements. Here are
some examples of differences between typical data warehouses and OLTP systems:

■ Workload

Data warehouses are designed to accommodate ad hoc queries. You might not
know the workload of your data warehouse in advance, so a data warehouse
should be optimized to perform well for a wide variety of possible query
operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

■ Data modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly
or weekly) using bulk data modification techniques. The end users of a data
warehouse do not directly update the data warehouse.

In OLTP systems, end users routinely issue individual data modification
statements to the database. The OLTP database is always up to date, and reflects
the current state of each business transaction.

■ Schema design

Data warehouses often use denormalized or partially denormalized schemas
(such as a star schema) to optimize query performance.

OLTP systems often use fully normalized schemas to optimize
update/insert/delete performance, and to guarantee data consistency.

■ Typical operations

A typical data warehouse query scans thousands or millions of rows. For
example, "Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example,
"Retrieve the current order for this customer."

■ Historical data

Data warehouses usually store many months or years of data. This is to support
historical analysis.

OLTP systems usually store data from only a few weeks or months. The OLTP
system stores only historical data as needed to successfully meet the
requirements of the current transaction.
1-4 Oracle9i Data Warehousing Guide

Data Warehouse Architectures
Data Warehouse Architectures
Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

■ Data Warehouse Architecture (Basic)

■ Data Warehouse Architecture (with a Staging Area)

■ Data Warehouse Architecture (with a Staging Area and Data Marts)

Data Warehouse Architecture (Basic)
Figure 1–2 shows a simple architecture for a data warehouse. End users directly
access data derived from several source systems through the data warehouse.

Figure 1–2 Architecture of a Data Warehouse

In Figure 1–2, the metadata and raw data of a traditional OLTP system is present, as
is an additional type of data, summary data. Summaries are very valuable in data
warehouses because they pre-compute long operations in advance. For example, a
typical data warehouse query is to retrieve something like August sales. A
summary in Oracle is called a materialized view.

WarehouseData Sources

Summary
Data

Raw Data

Metadata

Operational
System

Operational
System

Flat Files

Users

Analysis

Reporting

Mining
Data Warehousing Concepts 1-5

Data Warehouse Architectures
Data Warehouse Architecture (with a Staging Area)
In Figure 1–2, you need to clean and process your operational data before putting it
into the warehouse. You can do this programmatically, although most data
warehouses use a staging area instead. A staging area simplifies building
summaries and general warehouse management. Figure 1–3 illustrates this typical
architecture.

Figure 1–3 Architecture of a Data Warehouse with a Staging Area

Operational
System

Data
Sources

Staging
Area Warehouse Users

Operational
System

Flat Files

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata
1-6 Oracle9i Data Warehousing Guide

Data Warehouse Architectures
Data Warehouse Architecture (with a Staging Area and Data Marts)
Although the architecture in Figure 1–3 is quite common, you may want to
customize your warehouse’s architecture for different groups within your
organization. You can do this by adding data marts, which are systems designed for
a particular line of business. Figure 1–4 illustrates an example where purchasing,
sales, and inventories are separated. In this example, a financial analyst might want
to analyze historical data for purchases and sales.

Figure 1–4 Architecture of a Data Warehouse with a Staging Area and Data Marts

Note: Data marts are an important part of many warehouses, but
they are not the focus of this book.

See Also: Data Mart Suites documentation for further information
regarding data marts

Operational
System

Data
Sources

Staging
Area Warehouse

Data
Marts Users

Operational
System

Flat Files

Sales

Purchasing

Inventory

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata
Data Warehousing Concepts 1-7

Data Warehouse Architectures
1-8 Oracle9i Data Warehousing Guide

Part II

Logical Design

This section deals with the issues in logical design in a data warehouse.

It contains the following chapter:

■ Logical Design in Data Warehouses

Logical Design in Data Wareh
2

Logical Design in Data Warehouses

This chapter tells you how to design a data warehousing environment and includes
the following topics:

■ Logical Versus Physical Design in Data Warehouses

■ Creating a Logical Design

■ Data Warehousing Schemas

■ Data Warehousing Objects
ouses 2-1

Logical Versus Physical Design in Data Warehouses
Logical Versus Physical Design in Data Warehouses
Your organization has decided to build a data warehouse. You have defined the
business requirements and agreed upon the scope of your application, and created a
conceptual design. Now you need to translate your requirements into a system
deliverable. To do so, you create the logical and physical design for the data
warehouse. You then define:

■ The specific data content

■ Relationships within and between groups of data

■ The system environment supporting your data warehouse

■ The data transformations required

■ The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the
logical design, you look at the logical relationships among the objects. In the
physical design, you look at the most effective way of storing and retrieving the
objects as well as handling them from a transportation and backup/recovery
perspective.

Orient your design toward the needs of the end users. End users typically want to
perform analysis and look at aggregated data, rather than at individual
transactions. However, end users might not know what they need until they see it.
In addition, a well-planned design allows for growth and changes as the needs of
users change and evolve.

By beginning with the logical design, you focus on the information requirements
and save the implementation details for later.

Creating a Logical Design
A logical design is conceptual and abstract. You do not deal with the physical
implementation details yet. You deal only with defining the types of information
that you need.

One technique you can use to model your organization's logical information
requirements is entity-relationship modeling. Entity-relationship modeling involves
identifying the things of importance (entities), the properties of these things
(attributes), and how they are related to one another (relationships).

The process of logical design involves arranging data into a series of logical
relationships called entities and attributes. An entity represents a chunk of
2-2 Oracle9i Data Warehousing Guide

Data Warehousing Schemas
information. In relational databases, an entity often maps to a table. An attribute is
a component of an entity that helps define the uniqueness of the entity. In relational
databases, an attribute maps to a column.

To be sure that your data is consistent, you need to use unique identifiers. A unique
identifier is something you add to tables so that you can differentiate between the
same item when it appears in different places. In a physical design, this is usually a
primary key.

While entity-relationship diagramming has traditionally been associated with
highly normalized models such as OLTP applications, the technique is still useful
for data warehouse design in the form of dimensional modeling. In dimensional
modeling, instead of seeking to discover atomic units of information (such as
entities and attributes) and all of the relationships between them, you identify
which information belongs to a central fact table and which information belongs to
its associated dimension tables. You identify business subjects or fields of data,
define relationships between business subjects, and name the attributes for each
subject.

Your logical design should result in (1) a set of entities and attributes corresponding
to fact tables and dimension tables and (2) a model of operational data from your
source into subject-oriented information in your target data warehouse schema.

You can create the logical design using a pen and paper, or you can use a design
tool such as Oracle Warehouse Builder (specifically designed to support modeling
the ETL process) or Oracle Designer (a general purpose modeling tool).

Data Warehousing Schemas
A schema is a collection of database objects, including tables, views, indexes, and
synonyms. You can arrange schema objects in the schema models designed for data
warehousing in a variety of ways. Most data warehouses use a dimensional model.

The model of your source data and the requirements of your users help you design
the data warehouse schema. You can sometimes get the source model from your
company's enterprise data model and reverse-engineer the logical data model for
the data warehouse from this. The physical implementation of the logical data

See Also: Chapter 9, "Dimensions" for further information
regarding dimensions

See Also: Oracle Designer and Oracle Warehouse Builder
documentation sets
Logical Design in Data Warehouses 2-3

Data Warehousing Schemas
warehouse model may require some changes to adapt it to your system
parameters—size of machine, number of users, storage capacity, type of network,
and software.

Star Schemas
The star schema is the simplest data warehouse schema. It is called a star schema
because the diagram resembles a star, with points radiating from a center. The
center of the star consists of one or more fact tables and the points of the star are the
dimension tables, as shown in Figure 2–1.

Figure 2–1 Star Schema

The most natural way to model a data warehouse is as a star schema, only one join
establishes the relationship between the fact table and any one of the dimension
tables.

A star schema optimizes performance by keeping queries simple and providing fast
response time. All the information about each level is stored in one row.

Note: Oracle Corporation recommends that you choose a star
schema unless you have a clear reason not to.

customers

products

Dimension Table Dimension Table

channels

sales
(amount_sold,
quantity_sold)

times

Fact Table
2-4 Oracle9i Data Warehousing Guide

Data Warehousing Objects
Other Schemas
Some schemas in data warehousing environments use third normal form rather
than star schemas. Another schema that is sometimes useful is the snowflake
schema, which is a star schema with normalized dimensions in a tree structure.

Data Warehousing Objects
Fact tables and dimension tables are the two types of objects commonly used in
dimensional data warehouse schemas.

Fact tables are the large tables in your warehouse schema that store business
measurements. Fact tables typically contain facts and foreign keys to the dimension
tables. Fact tables represent data, usually numeric and additive, that can be
analyzed and examined. Examples include sales , cost , and profit .

Dimension tables, also known as lookup or reference tables, contain the relatively
static data in the warehouse. Dimension tables store the information you normally
use to contain queries. Dimension tables are usually textual and descriptive and
you can use them as the row headers of the result set. Examples are customers or
products .

Fact Tables
A fact table typically has two types of columns: those that contain numeric facts
(often called measurements), and those that are foreign keys to dimension tables. A
fact table contains either detail-level facts or facts that have been aggregated. Fact
tables that contain aggregated facts are often called summary tables. A fact table
usually contains facts with the same level of aggregation. Though most facts are
additive, they can also be semi-additive or non-additive. Additive facts can be
aggregated by simple arithmetical addition. A common example of this is sales.
Non-additive facts cannot be added at all. An example of this is averages.
Semi-additive facts can be aggregated along some of the dimensions and not along
others. An example of this is inventory levels, where you cannot tell what a level
means simply by looking at it.

See Also: Chapter 17, "Schema Modeling Techniques" for further
information regarding star and snowflake schemas in data
warehouses and Oracle9i Database Concepts for further conceptual
material
Logical Design in Data Warehouses 2-5

Data Warehousing Objects
Creating a New Fact Table
You must define a fact table for each star schema. From a modeling standpoint, the
primary key of the fact table is usually a composite key that is made up of all of its
foreign keys.

Dimension Tables
A dimension is a structure, often composed of one or more hierarchies, that
categorizes data. Dimensional attributes help to describe the dimensional value.
They are normally descriptive, textual values. Several distinct dimensions,
combined with facts, enable you to answer business questions. Commonly used
dimensions are customers, products, and time.

Dimension data is typically collected at the lowest level of detail and then
aggregated into higher level totals that are more useful for analysis. These natural
rollups or aggregations within a dimension table are called hierarchies.

Hierarchies
Hierarchies are logical structures that use ordered levels as a means of organizing
data. A hierarchy can be used to define data aggregation. For example, in a time
dimension, a hierarchy might aggregate data from the month level to the quarter
level to the year level. A hierarchy can also be used to define a navigational drill
path and to establish a family structure.

Within a hierarchy, each level is logically connected to the levels above and below it.
Data values at lower levels aggregate into the data values at higher levels. A
dimension can be composed of more than one hierarchy. For example, in the
product dimension, there might be two hierarchies—one for product categories
and one for product suppliers.

Dimension hierarchies also group levels from general to granular. Query tools use
hierarchies to enable you to drill down into your data to view different levels of
granularity. This is one of the key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business
structures. For example, a divisional multilevel sales organization.

Hierarchies impose a family structure on dimension values. For a particular level
value, a value at the next higher level is its parent, and values at the next lower level
are its children. These familial relationships enable analysts to access data quickly.
2-6 Oracle9i Data Warehousing Guide

Data Warehousing Objects
Levels A level represents a position in a hierarchy. For example, a time dimension
might have a hierarchy that represents data at the month , quarter , and year
levels. Levels range from general to specific, with the root level as the highest or
most general level. The levels in a dimension are organized into one or more
hierarchies.

Level Relationships Level relationships specify top-to-bottom ordering of levels from
most general (the root) to most specific information. They define the parent-child
relationship between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For
example, the database can aggregate an existing sales revenue on a quarterly base to
a yearly aggregation when the dimensional dependencies between quarter and year
are known.

Typical Dimension Hierarchy
Figure 2–2 illustrates a dimension hierarchy based on customers .

Figure 2–2 Typical Levels in a Dimension Hierarchy

See Also: Chapter 9, "Dimensions" and Chapter 22, "Query
Rewrite" for further information regarding hierarchies

region

customer

country_name

subregion
Logical Design in Data Warehouses 2-7

Data Warehousing Objects
Unique Identifiers
Unique identifiers are specified for one distinct record in a dimension table.
Artificial unique identifiers are often used to avoid the potential problem of unique
identifiers changing. Unique identifiers are represented with the # character. For
example, #customer_id .

Relationships
Relationships guarantee business integrity. An example is that if a business sells
something, there is obviously a customer and a product. Designing a relationship
between the sales information in the fact table and the dimension tables products
and customers enforces the business rules in databases.

Example of Data Warehousing Objects and Their Relationships
Figure 2–3 illustrates a common example of a sales fact table and dimension tables
customers , products , promotions , times , and channels .

Figure 2–3 Typical Data Warehousing Objects

times

products
#prod_id

Dimension Table Dimension Table

channels

customers
#cust_id
cust_last_name
cust_city
cust_state_province

Fact Table

Hierarchy

Relationship

Dimension Table

promotions

sales
cust_id
prod_id
2-8 Oracle9i Data Warehousing Guide

Part III

 Physical Design

This section deals with the physical design of a data warehouse.

It contains the following chapters:

■ Physical Design in Data Warehouses

■ Hardware and I/O Considerations in Data Warehouses

■ Parallelism and Partitioning in Data Warehouses

■ Indexes

■ Integrity Constraints

■ Materialized Views

■ Dimensions

Physical Design in Data Wareho
3

Physical Design in Data Warehouses

This chapter describes the physical design of a data warehousing environment, and
includes the following topics:

■ Moving from Logical to Physical Design

■ Physical Design
uses 3-1

Moving from Logical to Physical Design
Moving from Logical to Physical Design
Logical design is what you draw with a pen and paper or design with Oracle
Warehouse Builder or Designer before building your warehouse. Physical design is
the creation of the database with SQL statements.

During the physical design process, you convert the data gathered during the
logical design phase into a description of the physical database structure. Physical
design decisions are mainly driven by query performance and database
maintenance aspects. For example, choosing a partitioning strategy that meets
common query requirements enables Oracle to take advantage of partition pruning,
a way of narrowing a search before performing it.

Physical Design
During the logical design phase, you defined a model for your data warehouse
consisting of entities, attributes, and relationships. The entities are linked together
using relationships. Attributes are used to describe the entities. The unique
identifier (UID) distinguishes between one instance of an entity and another.

Figure 3–1 offers you a graphical way of looking at the different ways of thinking
about logical and physical designs.

See Also:

■ Chapter 5, "Parallelism and Partitioning in Data Warehouses"
for further information regarding partitioning

■ Oracle9i Database Concepts for further conceptual material
regarding all design matters
3-2 Oracle9i Data Warehousing Guide

Physical Design
Figure 3–1 Logical Design Compared with Physical Design

During the physical design process, you translate the expected schemas into actual
database structures. At this time, you have to map:

■ Entities to tables

■ Relationships to foreign key constraints

■ Attributes to columns

■ Primary unique identifiers to primary key constraints

■ Unique identifiers to unique key constraints

Entities

Unique
Identifiers

Attributes

Relationships

Tables

Physical (as Tablespaces)

Columns

Integrity
Constraints

Indexes

Logical

Materialized
Views

Dimensions

- Primary Key
- Foreign Key
- Not Null
Physical Design in Data Warehouses 3-3

Physical Design
Physical Design Structures
Once you have converted your logical design to a physical one, you will need to
create some or all of the following structures:

■ Tablespaces

■ Tables and Partitioned Tables

■ Views

■ Integrity Constraints

■ Dimensions

Some of these structures require disk space. Others exist only in the data dictionary.
Additionally, the following structures may be created for performance
improvement:

■ Indexes and Partitioned Indexes

■ Materialized Views

Tablespaces
A tablespace consists of one or more datafiles, which are physical structures within
the operating system you are using. A datafile is associated with only one
tablespace. From a design perspective, tablespaces are containers for physical
design structures.

Tablespaces need to be separated by differences. For example, tables should be
separated from their indexes and small tables should be separated from large tables.
Tablespaces should also represent logical business units if possible. Because a
tablespace is the coarsest granularity for backup and recovery or the transportable
tablespaces mechanism, the logical business design affects availability and
maintenance operations.

See Also: Chapter 4, "Hardware and I/O Considerations in Data
Warehouses" for further information regarding tablespaces
3-4 Oracle9i Data Warehousing Guide

Physical Design
Tables and Partitioned Tables
Tables are the basic unit of data storage. They are the container for the expected
amount of raw data in your data warehouse.

Using partitioned tables instead of nonpartitioned ones addresses the key problem
of supporting very large data volumes by allowing you to decompose them into
smaller and more manageable pieces. The main design criterion for partitioning is
manageability, though you will also see performance benefits in most cases because
of partition pruning or intelligent parallel processing. For example, you might
choose a partitioning strategy based on a sales transaction date and a monthly
granularity. If you have four years’ worth of data, you can delete a month’s data as
it becomes older than four years with a single, quick DDL statement and load new
data while only affecting 1/48th of the complete table. Business questions regarding
the last quarter will only affect three months, which is equivalent to three partitions,
or 3/48ths of the total volume.

Partitioning large tables improves performance because each partitioned piece is
more manageable. Typically, you partition based on transaction dates in a data
warehouse. For example, each month, one month’s worth of data can be assigned its
own partition.

Data Segment Compression
You can save disk space by compressing heap-organized tables. A typical type of
heap-organized table you should consider for data segment compression is
partitioned tables.

To reduce disk use and memory use (specifically, the buffer cache), you can store
tables and partitioned tables in a compressed format inside the database. This often
leads to a better scaleup for read-only operations. Data segment compression can
also speed up query execution. There is, however, a cost in CPU overhead.

Data segment compression should be used with highly redundant data, such as
tables with many foreign keys. You should avoid compressing tables with much
update or other DML activity. Although compressed tables or partitions are
updatable, there is some overhead in updating these tables, and high update
activity may work against compression by causing some space to be wasted.

See Also: Chapter 5, "Parallelism and Partitioning in Data
Warehouses" and Chapter 14, "Maintaining the Data Warehouse"
for information regarding data segment compression and
partitioned tables
Physical Design in Data Warehouses 3-5

Physical Design
Views
A view is a tailored presentation of the data contained in one or more tables or
other views. A view takes the output of a query and treats it as a table. Views do not
require any space in the database.

Integrity Constraints
Integrity constraints are used to enforce business rules associated with your
database and to prevent having invalid information in the tables. Integrity
constraints in data warehousing differ from constraints in OLTP environments. In
OLTP environments, they primarily prevent the insertion of invalid data into a
record, which is not a big problem in data warehousing environments because
accuracy has already been guaranteed. In data warehousing environments,
constraints are only used for query rewrite. NOT NULL constraints are particularly
common in data warehouses. Under some specific circumstances, constraints need
space in the database. These constraints are in the form of the underlying unique
index.

Indexes and Partitioned Indexes
Indexes are optional structures associated with tables or clusters. In addition to the
classical B-tree indexes, bitmap indexes are very common in data warehousing
environments. Bitmap indexes are optimized index structures for set-oriented
operations. Additionally, they are necessary for some optimized data access
methods such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning
strategy is not dependent upon the table structure. Partitioning indexes makes it
easier to manage the warehouse during refresh and improves query performance.

See Also: Oracle9i Database Concepts

See Also: Chapter 7, "Integrity Constraints" and Chapter 22,
"Query Rewrite"

See Also: Chapter 6, "Indexes" and Chapter 14, "Maintaining the
Data Warehouse"
3-6 Oracle9i Data Warehousing Guide

Physical Design
Materialized Views
Materialized views are query results that have been stored in advance so
long-running calculations are not necessary when you actually execute your SQL
statements. From a physical design point of view, materialized views resemble
tables or partitioned tables and behave like indexes.

Dimensions
A dimension is a schema object that defines hierarchical relationships between
columns or column sets. A hierarchical relationship is a functional dependency
from one level of a hierarchy to the next one. A dimension is a container of logical
relationships and does not require any space in the database. A typical dimension is
city, state (or province), region, and country.

See Also: Chapter 8, "Materialized Views"

See Also: Chapter 9, "Dimensions"
Physical Design in Data Warehouses 3-7

Physical Design
3-8 Oracle9i Data Warehousing Guide

Hardware and I/O Considerations in Data Wareh
4

Hardware and I/O Considerations in Data

Warehouses

This chapter explains some of the hardware and I/O issues in a data warehousing
environment and includes the following topics:

■ Overview of Hardware and I/O Considerations in Data Warehouses

■ RAID Configurations
ouses 4-1

Overview of Hardware and I/O Considerations in Data Warehouses
Overview of Hardware and I/O Considerations in Data Warehouses
Data warehouses are normally very concerned with I/O performance. This is in
contrast to OLTP systems, where the potential bottleneck depends on user
workload and application access patterns. When a system is constrained by I/O
capabilities, it is I/O bound, or has an I/O bottleneck. When a system is constrained
by having limited CPU resources, it is CPU bound, or has a CPU bottleneck.

Database architects frequently use RAID (Redundant Arrays of Inexpensive Disks)
systems to overcome I/O bottlenecks and to provide higher availability. RAID can
be implemented in several levels, ranging from 0 to 7. Many hardware vendors
have enhanced these basic levels to lessen the impact of some of the original
restrictions at a given RAID level. The most common RAID levels are discussed
later in this chapter.

Why Stripe the Data?
To avoid I/O bottlenecks during parallel processing or concurrent query access, all
tablespaces accessed by parallel operations should be striped. Striping divides the
data of a large table into small portions and stores them on separate datafiles on
separate disks. As shown in Figure 4–1, tablespaces should always stripe over at least
as many devices as CPUs. In this example, there are four CPUs, two controllers, and
five devices containing tablespaces.

Figure 4–1 Striping Objects Over at Least as Many Devices as CPUs

See Also: Oracle9i Database Concepts for further details about disk
striping

5555

4

0001

0002

tablespace 1

3

2

1

tablespace 2

tablespace 3

tablespace 44

0001

0002

3

2

1

4

0001

0002

3

2

1

4

tablespace 5

0001

0002

3

2

1

Controller 2Controller 1
4-2 Oracle9i Data Warehousing Guide

Overview of Hardware and I/O Considerations in Data Warehouses
You should stripe tablespaces for tables, indexes, rollback segments, and temporary
tablespaces. You must also spread the devices over controllers, I/O channels, and
internal buses. To make striping effective, you must make sure that enough
controllers and other I/O components are available to support the bandwidth of
parallel data movement into and out of the striped tablespaces.

You can use RAID systems or you can perform striping manually through careful
data file allocation to tablespaces.

The striping of data across physical drives has several consequences besides
balancing I/O. One additional advantage is that logical files can be created that are
larger than the maximum size usually supported by an operating system. There are
disadvantages however. Striping means that it is no longer possible to locate a
single datafile on a specific physical drive. This can cause the loss of some
application tuning capabilities. Also, it can cause database recovery to be more
time-consuming. If a single physical disk in a RAID array needs recovery, all the
disks that are part of that logical RAID device must be involved in the recovery.

Automatic Striping
Automatic striping is usually flexible and easy to manage. It supports many
scenarios such as multiple users running sequentially or as single users running in
parallel. Two main advantages make automatic striping preferable to manual
striping, unless the system is very small or availability is the main concern:

■ For parallel scan operations (such as full table scan or fast full scan), operating
system striping increases the number of disk seeks. Nevertheless, this is largely
offset by the large I/O size (DB_BLOCK_SIZE * MULTIBLOCK_READ_COUNT),
which should enable this operation to reach the maximum I/O throughput for
your platform. This maximum is in general limited by the number of controllers
or I/O buses of the platform, not by the number of disks (unless you have a
small configuration or are using large disks).

■ For index probes (for example, within a nested loop join or parallel index range
scan), operating system striping enables you to avoid hot spots by evenly
distributing I/O across the disks.

Oracle Corporation recommends using a large stripe size of at least 64 KB. Stripe
size must be at least as large as the I/O size. If stripe size is larger than I/O size by a
factor of two or four, then trade-offs may arise. The large stripe size can be
advantageous because it lets the system perform more sequential operations on
each disk; it decreases the number of seeks on disk. Another advantage of large
stripe sizes is that more users can work on the system without affecting each other.
The disadvantage is that large stripes reduce the I/O parallelism, so fewer disks are
Hardware and I/O Considerations in Data Warehouses 4-3

Overview of Hardware and I/O Considerations in Data Warehouses
simultaneously active. If you encounter problems, increase the I/O size of scan
operations (for example, from 64 KB to 128 KB), instead of changing the stripe size.
The maximum I/O size is platform-specific (in a range, for example, of 64 KB to 1
MB).

With automatic striping, from a performance standpoint, the best layout is to stripe
data, indexes, and temporary tablespaces across all the disks of your platform. This
layout is also appropriate when you have little information about system usage. To
increase availability, it may be more practical to stripe over fewer disks to prevent a
single disk value from affecting the entire data warehouse. However, for better
performance, it is crucial to stripe all objects over multiple disks. In this way,
maximum I/O performance (both in terms of throughput and in number of I/Os
per second) can be reached when one object is accessed by a parallel operation. If
multiple objects are accessed at the same time (as in a multiuser configuration),
striping automatically limits the contention.

Manual Striping
You can use manual striping on all platforms. To do this, add multiple files to each
tablespace, with each file on a separate disk. If you use manual striping correctly,
your system’s performance improves significantly. However, you should be aware
of several drawbacks that can adversely affect performance if you do not stripe
correctly.

When using manual striping, the degree of parallelism (DOP) is more a function of
the number of disks than of the number of CPUs. First, it is necessary to have one
server process for each datafile to drive all the disks and limit the risk of
experiencing I/O bottlenecks. Second, manual striping is very sensitive to datafile
size skew, which can affect the scalability of parallel scan operations. Third, manual
striping requires more planning and set-up effort than automatic striping.

Note: Oracle Corporation recommends that you choose automatic
striping unless you have a clear reason not to.
4-4 Oracle9i Data Warehousing Guide

Overview of Hardware and I/O Considerations in Data Warehouses
Local and Global Striping
Local striping, which applies only to partitioned tables and indexes, is a form of
non-overlapping, disk-to-partition striping. Each partition has its own set of disks
and files, as illustrated in Figure 4–2. Disk access does not overlap, nor do files.

An advantage of local striping is that if one disk fails, it does not affect other
partitions. Moreover, you still have some striping even if you have data in only one
partition.

A disadvantage of local striping is that you need many disks to implement it—each
partition requires multiple disks of its own. Another major disadvantage is that
when partitions are reduced to a few or even a single partition, the system retains
limited I/O bandwidth. As a result, local striping is not optimal for parallel
operations. For this reason, consider local striping only if your main concern is
availability, rather than parallel execution.

Figure 4–2 Local Striping

Stripe 1

Stripe 2

Partition 1 Partition 2

Stripe 3

Stripe 4���
���
���
���
������
Hardware and I/O Considerations in Data Warehouses 4-5

Overview of Hardware and I/O Considerations in Data Warehouses
Global striping, illustrated in Figure 4–3, entails overlapping disks and partitions.

Figure 4–3 Global Striping

Global striping is advantageous if you have partition pruning and need to access
data in only one partition. Spreading the data in that partition across many disks
improves performance for parallel execution operations. A disadvantage of global
striping is that if one disk fails, all partitions are affected if the disks are not
mirrored.

Analyzing Striping
Two considerations arise when analyzing striping issues for your applications. First,
consider the cardinality of the relationships among the objects in a storage system.
Second, consider what you can optimize in your striping effort: full table scans,
general tablespace availability, partition scans, or some combinations of these goals.
Cardinality and optimization are discussed in the following section.

See Also: Oracle9i Database Concepts for information on disk
striping and partitioning. For MPP systems, see your operating
system specific Oracle documentation regarding the advisability of
disabling disk affinity when using operating system striping

Stripe 1

Stripe 2

Partition 1 Partition 2
4-6 Oracle9i Data Warehousing Guide

Overview of Hardware and I/O Considerations in Data Warehouses
Cardinality of Storage Object Relationships
To analyze striping, consider the relationships illustrated in Figure 4–4.

Figure 4–4 Cardinality of Relationships

Figure 4–4 shows the cardinality of the relationships among objects in a typical
Oracle storage system. For every table there may be:

■ p partitions, shown in Figure 4–4 as a one-to-many relationship

■ s partitions for every tablespace, shown in Figure 4–4 as a many-to-one
relationship

■ f files for every tablespace, shown in Figure 4–4 as a one-to-many relationship

■ m files to n devices, shown in Figure 4–4 as a many-to-many relationship

Striping Goals
You can stripe an object across devices to achieve one of three goals:

■ Goal 1: To optimize full table scans, place a table on many devices.

■ Goal 2: To optimize availability, restrict the tablespace to a few devices.

■ Goal 3: To optimize partition scans, achieve intra-partition parallelism by
placing each partition on many devices.

To attain both Goals 1 and 2 (having the table reside on many devices, with the
highest possible availability), maximize the number of partitions p and minimize
the number of partitions for each tablespace s.

To maximize Goal 1 but with minimal intra-partition parallelism, place each
partition in its own tablespace. Do not used striped files, and use one file for each
tablespace.

To minimize Goal 2 and thereby minimize availability, set f and n equal to 1. When
you minimize availability, you maximize intra-partition parallelism. Goal 3 conflicts
with Goal 2 because you cannot simultaneously maximize the formula for Goal 3

table partitions tablespace devicesfiles

1 p s 1 1 f m n
Hardware and I/O Considerations in Data Warehouses 4-7

Overview of Hardware and I/O Considerations in Data Warehouses
and minimize the formula for Goal 2. You must compromise to achieve some of the
benefits of both goals.

Striping Goal 1: Optimize Full Table Scans

Having a table reside on many devices ensures scalable full table scans.

To calculate the optimal number of devices for each table, use this formula:

You can do this by having t partitions, with every partition in its own tablespace, if
every tablespace has one file, and these files are not striped.

If the table is not partitioned, but is in one tablespace in one file, stripe it over n
devices.

There are a maximum of t partitions, every partition in its own tablespace, f files in
each tablespace, each tablespace on a striped device:

Striping Goal 2: Optimize Availability

Restricting each tablespace to a small number of devices and having as many
partitions as possible helps you achieve high availability.

Availability is maximized when f = n = m = 1 and p is much greater than 1.

Number of devices per table = p x f x n
s x m

t x 1 / p x 1 x 1, up to t devices

1 x 1 x n devices

t x f x n devices

Number of devices per tablespace = f x n
m

4-8 Oracle9i Data Warehousing Guide

RAID Configurations
Striping Goal 3: Optimize Partition Scans

Achieving intra-partition parallelism is advantageous because partition scans are
scalable. To do this, place each partition on many devices.

Partitions can reside in a tablespace that can have many files. You can have either a
striped file or many files for each tablespace.

RAID Configurations
RAID systems, also called disk arrays, can be hardware- or software-based systems.
The difference between the two is how CPU processing of I/O requests is handled.
In software-based RAID systems, the operating system or an application level
handles the I/O request, while in hardware-based RAID systems, disk controllers
handle I/O requests. RAID usage is transparent to Oracle. All the features specific
to a given RAID configuration are handled by the operating system and Oracle does
not need to worry about them.

Primary logical database structures have different access patterns during read and
write operations. Therefore, different RAID implementations will be better suited
for these structures. The purpose of this chapter is to discuss some of the basic
decisions you must make when designing the physical layout of your data
warehouse implementation. It is not meant as a replacement for operating system
and storage documentation or a consultant’s analysis of your I/O requirements.

There are advantages and disadvantages to using RAID, and those depend on the
RAID level under consideration and the specific system in question. The most
common configurations in data warehouses are:

■ RAID 0 (Striping)

■ RAID 1 (Mirroring)

■ RAID 0+1 (Striping and Mirroring)

■ RAID 5

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information regarding RAID

Number of devices per partition = f x n
s x m
Hardware and I/O Considerations in Data Warehouses 4-9

RAID Configurations
RAID 0 (Striping)
RAID 0 is a non-redundant disk array, so there will be data loss with any disk
failure. If something on the disk becomes corrupted, you cannot restore or
recalculate that data. RAID 0 provides the best write throughput performance
because it never updates redundant information. Read throughput is also quite
good, but you can improve it by combining RAID 0 with RAID 1.

Oracle does not recommend using RAID 0 systems without RAID 1 because the loss
of one disk in the array will affect the complete system and make it unavailable.
RAID 0 systems are used mainly in environments where performance and capacity
are the primary concerns rather than availability.

RAID 1 (Mirroring)
RAID 1 provides full data redundancy by complete mirroring of all files. If a disk
failure occurs, the mirrored copy is used to transparently service the request. RAID
1 mirroring requires twice as much disk space as there is data. In general, RAID 1 is
most useful for systems where complete redundancy of data is required and disk
space is not an issue. For large datafiles or systems with less disk space, RAID 1
may not be feasible, because it requires twice as much disk space as there is data.
Writes under RAID 1 are no faster and no slower than usual. Reading data can be
faster than on a single disk because the system can choose to read the data from the
disk that can respond faster.

RAID 0+1 (Striping and Mirroring)
RAID 0+1 offers the best performance of all RAID systems, but costs the most
because you double the number of drives. Basically, it combines the performance of
RAID 0 and the fault tolerance of RAID 1. You should consider RAID 0+1 for
datafiles with high write rates, for example, table datafiles, and online and archived
redo log files.

Striping, Mirroring, and Media Recovery
Striping affects media recovery. Loss of a disk usually means loss of access to all
objects stored on that disk. If all datafiles in a database are striped over all disks,
then loss of any disk stops the entire database. Furthermore, you may need to
restore all these database files from backups, even if each file has only a small
fraction of its total data stored on the failed disk.

Often, the same system that provides striping also provides mirroring. With the
declining price of disks, mirroring can provide an effective supplement to, but not a
4-10 Oracle9i Data Warehousing Guide

RAID Configurations
substitute for, backups and log archives. Mirroring can help your system recover
from disk failures more quickly than using a backup, but mirroring is not as robust.
Mirroring does not protect against software faults and other problems against
which an independent backup would protect your system.

You can effectively use mirroring if you are able to reload read-only data from the
original source tapes. If you have a disk failure, restoring data from backups can
involve lengthy downtime, whereas restoring from a mirrored disk enables your
system to get back online quickly or even stay online while the crashed disk is
replaced and resynchronized.

RAID 5
RAID 5 systems provide redundancy for the original data while storing parity
information as well. The parity information is striped over all disks in the system to
avoid a single disk as a bottleneck during write operations. The I/O throughput of
RAID 5 systems depends upon the implementation and the striping size. For a
typical RAID 5 system, the throughput is normally lower than RAID 0 + 1
configurations. In particular, the performance for high concurrent write operations
such as parallel load can be poor.

Many vendors use memory (as battery-backed cache) in front of the disks to
increase throughput and to become comparable to RAID 0+1. Contact your disk
array vendor for specific details.
Hardware and I/O Considerations in Data Warehouses 4-11

RAID Configurations
The Importance of Specific Analysis
A data warehouse’s requirements are at many levels, and resolving a problem at
one level can cause problems with another. For example, resolving a problem with
query performance during the ETL process can affect load performance. You cannot
simply maximize query performance at the expense of an unrealistic load time. If
you do, your implementation will fail. In addition, a particular process is dependent
upon the warehouse’s architecture. If you decide to change something in your
system, it can cause performance to become unacceptable in another part of the
warehousing process. An example of this is switching from using database files to
flat files during the loading process. Flat files can have different read performance.

This chapter is not meant as a replacement for operating system and storage
documentation. Your system’s requirements will require detailed analysis prior to
implementation. Only a detailed data warehouse architecture and I/O analysis will
help you when deciding hardware and I/O strategies.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for details regarding how to analyze I/O requirements
4-12 Oracle9i Data Warehousing Guide

Parallelism and Partitioning in Data Wareh
5

Parallelism and Partitioning in Data

Warehouses

Data warehouses often contain large tables and require techniques both for
managing these large tables and for providing good query performance across these
large tables. This chapter discusses two key methodologies for addressing these
needs: parallelism and partitioning.

These topics are discussed:

■ Overview of Parallel Execution

■ Granules of Parallelism

■ Partitioning Design Considerations

■ Miscellaneous Partition Operations

Note: Parallel execution is available only with the Oracle9i
Enterprise Edition.
ouses 5-1

Overview of Parallel Execution
Overview of Parallel Execution
Parallel execution dramatically reduces response time for data-intensive operations
on large databases typically associated with decision support systems (DSS) and
data warehouses. You can also implement parallel execution on certain types of
online transaction processing (OLTP) and hybrid systems. Parallel execution is
sometimes called parallelism. Simply expressed, parallelism is the idea of breaking
down a task so that, instead of one process doing all of the work in a query, many
processes do part of the work at the same time. An example of this is when four
processes handle four different quarters in a year instead of one process handling
all four quarters by itself. The improvement in performance can be quite high. In
this case, each quarter will be a partition, a smaller and more manageable unit of an
index or table.

When to Implement Parallel Execution
The most common use of parallel execution is in DSS and data warehousing
environments. Complex queries, such as those involving joins of several tables or
searches of very large tables, are often best executed in parallel.

Parallel execution is useful for many types of operations that access significant
amounts of data. Parallel execution improves processing for:

■ Large table scans and joins

■ Creation of large indexes

■ Partitioned index scans

■ Bulk inserts, updates, and deletes

■ Aggregations and copying

You can also use parallel execution to access object types within an Oracle database.
For example, use parallel execution to access LOBs (large objects).

Parallel execution benefits systems that have all of the following characteristics:

■ Symmetric multi-processors (SMP), clusters, or massively parallel systems

■ Sufficient I/O bandwidth

■ Underutilized or intermittently used CPUs (for example, systems where CPU
usage is typically less than 30%)

See Also: Oracle9i Database Concepts for further conceptual
information regarding parallel execution
5-2 Oracle9i Data Warehousing Guide

Granules of Parallelism
■ Sufficient memory to support additional memory-intensive processes such as
sorts, hashing, and I/O buffers

If your system lacks any of these characteristics, parallel execution might not
significantly improve performance. In fact, parallel execution can reduce system
performance on overutilized systems or systems with small I/O bandwidth.

Granules of Parallelism
Different parallel operations use different types of parallelism. The optimal physical
database layout depends on the parallel operations that are most prevalent in your
application or even of the necessity of using partitions.

The basic unit of work in parallelism is a called a granule. Oracle divides the
operation being parallelized (for example, a table scan, table update, or index
creation) into granules. Parallel execution processes execute the operation one
granule at a time. The number of granules and their size correlates with the degree
of parallelism (DOP). It also affects how well the work is balanced across query
server processes. There is no way you can enforce a specific granule strategy as
Oracle makes this decision internally.

Block Range Granules
Block range granules are the basic unit of most parallel operations, even on
partitioned tables. Therefore, from an Oracle perspective, the degree of parallelism
is not related to the number of partitions.

Block range granules are ranges of physical blocks from a table. The number and
the size of the granules are computed during runtime by Oracle to optimize and
balance the work distribution for all affected parallel execution servers. The number
and size of granules are dependent upon the size of the object and the DOP. Block
range granules do not depend on static preallocation of tables or indexes. During
the computation of the granules, Oracle takes the DOP into account and tries to
assign granules from different datafiles to each of the parallel execution servers to
avoid contention whenever possible. Additionally, Oracle considers the disk affinity
of the granules on MPP systems to take advantage of the physical proximity
between parallel execution servers and disks.

When block range granules are used predominantly for parallel access to a table or
index, administrative considerations (such as recovery or using partitions for

See Also: Chapter 21, "Using Parallel Execution" for further
information regarding parallel execution requirements
Parallelism and Partitioning in Data Warehouses 5-3

Partitioning Design Considerations
deleting portions of data) might influence partition layout more than performance
considerations.

Partition Granules
When Oracle uses partition granules, a query server process works on an entire
partition or subpartition of a table or index. Because partition granules are statically
determined by the structure of the table or index when a table or index is created,
partition granules do not give you the flexibility in parallelizing an operation that
block granules do. The maximum allowable DOP is the number of partitions. This
might limit the utilization of the system and the load balancing across parallel
execution servers.

When Oracle uses partition granules for parallel access to a table or index, you
should use a relatively large number of partitions (ideally, three times the DOP), so
that Oracle can effectively balance work across the query server processes.

Partition granules are the basic unit of parallel index range scans and of parallel
operations that modify multiple partitions of a partitioned table or index. These
operations include parallel creation of partitioned indexes, and parallel creation of
partitioned tables.

Partitioning Design Considerations
In conjunction with parallel execution, partitioning can improve performance in
data warehouses. The following are the main design considerations for partitioning:

■ Types of Partitioning

■ Partition Pruning

■ Partition-Wise Joins

Types of Partitioning
This section describes the partitioning features that significantly enhance data
access and improve overall application performance. This is especially true for
applications that access tables and indexes with millions of rows and many
gigabytes of data.

See Also: Oracle9i Database Concepts for information on disk
striping and partitioning
5-4 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
Partitioned tables and indexes facilitate administrative operations by enabling these
operations to work on subsets of data. For example, you can add a new partition,
organize an existing partition, or drop a partition and cause less than a second of
interruption to a read-only application.

Using the partitioning methods described in this section can help you tune SQL
statements to avoid unnecessary index and table scans (using partition pruning).
You can also improve the performance of massive join operations when large
amounts of data (for example, several million rows) are joined together by using
partition-wise joins. Finally, partitioning data greatly improves manageability of
very large databases and dramatically reduces the time required for administrative
tasks such as backup and restore.

Granularity can be easily added or removed to the partitioning scheme by splitting
partitions. Thus, if a table’s data is skewed to fill some partitions more than others,
the ones that contain more data can be split to achieve a more even distribution.
Partitioning also allows one to swap partitions with a table. By being able to easily
add, remove, or swap a large amount of data quickly, swapping can be used to keep
a large amount of data that is being loaded inaccessible until loading is completed,
or can be used as a way to stage data between different phases of use. Some
examples are current day’s transactions or online archives.

Partitioning Methods
Oracle offers four partitioning methods:

■ Range Partitioning

■ Hash Partitioning

■ List Partitioning

■ Composite Partitioning

Each partitioning method has different advantages and design considerations.
Thus, each method is more appropriate for a particular situation.

See Also: Oracle9i Database Concepts for an introduction to the
ideas behind partitioning
Parallelism and Partitioning in Data Warehouses 5-5

Partitioning Design Considerations
Range Partitioning Range partitioning maps data to partitions based on ranges of
partition key values that you establish for each partition. It is the most common
type of partitioning and is often used with dates. For example, you might want to
partition sales data into monthly partitions.

Range partitioning maps rows to partitions based on ranges of column values.
Range partitioning is defined by the partitioning specification for a table or index in
PARTITION BY RANGE (column_list) and by the partitioning specifications
for each individual partition in VALUES LESS THAN (value_list) , where
column_list is an ordered list of columns that determines the partition to which a
row or an index entry belongs. These columns are called the partitioning columns.
The values in the partitioning columns of a particular row constitute that row’s
partitioning key.

value_list is an ordered list of values for the columns in the column list. Each
value must be either a literal or a TO_DATE or RPAD function with constant
arguments. Only the VALUES LESS THAN clause is allowed. This clause specifies a
non-inclusive upper bound for the partitions. All partitions, except the first, have an
implicit low value specified by the VALUES LESS THAN literal on the previous
partition. Any binary values of the partition key equal to or higher than this literal
are added to the next higher partition. Highest partition being where MAXVALUE
literal is defined. Keyword, MAXVALUE, represents a virtual infinite value that sorts
higher than any other value for the data type, including the null value.

The following statement creates a table sales_range that is range partitioned on
the sales_date field:

CREATE TABLE sales_range
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
sales_date DATE)
COMPRESS
PARTITION BY RANGE(sales_date)
(
PARTITION sales_jan2000 VALUES LESS THAN(TO_DATE('02/01/2000','DD/MM/YYYY')),
PARTITION sales_feb2000 VALUES LESS THAN(TO_DATE('03/01/2000','DD/MM/YYYY')),
PARTITION sales_mar2000 VALUES LESS THAN(TO_DATE('04/01/2000','DD/MM/YYYY')),
PARTITION sales_apr2000 VALUES LESS THAN(TO_DATE('05/01/2000','DD/MM/YYYY'))
);
5-6 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
Hash Partitioning Hash partitioning maps data to partitions based on a hashing
algorithm that Oracle applies to a partitioning key that you identify. The hashing
algorithm evenly distributes rows among partitions, giving partitions
approximately the same size. Hash partitioning is the ideal method for distributing
data evenly across devices. Hash partitioning is a good and easy-to-use alternative
to range partitioning when data is not historical and there is no obvious column or
column list where logical range partition pruning can be advantageous.

Oracle uses a linear hashing algorithm and to prevent data from clustering within
specific partitions, you should define the number of partitions by a power of two
(for example, 2, 4, 8).

The following statement creates a table sales_hash , which is hash partitioned on
the salesman_id field:

CREATE TABLE sales_hash
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_amount NUMBER(10),
week_no NUMBER(2))
PARTITION BY HASH(salesman_id)
PARTITIONS 4;

List Partitioning List partitioning enables you to explicitly control how rows map to
partitions. You do this by specifying a list of discrete values for the partitioning
column in the description for each partition. This is different from range
partitioning, where a range of values is associated with a partition and with hash
partitioning, where you have no control of the row-to-partition mapping. The

Note: This table was created with the COMPRESS keyword, thus
all partitions inherit this attribute.

See Also: Oracle9i SQL Reference for partitioning syntax and the
Oracle9i Database Administrator’s Guide for more examples

See Also: Oracle9i SQL Reference for partitioning syntax and the
Oracle9i Database Administrator’s Guide for more examples

Note: You cannot define alternate hashing algorithms for
partitions.
Parallelism and Partitioning in Data Warehouses 5-7

Partitioning Design Considerations
advantage of list partitioning is that you can group and organize unordered and
unrelated sets of data in a natural way. The following example creates a list
partitioned table grouping states according to their sales regions:

CREATE TABLE sales_list
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_state VARCHAR2(20),
sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY LIST(sales_state)
(
PARTITION sales_west VALUES('California', 'Hawaii') COMPRESS,
PARTITION sales_east VALUES('New York', 'Virginia', 'Florida'),
PARTITION sales_central VALUES('Texas', 'Illinois')
);

Partition sales_west is furthermore created as a single compressed partition
within sales_list . For details about partitioning and compression, see
"Partitioning and Data Segment Compression" on page 5-17.

An additional capability with list partitioning is that you can use a default partition,
so that all rows that do not map to any other partition do not generate an error. For
example, modifying the previous example, you can create a default partition as
follows:

CREATE TABLE sales_list
(salesman_id NUMBER(5),
salesman_name VARCHAR2(30),
sales_state VARCHAR2(20),
sales_amount NUMBER(10),
sales_date DATE)
PARTITION BY LIST(sales_state)
(
PARTITION sales_west VALUES('California', 'Hawaii'),
PARTITION sales_east VALUES ('New York', 'Virginia', 'Florida'),
PARTITION sales_central VALUES('Texas', 'Illinois')
PARTITION sales_other VALUES(DEFAULT)
);

See Also: Oracle9i SQL Reference for partitioning syntax,
"Partitioning and Data Segment Compression" on page 5-17 for
information regarding data segment compression, and the Oracle9i
Database Administrator’s Guide for more examples
5-8 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
Composite Partitioning Composite partitioning combines range and hash or list
partitioning. Oracle first distributes data into partitions according to boundaries
established by the partition ranges. Then, for range-hash partitioning, Oracle uses a
hashing algorithm to further divide the data into subpartitions within each range
partition. For range-list partitioning, Oracle divides the data into subpartitions
within each range partition based on the explicit list you chose.

Index Partitioning
You can choose whether or not to inherit the partitioning strategy of the underlying
tables. You can create both local and global indexes on a table partitioned by range,
hash, or composite methods. Local indexes inherit the partitioning attributes of
their related tables. For example, if you create a local index on a composite table,
Oracle automatically partitions the local index using the composite method.

Oracle supports only range partitioning for global partitioned indexes. You cannot
partition global indexes using the hash or composite partitioning methods.

Performance Issues for Range, List, Hash, and Composite Partitioning
This section describes performance issues for:

■ When to Use Range Partitioning

■ When to Use Hash Partitioning

■ When to Use List Partitioning

■ When to Use Composite Range-Hash Partitioning

■ When to Use Composite Range-List Partitioning

When to Use Range Partitioning Range partitioning is a convenient method for
partitioning historical data. The boundaries of range partitions define the ordering
of the partitions in the tables or indexes.

Range partitioning organizes data by time intervals on a column of type DATE.
Thus, most SQL statements accessing range partitions focus on timeframes. An
example of this is a SQL statement similar to "select data from a particular period in
time." In such a scenario, if each partition represents data for one month, the query
"find data of month 98-DEC" needs to access only the December partition of year 98.
This reduces the amount of data scanned to a fraction of the total data available, an
optimization method called partition pruning.

See Also: Chapter 6, "Indexes"
Parallelism and Partitioning in Data Warehouses 5-9

Partitioning Design Considerations
Range partitioning is also ideal when you periodically load new data and purge old
data. It is easy to add or drop partitions.

It is common to keep a rolling window of data, for example keeping the past 36
months’ worth of data online. Range partitioning simplifies this process. To add
data from a new month, you load it into a separate table, clean it, index it, and then
add it to the range-partitioned table using the EXCHANGE PARTITIONstatement, all
while the original table remains online. Once you add the new partition, you can
drop the trailing month with the DROP PARTITION statement. The alternative to
using the DROP PARTITION statement can be to archive the partition and make it
read only, but this works only when your partitions are in separate tablespaces.

In conclusion, consider using range partitioning when:

■ Very large tables are frequently scanned by a range predicate on a good
partitioning column, such as ORDER_DATE or PURCHASE_DATE. Partitioning
the table on that column enables partition pruning.

■ You want to maintain a rolling window of data.

■ You cannot complete administrative operations, such as backup and restore, on
large tables in an allotted time frame, but you can divide them into smaller
logical pieces based on the partition range column.

The following example creates the table sales for a period of two years, 1999 and
2000, and partitions it by range according to the column s_salesdate to separate
the data into eight quarters, each corresponding to a partition.

CREATE TABLE sales
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY RANGE(s_saledate)
 (PARTITION sal99q1 VALUES LESS THAN (TO_DATE('01-APR-1999', 'DD-MON-YYYY')),
 PARTITION sal99q2 VALUES LESS THAN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')),
 PARTITION sal99q3 VALUES LESS THAN (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')),
 PARTITION sal99q4 VALUES LESS THAN (TO_DATE('01-JAN-2000', 'DD-MON-YYYY')),
 PARTITION sal00q1 VALUES LESS THAN (TO_DATE('01-APR-2000', 'DD-MON-YYYY')),
 PARTITION sal00q2 VALUES LESS THAN (TO_DATE('01-JUL-2000', 'DD-MON-YYYY')),
 PARTITION sal00q3 VALUES LESS THAN (TO_DATE('01-OCT-2000', 'DD-MON-YYYY')),
 PARTITION sal00q4 VALUES LESS THAN (TO_DATE('01-JAN-2001', 'DD-MON-YYYY')));

When to Use Hash Partitioning The way Oracle distributes data in hash partitions does
not correspond to a business or a logical view of the data, as it does in range
partitioning. Consequently, hash partitioning is not an effective way to manage
5-10 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
historical data. However, hash partitions share some performance characteristics
with range partitions. For example, partition pruning is limited to equality
predicates. You can also use partition-wise joins, parallel index access, and parallel
DML.

As a general rule, use hash partitioning for these purposes:

■ To improve the availability and manageability of large tables or to enable
parallel DML in tables that do not store historical data.

■ To avoid data skew among partitions. Hash partitioning is an effective means of
distributing data because Oracle hashes the data into a number of partitions,
each of which can reside on a separate device. Thus, data is evenly spread over
a sufficient number of devices to maximize I/O throughput. Similarly, you can
use hash partitioning to distribute evenly data among the nodes of an MPP
platform that uses Oracle Real Application Clusters.

■ If it is important to use partition pruning and partition-wise joins according to a
partitioning key that is mostly constrained by a distinct value or value list.

If you add or merge a hashed partition, Oracle automatically rearranges the rows to
reflect the change in the number of partitions and subpartitions. The hash function
that Oracle uses is especially designed to limit the cost of this reorganization.
Instead of reshuffling all the rows in the table, Oracles uses an "add partition" logic
that splits one and only one of the existing hashed partitions. Conversely, Oracle
coalesces a partition by merging two existing hashed partitions.

Although the hash function’s use of "add partition" logic dramatically improves the
manageability of hash partitioned tables, it means that the hash function can cause a
skew if the number of partitions of a hash partitioned table, or the number of
subpartitions in each partition of a composite table, is not a power of two. In the
worst case, the largest partition can be twice the size of the smallest. So for optimal
performance, create a number of partitions and subpartitions for each partition that
is a power of two. For example, 2, 4, 8, 16, 32, 64, 128, and so on.

See Also: "Partition-Wise Joins" on page 5-21

Note: In hash partitioning, partition pruning uses only equality or
IN -list predicates.
Parallelism and Partitioning in Data Warehouses 5-11

Partitioning Design Considerations
The following example creates four hashed partitions for the table sales_hash
using the column s_productid as the partition key:

CREATE TABLE sales_hash
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY HASH(s_productid)
PARTITIONS 4;

Specify partition names if you want to choose the names of the partitions.
Otherwise, Oracle automatically generates internal names for the partitions. Also,
you can use the STORE IN clause to assign hash partitions to tablespaces in a
round-robin manner.

When to Use List Partitioning You should use list partitioning when you want to
specifically map rows to partitions based on discrete values.

Unlike range and hash partitioning, multi-column partition keys are not supported
for list partitioning. If a table is partitioned by list, the partitioning key can only
consist of a single column of the table.

When to Use Composite Range-Hash Partitioning Composite range-hash partitioning
offers the benefits of both range and hash partitioning. With composite range-hash
partitioning, Oracle first partitions by range. Then, within each range, Oracle creates
subpartitions and distributes data within them using the same hashing algorithm it
uses for hash partitioned tables.

Data placed in composite partitions is logically ordered only by the boundaries that
define the range level partitions. The partitioning of data within each partition has
no logical organization beyond the identity of the partition to which the
subpartitions belong.

Consequently, tables and local indexes partitioned using the composite range-hash
method:

■ Support historical data at the partition level

■ Support the use of subpartitions as units of parallelism for parallel operations
such as PDML or space management and backup and recovery

See Also: Oracle9i SQL Reference for partitioning syntax and the
Oracle9i Database Administrator’s Guide for more examples
5-12 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
■ Are eligible for partition pruning and partition-wise joins on the range and hash
dimensions

Using Composite Range-Hash Partitioning Use the composite range-hash partitioning
method for tables and local indexes if:

■ Partitions must have a logical meaning to efficiently support historical data

■ The contents of a partition can be spread across multiple tablespaces, devices,
or nodes (of an MPP system)

■ You require both partition pruning and partition-wise joins even when the
pruning and join predicates use different columns of the partitioned table

■ You require a degree of parallelism that is greater than the number of partitions
for backup, recovery, and parallel operations

Most large tables in a data warehouse should use range partitioning. Composite
partitioning should be used for very large tables or for data warehouses with a
well-defined need for these conditions. When using the composite method, Oracle
stores each subpartition on a different segment. Thus, the subpartitions may have
properties that differ from the properties of the table or from the partition to which
the subpartitions belong.

The following example partitions the table sales_range_hash by range on the
column s_saledate to create four partitions that order data by time. Then, within
each range partition, the data is further subdivided into 16 subpartitions by hash on
the column s_productid :

CREATE TABLE sales_range_hash(
 s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 PARTITION BY RANGE (s_saledate)
 SUBPARTITION BY HASH (s_productid) SUBPARTITIONS 8
 (PARTITION sal99q1 VALUES LESS THAN (TO_DATE('01-APR-1999', 'DD-MON-YYYY')),
 PARTITION sal99q2 VALUES LESS THAN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')),
 PARTITION sal99q3 VALUES LESS THAN (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')),
 PARTITION sal99q4 VALUES LESS THAN (TO_DATE('01-JAN-2000', 'DD-MON-YYYY')));

Each hashed subpartition contains sales data for a single quarter ordered by
product code. The total number of subpartitions is 4x8 or 32.
Parallelism and Partitioning in Data Warehouses 5-13

Partitioning Design Considerations
In addition to this syntax, you can create subpartitions by using a subpartition
template. This offers better ease in naming and control of location for tablespaces
and subpartitions. The following statement illustrates this:

CREATE TABLE sales_range_hash(
 s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 PARTITION BY RANGE (s_saledate)
 SUBPARTITION BY HASH (s_productid)
 SUBPARTITION TEMPLATE(

SUBPARTITION sp1 TABLESPACE tbs1,
SUBPARTITION sp2 TABLESPACE tbs2,
SUBPARTITION sp3 TABLESPACE tbs3,
SUBPARTITION sp4 TABLESPACE tbs4,
SUBPARTITION sp5 TABLESPACE tbs5,
SUBPARTITION sp6 TABLESPACE tbs6,
SUBPARTITION sp7 TABLESPACE tbs7,
SUBPARTITION sp8 TABLESPACE tbs8)

 (PARTITION sal99q1 VALUES LESS THAN (TO_DATE('01-APR-1999', 'DD-MON-YYYY')),
 PARTITION sal99q2 VALUES LESS THAN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')),
 PARTITION sal99q3 VALUES LESS THAN (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')),
 PARTITION sal99q4 VALUES LESS THAN (TO_DATE('01-JAN-2000', 'DD-MON-YYYY')));

In this example, every partition has the same number of subpartitions. A sample
mapping for sal99q1 is illustrated in Table 5–1. Similar mappings exist for
sal99q2 through sal99q4 .

Table 5–1 Subpartition Mapping

Subpartition Tablespace

sal99q1_sp1 tbs1

sal99q1_sp2 tbs2

sal99q1_sp3 tbs3

sal99q1_sp4 tbs4

sal99q1_sp5 tbs5

sal99q1_sp6 tbs6

sal99q1_sp7 tbs7

sal99q1_sp8 tbs8
5-14 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
When to Use Composite Range-List Partitioning Composite range-list partitioning offers
the benefits of both range and list partitioning. With composite range-list
partitioning, Oracle first partitions by range. Then, within each range, Oracle creates
subpartitions and distributes data within them to organize sets of data in a natural
way as assigned by the list.

Data placed in composite partitions is logically ordered only by the boundaries that
define the range level partitions.

Using Composite Range-List Partitioning Use the composite range-list partitioning
method for tables and local indexes if:

■ Subpartitions have a logical grouping defined by the user

■ The contents of a partition can be spread across multiple tablespaces, devices,
or nodes (of an MPP system)

■ You require both partition pruning and partition-wise joins even when the
pruning and join predicates use different columns of the partitioned table

■ You require a degree of parallelism that is greater than the number of partitions
for backup, recovery, and parallel operations

Most large tables in a data warehouse should use range partitioning. Composite
partitioning should be used for very large tables or for data warehouses with a
well-defined need for these conditions. When using the composite method, Oracle
stores each subpartition on a different segment. Thus, the subpartitions may have
properties that differ from the properties of the table or from the partition to which
the subpartitions belong.

This statement creates a table quarterly_regional_sales that is range
partitioned on the txn_date field and list subpartitioned on state .

CREATE TABLE quarterly_regional_sales
(deptno NUMBER,
 item_no VARCHAR2(20),
 txn_date DATE,
 txn_amount NUMBER,
 state VARCHAR2(2))
PARTITION BY RANGE (txn_date)
SUBPARTITION BY LIST (state)
(
PARTITION q1_1999 VALUES LESS THAN(TO_DATE('1-APR-1999','DD-MON-YYYY'))

See Also: Oracle9i SQL Reference for details regarding syntax and
restrictions
Parallelism and Partitioning in Data Warehouses 5-15

Partitioning Design Considerations
(SUBPARTITION q1_1999_northwest VALUES ('OR', 'WA'),
SUBPARTITION q1_1999_southwest VALUES ('AZ', 'UT', 'NM'),
SUBPARTITION q1_1999_northeast VALUES ('NY', 'VM', 'NJ'),
SUBPARTITION q1_1999_southeast VALUES ('FL', 'GA'),
SUBPARTITION q1_1999_northcentral VALUES ('SD', 'WI'),
SUBPARTITION q1_1999_southcentral VALUES ('NM', 'TX')),

PARTITION q2_1999 VALUES LESS THAN(TO_DATE('1-JUL-1999','DD-MON-YYYY'))
(SUBPARTITION q2_1999_northwest VALUES ('OR', 'WA'),
SUBPARTITION q2_1999_southwest VALUES ('AZ', 'UT', 'NM'),
SUBPARTITION q2_1999_northeast VALUES ('NY', 'VM', 'NJ'),
SUBPARTITION q2_1999_southeast VALUES ('FL', 'GA'),
SUBPARTITION q2_1999_northcentral VALUES ('SD', 'WI'),
SUBPARTITION q2_1999_southcentral VALUES ('NM', 'TX')),

PARTITION q3_1999 VALUES LESS THAN (TO_DATE('1-OCT-1999','DD-MON-YYYY'))
(SUBPARTITION q3_1999_northwest VALUES ('OR', 'WA'),
SUBPARTITION q3_1999_southwest VALUES ('AZ', 'UT', 'NM'),
SUBPARTITION q3_1999_northeast VALUES ('NY', 'VM', 'NJ'),
SUBPARTITION q3_1999_southeast VALUES ('FL', 'GA'),
SUBPARTITION q3_1999_northcentral VALUES ('SD', 'WI'),
SUBPARTITION q3_1999_southcentral VALUES ('NM', 'TX')),

PARTITION q4_1999 VALUES LESS THAN (TO_DATE('1-JAN-2000','DD-MON-YYYY'))
(SUBPARTITION q4_1999_northwest VALUES('OR', 'WA'),
SUBPARTITION q4_1999_southwest VALUES('AZ', 'UT', 'NM'),
SUBPARTITION q4_1999_northeast VALUES('NY', 'VM', 'NJ'),
SUBPARTITION q4_1999_southeast VALUES('FL', 'GA'),
SUBPARTITION q4_1999_northcentral VALUES ('SD', 'WI'),
SUBPARTITION q4_1999_southcentral VALUES ('NM', 'TX')));

You can create subpartitions in a composite partitioned table using a subpartition
template. A subpartition template simplifies the specification of subpartitions by
not requiring that a subpartition descriptor be specified for every partition in the
table. Instead, you describe subpartitions only once in a template, then apply that
subpartition template to every partition in the table. The following statement
illustrates an example where you can choose the subpartition name and tablespace
locations:

CREATE TABLE quarterly_regional_sales
(deptno NUMBER,
 item_no VARCHAR2(20),
 txn_date DATE,
 txn_amount NUMBER,
 state VARCHAR2(2))
PARTITION BY RANGE (txn_date)
SUBPARTITION BY LIST (state)
SUBPARTITION TEMPLATE(
5-16 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
SUBPARTITION northwest VALUES ('OR', 'WA') TABLESPACE ts1,
SUBPARTITION southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2,
SUBPARTITION northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts3,
SUBPARTITION southeast VALUES ('FL', 'GA') TABLESPACE ts4,
SUBPARTITION northcentral VALUES ('SD', 'WI') TABLESPACE ts5,
SUBPARTITION southcentral VALUES ('NM', 'TX') TABLESPACE ts6)

(
PARTITION q1_1999 VALUES LESS THAN(TO_DATE('1-APR-1999','DD-MON-YYYY')),
PARTITION q2_1999 VALUES LESS THAN(TO_DATE('1-JUL-1999','DD-MON-YYYY')),
PARTITION q3_1999 VALUES LESS THAN(TO_DATE('1-OCT-1999','DD-MON-YYYY')),
PARTITION q4_1999 VALUES LESS THAN(TO_DATE('1-JAN-2000','DD-MON-YYYY')));

Partitioning and Data Segment Compression
You can compress several partitions or a complete partitioned heap-organized table.
You do this by either defining a complete partitioned table as being compressed, or
by defining it on a per-partition level. Partitions without a specific declaration
inherit the attribute from the table definition or, if nothing is specified on table level,
from the tablespace definition.

To decide whether or not a partition should be compressed or stay uncompressed
adheres to the same rules as a nonpartitioned table. However, due to the capability
of range and composite partitioning to separate data logically into distinct
partitions, such a partitioned table is an ideal candidate for compressing parts of the
data (partitions) that are mainly read-only. It is, for example, beneficial in all rolling
window operations as a kind of intermediate stage before aging out old data. With
data segment compression, you can keep more old data online, minimizing the
burden of additional storage consumption.

You can also change any existing uncompressed table partition later on, add new
compressed and uncompressed partitions, or change the compression attribute as
part of any partition maintenance operation that requires data movement, such as
MERGE PARTITION, SPLIT PARTITION , or MOVE PARTITION. The partitions can
contain data or can be empty.

The access and maintenance of a partially or fully compressed partitioned table are
the same as for a fully uncompressed partitioned table. Everything that applies to
fully uncompressed partitioned tables is also valid for partially or fully compressed
partitioned tables.

See Also: Oracle9i SQL Reference for details regarding syntax and
restrictions
Parallelism and Partitioning in Data Warehouses 5-17

Partitioning Design Considerations
Data Segment Compression and Bitmap Indexes
If you want to use data segment compression on partitioned tables with bitmap
indexes, you need to do the following before you introduce the compression
attribute for the first time:

1. Mark bitmap indexes unusable.

2. Set the compression attribute.

3. Rebuild the indexes.

The first time you make a compressed partition part of an already existing, fully
uncompressed partitioned table, you must either drop all existing bitmap indexes
or mark them UNUSABLEprior to adding a compressed partition. This must be done
irrespective of whether any partition contains any data. It is also independent of the
operation that causes one or more compressed partitions to become part of the
table. This does not apply to a partitioned table having B-tree indexes only.

This rebuilding of the bitmap index structures is necessary to accommodate the
potentially higher number of rows stored for each data block with data segment
compression enabled and must be done only for the first time. All subsequent
operations, whether they affect compressed or uncompressed partitions, or change
the compression attribute, behave identically for uncompressed, partially
compressed, or fully compressed partitioned tables.

To avoid the recreation of any bitmap index structure, Oracle recommends creating
every partitioned table with at least one compressed partition whenever you plan to
partially or fully compress the partitioned table in the future. This compressed
partition can stay empty or even can be dropped after the partition table creation.

Having a partitioned table with compressed partitions can lead to slightly larger
bitmap index structures for the uncompressed partitions. The bitmap index
structures for the compressed partitions, however, are in most cases smaller than
the appropriate bitmap index structure before data segment compression. This
highly depends on the achieved compression rates.

See Also: Chapter 3, "Physical Design in Data Warehouses" for a
generic discussion of data segment compression, Chapter 14,
"Maintaining the Data Warehouse" for a sample rolling window
operation with a range-partitioned table, and Oracle9i Database
Performance Tuning Guide and Reference for an example of calculating
the compression ratio
5-18 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
Example of Data Segment Compression and Partitioning
The following statement moves and compresses an already existing partition
sales_q1_1998 of table sales :

ALTER TABLE sales
MOVE PARTITION sales_q1_1998 TABLESPACE ts_arch_q1_1998 COMPRESS;

If you use the MOVE statement, the local indexes for partition sales_q1_1998
become unusable. You have to rebuild them afterward, as follows:

ALTER TABLE sales
MODIFY PARTITION sales_q1_1998 REBUILD UNUSABLE LOCAL INDEXES;

The following statement merges two existing partitions into a new, compressed
partition, residing in a separate tablespace. The local bitmap indexes have to be
rebuilt afterward, as follows:

ALTER TABLE sales MERGE PARTITIONS sales_q1_1998, sales_q2_1998
INTO PARTITION sales_1_1998 TABLESPACE ts_arch_1_1998
COMPRESS UPDATE GLOBAL INDEXES;

Partition Pruning
Partition pruning is an essential performance feature for data warehouses. In
partition pruning, the cost-based optimizer analyzes FROM and WHERE clauses in
SQL statements to eliminate unneeded partitions when building the partition access
list. This enables Oracle to perform operations only on those partitions that are
relevant to the SQL statement. Oracle prunes partitions when you use range, LIKE ,
equality, and IN -list predicates on the range or list partitioning columns, and when
you use equality and IN -list predicates on the hash partitioning columns.

Partition pruning dramatically reduces the amount of data retrieved from disk and
shortens the use of processing time, improving query performance and resource
utilization. If you partition the index and table on different columns (with a global,

Note: Oracle will raise an error if compression is introduced to an
object for the first time and there are usable bitmap index segments.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for details regarding how to estimate the compression ratio when
using data segment compression
Parallelism and Partitioning in Data Warehouses 5-19

Partitioning Design Considerations
partitioned index), partition pruning also eliminates index partitions even when the
partitions of the underlying table cannot be eliminated.

On composite partitioned objects, Oracle can prune at both the range partition level
and at the hash or list subpartition level using the relevant predicates. Refer to the
table sales_range_hash earlier, partitioned by range on the column s_
salesdate and subpartitioned by hash on column s_productid , and consider
the following example:

SELECT * FROM sales_range_hash
WHERE s_saledate BETWEEN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')) AND
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')) AND s_productid = 1200;

Oracle uses the predicate on the partitioning columns to perform partition pruning
as follows:

■ When using range partitioning, Oracle accesses only partitions sal99q2 and
sal99q3 .

■ When using hash subpartitioning, Oracle accesses only the one subpartition in
each partition that stores the rows with s_productid=1200 . The mapping
between the subpartition and the predicate is calculated based on Oracle’s
internal hash distribution function.

Pruning Using DATE Columns
In the earlier partitioning pruning example, the date value was fully specified as
four digits for the year using the TO_DATE function, just as it was in the underlying
table’s range partitioning description. While this is the recommended format for
specifying date values, the optimizer can prune partitions using the predicates on
s_salesdate when you use other formats, as in the following example:

SELECT * FROM sales_range_hash
WHERE s_saledate BETWEEN TO_DATE('01-JUL-99', 'DD-MON-RR') AND
 TO_DATE('01-OCT-99', 'DD-MON-RR') AND s_productid = 1200;

Although this uses the DD-MON-RR format, which is not the same as the base
partition, the optimizer can still prune properly.

If you execute an EXPLAIN PLAN statement on the query, the PARTITION_START
and PARTITION_STOP columns of the output table do not specify which partitions
Oracle is accessing. Instead, you see the keyword KEY for both columns. The
keyword KEY for both columns means that partition pruning occurs at run-time. It
can also affect the execution plan because the information about the pruned
5-20 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
partitions is missing compared to the same statement using the same TO_DATE
function than the partition table definition.

Avoiding I/O Bottlenecks
To avoid I/O bottlenecks, when Oracle is not scanning all partitions because some
have been eliminated by pruning, spread each partition over several devices. On
MPP systems, spread those devices over multiple nodes.

Partition-Wise Joins
Partition-wise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel. This
significantly reduces response time and improves the use of both CPU and memory
resources. In Oracle Real Application Clusters environments, partition-wise joins
also avoid or at least limit the data traffic over the interconnect, which is the key to
achieving good scalability for massive join operations.

Partition-wise joins can be full or partial. Oracle decides which type of join to use.

Full Partition-Wise Joins
A full partition-wise join divides a large join into smaller joins between a pair of
partitions from the two joined tables. To use this feature, you must equipartition
both tables on their join keys. For example, consider a large join between a sales
table and a customer table on the column customerid. The query "find the records of
all customers who bought more than 100 articles in Quarter 3 of 1999" is a typical
example of a SQL statement performing such a join. The following is an example of
this:

SELECT c.cust_last_name, COUNT(*)
FROM sales s, customers c
WHERE s.cust_id = c.cust_id

AND s.time_id BETWEEN TO_DATE('01-JUL-1999', 'DD-MON-YYYY') AND
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY'))
 GROUP BY c.cust_last_name HAVING
 COUNT(*) > 100;

This large join is typical in data warehousing environments. The entire customer
table is joined with one quarter of the sales data. In large data warehouse
applications, this might mean joining millions of rows. The join method to use in
that case is obviously a hash join. You can reduce the processing time for this hash
join even more if both tables are equipartitioned on the customerid column. This
enables a full partition-wise join.
Parallelism and Partitioning in Data Warehouses 5-21

Partitioning Design Considerations
When you execute a full partition-wise join in parallel, the granule of parallelism, as
described under "Granules of Parallelism" on page 5-3, is a partition. As a result, the
degree of parallelism is limited to the number of partitions. For example, you
require at least 16 partitions to set the degree of parallelism of the query to 16.

You can use various partitioning methods to equipartition both tables on the
column customerid with 16 partitions. These methods are described in these
subsections.

Hash-Hash This is the simplest method: the customers and sales tables are both
partitioned by hash into 16 partitions, on the s_customerid and c_customerid
columns. This partitioning method enables full partition-wise join when the tables
are joined on s_customerid and c_customerid , both representing the same
customer identification number. Because you are using the same hash function to
distribute the same information (customer ID) into the same number of hash
partitions, you can join the equivalent partitions. They are storing the same values.

In serial, this join is performed between pairs of matching hash partitions, one at a
time. When one partition pair has been joined, the join of another partition pair
begins. The join completes when the 16 partition pairs have been processed.

Parallel execution of a full partition-wise join is a straightforward parallelization of
the serial execution. Instead of joining one partition pair at a time, 16 partition pairs
are joined in parallel by the 16 query servers. Figure 5–1 illustrates the parallel
execution of a full partition-wise join.

Note: A pair of matching hash partitions is defined as one
partition with the same partition number from each table. For
example, with full partition-wise joins we join partition 0 of sales
with partition 0 of customers , partition 1 of sales with partition
1 of customers , and so on.
5-22 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
Figure 5–1 Parallel Execution of a Full Partition-wise Join

In Figure 5–1, assume that the degree of parallelism and the number of partitions
are the same, in other words, 16 for both. Defining more partitions than the degree
of parallelism may improve load balancing and limit possible skew in the
execution. If you have more partitions than query servers, when one query server
completes the join of one pair of partitions, it requests that the query coordinator
give it another pair to join. This process repeats until all pairs have been processed.
This method enables the load to be balanced dynamically when the number of
partition pairs is greater than the degree of parallelism, for example, 64 partitions
with a degree of parallelism of 16.

In Oracle Real Application Clusters environments running on shared-nothing or
MPP platforms, placing partitions on nodes is critical to achieving good scalability.
To avoid remote I/O, both matching partitions should have affinity to the same
node. Partition pairs should be spread over all nodes to avoid bottlenecks and to
use all CPU resources available on the system.

Nodes can host multiple pairs when there are more pairs than nodes. For example,
with an 8-node system and 16 partition pairs, each node receives two pairs.

Note: To guarantee an equal work distribution, the number of
partitions should always be a multiple of the degree of parallelism.

See Also: Oracle9i Real Application Clusters Concepts for more
information on data affinity

Server

P1

P1

Server

P2

P2

Server

P3

P3

Server

P16

P16

. . .
sales

customers

Parallel
Execution
Servers
Parallelism and Partitioning in Data Warehouses 5-23

Partitioning Design Considerations
(Composite-Hash)-Hash This method is a variation of the hash-hash method. The
sales table is a typical example of a table storing historical data. For all the reasons
mentioned under the heading "When to Use Range Partitioning" on page 5-9, range
is the logical initial partitioning method.

For example, assume you want to partition the sales table into eight partitions by
range on the column s_salesdate . Also assume you have two years and that each
partition represents a quarter. Instead of using range partitioning, you can use
composite partitioning to enable a full partition-wise join while preserving the
partitioning on s_salesdate . Partition the sales table by range on s_
salesdate and then subpartition each partition by hash on s_customerid using
16 subpartitions for each partition, for a total of 128 subpartitions. The customers
table can still use hash partitioning with 16 partitions.

When you use the method just described, a full partition-wise join works similarly
to the one created by the hash-hash method. The join is still divided into 16 smaller
joins between hash partition pairs from both tables. The difference is that now each
hash partition in the sales table is composed of a set of 8 subpartitions, one from
each range partition.

Figure 5–2 illustrates how the hash partitions are formed in the sales table. Each
cell represents a subpartition. Each row corresponds to one range partition, for a
total of 8 range partitions. Each range partition has 16 subpartitions. Each column
corresponds to one hash partition for a total of 16 hash partitions; each hash
partition has 8 subpartitions. Note that hash partitions can be defined only if all
partitions have the same number of subpartitions, in this case, 16.

Hash partitions are implicit in a composite table. However, Oracle does not record
them in the data dictionary, and you cannot manipulate them with DDL commands
as you can range partitions.
5-24 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
Figure 5–2 Range and Hash Partitions of a Composite Table

(Composite-Hash)-Hash partitioning is effective because it lets you combine
pruning (on s_salesdate) with a full partition-wise join (on customerid). In the
previous example query, pruning is achieved by scanning only the subpartitions
corresponding to Q3 of 1999, in other words, row number 3 in Figure 5–2. Oracle
then joins these subpartitions with the customer table, using a full partition-wise
join.

All characteristics of the hash-hash partition-wise join apply to the composite-hash
partition-wise join. In particular, for this example, these two points are common to
both methods:

■ The degree of parallelism for this full partition-wise join cannot exceed 16. Even
though the sales table has 128 subpartitions, it has only 16 hash partitions.

1999 - Q1

1999 - Q2

1999 - Q3

1999 - Q4

2000 - Q1

2000 - Q2

2000 - Q3

2000 - Q4

Hash partition #9

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16
sa

le
sd

at
e

customerid
Parallelism and Partitioning in Data Warehouses 5-25

Partitioning Design Considerations
■ The rules for data placement on MPP systems apply here. The only difference is
that a hash partition is now a collection of subpartitions. You must ensure that
all these subpartitions are placed on the same node as the matching hash
partition from the other table. For example, in Figure 5–2, store hash partition 9
of the sales table shown by the eight circled subpartitions, on the same node
as hash partition 9 of the customers table.

(Composite-List)-List The (Composite-List)-List method resembles that for
(Composite-Hash)-Hash partition-wise joins.

Composite-Composite (Hash/List Dimension) If needed, you can also partition the
customer table by the composite method. For example, you partition it by range
on a postal code column to enable pruning based on postal code. You then
subpartition it by hash on customerid using the same number of partitions (16) to
enable a partition-wise join on the hash dimension.

Range-Range and List-List You can also join range partitioned tables with range
partitioned tables and list partitioned tables with list partitioned tables in a
partition-wise manner, but this is relatively uncommon. This is more complex to
implement because you must know the distribution of the data before performing
the join. Furthermore, if you do not correctly identify the partition bounds so that
you have partitions of equal size, data skew during the execution may result.

The basic principle for using range-range and list-list is the same as for using
hash-hash: you must equipartition both tables. This means that the number of
partitions must be the same and the partition bounds must be identical. For
example, assume that you know in advance that you have 10 million customers,
and that the values for customerid vary from 1 to 10,000,000. In other words, you
have 10 million possible different values. To create 16 partitions, you can range
partition both tables, sales on c_customerid and customers on s_
customerid . You should define partition bounds for both tables in order to
generate partitions of the same size. In this example, partition bounds should be
defined as 625001, 1250001, 1875001, ... 10000001, so that each partition contains
625000 rows.

Range-Composite, Composite-Composite (Range Dimension) Finally, you can also
subpartition one or both tables on another column. Therefore, the range-composite
and composite-composite methods on the range dimension are also valid for
enabling a full partition-wise join on the range dimension.
5-26 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
Partial Partition-wise Joins
Oracle can perform partial partition-wise joins only in parallel. Unlike full
partition-wise joins, partial partition-wise joins require you to partition only one
table on the join key, not both tables. The partitioned table is referred to as the
reference table. The other table may or may not be partitioned. Partial
partition-wise joins are more common than full partition-wise joins.

To execute a partial partition-wise join, Oracle dynamically repartitions the other
table based on the partitioning of the reference table. Once the other table is
repartitioned, the execution is similar to a full partition-wise join.

The performance advantage that partial partition-wise joins have over joins in
non-partitioned tables is that the reference table is not moved during the join
operation. Parallel joins between non-partitioned tables require both input tables to
be redistributed on the join key. This redistribution operation involves exchanging
rows between parallel execution servers. This is a CPU-intensive operation that can
lead to excessive interconnect traffic in Oracle Real Application Clusters
environments. Partitioning large tables on a join key, either a foreign or primary
key, prevents this redistribution every time the table is joined on that key. Of course,
if you choose a foreign key to partition the table, which is the most common
scenario, select a foreign key that is involved in many queries.

To illustrate partial partition-wise joins, consider the previous sales/customer
example. Assume that s_customer is not partitioned or is partitioned on a column
other than c_customerid . Because sales is often joined with customers on
customerid , and because this join dominates our application workload, partition
sales on s_customerid to enable partial partition-wise join every time
customers and sales are joined. As in full partition-wise join, you have several
alternatives:

Hash/List The simplest method to enable a partial partition-wise join is to partition
sales by hash on c_customerid . The number of partitions determines the
maximum degree of parallelism, because the partition is the smallest granule of
parallelism for partial partition-wise join operations.

The parallel execution of a partial partition-wise join is illustrated in Figure 5–3,
which assumes that both the degree of parallelism and the number of partitions of
sales are 16. The execution involves two sets of query servers: one set, labeled set 1
in Figure 5–3, scans the customers table in parallel. The granule of parallelism for
the scan operation is a range of blocks.

Rows from customers that are selected by the first set, in this case all rows, are
redistributed to the second set of query servers by hashing customerid . For
Parallelism and Partitioning in Data Warehouses 5-27

Partitioning Design Considerations
example, all rows in customers that could have matching rows in partition P1 of
sales are sent to query server 1 in the second set. Rows received by the second set
of query servers are joined with the rows from the corresponding partitions in
sales . Query server number 1 in the second set joins all customers rows that it
receives with partition P1 of sales .

Figure 5–3 Partial Partition-wise Join

Considerations for full partition-wise joins also apply to partial partition-wise joins:

■ The degree of parallelism does not need to equal the number of partitions. In
Figure 5–3, the query executes with two sets of 16 query servers. In this case,
Oracle assigns 1 partition to each query server of the second set. Again, the
number of partitions should always be a multiple of the degree of parallelism.

Note: This section is based on range-hash, but it also applies for
range-list partial partition-wise joins.

Server

P1

Server

P2

Server

P16

. . .

. . .

. . .

sales

Parallel
execution
server
set 2

Parallel
execution
server
set 1

customers

re-distribution
hash(c_customerid)

JOIN

SELECT
5-28 Oracle9i Data Warehousing Guide

Partitioning Design Considerations
■ In Oracle Real Application Clusters environments on shared-nothing platforms
(MPPs), each hash partition of sales should preferably have affinity to only
one node in order to avoid remote I/Os. Also, spread partitions over all nodes
to avoid bottlenecks and use all CPU resources available on the system. A node
can host multiple partitions when there are more partitions than nodes.

Composite As with full partition-wise joins, the prime partitioning method for the
sales table is to use the range method on column s_salesdate . This is because
sales is a typical example of a table that stores historical data. To enable a partial
partition-wise join while preserving this range partitioning, subpartition sales by
hash on column s_customerid using 16 subpartitions for each partition. Pruning
and partial partition-wise joins can be used together if a query joins customers
and sales and if the query has a selection predicate on s_salesdate .

When sales is composite, the granule of parallelism for a partial partition-wise
join is a hash partition and not a subpartition. Refer to Figure 5–2 for an illustration
of a hash partition in a composite table. Again, the number of hash partitions
should be a multiple of the degree of parallelism. Also, on an MPP system, ensure
that each hash partition has affinity to a single node. In the previous example, the
eight subpartitions composing a hash partition should have affinity to the same
node.

Range Finally, you can use range partitioning on s_customerid to enable a partial
partition-wise join. This works similarly to the hash method, but a side effect of
range partitioning is that the resulting data distribution could be skewed if the size
of the partitions differs. Moreover, this method is more complex to implement
because it requires prior knowledge of the values of the partitioning column that is
also a join key.

Benefits of Partition-Wise Joins
Partition-wise joins offer benefits described in this section:

■ Reduction of Communications Overhead

■ Reduction of Memory Requirements

See Also: Oracle9i Real Application Clusters Concepts for more
information on data affinity

Note: This section is based on range-hash, but it also applies for
range-list partial partition-wise joins.
Parallelism and Partitioning in Data Warehouses 5-29

Partitioning Design Considerations
Reduction of Communications Overhead When executed in parallel, partition-wise joins
reduce communications overhead. This is because, in the default case, parallel
execution of a join operation by a set of parallel execution servers requires the
redistribution of each table on the join column into disjoint subsets of rows. These
disjoint subsets of rows are then joined pair-wise by a single parallel execution
server.

Oracle can avoid redistributing the partitions because the two tables are already
partitioned on the join column. This enables each parallel execution server to join a
pair of matching partitions.

This improved performance from using parallel execution is even more noticeable
in Oracle Real Application Clusters configurations with internode parallel
execution. Partition-wise joins dramatically reduce interconnect traffic. Using this
feature is for large DSS configurations that use Oracle Real Application Clusters.

Currently, most Oracle Real Application Clusters platforms, such as MPP and SMP
clusters, provide limited interconnect bandwidths compared with their processing
powers. Ideally, interconnect bandwidth should be comparable to disk bandwidth,
but this is seldom the case. As a result, most join operations in Oracle Real
Application Clusters experience high interconnect latencies without parallel
execution of partition-wise joins.

Reduction of Memory Requirements Partition-wise joins require less memory than the
equivalent join operation of the complete data set of the tables being joined.

In the case of serial joins, the join is performed at the same time on a pair of
matching partitions. If data is evenly distributed across partitions, the memory
requirement is divided by the number of partitions. There is no skew.

In the parallel case, memory requirements depend on the number of partition pairs
that are joined in parallel. For example, if the degree of parallelism is 20 and the
number of partitions is 100, 5 times less memory is required because only 20 joins of
two partitions are performed at the same time. The fact that partition-wise joins
require less memory has a direct effect on performance. For example, the join
probably does not need to write blocks to disk during the build phase of a hash join.

Performance Considerations for Parallel Partition-Wise Joins
The cost-based optimizer weighs the advantages and disadvantages when deciding
whether or not to use partition-wise joins.

■ In range partitioning where partition sizes differ, data skew increases response
time; some parallel execution servers take longer than others to finish their
joins. Oracle recommends the use of hash (sub)partitioning to enable
5-30 Oracle9i Data Warehousing Guide

Miscellaneous Partition Operations
partition-wise joins because hash partitioning, if the number of partitions is a
power of two, limits the risk of skew.

■ The number of partitions used for partition-wise joins should, if possible, be a
multiple of the number of query servers. With a degree of parallelism of 16, for
example, you can have 16, 32, or even 64 partitions. If there is an even number
of partitions, some parallel execution servers are used less than others. For
example, if there are 17 evenly distributed partition pairs, only one pair will
work on the last join, while the other pairs will have to wait. This is because, in
the beginning of the execution, each parallel execution server works on a
different partition pair. At the end of this first phase, only one pair is left. Thus,
a single parallel execution server joins this remaining pair while all other
parallel execution servers are idle.

■ Sometimes, parallel joins can cause remote I/Os. For example, on Oracle Real
Application Clusters environments running on MPP configurations, if a pair of
matching partitions is not collocated on the same node, a partition-wise join
requires extra internode communication due to remote I/O. This is because
Oracle must transfer at least one partition to the node where the join is
performed. In this case, it is better to explicitly redistribute the data than to use
a partition-wise join.

Miscellaneous Partition Operations
The following partition operations are needed on a regular basis:

■ Adding Partitions

■ Dropping Partitions

■ Exchanging Partitions

■ Moving Partitions

■ Splitting and Merging Partitions

■ Truncating Partitions

■ Coalescing Partitions
Parallelism and Partitioning in Data Warehouses 5-31

Miscellaneous Partition Operations
Adding Partitions
Different types of partitions require slightly different syntax when being added.
Basic topics are:

■ Adding a Partition to a Range-Partitioned Table

■ Adding a Partition to a Hash-Partitioned Table

■ Adding a Partition to a List-Partitioned Table

Adding a Partition to a Range-Partitioned Table
Use the ALTER TABLE ... ADD PARTITION statement to add a new partition to
the "high" end (the point after the last existing partition). To add a partition at the
beginning or in the middle of a table, use the SPLIT PARTITION clause.

For example, consider the table, sales , which contains data for the current month
in addition to the previous 12 months. On January 1, 1999, you add a partition for
January, which is stored in tablespace tsx .

ALTER TABLE sales
 ADD PARTITION jan96 VALUES LESS THAN ('01-FEB-1999')
 TABLESPACE tsx;

You cannot add a partition to a range-partitioned table that has a MAXVALUE
partition, but you can split the MAXVALUE partition. By doing so, you effectively
create a new partition defined by the values that you specify, and a second partition
that remains the MAXVALUE partition.

Local and global indexes associated with the range-partitioned table remain usable.

Adding a Partition to a Hash-Partitioned Table
When you add a partition to a hash-partitioned table, Oracle populates the new
partition with rows rehashed from an existing partition (selected by Oracle) as
determined by the hash function.

The following statements show two ways of adding a hash partition to table
scubagear . Choosing the first statement adds a new hash partition whose
partition name is system generated, and which is placed in the table’s default
tablespace. The second statement also adds a new hash partition, but that partition
is explicitly named p_named and is created in tablespace gear5 .

ALTER TABLE scubagear ADD PARTITION;
ALTER TABLE scubagear
 ADD PARTITION p_named TABLESPACE gear5;
5-32 Oracle9i Data Warehousing Guide

Miscellaneous Partition Operations
Adding a Partition to a List-Partitioned Table
The following statement illustrates adding a new partition to a list-partitioned table.
In this example, physical attributes and NOLOGGING are specified for the partition
being added.

ALTER TABLE q1_sales_by_region
 ADD PARTITION q1_nonmainland VALUES ('HI', 'PR')
 STORAGE (INITIAL 20K NEXT 20K) TABLESPACE tbs_3
 NOLOGGING;

Any value in the set of literal values that describe the partition being added must
not exist in any of the other partitions of the table.

You cannot add a partition to a list-partitioned table that has a default partition, but
you can split the default partition. By doing so, you effectively create a new
partition defined by the values that you specify, and a second partition that remains
the default partition.

Local and global indexes associated with the list-partitioned table remain usable.

Dropping Partitions
You can drop partitions from range, composite, list, or composite range-list
partitioned tables. For hash-partitioned tables, or hash subpartitions of range-hash
partitioned tables, you must perform a coalesce operation instead.

Dropping a Table Partition
Use one of the following statements to drop a table partition or subpartition:

■ ALTER TABLE ... DROP PARTITION to drop a table partition

■ ALTER TABLE ... DROP SUBPARTITION to drop a subpartition of a
range-list partitioned table

A typical example of dropping a partition containing data and referential integrity
objects is as follows:

ALTER TABLE sales
 DISABLE CONSTRAINT dname_sales1;
ALTER TABLE sales DROP PARTITTION dec98;
ALTER TABLE sales
 ENABLE CONSTRAINT dname_sales1;

In this example, you disable the integrity constraints, issue the ALTER TABLE ...
DROP PARTITION statement, then enable the integrity constraints. This method is
Parallelism and Partitioning in Data Warehouses 5-33

Miscellaneous Partition Operations
most appropriate for large tables where the partition being dropped contains a
significant percentage of the total data in the table.

Exchanging Partitions
You can convert a partition (or subpartition) into a nonpartitioned table, and a
nonpartitioned table into a partition (or subpartition) of a partitioned table by
exchanging their data segments. You can also convert a hash-partitioned table into a
partition of a range-hash partitioned table, or convert the partition of the
range-hash partitioned table into a hash-partitioned table. Similarly, you can
convert a list-partitioned table into a partition of a range-list partitioned table, or
convert the partition of the range-list partitioned table into a list-partitioned table

A typical example of exchanging into a nonpartitioned table follows. In this
example, table stocks can be range, hash, or list partitioned.

ALTER TABLE stocks
 EXCHANGE PARTITION p3 WITH stock_table_3;

Moving Partitions
Use the MOVE PARTITION clause to move a partition. For example, to move the
most active partition to a tablespace that resides on its own disk (in order to balance
I/O) and to not log the action, issue the following statement:

ALTER TABLE parts MOVE PARTITION depot2
 TABLESPACE ts094 NOLOGGING;

This statement always drops the partition’s old segment and creates a new segment,
even if you do not specify a new tablespace.

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples
5-34 Oracle9i Data Warehousing Guide

Miscellaneous Partition Operations
Splitting and Merging Partitions
The SPLIT PARTITION clause of the ALTER TABLEor ALTER INDEXstatement is
used to redistribute the contents of a partition into two new partitions. Consider
doing this when a partition becomes too large and causes backup, recovery, or
maintenance operations to take a long time to complete. You can also use the SPLIT
PARTITION clause to redistribute the I/O load.

This clause cannot be used for hash partitions or subpartitions.

A typical example is to split a range-partitioned table as follows:

ALTER TABLE vet_cats SPLIT PARTITION
 fee_katy at (100) INTO (PARTITION
 fee_katy1 ..., PARTITION fee_katy2 ...);
ALTER INDEX JAF1 REBUILD PARTITION fee_katy1;
ALTER INDEX JAF1 REBUILD PARTITION fee_katy2;
ALTER INDEX VET REBUILD PARTITION vet_parta;
ALTER INDEX VET REBUILD PARTITION vet_partb;

Use the ALTER TABLE ... MERGE PARTITIONS statement to merge the contents
of two partitions into one partition. The two original partitions are dropped, as are
any corresponding local indexes.

You cannot use this statement for a hash-partitioned table or for hash subpartitions
of a range-hash partitioned table.

The following statement merges two subpartitions of a table partitioned using
range-list method into a new subpartition located in tablespace tbs_west :

ALTER TABLE quarterly_regional_sales
 MERGE SUBPARTITIONS q1_1999_northwest, q1_1999_southwest
 INTO SUBPARTITION q1_1999_west
 TABLESPACE tbs_west;

Truncating Partitions
Use the ALTER TABLE ... TRUNCATE PARTITION statement to remove all rows
from a table partition. Truncating a partition is similar to dropping a partition,
except that the partition is emptied of its data, but not physically dropped.

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples
Parallelism and Partitioning in Data Warehouses 5-35

Miscellaneous Partition Operations
You cannot truncate an index partition. However, if there are local indexes defined
for the table, the ALTER TABLE TRUNCATE PARTITION statement truncates the
matching partition in each local index.

The following example illustrates a partition that contains data and has referential
integrity constraints:

ALTER TABLE sales
 DISABLE CONSTRAINT dname_sales1;
ALTER TABLE sales TRUNCATE PARTITTION dec94;
ALTER TABLE sales
 ENABLE CONSTRAINT dname_sales1;

In this example, you disable the integrity constraints, issue the ALTER TABLE ...
TRUNCATE PARTITION statement, then re-enable the integrity constraints.

This method is most appropriate for large tables where the partition being
truncated contains a significant percentage of the total data in the table.

Coalescing Partitions
Coalescing partitions is a way of reducing the number of partitions in a
hash-partitioned table, or the number of subpartitions in a range-hash partitioned
table. When a hash partition is coalesced, its contents are redistributed into one or
more remaining partitions determined by the hash function. The specific partition
that is coalesced is selected by Oracle, and is dropped after its contents have been
redistributed.

The following statement illustrates a typical case of reducing by one the number of
partitions in a table:

ALTER TABLE ouu1
 COALESCE PARTITION;

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples

See Also: Oracle9i Database Administrator’s Guide for more
detailed examples
5-36 Oracle9i Data Warehousing Guide

In
6

Indexes

This chapter describes how to use indexes in a data warehousing environment and
discusses the following types of index:

■ Bitmap Indexes

■ B-tree Indexes

■ Local Indexes Versus Global Indexes

See Also: Oracle9i Database Concepts for general information
regarding indexing
dexes 6-1

Bitmap Indexes
Bitmap Indexes
Bitmap indexes are widely used in data warehousing environments. The
environments typically have large amounts of data and ad hoc queries, but a low
level of concurrent DML transactions. For such applications, bitmap indexing
provides:

■ Reduced response time for large classes of ad hoc queries

■ Reduced storage requirements compared to other indexing techniques

■ Dramatic performance gains even on hardware with a relatively small number
of CPUs or a small amount of memory

■ Efficient maintenance during parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of space because the indexes can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of rowids for each key corresponding to the rows with
that key value. In a bitmap index, a bitmap for each key value replaces a list of
rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so that the bitmap index
provides the same functionality as a regular index. If the number of different key
values is small, bitmap indexes save space.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before
the table itself is accessed. This improves response time, often dramatically.

Note: Bitmap indexes are available only if you have purchased the
Oracle9i Enterprise Edition. See Oracle9i Database New Features for
more information about the features available in Oracle9i and the
Oracle9i Enterprise Edition.
6-2 Oracle9i Data Warehousing Guide

Bitmap Indexes
Benefits for Data Warehousing Applications
Bitmap indexes are primarily intended for data warehousing applications where
users query the data rather than update it. They are not suitable for OLTP
applications with large numbers of concurrent transactions modifying the data.

Parallel query and parallel DML work with bitmap indexes as they do with
traditional indexes. Bitmap indexing also supports parallel create indexes and
concatenated indexes.

Cardinality
The advantages of using bitmap indexes are greatest for columns in which the ratio
of the number of distinct values to the number of rows in the table is under 1%. We
refer to this ratio as the degree of cardinality. A gender column, which has only
two distinct values (male and female), is ideal for a bitmap index. However, data
warehouse administrators also build bitmap indexes on columns with higher
cardinalities.

For example, on a table with one million rows, a column with 10,000 distinct values
is a candidate for a bitmap index. A bitmap index on this column can outperform a
B-tree index, particularly when this column is often queried in conjunction with
other indexed columns. In fact, in a typical data warehouse environments, a bitmap
index can be considered for any non-unique column.

B-tree indexes are most effective for high-cardinality data: that is, for data with
many possible values, such as customer_name or phone_number . In a data
warehouse, B-tree indexes should be used only for unique columns or other
columns with very high cardinalities (that is, columns that are almost unique). The
majority of indexes in a data warehouse should be bitmap indexes.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
query performance. AND and OR conditions in the WHERE clause of a query can be
resolved quickly by performing the corresponding Boolean operations directly on
the bitmaps before converting the resulting bitmap to rowids. If the resulting
number of rows is small, the query can be answered quickly without resorting to a
full table scan.

See Also: Chapter 17, "Schema Modeling Techniques" for further
information about using bitmap indexes in data warehousing
environments
Indexes 6-3

Bitmap Indexes
Example 6–1 Bitmap Index

The following shows a portion of a company's customers table.

SELECT cust_id, cust_gender, cust_marital_status, cust_income_level
FROM customers;

CUST_ID C CUST_MARITAL_STATUS CUST_INCOME_LEVEL
---------- - -------------------- ---------------------
...
 70 F D: 70,000 - 89,999
 80 F married H: 150,000 - 169,999
 90 M single H: 150,000 - 169,999
 100 F I: 170,000 - 189,999
 110 F married C: 50,000 - 69,999
 120 M single F: 110,000 - 129,999
 130 M J: 190,000 - 249,999
 140 M married G: 130,000 - 149,999
...

Because cust_gender , cust_marital_status , and cust_income_level are all
low-cardinality columns (there are only three possible values for marital status and
region, two possible values for gender, and 12 for income level), bitmap indexes are
ideal for these columns. Do not create a bitmap index on cust_id because this is a
unique column. Instead, a unique B-tree index on this column provides the most
efficient representation and retrieval.

Table 6–1 illustrates the bitmap index for the cust_gender column in this
example. It consists of two separate bitmaps, one for gender.

Table 6–1 Sample Bitmap Index

 gender='M' gender='F'

cust_id 70 0 1

cust_id 80 0 1

cust_id 90 1 0

cust_id 100 0 1

cust_id 110 0 1

cust_id 120 1 0

cust_id 130 1 0

cust_id 140 1 0
6-4 Oracle9i Data Warehousing Guide

Bitmap Indexes
Each entry (or bit) in the bitmap corresponds to a single row of the customers
table. The value of each bit depends upon the values of the corresponding row in
the table. For instance, the bitmap cust_gender='F' contains a one as its first bit
because the region is east in the first row of the customers table. The bitmap
cust_gender='F' has a zero for its third bit because the gender of the third row
is not F.

An analyst investigating demographic trends of the company's customers might
ask, "How many of our married customers have an income level of G or H?" This
corresponds to the following SQL query:

SELECT COUNT(*) FROM customers
WHERE cust_marital_status = 'married'
AND cust_income_level IN ('H: 150,000 - 169,999', 'G: 130,000 - 149,999');

Bitmap indexes can efficiently process this query by merely counting the number of
ones in the bitmap illustrated in Figure 6–1. The result set will be found by using
bitmap or merge operations without the necessity of a conversion to rowids. To
identify additional specific customer attributes that satisfy the criteria, use the
resulting bitmap to access the table after a bitmap to rowid conversion.

Figure 6–1 Executing a Query Using Bitmap Indexes

Bitmap Indexes and Nulls
Unlike most other types of indexes, bitmap indexes include rows that have NULL
values. Indexing of nulls can be useful for some types of SQL statements, such as
queries with the aggregate function COUNT.

AND OR = AND =

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

0

0

1

status =
'married'

region =
'central'

region =
'west'
Indexes 6-5

Bitmap Indexes
Example 6–2 Bitmap Index

SELECT COUNT(*) FROM customers WHERE cust_marital_status IS NULL;

This query uses a bitmap index on cust_marital_status . Note that this query
would not be able to use a B-tree index.

SELECT COUNT(*) FROM employees;

Any bitmap index can be used for this query because all table rows are indexed,
including those that have NULLdata. If nulls were not indexed, the optimizer would
be able to use indexes only on columns with NOT NULL constraints.

Bitmap Indexes on Partitioned Tables
You can create bitmap indexes on partitioned tables but they must be local to the
partitioned table—they cannot be global indexes. (Global bitmap indexes are
supported only on nonpartitioned tables). Bitmap indexes on partitioned tables
must be local indexes.

Bitmap Join Indexes
In addition to a bitmap index on a single table, you can create a bitmap join index,
which is a bitmap index for the join of two or more tables. A bitmap join index is a
space efficient way of reducing the volume of data that must be joined by
performing restrictions in advance. For each value in a column of a table, a bitmap
join index stores the rowids of corresponding rows in one or more other tables. In a
data warehousing environment, the join condition is an equi-inner join between the
primary key column or columns of the dimension tables and the foreign key
column or columns in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views,
an alternative for materializing joins in advance. This is because the materialized
join views do not compress the rowids of the fact tables.

See Also: "Index Partitioning" on page 5-9
6-6 Oracle9i Data Warehousing Guide

Bitmap Indexes
Example 6–3 Bitmap Join Index: Example 1

Using the example in "Bitmap Index" on page 6-4, create a bitmap join index with
the following sales table:

SELECT time_id, cust_id, amount FROM sales;

TIME_ID CUST_ID AMOUNT
--------- ---------- ----------
01-JAN-98 29700 2291
01-JAN-98 3380 114
01-JAN-98 67830 553
01-JAN-98 179330 0
01-JAN-98 127520 195
01-JAN-98 33030 280
...

CREATE BITMAP INDEX sales_cust_gender_bjix
ON sales(customers.cust_gender)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL;

The following query shows how to use this bitmap join index and illustrates its
bitmap pattern:

SELECT sales.time_id, customers.cust_gender, sales.amount
FROM sales, customers
WHERE sales.cust_id = customers.cust_id;

TIME_ID C AMOUNT
--------- - ----------
01-JAN-98 M 2291
01-JAN-98 F 114
01-JAN-98 M 553
01-JAN-98 M 0
01-JAN-98 M 195
01-JAN-98 M 280
01-JAN-98 M 32
...
Indexes 6-7

Bitmap Indexes
Table 6–2 illustrates the bitmap join index in this example:

You can create other bitmap join indexes using more than one column or more than
one table, as shown in these examples.

Example 6–4 Bitmap Join Index: Example 2

You can create a bitmap join index on more than one column, as in the following
example, which uses customers(gender, marital_status) :

CREATE BITMAP INDEX sales_cust_gender_ms_bjix
ON sales(customers.cust_gender, customers.cust_marital_status)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING;

Example 6–5 Bitmap Join Index: Example 3

You can create a bitmap join index on more than one table, as in the following,
which uses customers(gender) and products(category) :

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products
WHERE sales.cust_id = customers.cust_id
AND sales.prod_id = products.prod_id
LOCAL NOLOGGING;

Table 6–2 Sample Bitmap Join Index

 cust_gender='M' cust_gender='F'

sales record 1 1 0

sales record 2 0 1

sales record 3 1 0

sales record 4 1 0

sales record 5 1 0

sales record 6 1 0

sales record 7 1 0
6-8 Oracle9i Data Warehousing Guide

Bitmap Indexes
Example 6–6 Bitmap Join Index: Example 4

You can create a bitmap join index on more than one table, in which the indexed
column is joined to the indexed table by using another table. For example, we can
build an index on countries.country_name , even though the countries table
is not joined directly to the sales table. Instead, the countries table is joined to
the customers table, which is joined to the sales table. This type of schema is
commonly called a snowflake schema.

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products
WHERE sales.cust_id = customers.cust_id
AND sales.prod_id = products.prod_id
LOCAL NOLOGGING;

Bitmap Join Index Restrictions
Join results must be stored, therefore, bitmap join indexes have the following
restrictions:

■ Parallel DML is currently only supported on the fact table. Parallel DML on one
of the participating dimension tables will mark the index as unusable.

■ Only one table can be updated concurrently by different transactions when
using the bitmap join index.

■ No table can appear twice in the join.

■ You cannot create a bitmap join index on an index-organized table or a
temporary table.

■ The columns in the index must all be columns of the dimension tables.

■ The dimension table join columns must be either primary key columns or have
unique constraints.

■ If a dimension table has composite primary key, each column in the primary
key must be part of the join.

See Also: Oracle9i SQL Reference for further details
Indexes 6-9

B-tree Indexes
B-tree Indexes
A B-tree index is organized like an upside-down tree. The bottom level of the index
holds the actual data values and pointers to the corresponding rows, much as the
index in a book has a page number associated with each index entry.

In general, use B-tree indexes when you know that your typical query refers to the
indexed column and retrieves a few rows. In these queries, it is faster to find the
rows by looking at the index. However, using the book index analogy, if you plan to
look at every single topic in a book, you might not want to look in the index for the
topic and then look up the page. It might be faster to read through every chapter in
the book. Similarly, if you are retrieving most of the rows in a table, it might not
make sense to look up the index to find the table rows. Instead, you might want to
read or scan the table.

B-tree indexes are most commonly used in a data warehouse to index unique or
near-unique keys. In many cases, it may not be necessary to index these columns in
a data warehouse, because unique constraints can be maintained without an index,
and because typical data warehouse queries may not work better with such indexes.
Bitmap indexes should be more common than B-tree indexes in most data
warehouse environments.

Local Indexes Versus Global Indexes
B-tree indexes on partitioned tables can be global or local. With Oracle8i and earlier
releases, Oracle recommended that global indexes not be used in data warehouse
environments because a partition DDL statement (for example, ALTER TABLE ...
DROP PARTITION) would invalidate the entire index, and rebuilding the index is
expensive. In Oracle9i, global indexes can be maintained without Oracle marking
them as unusable after DDL. This enhancement makes global indexes more
effective for data warehouse environments.

However, local indexes will be more common than global indexes. Global indexes
should be used when there is a specific requirement which cannot be met by local
indexes (for example, a unique index on a non-partitioning key, or a performance
requirement).

Bitmap indexes on partitioned tables are always local.

See Also: Oracle9i Database Concepts for an explanation of B-tree
structures

See Also: "Types of Partitioning" on page 5-4 for further details
6-10 Oracle9i Data Warehousing Guide

Integrity Const
7

Integrity Constraints

This chapter describes integrity constraints, and discusses:

■ Why Integrity Constraints are Useful in a Data Warehouse

■ Overview of Constraint States

■ Typical Data Warehouse Integrity Constraints
raints 7-1

Why Integrity Constraints are Useful in a Data Warehouse
Why Integrity Constraints are Useful in a Data Warehouse
Integrity constraints provide a mechanism for ensuring that data conforms to
guidelines specified by the database administrator. The most common types of
constraints include:

■ UNIQUE constraints

To ensure that a given column is unique

■ NOT NULL constraints

To ensure that no null values are allowed

■ FOREIGN KEY constraints

To ensure that two keys share a primary key to foreign key relationship

Constraints can be used for these purposes in a data warehouse:

■ Data cleanliness

Constraints verify that the data in the data warehouse conforms to a basic level
of data consistency and correctness, preventing the introduction of dirty data.

■ Query optimization

The Oracle database utilizes constraints when optimizing SQL queries.
Although constraints can be useful in many aspects of query optimization,
constraints are particularly important for query rewrite of materialized views.

Unlike data in many relational database environments, data in a data warehouse is
typically added or modified under controlled circumstances during the extraction,
transformation, and loading (ETL) process. Multiple users normally do not update
the data warehouse directly, as they do in an OLTP system.

Many significant constraint features have been introduced for data warehousing.
Readers familiar with Oracle's constraint functionality in Oracle7 and Oracle8
should take special note of the functionality described in this chapter. In fact, many
Oracle7-based and Oracle8-based data warehouses lacked constraints because of
concerns about constraint performance. Newer constraint functionality addresses
these concerns.

See Also: Chapter 10, "Overview of Extraction, Transformation,
and Loading"
7-2 Oracle9i Data Warehousing Guide

Overview of Constraint States
Overview of Constraint States
To understand how best to use constraints in a data warehouse, you should first
understand the basic purposes of constraints. Some of these purposes are:

■ Enforcement

In order to use a constraint for enforcement, the constraint must be in the
ENABLE state. An enabled constraint ensures that all data modifications upon a
given table (or tables) satisfy the conditions of the constraints. Data
modification operations which produce data that violates the constraint fail
with a constraint violation error.

■ Validation

To use a constraint for validation, the constraint must be in the VALIDATE state.
If the constraint is validated, then all data that currently resides in the table
satisfies the constraint.

Note that validation is independent of enforcement. Although the typical
constraint in an operational system is both enabled and validated, any
constraint could be validated but not enabled or vice versa (enabled but not
validated). These latter two cases are useful for data warehouses.

■ Belief

In some cases, you will know that the conditions for a given constraint are true,
so you do not need to validate or enforce the constraint. However, you may
wish for the constraint to be present anyway to improve query optimization
and performance. When you use a constraint in this way, it is called a belief or
RELY constraint, and the constraint must be in the RELY state. The RELY state
provides you with a mechanism for telling Oracle9i that a given constraint is
believed to be true.

Note that the RELY state only affects constraints that have not been validated.
Integrity Constraints 7-3

Typical Data Warehouse Integrity Constraints
Typical Data Warehouse Integrity Constraints
This section assumes that you are familiar with the typical use of constraints. That
is, constraints that are both enabled and validated. For data warehousing, many
users have discovered that such constraints may be prohibitively costly to build and
maintain. The topics discussed are:

■ UNIQUE Constraints in a Data Warehouse

■ FOREIGN KEY Constraints in a Data Warehouse

■ RELY Constraints

■ Integrity Constraints and Parallelism

■ Integrity Constraints and Partitioning

■ View Constraints

UNIQUE Constraints in a Data Warehouse
A UNIQUE constraint is typically enforced using a UNIQUE index. However, in a
data warehouse whose tables can be extremely large, creating a unique index can be
costly both in processing time and in disk space.

Suppose that a data warehouse contains a table sales , which includes a column
sales_id . sales_id uniquely identifies a single sales transaction, and the data
warehouse administrator must ensure that this column is unique within the data
warehouse.

One way to create the constraint is as follows:

ALTER TABLE sales ADD CONSTRAINT sales_unique
UNIQUE(sales_id);

By default, this constraint is both enabled and validated. Oracle implicitly creates a
unique index on sales_id to support this constraint. However, this index can be
problematic in a data warehouse for three reasons:

■ The unique index can be very large, because the sales table can easily have
millions or even billions of rows.

■ The unique index is rarely used for query execution. Most data warehousing
queries do not have predicates on unique keys, so creating this index will
probably not improve performance.
7-4 Oracle9i Data Warehousing Guide

Typical Data Warehouse Integrity Constraints
■ If sales is partitioned along a column other than sales_id , the unique index
must be global. This can detrimentally affect all maintenance operations on the
sales table.

A unique index is required for unique constraints to ensure that each individual
row modified in the sales table satisfies the UNIQUE constraint.

For data warehousing tables, an alternative mechanism for unique constraints is
illustrated in the following statement:

ALTER TABLE sales ADD CONSTRAINT sales_unique
UNIQUE (sales_id) DISABLE VALIDATE;

This statement creates a unique constraint, but, because the constraint is disabled, a
unique index is not required. This approach can be advantageous for many data
warehousing environments because the constraint now ensures uniqueness without
the cost of a unique index.

However, there are trade-offs for the data warehouse administrator to consider with
DISABLE VALIDATE constraints. Because this constraint is disabled, no DML
statements that modify the unique column are permitted against the sales table.
You can use one of two strategies for modifying this table in the presence of a
constraint:

■ Use DDL to add data to this table (such as exchanging partitions). See the
example in Chapter 14, "Maintaining the Data Warehouse".

■ Before modifying this table, drop the constraint. Then, make all necessary data
modifications. Finally, re-create the disabled constraint. Re-creating the
constraint is more efficient than re-creating an enabled constraint. However, this
approach does not guarantee that data added to the sales table while the
constraint has been dropped is unique.

FOREIGN KEY Constraints in a Data Warehouse
In a star schema data warehouse, FOREIGN KEY constraints validate the
relationship between the fact table and the dimension tables. A sample constraint
might be:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
 FOREIGN KEY (sales_time_id) REFERENCES time (time_id)
 ENABLE VALIDATE;
Integrity Constraints 7-5

Typical Data Warehouse Integrity Constraints
However, in some situations, you may choose to use a different state for the
FOREIGN KEY constraints, in particular, the ENABLE NOVALIDATE state. A data
warehouse administrator might use an ENABLE NOVALIDATE constraint when
either:

■ The tables contain data that currently disobeys the constraint, but the data
warehouse administrator wishes to create a constraint for future enforcement.

■ An enforced constraint is required immediately.

Suppose that the data warehouse loaded new data into the fact tables every day, but
refreshed the dimension tables only on the weekend. During the week, the
dimension tables and fact tables may in fact disobey the FOREIGN KEY constraints.
Nevertheless, the data warehouse administrator might wish to maintain the
enforcement of this constraint to prevent any changes that might affect the
FOREIGN KEY constraint outside of the ETL process. Thus, you can create the
FOREIGN KEY constraints every night, after performing the ETL process, as shown
here:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
 FOREIGN KEY (sales_time_id) REFERENCES time (time_id)
 ENABLE NOVALIDATE;

ENABLE NOVALIDATE can quickly create an enforced constraint, even when the
constraint is believed to be true. Suppose that the ETL process verifies that a
FOREIGN KEY constraint is true. Rather than have the database re-verify this
FOREIGN KEY constraint, which would require time and database resources, the
data warehouse administrator could instead create a FOREIGN KEYconstraint using
ENABLE NOVALIDATE.

RELY Constraints
The ETL process commonly verifies that certain constraints are true. For example, it
can validate all of the foreign keys in the data coming into the fact table. This means
that you can trust it to provide clean data, instead of implementing constraints in
the data warehouse. You create a RELY constraint as follows:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
 FOREIGN KEY (sales_time_id) REFERENCES time (time_id)
 RELY DISABLE NOVALIDATE;
7-6 Oracle9i Data Warehousing Guide

Typical Data Warehouse Integrity Constraints
RELY constraints, even though they are not used for data validation, can:

■ Enable more sophisticated query rewrites for materialized views. See
Chapter 22, "Query Rewrite" for further details.

■ Enable other data warehousing tools to retrieve information regarding
constraints directly from the Oracle data dictionary.

Creating a RELY constraint is inexpensive and does not impose any overhead
during DML or load. Because the constraint is not being validated, no data
processing is necessary to create it.

Integrity Constraints and Parallelism
All constraints can be validated in parallel. When validating constraints on very
large tables, parallelism is often necessary to meet performance goals. The degree of
parallelism for a given constraint operation is determined by the default degree of
parallelism of the underlying table.

Integrity Constraints and Partitioning
You can create and maintain constraints before you partition the data. Later
chapters discuss the significance of partitioning for data warehousing. Partitioning
can improve constraint management just as it does to management of many other
operations. For example, Chapter 14, "Maintaining the Data Warehouse" provides a
scenario creating UNIQUEand FOREIGN KEYconstraints on a separate staging table,
and these constraints are maintained during the EXCHANGE PARTITION statement.

View Constraints
You can create constraints on views. The only type of constraint supported on a
view is a RELY constraint.

This type of constraint is useful when queries typically access views instead of base
tables, and the DBA thus needs to define the data relationships between views
rather than tables. View constraints are particularly useful in OLAP environments,
where they may enable more sophisticated rewrites for materialized views.

See Also: Chapter 8, "Materialized Views" and Chapter 22,
"Query Rewrite"
Integrity Constraints 7-7

Typical Data Warehouse Integrity Constraints
7-8 Oracle9i Data Warehousing Guide

Materialized
8

Materialized Views

This chapter introduces you to the use of materialized views and discusses:

■ Overview of Data Warehousing with Materialized Views

■ Types of Materialized Views

■ Creating Materialized Views

■ Registering Existing Materialized Views

■ Partitioning and Materialized Views

■ Materialized Views in OLAP Environments

■ Choosing Indexes for Materialized Views

■ Invalidating Materialized Views

■ Security Issues with Materialized Views

■ Altering Materialized Views

■ Dropping Materialized Views

■ Analyzing Materialized View Capabilities
Views 8-1

Overview of Data Warehousing with Materialized Views
Overview of Data Warehousing with Materialized Views
Typically, data flows from one or more online transaction processing (OLTP)
databases into a data warehouse on a monthly, weekly, or daily basis. The data is
normally processed in a staging file before being added to the data warehouse.
Data warehouses commonly range in size from tens of gigabytes to a few terabytes.
Usually, the vast majority of the data is stored in a few very large fact tables.

One technique employed in data warehouses to improve performance is the
creation of summaries. Summaries are special kinds of aggregate views that
improve query execution times by precalculating expensive joins and aggregation
operations prior to execution and storing the results in a table in the database. For
example, you can create a table to contain the sums of sales by region and by
product.

The summaries or aggregates that are referred to in this book and in literature on
data warehousing are created in Oracle using a schema object called a materialized
view. Materialized views can perform a number of roles, such as improving query
performance or providing replicated data.

Prior to Oracle8i, organizations using summaries spent a significant amount of time
and effort creating summaries manually, identifying which summaries to create,
indexing the summaries, updating them, and advising their users on which ones to
use. The introduction of summary management in Oracle8i eased the workload of
the database administrator and meant the user no longer needed to be aware of the
summaries that had been defined. The database administrator creates one or more
materialized views, which are the equivalent of a summary. The end user queries
the tables and views at the detail data level. The query rewrite mechanism in the
Oracle server automatically rewrites the SQL query to use the summary tables. This
mechanism reduces response time for returning results from the query. Materialized
views within the data warehouse are transparent to the end user or to the database
application.

Although materialized views are usually accessed through the query rewrite
mechanism, an end user or database application can construct queries that directly
access the summaries. However, serious consideration should be given to whether
users should be allowed to do this because any change to the summaries will affect
the queries that reference them.

Materialized Views for Data Warehouses
In data warehouses, you can use materialized views to precompute and store
aggregated data such as the sum of sales. Materialized views in these environments
8-2 Oracle9i Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
are often referred to as summaries, because they store summarized data. They can
also be used to precompute joins with or without aggregations. A materialized view
eliminates the overhead associated with expensive joins and aggregations for a
large or important class of queries.

Materialized Views for Distributed Computing
In distributed environments, you can use materialized views to replicate data at
distributed sites and to synchronize updates done at those sites with conflict
resolution methods. The materialized views as replicas provide local access to data
that otherwise would have to be accessed from remote sites. Materialized views are
also useful in remote data marts.

Materialized Views for Mobile Computing
You can also use materialized views to download a subset of data from central
servers to mobile clients, with periodic refreshes and updates between clients and
the central servers.

This chapter focuses on the use of materialized views in data warehouses.

The Need for Materialized Views
You can use materialized views in data warehouses to increase the speed of queries
on very large databases. Queries to large databases often involve joins between
tables, aggregations such as SUM, or both. These operations are expensive in terms
of time and processing power. The type of materialized view you create determines
how the materialized view is refreshed and used by query rewrite.

You can use materialized views in a number of ways, and you can use almost
identical syntax to perform a number of roles. For example, a materialized view can
replicate data, a process formerly achieved by using the CREATE SNAPSHOT
statement. Now CREATE MATERIALIZED VIEW is a synonym for CREATE
SNAPSHOT.

See Also: Oracle9i Replication and Oracle9i Heterogeneous
Connectivity Administrator’s Guide for details on distributed and
mobile computing

See Also: Oracle9i Replication and Oracle9i Heterogeneous
Connectivity Administrator’s Guide for details on distributed and
mobile computing
Materialized Views 8-3

Overview of Data Warehousing with Materialized Views
Materialized views improve query performance by precalculating expensive join
and aggregation operations on the database prior to execution and storing the
results in the database. The query optimizer automatically recognizes when an
existing materialized view can and should be used to satisfy a request. It then
transparently rewrites the request to use the materialized view. Queries go directly
to the materialized view and not to the underlying detail tables. In general,
rewriting queries to use materialized views rather than detail tables improves
response. Figure 8–1 illustrates how query rewrite works.

Figure 8–1 Transparent Query Rewrite

When using query rewrite, create materialized views that satisfy the largest number
of queries. For example, if you identify 20 queries that are commonly applied to the
detail or fact tables, then you might be able to satisfy them with five or six
well-written materialized views. A materialized view definition can include any
number of aggregations (SUM, COUNT(x) , COUNT(*) , COUNT(DISTINCT x) , AVG,
VARIANCE, STDDEV, MIN, and MAX). It can also include any number of joins. If you
are unsure of which materialized views to create, Oracle provides a set of advisory
procedures in the DBMS_OLAP package to help in designing and evaluating
materialized views for query rewrite. These functions are also known as the
Summary Advisor or the Advisor. Note that the OLAP Summary Advisor is
different. See Oracle9i OLAP User’s Guide for further details regarding the OLAP
Summary Advisor.

StrategyGenerate Plan
Strategy

Query is
rewritten

User enters
query

Compare plan cost
and pick the best

StrategyGenerate Plan

StrategyQuery Results

Oracle9i
8-4 Oracle9i Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
If a materialized view is to be used by query rewrite, it must be stored in the same
database as the fact or detail tables on which it relies. A materialized view can be
partitioned, and you can define a materialized view on a partitioned table. You can
also define one or more indexes on the materialized view.

Unlike indexes, materialized views can be accessed directly using a SELECT
statement.

Components of Summary Management
Summary management consists of:

■ Mechanisms to define materialized views and dimensions.

■ A refresh mechanism to ensure that all materialized views contain the latest
data.

■ A query rewrite capability to transparently rewrite a query to use a
materialized view.

■ A collection of materialized view analysis and advisory functions and
procedures in the DBMS_OLAP package. Collectively, these functions are called
the Summary Advisor, and are also available as part of Oracle Enterprise
Manager.

Many large decision support system (DSS) databases have schemas that do not
closely resemble a conventional data warehouse schema, but that still require joins
and aggregates. The use of summary management features imposes no schema
restrictions, and can enable some existing DSS database applications to improve
performance without the need to redesign the database or the application.

Figure 8–2 illustrates the use of summary management in the warehousing cycle.
After the data has been transformed, staged, and loaded into the detail data in the
warehouse, you can invoke the summary management process. First, use the

Note: The techniques shown in this chapter illustrate how to use
materialized views in data warehouses. Materialized views can also
be used by Oracle Replication. See Oracle9i Replication for further
information.

See Also: Chapter 16, "Summary Advisor" and Oracle9i OLAP
User’s Guide for OLAP-related schemas
Materialized Views 8-5

Overview of Data Warehousing with Materialized Views
Advisor to plan how you will use summaries. Then, create summaries and design
how queries will be rewritten.

Figure 8–2 Overview of Summary Management

Understanding the summary management process during the earliest stages of data
warehouse design can yield large dividends later in the form of higher
performance, lower summary administration costs, and reduced storage
requirements.

Operational
Databases

Extraction of
Incremental
Detail Data

Incremental
Load and Refresh

Data
Transformations

Staging
file

Detail

Data Warehouse

Summary

Query
Rewrite

Extract
Program

Summary Mgmt
Administration

Summary Mgmt
Analysis & Tuning

Multidimensional
Analysis Tools

Workload
Statistics

MDDB
Data Mart

Summary
Management
8-6 Oracle9i Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
Data Warehousing Terminology
Some basic data warehousing terms are defined as follows:

■ Dimension tables describe the business entities of an enterprise, represented as
hierarchical, categorical information such as time, departments, locations, and
products. Dimension tables are sometimes called lookup or reference tables.

Dimension tables usually change slowly over time and are not modified on a
periodic schedule. They are used in long-running decision support queries to
aggregate the data returned from the query into appropriate levels of the
dimension hierarchy.

■ Hierarchies describe the business relationships and common access patterns in
the database. An analysis of the dimensions, combined with an understanding
of the typical work load, can be used to create materialized views.

■ Fact tables describe the business transactions of an enterprise. Fact tables are
sometimes called detail tables.

The vast majority of data in a data warehouse is stored in a few very large fact
tables that are updated periodically with data from one or more operational
OLTP databases.

Fact tables include facts (also called measures) such as sales, units, and
inventory.

– A simple measure is a numeric or character column of one table such as
fact.sales .

– A computed measure is an expression involving measures of one table, for
example, fact.revenues - fact.expenses .

– A multitable measure is a computed measure defined on multiple tables,
for example, fact_a.revenues - fact_b.expenses .

Fact tables also contain one or more foreign keys that organize the business
transactions by the relevant business entities such as time, product, and market.
In most cases, these foreign keys are non-null, form a unique compound key of
the fact table, and each foreign key joins with exactly one row of a dimension
table.

See Also: Chapter 9, "Dimensions"
Materialized Views 8-7

Overview of Data Warehousing with Materialized Views
■ A materialized view is a precomputed table comprising aggregated and joined
data from fact and possibly from dimension tables. Among builders of data
warehouses, a materialized view is also known as a summary.

Materialized View Schema Design
Summary management can perform many useful functions, including query rewrite
and materialized view refresh, even if your data warehouse design does not follow
these guidelines. However, you will realize significantly greater query execution
performance and materialized view refresh performance benefits and you will
require fewer materialized views if your schema design complies with these
guidelines.

A materialized view definition includes any number of aggregates, as well as any
number of joins. In several ways, a materialized view behaves like an index:

■ The purpose of a materialized view is to increase query execution performance.

■ The existence of a materialized view is transparent to SQL applications, so that
a DBA can create or drop materialized views at any time without affecting the
validity of SQL applications.

■ A materialized view consumes storage space.

■ The contents of the materialized view must be updated when the underlying
detail tables are modified.

Schemas and Dimension Tables
In the case of normalized or partially normalized dimension tables (a dimension
that is stored in more than one table), identify how these tables are joined. Note
whether the joins between the dimension tables can guarantee that each child-side
row joins with one and only one parent-side row. In the case of denormalized
dimensions, determine whether the child-side columns uniquely determine the
parent-side (or attribute) columns. These relationships can be enabled with
constraints, using the NOVALIDATE and RELY options if the relationships
represented by the constraints are guaranteed by other means. Note that if the joins
between fact and dimension tables do not support the parent-child relationship
described previously, you still gain significant performance advantages from
defining the dimension with the CREATE DIMENSION statement. Another
alternative, subject to some restrictions, is to use outer joins in the materialized view
definition (that is, in the CREATE MATERIALIZED VIEW statement).

You must not create dimensions in any schema that does not satisfy these
relationships. Incorrect results can be returned from queries otherwise.
8-8 Oracle9i Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
Materialized View Schema Design Guidelines
Before starting to define and use the various components of summary management,
you should review your schema design to abide by the following guidelines
wherever possible.

Guidelines 1 and 2 are more important than guideline 3. If your schema design does
not follow guidelines 1 and 2, it does not then matter whether it follows guideline 3.
Guidelines 1, 2, and 3 affect both query rewrite performance and materialized view
refresh performance.

See Also: Chapter 9, "Dimensions" and Oracle9i OLAP User’s
Guide for OLAP-related schemas

Schema Guideline Description

Guideline 1

Dimensions

Dimensions should either be denormalized (each dimension
contained in one table) or the joins between tables in a
normalized or partially normalized dimension should
guarantee that each child-side row joins with exactly one
parent-side row. The benefits of maintaining this condition are
described in "Creating Dimensions" on page 9-4.

You can enforce this condition by adding FOREIGN KEY and
NOT NULLconstraints on the child-side join keys and PRIMARY
KEY constraints on the parent-side join keys.

Guideline 2

Dimensions

If dimensions are denormalized or partially denormalized,
hierarchical integrity must be maintained between the key
columns of the dimension table. Each child key value must
uniquely identify its parent key value, even if the dimension
table is denormalized. Hierarchical integrity in a denormalized
dimension can be verified by calling the VALIDATE_
DIMENSION procedure of the DBMS_OLAP package.

Guideline 3

Dimensions

Fact and dimension tables should similarly guarantee that each
fact table row joins with exactly one dimension table row. This
condition must be declared, and optionally enforced, by adding
FOREIGN KEY and NOT NULL constraints on the fact key
column(s) and PRIMARY KEY constraints on the dimension key
column(s), or by using outer joins. In a data warehouse,
constraints are typically enabled with the NOVALIDATE and
RELY clauses to avoid constraint enforcement performance
overhead. See Oracle9i SQL Reference for further details.
Materialized Views 8-9

Overview of Data Warehousing with Materialized Views
If you are concerned with the time required to enable constraints and whether any
constraints might be violated, use the ENABLE NOVALIDATE with the RELY clause
to turn on constraint checking without validating any of the existing constraints.
The risk with this approach is that incorrect query results could occur if any
constraints are broken. Therefore, as the designer, you must determine how clean
the data is and whether the risk of wrong results is too great.

Loading Data
A popular and efficient way to load data into a warehouse or data mart is to use
SQL*Loader with the DIRECT or PARALLEL option or to use another loader tool
that uses the Oracle direct-path API.

Loading strategies can be classified as one-phase or two-phase. In one-phase
loading, data is loaded directly into the target table, quality assurance tests are
performed, and errors are resolved by performing DML operations prior to
refreshing materialized views. If a large number of deletions are possible, then
storage utilization can be adversely affected, but temporary space requirements and

Guideline 4

Incremental Loads

Incremental loads of your detail data should be done using the
SQL*Loader direct-path option, or any bulk loader utility that
uses Oracle's direct-path interface. This includes INSERT ... AS
SELECT with the APPEND or PARALLEL hints, where the hints
cause the direct loader log to be used during the insert. See
Oracle9i SQL Reference and "Types of Materialized Views" on
page 8-12.

Guideline 5

Partitions

Range/composite partition your tables by a monotonically
increasing time column if possible (preferably of type DATE).

Guideline 6

Dimensions

After each load and before refreshing your materialized view,
use the VALIDATE_DIMENSIONprocedure of the DBMS_MVIEW
package to incrementally verify dimensional integrity.

Guideline 7

Time Dimensions

If a time dimension appears in the materialized view as a time
column, partition and index the materialized view in the same
manner as you have the fact tables.

See Also: Oracle9i Database Utilities for the restrictions and
considerations when using SQL*Loader with the DIRECT or
PARALLEL keywords

Schema Guideline Description
8-10 Oracle9i Data Warehousing Guide

Overview of Data Warehousing with Materialized Views
load time are minimized. The DML that may be required after one-phase loading
causes multitable aggregate materialized views to become unusable in the safest
rewrite integrity level.

In a two-phase loading process:

■ Data is first loaded into a temporary table in the warehouse.

■ Quality assurance procedures are applied to the data.

■ Referential integrity constraints on the target table are disabled, and the local
index in the target partition is marked unusable.

■ The data is copied from the temporary area into the appropriate partition of the
target table using INSERT AS SELECT with the PARALLEL or APPEND hint.

■ The temporary table is dropped.

■ The constraints are enabled, usually with the NOVALIDATE option.

Immediately after loading the detail data and updating the indexes on the detail
data, the database can be opened for operation, if desired. You can disable query
rewrite at the system level by issuing an ALTER SYSTEM SET QUERY_REWRITE_
ENABLED= false statement until all the materialized views are refreshed.

If QUERY_REWRITE_INTEGRITY is set to stale_tolerated , access to the
materialized view can be allowed at the session level to any users who do not
require the materialized views to reflect the data from the latest load by issuing an
ALTER SESSION SET QUERY_REWRITE_INTEGRITY=true statement. This
scenario does not apply when QUERY_REWRITE_INTEGRITY is either enforced
or trusted because the system ensures in these modes that only materialized
views with updated data participate in a query rewrite.

Overview of Materialized View Management Tasks
The motivation for using materialized views is to improve performance, but the
overhead associated with materialized view management can become a significant
system management problem. When reviewing or evaluating some of the necessary
materialized view management activities, consider some of the following:

■ Identifying what materialized views to create initially

■ Indexing the materialized views

■ Ensuring that all materialized views and materialized view indexes are
refreshed properly each time the database is updated

■ Checking which materialized views have been used
Materialized Views 8-11

Types of Materialized Views
■ Determining how effective each materialized view has been on workload
performance

■ Measuring the space being used by materialized views

■ Determining which new materialized views should be created

■ Determining which existing materialized views should be dropped

■ Archiving old detail and materialized view data that is no longer useful

After the initial effort of creating and populating the data warehouse or data mart,
the major administration overhead is the update process, which involves:

■ Periodic extraction of incremental changes from the operational systems

■ Transforming the data

■ Verifying that the incremental changes are correct, consistent, and complete

■ Bulk-loading the data into the warehouse

■ Refreshing indexes and materialized views so that they are consistent with the
detail data

The update process must generally be performed within a limited period of time
known as the update window. The update window depends on the update
frequency (such as daily or weekly) and the nature of the business. For a daily
update frequency, an update window of two to six hours might be typical.

You need to know your update window for the following activities:

■ Loading the detail data

■ Updating or rebuilding the indexes on the detail data

■ Performing quality assurance tests on the data

■ Refreshing the materialized views

■ Updating the indexes on the materialized views

Types of Materialized Views
The SELECTclause in the materialized view creation statement defines the data that
the materialized view is to contain. Only a few restrictions limit what can be
specified. Any number of tables can be joined together. However, they cannot be
remote tables if you wish to take advantage of query rewrite. Besides tables, other
elements such as views, inline views (subqueries in the FROM clause of a SELECT
8-12 Oracle9i Data Warehousing Guide

Types of Materialized Views
statement), subqueries, and materialized views can all be joined or referenced in the
SELECT clause.

The types of materialized views are:

■ Materialized Views with Aggregates

■ Materialized Views Containing Only Joins

■ Nested Materialized Views

Materialized Views with Aggregates
In data warehouses, materialized views normally contain aggregates as shown in
Example 8–1. For fast refresh to be possible, the SELECT list must contain all of the
GROUP BY columns (if present), and there must be a COUNT(*) and a
COUNT(column) on any aggregated columns. Also, materialized view logs must be
present on all tables referenced in the query that defines the materialized view. The
valid aggregate functions are: SUM, COUNT(x) , COUNT(*) , AVG, VARIANCE,
STDDEV, MIN, and MAX, and the expression to be aggregated can be any SQL value
expression.

Fast refresh for a materialized view containing joins and aggregates is possible after
any type of DML to the base tables (direct load or conventional INSERT, UPDATE, or
DELETE). It can be defined to be refreshed ON COMMIT or ON DEMAND. A REFRESH
ON COMMIT, materialized view will be refreshed automatically when a transaction
that does DML to one of the materialized view’s detail tables commits. The time
taken to complete the commit may be slightly longer than usual when this method
is chosen. This is because the refresh operation is performed as part of the commit
process. Therefore, this method may not be suitable if many users are concurrently
changing the tables upon which the materialized view is based.

Here are some examples of materialized views with aggregates. Note that
materialized view logs are only created because this materialized view will be fast
refreshed.

Example 8–1 Creating a Materialized View: Example 1

CREATE MATERIALIZED VIEW LOG ON products
WITH SEQUENCE, ROWID
(prod_id, prod_name, prod_desc, prod_subcategory, prod_subcat_desc, prod_

See Also: "Restrictions on Fast Refresh on Materialized Views
with Aggregates" on page 8-28
Materialized Views 8-13

Types of Materialized Views
category, prod_cat_desc, prod_weight_class, prod_unit_of_measure, prod_pack_
size, supplier_id, prod_status, prod_list_price, prod_min_price)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 8k NEXT 8k PCTINCREASE 0)
BUILD IMMEDIATE
REFRESH FAST
ENABLE QUERY REWRITE
AS SELECT p.prod_name, SUM(amount_sold) AS dollar_sales,
COUNT(*) AS cnt, COUNT(amount_sold) AS cnt_amt
FROM sales s, products p
WHERE s.prod_id = p.prod_id
 GROUP BY prod_name;

Example 8–1 creates a materialized view product_sales_mv that computes total
number and value of sales for a product. It is derived by joining the tables sales
and products on the column prod_id . The materialized view is populated with
data immediately because the build method is immediate and it is available for use
by query rewrite. In this example, the default refresh method is FAST, which is
allowed because the appropriate materialized view logs have been created on tables
product and sales .

Example 8–2 Creating a Materialized View: Example 2

CREATE MATERIALIZED VIEW product_sales_mv
 PCTFREE 0 TABLESPACE demo
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 BUILD DEFERRED
 REFRESH COMPLETE ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT
 p.prod_name,
 SUM(amount_sold) AS dollar_sales
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id
 GROUP BY p.prod_name;
8-14 Oracle9i Data Warehousing Guide

Types of Materialized Views
Example 8–2 creates a materialized view product_sales_mv that computes the
sum of sales by prod_name . It is derived by joining the tables store and fact on
the column store_key . The materialized view does not initially contain any data,
because the build method is DEFERRED. A complete refresh is required for the first
refresh of a build deferred materialized view. When it is refreshed and once
populated, this materialized view can be used by query rewrite.

Example 8–3 Creating a Materialized View: Example 3

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sum_sales
 PARALLEL
 BUILD IMMEDIATE
 REFRESH FAST ON COMMIT
 AS
 SELECT s.prod_id, s.time_id,
 COUNT(*) AS count_grp,
 SUM(s.amount_sold) AS sum_dollar_sales,
 COUNT(s.amount_sold) AS count_dollar_sales,
 SUM(s.quantity_sold) AS sum_quantity_sales,
 COUNT(s.quantity_sold) AS count_quantity_sales
 FROM sales s
 GROUP BY s.prod_id, s.time_id;

Example 8–3 creates a materialized view that contains aggregates on a single table.
Because the materialized view log has been created, the materialized view is fast
refreshable. If DML is applied against the sales table, then the changes will be
reflected in the materialized view when the commit is issued.

Requirements for Using Materialized Views with Aggregates
Table 8–1 illustrates the aggregate requirements for materialized views.

Table 8–1 Requirements for Materialized Views with Aggregates

If aggregate X is present, aggregate Y is required and aggregate Z is optional

X Y Z

COUNT(expr) - -

SUM(expr) COUNT(expr) -
Materialized Views 8-15

Types of Materialized Views
Note that COUNT(*) must always be present. Oracle recommends that you include
the optional aggregates in column Z in the materialized view in order to obtain the
most efficient and accurate fast refresh of the aggregates.

Materialized Views Containing Only Joins
Some materialized views contain only joins and no aggregates, such as in
Example 8–4 on page 8-17, where a materialized view is created that joins the
sales table to the times and customers tables. The advantage of creating this
type of materialized view is that expensive joins will be precalculated.

Fast refresh for a materialized view containing only joins is possible after any type
of DML to the base tables (direct-path or conventional INSERT, UPDATE, or
DELETE).

A materialized view containing only joins can be defined to be refreshed ON
COMMIT or ON DEMAND. If it is ON COMMIT, the refresh is performed at commit time
of the transaction that does DML on the materialized view's detail table. Oracle
does not allow self-joins in materialized join views.

If you specify REFRESH FAST, Oracle performs further verification of the query
definition to ensure that fast refresh can be performed if any of the detail tables
change. These additional checks are:

■ A materialized view log must be present for each detail table.

■ The rowids of all the detail tables must appear in the SELECT list of the
materialized view query definition.

■ If there are no outer joins, you may have arbitrary selections and joins in the
WHERE clause. However, if there are outer joins, the WHERE clause cannot have
any selections. Further, if there are outer joins, all the joins must be connected
by ANDs and must use the equality (=) operator.

AVG(expr) COUNT(expr) SUM(expr)

STDDEV(expr) COUNT(expr)
SUM(expr)

SUM(expr * expr)

VARIANCE(expr) COUNT(expr)
SUM(expr)

SUM(expr * expr)

Table 8–1 Requirements for Materialized Views with Aggregates(Cont.)

If aggregate X is present, aggregate Y is required and aggregate Z is optional

X Y Z
8-16 Oracle9i Data Warehousing Guide

Types of Materialized Views
■ If there are outer joins, unique constraints must exist on the join columns of the
inner table. For example, if you are joining the fact table and a dimension table
and the join is an outer join with the fact table being the outer table, there must
exist unique constraints on the join columns of the dimension table.

If some of these restrictions are not met, you can create the materialized view as
REFRESH FORCE to take advantage of fast refresh when it is possible. If one of the
tables did not meet all of the criteria, but the other tables did, the materialized view
would still be fast refreshable with respect to the other tables for which all the
criteria are met.

A materialized view log should contain the rowid of the master table. It is not
necessary to add other columns.

To speed up refresh, you should create indexes on the materialized view's columns
that store the rowids of the fact table.

Example 8–4 Materialized View Containing Only Joins

CREATE MATERIALIZED VIEW LOG ON sales
 WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON times
 WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON customers
 WITH ROWID;

CREATE MATERIALIZED VIEW detail_sales_mv
 PARALLEL BUILD IMMEDIATE
 REFRESH FAST
 AS
 SELECT
 s.rowid "sales_rid", t.rowid "times_rid", c.rowid "customers_rid",
 c.cust_id, c.cust_last_name, s.amount_sold,
 s.quantity_sold, s.time_id
 FROM sales s, times t, customers c
 WHERE s.cust_id = c.cust_id(+) AND
 s.time_id = t.time_id(+);

In this example, to perform a fast refresh, UNIQUE constraints should exist on
c.cust_id and t.time_id . You should also create indexes on the columns
sales_rid , times_rid , and customers_rid , as illustrated in the following.
This will improve the refresh performance.
Materialized Views 8-17

Types of Materialized Views
CREATE INDEX mv_ix_salesrid
 ON detail_sales_mv("sales_rid");

Alternatively, if the previous example did not include the columns times_rid and
customers_id , and if the refresh method was REFRESH FORCE, then this
materialized view would be fast refreshable only if the sales table was updated but
not if the tables times or customers were updated.

CREATE MATERIALIZED VIEW detail_sales_mv
 PARALLEL
 BUILD IMMEDIATE
 REFRESH FORCE
 AS
 SELECT
 s.rowid "sales_rid",
 c.cust_id, c.cust_last_name, s.amount_sold,
 s.quantity_sold, s.time_id
 FROM sales s, times t, customers c
 WHERE s.cust_id = c.cust_id(+) AND
 s.time_id = t.time_id(+);

Nested Materialized Views
A nested materialized view is a materialized view whose definition is based on
another materialized view. A nested materialized view can reference other relations
in the database in addition to referencing materialized views.

Why Use Nested Materialized Views?
In a data warehouse, you typically create many aggregate views on a single join (for
example, rollups along different dimensions). Incrementally maintaining these
distinct materialized aggregate views can take a long time, because the underlying
join has to be performed many times.

Using nested materialized views, you can create multiple single-table materialized
views based on a joins-only materialized view and the join is performed just once.
In addition, optimizations can be performed for this class of single-table aggregate
materialized view and thus refresh is very efficient.

Example 8–5 Nested Materialized View

You can create a nested materialized view on materialized views that contain joins
only or joins and aggregates.
8-18 Oracle9i Data Warehousing Guide

Types of Materialized Views
All the underlying objects (materialized views or tables) on which the materialized
view is defined must have a materialized view log. All the underlying objects are
treated as if they were tables. All the existing options for materialized views can be
used, with the exception of ON COMMIT REFRESH, which is not supported for a
nested materialized views that contains joins and aggregates.

Using the tables and their columns from the sh sample schema, the following
materialized views illustrate how nested materialized views can be created.

/* create the materialized view logs */
CREATE MATERIALIZED VIEW LOG ON sales
 WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers
 WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON times
 WITH ROWID;

/*create materialized view join_sales_cust_time as fast refreshable at
 COMMIT time */
CREATE MATERIALIZED VIEW join_sales_cust_time
REFRESH FAST ON COMMIT AS
SELECT c.cust_id, c.cust_last_name, s.amount_sold, t.time_id,
 t.day_number_in_week, s.rowid srid, t.rowid trid, c.rowid crid
FROM sales s, customers c, times t
WHERE s.time_id = t.time_id AND
 s.cust_id = c.cust_id;

To create a nested materialized view on the table join_sales_cust_time , you
would have to create a materialized view log on the table. Because this will be a
single-table aggregate materialized view on join_sales_cust_time , you need
to log all the necessary columns and use the INCLUDING NEW VALUES clause.

/* create materialized view log on join_sales_cust_time */
CREATE MATERIALIZED VIEW LOG ON join_sales_cust_time
WITH ROWID (cust_name, day_number_in_week, amount_sold)
INCLUDING NEW VALUES;

/* create the single-table aggregate materialized view sum_sales_cust_time on
 join_sales_cust_time as fast refreshable at COMMIT time */
CREATE MATERIALIZED VIEW sum_sales_cust_time
 REFRESH FAST ON COMMIT
 AS
 SELECT COUNT(*) cnt_all, SUM(amount_sold) sum_sales,
COUNT(amount_sold)
 cnt_sales, cust_last_name, day_number_in_week
Materialized Views 8-19

Types of Materialized Views
 FROM join_sales_cust_time
 GROUP BY cust_last_name, day_number_in_week;

This schema can be diagrammatically represented as in Figure 8–3.

Figure 8–3 Nested Materialized View Schema

Nesting Materialized Views with Joins and Aggregates
You can nest materialized views with joins and aggregates, but the ON DEMAND
clause is necessary for FAST REFRESH.

Some types of nested materialized views cannot be fast refreshed. Use EXPLAIN_
MVIEW to identify those types of materialized views. Because you have to invoke
the refresh functions manually, ordering has to be taken into account. This is
because the refresh for a materialized view that is built on other materialized views
will use the current state of the other materialized views, whether they are fresh or
not. You can find the dependent materialized views for a particular object using the
PL/SQL function GET_MV_DEPENDENCIES in the DBMS_MVIEW package.

Nested Materialized View Usage Guidelines
You should keep the following in mind when deciding whether to use nested
materialized views:

■ If you want to use fast refresh, you should fast refresh all the materialized views
along any chain. It makes little sense to define a fast refreshable materialized
view on top of a materialized view that must be refreshed with a complete
refresh.

■ If you want the highest level materialized view to be fresh with respect to the
detail tables, you need to ensure that all materialized views in a tree are

join_sales_cust_time

customers sales times products

sum_sales_cust_time join_sales_cust_time_prod
8-20 Oracle9i Data Warehousing Guide

Creating Materialized Views
refreshed in the correct dependency order before refreshing the highest-level.
Oracle does not provide support for automatic refreshing of intermediate
materialized views in a nested hierarchy. If the materialized views under the
highest-level materialized view are stale, refreshing only the highest-level will
succeed, but makes it fresh only with respect to its underlying materialized
view, not the detail tables at the base of the tree.

■ When refreshing materialized views, you need to ensure that all materialized
views in a tree are refreshed. If you only refresh the highest-level materialized
view, the materialized views under it will be stale and you must explicitly
refresh them.

Restrictions When Using Nested Materialized Views
The following restrictions exist on the way you can nest materialized views:

■ Fast refresh for ON COMMIT is not supported for a higher-level materialized
view that contains joins and aggregates.

■ DBMS_MVIEW.REFRESH APIs will not automatically refresh nested
materialized views unless explicitly specified. Thus, if monthly_sales_mv is
based on sales_mv , you have to refresh sales_mv first, followed by
monthly_sales_mv . Oracle does not automatically refresh monthly_sales_
mv when you refresh sales_mv or vice versa.

■ If you have a table costs with a materialized view cost_mv based on it, you
cannot then create a prebuilt materialized view on table costs . The result
would make cost_mv a nested materialized view and this method of
conversion is not supported.

Creating Materialized Views
A materialized view can be created with the CREATE MATERIALIZED VIEW
statement or using Oracle Enterprise Manager. Example 8–6 creates the materialized
view cust_sales_mv .

Example 8–6 Creating a Materialized View

CREATE MATERIALIZED VIEW cust_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
PARALLEL
BUILD IMMEDIATE
REFRESH COMPLETE
Materialized Views 8-21

Creating Materialized Views
ENABLE QUERY REWRITE
AS
SELECT c.cust_last_name,
 SUM(amount_sold) AS sum_amount_sold
 FROM customers c, sales s
 WHERE s.cust_id = c.cust_id
 GROUP BY c.cust_last_name;

It is not uncommon in a data warehouse to have already created summary or
aggregation tables, and you might not wish to repeat this work by building a new
materialized view. In this case, the table that already exists in the database can be
registered as a prebuilt materialized view. This technique is described in
"Registering Existing Materialized Views" on page 8-33.

Once you have selected the materialized views you want to create, follow these
steps for each materialized view.

1. Design the materialized view. Existing user-defined materialized views do not
require this step. If the materialized view contains many rows, then, if
appropriate, the materialized view should be partitioned (if possible) and
should match the partitioning of the largest or most frequently updated detail
or fact table (if possible). Refresh performance benefits from partitioning,
because it can take advantage of parallel DML capabilities.

2. Use the CREATE MATERIALIZED VIEW statement to create and, optionally,
populate the materialized view. If a user-defined materialized view already
exists, then use the ON PREBUILT TABLE clause in the CREATE MATERIALIZED
VIEW statement. Otherwise, use the BUILD IMMEDIATE clause to populate the
materialized view immediately, or the BUILD DEFERRED clause to populate the
materialized view later. A BUILD DEFERRED materialized view is disabled for
use by query rewrite until the first REFRESH, after which it will be
automatically enabled, provided the ENABLE QUERY REWRITE clause has been
specified.

Naming Materialized Views
The name of a materialized view must conform to standard Oracle naming
conventions. However, if the materialized view is based on a user-defined prebuilt
table, then the name of the materialized view must exactly match that table name.

See Also: Oracle9i SQL Reference for descriptions of the SQL
statements CREATE MATERIALIZED VIEW, ALTER MATERIALIZED
VIEW, and DROP MATERIALIZED VIEW
8-22 Oracle9i Data Warehousing Guide

Creating Materialized Views
If you already have a naming convention for tables and indexes, you might consider
extending this naming scheme to the materialized views so that they are easily
identifiable. For example, instead of naming the materialized view sum_of_sales ,
it could be called sum_of_sales_mv to denote that this is a materialized view and
not a table or view.

Storage And Data Segment Compression
Unless the materialized view is based on a user-defined prebuilt table, it requires
and occupies storage space inside the database. Therefore, the storage needs for the
materialized view should be specified in terms of the tablespace where it is to reside
and the size of the extents.

If you do not know how much space the materialized view will require, then the
DBMS_OLAP.ESTIMATE_SIZE package, which is described in Chapter 16,
"Summary Advisor", can estimate the number of bytes required to store this
uncompressed materialized view. This information can then assist the design team
in determining the tablespace in which the materialized view should reside.

You should use data segment compression with highly redundant data, such as
tables with many foreign keys. This is particularly useful for materialized views
created with the ROLLUP clause. Data segment compression reduces disk use and
memory use (specifically, the buffer cache), often leading to a better scaleup for
read-only operations. Data segment compression can also speed up query
execution.

Build Methods
Two build methods are available for creating the materialized view, as shown in
Table 8–2. If you select BUILD IMMEDIATE, the materialized view definition is
added to the schema objects in the data dictionary, and then the fact or detail tables
are scanned according to the SELECT expression and the results are stored in the
materialized view. Depending on the size of the tables to be scanned, this build
process can take a considerable amount of time.

An alternative approach is to use the BUILD DEFERRED clause, which creates the
materialized view without data, thereby enabling it to be populated at a later date

See Also: Oracle9i SQL Reference for a complete description of
STORAGE semantics, Oracle9i Database Performance Tuning Guide and
Reference, and Chapter 5, "Parallelism and Partitioning in Data
Warehouses" for data segment compression examples
Materialized Views 8-23

Creating Materialized Views
using the DBMS_MVIEW.REFRESH package described in Chapter 14, "Maintaining
the Data Warehouse".

Enabling Query Rewrite
Before creating a materialized view, you can verify what types of query rewrite are
possible by calling the procedure DBMS_MVIEW.EXPLAIN_MVIEW. Once the
materialized view has been created, you can use DBMS_MVIEW.EXPLAIN_REWRITE
to find out if (or why not) it will rewrite a specific query.

Even though a materialized view is defined, it will not automatically be used by the
query rewrite facility. You must set the QUERY_REWRITE_ENABLED initialization
parameter to TRUE before using query rewrite. You also must specify the ENABLE
QUERY REWRITE clause if the materialized view is to be considered available for
rewriting queries.

If this clause is omitted or specified as DISABLE QUERY REWRITE when the
materialized view is created, the materialized view can subsequently be enabled for
query rewrite with the ALTER MATERIALIZED VIEW statement.

If you define a materialized view as BUILD DEFERRED, it is not eligible for query
rewrite until it is populated with data.

Query Rewrite Restrictions
Query rewrite is not possible with all materialized views. If query rewrite is not
occurring when expected, DBMS_MVIEW.EXPLAIN_REWRITE can help provide
reasons why a specific query is not eligible for rewrite. Also, check to see if your
materialized view satisfies all of the following conditions.

Materialized View Restrictions
You should keep in mind the following restrictions:

■ The defining query of the materialized view cannot contain any non-repeatable
expressions (ROWNUM, SYSDATE, non-repeatable PL/SQL functions, and so on).

Table 8–2 Build Methods

Build Method Description

BUILD IMMEDIATE Create the materialized view and then populate it with data

BUILD DEFERRED Create the materialized view definition but do not populate it
with data
8-24 Oracle9i Data Warehousing Guide

Creating Materialized Views
■ The query cannot contain any references to RAW or LONG RAW datatypes or
object REFs.

■ If the defining query of the materialized view contains set operators (UNION,
MINUS, and so on), rewrite will use them for full text match rewrite only.

■ If the materialized view was registered as PREBUILT, the precision of the
columns must agree with the precision of the corresponding SELECT
expressions unless overridden by the WITH REDUCED PRECISION clause.

■ If the materialized view contains the same table more than once, it is possible to
do a general rewrite, provided the query has the same aliases for the duplicate
tables as the materialized view.

General Query Rewrite Restrictions
You should keep in mind the following restrictions:

■ If a query has both local and remote tables, only local tables will be considered
for potential rewrite.

■ Neither the detail tables nor the materialized view can be owned by SYS.

■ SELECT and GROUP BY lists, if present, must be the same in the query of the
materialized view.

■ Aggregate functions must occur only as the outermost part of the expression.
That is, aggregates such as AVG(AVG(x)) or AVG(x) + AVG(x) are not
allowed.

■ CONNECT BY clauses are not allowed.

Refresh Options
When you define a materialized view, you can specify two refresh options: how to
refresh and what type of refresh. If unspecified, the defaults are assumed as ON
DEMAND and FORCE.

The two refresh execution modes are: ON COMMIT and ON DEMAND. Depending on
the materialized view you create, some of the options may not be available.
Table 8–3 describes the refersh modes.
Materialized Views 8-25

Creating Materialized Views
When a materialized view is maintained using the ON COMMIT method, the time
required to complete the commit may be slightly longer than usual. This is because
the refresh operation is performed as part of the commit process. Therefore this
method may not be suitable if many users are concurrently changing the tables
upon which the materialized view is based.

If you anticipate performing insert, update or delete operations on tables referenced
by a materialized view concurrently with the refresh of that materialized view, and
that materialized view includes joins and aggregation, Oracle recommends you use
ON COMMIT fast refresh rather than ON DEMAND fast refresh.

If you think the materialized view did not refresh, check the alert log or trace file.

If a materialized view fails during refresh at COMMIT time, you must explicitly
invoke the refresh procedure using the DBMS_MVIEW package after addressing the
errors specified in the trace files. Until this is done, the materialized view will no
longer be refreshed automatically at commit time.

You can specify how you want your materialized views to be refreshed from the
detail tables by selecting one of four options: COMPLETE, FAST, FORCE, and NEVER.
Table 8–4 describes the refresh options.

Table 8–3 Refresh Modes

Refresh Mode Description

ON COMMIT Refresh occurs automatically when a transaction that modified one of
the materialized view's detail tables commits. This can be specified as
long as the materialized view is fast refreshable (in other words, not
complex). The ON COMMIT privilege is necessary to use this mode

ON DEMAND Refresh occurs when a user manually executes one of the available
refresh procedures contained in the DBMS_MVIEW package (REFRESH,
REFRESH_ALL_MVIEWS, REFRESH_DEPENDENT)

Table 8–4 Refresh Options

Refresh Option Description

COMPLETE Refreshes by recalculating the materialized view's defining query

FAST Applies incremental changes to refresh the materialized view using
the information logged in the materialized view logs, or from a
SQL*Loader direct-path or a partition maintenance operation

FORCE Applies FAST refresh if possible; otherwise, it applies COMPLETE
refresh
8-26 Oracle9i Data Warehousing Guide

Creating Materialized Views
Whether the fast refresh option is available depends upon the type of materialized
view. You can call the procedure DBMS_MVIEW.EXPLAIN_MVIEW to determine
whether fast refresh is possible.

General Restrictions on Fast Refresh
The defining query of the materialized view is restricted as follows:

■ The materialized view must not contain references to non-repeating expressions
like SYSDATE and ROWNUM.

■ The materialized view must not contain references to RAW or LONG RAW data
types.

Restrictions on Fast Refresh on Materialized Views with Joins Only
Defining queries for materialized views with joins only and no aggregates have the
following restrictions on fast refresh:

■ All restrictions from "General Restrictions on Fast Refresh" on page 8-27.

■ They cannot have GROUP BY clauses or aggregates.

■ If the WHERE clause of the query contains outer joins, then unique constraints
must exist on the join columns of the inner join table.

■ If there are no outer joins, you can have arbitrary selections and joins in the
WHERE clause. However, if there are outer joins, the WHERE clause cannot have
any selections. Furthermore, if there are outer joins, all the joins must be
connected by ANDs and must use the equality (=) operator.

■ Rowids of all the tables in the FROM list must appear in the SELECT list of the
query.

■ Materialized view logs must exist with rowids for all the base tables in the
FROM list of the query.

NEVER Indicates that the materialized view will not be refreshed with the
Oracle refresh mechanisms

Table 8–4 Refresh Options(Cont.)

Refresh Option Description
Materialized Views 8-27

Creating Materialized Views
Restrictions on Fast Refresh on Materialized Views with Aggregates
Defining queries for materialized views with joins and aggregates have the
following restrictions on fast refresh:

■ All restrictions from "General Restrictions on Fast Refresh" on page 8-27.

Fast refresh is supported for both ON COMMIT and ON DEMAND materialized views,
however the following restrictions apply:

■ All tables in the materialized view must have materialized view logs, and the
materialized view logs must:

■ Contain all columns from the table referenced in the materialized view.

■ Specify with ROWID and INCLUDING NEW VALUES.

■ Specify the SEQUENCE clause if the table is expected to have a mix of
inserts/direct-loads, deletes, and updates.

■ Only SUM, COUNT, AVG, STDDEV, VARIANCE, MIN and MAXare supported for fast
refresh.

■ COUNT(*) must be specified.

■ For each aggregate AGG(expr) , the corresponding COUNT(expr) must be
present.

■ If VARIANCE(expr) or STDDEV(expr) is specified, COUNT(expr) and
SUM(expr) must be specified. Oracle recommends that SUM(expr *expr) be
specified. See Table 8–1 on page 8-15 for further details.

■ The SELECT list must contain all GROUP BY columns.

■ If the materialized view has one of the following, then fast refresh is supported
only on conventional DML inserts and direct loads.

■ Materialized views with MIN or MAX aggregates

■ Materialized views which have SUM(expr) but no COUNT(expr)

■ Materialized views without COUNT(*)

Such a materialized view is called an insert-only materialized view.

■ The COMPATIBILITY parameter must be set to 9.0 if the materialized aggregate
view has inline views, outer joins, self joins or grouping sets and FAST
REFRESH is specified during creation. Note that all other requirements for fast
refresh specified previously must also be satisfied.
8-28 Oracle9i Data Warehousing Guide

Creating Materialized Views
■ Materialized views with named views or subqueries in the FROM clause can be
fast refreshed provided the views can be completely merged. For information
on which views will merge, refer to the Oracle9i Database Performance Tuning
Guide and Reference.

■ If there are no outer joins, you may have arbitrary selections and joins in the
WHERE clause.

■ Materialized aggregate views with outer joins are fast refreshable after
conventional DML and direct loads, provided only the outer table has been
modified. Also, unique constraints must exist on the join columns of the inner
join table. If there are outer joins, all the joins must be connected by ANDs and
must use the equality (=) operator.

■ For materialized views with CUBE, ROLLUP, Grouping Sets, or concatenation of
them, the following restrictions apply:

■ The SELECT list should contain grouping distinguisher that can either be a
GROUPING_ID function on all GROUP BY expressions or GROUPING
functions one for each GROUP BY expression. For example, if the GROUP BY
clause of the materialized view is "GROUP BY CUBE(a, b)", then the
SELECT list should contain either "GROUPING_ID(a, b) " or
"GROUPING(a) AND GROUPING(b)" for the materialized view to be fast
refreshable.

■ GROUP BY should not result in any duplicate groupings. For example,
"GROUP BY a, ROLLUP(a, b) " is not fast refreshable because it results
in duplicate groupings "(a), (a, b), AND (a) ".

Restrictions on Fast Refresh on Materialized Views With the UNION ALL
Operator
Materialized views with the UNION ALL set operator support the REFRESH FAST
option if the following conditions are satisfied:

■ The defining query must have the UNION ALL operator at the top level.

The UNION ALL operator cannot be embedded inside a subquery, with one
exception: The UNION ALL can be in a subquery in the FROM clause provided
the defining query is of the form SELECT * FROM (view or subquery with
UNION ALL) as in the following example:

CREATE VIEW view_with_unionall_mv
AS
(SELECT c.rowid crid, c.cust_id, 2 umarker
 FROM customers c
Materialized Views 8-29

Creating Materialized Views
 WHERE c.cust_last_name = 'Smith'
 UNION ALL
 SELECT c.rowid crid, c.cust_id, 3 umarker
 FROM customers c
 WHERE c.cust_last_name = 'Jones');

CREATE MATERIALIZED VIEW unionall_inside_view_mv
REFRESH FAST ON DEMAND
AS
SELECT * FROM view_with_unionall;

Note that the view view_with_unionall_mv satisfies all requirements for
fast refresh.

■ Each query block in the UNION ALL query must satisfy the requirements of a
fast refreshable materialized view with aggregates or a fast refreshable
materialized view with joins.

The appropriate materialized view logs must be created on the tables as
required for the corresponding type of fast refreshable materialized view.

Note that Oracle also allows the special case of a single table materialized view
with joins only provided the ROWID column has been included in the SELECT
list and in the materialized view log. This is shown in the defining query of the
view view_with_unionall_mv .

■ The SELECT list of each query must include a maintenance column, called a
UNION ALL marker. The UNION ALL column must have a distinct constant
numeric or string value in each UNION ALL branch. Further, the marker column
must appear in the same ordinal position in the SELECT list of each query
block.

■ Some features such as outer joins, insert-only aggregate materialized view
queries and remote tables are not supported for materialized views with UNION
ALL.

■ Partition Change Tracking-based refresh is not supported for UNION ALL
materialized views.

■ The compatibility initialization parameter must be set to 9.2.0 to create a fast
refreshable materialized view with UNION ALL.
8-30 Oracle9i Data Warehousing Guide

Creating Materialized Views
ORDER BY Clause
An ORDER BY clause is allowed in the CREATE MATERIALIZED VIEW statement. It
is used only during the initial creation of the materialized view. It is not used
during a full refresh or a fast refresh.

To improve the performance of queries against large materialized views, store the
rows in the materialized view in the order specified in the ORDER BY clause. This
initial ordering provides physical clustering of the data. If indexes are built on the
columns by which the materialized view is ordered, accessing the rows of the
materialized view using the index often reduces the time for disk I/O due to the
physical clustering.

The ORDER BYclause is not considered part of the materialized view definition. As a
result, there is no difference in the manner in which Oracle detects the various types
of materialized views (for example, materialized join views with no aggregates). For
the same reason, query rewrite is not affected by the ORDER BY clause. This feature
is similar to the CREATE TABLE ... ORDER BY capability that exists in Oracle.

Materialized View Logs
Materialized view logs are required if you want to use fast refresh. They are defined
using a CREATE MATERIALIZED VIEW LOG statement on the base table that is to be
changed. They are not created on the materialized view. For fast refresh of
materialized views, the definition of the materialized view logs must specify the
ROWID clause. In addition, for aggregate materialized views, it must also contain
every column in the table referenced in the materialized view, the INCLUDING NEW
VALUES clause and the SEQUENCE clause.

An example of a materialized view log is shown as follows where one is created on
the table sales .

CREATE MATERIALIZED VIEW LOG ON sales
WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

Oracle recommends that the keyword SEQUENCE be included in your materialized
view log statement unless you are sure that you will never perform a mixed DML
operation (a combination of INSERT, UPDATE, or DELETE operations on multiple
tables).

The boundary of a mixed DML operation is determined by whether the
materialized view is ON COMMIT or ON DEMAND.
Materialized Views 8-31

Creating Materialized Views
■ For ON COMMIT, the mixed DML statements occur within the same transaction
because the refresh of the materialized view will occur upon commit of this
transaction.

■ For ON DEMAND, the mixed DML statements occur between refreshes. The
following example of a materialized view log illustrates where one is created on
the table sales that includes the SEQUENCE keyword:

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold, amount_sold)
INCLUDING NEW VALUES;

Using Oracle Enterprise Manager
A materialized view can also be created using Oracle Enterprise Manager by
selecting the materialized view object type. There is no difference in the information
required if this approach is used. However, you must complete three property
sheets and you must ensure that the option Enable Query Rewrite on the General
sheet is selected.

Using Materialized Views with NLS Parameters
When using certain materialized views, you must ensure that your NLS parameters
are the same as when you created the materialized view. Materialized views with
this restriction are as follows:

■ Expressions that may return different values, depending on NLS parameter
settings. For example, (date > "01/02/03") or (rate <= "2.150") are NLS
parameter dependent expressions.

■ Equijoins where one side of the join is character data. The result of this equijoin
depends on collation and this can change on a session basis, giving an incorrect
result in the case of query rewrite or an inconsistent materialized view after a
refresh operation.

■ Expressions that generate internal conversion to character data in the SELECT
list of a materialized view, or inside an aggregate of a materialized aggregate
view. This restriction does not apply to expressions that involve only numeric
data, for example, a+b where a and b are numeric fields.

See Also: Oracle Enterprise Manager Configuration Guide and
Chapter 16, "Summary Advisor" for further information
8-32 Oracle9i Data Warehousing Guide

Registering Existing Materialized Views
Registering Existing Materialized Views
Some data warehouses have implemented materialized views in ordinary user
tables. Although this solution provides the performance benefits of materialized
views, it does not:

■ Provide query rewrite to all SQL applications

■ Enable materialized views defined in one application to be transparently
accessed in another application

■ Generally support fast parallel or fast materialized view refresh

Because of these limitations, and because existing materialized views can be
extremely large and expensive to rebuild, you should register your existing
materialized view tables with Oracle whenever possible. You can register a
user-defined materialized view with the CREATE MATERIALIZED VIEW ... ON
PREBUILT TABLEstatement. Once registered, the materialized view can be used for
query rewrites or maintained by one of the refresh methods, or both.

The contents of the table must reflect the materialization of the defining query at the
time you register it as a materialized view, and each column in the defining query
must correspond to a column in the table that has a matching datatype. However,
you can specify WITH REDUCED PRECISION to allow the precision of columns in
the defining query to be different from that of the table columns.

The table and the materialized view must have the same name, but the table retains
its identity as a table and can contain columns that are not referenced in the
defining query of the materialized view. These extra columns are known as
unmanaged columns. If rows are inserted during a refresh operation, each
unmanaged column of the row is set to its default value. Therefore, the unmanaged
columns cannot have NOT NULL constraints unless they also have default values.

Materialized views based on prebuilt tables are eligible for selection by query
rewrite provided the parameter QUERY_REWRITE_INTEGRITY is set to at least the
level of stale_tolerated or trusted .

When you drop a materialized view that was created on a prebuilt table, the table
still exists—only the materialized view is dropped.

When a prebuilt table is registered as a materialized view and query rewrite is
desired, the parameter QUERY_REWRITE_INTEGRITY must be set to at least

See Also: Chapter 22, "Query Rewrite" for details about integrity
levels
Materialized Views 8-33

Registering Existing Materialized Views
stale_tolerated because, when it is created, the materialized view is marked as
unknown. Therefore, only stale integrity modes can be used.

The following example illustrates the two steps required to register a user-defined
table. First, the table is created, then the materialized view is defined using exactly
the same name as the table. This materialized view sum_sales_tab is eligible for
use in query rewrite.

CREATE TABLE sum_sales_tab
 PCTFREE 0 TABLESPACE demo
 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
 AS
 SELECT s.prod_id,
 SUM(amount_sold) AS dollar_sales,
 SUM(quantity_sold) AS unit_sales
 FROM sales s GROUP BY s.prod_id;

CREATE MATERIALIZED VIEW sum_sales_tab
ON PREBUILT TABLE WITHOUT REDUCED PRECISION
ENABLE QUERY REWRITE
AS
SELECT s.prod_id,
 SUM(amount_sold) AS dollar_sales,
 SUM(quantity_sold) AS unit_sales
 FROM sales s GROUP BY s.prod_id;

You could have compressed this table to save space. See "Storage And Data
Segment Compression" on page 8-23 for details regarding data segment
compression.

In some cases, user-defined materialized views are refreshed on a schedule that is
longer than the update cycle. For example, a monthly materialized view might be
updated only at the end of each month, and the materialized view values always
refer to complete time periods. Reports written directly against these materialized
views implicitly select only data that is not in the current (incomplete) time period.
If a user-defined materialized view already contains a time dimension:

■ It should be registered and then fast refreshed each update cycle.

■ You can create a view that selects the complete time period of interest.

■ The reports should be modified to refer to the view instead of referring directly
to the user-defined materialized view.

If the user-defined materialized view does not contain a time dimension, then:
8-34 Oracle9i Data Warehousing Guide

Partitioning and Materialized Views
■ Create a new materialized view that does include the time dimension (if
possible).

■ The view should aggregate over the time column in the new materialized view.

Partitioning and Materialized Views
Because of the large volume of data held in a data warehouse, partitioning is an
extremely useful option when designing a database.

Partitioning the fact tables improves scalability, simplifies system administration,
and makes it possible to define local indexes that can be efficiently rebuilt.
Partitioning the fact tables also improves the opportunity of fast refreshing the
materialized view when the partition maintenance operation occurs.

Partitioning a materialized view also has benefits for refresh, because the refresh
procedure can use parallel DML to maintain the materialized view.

Partition Change Tracking
It is possible and advantageous to track freshness to a finer grain than the entire
materialized view. The ability to identify which rows in a materialized view are
affected by a certain detail table partition, is known as Partition Change Tracking
(PCT). When one or more of the detail tables are partitioned, it may be possible to
identify the specific rows in the materialized view that correspond to a modified
detail partition(s); those rows become stale when a partition is modified while all
other rows remain fresh.

Partition Change Tracking can be used to identify which materialized view rows
correspond to a particular detail table. Partition Change Tracking is also used to
support fast refresh after partition maintenance operations on detail tables. For
instance, if a detail table partition is truncated or dropped, the affected rows in the
materialized view are identified and deleted. Identifying which materialized view
rows are fresh or stale, rather than considering the entire materialized view as stale,
allows query rewrite to use those rows that are fresh while in QUERY_REWRITE_
INTEGRITY=ENFORCED or TRUSTED modes.

To support PCT, a materialized view must satisfy the following requirements:

■ At least one of the detail tables referenced by the materialized view must be
partitioned.

See Also: Chapter 5, "Parallelism and Partitioning in Data
Warehouses" for further details about partitioning
Materialized Views 8-35

Partitioning and Materialized Views
■ Partitioned tables must use either range or composite partitioning.

■ The partition key must consist of only a single column.

■ The materialized view must contain either the partition key column or a
partition marker of the detail table. See Oracle9i Supplied PL/SQL Packages and
Types Reference for details regarding the DBMS_MVIEW.PMARKER function.

■ If you use a GROUP BY clause, the partition key column or the partition marker
must be present in the GROUP BY clause.

■ Data modifications can only occur on the partitioned table.

■ The COMPATIBILITY initialization parameter must be a minimum of 9.0.0.0.0.

■ Partition Change Tracking is not supported for a materialized view that refers
to views, remote tables, or outer joins.

■ Partition Change Tracking-based refresh is not supported for UNION ALL
materialized views.

Partition change tracking requires sufficient information in the materialized view to
be able to correlate each materialized view row back to its corresponding detail row
in the source partitioned detail table. This can be accomplished by including the
detail table partition key columns in the select list and, if GROUP BY is used, in the
GROUP BY list. Depending on the desired level of aggregation and the distinct
cardinalities of the partition key columns, this has the unfortunate effect of
significantly increasing the cardinality of the materialized view. For example, say a
popular metric is the revenue generated by a product during a given year. If the
sales table were partitioned by time_id , it would be a required field in the
SELECTclause and the GROUP BYclause of the materialized view. If there were 1000
different products sold each day, it would substantially increase the number of rows
in the materialized view.

Partition Marker
In many cases, the advantages of PCT will be offset by this restriction for highly
aggregated materialized views. The DBMS_MVIEW.PMARKERfunction is designed to
significantly reduce the cardinality of the materialized view (see Example 8–7 on
page 8-37 for an example). The function returns a partition identifier that uniquely
identifies the partition for a specified row within a specified partition table. The
DBMS_MVIEW.PMARKER function is used instead of the partition key column in the
SELECT and GROUP BY clauses.
8-36 Oracle9i Data Warehousing Guide

Partitioning and Materialized Views
Unlike the general case of a PL/SQL function in a materialized view, use of the
DBMS_MVIEW.PMARKER does not prevent rewrite with that materialized view even
when the rewrite mode is QUERY_REWRITE_INTEGRITY=enforced .

Example 8–7 Partition Change Tracking

The following example uses the sh sample schema and the three detail tables
sales , products , and times to create two materialized views. For this example,
sales is a partitioned table using the time_id column and products is
partitioned by the prod_category column. times is not a partitioned table.

The first materialized view is for the yearly sales revenue for each product.

The second materialized view is for monthly customer sales. As customers tend to
purchase in bulk, sales average just two orders for each customer per month.
Therefore, the impact of including the time_id in the materialized view will not
unacceptably increase the number of rows stored. However, most orders are large
and contain many different products. With approximately 1000 different products
sold each day, including the time_id in the materialized view would substantially
increase the cardinality. This materialized view uses the DBMS_MVIEW.PMARKER
function.

The detail tables must have materialized view logs for FAST REFRESH.

CREATE MATERIALIZED VIEW LOG ON SALES WITH ROWID
 (prod_id, time_id, quantity_sold, amount_sold)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON PRODUCTS WITH ROWID
 (prod_id, prod_name, prod_desc)
 INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON TIMES WITH ROWID
 (time_id, calendar_month_name, calendar_year)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD DEFERRED REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
 SELECT s.time_id, p.prod_id, SUM(s.quantity_sold),
SUM(s.amount_sold),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
 FROM sales s, products p, times t
 WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
Materialized Views 8-37

Partitioning and Materialized Views
 GROUP BY t.calendar_month_name, p.prod_id, p.prod_name, s.time_id;

cust_mth_sales_mv includes the partition key column from table sales (time_
id) in both its SELECT and GROUP BY lists. This enables PCT on table sales for
materialized view cust_mth_sales_mv . However, the GROUP BY and SELECT
lists include PRODUCTS.PROD_ID rather than the partition key column (PROD_
CATEGORY) of the products table. Therefore, PCT is not enabled on table
products for this materialized view. In other words, any partition maintenance
operation to the sales table will allow a PCT fast refresh of cust_mth_sales_mv .
However, PCT fast refresh is not possible after any kind of modification to the
products table. To correct this, the GROUP BY and SELECT lists must include
column PRODUCTS.PROD_CATEGORY. Following a partition maintenance
operation, such as a drop partition, a PCT fast refresh should be performed on any
materialized view that is referencing the table upon which the partition operations
are undertaken.

Example 8–8 Creating a Materialized View

CREATE MATERIALIZED VIEW prod_yr_sales_mv
BUILD DEFERRED
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
 SELECT DBMS_MVIEW.PMARKER(s.rowid),
 DBMS_MVIEW.PMARKER(p.rowid),
 s.prod_id, SUM(s.amount_sold), SUM(s.quantity_sold),
 p.prod_name, t.calendar_year, COUNT(*),
 COUNT(s.amount_sold), COUNT(s.quantity_sold)
 FROM sales s, products p, times t
 WHERE s.time_id = t.time_id AND
 s.prod_id = p.prod_id
 GROUP BY DBMS_MVIEW.PMARKER (s.rowid),
 DBMS_MVIEW.PMARKER (p.rowid),
 t.calendar_year, s.prod_id, p.prod_name;

prod_yr_sales_mv includes the DBMS_MVIEW.PMARKER function on the sales
and products tables in both its SELECT and GROUP BY lists. This enables partition
change tracking on both the sales table and the products table with significantly
less cardinality impact than grouping by the respective partition key columns. In
this example, the desired level of aggregation for the prod_yr_sales_mv is to
group by times.calendar_year . Using the DBMS_MVIEW.PMARKER function,
the materialized view cardinality is increased only by a factor of the number of
partitions in the sales table times, the number of partitions in the products table.
8-38 Oracle9i Data Warehousing Guide

Partitioning and Materialized Views
This would generally be significantly less than the cardinality impact of including
the respective partition key columns.

A subsequent INSERT statement adds a new row to the sales_part3 partition of
table sales . At this point, because cust_mth_sales_mv and prod_yr_sales_
mv have partition change tracking available on table sales , Oracle can determine
that those rows in these materialized views corresponding to sales_part3 are
stale, while all other rows in these materialized views are unchanged in their
freshness state. An INSERT INTO products statement is not tracked for
materialized view cust_mth_sales_mv . Therefore, cust_mth_sales_mv
becomes completely stale when the products table is modified in this way.

Partitioning a Materialized View
Partitioning a materialized view involves defining the materialized view with the
standard Oracle partitioning clauses, as illustrated in the following example. This
statement creates a materialized view called part_sales_mv , which uses three
partitions, can be fast refreshed, and is eligible for query rewrite.

CREATE MATERIALIZED VIEW part_sales_mv
PARALLEL
 PARTITION BY RANGE (time_id)
 (PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf3)
BUILD DEFERRED
REFRESH FAST
ENABLE QUERY REWRITE
AS
SELECT s.cust_id, s.time_id,
 SUM(s.amount_sold) AS sum_dol_sales, SUM(s.quantity_sold) AS sum_unit_sales
 FROM sales s GROUP BY s.time_id, s.cust_id;
Materialized Views 8-39

Partitioning and Materialized Views
Partitioning a Prebuilt Table
Alternatively, a materialized view can be registered to a partitioned prebuilt table as
illustrated in the following example:

CREATE TABLE part_sales_tab(time_id, cust_id, sum_dollar_sales, sum_unit_sale)
 PARALLEL
 PARTITION BY RANGE (time_id)
 (
 PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITITAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf3)
AS
SELECT s.time_key, s.cust_id,
 SUM(s.amount_sold) AS sum_dollar_sales,
 SUM(s.quantity_sold) AS sum_unit_sales
 FROM sales s GROUP BY s.time_id, s.cust_id;

CREATE MATERIALIZED VIEW part_sales_tab_mv
ON PREBUILT TABLE
ENABLE QUERY REWRITE
AS
SELECT s.time_id, s.cust_id,
 SUM(s.amount_sold) AS sum_dollar_sales,
 SUM(s.quantity_sold) AS sum_unit_sales
 FROM sales s GROUP BY s.time_id, s.cust_id;

In this example, the table part_sales_tab has been partitioned over three
months and then the materialized view was registered to use the prebuilt table. This
materialized view is eligible for query rewrite because the ENABLE QUERY
REWRITE clause has been included.
8-40 Oracle9i Data Warehousing Guide

Materialized Views in OLAP Environments
Rolling Materialized Views
When a data warehouse or data mart contains a time dimension, it is often desirable
to archive the oldest information and then reuse the storage for new information.
This is called the rolling window scenario. If the fact tables or materialized views
include a time dimension and are horizontally partitioned by the time attribute,
then management of rolling materialized views can be reduced to a few fast
partition maintenance operations provided the unit of data that is rolled out equals,
or is at least aligned with, the range partitions.

If you plan to have rolling materialized views in your warehouse, you should
determine how frequently you plan to perform partition maintenance operations,
and you should plan to partition fact tables and materialized views to reduce the
amount of system administration overhead required when old data is aged out. An
additional consideration is that you might want to use data compression on your
infrequently updated partitions.

You are not restricted to using range partitions. For example, a composite partition
using both a time value and a key value could result in a good partition solution for
your data.

Materialized Views in OLAP Environments
This section discusses certain OLAP concepts and how relational databases can
handle OLAP queries. Next, it recommends an approach for using materialized
views to meet OLAP performance needs. Finally, it discusses using materialized
views with set operators, a common scenario for OLAP environments.

OLAP Cubes
While data warehouse environments typically view data in the form of a star
schema, OLAP environments view data in the form of a hierarchical cube. A
hierarchical cube includes both detail data and aggregated data: it is a data set
where the data is aggregated along the rollup hierarchy of each of its dimensions
and these aggregations are combined across dimensions. It includes the typical set
of aggregations needed for business intelligence queries.

See Also: Chapter 14, "Maintaining the Data Warehouse" for
further details regarding CONSIDER FRESH and "Storage And Data
Segment Compression" on page 8-23 for details regarding
compression
Materialized Views 8-41

Materialized Views in OLAP Environments
Example of a Hierarchical Cube
Consider a sales data set with two dimensions, each of which has a 4-level
hierarchy:

■ Time, which contains (all times), year, quarter, and month.

■ Product, which contains (all products), division, brand, and item.

This means there are 16 aggregate groups in the hierarchical cube. This is because
the four levels of time are multiplied by four levels of product to produce the cube.
Table 8–5 shows the four levels of each dimension.

Note that as you increase the number of dimensions and levels, the number of
groups to calculate increases dramatically. This example involves 16 groups, but if
you were to add just two more dimensions with the same number of levels, you
would have 4 x 4 x 4 x 4 = 256 different groups. Also, consider that a similar
increase in groups occurs if you have multiple hierarchies in your dimensions. For
example, the time dimension might have an additional hierarchy of fiscal month
rolling up to fiscal quarter and then fiscal year. Handling the explosion of groups
has historically been the major challenge in data storage for OLAP systems.

Typical OLAP queries slice and dice different parts of the cube comparing
aggregations from one level to aggregation from another level. For instance, a query
might find sales of the grocery division for the month of January, 2002 and compare
them with total sales of the grocery division for all of 2001.

Specifying OLAP Cubes in SQL
Oracle9i can specify hierarchical cubes in a simple and efficient SQL query. These
hierarchical cubes represent the logical cubes referred to in many OLAP products.
To specify data in the form of hierarchical cubes, users can work with the extensions
to GROUP BY clause introduced in Oracle9i.

Table 8–5 ROLLUP By Time and Product

ROLLUP By Time ROLLUP By Product

year, quarter, month division, brand, item

year, quarter division, brand

year division

all times all products
8-42 Oracle9i Data Warehousing Guide

Materialized Views in OLAP Environments
You can use one of Oracle’s new extensions to the GROUP BY clause, concatenated
grouping sets, to generate the aggregates needed for a hierarchical cube of data. By
using concatenated rollup (rolling up along the hierarchy of each dimension and
then concatenate them across multiple dimensions), you can generate all the
aggregations needed by a hierarchical cube. These extensions are discussed in detail
in Chapter 18, "SQL for Aggregation in Data Warehouses".

Example of Concatenated ROLLUP
The following shows the GROUP BY clause needed to create a hierarchical cube for
the 2-dimension example described earlier. The following simple syntax performs a
concatenated rollup:

GROUP BY ROLLUP(year, quarter, month),
 ROLLUP(Division, brand, item);

This concatenated rollup takes the ROLLUP aggregations listed in the table of the
prior section and perform a cross-product on them. The cross-product will create
the 16 (4x4) aggregate groups needed for a hierarchical cube of the data.

Querying OLAP Cubes in SQL
Analytic applications treat data as cubes, but they want only certain slices and
regions of the cube. Concatenated rollup (hierarchical cube) enables relational data
to be treated as cubes. To handle complex analytic queries, the fundamental
technique is to enclose a hierarchical cube query in an outer query that specifies the
exact slice needed from the cube. Oracle9i optimizes the processing of hierarchical
cubes nested inside slicing queries. By applying many powerful algorithms, these
queries can be processed at unprecedented speed and scale. This enables OLAP
tools and analytic applications to use a consistent style of queries to handle the most
complex questions.

Example of a Hierarchical Cube Query
Consider the following analytic query. It consists of a hierarchical cube query nested
in a slicing query.

SELECT month, division, sum_sales FROM
 (SELECT year, quarter, month, division, brand, item, SUM(sales) sum_sales,
 GROUPING_ID(grouping-columns) gid
 FROM sales, products, time
 WHERE join-condition
 GROUP BY
 ROLLUP(year, quarter, month),
Materialized Views 8-43

Materialized Views in OLAP Environments
 ROLLUP(division, brand, item)
)
WHERE division = 25
 AND month = 200201
 AND gid = gid-for-Division-Month ;

The inner hierarchical cube specified defines a simple cube, with two dimensions
and four levels in each dimension. It would generate 16 groups (4 Time levels * 4
Product levels). The GROUPING_ID function in the query identifies the specific
group each row belongs to, based on the aggregation level of the grouping-columns
in its argument.

The outer query applies the constraints needed for our specific query, limiting
Division to a value of 25 and Month to a value of 200201 (representing January 2002
in this case). In conceptual terms, it slices a small chunk of data from the cube. The
outer query's constraint on the GID column, indicated in the query by
gid-for-division-month would be the value of a key indicating that the data is
grouped as a combination of division and month . The GID constraint selects only
those rows that are aggregated at the level of a GROUP BY month, division clause.

Oracle removes unneeded aggregation groups from query processing based on the
outer query conditions. The outer conditions of the previous query limit the result
set to a single group aggregating division and month . Any other groups
involving year , month , brand , and item are unnecessary here. The group pruning
optimization recognizes this and transforms the query into:

SELECT month, division, sum_sales
FROM
 (SELECT null , null , month, division,

null , null , SUM(sales) sum_sales,
 GROUPING_ID(grouping-columns) gid
 FROM sales, products, time
 WHERE join-condition

GROUP BY
 month , division)
WHERE division = 25
 AND month = 200201
 AND gid = gid-for-Division-Month ;

The bold items highlight the changed SQL. The inner query now has a simple
GROUP BY clause of month , division . The columns year , quarter , brand and
item have been converted to null to match the simplified GROUP BYclause. Because
the query now requests just one group, fifteen out of sixteen groups are removed
from the processing, greatly reducing the work. For a cube with more dimensions
8-44 Oracle9i Data Warehousing Guide

Materialized Views in OLAP Environments
and more levels, the savings possible through group pruning can be far greater.
Note that the group pruning transformation works with all the GROUP BY
extensions: ROLLUP, CUBE, and GROUPING SETS.

While the Oracle optimizer has simplified the previous query to a simple GROUP BY,
faster response times can be achieved if the group is precomputed and stored in a
materialized view. Because OLAP queries can ask for any slice of the cube many
groups may need to be precomputed and stored in a materialized view. This is
discussed in the next section.

SQL for Creating Materialized Views to Store OLAP Cubes
OLAP requires fast response times for multiple users, and this in turn demands that
significant parts of an OLAP cube be precomputed and held in materialized views.
Oracle9i enables great flexibility in the use of materialized views for OLAP.

Data warehouse designers can choose exactly how much data to materialize. A data
warehouse can have the full OLAP cube materialized. While this will take the most
storage space, it ensures quick response for any query within the cube. On the other
hand, a warehouse could have just partial materialization, saving storage space, but
allowing only a subset of possible queries to be answered at highest speed. If an
OLAP environment’s queries cover the full range of aggregate groupings possible
in its data set, it may be best to materialize the whole hierarchical cube.

This means that each dimension’s aggregation hierarchy is precomputed in
combination with each of the other dimensions. Naturally, precomputing a full
hierarchical cube requires more disk space and higher creation and refresh times
than a small set of aggregate groups. The trade-off in processing time and disk
space versus query performance needs to be considered before deciding to create it.
An additional possibility you could consider is to use data compression to lessen
your disk space requirements.

Examples of Hierarchical Cube Materialized Views
This section shows complete and partial hierarchical cube materialized views.

See Also: Oracle9i SQL Reference for data compression syntax and
restrictions and "Storage And Data Segment Compression" on
page 8-23 for details regarding compression
Materialized Views 8-45

Materialized Views in OLAP Environments
Example 1 Complete Hierarchical Cube Materialized View
CREATE MATERIALIZED VIEW sales_hierarchical_cube_mv
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT country_id, cust_state_province, cust_city, prod_category,
prod_subcategory, prod_name, calendar_month_number,
day_number_in_month, day_number_in_week,
GROUPING_ID(country_id, cust_state_province, cust_city,
prod_category, prod_subcategory, prod_name,
calendar_month_number, day_number_in_month,
day_number_in_week) gid,
SUM(amount_sold) s_sales,
COUNT(amount_sold) c_sales,
COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
 AND s.time_id = t.time_id
GROUP BY
 ROLLUP(country_id, (cust_state_province, cust_city)),
 ROLLUP(prod_category, (prod_subcategory, prod_name)),
 ROLLUP(calendar_month_number, (day_number_in_month,
 day_number_in_week))
PARTITION BY LIST (gid)
...;

This creates a complete hierarchical cube stored in a list-partitioned materialized
view.

Example 2 Partial Hierarchical Cube Materialized View
CREATE MATERIALIZED VIEW sales_mv
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT country_id, cust_state_province, cust_city,
prod_category, prod_subcategory, prod_name,
GROUPING_ID(country_id, cust_state_province, cust_city,
prod_category, prod_subcategory, prod_name) gid,
SUM(amount_sold) s_sales,
COUNT(amount_sold) c_sales,
COUNT(*) c_star
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id and s.prod_id = p.prod_id
GROUP BY GROUPING SETS
8-46 Oracle9i Data Warehousing Guide

Materialized Views in OLAP Environments
((country_id, cust_state_province, cust_city),
(country_id, prod_category, prod_subcategory, prod_name),
(prod_category, prod_subcategory, prod_name),(country_id,
prod_category))
PARTITION BY LIST (gid)
...;

This creates a partial hierarchical cube stored in a list-partitioned materialized view.
Note that it explicitly lists the groups needed using the GROUPING SETS extension
to GROUP BY.

Partitioning Materialized Views for OLAP
Materialized views with multiple aggregate groups will give their best performance
when partitioned appropriately. The most effective partitioning scheme for these
materialized views is to use list partitioning, especially with the GROUPING_ID
column. By partitioning the materialized views this way, you enable partition
pruning for queries rewritten against this materialized view: only relevant
aggregate groups will be accessed, greatly reducing the query processing cost.

Compressing Materialized Views for OLAP
You should consider data compression when using highly redundant data, such as
tables with many foreign keys. In particular, materialized views created with the
ROLLUP clause are likely candidates.

Materialized Views with Set Operators
Oracle provides some support for materialized views whose defining query
involves set operators. Materialized views with set operators can now be created
enabled for query rewrite. Query rewrite with such materialized views is supported
using full exact text match. You can refresh the materialized view using either ON
COMMIT or ON DEMAND refresh.

Fast refresh is supported if the defining query has the UNION ALL operator at the
top level and each query block in the UNION ALL, meets the requirements of a
materialized view with aggregates or materialized view with joins only. Further, the
materialized view must include a constant column (known as a UNION ALLmarker)

See Also: Oracle9i SQL Reference for data compression syntax and
restrictions and "Storage And Data Segment Compression" on
page 8-23 for details regarding compression
Materialized Views 8-47

Materialized Views in OLAP Environments
that has a distinct value in each query block, which, in the following example, is
columns 1 marker and 2 marker .

See "Restrictions on Fast Refresh on Materialized Views With the UNION ALL
Operator" on page 8-29 for detailed restrictions on fast refresh for materialized
views with UNION ALL.

Examples of Materialized Views Using UNION ALL
The following examples illustrate creation of fast refreshable materialized views
involving UNION ALL.

Example 1 Materialized View Using UNION ALL
To create a UNION ALL materialized view with two join views, the materialized
view logs must have the rowid column and, in the following example, the UNION
ALL marker is the columns, 1 marker and 2 marker .

CREATE MATERIALIZED VIEW LOG ON sales
WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers
WITH ROWID;

CREATE MATERIALIZED VIEW unionall_sales_cust_joins_mv
BUILD DEFERRED
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS
(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 1 marker
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Smith')
UNION ALL
(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 2 marker
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Brown');

Example 2 Materialized View Using UNION ALL
The following example shows a UNION ALL of a materialized view with joins and a
materialized view with aggregates. A couple of things can be noted in this example.
Nulls or constants can be used to ensure that the data types of the corresponding
SELECT list columns match. Also the UNION ALL marker column can be a string
literal, which is 'Year' umarker , 'Quarter' umarker , or 'Daily' umarker
in the following example:
8-48 Oracle9i Data Warehousing Guide

Choosing Indexes for Materialized Views
DROP MATERIALIZED VIEW LOG ON sales;
CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID, SEQUENCE
(amount_sold, time_id)
INCLUDING NEW VALUES;

DROP MATERIALIZED VIEW LOG ON times;
CREATE MATERIALIZED VIEW LOG ON times WITH ROWID, SEQUENCE
 (time_id, fiscal_year, fiscal_quarter_number, day_number_in_week)
INCLUDING NEW VALUES;

DROP MATERIALIZED VIEW unionall_sales_mix_mv;
CREATE MATERIALIZED VIEW unionall_sales_mix_mv
BUILD DEFERRED
REFRESH FAST ON DEMAND
AS
(SELECT 'Year' umarker, NULL, NULL, t.fiscal_year,
 SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*)
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 GROUP BY t.fiscal_year)
UNION ALL
(SELECT 'Quarter' umarker, NULL, NULL, t.fiscal_quarter_number,
 SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*)
FROM sales s, times t
WHERE s.time_id = t.time_id and t.fiscal_year = 2001
GROUP BY t.fiscal_quarter_number)
UNION ALL
(SELECT 'Daily' umarker, s.rowid rid, t.rowid rid2, t.day_number_in_week,
 s.amount_sold amt, 1, 1
FROM sales s, times t
WHERE s.time_id = t.time_id
 and t.time_id between '01-Jan-01' and '01-Dec-31');

Choosing Indexes for Materialized Views
The two most common operations on a materialized view are query execution and
fast refresh, and each operation has different performance requirements. Query
execution might need to access any subset of the materialized view key columns,
and might need to join and aggregate over a subset of those columns. Consequently,
query execution usually performs best if a single-column bitmap index is defined
on each materialized view key column.
Materialized Views 8-49

Invalidating Materialized Views
In the case of materialized views containing only joins using fast refresh, Oracle
recommends that indexes be created on the columns that contain the rowids to
improve the performance of the refresh operation.

If a materialized view using aggregates is fast refreshable, then an index is
automatically created unless USING NO INDEX is specified in the CREATE
MATERIALIZED VIEW statement.

Invalidating Materialized Views
Dependencies related to materialized views are automatically maintained to ensure
correct operation. When a materialized view is created, the materialized view
depends on the detail tables referenced in its definition. Any DML operation, such
as a INSERT, or DELETE, UPDATE, or DDL operation on any dependency in the
materialized view will cause it to become invalid. To revalidate a materialized view,
use the ALTER MATERIALIZED VIEW COMPILE statement.

A materialized view is automatically revalidated when it is referenced. In many
cases, the materialized view will be successfully and transparently revalidated.
However, if a column has been dropped in a table referenced by a materialized view
or the owner of the materialized view did not have one of the query rewrite
privileges and that privilege has now been granted to the owner, you should use the
following statement to revalidate the materialized view:

ALTER MATERIALIZED VIEW mview_name ENABLE QUERY REWRITE;

The state of a materialized view can be checked by querying the data dictionary
views USER_MVIEWS or ALL_MVIEWS. The column STALENESS will show one of
the values FRESH, STALE, UNUSABLE, UNKNOWN, or UNDEFINEDto indicate whether
the materialized view can be used. The state is maintained automatically, but it can
be manually updated by issuing an ALTER MATERIALIZED VIEW name
COMPILE statement.

Security Issues with Materialized Views
To create a materialized view in your own schema, you must have the CREATE
MATERIALIZED VIEW privilege and the SELECT privilege to any tables referenced
that are in another schema. To create a materialized view in another schema, you
must have the CREATE ANY MATERIALIZED VIEW privilege and the owner of the

See Also: Chapter 21, "Using Parallel Execution" for further
details
8-50 Oracle9i Data Warehousing Guide

Altering Materialized Views
materialized view needs SELECT privileges to the tables referenced if they are from
another schema.

Moreover, if you enable query rewrite on a materialized view that references tables
outside your schema, you must have the GLOBAL QUERY REWRITE privilege or the
QUERY REWRITE object privilege on each table outside your schema.

If the materialized view is on a prebuilt container, the creator, if different from the
owner, must have SELECT WITH GRANT privilege on the container table.

If you continue to get a privilege error while trying to create a materialized view
and you believe that all the required privileges have been granted, then the problem
is most likely due to a privilege not being granted explicitly and trying to inherit the
privilege from a role instead. The owner of the materialized view must have
explicitly been granted SELECT access to the referenced tables if the tables are in a
different schema.

If the materialized view is being created with ON COMMIT REFRESH specified, then
the owner of the materialized view requires an additional privilege if any of the
tables in the defining query are outside the owner's schema. In that case, the owner
requires the ON COMMIT REFRESH system privilege or the ON COMMIT REFRESH
object privilege on each table outside the owner's schema.

Altering Materialized Views
Five modifications can be made to a materialized view. You can:

■ Change its refresh option (FAST/FORCE/COMPLETE/NEVER)

■ Change its refresh mode (ON COMMIT/ON DEMAND)

■ Recompile it

■ Enable or disable its use for query rewrite

■ Consider it fresh

All other changes are achieved by dropping and then re-creating the materialized
view.

The COMPILE clause of the ALTER MATERIALIZED VIEW statement can be used
when the materialized view has been invalidated. This compile process is quick,
and allows the materialized view to be used by query rewrite again.
Materialized Views 8-51

Dropping Materialized Views
Dropping Materialized Views
Use the DROP MATERIALIZED VIEW statement to drop a materialized view. For
example:

DROP MATERIALIZED VIEW sales_sum_mv;

This statement drops the materialized view sales_sum_mv . If the materialized
view was prebuilt on a table, then the table is not dropped, but it can no longer be
maintained with the refresh mechanism or used by query rewrite. Alternatively,
you can drop a materialized view using Oracle Enterprise Manager.

Analyzing Materialized View Capabilities
You can use the DBMS_MVIEW.EXPLAIN_MVIEW procedure to learn what is possible
with a materialized view or potential materialized view. In particular, this
procedure enables you to determine:

■ If a materialized view is fast refreshable

■ What types of query rewrite you can perform with this materialized view

■ Whether PCT refresh is possible

Using this procedure is straightforward. You simply call DBMS_MVIEW.EXPLAIN_
MVIEW, passing in as a single parameter the schema and materialized view name for
an existing materialized view. Alternatively, you can specify the SELECTstring for a
potential materialized view. The materialized view or potential materialized view is
then analyzed and the results are written into either a table called MV_
CAPABILITIES_TABLE , which is the default, or to an array called MSG_ARRAY.

Note that you must run the utlxmv.sql script prior to calling EXPLAIN_MVIEW
except when you are placing the results in MSG_ARRAY. The script is found in the
admin directory. In addition, you must create MV_CAPABILITIES_TABLE in the
current schema. An explanation of the various capabilities is in Table 8–6 on
page 8-56, and all the possible messages are listed in Table 8–7 on page 8-58.

See Also: Oracle9i SQL Reference for further information about the
ALTER MATERIALIZED VIEW statement and "Invalidating
Materialized Views" on page 8-50
8-52 Oracle9i Data Warehousing Guide

Analyzing Materialized View Capabilities
Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure
The DBMS_MVIEW.EXPLAIN_MVIEW procedure has the following parameters:

■ stmt_id

An optional parameter. A client-supplied unique identifier to associate output
rows with specific invocations of EXPLAIN_MVIEW.

■ mv

The name of an existing materialized view or the query definition of a potential
materialized view you want to analyze.

■ msg-array

The PL/SQL varray that receives the output.

DBMS_MVIEW.EXPLAIN_MVIEW analyzes the specified materialized view in terms
of its refresh and rewrite capabilities and inserts its results (in the form of multiple
rows) into MV_CAPABILITIES_TABLE or MSG_ARRAY.

DBMS_MVIEW.EXPLAIN_MVIEW Declarations
The following PL/SQL declarations that are made for you in the DBMS_MVIEW
package show the order and datatypes of these parameters for explaining an
existing materialized view and a potential materialized view with output to a table
and to a VARRAY.

Explain an existing or potential materialized view with output to MV_
CAPABILITIES_TABLE:

DBMS_MVIEW.EXPLAIN_MVIEW
(mv IN VARCHAR2,
 stmt_id IN VARCHAR2:= NULL);

Explain an existing or potential materialized view with output to a VARRAY:

DBMS_MVIEW.EXPLAIN_MVIEW
(mv IN VARCHAR2,
 msg_array OUT SYS.ExplainMVArrayType);

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
further information about the DBMS_MVIEW package
Materialized Views 8-53

Analyzing Materialized View Capabilities
Using MV_CAPABILITIES_TABLE
One of the simplest ways to use DBMS_MVIEW.EXPLAIN_MVIEW is with the MV_
CAPABILITIES_TABLE , which has the following structure:

CREATE TABLE MV_CAPABILITIES_TABLE
 (
 STMT_ID VARCHAR(30), -- client-supplied unique statement identifier
 MV VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 CAPABILITY_NAME VARCHAR(30), -- A descriptive name of particular
 -- capabilities, such as REWRITE.
 -- See Table 8–6
 POSSIBLE CHARACTER(1), -- Y = capability is possible
 -- N = capability is not possible
 RELATED_TEXT VARCHAR(2000), -- owner.table.column, and so on related to
 -- this message
 RELATED_NUM NUMBER, -- When there is a numeric value
 -- associated with a row, it goes here.
 MSGNO INTEGER, -- When available, message # explaining
 -- why disabled or more details when
 -- enabled.
 MSGTXT VARCHAR(2000), -- Text associated with MSGNO
 SEQ NUMBER); -- Useful in ORDER BY clause when
 -- selecting from this table.

You can use the utlxmv.sql script found in the admin directory to create MV_
CAPABILITIES_TABLE .

Example of DBMS_MVIEW.EXPLAIN_MVIEW
First, create the materialized view. Alternatively, you can use EXPLAIN_MVIEWon a
potential materialized view using its SELECT statement.

CREATE MATERIALIZED VIEW cal_month_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Then, you invoke EXPLAIN_MVIEWwith the materialized view to explain. You need
to use the SEQ column in an ORDER BY clause so the rows will display in a logical
order. If a capability is not possible, N will appear in the P column and an
8-54 Oracle9i Data Warehousing Guide

Analyzing Materialized View Capabilities
explanation in the MSGTXT column. If a capability is not possible for more than one
reason, a row is displayed for each reason.

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('SH.CAL_MONTH_SALES_MV');

SELECTcapability_name, possible,SUBSTR(related_text,1,8)ASrel_text,
SUBSTR(msgtxt,1,60) AS msgtxt
FROM MV_CAPABILITIES_TABLE
ORDER BY seq;

CAPABILITY_NAME P REL_TEXT MSGTXT
--------------- - -------- ------
PCT N
REFRESH_COMPLETE Y
REFRESH_FAST N
REWRITE Y
PCT_TABLE N SALES no partition key or PMARKER in select list
PCT_TABLE N TIMES relation is not a partitioned table
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log does not have all necessary columns
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log does not have all necessary columns
REFRESH_FAST_AFTER_ONETAB_DML N DOLLARS SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ONETAB_DML N see the reason why
 REFRESH_FAST_AFTER_INSERT is disabled
REFRESH_FAST_AFTER_ONETAB_DML N COUNT(*) is not present in the select list
REFRESH_FAST_AFTER_ONETAB_DML N SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ANY_DML N see the reason why
 REFRESH_FAST_AFTER_ONETAB_DML is disabled
REFRESH_FAST_AFTER_ANY_DML N SH.TIMES mv log must have sequence
REFRESH_FAST_AFTER_ANY_DML N SH.SALES mv log must have sequence
REFRESH_PCT N PCT is not possible on any of the detail
 tables in the materialized view
REWRITE_FULL_TEXT_MATCH Y
REWRITE_PARTIAL_TEXT_MATCH Y
REWRITE_GENERAL Y
REWRITE_PCT N PCT is not possible on any detail tables

See Also: Chapter 14, "Maintaining the Data Warehouse" and
Chapter 22, "Query Rewrite" for further details about PCT
Materialized Views 8-55

Analyzing Materialized View Capabilities
MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details
Table 8–6 lists explanations for values in the CAPABILITY_NAME column.

Table 8–6 CAPABILITY_NAME Column Details

CAPABILITY_NAME Description

PCT If this capability is possible, Partition Change Tracking is possible on at least one
detail relation. If this capability is not possible, PCT is not possible with any detail
relation referenced by the materialized view.

REFRESH_COMPLETE If this capability is possible, complete refresh of the materialized view is possible.

REFRESH_FAST If this capability is possible, fast refresh is possible at least under certain
circumstances.

REWRITE If this capability is possible, at least full text match query rewrite is possible. If this
capability is not possible, no form of query rewrite is possible.

PCT_TABLE If this capability is possible, it is possible with respect to a particular partitioned
table in the top level FROM list. When possible, PCT applies to the partitioned table
named in the RELATED_TEXT column.

PCT is needed to support fast fresh after partition maintenance operations on the
table named in the RELATED_TEXT column.

PCT may also support fast refresh with regard to updates to the table named in the
RELATED_TEXT column when fast refresh from a materialized view log is not
possible. (PCT-based fast refresh generally does not perform as well as fast refresh
from a materialized view log.)

PCT is also needed to support query rewrite in the presence of partial staleness of
the materialized view with regard to the table named in the RELATED_TEXT
column.

When disabled, PCT does not apply to the table named in the RELATED_TEXT
column. In this case, fast refresh is not possible after partition maintenance
operations on the table named in the RELATED_TEXT column. In addition,
PCT-based refresh of updates to the table named in the RELATED_TEXT column is
not possible. Finally, query rewrite cannot be supported in the presence of partial
staleness of the materialized view with regard to the table named in the RELATED_
TEXT column.

REFRESH_FAST_
AFTER_INSERT

If this capability is possible, fast refresh from a materialized view log is possible at
least in the case where the updates are restricted to INSERT operations; complete
refresh is also possible. If this capability is not possible, no form of fast refresh from
a materialized view log is possible.
8-56 Oracle9i Data Warehousing Guide

Analyzing Materialized View Capabilities
REFRESH_FAST_
AFTER_ONETAB_DML

If this capability is possible, fast refresh from a materialized view log is possible
regardless of the type of update operation, provided all update operations are
performed on a single table. If this capability is not possible, fast refresh from a
materialized view log may not be possible when the update operations are
performed on multiple tables.

REFRESH_FAST_
AFTER_ANY_DML

If this capability is possible, fast refresh from a materialized view log is possible
regardless of the type of update operation or the number of tables updated. If this
capability is not possible, fast refresh from a materialized view log may not be
possible when the update operations (other than INSERT) affect multiple tables.

REFRESH_FAST_PCT If this capability is possible, fast refresh using PCT is possible. Generally, this means
that refresh is possible after partition maintenance operations on those detail tables
where PCT is indicated as possible.

REWRITE_FULL_TEXT_
MATCH

If this capability is possible, full text match query rewrite is possible. If this
capability is not possible, full text match query rewrite is not possible.

REWRITE_PARTIAL_
TEXT_MATCH

If this capability is possible, at least full and partial text match query rewrite are
possible. If this capability is not possible, at least partial text match query rewrite
and general query rewrite are not possible.

REWRITE_GENERAL If this capability is possible, all query rewrite capabilities are possible, including
general query rewrite and full and partial text match query rewrite. If this capability
is not possible, at least general query rewrite is not possible.

REWRITE_PCT If this capability is possible, query rewrite can use a partially stale materialized view
even in QUERY_REWRITE_INTEGRITY = enforced or trusted modes. When this
capability is not possible, query rewrite can use a partially stale materialized view
only in QUERY_REWRITE_INTEGRITY = stale_tolerated mode.

Table 8–6 CAPABILITY_NAME Column Details(Cont.)

CAPABILITY_NAME Description
Materialized Views 8-57

Analyzing Materialized View Capabilities
MV_CAPABILITIES_TABLE Column Details
Table 8–7 lists the semantics for RELATED_TEXT and RELATED_NUM columns.

Table 8–7 MV_CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT

NULL NULL For PCT capability only:
[owner .] name of the table upon
which PCT is enabled

2066 This statement resulted in an
Oracle error

Oracle error number that
occurred

2067 No partition key or PMARKER
in select list

[owner .] name of relation for which
PCT is not supported

2068 Relation is not partitioned [owner .] name of relation for which
PCT is not supported

2069 PCT not supported with
multicolumn partition key

[owner .] name of relation for which
PCT is not supported

2070 PCT not supported with this
type of partitioning

[owner .] name of relation for which
PCT is not supported

2071 Internal error: undefined PCT
failure code

The unrecognized numeric
PCT failure code

[owner .] name of relation for which
PCT is not supported

2077 Mv log is newer than last full
refresh

[owner .] table_name of table upon
which the mv log is needed

2078 Mv log must have new values [owner .] table_name of table upon
which the mv log is needed

2079 Mv log must have ROWID [owner .] table_name of table upon
which the mv log is needed

2080 Mv log must have primary
key

[owner .] table_name of table upon
which the mv log is needed

2081 Mv log does not have all
necessary columns

[owner .] table_name of table upon
which the mv log is needed

2082 Problem with mv log [owner .] table_name of table upon
which the mv log is needed

2099 Mv references a remote table
or view in the FROM list

Offset from the SELECT
keyword to the table or
view in question

[owner .] name of the table or view in
question

2126 Multiple master sites Name of the first different node, or
NULL if the first different node is local
8-58 Oracle9i Data Warehousing Guide

Analyzing Materialized View Capabilities
2129 Join or filter condition(s) are
complex

[owner .] name of the table involved
with the join or filter condition (or
NULL when not available)

2130 Expression not supported for
fast refresh

Offset from the SELECT
keyword to the expression
in question

The alias name in the select list of the
expression in question

2150 Select lists must be identical
across the UNION operator

Offset from the SELECT
keyword to the first
different select item in the
SELECT list

The alias name of the first different
select item in the SELECT list

Table 8–7 MV_CAPABILITIES_TABLE Column Details(Cont.)

MSGNO MSGTXT RELATED_NUM RELATED_TEXT
Materialized Views 8-59

Analyzing Materialized View Capabilities
8-60 Oracle9i Data Warehousing Guide

Dimen
9

Dimensions

The following sections will help you create and manage a data warehouse:

■ What are Dimensions?

■ Creating Dimensions

■ Viewing Dimensions

■ Using Dimensions with Constraints

■ Validating Dimensions

■ Altering Dimensions

■ Deleting Dimensions

■ Using the Dimension Wizard
sions 9-1

What are Dimensions?
What are Dimensions?
A dimension is a structure that categorizes data in order to enable users to answer
business questions. Commonly used dimensions are customers , products , and
time . For example, each sales channel of a clothing retailer might gather and store
data regarding sales and reclamations of their Cloth assortment. The retail chain
management can build a data warehouse to analyze the sales of its products across
all stores over time and help answer questions such as:

■ What is the effect of promoting one product on the sale of a related product that
is not promoted?

■ What are the sales of a product before and after a promotion?

■ How does a promotion affect the various distribution channels?

The data in the retailer's data warehouse system has two important components:
dimensions and facts. The dimensions are products, customers, promotions,
channels, and time. One approach for identifying your dimensions is to review your
reference tables, such as a product table that contains everything about a product,
or a promotion table containing all information about promotions. The facts are
sales (units sold) and profits. A data warehouse contains facts about the sales of
each product at on a daily basis.

A typical relational implementation for such a data warehouse is a Star Schema. The
fact information is stored in the so-called fact table, whereas the dimensional
information is stored in the so-called dimension tables. In our example, each sales
transaction record is uniquely defined as for each customer, for each product, for
each sales channel, for each promotion, and for each day (time).

In Oracle9i, the dimensional information itself is stored in a dimension table. In
addition, the database object dimension helps to organize and group dimensional
information into hierarchies. This represents natural 1:n relationships between
columns or column groups (the levels of a hierarchy) that cannot be represented
with constraint conditions. Going up a level in the hierarchy is called rolling up the
data and going down a level in the hierarchy is called drilling down the data. In the
retailer example:

See Also: Chapter 17, "Schema Modeling Techniques" for further
details
9-2 Oracle9i Data Warehousing Guide

What are Dimensions?
■ Within the time dimension, months roll up to quarters, quarters roll up to
years, and years roll up to all years.

■ Within the product dimension, products roll up to subcategories,
subcategories roll up to categories, and categories roll up to all products.

■ Within the customer dimension, customers roll up to city . Then cities rolls
up to state . Then states roll up to country . Then countries roll up to
subregion . Finally, subregions roll up to region , as shown in Figure 9–1.

Figure 9–1 Sample Rollup for a Customer Dimension

Data analysis typically starts at higher levels in the dimensional hierarchy and
gradually drills down if the situation warrants such analysis.

Dimensions do not have to be defined, but spending time creating them can yield
significant benefits, because they help query rewrite perform more complex types of
rewrite. They are mandatory if you use the Summary Advisor (a GUI tool for
materialized view management) to recommend which materialized views to create,
drop, or retain.

country

subregion

state

city

customer

region
Dimensions 9-3

Creating Dimensions
You must not create dimensions in any schema that does not satisfy these
relationships. Incorrect results can be returned from queries otherwise.

Creating Dimensions
Before you can create a dimension object, the dimension tables must exist in the
database, containing the dimension data. For example, if you create a customer
dimension, one or more tables must exist that contain the city, state, and country
information. In a star schema data warehouse, these dimension tables already exist.
It is therefore a simple task to identify which ones will be used.

Now you can draw the hierarchies of a dimension as shown in Figure 9–1. For
example, city is a child of state (because you can aggregate city-level data up to
state), and country . This hierarchical information will be stored in the database
object dimension.

In the case of normalized or partially normalized dimension representation (a
dimension that is stored in more than one table), identify how these tables are
joined. Note whether the joins between the dimension tables can guarantee that
each child-side row joins with one and only one parent-side row. In the case of
denormalized dimensions, determine whether the child-side columns uniquely
determine the parent-side (or attribute) columns. These constraints can be enabled
with the NOVALIDATE and RELY clauses if the relationships represented by the
constraints are guaranteed by other means.

You create a dimension using either the CREATE DIMENSION statement or the
Dimension Wizard in Oracle Enterprise Manager. Within the CREATE DIMENSION
statement, use the LEVEL clause to identify the names of the dimension levels.

This customer dimension contains a single hierarchy with a geographical rollup,
with arrows drawn from the child level to the parent level, as shown in Figure 9–1
on page 9-3.

Each arrow in this graph indicates that for any child there is one and only one
parent. For example, each city must be contained in exactly one state and each state
must be contained in exactly one country. States that belong to more than one

See Also: Chapter 22, "Query Rewrite" for further details
regarding query rewrite and Chapter 16, "Summary Advisor" for
further details regarding the Summary Advisor

See Also: Oracle9i SQL Reference for a complete description of the
CREATE DIMENSION statement
9-4 Oracle9i Data Warehousing Guide

Creating Dimensions
country, or that belong to no country, violate hierarchical integrity. Hierarchical
integrity is necessary for the correct operation of management functions for
materialized views that include aggregates.

For example, you can declare a dimension products_dim , which contains levels
product , subcategory , and category :

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category) ...

Each level in the dimension must correspond to one or more columns in a table in
the database. Thus, level product is identified by the column prod_id in the
products table and level subcategory is identified by a column called prod_
subcategory in the same table.

In this example, the database tables are denormalized and all the columns exist in
the same table. However, this is not a prerequisite for creating dimensions. "Using
Normalized Dimension Tables" on page 9-9 shows how to create a dimension
customers_dim that has a normalized schema design using the JOIN KEY clause.

The next step is to declare the relationship between the levels with the HIERARCHY
statement and give that hierarchy a name. A hierarchical relationship is a functional
dependency from one level of a hierarchy to the next level in the hierarchy. Using
the level names defined previously, the CHILD OF relationship denotes that each
child's level value is associated with one and only one parent level value. The
following statements declare a hierarchy prod_rollup and define the relationship
between products , subcategory, and category .

 HIERARCHY prod_rollup
 (product CHILD OF
 subcategory CHILD OF
 category)

In addition to the 1:n hierarchical relationships, dimensions also include 1:1
attribute relationships between the hierarchy levels and their dependent,
determined dimension attributes. For example the dimension times_dim , as
defined in Oracle9i Sample Schemas, has columns fiscal_month_desc , fiscal_
month_name , and days_in_fiscal_month . Their relationship is defined as
follows:
Dimensions 9-5

Creating Dimensions
LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
...
ATTRIBUTE fis_month DETERMINES
 (fiscal_month_name, days_in_fiscal_month)

The ATTRIBUTE ... DETERMINES clause relates fis_month to fiscal_month_
name and days_in_fiscal_month . Note that this is a unidirectional
determination. It is only guaranteed, that for a specific fiscal_month , for
example, 1999-11 , you will find exactly one matching values for fiscal_month_
name, for example, November and days_in_fiscal_month , for example, 28. You
cannot determine a specific fiscal_month_desc based on the fiscal_month_
name, which is November for every fiscal year.

In this example, suppose a query were issued that queried by fiscal_month_
name instead of fiscal_month_desc . Because this 1:1 relationship exists
between the attribute and the level, an already aggregated materialized view
containing fiscal_month_desc can be joined back to the dimension information
and used to identify the data.

A sample dimension definition follows:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category
)
 ATTRIBUTE product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size,prod_status, prod_list_price, prod_min_price)
 ATTRIBUTE subcategory DETERMINES
 (prod_subcategory, prod_subcat_desc)
 ATTRIBUTE category DETERMINES
 (prod_category, prod_cat_desc);

See Also: Chapter 22, "Query Rewrite" for further details of using
dimensional information
9-6 Oracle9i Data Warehousing Guide

Creating Dimensions
The design, creation, and maintenance of dimensions is part of the design, creation,
and maintenance of your data warehouse schema. Once the dimension has been
created, check that it meets these requirements:

■ There must be a 1:n relationship between a parent and children. A parent can
have one or more children, but a child can have only one parent.

■ There must be a 1:1 attribute relationship between hierarchy levels and their
dependent dimension attributes. For example, if there is a column fiscal_
month_desc , then a possible attribute relationship would be fiscal_month_
desc to fiscal_month_name .

■ If the columns of a parent level and child level are in different relations, then the
connection between them also requires a 1:n join relationship. Each row of the
child table must join with one and only one row of the parent table. This
relationship is stronger than referential integrity alone, because it requires that
the child join key must be non-null, that referential integrity must be
maintained from the child join key to the parent join key, and that the parent
join key must be unique.

■ You must ensure (using database constraints if necessary) that the columns of
each hierarchy level are non-null and that hierarchical integrity is maintained.

■ The hierarchies of a dimension can overlap or be disconnected from each other.
However, the columns of a hierarchy level cannot be associated with more than
one dimension.

■ Join relationships that form cycles in the dimension graph are not supported.
For example, a hierarchy level cannot be joined to itself either directly or
indirectly.

Multiple Hierarchies
A single dimension definition can contain multiple hierarchies. Suppose our retailer
wants to track the sales of certain items over time. The first step is to define the time

Note: The information stored with a dimension objects is only
declarative. The previously discussed relationships are not enforced
with the creation of a dimension object. You should validate any
dimension definition with the DBMS_MVIEW.VALIDATE_
DIMENSION procedure, as discussed on "Validating Dimensions"
on page 9-12.
Dimensions 9-7

Creating Dimensions
dimension over which sales will be tracked. Figure 9–2 illustrates a dimension
times_dim with two time hierarchies.

Figure 9–2 times_dim Dimension with Two Time Hierarchies

From the illustration, you can construct the hierarchy of the denormalized time_
dim dimension's CREATE DIMENSION statement as follows. The complete CREATE
DIMENSION statement as well as the CREATE TABLE statement are shown in
Oracle9i Sample Schemas.

CREATE DIMENSION times_dim
 LEVEL day IS TIMES.TIME_ID
 LEVEL month IS TIMES.CALENDAR_MONTH_DESC
 LEVEL quarter IS TIMES.CALENDAR_QUARTER_DESC
 LEVEL year IS TIMES.CALENDAR_YEAR
 LEVEL fis_week IS TIMES.WEEK_ENDING_DAY
 LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
 LEVEL fis_quarter IS TIMES.FISCAL_QUARTER_DESC
 LEVEL fis_year IS TIMES.FISCAL_YEAR
 HIERARCHY cal_rollup (
 day CHILD OF
 month CHILD OF
 quarter CHILD OF
 year
)

quarter

year

fis_quarter

fis_year

fis_month

fis_week

day

month
9-8 Oracle9i Data Warehousing Guide

Creating Dimensions
 HIERARCHY fis_rollup (
 day CHILD OF
 fis_week CHILD OF
 fis_month CHILD OF
 fis_quarter CHILD OF
 fis_year
) <attribute determination clauses>...

Using Normalized Dimension Tables
The tables used to define a dimension may be normalized or denormalized and the
individual hierarchies can be normalized or denormalized. If the levels of a
hierarchy come from the same table, it is called a fully denormalized hierarchy. For
example, cal_rollup in the times_dim dimension is a denormalized hierarchy.
If levels of a hierarchy come from different tables, such a hierarchy is either a fully
or partially normalized hierarchy. This section shows how to define a normalized
hierarchy.

Suppose the tracking of a customer's location is done by city, state, and country.
This data is stored in the tables customers and countries . The customer
dimension customers_dim is partially normalized because the data entities
cust_id and country_id are taken from different tables. The clause JOIN KEY
within the dimension definition specifies how to join together the levels in the
hierarchy. The dimension statement is partially shown in the following. The
complete CREATE DIMENSION statement as well as the CREATE TABLE statement
are shown in Oracle9i Sample Schemas.

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
) ... attribute determination clause ;
Dimensions 9-9

Viewing Dimensions
Viewing Dimensions
Dimensions can be viewed through one of two methods:

■ Using The DEMO_DIM Package

■ Using Oracle Enterprise Manager

Using The DEMO_DIM Package
Two procedures allow you to display the dimensions that have been defined. First,
the file smdim.sql , located under $ORACLE_HOME/rdbms/demo, must be
executed to provide the DEMO_DIM package, which includes:

■ DEMO_DIM.PRINT_DIM to print a specific dimension

■ DEMO_DIM.PRINT_ALLDIMS to print all dimensions accessible to a user

The DEMO_DIM.PRINT_DIM procedure has only one parameter: the name of the
dimension to display. The following example shows how to display the dimension
TIMES_DIM.

SET SERVEROUTPUT ON;
EXECUTE DEMO_DIM.PRINT_DIM ('TIMES_DIM');

To display all of the dimensions that have been defined, call the procedure DEMO_
DIM.PRINT_ALLDIMS without any parameters is illustrated as follows.

EXECUTE DBMS_OUTPUT.ENABLE(10000);
EXECUTE DEMO_DIM.PRINT_ALLDIMS;

Regardless of which procedure is called, the output format is identical. A sample
display is shown here.

DIMENSION SH.PROMO_DIM
LEVEL CATEGORY IS SH.PROMOTIONS.PROMO_CATEGORY
LEVEL PROMO IS SH.PROMOTIONS.PROMO_ID
LEVEL SUBCATEGORY IS SH.PROMOTIONS.PROMO_SUBCATEGORY
HIERARCHY PROMO_ROLLUP (PROMO
CHILD OF SUBCATEGORY
CHILD OF CATEGORY)
ATTRIBUTE CATEGORY DETERMINES SH.PROMOTIONS.PROMO_CATEGORY
ATTRIBUTE PROMO DETERMINES SH.PROMOTIONS.PROMO_BEGIN_DATE
ATTRIBUTE PROMO DETERMINES SH.PROMOTIONS.PROMO_COST
ATTRIBUTE PROMO DETERMINES SH.PROMOTIONS.PROMO_END_DATE
ATTRIBUTE PROMO DETERMINES SH.PROMOTIONS.PROMO_NAME
ATTRIBUTE SUBCATEGORY DETERMINES SH.PROMOTIONS.PROMO_SUBCATEGORY
9-10 Oracle9i Data Warehousing Guide

Using Dimensions with Constraints
Using Oracle Enterprise Manager
All of the dimensions that exist in the data warehouse can be viewed using Oracle
Enterprise Manager. Select the Dimension object from within the Schema icon to
display all of the dimensions. Select a specific dimension to graphically display its
hierarchy, levels, and any attributes that have been defined.

Using Dimensions with Constraints
Constraints play an important role with dimensions. Full referential integrity is
sometimes enabled in data warehouses, but not always. This is because operational
databases normally have full referential integrity and you can ensure that the data
flowing into your warehouse never violates the already established integrity rules.

Oracle recommends that constraints be enabled and, if validation time is a concern,
then the NOVALIDATE clause should be used as follows:

ENABLE NOVALIDATE CONSTRAINT pk_time;

Primary and foreign keys should be implemented also. Referential integrity
constraints and NOT NULL constraints on the fact tables provide information that
query rewrite can use to extend the usefulness of materialized views.

In addition, you should use the RELY clause to inform query rewrite that it can rely
upon the constraints being correct as follows:

ALTER TABLE time MODIFY CONSTRAINT pk_time RELY;

This information is also used for query rewrite.

See Also: Oracle Enterprise Manager Administrator’s Guide and
"Using the Dimension Wizard" on page 9-14 for details regarding
creating and using dimensions

See Also: Chapter 22, "Query Rewrite" for further details
Dimensions 9-11

Validating Dimensions
Validating Dimensions
The information of a dimension object is declarative only and not enforced by the
database. If the relationships described by the dimensions are incorrect, incorrect
results could occur. Therefore, you should verify the relationships specified by
CREATE DIMENSION using the DBMS_OLAP.VALIDATE_DIMENSION procedure
periodically.

This procedure is easy to use and has only five parameters:

■ Dimension name

■ Owner name

■ Set to TRUE to check only the new rows for tables of this dimension

■ Set to TRUE to verify that all columns are not null

■ Unique run ID obtained by calling the DBMS_OLAP.CREATE_ID procedure.
The ID is used to identify the result of each run

The following example validates the dimension TIME_FN in the grocery schema

VARIABLE RID NUMBER;
EXECUTE DBMS_OLAP.CREATE_ID(:RID);
EXECUTE DBMS_OLAP.VALIDATE_DIMENSION ('TIME_FN', 'GROCERY', \
FALSE, TRUE, :RID);

If the VALIDATE_DIMENSIONprocedure encounters any errors, they are placed in a
system table. The table can be accessed from the view SYSTEM.MVIEW_
EXCEPTIONS. Querying this view will identify the exceptions that were found. For
example:

SELECT * FROM SYSTEM.MVIEW_EXCEPTIONS
WHERE RUNID = :RID;
RUNID OWNER TABLE_NAME DIMENSION_NAME RELATIONSHIP BAD_ROWID
----- -------- ----------- -------------- ------------ ---------
678 GROCERY MONTH TIME_FN FOREIGN KEY AAAAuwAAJAAAARwAAA

However, rather than query this view, it may be better to query the rowid of the
invalid row to retrieve the actual row that has violated the constraint. In this
example, the dimension TIME_FN is checking a table called month . It has found a
row that violates the constraints. Using the rowid, you can see exactly which row in
the month table is causing the problem, as in the following:
9-12 Oracle9i Data Warehousing Guide

Altering Dimensions
SELECT * FROM month
WHERE rowid IN (SELECT bad_rowid
 FROM SYSTEM.MVIEW_EXCEPTIONS
 WHERE RUNID = :RID);

MONTH QUARTER FISCAL_QTR YEAR FULL_MONTH_NAME MONTH_NUMB
-------- ------- ---------- ---- --------------- ----------
 199903 19981 19981 1998 March 3

Finally, to remove results from the system table for the current run:

EXECUTE DBMS_OLAP.PURGE_RESULTS(:RID);

Altering Dimensions
You can modify the dimension using the ALTER DIMENSION statement. You can
add or drop a level, hierarchy, or attribute from the dimension using this command.

Referring to the time dimension in Figure 9–2 on page 9-8, you can remove the
attribute fis_year , drop the hierarchy fis_rollup , or remove the level
fiscal_year . In addition, you can add a new level called foyer as in the
following:

ALTER DIMENSION times_dim DROP ATTRIBUTE fis_year;
ALTER DIMENSION times_dim DROP HIERARCHY fis_rollup;
ALTER DIMENSION times_dim DROP LEVEL fis_year;
ALTER DIMENSION times_dim ADD LEVEL f_year IS times.fiscal_year;

If you try to remove anything with further dependencies inside the dimension,
Oracle rejects the altering of the dimension. A dimension becomes invalid if you
change any schema object that the dimension is referencing. For example, if the
table on which the dimension is defined is altered, the dimension becomes invalid.

To check the status of a dimension, view the contents of the column invalid in the
ALL_DIMENSIONS data dictionary view.

To revalidate the dimension, use the COMPILE option as follows:

ALTER DIMENSION times_dim COMPILE;

Dimensions can also be modified using Oracle Enterprise Manager.

See Also: Oracle Enterprise Manager Administrator’s Guide
Dimensions 9-13

Deleting Dimensions
Deleting Dimensions
A dimension is removed using the DROP DIMENSION statement. For example:

DROP DIMENSION times_dim;

Dimensions can also be deleted using Oracle Enterprise Manager.

Using the Dimension Wizard
An alternative method for creating and viewing dimensions is to use Oracle
Enterprise Manager, which graphically displays the dimension definition, thus
making it easier to see the hierarchy and a dimension wizard is provided to
facilitate easy definition of the dimension object.

The Dimension Wizard is automatically invoked whenever a request is made to
create a dimension object in Oracle Enterprise Manager. You are then guided step
by step through the information required for a dimension.

A dimension created using the Wizard can contain any of the attributes described in
"Creating Dimensions" on page 9-4, such as join keys, multiple hierarchies, and
attributes. You might prefer to use the Wizard because it graphically displays the
hierarchical relationships as they are being constructed. When it is time to describe
the hierarchy, the Wizard automatically displays a default hierarchy based on the
column values, which you can subsequently amend.

Managing the Dimension Object
The dimension object is located within the Warehouse section for a database.
Selecting a specific dimension results in 5 sheets of information becoming available.
The General Property sheet shown in Figure 9–3 displays the dimension definition
in a graphical form.

See Also: Oracle Enterprise Manager Administrator’s Guide

See Also: Oracle Enterprise Manager Administrator’s Guide
9-14 Oracle9i Data Warehousing Guide

Using the Dimension Wizard
Figure 9–3 Dimension General Property Sheet

The levels in the dimension can either be shown on the General Property sheet, or
by selecting the Levels property sheet, levels can be deleted, displayed or new ones
defined for this dimension as illustrated in Figure 9–4.
Dimensions 9-15

Using the Dimension Wizard
Figure 9–4 Dimension Levels Property Sheet

By selecting the level name from the list on the left of the property sheet, the
columns used for this level are displayed in the Selected Columns window in the
lower half of the property sheet.

Levels can be added or removed by pressing the New or Delete buttons but they
cannot be modified.

A similar property sheet to that for Levels is provided for the attributes in the
dimension and is selected by clicking on the Attributes tab.

One of the main advantages of using Oracle Enterprise Manager to define the
dimension is that the hierarchies can be easily displayed. Figure 9–5 illustrates the
Hierarchy property sheet.
9-16 Oracle9i Data Warehousing Guide

Using the Dimension Wizard
Figure 9–5 Dimension Hierarchy Property Sheet

In Figure 9–5, you can see that the hierarchy called CAL_ROLLUP contains four
levels where the top level is year, followed by quarter, month, and day.

You can add or remove hierarchies by pressing the New or Delete buttons but they
cannot be modified.

Creating a Dimension
An alternative to writing the CREATE DIMENSION statement is to invoke the
Dimension wizard, which guides you through 6 steps to create a dimension.

Step 1
First, you must define which type of dimension object is to be defined. If a time
dimension is required, selecting the time dimension type ensures that your
dimension is recognized as a time dimension that has specific types of hierarchies
and attributes.
Dimensions 9-17

Using the Dimension Wizard
Step 2
Specify the name of your dimension and into which schema it should reside by
selecting from the drop down list of schemas.

Step 3
The levels in the dimension are defined in Step 3 as shown in Figure 9–6.

Figure 9–6 Dimension Wizard: Define Levels

First, give the level a name and then select the table from where the columns which
define this level are located. Now, select one or more columns from the available list
and using the > key move them into the Selected Columns area. Your level will
now appear in the list on the left side of the property sheet.

To define another level, click the New button, or, if all the levels have been defined,
click the Next button to proceed to the next step. If a mistake is made when defining
a level, simply click the Delete button to remove it and start again.
9-18 Oracle9i Data Warehousing Guide

Using the Dimension Wizard
Step 4
The levels in the dimension can also have attributes. Give the attribute a name and
then select the level on which this attribute is to be defined and using the > button
move it into the Selected Levels column. Now choose the column from the drop
down list for this attribute.

Levels can be added or removed by pressing the New or Delete buttons but they
cannot be modified.

Step 5
A hierarchy is defined as illustrated in Figure 9–7.

Figure 9–7 Dimension Wizard: Define Hierarchies

First, give the hierarchy a name and then select the levels to be used in this
hierarchy and move them to the Selected Levels column using the > button.

The level name at the top of the list defines the top of the hierarchy. Use the up and
down buttons to move the levels into the required order. Note that each level will
indent so you can see the relationships between the levels.
Dimensions 9-19

Using the Dimension Wizard
Step 6
Finally, the Summary screen is displayed as shown in Figure 9–8 where a graphical
representation of the dimension is shown on the left side of the property sheet and
on the right side the CREATE DIMENSION statement is shown. Clicking on the
Finish button will create the dimension.

Figure 9–8 Dimesnion Wizard: Summary Screen
9-20 Oracle9i Data Warehousing Guide

Part IV

 Managing the Warehouse Environment

This section deals with the tasks for managing a data warehouse.

It contains the following chapters:

■ Overview of Extraction, Transformation, and Loading

■ Extraction in Data Warehouses

■ Transportation in Data Warehouses

■ Loading and Transformation

■ Maintaining the Data Warehouse

■ Change Data Capture

■ Summary Advisor

Overview of Extraction, Transformation, and L
10

Overview of Extraction, Transformation, and

Loading

This chapter discusses the process of extracting, transporting, transforming, and
loading data in a data warehousing environment:

■ Overview of ETL

■ ETL Tools
oading 10-1

Overview of ETL
Overview of ETL
You need to load your data warehouse regularly so that it can serve its purpose of
facilitating business analysis. To do this, data from one or more operational systems
needs to be extracted and copied into the warehouse. The process of extracting data
from source systems and bringing it into the data warehouse is commonly called
ETL, which stands for extraction, transformation, and loading. The acronym ETL is
perhaps too simplistic, because it omits the transportation phase and implies that
each of the other phases of the process is distinct. We refer to the entire process,
including data loading, as ETL. You should understand that ETL refers to a broad
process, and not three well-defined steps.

The methodology and tasks of ETL have been well known for many years, and are
not necessarily unique to data warehouse environments: a wide variety of
proprietary applications and database systems are the IT backbone of any
enterprise. Data has to be shared between applications or systems, trying to
integrate them, giving at least two applications the same picture of the world. This
data sharing was mostly addressed by mechanisms similar to what we now call
ETL.

Data warehouse environments face the same challenge with the additional burden
that they not only have to exchange but to integrate, rearrange and consolidate data
over many systems, thereby providing a new unified information base for business
intelligence. Additionally, the data volume in data warehouse environments tends
to be very large.

What happens during the ETL process? During extraction, the desired data is
identified and extracted from many different sources, including database systems
and applications. Very often, it is not possible to identify the specific subset of
interest, therefore more data than necessary has to be extracted, so the identification
of the relevant data will be done at a later point in time. Depending on the source
system's capabilities (for example, operating system resources), some
transformations may take place during this extraction process. The size of the
extracted data varies from hundreds of kilobytes up to gigabytes, depending on the
source system and the business situation. The same is true for the time delta
between two (logically) identical extractions: the time span may vary between
days/hours and minutes to near real-time. Web server log files for example can
easily become hundreds of megabytes in a very short period of time.
10-2 Oracle9i Data Warehousing Guide

ETL Tools
After extracting data, it has to be physically transported to the target system or an
intermediate system for further processing. Depending on the chosen way of
transportation, some transformations can be done during this process, too. For
example, a SQL statement which directly accesses a remote target through a
gateway can concatenate two columns as part of the SELECT statement.

The emphasis in many of the examples in this section is scalability. Many long-time
users of Oracle are experts in programming complex data transformation logic
using PL/SQL. These chapters suggest alternatives for many such data
manipulation operations, with a particular emphasis on implementations that take
advantage of Oracle's new SQL functionality, especially for ETL and the parallel
query infrastructure.

ETL Tools
Designing and maintaining the ETL process is often considered one of the most
difficult and resource-intensive portions of a data warehouse project. Many data
warehousing projects use ETL tools to manage this process. Oracle Warehouse
Builder (OWB), for example, provides ETL capabilities and takes advantage of
inherent database abilities. Other data warehouse builders create their own ETL
tools and processes, either inside or outside the database.

Besides the support of extraction, transformation, and loading, there are some other
tasks that are important for a successful ETL implementation as part of the daily
operations of the data warehouse and its support for further enhancements. Besides
the support for designing a data warehouse and the data flow, these tasks are
typically addressed by ETL tools such as OWB.

Oracle9i is not an ETL tool and does not provide a complete solution for ETL.
However, Oracle9i does provide a rich set of capabilities that can be used by both
ETL tools and customized ETL solutions. Oracle9i offers techniques for transporting
data between Oracle databases, for transforming large volumes of data, and for
quickly loading new data into a data warehouse.
Overview of Extraction, Transformation, and Loading 10-3

ETL Tools
Daily Operations
The successive loads and transformations must be scheduled and processed in a
specific order. Depending on the success or failure of the operation or parts of it, the
result must be tracked and subsequent, alternative processes might be started. The
control of the progress as well as the definition of a business workflow of the
operations are typically addressed by ETL tools such as OWB.

Evolution of the Data Warehouse
As the data warehouse is a living IT system, sources and targets might change.
Those changes must be maintained and tracked through the lifespan of the system
without overwriting or deleting the old ETL process flow information. To build and
keep a level of trust about the information in the warehouse, the process flow of
each individual record in the warehouse can be reconstructed at any point in time in
the future in an ideal case.
10-4 Oracle9i Data Warehousing Guide

Extraction in Data War
11

Extraction in Data Warehouses

This chapter discusses extraction, which is the process of taking data from an
operational system and moving it to your warehouse or staging system. The chapter
discusses:

■ Overview of Extraction in Data Warehouses

■ Introduction to Extraction Methods in Data Warehouses

■ Data Warehousing Extraction Examples
ehouses 11-1

Overview of Extraction in Data Warehouses
Overview of Extraction in Data Warehouses
Extraction is the operation of extracting data from a source system for further use in
a data warehouse environment. This is the first step of the ETL process. After the
extraction, this data can be transformed and loaded into the data warehouse.

The source systems for a data warehouse are typically transaction processing
applications. For example, one of the source systems for a sales analysis data
warehouse might be an order entry system that records all of the current order
activities.

Designing and creating the extraction process is often one of the most
time-consuming tasks in the ETL process and, indeed, in the entire data
warehousing process. The source systems might be very complex and poorly
documented, and thus determining which data needs to be extracted can be
difficult. The data has to be extracted normally not only once, but several times in a
periodic manner to supply all changed data to the warehouse and keep it
up-to-date. Moreover, the source system typically cannot be modified, nor can its
performance or availability be adjusted, to accommodate the needs of the data
warehouse extraction process.

These are important considerations for extraction and ETL in general. This chapter,
however, focuses on the technical considerations of having different kinds of
sources and extraction methods. It assumes that the data warehouse team has
already identified the data that will be extracted, and discusses common techniques
used for extracting data from source databases.

Designing this process means making decisions about the following two main
aspects:

■ Which extraction method do I choose?

This influences the source system, the transportation process, and the time
needed for refreshing the warehouse.

■ How do I provide the extracted data for further processing?

This influences the transportation method, and the need for cleaning and
transforming the data.

Introduction to Extraction Methods in Data Warehouses
The extraction method you should choose is highly dependent on the source system
and also from the business needs in the target data warehouse environment. Very
often, there’s no possibility to add additional logic to the source systems to enhance
11-2 Oracle9i Data Warehousing Guide

Introduction to Extraction Methods in Data Warehouses
an incremental extraction of data due to the performance or the increased workload
of these systems. Sometimes even the customer is not allowed to add anything to an
out-of-the-box application system.

The estimated amount of the data to be extracted and the stage in the ETL process
(initial load or maintenance of data) may also impact the decision of how to extract,
from a logical and a physical perspective. Basically, you have to decide how to
extract data logically and physically.

Logical Extraction Methods
There are two kinds of logical extraction:

■ Full Extraction

■ Incremental Extraction

Full Extraction
The data is extracted completely from the source system. Since this extraction
reflects all the data currently available on the source system, there’s no need to keep
track of changes to the data source since the last successful extraction. The source
data will be provided as-is and no additional logical information (for example,
timestamps) is necessary on the source site. An example for a full extraction may be
an export file of a distinct table or a remote SQL statement scanning the complete
source table.

Incremental Extraction
At a specific point in time, only the data that has changed since a well-defined event
back in history will be extracted. This event may be the last time of extraction or a
more complex business event like the last booking day of a fiscal period. To identify
this delta change there must be a possibility to identify all the changed information
since this specific time event. This information can be either provided by the source
data itself like an application column, reflecting the last-changed timestamp or a
change table where an appropriate additional mechanism keeps track of the
changes besides the originating transactions. In most cases, using the latter method
means adding extraction logic to the source system.

Many data warehouses do not use any change-capture techniques as part of the
extraction process. Instead, entire tables from the source systems are extracted to the
data warehouse or staging area, and these tables are compared with a previous
extract from the source system to identify the changed data. This approach may not
Extraction in Data Warehouses 11-3

Introduction to Extraction Methods in Data Warehouses
have significant impact on the source systems, but it clearly can place a considerable
burden on the data warehouse processes, particularly if the data volumes are large.

Oracle’s Change Data Capture mechanism can extract and maintain such delta
information.

Physical Extraction Methods
Depending on the chosen logical extraction method and the capabilities and
restrictions on the source side, the extracted data can be physically extracted by two
mechanisms. The data can either be extracted online from the source system or from
an offline structure. Such an offline structure might already exist or it might be
generated by an extraction routine.

 There are the following methods of physical extraction:

■ Online Extraction

■ Offline Extraction

Online Extraction
The data is extracted directly from the source system itself. The extraction process
can connect directly to the source system to access the source tables themselves or to
an intermediate system that stores the data in a preconfigured manner (for example,
snapshot logs or change tables). Note that the intermediate system is not necessarily
physically different from the source system.

With online extractions, you need to consider whether the distributed transactions
are using original source objects or prepared source objects.

Offline Extraction
The data is not extracted directly from the source system but is staged explicitly
outside the original source system. The data already has an existing structure (for
example, redo logs, archive logs or transportable tablespaces) or was created by an
extraction routine.

See Also: Chapter 15, "Change Data Capture" for further details
about the Change Data Capture framework
11-4 Oracle9i Data Warehousing Guide

Introduction to Extraction Methods in Data Warehouses
You should consider the following structures:

■ Flat files

Data in a defined, generic format. Additional information about the source
object is necessary for further processing.

■ Dump files

Oracle-specific format. Information about the containing objects is included.

■ Redo and archive logs

Information is in a special, additional dump file.

■ Transportable tablespaces

A powerful way to extract and move large volumes of data between Oracle
databases. A more detailed example of using this feature to extract and
transport data is provided in Chapter 12, "Transportation in Data Warehouses".
Oracle Corporation recommends that you use transportable tablespaces
whenever possible, because they can provide considerable advantages in
performance and manageability over other extraction techniques.

Change Data Capture
An important consideration for extraction is incremental extraction, also called
Change Data Capture. If a data warehouse extracts data from an operational system
on a nightly basis, then the data warehouse requires only the data that has changed
since the last extraction (that is, the data that has been modified in the past 24
hours).

When it is possible to efficiently identify and extract only the most recently changed
data, the extraction process (as well as all downstream operations in the ETL
process) can be much more efficient, because it must extract a much smaller volume
of data. Unfortunately, for many source systems, identifying the recently modified
data may be difficult or intrusive to the operation of the system. Change Data
Capture is typically the most challenging technical issue in data extraction.

See Also: Oracle9i Database Utilities for more information on using
dump and flat files and Oracle9i Supplied PL/SQL Packages and Types
Reference for details regarding LogMiner
Extraction in Data Warehouses 11-5

Introduction to Extraction Methods in Data Warehouses
Because change data capture is often desirable as part of the extraction process and
it might not be possible to use Oracle’s Change Data Capture mechanism, this
section describes several techniques for implementing a self-developed change
capture on Oracle source systems:

■ Timestamps

■ Partitioning

■ Triggers

These techniques are based upon the characteristics of the source systems, or may
require modifications to the source systems. Thus, each of these techniques must be
carefully evaluated by the owners of the source system prior to implementation.

Each of these techniques can work in conjunction with the data extraction technique
discussed previously. For example, timestamps can be used whether the data is
being unloaded to a file or accessed through a distributed query.

Timestamps
The tables in some operational systems have timestamp columns. The timestamp
specifies the time and date that a given row was last modified. If the tables in an
operational system have columns containing timestamps, then the latest data can
easily be identified using the timestamp columns. For example, the following query
might be useful for extracting today's data from an orders table:

SELECT * FROM orders WHERE TRUNC(CAST(order_date AS date),'dd') = TO_
DATE(SYSDATE,'dd-mon-yyyy');

If the timestamp information is not available in an operational source system, you
will not always be able to modify the system to include timestamps. Such
modification would require, first, modifying the operational system's tables to
include a new timestamp column and then creating a trigger to update the
timestamp column following every operation that modifies a given row.

See Also: Chapter 15, "Change Data Capture" for further details

See Also: "Triggers" on page 11-7
11-6 Oracle9i Data Warehousing Guide

Introduction to Extraction Methods in Data Warehouses
Partitioning
Some source systems might use Oracle range partitioning, such that the source
tables are partitioned along a date key, which allows for easy identification of new
data. For example, if you are extracting from an orders table, and the orders
table is partitioned by week, then it is easy to identify the current week's data.

Triggers
Triggers can be created in operational systems to keep track of recently updated
records. They can then be used in conjunction with timestamp columns to identify
the exact time and date when a given row was last modified. You do this by creating
a trigger on each source table that requires change data capture. Following each
DML statement that is executed on the source table, this trigger updates the
timestamp column with the current time. Thus, the timestamp column provides the
exact time and date when a given row was last modified.

A similar internalized trigger-based technique is used for Oracle materialized view
logs. These logs are used by materialized views to identify changed data, and these
logs are accessible to end users. A materialized view log can be created on each
source table requiring change data capture. Then, whenever any modifications are
made to the source table, a record is inserted into the materialized view log
indicating which rows were modified. If you want to use a trigger-based
mechanism, use change data capture.

Materialized view logs rely on triggers, but they provide an advantage in that the
creation and maintenance of this change-data system is largely managed by Oracle.

However, Oracle recommends the usage of synchronous Change Data Capture for
trigger based change capture, since CDC provides an externalized interface for
accessing the change information and provides a framework for maintaining the
distribution of this information to various clients

Trigger-based techniques affect performance on the source systems, and this impact
should be carefully considered prior to implementation on a production source
system.
Extraction in Data Warehouses 11-7

Data Warehousing Extraction Examples
Data Warehousing Extraction Examples
You can extract data in two ways:

■ Extraction Using Data Files

■ Extraction Via Distributed Operations

Extraction Using Data Files
Most database systems provide mechanisms for exporting or unloading data from
the internal database format into flat files. Extracts from mainframe systems often
use COBOL programs, but many databases, as well as third-party software vendors,
provide export or unload utilities.

Data extraction does not necessarily mean that entire database structures are
unloaded in flat files. In many cases, it may be appropriate to unload entire
database tables or objects. In other cases, it may be more appropriate to unload only
a subset of a given table such as the changes on the source system since the last
extraction or the results of joining multiple tables together. Different extraction
techniques vary in their capabilities to support these two scenarios.

When the source system is an Oracle database, several alternatives are available for
extracting data into files:

■ Extracting into Flat Files Using SQL*Plus

■ Extracting into Flat Files Using OCI or Pro*C Programs

■ Exporting into Oracle Export Files Using Oracle's Export Utility

Extracting into Flat Files Using SQL*Plus
The most basic technique for extracting data is to execute a SQL query in SQL*Plus
and direct the output of the query to a file. For example, to extract a flat file,
country_city.log , with the pipe sign as delimiter between column values,
containing a list of the cities in the US in the tables countries and customers, the
following SQL script could be run:

SET echo off SET pagesize 0
SPOOL country_city.log
SELECT distinct t1.country_name ||’|’|| t2.cust_city
FROM countries t1, customers t2
WHERE t1.country_id = t2.country_id
AND t1.country_name= 'United States of America';
SPOOL off
11-8 Oracle9i Data Warehousing Guide

Data Warehousing Extraction Examples
The exact format of the output file can be specified using SQL*Plus system
variables.

This extraction technique offers the advantage of being able to extract the output of
any SQL statement. The example previously extracts the results of a join.

This extraction technique can be parallelized by initiating multiple, concurrent
SQL*Plus sessions, each session running a separate query representing a different
portion of the data to be extracted. For example, suppose that you wish to extract
data from an orders table, and that the orders table has been range partitioned
by month, with partitions orders_jan1998 , orders_feb1998 , and so on. To
extract a single year of data from the orders table, you could initiate 12 concurrent
SQL*Plus sessions, each extracting a single partition. The SQL script for one such
session could be:

SPOOL order_jan.dat
SELECT * FROM orders PARTITION (orders_jan1998);
SPOOL OFF

These 12 SQL*Plus processes would concurrently spool data to 12 separate files.
You can then concatenate them if necessary (using operating system utilities)
following the extraction. If you are planning to use SQL*Loader for loading into the
target, these 12 files can be used as is for a parallel load with 12 SQL*Loader
sessions. See Chapter 12, "Transportation in Data Warehouses" for an example.

Even if the orders table is not partitioned, it is still possible to parallelize the
extraction either based on logical or physical criteria. The logical method is based
on logical ranges of column values, for example:

SELECT ... WHERE order_date
BETWEEN TO_DATE('01-JAN-99') AND TO_DATE('31-JAN-99');

The physical method is based on a range of values. By viewing the data dictionary,
it is possible to identify the Oracle data blocks that make up the orders table.
Using this information, you could then derive a set of rowid-range queries for
extracting data from the orders table:

SELECT * FROM orders WHERE rowid BETWEEN value1 and value2 ;

Parallelizing the extraction of complex SQL queries is sometimes possible, although
the process of breaking a single complex query into multiple components can be
challenging. In particular, the coordination of independent processes to guarantee a
globally consistent view can be difficult.
Extraction in Data Warehouses 11-9

Data Warehousing Extraction Examples
Extracting into Flat Files Using OCI or Pro*C Programs
OCI programs (or other programs using Oracle call interfaces, such as Pro*C
programs), can also be used to extract data. These techniques typically provide
improved performance over the SQL*Plus approach, although they also require
additional programming. Like the SQL*Plus approach, an OCI program can extract
the results of any SQL query. Furthermore, the parallelization techniques described
for the SQL*Plus approach can be readily applied to OCI programs as well.

When using OCI or SQL*Plus for extraction, you need additional information
besides the data itself. At minimum, you need information about the extracted
columns. It is also helpful to know the extraction format, which might be the
separator between distinct columns.

Exporting into Oracle Export Files Using Oracle's Export Utility
Oracle's Export utility allows tables (including data) to be exported into Oracle
export files. Unlike the SQL*Plus and OCI approaches, which describe the
extraction of the results of a SQL statement, Export provides a mechanism for
extracting database objects. Thus, Export differs from the previous approaches in
several important ways:

■ The export files contain metadata as well as data. An export file contains not
only the raw data of a table, but also information on how to re-create the table,
potentially including any indexes, constraints, grants, and other attributes
associated with that table.

■ A single export file may contain a subset of a single object, many database
objects, or even an entire schema.

■ Export cannot be directly used to export the results of a complex SQL query.
Export can be used only to extract subsets of distinct database objects.

■ The output of the Export utility must be processed using the Oracle Import
utility.

Note: All parallel techniques can use considerably more CPU and
I/O resources on the source system, and the impact on the source
system should be evaluated before parallelizing any extraction
technique.
11-10 Oracle9i Data Warehousing Guide

Data Warehousing Extraction Examples
Oracle provides a direct-path export, which is quite efficient for extracting data.
However, in Oracle8i, there is no direct-path import, which should be considered
when evaluating the overall performance of an export-based extraction strategy.

Extraction Via Distributed Operations
Using distributed-query technology, one Oracle database can directly query tables
located in various different source systems, such as another Oracle database or a
legacy system connected with the Oracle gateway technology. Specifically, a data
warehouse or staging database can directly access tables and data located in a
connected source system. Gateways are another form of distributed-query
technology. Gateways allow an Oracle database (such as a data warehouse) to
access database tables stored in remote, non-Oracle databases. This is the simplest
method for moving data between two Oracle databases because it combines the
extraction and transformation into a single step, and requires minimal
programming. However, this is not always feasible.

Continuing our example, suppose that you wanted to extract a list of employee
names with department names from a source database and store this data into the
data warehouse. Using an Oracle Net connection and distributed-query technology,
this can be achieved using a single SQL statement:

CREATE TABLE country_city
AS
SELECT distinct t1.country_name, t2.cust_city
FROM countries@source_db t1, customers@source_db t2
WHERE t1.country_id = t2.country_id
AND t1.country_name='United States of America';

This statement creates a local table in a data mart, country_city , and populates it
with data from the countries and customers tables on the source system.

This technique is ideal for moving small volumes of data. However, the data is
transported from the source system to the data warehouse through a single Oracle
Net connection. Thus, the scalability of this technique is limited. For larger data
volumes, file-based data extraction and transportation techniques are often more
scalable and thus more appropriate.

See Also: Oracle9i Database Utilities for more information on using
export

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
and Oracle9i Database Concepts for more information on distributed
queries
Extraction in Data Warehouses 11-11

Data Warehousing Extraction Examples
11-12 Oracle9i Data Warehousing Guide

Transportation in Data War
12

Transportation in Data Warehouses

The following topics provide information about transporting data into a data
warehouse:

■ Overview of Transportation in Data Warehouses

■ Introduction to Transportation Mechanisms in Data Warehouses
ehouses 12-1

Overview of Transportation in Data Warehouses
Overview of Transportation in Data Warehouses
Transportation is the operation of moving data from one system to another system.
In a data warehouse environment, the most common requirements for
transportation are in moving data from:

■ A source system to a staging database or a data warehouse database

■ A staging database to a data warehouse

■ A data warehouse to a data mart

Transportation is often one of the simpler portions of the ETL process, and can be
integrated with other portions of the process. For example, as shown in Chapter 11,
"Extraction in Data Warehouses", distributed query technology provides a
mechanism for both extracting and transporting data.

Introduction to Transportation Mechanisms in Data Warehouses
You have three basic choices for transporting data in warehouses:

■ Transportation Using Flat Files

■ Transportation Through Distributed Operations

■ Transportation Using Transportable Tablespaces

Transportation Using Flat Files
The most common method for transporting data is by the transfer of flat files, using
mechanisms such as FTP or other remote file system access protocols. Data is
unloaded or exported from the source system into flat files using techniques
discussed in Chapter 11, "Extraction in Data Warehouses", and is then transported
to the target platform using FTP or similar mechanisms.

Because source systems and data warehouses often use different operating systems
and database systems, using flat files is often the simplest way to exchange data
between heterogeneous systems with minimal transformations. However, even
when transporting data between homogeneous systems, flat files are often the most
efficient and most easy-to-manage mechanism for data transfer.

Transportation Through Distributed Operations
Distributed queries, either with or without gateways, can be an effective mechanism
for extracting data. These mechanisms also transport the data directly to the target
12-2 Oracle9i Data Warehousing Guide

Introduction to Transportation Mechanisms in Data Warehouses
systems, thus providing both extraction and transformation in a single step.
Depending on the tolerable impact on time and system resources, these
mechanisms can be well suited for both extraction and transformation.

As opposed to flat file transportation, the success or failure of the transportation is
recognized immediately with the result of the distributed query or transaction.

Transportation Using Transportable Tablespaces
Oracle8i introduced an important mechanism for transporting data: transportable
tablespaces. This feature is the fastest way for moving large volumes of data
between two Oracle databases.

Previous to Oracle8i, the most scalable data transportation mechanisms relied on
moving flat files containing raw data. These mechanisms required that data be
unloaded or exported into files from the source database, Then, after transportation,
these files were loaded or imported into the target database. Transportable
tablespaces entirely bypass the unload and reload steps.

Using transportable tablespaces, Oracle data files (containing table data, indexes,
and almost every other Oracle database object) can be directly transported from one
database to another. Furthermore, like import and export, transportable tablespaces
provide a mechanism for transporting metadata in addition to transporting data.

Transportable tablespaces have some notable limitations: source and target systems
must be running Oracle8i (or higher), must be running the same operating system,
must use the same character set, and, prior to Oracle9i, must use the same block
size. Despite these limitations, transportable tablespaces can be an invaluable data
transportation technique in many warehouse environments.

The most common applications of transportable tablespaces in data warehouses are
in moving data from a staging database to a data warehouse, or in moving data
from a data warehouse to a data mart.

Transportable Tablespaces Example
Suppose that you have a data warehouse containing sales data, and several data
marts that are refreshed monthly. Also suppose that you are going to move one
month of sales data from the data warehouse to the data mart.

See Also: Chapter 11, "Extraction in Data Warehouses" for further
details

See Also: Oracle9i Database Concepts for more information on
transportable tablespaces
Transportation in Data Warehouses 12-3

Introduction to Transportation Mechanisms in Data Warehouses
Step 1: Place the Data to be Transported into its own Tablespace The current month's data
must be placed into a separate tablespace in order to be transported. In this
example, you have a tablespace ts_temp_sales , which will hold a copy of the
current month's data. Using the CREATE TABLE ... AS SELECT statement, the
current month's data can be efficiently copied to this tablespace:

CREATE TABLE temp_jan_sales
NOLOGGING
TABLESPACE ts_temp_sales
AS
SELECT * FROM sales
WHERE time_id BETWEEN '31-DEC-1999' AND '01-FEB-2000';

Following this operation, the tablespace ts_temp_sales is set to read-only:

ALTER TABLESPACE ts_temp_sales READ ONLY;

A tablespace cannot be transported unless there are no active transactions
modifying the tablespace. Setting the tablespace to read-only enforces this.

The tablespace ts_temp_sales may be a tablespace that has been especially
created to temporarily store data for use by the transportable tablespace features.
Following "Step 3: Copy the Datafiles and Export File to the Target System", this
tablespace can be set to read/write, and, if desired, the table temp_jan_sales can
be dropped, or the tablespace can be re-used for other transportations or for other
purposes.

In a given transportable tablespace operation, all of the objects in a given tablespace
are transported. Although only one table is being transported in this example, the
tablespace ts_temp_sales could contain multiple tables. For example, perhaps
the data mart is refreshed not only with the new month's worth of sales
transactions, but also with a new copy of the customer table. Both of these tables
could be transported in the same tablespace. Moreover, this tablespace could also
contain other database objects such as indexes, which would also be transported.

Additionally, in a given transportable-tablespace operation, multiple tablespaces
can be transported at the same time. This makes it easier to move very large
volumes of data between databases. Note, however, that the transportable
tablespace feature can only transport a set of tablespaces which contain a complete
set of database objects without dependencies on other tablespaces. For example, an
index cannot be transported without its table, nor can a partition be transported
without the rest of the table. You can use the DBMS_TTS package to check that a
tablespace is transportable.
12-4 Oracle9i Data Warehousing Guide

Introduction to Transportation Mechanisms in Data Warehouses
In this step, we have copied the January sales data into a separate tablespace;
however, in some cases, it may be possible to leverage the transportable tablespace
feature without even moving data to a separate tablespace. If the sales table has
been partitioned by month in the data warehouse and if each partition is in its own
tablespace, then it may be possible to directly transport the tablespace containing
the January data. Suppose the January partition, sales_jan2000 , is located in the
tablespace ts_sales_jan2000 . Then the tablespace ts_sales_jan2000 could
potentially be transported, rather than creating a temporary copy of the January
sales data in the ts_temp_sales .

However, the same conditions must be satisfied in order to transport the tablespace
ts_sales_jan2000 as are required for the specially created tablespace. First, this
tablespace must be set to READ ONLY. Second, because a single partition of a
partitioned table cannot be transported without the remainder of the partitioned
table also being transported, it is necessary to exchange the January partition into a
separate table (using the ALTER TABLE statement) to transport the January data.
The EXCHANGE operation is very quick, but the January data will no longer be a
part of the underlying sales table, and thus may be unavailable to users until this
data is exchanged back into the sales table after the export of the metadata. The
January data can be exchanged back into the sales table after you complete step 3.

Step 2: Export the Metadata The Export utility is used to export the metadata
describing the objects contained in the transported tablespace. For our example
scenario, the Export command could be:

EXP TRANSPORT_TABLESPACE=y
 TABLESPACES=ts_temp_sales
 FILE=jan_sales.dmp

This operation will generate an export file, jan_sales.dmp . The export file will be
small, because it contains only metadata. In this case, the export file will contain
information describing the table temp_jan_sales , such as the column names,
column datatype, and all other information that the target Oracle database will
need in order to access the objects in ts_temp_sales .

Step 3: Copy the Datafiles and Export File to the Target System Copy the data files that
make up ts_temp_sales , as well as the export file jan_sales.dmp to the data
mart platform, using any transportation mechanism for flat files.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
detailed information about the DBMS_TTS package
Transportation in Data Warehouses 12-5

Introduction to Transportation Mechanisms in Data Warehouses
Once the datafiles have been copied, the tablespace ts_temp_sales can be set to
READ WRITE mode if desired.

Step 4: Import the Metadata Once the files have been copied to the data mart, the
metadata should be imported into the data mart:

IMP TRANSPORT_TABLESPACE=y DATAFILES='/db/tempjan.f'
 TABLESPACES=ts_temp_sales
 FILE=jan_sales.dmp

At this point, the tablespace ts_temp_sales and the table temp_sales_jan are
accessible in the data mart. You can incorporate this new data into the data mart's
tables.

You can insert the data from the temp_sales_jan table into the data mart's sales
table in one of two ways:

INSERT /*+ APPEND */ INTO sales SELECT * FROM temp_sales_jan;

Following this operation, you can delete the temp_sales_jan table (and even the
entire ts_temp_sales tablespace).

Alternatively, if the data mart's sales table is partitioned by month, then the new
transported tablespace and the temp_sales_jan table can become a permanent
part of the data mart. The temp_sales_jan table can become a partition of the
data mart's sales table:

ALTER TABLE sales ADD PARTITION sales_00jan VALUES
 LESS THAN (TO_DATE('01-feb-2000','dd-mon-yyyy'));
ALTER TABLE sales EXCHANGE PARTITION sales_00jan
 WITH TABLE temp_sales_jan
INCLUDING INDEXES WITH VALIDATION;

Other Uses of Transportable Tablespaces
The previous example illustrates a typical scenario for transporting data in a data
warehouse. However, transportable tablespaces can be used for many other
purposes. In a data warehousing environment, transportable tablespaces should be
viewed as a utility (much like Import/Export or SQL*Loader), whose purpose is to
move large volumes of data between Oracle databases. When used in conjunction
with parallel data movement operations such as the CREATE TABLE ... AS SELECT
and INSERT ... AS SELECT statements, transportable tablespaces provide an
important mechanism for quickly transporting data for many purposes.
12-6 Oracle9i Data Warehousing Guide

Loading and Transf
13

Loading and Transformation

This chapter helps you create and manage a data warehouse, and discusses:

■ Overview of Loading and Transformation in Data Warehouses

■ Loading Mechanisms

■ Transformation Mechanisms

■ Loading and Transformation Scenarios
ormation 13-1

Overview of Loading and Transformation in Data Warehouses
Overview of Loading and Transformation in Data Warehouses
Data transformations are often the most complex and, in terms of processing time,
the most costly part of the ETL process. They can range from simple data
conversions to extremely complex data scrubbing techniques. Many, if not all, data
transformations can occur within an Oracle9i database, although transformations
are often implemented outside of the database (for example, on flat files) as well.

This chapter introduces techniques for implementing scalable and efficient data
transformations within Oracle9i. The examples in this chapter are relatively simple.
Real-world data transformations are often considerably more complex. However,
the transformation techniques introduced in this chapter meet the majority of
real-world data transformation requirements, often with more scalability and less
programming than alternative approaches.

This chapter does not seek to illustrate all of the typical transformations that would
be encountered in a data warehouse, but to demonstrate the types of fundamental
technology that can be applied to implement these transformations and to provide
guidance in how to choose the best techniques.

Transformation Flow
From an architectural perspective, you can transform your data in two ways:

■ Multistage Data Transformation

■ Pipelined Data Transformation

Multistage Data Transformation
The data transformation logic for most data warehouses consists of multiple steps.
For example, in transforming new records to be inserted into a sales table, there
may be separate logical transformation steps to validate each dimension key.
13-2 Oracle9i Data Warehousing Guide

Overview of Loading and Transformation in Data Warehouses
Figure 13–1 offers a graphical way of looking at the transformation logic.

Figure 13–1 Multistage Data Transformation

When using Oracle9i as a transformation engine, a common strategy is to
implement each different transformation as a separate SQL operation and to create
a separate, temporary staging table (such as the tables new_sales_step1 and
new_sales_step2 in Figure 13–1) to store the incremental results for each step.
This load-then-transform strategy also provides a natural checkpointing scheme to
the entire transformation process, which enables to the process to be more easily
monitored and restarted. However, a disadvantage to multistaging is that the space
and time requirements increase.

It may also be possible to combine many simple logical transformations into a
single SQL statement or single PL/SQL procedure. Doing so may provide better
performance than performing each step independently, but it may also introduce
difficulties in modifying, adding, or dropping individual transformations, as well as
recovering from failed transformations.

Insert into sales
warehouse table

Convert source
product keys
to warehouse
product keys

Flat Files Table

new_sales_step1

new_sales_step2 new_sales_step3

sales

TableTable

Table

Load into staging
table

Validate customer
keys (lookup in
customer
dimension table)
Loading and Transformation 13-3

Overview of Loading and Transformation in Data Warehouses
Pipelined Data Transformation
With the introduction of Oracle9i, Oracle’s database capabilities have been
significantly enhanced to address specifically some of the tasks in ETL
environments. The ETL process flow can be changed dramatically and the database
becomes an integral part of the ETL solution.

The new functionality renders some of the former necessary process steps obsolete
whilst some others can be remodeled to enhance the data flow and the data
transformation to become more scalable and non-interruptive. The task shifts from
serial transform-then-load process (with most of the tasks done outside the
database) or load-then-transform process, to an enhanced transform-while-loading.

Oracle9i offers a wide variety of new capabilities to address all the issues and tasks
relevant in an ETL scenario. It is important to understand that the database offers
toolkit functionality rather than trying to address a one-size-fits-all solution. The
underlying database has to enable the most appropriate ETL process flow for a
specific customer need, and not dictate or constrain it from a technical perspective.
Figure 13–2 illustrates the new functionality, which is discussed throughout later
sections.

Figure 13–2 Pipelined Data Transformation

Insert into sales
warehouse table

Flat Files

External table

sales

Table

Validate customer
keys (lookup in
customer
dimension table)

Convert source
product keys
to warehouse
product keys
13-4 Oracle9i Data Warehousing Guide

Loading Mechanisms
Loading Mechanisms
You can use the following mechanisms for loading a warehouse:

■ SQL*Loader

■ External Tables

■ OCI and Direct-Path APIs

■ Export/Import

SQL*Loader
Before any data transformations can occur within the database, the raw data must
become accessible for the database. One approach is to load it into the database.
Chapter 12, "Transportation in Data Warehouses", discusses several techniques for
transporting data to an Oracle data warehouse. Perhaps the most common
technique for transporting data is by way of flat files.

SQL*Loader is used to move data from flat files into an Oracle data warehouse.
During this data load, SQL*Loader can also be used to implement basic data
transformations. When using direct-path SQL*Loader, basic data manipulation,
such as datatype conversion and simple NULL handling, can be automatically
resolved during the data load. Most data warehouses use direct-path loading for
performance reasons.

Oracle's conventional-path loader provides broader capabilities for data
transformation than a direct-path loader: SQL functions can be applied to any
column as those values are being loaded. This provides a rich capability for
transformations during the data load. However, the conventional-path loader is
slower than direct-path loader. For these reasons, the conventional-path loader
should be considered primarily for loading and transforming smaller amounts of
data.

The following is a simple example of a SQL*Loader controlfile to load data into the
sales table of the sh sample schema from an external file sh_sales.dat . The
external flat file sh_sales.dat consists of sales transaction data, aggregated on a
daily level. Not all columns of this external file are loaded into sales . This external
file will also be used as source for loading the second fact table of the sh sample
schema, which is done using an external table:

See Also: Oracle9i Database Utilities for more information on
SQL*Loader
Loading and Transformation 13-5

Loading Mechanisms
The following shows the controlfile (sh_sales.ctl) to load the sales table:

LOAD DATA
INFILE sh_sales.dat
APPEND INTO TABLE sales
FIELDS TERMINATED BY "|"
(PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, PROMO_ID,
 QUANTITY_SOLD, AMOUNT_SOLD)

It can be loaded with the following command:

$ sqlldr sh/sh control=sh_sales.ctl direct=true

External Tables
Another approach for handling external data sources is using external tables.
Oracle9i‘s external table feature enables you to use external data as a virtual table
that can be queried and joined directly and in parallel without requiring the
external data to be first loaded in the database. You can then use SQL, PL/SQL, and
Java to access the external data.

External tables enable the pipelining of the loading phase with the transformation
phase. The transformation process can be merged with the loading process without
any interruption of the data streaming. It is no longer necessary to stage the data
inside the database for further processing inside the database, such as comparison
or transformation. For example, the conversion functionality of a conventional load
can be used for a direct-path INSERT AS SELECT statement in conjunction with the
SELECT from an external table.

The main difference between external tables and regular tables is that externally
organized tables are read-only. No DML operations (UPDATE/INSERT/DELETE)
are possible and no indexes can be created on them.

Oracle9i’s external tables are a complement to the existing SQL*Loader
functionality, and are especially useful for environments where the complete
external source has to be joined with existing database objects and transformed in a
complex manner, or where the external data volume is large and used only once.
SQL*Loader, on the other hand, might still be the better choice for loading of data
where additional indexing of the staging table is necessary. This is true for
operations where the data is used in independent complex transformations or the
data is only partially used in further processing.
13-6 Oracle9i Data Warehousing Guide

Loading Mechanisms
You can create an external table named sales_transactions_ext , representing
the structure of the complete sales transaction data, represented in the external file
sh_sales.dat . The product department is especially interested in a cost analysis
on product and time. We thus create a fact table named cost in the sales
history schema. The operational source data is the same as for the sales fact
table. However, because we are not investigating every dimensional information
that is provided, the data in the cost fact table has a coarser granularity than in the
sales fact table, for example, all different distribution channels are aggregated.

We cannot load the data into the cost fact table without applying the previously
mentioned aggregation of the detailed information, due to the suppression of some
of the dimensions.

Oracle’s external table framework offers a solution to solve this. Unlike
SQL*Loader, where you would have to load the data before applying the
aggregation, you can combine the loading and transformation within a single SQL
DML statement, as shown in the following. You do not have to stage the data
temporarily before inserting into the target table.

The Oracle object directories must already exist, and point to the directory
containing the sh_sales.dat file as well as the directory containing the bad and
log files.

CREATE TABLE sales_transactions_ext
(
 PROD_ID NUMBER(6),
 CUST_ID NUMBER,
 TIME_ID DATE,
 CHANNEL_ID CHAR(1),
 PROMO_ID NUMBER(6),
 QUANTITY_SOLD NUMBER(3),
 AMOUNT_SOLD NUMBER(10,2),
 UNIT_COST NUMBER(10,2),
 UNIT_PRICE NUMBER(10,2)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY data_file_dir
 ACCESS PARAMETERS

See Also: Oracle9i SQL Reference for a complete description of
external table syntax and restrictions and Oracle9i Database Utilities
for usage examples
Loading and Transformation 13-7

Loading Mechanisms
 (
 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 BADFILE log_file_dir:'sh_sales.bad_xt'
 LOGFILE log_file_dir:'sh_sales.log_xt'
 FIELDS TERMINATED BY "|" LDRTRIM
)
 location
 (
 'sh_sales.dat'
)
)REJECT LIMIT UNLIMITED;

The external table can now be used from within the database, accessing some
columns of the external data only, grouping the data, and inserting it into the
costs fact table:

INSERT /*+ APPEND */ INTO COSTS
(
 TIME_ID,
 PROD_ID,
 UNIT_COST,
 UNIT_PRICE
)
SELECT
 TIME_ID,
 PROD_ID,
 SUM(UNIT_COST),
 SUM(UNIT_PRICE)
FROM sales_transactions_ext
GROUP BY time_id, prod_id;

OCI and Direct-Path APIs
OCI and direct-path APIs are frequently used when the transformation and
computation are done outside the database and there is no need for flat file staging.

Export/Import
Export and import are used when the data is inserted as is into the target system.
No large volumes of data should be handled and no complex extractions are
possible.

See Also: Chapter 11, "Extraction in Data Warehouses" for
further information
13-8 Oracle9i Data Warehousing Guide

Transformation Mechanisms
Transformation Mechanisms
You have the following choices for transforming data inside the database:

■ Transformation Using SQL

■ Transformation Using PL/SQL

■ Transformation Using Table Functions

Transformation Using SQL
Once data is loaded into an Oracle9i database, data transformations can be executed
using SQL operations. There are four basic techniques for implementing SQL data
transformations within Oracle9i:

■ CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT

■ Transformation Using UPDATE

■ Transformation Using MERGE

■ Transformation Using Multitable INSERT

CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT
The CREATE TABLE ... AS SELECT statement (CTAS) is a powerful tool for
manipulating large sets of data. As shown in the following example, many data
transformations can be expressed in standard SQL, and CTAS provides a
mechanism for efficiently executing a SQL query and storing the results of that
query in a new database table. The INSERT /*+APPEND*/ ... AS SELECT statement
offers the same capabilities with existing database tables.

In a data warehouse environment, CTAS is typically run in parallel using
NOLOGGING mode for best performance.

A simple and common type of data transformation is data substitution. In a data
substitution transformation, some or all of the values of a single column are
modified. For example, our sales table has a channel_id column. This column
indicates whether a given sales transaction was made by a company’s own sales
force (a direct sale) or by a distributor (an indirect sale).

You may receive data from multiple source systems for your data warehouse.
Suppose that one of those source systems processes only direct sales, and thus the
source system does not know indirect sales channels. When the data warehouse
initially receives sales data from this system, all sales records have a NULL value for
the sales.channel_id field. These NULL values must be set to the proper key
Loading and Transformation 13-9

Transformation Mechanisms
value. For example, You can do this efficiently using a SQL function as part of the
insertion into the target sales table statement:

The structure of source table sales_activity_direct is as follows:

SQL> DESC sales_activity_direct
Name Null? Type
------------ ----- ----------------
SALES_DATE DATE
PRODUCT_ID NUMBER
CUSTOMER_ID NUMBER
PROMOTION_ID NUMBER
AMOUNT NUMBER
QUANTITY NUMBER

INSERT /*+ APPEND NOLOGGING PARALLEL */
INTO sales
SELECT product_id, customer_id, TRUNC(sales_date), 'S',
 promotion_id, quantity, amount
FROM sales_activity_direct;

Transformation Using UPDATE
Another technique for implementing a data substitution is to use an UPDATE
statement to modify the sales.channel_id column. An UPDATEwill provide the
correct result. However, if the data substitution transformations require that a very
large percentage of the rows (or all of the rows) be modified, then, it may be more
efficient to use a CTAS statement than an UPDATE.

Transformation Using MERGE
Oracle’s merge functionality extends SQL, by introducing the SQL keyword MERGE,
in order to provide the ability to update or insert a row conditionally into a table or
out of line single table views. Conditions are specified in the ON clause. This is,
besides pure bulk loading, one of the most common operations in data warehouse
synchronization.

Prior to Oracle9i, merges were expressed either as a sequence of DML statements or
as PL/SQL loops operating on each row. Both of these approaches suffer from
deficiencies in performance and usability. The new merge functionality overcomes
these deficiencies with a new SQL statement. This syntax has been proposed as part
of the upcoming SQL standard.

When to Use Merge There are several benefits of the new MERGE statement as
compared with the two other existing approaches.
13-10 Oracle9i Data Warehousing Guide

Transformation Mechanisms
■ The entire operation can be expressed much more simply as a single SQL
statement.

■ You can parallelize statements transparently.

■ You can use bulk DML.

■ Performance will improve because your statements will require fewer scans of
the source table.

Merge Examples The following discusses various implementations of a merge. The
examples assume that new data for the dimension table products is propagated to
the data warehouse and has to be either inserted or updated. The table products_
delta has the same structure as products .

Example 1 Merge Operation Using SQL in Oracle9i
MERGE INTO products t
USING products_delta s
ON (t.prod_id=s.prod_id)
WHEN MATCHED THEN
UPDATE SET
t.prod_list_price=s.prod_list_price,
t.prod_min_price=s.prod_min_price
WHEN NOT MATCHED THEN
INSERT
(prod_id, prod_name, prod_desc,
prod_subcategory, prod_subcat_desc, prod_category,
prod_cat_desc, prod_status, prod_list_price, prod_min_price)
VALUES
(s.prod_id, s.prod_name, s.prod_desc,
s.prod_subcategory, s.prod_subcat_desc,
s.prod_category, s.prod_cat_desc,
s.prod_status, s.prod_list_price, s.prod_min_price);

Example 2 Merge Operation Using SQL Prior to Oracle9i
A regular join between source products_delta and target products .

UPDATE products t
SET
(prod_name, prod_desc, prod_subcategory, prod_subcat_desc, prod_category,
prod_cat_desc, prod_status, prod_list_price,
prod_min_price) =
(SELECT prod_name, prod_desc, prod_subcategory, prod_subcat_desc,
prod_category, prod_cat_desc, prod_status, prod_list_price,
prod_min_price from products_delta s WHERE s.prod_id=t.prod_id);
Loading and Transformation 13-11

Transformation Mechanisms
An antijoin between source products_delta and target products .

INSERT INTO products t
SELECT * FROM products_delta s
WHERE s.prod_id NOT IN
(SELECT prod_id FROM products);

The advantage of this approach is its simplicity and lack of new language
extensions. The disadvantage is its performance. It requires an extra scan and a join
of both the products_delta and the products tables.

Example 3 Pre-9i Merge Using PL/SQL
CREATE OR REPLACE PROCEDURE merge_proc
IS
CURSOR cur IS
SELECT prod_id, prod_name, prod_desc, prod_subcategory, prod_subcat_desc,
 prod_category, prod_cat_desc, prod_status, prod_list_price,
 prod_min_price
FROM products_delta;
crec cur%rowtype;
BEGIN
 OPEN cur;
 LOOP
 FETCH cur INTO crec;
 EXIT WHEN cur%notfound;
 UPDATE products SET
 prod_name = crec.prod_name, prod_desc = crec.prod_desc,
 prod_subcategory = crec.prod_subcategory,
 prod_subcat_desc = crec.prod_subcat_desc,
 prod_category = crec.prod_category,
 prod_cat_desc = crec.prod_cat_desc,
 prod_status = crec.prod_status,
 prod_list_price = crec.prod_list_price,
 prod_min_price = crec.prod_min_price
 WHERE crec.prod_id = prod_id;

 IF SQL%notfound THEN
 INSERT INTO products
 (prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcat_desc, prod_category,
 prod_cat_desc, prod_status, prod_list_price, prod_min_price)
 VALUES
 (crec.prod_id, crec.prod_name, crec.prod_desc, crec.prod_subcategory,
 crec.prod_subcat_desc, crec.prod_category,
13-12 Oracle9i Data Warehousing Guide

Transformation Mechanisms
 crec.prod_cat_desc, crec.prod_status, crec.prod_list_price, crec.prod_min_
price);
 END IF;
 END LOOP;
 CLOSE cur;
END merge_proc;
/

Transformation Using Multitable INSERT
Many times, external data sources have to be segregated based on logical attributes
for insertion into different target objects. It’s also frequent in data warehouse
environments to fan out the same source data into several target objects. Multitable
inserts provide a new SQL statement for these kinds of transformations, where data
can either end up in several or exactly one target, depending on the business
transformation rules. This insertion can be done conditionally based on business
rules or unconditionally.

It offers the benefits of the INSERT ... SELECT statement when multiple tables are
involved as targets. In doing so, it avoids the drawbacks of the alternatives
available to you using functionality prior to Oracle9i. You either had to deal with n
independent INSERT … SELECT statements, thus processing the same source data
n times and increasing the transformation workload n times. Alternatively, you had
to choose a procedural approach with a per-row determination how to handle the
insertion. This solution lacked direct access to high-speed access paths available in
SQL.

As with the existing INSERT ... SELECT statement, the new statement can be
parallelized and used with the direct-load mechanism for faster performance.

Example 13–1 Unconditional Insert

The following statement aggregates the transactional sales information, stored in
sales_activity_direct , on a per daily base and inserts into both the sales
and the costs fact table for the current day.

INSERT ALL
 INTO sales VALUES (product_id, customer_id, today, 'S', promotion_id,
 quantity_per_day, amount_per_day)
 INTO costs VALUES (product_id, today, product_cost, product_price)
SELECT TRUNC(s.sales_date) AS today,
 s.product_id, s.customer_id, s.promotion_id,
 SUM(s.amount_sold) AS amount_per_day, SUM(s.quantity) quantity_per_day,
 p.product_cost, p.product_price
 FROM sales_activity_direct s, product_information p
Loading and Transformation 13-13

Transformation Mechanisms
 WHERE s.product_id = p.product_id
 AND trunc(sales_date)=trunc(sysdate)
 GROUP BY trunc(sales_date), s.product_id,
 s.customer_id, s.promotion_id, p.product_cost, p.product_price;

Example 13–2 Conditional ALL Insert

The following statement inserts a row into the sales and cost tables for all sales
transactions with a valid promotion and stores the information about multiple
identical orders of a customer in a separate table cum_sales_activity . It is
possible two rows will be inserted for some sales transactions, and none for others.

INSERT ALL
WHEN promotion_id IN (SELECT promo_id FROM promotions) THEN
 INTO sales VALUES (product_id, customer_id, today, 'S', promotion_id,
 quantity_per_day, amount_per_day)
 INTO costs VALUES (product_id, today, product_cost, product_price)
WHEN num_of_orders > 1 THEN
 INTO cum_sales_activity VALUES (today, product_id, customer_id,
 promotion_id, quantity_per_day, amount_per_day,
 num_of_orders)
SELECT TRUNC(s.sales_date) AS today, s.product_id, s.customer_id,
 s.promotion_id, SUM(s.amount) AS amount_per_day, SUM(s.quantity)
 quantity_per_day, COUNT(*) num_of_orders,
 p.product_cost, p.product_price
FROM sales_activity_direct s, product_information p
WHERE s.product_id = p.product_id
AND TRUNC(sales_date) = TRUNC(sysdate)
GROUP BY TRUNC(sales_date), s.product_id, s.customer_id,
 s.promotion_id, p.product_cost, p.product_price;

Example 13–3 Conditional FIRST Insert

The following statement inserts into an appropriate shipping manifest according to
the total quantity and the weight of a product order. An exception is made for high
value orders, which are also sent by express, unless their weight classification is not
too high. It assumes the existence of appropriate tables large_freight_
shipping , express_shipping , and default_shipping .

INSERT FIRST
 WHEN (sum_quantity_sold > 10 AND prod_weight_class < 5) OR
 (sum_quantity_sold > 5 AND prod_weight_class > 5) THEN
 INTO large_freight_shipping VALUES
 (time_id, cust_id, prod_id, prod_weight_class, sum_quantity_sold)
 WHEN sum_amount_sold > 1000 THEN
13-14 Oracle9i Data Warehousing Guide

Transformation Mechanisms
 INTO express_shipping VALUES
 (time_id, cust_id, prod_id, prod_weight_class,
 sum_amount_sold, sum_quantity_sold)
 ELSE
 INTO default_shipping VALUES
 (time_id, cust_id, prod_id, sum_quantity_sold)
SELECT s.time_id, s.cust_id, s.prod_id, p.prod_weight_class,
 SUM(amount_sold) AS sum_amount_sold,
 SUM(quantity_sold) AS sum_quantity_sold
FROM sales s, products p
WHERE s.prod_id = p.prod_id
AND s.time_id = TRUNC(sysdate)
GROUP BY s.time_id, s.cust_id, s.prod_id, p.prod_weight_class;

Example 13–4 Mixed Conditional and Unconditional Insert

The following example inserts new customers into the customers table and stores all
new customers with cust_credit_limit higher then 4500 in an additional,
separate table for further promotions.

INSERT FIRST
 WHEN cust_credit_limit >= 4500 THEN
 INTO customers
 INTO customers_special VALUES (cust_id, cust_credit_limit)
 ELSE
 INTO customers
SELECT * FROM customers_new;

Transformation Using PL/SQL
In a data warehouse environment, you can use procedural languages such as
PL/SQL to implement complex transformations in the Oracle9i database. Whereas
CTAS operates on entire tables and emphasizes parallelism, PL/SQL provides a
row-based approached and can accommodate very sophisticated transformation
rules. For example, a PL/SQL procedure could open multiple cursors and read data
from multiple source tables, combine this data using complex business rules, and
finally insert the transformed data into one or more target table. It would be
difficult or impossible to express the same sequence of operations using standard
SQL statements.

Using a procedural language, a specific transformation (or number of
transformation steps) within a complex ETL processing can be encapsulated,
reading data from an intermediate staging area and generating a new table object as
output. A previously generated transformation input table and a subsequent
Loading and Transformation 13-15

Transformation Mechanisms
transformation will consume the table generated by this specific transformation.
Alternatively, these encapsulated transformation steps within the complete ETL
process can be integrated seamlessly, thus streaming sets of rows between each
other without the necessity of intermediate staging. You can use Oracle9i’s table
functions to implement such behavior.

Transformation Using Table Functions
Oracle9i’s table functions provide the support for pipelined and parallel execution
of transformations implemented in PL/SQL, C, or Java. Scenarios as mentioned
earlier can be done without requiring the use of intermediate staging tables, which
interrupt the data flow through various transformations steps.

What is a Table Function?
A table function is defined as a function that can produce a set of rows as output.
Additionally, table functions can take a set of rows as input. Prior to Oracle9i,
PL/SQL functions:

■ Could not take cursors as input

■ Could not be parallelized or pipelined

Starting with Oracle9i, functions are not limited in these ways. Table functions
extend database functionality by allowing:

■ Multiple rows to be returned from a function

■ Results of SQL subqueries (that select multiple rows) to be passed directly to
functions

■ Functions take cursors as input

■ Functions can be parallelized

■ Returning result sets incrementally for further processing as soon as they are
created. This is called incremental pipelining

Table functions can be defined in PL/SQL using a native PL/SQL interface, or in
Java or C using the Oracle Data Cartridge Interface (ODCI).

See Also: PL/SQL User’s Guide and Reference for further
information and Oracle9i Data Cartridge Developer’s Guide
13-16 Oracle9i Data Warehousing Guide

Transformation Mechanisms
Figure 13–3 illustrates a typical aggregation where you input a set of rows and
output a set of rows, in that case, after performing a SUM operation.

Figure 13–3 Table Function Example

The pseudocode for this operation would be similar to:

INSERT INTO out
SELECT * FROM ("Table Function"(SELECT * FROM in));

The table function takes the result of the SELECT on In as input and delivers a set
of records in a different format as output for a direct insertion into Out .

Additionally, a table function can fan out data within the scope of an atomic
transaction. This can be used for many occasions like an efficient logging
mechanism or a fan out for other independent transformations. In such a scenario, a
single staging table will be needed.

Figure 13–4 Pipelined Parallel Transformation with Fanout

In
Region Sales

10
20
25

5
10
10

. . .

North
South
North
East
West
South
. . .

Out
Region Sum of Sales

35
30
10

5

North
South
West
East

Table
Function

Source

tf1 tf2

tf3

Target
Stage Table 1
Loading and Transformation 13-17

Transformation Mechanisms
The pseudocode for this would be similar to:

INSERT INTO target SELECT * FROM (tf2(SELECT *
FROM (tf1(SELECT * FROM source))));

This will insert into target and, as part of tf1 , into Stage Table 1 within the
scope of an atomic transaction.

INSERT INTO target SELECT * FROM tf3(SELT * FROM stage_table1);

Example 13–5 Table Functions Fundamentals

The following examples demonstrate the fundamentals of table functions, without
the usage of complex business rules implemented inside those functions. They are
chosen for demonstration purposes only, and are all implemented in PL/SQL.

Table functions return sets of records and can take cursors as input. Besides the
Sales History schema, you have to set up the following database objects before
using the examples:

REM object types
CREATE TYPE product_t AS OBJECT (
 prod_id NUMBER(6),
 prod_name VARCHAR2(50),
 prod_desc VARCHAR2(4000),
 prod_subcategory VARCHAR2(50),
 prod_subcat_desc VARCHAR2(2000).
 prod_category VARCHAR2(50),
 prod_cat_desc VARCHAR2(2000),
 prod_weight_class NUMBER(2),
 prod_unit_of_measure VARCHAR2(20),
 prod_pack_size VARCHAR2(30),
 supplier_id NUMBER(6),
 prod_status VARCHAR2(20),
 prod_list_price NUMBER(8,2),
 prod_min_price NUMBER(8,2)
);
/
CREATE TYPE product_t_table AS TABLE OF product_t;
/
COMMIT;

REM package of all cursor types
REM we have to handle the input cursor type and the output cursor collection
REM type
CREATE OR REPLACE PACKAGE cursor_PKG as
13-18 Oracle9i Data Warehousing Guide

Transformation Mechanisms
 TYPE product_t_rec IS RECORD (
 prod_id NUMBER(6),
 prod_name VARCHAR2(50),
 prod_desc VARCHAR2(4000),
 prod_subcategory VARCHAR2(50),
 prod_subcat_desc VARCHAR2(2000),
 prod_category VARCHAR2(50),
 prod_cat_desc VARCHAR2(2000),
 prod_weight_class NUMBER(2),
 prod_unit_of_measure VARCHAR2(20),
 prod_pack_size VARCHAR2(30),
 supplier_id NUMBER(6),
 prod_status VARCHAR2(20),
 prod_list_price NUMBER(8,2),
 prod_min_price NUMBER(8,2));
 TYPE product_t_rectab IS TABLE OF product_t_rec;
 TYPE strong_refcur_t IS REF CURSOR RETURN product_t_rec;
 TYPE refcur_t IS REF CURSOR;
END;
/

REM artificial help table, used to demonstrate figure 13-4
CREATE TABLE obsolete_products_errors (prod_id NUMBER, msg VARCHAR2(2000));

The following example demonstrates a simple filtering; it shows all obsolete
products except the prod_category Boys . The table function returns the result set
as a set of records and uses a weakly typed ref cursor as input.

CREATE OR REPLACE FUNCTION obsolete_products(cur cursor_pkg.refcur_t)
 RETURN product_t_table
IS
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcat_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_cat_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
Loading and Transformation 13-19

Transformation Mechanisms
 sales NUMBER:=0;
 objset product_t_table := product_t_table();
 i NUMBER := 0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcat_desc, prod_category, prod_cat_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' AND prod_category != 'Boys' THEN
 -- append to collection
 i:=i+1;
 objset.extend;
 objset(i):=product_t(prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcat_desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_
of_measure, prod_pack_size, supplier_id, prod_status, prod_list_price, prod_
min_price);
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN objset;
END;
/

You can use the table function in a SQL statement to show the results. Here we use
additional SQL functionality for the output.

SELECT DISTINCT UPPER(prod_category), prod_status
FROM TABLE(obsolete_products(CURSOR(SELECT * FROM products)));

UPPER(PROD_CATEGORY) PROD_STATUS
-------------------- -----------
GIRLS obsolete
MEN obsolete

2 rows selected.

The following example implements the same filtering than the first one. The main
differences between those two are:

■ This example uses a strong typed REF cursor as input and can be parallelized
based on the objects of the strong typed cursor, as shown in one of the following
examples.
13-20 Oracle9i Data Warehousing Guide

Transformation Mechanisms
■ The table function returns the result set incrementally as soon as records are
created.

REM Same example, pipelined implementation
REM strong ref cursor (input type is defined)
REM a table without a strong typed input ref cursor cannot be parallelized
REM
CREATE OR
REPLACE FUNCTION obsolete_products_pipe(cur cursor_pkg.strong_refcur_t)
RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcat_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_cat_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory, prod_subcat_
desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_measure,
prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' AND prod_category !='Boys' THEN
 PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory, prod_
subcat_desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_
measure, prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_
price));
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN;
END;
/

Loading and Transformation 13-21

Transformation Mechanisms
You can use the table function as follows:

SELECT DISTINCT prod_category, DECODE(prod_status, 'obsolete', 'NO LONGER
REMOVE_AVAILABLE', 'N/A')
FROM TABLE(obsolete_products_pipe(CURSOR(SELECT * FROM products)));

PROD_CATEGORY DECODE(PROD_STATUS,
------------- -------------------
Girls NO LONGER AVAILABLE
Men NO LONGER AVAILABLE

2 rows selected.

We now change the degree of parallelism for the input table products and issue the
same statement again:

ALTER TABLE products PARALLEL 4;

The session statistics show that the statement has been parallelized:

SELECT * FROM V$PQ_SESSTAT WHERE statistic='Queries Parallelized';

STATISTIC LAST_QUERY SESSION_TOTAL
-------------------- ---------- -------------
Queries Parallelized 1 3

1 row selected.

Table functions are also capable to fanout results into persistent table structures.
This is demonstrated in the next example. The function filters returns all obsolete
products except a those of a specific prod_category (default Men), which was set
to status obsolete by error. The detected wrong prod_id ’s are stored in a separate
table structure. Its result set consists of all other obsolete product categories. It
furthermore demonstrates how normal variables can be used in conjunction with
table functions:

CREATE OR REPLACE FUNCTION obsolete_products_dml(cur cursor_pkg.strong_refcur_t,
prod_cat VARCHAR2 DEFAULT 'Men') RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcat_desc VARCHAR2(2000);
13-22 Oracle9i Data Warehousing Guide

Transformation Mechanisms
 prod_category VARCHAR2(50);
 prod_cat_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory, prod_subcat_
desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_measure,
prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' THEN
 IF prod_category=prod_cat THEN
 INSERT INTO obsolete_products_errors VALUES
 (prod_id, ’correction: category '||UPPER(prod_cat)||' still available');
 ELSE
 PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory, prod_
subcat_desc, prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_
measure, prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_
price));
 END IF;
 END IF;
 END LOOP;
 COMMIT;
 CLOSE cur;
 RETURN;
END;
/

The following query shows all obsolete product groups except the prod_
category Men , which was wrongly set to status obsolete .

SELECT DISTINCT prod_category, prod_status FROM TABLE(obsolete_products_
dml(CURSOR(SELECT * FROM products)));
PROD_CATEGORY PROD_STATUS
------------- -----------
Boys obsolete
Girls obsolete
Loading and Transformation 13-23

Transformation Mechanisms
2 rows selected.

As you can see, there are some products of the prod_category Men that were
obsoleted by accident:

SELECT DISTINCT msg FROM obsolete_products_errors;

MSG
--
correction: category MEN still available

1 row selected.
Taking advantage of the second input variable changes the result set as follows:

SELECT DISTINCT prod_category, prod_status FROM TABLE(obsolete_products_
dml(CURSOR(SELECT * FROM products), 'Boys'));

PROD_CATEGORY PROD_STATUS
------------- -----------
Girls obsolete
Men obsolete

2 rows selected.

SELECT DISTINCT msg FROM obsolete_products_errors;

MSG

correction: category BOYS still available

1 row selected.

Because table functions can be used like a normal table, they can be nested, as
shown in the following:

SELECT DISTINCT prod_category, prod_status
FROM TABLE(obsolete_products_dml(CURSOR(SELECT *
 FROM TABLE(obsolete_products_pipe(CURSOR(SELECT * FROM products))))));

PROD_CATEGORY PROD_STATUS
------------- -----------
Girls obsolete

1 row selected.
13-24 Oracle9i Data Warehousing Guide

Loading and Transformation Scenarios
Because the table function obsolete_products_pipe filters out all products of
the prod_category Boys , our result does no longer include products of the
prod_category Boys . The prod_category Men is still set to be obsolete by
accident.

SELECT COUNT(*) FROM obsolete_products_errors;
MSG
--
correction: category MEN still available

The biggest advantage of Oracle9i ETL is its toolkit functionality, where you can
combine any of the latter discussed functionality to improve and speed up your
ETL processing. For example, you can take an external table as input, join it with an
existing table and use it as input for a parallelized table function to process complex
business logic. This table function can be used as input source for a MERGE
operation, thus streaming the new information for the data warehouse, provided in
a flat file within one single statement through the complete ETL process.

Loading and Transformation Scenarios
The following sections offer examples of typical loading and transformation tasks:

■ Parallel Load Scenario

■ Key Lookup Scenario

■ Exception Handling Scenario

■ Pivoting Scenarios

Parallel Load Scenario
This section presents a case study illustrating how to create, load, index, and
analyze a large data warehouse fact table with partitions in a typical star schema.
This example uses SQL*Loader to explicitly stripe data over 30 disks.

■ The example 120 GB table is named facts .

■ The system is a 10-CPU shared memory computer with more than 100 disk
drives.

■ Thirty disks (4 GB each) are used for base table data, 10 disks for indexes, and
30 disks for temporary space. Additional disks are needed for rollback
segments, control files, log files, possible staging area for loader flat files, and so
on.
Loading and Transformation 13-25

Loading and Transformation Scenarios
■ The facts table is partitioned by month into 12 partitions. To facilitate backup
and recovery, each partition is stored in its own tablespace.

■ Each partition is spread evenly over 10 disks, so a scan accessing few partitions
or a single partition can proceed with full parallelism. Thus there can be
intra-partition parallelism when queries restrict data access by partition
pruning.

■ Each disk has been further subdivided using an operating system utility into 4
operating system files with names like /dev/D1.1, /dev/D1.2, ... ,
/dev/D30.4 .

■ Four tablespaces are allocated on each group of 10 disks. To better balance I/O
and parallelize table space creation (because Oracle writes each block in a
datafile when it is added to a tablespace), it is best if each of the four tablespaces
on each group of 10 disks has its first datafile on a different disk. Thus the first
tablespace has /dev/D1.1 as its first datafile, the second tablespace has
/dev/D4.2 as its first datafile, and so on, as illustrated in Figure 13–5.

Figure 13–5 Datafile Layout for Parallel Load Example

����TSfacts1

����
TSfacts2

��TSfacts3

��
TSfacts4

����TSfacts5��TSfacts6��
��

TSfacts7

��
TSfacts8

��TSfacts9��
��

TSfacts10

��
TSfacts11

��
TSfacts12

/dev/D1.1

/dev/D1.2

/dev/D1.3

/dev/D1.4

/dev/D11.1

/dev/D11.2

/dev/D11.3

/dev/D11.4

/dev/D21.1

/dev/D21.2

/dev/D21.3

/dev/D21.4

����������
����������
��������
������

/dev/D2.1

/dev/D2.2

/dev/D2.3

/dev/D2.4

/dev/D12.1

/dev/D12.2

/dev/D12.3

/dev/D12.4

/dev/D22.1

/dev/D22.2

/dev/D22.3

/dev/D22.4

����������
����������
��������
������

/dev/D10.1

/dev/D10.2

/dev/D10.3

/dev/D10.4

/dev/D20.1

/dev/D20.2

/dev/D20.3

/dev/D20.4

/dev/D30.1

/dev/D30.2

/dev/D30.3

/dev/D30.4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
13-26 Oracle9i Data Warehousing Guide

Loading and Transformation Scenarios
Step 1: Create the Tablespaces and Add Datafiles in Parallel
The following is the command to create a tablespace named Tsfacts1 . Other
tablespaces are created with analogous commands. On a 10-CPU machine, it should
be possible to run all 12 CREATE TABLESPACE statements together. Alternatively, it
might be better to run them in two batches of 6 (two from each of the three groups
of disks).

CREATE TABLESPACE TSfacts1
DATAFILE /dev/D1.1' SIZE 1024MB REUSE,
DATAFILE /dev/D2.1' SIZE 1024MB REUSE,
DATAFILE /dev/D3.1' SIZE 1024MB REUSE,
DATAFILE /dev/D4.1' SIZE 1024MB REUSE,
DATAFILE /dev/D5.1' SIZE 1024MB REUSE,
DATAFILE /dev/D6.1' SIZE 1024MB REUSE,
DATAFILE /dev/D7.1' SIZE 1024MB REUSE,
DATAFILE /dev/D8.1' SIZE 1024MB REUSE,
DATAFILE /dev/D9.1' SIZE 1024MB REUSE,
DATAFILE /dev/D10.1 SIZE 1024MB REUSE,
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0);
...

CREATE TABLESPACE TSfacts2
DATAFILE /dev/D4.2' SIZE 1024MB REUSE,
DATAFILE /dev/D5.2' SIZE 1024MB REUSE,
DATAFILE /dev/D6.2' SIZE 1024MB REUSE,
DATAFILE /dev/D7.2' SIZE 1024MB REUSE,
DATAFILE /dev/D8.2' SIZE 1024MB REUSE,
DATAFILE /dev/D9.2' SIZE 1024MB REUSE,
DATAFILE /dev/D10.2 SIZE 1024MB REUSE,
DATAFILE /dev/D1.2' SIZE 1024MB REUSE,
DATAFILE /dev/D2.2' SIZE 1024MB REUSE,
DATAFILE /dev/D3.2' SIZE 1024MB REUSE,
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0);
...
CREATE TABLESPACE TSfacts4
DATAFILE /dev/D10.4' SIZE 1024MB REUSE,
DATAFILE /dev/D1.4' SIZE 1024MB REUSE,
DATAFILE /dev/D2.4' SIZE 1024MB REUSE,
DATAFILE /dev/D3.4 SIZE 1024MB REUSE,
DATAFILE /dev/D4.4' SIZE 1024MB REUSE,
DATAFILE /dev/D5.4' SIZE 1024MB REUSE,
DATAFILE /dev/D6.4' SIZE 1024MB REUSE,
DATAFILE /dev/D7.4' SIZE 1024MB REUSE,
DATAFILE /dev/D8.4' SIZE 1024MB REUSE,
Loading and Transformation 13-27

Loading and Transformation Scenarios
DATAFILE /dev/D9.4' SIZE 1024MB REUSE,
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0);
...
CREATE TABLESPACE TSfacts12
DATAFILE /dev/D30.4' SIZE 1024MB REUSE,
DATAFILE /dev/D21.4' SIZE 1024MB REUSE,
DATAFILE /dev/D22.4' SIZE 1024MB REUSE,
DATAFILE /dev/D23.4 SIZE 1024MB REUSE,
DATAFILE /dev/D24.4' SIZE 1024MB REUSE,
DATAFILE /dev/D25.4' SIZE 1024MB REUSE,
DATAFILE /dev/D26.4' SIZE 1024MB REUSE,
DATAFILE /dev/D27.4' SIZE 1024MB REUSE,
DATAFILE /dev/D28.4' SIZE 1024MB REUSE,
DATAFILE /dev/D29.4' SIZE 1024MB REUSE,
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0);

Extent sizes in the STORAGE clause should be multiples of the multiblock read size,
where blocksize * MULTIBLOCK_READ_COUNT = multiblock read size.

INITIAL and NEXTshould normally be set to the same value. In the case of parallel
load, make the extent size large enough to keep the number of extents reasonable,
and to avoid excessive overhead and serialization due to bottlenecks in the data
dictionary. When PARALLEL=TRUE is used for parallel loader, the INITIAL extent
is not used. In this case you can override the INITIAL extent size specified in the
tablespace default storage clause with the value specified in the loader control file,
for example, 64KB.

Tables or indexes can have an unlimited number of extents, provided you have set
the COMPATIBLE initialization parameter to match the current release number, and
use the MAXEXTENTS keyword on the CREATE or ALTER statement for the
tablespace or object. In practice, however, a limit of 10,000 extents for each object is
reasonable. A table or index has an unlimited number of extents, so set the
PERCENT_INCREASE parameter to zero to have extents of equal size.
13-28 Oracle9i Data Warehousing Guide

Loading and Transformation Scenarios
Step 2: Create the Partitioned Table
We create a partitioned table with 12 partitions, each in its own tablespace. The
table contains multiple dimensions and multiple measures. The partitioning column
is named dim_2 and is a date. There are other columns as well.

CREATE TABLE facts (dim_1 NUMBER, dim_2 DATE, ...
 meas_1 NUMBER, meas_2 NUMBER, ...)
PARALLEL
PARTITION BY RANGE (dim_2)
(PARTITION jan95 VALUES LESS THAN ('02-01-1995') TABLESPACE
TSfacts1,
PARTITION feb95 VALUES LESS THAN ('03-01-1995') TABLESPACE
TSfacts2,
...
PARTITION dec95 VALUES LESS THAN ('01-01-1996') TABLESPACE
TSfacts12);

Step 3: Load the Partitions in Parallel
This section describes four alternative approaches to loading partitions in parallel.
The different approaches to loading help you manage the ramifications of the
PARALLEL=TRUE keyword of SQL*Loader that controls whether individual
partitions are loaded in parallel. The PARALLEL keyword entails the following
restrictions:

■ Indexes cannot be defined.

■ You must set a small initial extent, because each loader session gets a new
extent when it begins, and it does not use any existing space associated with the
object.

■ Space fragmentation issues arise.

Note: If possible, do not allocate extents faster than about 2 or 3
for each minute. Thus, each process should get an extent that lasts
for 3 to 5 minutes. Normally, such an extent is at least 50 MB for a
large object. Too small an extent size incurs significant overhead,
which affects performance and scalability of parallel operations.
The largest possible extent size for a 4 GB disk evenly divided into
4 partitions is 1 GB. 100 MB extents should perform well. Each
partition will have 100 extents. You can then customize the default
storage parameters for each object created in the tablespace, if
needed.
Loading and Transformation 13-29

Loading and Transformation Scenarios
However, regardless of the setting of this keyword, if you have one loader process
for each partition, you are still effectively loading into the table in parallel.

Example 13–6 Loading Partitions in Parallel Case 1

In this approach, assume 12 input files are partitioned in the same way as your
table. You have one input file for each partition of the table to be loaded. You start
12 SQL*Loader sessions concurrently in parallel, entering statements like these:

SQLLDR DATA=jan95.dat DIRECT=TRUE CONTROL=jan95.ctl
SQLLDR DATA=feb95.dat DIRECT=TRUE CONTROL=feb95.ctl
 . . .
SQLLDR DATA=dec95.dat DIRECT=TRUE CONTROL=dec95.ctl
In the example, the keyword PARALLEL=TRUE is not set. A separate control file for
each partition is necessary because the control file must specify the partition into
which the loading should be done. It contains a statement such as the following:

LOAD INTO facts partition(jan95)

The advantage of this approach is that local indexes are maintained by SQL*Loader.
You still get parallel loading, but on a partition level—without the restrictions of the
PARALLEL keyword.

A disadvantage is that you must partition the input prior to loading manually.

Example 13–7 Loading Partitions in Parallel Case 2

In another common approach, assume an arbitrary number of input files that are
not partitioned in the same way as the table. You can adopt a strategy of performing
parallel load for each input file individually. Thus if there are seven input files, you
can start seven SQL*Loader sessions, using statements like the following:

SQLLDR DATA=file1.dat DIRECT=TRUE PARALLEL=TRUE

Oracle partitions the input data so that it goes into the correct partitions. In this case
all the loader sessions can share the same control file, so there is no need to mention
it in the statement.

The keyword PARALLEL=TRUE must be used, because each of the seven loader
sessions can write into every partition. In Case 1, every loader session would write
into only one partition, because the data was partitioned prior to loading. Hence all
the PARALLEL keyword restrictions are in effect.

In this case, Oracle attempts to spread the data evenly across all the files in each of
the 12 tablespaces—however an even spread of data is not guaranteed. Moreover,
13-30 Oracle9i Data Warehousing Guide

Loading and Transformation Scenarios
there could be I/O contention during the load when the loader processes are
attempting to write to the same device simultaneously.

Example 13–8 Loading Partitions in Parallel Case 3

In this example, you want precise control over the load. To achieve this, you must
partition the input data in the same way as the datafiles are partitioned in Oracle.

This example uses 10 processes loading into 30 disks. To accomplish this, you must
split the input into 120 files beforehand. The 10 processes will load the first partition
in parallel on the first 10 disks, then the second partition in parallel on the second 10
disks, and so on through the 12th partition. You then run the following commands
concurrently as background processes:

SQLLDR DATA=jan95.file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D1.1
...
SQLLDR DATA=jan95.file10.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D10.1
WAIT;
...
SQLLDR DATA=dec95.file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D30.4
...
SQLLDR DATA=dec95.file10.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D29.4

For Oracle Real Application Clusters, divide the loader session evenly among the
nodes. The datafile being read should always reside on the same node as the loader
session.

The keyword PARALLEL=TRUE must be used, because multiple loader sessions can
write into the same partition. Hence all the restrictions entailed by the PARALLEL
keyword are in effect. An advantage of this approach, however, is that it guarantees
that all of the data is precisely balanced, exactly reflecting your partitioning.

Example 13–9 Loading Partitions in Parallel Case 4

For this approach, all partitions must be in the same tablespace. You need to have
the same number of input files as datafiles in the tablespace, but you do not need to
partition the input the same way in which the table is partitioned.

For example, if all 30 devices were in the same tablespace, then you would
arbitrarily partition your input data into 30 files, then start 30 SQL*Loader sessions

Note: Although this example shows parallel load used with
partitioned tables, the two features can be used independent of one
another.
Loading and Transformation 13-31

Loading and Transformation Scenarios
in parallel. The statement starting up the first session would be similar to the
following:

SQLLDR DATA=file1.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D1
. . .
SQLLDR DATA=file30.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D30

The advantage of this approach is that as in Case 3, you have control over the exact
placement of datafiles because you use the FILE keyword. However, you are not
required to partition the input data by value because Oracle does that for you.

A disadvantage is that this approach requires all the partitions to be in the same
tablespace. This minimizes availability.

Example 13–10 Loading External Data

This is probably the most basic use of external tables where the data volume is large
and no transformations are applied to the external data. The load process is
performed as follows:

1. You create the external table. Most likely, the table will be declared as parallel to
perform the load in parallel. Oracle will dynamically perform load balancing
between the parallel execution servers involved in the query.

2. Once the external table is created (remember that this only creates the metadata
in the dictionary), data can be converted, moved and loaded into the database
using either a PARALLEL CREATE TABLE AS SELECT or a PARALLEL INSERT
statement.

CREATE TABLE products_ext
(prod_id NUMBER, prod_name VARCHAR2(50), ...,
 price NUMBER(6.2), discount NUMBER(6.2))
ORGANIZATION EXTERNAL
(
DEFAULT DIRECTORY (stage_dir)
ACCESS PARAMETERS
(RECORDS FIXED 30
BADFILE 'bad/bad_products_ext'
LOGFILE 'log/log_products_ext'
(prod_id POSITION (1:8) CHAR,
 prod_name POSITION (*,+50) CHAR,
 prod_desc POSITION (*,+200) CHAR,
 . . .)
REMOVE_LOCATION ('new/new_prod1.txt','new/new_prod2.txt'))
PARALLEL 5
REJECT LIMIT 200;
13-32 Oracle9i Data Warehousing Guide

Loading and Transformation Scenarios
load it in the database using a parallel insert
ALTER SESSION ENABLE PARALLEL DML;
INSERT INTO TABLE products SELECT * FROM products_ext;

In this example, stage_dir is a directory where the external flat files reside.

Note that loading data in parallel can be performed in Oracle9i by using
SQL*Loader. But external tables are probably easier to use and the parallel load is
automatically coordinated. Unlike SQL*Loader, dynamic load balancing between
parallel execution servers will be performed as well because there will be intra-file
parallelism. The latter implies that the user will not have to manually split input
files before starting the parallel load. This will be accomplished dynamically.

Key Lookup Scenario
Another simple transformation is a key lookup. For example, suppose that sales
transaction data has been loaded into a retail data warehouse. Although the data
warehouse’s sales table contains a product_id column, the sales transaction
data extracted from the source system contains Uniform Price Codes (UPC) instead
of product IDs. Therefore, it is necessary to transform the UPC codes into product
IDs before the new sales transaction data can be inserted into the sales table.

In order to execute this transformation, a lookup table must relate the product_id
values to the UPC codes. This table might be the product dimension table, or
perhaps another table in the data warehouse that has been created specifically to
support this transformation. For this example, we assume that there is a table
named product , which has a product_id and an upc_code column.

This data substitution transformation can be implemented using the following
CTAS statement:

CREATE TABLE temp_sales_step2
 NOLOGGING PARALLEL AS
 SELECT
 sales_transaction_id,
 product.product_id sales_product_id,
 sales_customer_id,
 sales_time_id,
 sales_channel_id,
 sales_quantity_sold,
 sales_dollar_amount
 FROM temp_sales_step1, product
 WHERE temp_sales_step1.upc_code = product.upc_code;
Loading and Transformation 13-33

Loading and Transformation Scenarios
This CTAS statement will convert each valid UPC code to a valid product_id
value. If the ETL process has guaranteed that each UPC code is valid, then this
statement alone may be sufficient to implement the entire transformation.

Exception Handling Scenario
In the preceding example, if you must also handle new sales data that does not have
valid UPC codes, you can use an additional CTAS statement to identify the invalid
rows:

CREATE TABLE temp_sales_step1_invalid NOLOGGING PARALLEL AS
 SELECT * FROM temp_sales_step1
 WHERE temp_sales_step1.upc_code NOT IN (SELECT upc_code FROM product);

This invalid data is now stored in a separate table, temp_sales_step1_invalid ,
and can be handled separately by the ETL process.

Another way to handle invalid data is to modify the original CTAS to use an outer
join:

CREATE TABLE temp_sales_step2
 NOLOGGING PARALLEL AS
 SELECT
 sales_transaction_id,
 product.product_id sales_product_id,
 sales_customer_id,
 sales_time_id,
 sales_channel_id,
 sales_quantity_sold,
 sales_dollar_amount
 FROM temp_sales_step1, product
 WHERE temp_sales_step1.upc_code = product.upc_code (+);

Using this outer join, the sales transactions that originally contained invalidated
UPC codes will be assigned a product_id of NULL. These transactions can be
handled later.

Additional approaches to handling invalid UPC codes exist. Some data warehouses
may choose to insert null-valued product_id values into their sales table, while
other data warehouses may not allow any new data from the entire batch to be
inserted into the sales table until all invalid UPC codes have been addressed. The
correct approach is determined by the business requirements of the data warehouse.
Regardless of the specific requirements, exception handling can be addressed by the
same basic SQL techniques as transformations.
13-34 Oracle9i Data Warehousing Guide

Loading and Transformation Scenarios
Pivoting Scenarios
A data warehouse can receive data from many different sources. Some of these
source systems may not be relational databases and may store data in very different
formats from the data warehouse. For example, suppose that you receive a set of
sales records from a nonrelational database having the form:

product_id, customer_id, weekly_start_date, sales_sun, sales_mon, sales_tue,
 sales_wed, sales_thu, sales_fri, sales_sat

The input table looks like this:

SELECT * FROM sales_input_table;

PRODUCT_ID CUSTOMER_ID WEEKLY_ST SALES_SUN SALES_MON SALES_TUE SALES_WED SALES_THU SALES_FRI SALES_SAT
---------- ----------- --------- ---------- ---------- ---------- -------------------- ---------- ----------
 111 222 01-OCT-00 100 200 300 400 500 600 700
 222 333 08-OCT-00 200 300 400 500 600 700 800
 333 444 15-OCT-00 300 400 500 600 700 800 900

In your data warehouse, you would want to store the records in a more typical
relational form in a fact table sales of the Sales History sample schema:

prod_id, cust_id, time_id, amount_sold

Thus, you need to build a transformation such that each record in the input stream
must be converted into seven records for the data warehouse's sales table. This
operation is commonly referred to as pivoting, and Oracle offers several ways to do
this.

The result of the previous example will resemble the following:

SELECT prod_id, cust_id, time_id, amount_sold FROM sales;

 PROD_ID CUST_ID TIME_ID AMOUNT_SOLD
---------- ---------- --------- -----------
 111 222 01-OCT-00 100
 111 222 02-OCT-00 200
 111 222 03-OCT-00 300
 111 222 04-OCT-00 400
 111 222 05-OCT-00 500

Note: A number of constraints on the sales table have been
disabled for purposes of this example, because the example ignores
a number of table columns for the sake of brevity.
Loading and Transformation 13-35

Loading and Transformation Scenarios
 111 222 06-OCT-00 600
 111 222 07-OCT-00 700
 222 333 08-OCT-00 200
 222 333 09-OCT-00 300
 222 333 10-OCT-00 400
 222 333 11-OCT-00 500
 222 333 12-OCT-00 600
 222 333 13-OCT-00 700
 222 333 14-OCT-00 800
 333 444 15-OCT-00 300
 333 444 16-OCT-00 400
 333 444 17-OCT-00 500
 333 444 18-OCT-00 600
 333 444 19-OCT-00 700
 333 444 20-OCT-00 800
 333 444 21-OCT-00 900

Examples of Pre-Oracle9i Pivoting
The pre-Oracle9i way of pivoting involved using CTAS (or parallel INSERT AS
SELECT) or PL/SQL is shown in this section.

Example 1 Pre-Oracle9i Pivoting Using a CTAS Statement
CREATE table temp_sales_step2 NOLOGGING PARALLEL AS
 SELECT product_id, customer_id, time_id, amount_sold
 FROM
 (SELECT product_id, customer_id, weekly_start_date, time_id,
 sales_sun amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+1, time_id,
 sales_mon amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, cust_id, weekly_start_date+2, time_id,
 sales_tue amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+3, time_id,
 sales_web amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+4, time_id,
 sales_thu amount_sold FROM sales_input_table
 UNION ALL
 SELECT product_id, customer_id, weekly_start_date+5, time_id,
 sales_fri amount_sold FROM sales_input_table
 UNION ALL
13-36 Oracle9i Data Warehousing Guide

Loading and Transformation Scenarios
 SELECT product_id, customer_id, weekly_start_date+6, time_id,
 sales_sat amount_sold FROM sales_input_table);

Like all CTAS operations, this operation can be fully parallelized. However, the
CTAS approach also requires seven separate scans of the data, one for each day of
the week. Even with parallelism, the CTAS approach can be time-consuming.

Example 2 Pre-Oracle9i Pivoting Using PL/SQL
PL/SQL offers an alternative implementation. A basic PL/SQL function to
implement a pivoting operation is shown in the following statement:

DECLARE
 CURSOR c1 is
 SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
 FROM sales_input_table;
BEGIN
 FOR crec IN c1 LOOP
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date,
 crec.sales_sun);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+1,
 crec.sales_mon);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+2,
 crec.sales_tue);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+3,
 crec.sales_wed);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+4,
 crec.sales_thu);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+5,
 crec.sales_fri);
 INSERT INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (crec.product_id, crec.customer_id, crec.weekly_start_date+6,
 crec.sales_sat);
 END LOOP;
 COMMIT;
END;
Loading and Transformation 13-37

Loading and Transformation Scenarios
This PL/SQL procedure can be modified to provide even better performance. Array
inserts can accelerate the insertion phase of the procedure. Further performance can
be gained by parallelizing this transformation operation, particularly if the temp_
sales_step1 table is partitioned, using techniques similar to the parallelization of
data unloading described in Chapter 11, "Extraction in Data Warehouses". The
primary advantage of this PL/SQL procedure over a CTAS approach is that it
requires only a single scan of the data.

Example of Oracle9i Pivoting
Oracle9i offers a faster way of pivoting your data by using a multitable insert.

The following example uses the multitable insert syntax to insert into the demo
table sh.sales some data from an input table with a different structure. The
multitable insert statement looks like this:

INSERT ALL
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date, sales_sun)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+1, sales_mon)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+2, sales_tue)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+3, sales_wed)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+4, sales_thu)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+5, sales_fri)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+6, sales_sat)
SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
FROM sales_input_table;

This statement only scans the source table once and then inserts the appropriate
data for each day.
13-38 Oracle9i Data Warehousing Guide

Maintaining the Data War
14

Maintaining the Data Warehouse

This chapter discusses how to load and refresh a data warehouse, and discusses:

■ Using Partitioning to Improve Data Warehouse Refresh

■ Optimizing DML Operations During Refresh

■ Refreshing Materialized Views

■ Using Materialized Views with Partitioned Tables
ehouse 14-1

Using Partitioning to Improve Data Warehouse Refresh
Using Partitioning to Improve Data Warehouse Refresh
ETL (Extraction, Transformation and Loading) is done on a scheduled basis to
reflect changes made to the original source system. During this step, you physically
insert the new, clean data into the production data warehouse schema, and take all
of the other steps necessary (such as building indexes, validating constraints, taking
backups) to make this new data available to the end users. Once all of this data has
been loaded into the data warehouse, the materialized views have to be updated to
reflect the latest data.

The partitioning scheme of the data warehouse is often crucial in determining the
efficiency of refresh operations in the data warehouse load process. In fact, the load
process is often the primary consideration in choosing the partitioning scheme of
data warehouse tables and indexes.

The partitioning scheme of the largest data warehouse tables (for example, the fact
table in a star schema) should be based upon the loading paradigm of the data
warehouse.

Most data warehouses are loaded with new data on a regular schedule. For
example, every night, week, or month, new data is brought into the data
warehouse. The data being loaded at the end of the week or month typically
corresponds to the transactions for the week or month. In this very common
scenario, the data warehouse is being loaded by time. This suggests that the data
warehouse tables should be partitioned on a date column. In our data warehouse
example, suppose the new data is loaded into the sales table every month.
Furthermore, the sales table has been partitioned by month. These steps show
how the load process will proceed to add the data for a new month (January 2001)
to the table sales .

1. Place the new data into a separate table, sales_01_2001 . This data can be
directly loaded into sales_01_2001 from outside the data warehouse, or this
data can be the result of previous data transformation operations that have
already occurred in the data warehouse. sales_01_2001 has the exact same
columns, datatypes, and so forth, as the sales table. Gather statistics on the
sales_01_2001 table.

2. Create indexes and add constraints on sales_01_2001 . Again, the indexes
and constraints on sales_01_2001 should be identical to the indexes and
constraints on sales . Indexes can be built in parallel and should use the
NOLOGGING and the COMPUTE STATISTICS options. For example:

CREATE BITMAP INDEX sales_01_2001_customer_id_bix
 ON sales_01_2001(customer_id)
 TABLESPACE sales_idx NOLOGGING PARALLEL 8 COMPUTE STATISTICS;
14-2 Oracle9i Data Warehousing Guide

Using Partitioning to Improve Data Warehouse Refresh
Apply all constraints to the sales_01_2001 table that are present on the
sales table. This includes referential integrity constraints. A typical constraint
would be:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_customer_id
 REFERENCES customer(customer_id) ENABLE NOVALIDATE;

If the partitioned table sales has a primary or unique key that is enforced with
a global index structure, ensure that the constraint on sales_pk_jan01 is
validated without the creation of an index structure, as in the following:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_pk_jan01
PRIMARY KEY (sales_transaction_id) DISABLE VALIDATE;

The creation of the constraint with ENABLEclause would cause the creation of a
unique index, which does not match a local index structure of the partitioned
table. You must not have any index structure built on the nonpartitioned table
to be exchanged for existing global indexes of the partitioned table. The
exchange command would fail.

3. Add the sales_01_2001 table to the sales table.

In order to add this new data to the sales table, we need to do two things.
First, we need to add a new partition to the sales table. We will use the ALTER
TABLE ... ADD PARTITION statement. This will add an empty partition to the
sales table:

ALTER TABLE sales ADD PARTITION sales_01_2001
VALUES LESS THAN (TO_DATE('01-FEB-2001', 'DD-MON-YYYY'));

Then, we can add our newly created table to this partition using the EXCHANGE
PARTITION operation. This will exchange the new, empty partition with the
newly loaded table.

ALTER TABLE sales EXCHANGE PARTITION sales_01_2001 WITH TABLE sales_01_2001
INCLUDING INDEXES WITHOUT VALIDATION UPDATE GLOBAL INDEXES;

The EXCHANGE operation will preserve the indexes and constraints that were
already present on the sales_01_2001 table. For unique constraints (such as
the unique constraint on sales_transaction_id), you can use the UPDATE
GLOBAL INDEXES clause, as shown previously. This will automatically
maintain your global index structures as part of the partition maintenance
operation and keep them accessible throughout the whole process. If there were
only foreign-key constraints, the exchange operation would be instantaneous.
Maintaining the Data Warehouse 14-3

Using Partitioning to Improve Data Warehouse Refresh
The benefits of this partitioning technique are significant. First, the new data is
loaded with minimal resource utilization. The new data is loaded into an entirely
separate table, and the index processing and constraint processing are applied only
to the new partition. If the sales table was 50 GB and had 12 partitions, then a new
month's worth of data contains approximately 4 GB. Only the new month's worth of
data needs to be indexed. None of the indexes on the remaining 46 GB of data needs
to be modified at all. This partitioning scheme additionally ensures that the load
processing time is directly proportional to the amount of new data being loaded,
not to the total size of the sales table.

Second, the new data is loaded with minimal impact on concurrent queries. All of
the operations associated with data loading are occurring on a separate sales_01_
2001 table. Therefore, none of the existing data or indexes of the sales table is
affected during this data refresh process. The sales table and its indexes remain
entirely untouched throughout this refresh process.

Third, in case of the existence of any global indexes, those are incrementally
maintained as part of the exchange command. This maintenance does not affect the
availability of the existing global index structures.

The exchange operation can be viewed as a publishing mechanism. Until the data
warehouse administrator exchanges the sales_01_2001 table into the sales
table, end users cannot see the new data. Once the exchange has occurred, then any
end user query accessing the sales table will immediately be able to see the
sales_01_2001 data.

Partitioning is useful not only for adding new data but also for removing and
archiving data. Many data warehouses maintain a rolling window of data. For
example, the data warehouse stores the most recent 36 months of sales data. Just
as a new partition can be added to the sales table (as described earlier), an old
partition can be quickly (and independently) removed from the sales table. These
two benefits (reduced resources utilization and minimal end-user impact) are just as
pertinent to removing a partition as they are to adding a partition.

Removing data from a partitioned table does not necessarily mean that the old data
is physically deleted from the database. There are two alternatives for removing old
data from a partitioned table:

You can physically delete all data from the database by dropping the partition
containing the old data, thus freeing the allocated space:

ALTER TABLE sales DROP PARTITION sales_01_1998;

You can exchange the old partition with an empty table of the same structure; this
empty table is created equivalent to step1 and 2 described in the load process.
14-4 Oracle9i Data Warehousing Guide

Using Partitioning to Improve Data Warehouse Refresh
Assuming the new empty table stub is named sales_archive_01_1998 , the
following SQL statement will ‘empty’ partition sales_01_1998 :

ALTER TABLE sales EXCHANGE PARTITION sales_01_1998 WITH TABLE sales_archive_01_
1998 INCLUDING INDEXES WITHOUT VALIDATION UPDATE GLOBAL INDEXES;

Note that the old data is still existent, as the exchanged, nonpartitioned table
sales_archive_01_1998 .

If the partitioned table was setup in a way that every partition is stored in a
separate tablespace, you can archive (or transport) this table using Oracle’s
transportable tablespace framework before dropping the actual data (the
tablespace). See "Transportation Using Transportable Tablespaces" on page 12-3 for
further details regarding transportable tablespaces.

In some situations, you might not want to drop the old data immediately, but keep
it as part of the partitioned table; although the data is no longer of main interest,
there are still potential queries accessing this old, read-only data. You can use
Oracle’s data compression to minimize the space usage of the old data. We also
assume that at least one compressed partition is already part of the partitioned
table.

Refresh Scenarios
A typical scenario might not only need to compress old data, but also to merge
several old partitions to reflect the granularity for a later backup of several merged
partitions. Let’s assume that a backup (partition) granularity is on a quarterly base
for any quarter, where the oldest month is more than 36 months behind the most
recent month. In this case, we are therefore compressing and merging sales_01_
1998 , sales_02_1998 , and sales_03_1998 into a new, compressed partition
sales_q1_1998 .

1. Create the new merged partition in parallel another tablespace. The partition
will be compressed as part of the MERGE operation:

ALTER TABLE sales MERGE PARTITION sales_01_1998, sales_02_1998, sales_03_
1998 INTO PARTITION sales_q1_1998 TABLESPACE archive_q1_1998 COMPRESS UPDATE
GLOBAL INDEXES PARALLEL 4;

See Also: Chapter 3, "Physical Design in Data Warehouses" for a
generic discussion of data segment compression and Chapter 5,
"Parallelism and Partitioning in Data Warehouses" for partitioning
and data segment compression
Maintaining the Data Warehouse 14-5

Using Partitioning to Improve Data Warehouse Refresh
2. The partition MERGEoperation invalidates the local indexes for the new merged
partition. We therefore have to rebuild them:

ALTER TABLE sales MODIFY PARTITION sales_1_1998 REBUILD UNUSABLE LOCAL
INDEXES;

Alternatively, you can choose to create the new compressed data segment outside
the partitioned table and exchange it back. The performance and the temporary
space consumption is identical for both methods:

1. Create an intermediate table to hold the new merged information. The
following statement inherits all NOT NULL constraints from the origin table by
default:

CREATE TABLE sales_q1_1998_out TABLESPACE archive_q1_1998 NOLOGGING COMPRESS
PARALLEL 4 AS SELECT * FROM sales
WHERE time_id >= TO_DATE('01-JAN-1998','dd-mon-yyyy')
AND time_id < TO_DATE('01-JUN-1998','dd-mon-yyyy');

2. Create the equivalent index structure for table sales_q1_1998_out than for
the existing table sales .

3. Prepare the existing table sales for the exchange with the new compressed table
sales_q1_1998_out . Because the table to be exchanged contains data
actually covered in three partition, we have to ‘create one matching partition,
having the range boundaries we are looking for. You simply have to drop two
of the existing partitions. Note that you have to drop the lower two partitions
sales_01_1998 and sales_02_1998 ; the lower boundary of a range
partition is always defined by the upper (exclusive) boundary of the previous
partition:

ALTER TABLE sales DROP PARTITION sales_01_1998;
ALTER TABLE sales DROP PARTITION sales_02_1998;

4. You can now exchange table sales_q1_1998_out with partition sales_03_
1998 . Unlike what the name of the partition suggests, its boundaries cover
Q1-1998.

ALTER TABLE sales EXCHANGE PARTITION sales_03_1998
WITH TABLE sales_q1_1998_out INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Both methods apply to slightly different business scenarios: Using the MERGE
PARTITION approach invalidates the local index structures for the affected
partition, but it keeps all data accessible all the time. Any attempt to access the
14-6 Oracle9i Data Warehousing Guide

Using Partitioning to Improve Data Warehouse Refresh
affected partition through one of the unusable index structures raises an error. The
limited availability time is approximately the time for re-creating the local bitmap
index structures. In most cases this can be neglected, since this part of the
partitioned table shouldn’t be touched too often.

The CTAS approach, however, minimizes unavailability of any index structures
close to zero, but there is a specific time window, where the partitioned table does
not have all the data, because we dropped two partitions. The limited availability
time is approximately the time for exchanging the table. Depending on the existence
and number of global indexes, this time window varies. Without any existing global
indexes, this time window a matter of a fraction to few seconds.

This example is a simplification of the data warehouse rolling window load
scenario. Real-world data warehouse refresh characteristics are always more
complex. However, the advantages of this rolling window approach are not
diminished in more complex scenarios.

Scenarios for Using Partitioning for Refreshing Data Warehouses
This section contains two typical scenarios.

Refresh Scenario 1
Data is loaded daily. However, the data warehouse contains two years of data, so
that partitioning by day might not be desired.

Solution: Partition by week or month (as appropriate). Use INSERT to add the new
data to an existing partition. The INSERT operation only affects a single partition,
so the benefits described previously remain intact. The INSERT operation could

Note: Before you add a single or multiple compressed partitions
to a partitioned table for the very first time, all local bitmap indexes
must be either dropped or marked unusable. After the first
compressed partition is added, no additional actions are necessary
for all subsequent operations involving compressed partitions. It is
irrelevant how the compressed partitions are added to the
partitioned table.

See Also: Chapter 5, "Parallelism and Partitioning in Data
Warehouses" for further details about partitioning and data
segment compression
Maintaining the Data Warehouse 14-7

Optimizing DML Operations During Refresh
occur while the partition remains a part of the table. Inserts into a single partition
can be parallelized:

INSERT /*+ APPEND*/ INTO sales PARTITION (sales_01_2001)
SELECT * FROM new_sales;

The indexes of this sales partition will be maintained in parallel as well. An
alternative is to use the EXCHANGE operation. You can do this by exchanging the
sales_01_2001 partition of the sales table and then using an INSERT operation.
You might prefer this technique when dropping and rebuilding indexes is more
efficient than maintaining them.

Refresh Scenario 2
New data feeds, although consisting primarily of data for the most recent day,
week, and month, also contain some data from previous time periods.

Solution 1: Use parallel SQL operations (such as CREATE TABLE ... AS SELECT) to
separate the new data from the data in previous time periods. Process the old data
separately using other techniques.

New data feeds are not solely time based. You can also feed new data into a data
warehouse with data from multiple operational systems on a business need basis.
For example, the sales data from direct channels may come into the data warehouse
separately from the data from indirect channels. For business reasons, it may
furthermore make sense to keep the direct and indirect data in separate partitions.

Solution 2: Oracle supports composite range list partitioning. The primary
partitioning strategy of the sales table could be range partitioning based on time_
id as shown in the example. However, the subpartitioning is a list based on the
channel attribute. Each subpartition can now be loaded independently of each other
(for each distinct channel) and added in a rolling window operation as discussed
before. The partitioning strategy addresses the business needs in the most optimal
manner.

Optimizing DML Operations During Refresh
You can optimize DML performance through the following techniques:

■ Implementing an Efficient MERGE Operation

■ Maintaining Referential Integrity

■ Purging Data
14-8 Oracle9i Data Warehousing Guide

Optimizing DML Operations During Refresh
Implementing an Efficient MERGE Operation
Commonly, the data that is extracted from a source system is not simply a list of
new records that needs to be inserted into the data warehouse. Instead, this new
data set is a combination of new records as well as modified records. For example,
suppose that most of data extracted from the OLTP systems will be new sales
transactions. These records will be inserted into the warehouse's sales table, but
some records may reflect modifications of previous transactions, such as returned
merchandise or transactions that were incomplete or incorrect when initially loaded
into the data warehouse. These records require updates to the sales table.

As a typical scenario, suppose that there is a table called new_sales that contains
both inserts and updates that will be applied to the sales table. When designing
the entire data warehouse load process, it was determined that the new_sales
table would contain records with the following semantics:

■ If a given sales_transaction_id of a record in new_sales already exists
in sales , then update the sales table by adding the sales_dollar_amount
and sales_quantity_sold values from the new_sales table to the existing
row in the sales table.

■ Otherwise, insert the entire new record from the new_sales table into the
sales table.

This UPDATE-ELSE-INSERT operation is often called a merge. A merge can be
executed using one SQL statement in Oracle9i, though it required two earlier.

Example 14–1 Merging Prior to Oracle9i

The first SQL statement updates the appropriate rows in the sales tables, while the
second SQL statement inserts the rows:

UPDATE
 (SELECT
 s.sales_quantity_sold AS s_quantity,
 s.sales_dollar_amount AS s_dollar,
 n.sales_quantity_sold AS n_quantity,
 n.sales_dollar_amount AS n_dollar
 FROM sales s, new_sales n
 WHERE s.sales_transaction_id = n.sales_transaction_id) sales_view
 SET s_quantity = s_quantity + n_quantity, s_dollar = s_dollar + n_dollar;
INSERT INTO sales
SELECT * FROM new_sales s
WHERE NOT EXISTS
(SELECT 'x' FROM FROM sales t
 WHERE s.sales_transaction_id = t.sales_transaction_id);
Maintaining the Data Warehouse 14-9

Optimizing DML Operations During Refresh
The new, faster way of merging data is illustrated in Example 14–2 as follows.

Example 14–2 MERGE Operation in Oracle9i

MERGE INTO sales s
USING new_sales n
ON (s.sales_transaction_id = n.sales_transaction_id)
WHEN MATCHED THEN
UPDATE s_quantity = s_quantity + n_quantity, s_dollar = s_dollar + n_dollar
WHEN NOT MATCHED THEN
INSERT (sales_quantity_sold, sales_dollar_amount)
VALUES (n.sales_quantity_sold, n.sales_dollar_amount);

An alternative implementation of upserts is to utilize a PL/SQL package, which
successively reads each row of the new_sales table and applies if-then logic to
either update or insert the new row into the sales table. A PL/SQL-based
implementation is effective when the new_sales table is small, although the SQL
approach will often be more efficient for larger data volumes.

Maintaining Referential Integrity
In some data warehousing environments, you might want to insert new data into
tables in order to guarantee referential integrity. For example, a data warehouse
may derive sales from an operational system that retrieves data directly from cash
registers. sales is refreshed nightly. However, the data for the product dimension
table may be derived from a separate operational system. The product dimension
table may only be refreshed once for each week, because the product table changes
relatively slowly. If a new product was introduced on Monday, then it is possible for
that product's product_id to appear in the sales data of the data warehouse
before that product_id has been inserted into the data warehouses product
table.

Although the sales transactions of the new product may be valid, this sales data will
not satisfy the referential integrity constraint between the product dimension table
and the sales fact table. Rather than disallow the new sales transactions, you
might choose to insert the sales transactions into the sales table.

However, you might also wish to maintain the referential integrity relationship
between the sales and product tables. This can be accomplished by inserting
new rows into the product table as placeholders for the unknown products.
14-10 Oracle9i Data Warehousing Guide

Optimizing DML Operations During Refresh
As in previous examples, we assume that the new data for the sales table will be
staged in a separate table, new_sales . Using a single INSERT statement (which
can be parallelized), the product table can be altered to reflect the new products:

INSERT INTO PRODUCT_ID
 (SELECT sales_product_id, 'Unknown Product Name', NULL, NULL ...
 FROM new_sales WHERE sales_product_id NOT IN
 (SELECT product_id FROM product));

Purging Data
Occasionally, it is necessary to remove large amounts of data from a data
warehouse. A very common scenario is the rolling window discussed previously, in
which older data is rolled out of the data warehouse to make room for new data.

However, sometimes other data might need to be removed from a data warehouse.
Suppose that a retail company has previously sold products from MS Software ,
and that MS Software has subsequently gone out of business. The business users
of the warehouse may decide that they are no longer interested in seeing any data
related to MS Software , so this data should be deleted.

One approach to removing a large volume of data is to use parallel delete as shown
in the following statement:

DELETE FROM sales WHERE sales_product_id IN
 (SELECT product_id
 FROM product WHERE product_category = 'MS Software');

This SQL statement will spawn one parallel process for each partition. This
approach will be much more efficient than a serial DELETE statement, and none of
the data in the sales table will need to be moved.

However, this approach also has some disadvantages. When removing a large
percentage of rows, the DELETE statement will leave many empty row-slots in the
existing partitions. If new data is being loaded using a rolling window technique (or
is being loaded using direct-path INSERT or load), then this storage space will not
be reclaimed. Moreover, even though the DELETE statement is parallelized, there
might be more efficient methods. An alternative method is to re-create the entire
sales table, keeping the data for all product categories except MS Software .

CREATE TABLE sales2 AS
SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'MS Software'
NOLOGGING PARALLEL (DEGREE 8)
Maintaining the Data Warehouse 14-11

Refreshing Materialized Views
#PARTITION ... ; #create indexes, constraints, and so on
DROP TABLE SALES;
RENAME SALES2 TO SALES;
This approach may be more efficient than a parallel delete. However, it is also costly
in terms of the amount of disk space, because the sales table must effectively be
instantiated twice.

An alternative method to utilize less space is to re-create the sales table one
partition at a time:

CREATE TABLE sales_temp AS SELECT * FROM sales WHERE 1=0;
INSERT INTO sales_temp PARTITION (sales_99jan)
SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'MS Software';
<create appropriate indexes and constraints on sales_temp>
ALTER TABLE sales EXCHANGE PARTITION sales_99jan WITH TABLE sales_temp;

Continue this process for each partition in the sales table.

Refreshing Materialized Views
When creating a materialized view, you have the option of specifying whether the
refresh occurs ON DEMANDor ON COMMIT. In the case of ON COMMIT, the materialized
view is changed every time a transaction commits, which changes data used by the
materialized view, thus ensuring that the materialized view always contains the
latest data. Alternatively, you can control the time when refresh of the materialized
views occurs by specifying ON DEMAND. In this case, the materialized view can only
be refreshed by calling one of the procedures in the DBMS_MVIEW package.

DBMS_MVIEW provides three different types of refresh operations.

■ DBMS_MVIEW.REFRESH

Refresh one or more materialized views.

■ DBMS_MVIEW.REFRESH_ALL_MVIEWS

Refresh all materialized views.

■ DBMS_MVIEW.REFRESH_DEPENDENT

Refresh all table-based materialized views that depend on a specified detail
table or list of detail tables.
14-12 Oracle9i Data Warehousing Guide

Refreshing Materialized Views
Performing a refresh operation requires temporary space to rebuild the indexes and
can require additional space for performing the refresh operation itself. Some sites
might prefer not to refresh all of their materialized views at the same time: as soon
as some underlying detail data has been updated, all materialized views using this
data will become stale. Therefore, if you defer refreshing your materialized views,
you can either rely on your chosen rewrite integrity level to determine whether or
not a stale materialized view can be used for query rewrite, or you can temporarily
disable query rewrite with an ALTER SYSTEM SET QUERY_REWRITE_ENABLED =
false statement. After refreshing the materialized views, you can re-enable query
rewrite as the default for all sessions in the current database instance by specifying
ALTER SYSTEM SET QUERY_REWRITE_ENABLED as true . Refreshing a
materialized view automatically updates all of its indexes. In the case of full refresh,
this requires temporary sort space to rebuild all indexes during refresh. This is
because the full refresh truncates or deletes the table before inserting the new full
data volume. If insufficient temporary space is available to rebuild the indexes, then
you must explicitly drop each index or mark it UNUSABLE prior to performing the
refresh operation.

If you anticipate performing insert, update or delete operations on tables referenced
by a materialized view concurrently with the refresh of that materialized view, and
that materialized view includes joins and aggregation, Oracle recommends you use
ON COMMIT fast refresh rather than ON DEMAND fast refresh.

Complete Refresh
A complete refresh occurs when the materialized view is initially defined as BUILD
IMMEDIATE, unless the materialized view references a prebuilt table. For
materialized views using BUILD DEFERRED, a complete refresh must be requested
before it can be used for the first time. A complete refresh may be requested at any
time during the life of any materialized view. The refresh involves reading the detail
tables to compute the results for the materialized view. This can be a very
time-consuming process, especially if there are huge amounts of data to be read and
processed. Therefore, you should always consider the time required to process a
complete refresh before requesting it.

However, there are cases when the only refresh method available for an already
built materialized view is complete refresh because the materialized view does not
satisfy the conditions specified in the following section for a fast refresh.

See Also: "Manual Refresh Using the DBMS_MVIEW Package"
on page 14-14 for more information about this package
Maintaining the Data Warehouse 14-13

Refreshing Materialized Views
Fast Refresh
Most data warehouses have periodic incremental updates to their detail data. As
described in "Materialized View Schema Design" on page 8-8, you can use the
SQL*Loader or any bulk load utility to perform incremental loads of detail data.
Fast refresh of your materialized views is usually efficient, because instead of
having to recompute the entire materialized view, the changes are applied to the
existing data. Thus, processing only the changes can result in a very fast refresh
time.

ON COMMIT Refresh
A materialized view can be refreshed automatically using the ON COMMIT method.
Therefore, whenever a transaction commits which has updated the tables on which
a materialized view is defined, those changes will be automatically reflected in the
materialized view. The advantage of using this approach is you never have to
remember to refresh the materialized view. The only disadvantage is the time
required to complete the commit will be slightly longer because of the extra
processing involved. However, in a data warehouse, this should not be an issue
because there is unlikely to be concurrent processes trying to update the same table.

Manual Refresh Using the DBMS_MVIEW Package
When a materialized view is refreshed ON DEMAND, one of three refresh methods can
be specified as shown in the following table. You can define a default option during
the creation of the materialized view. Table 14–1 details the refresh options.

Three refresh procedures are available in the DBMS_MVIEW package for performing
ON DEMAND refresh. Each has its own unique set of parameters.

Table 14–1 ON DEMAND Refresh Methods

Refresh Option Parameter Description

COMPLETE C Refreshes by recalculating the defining query of the
materialized view

FAST F Refreshes by incrementally applying changes to the
materialized view

FORCE ? Attempts a fast refresh. If that is not possible, it does a
complete refresh
14-14 Oracle9i Data Warehousing Guide

Refreshing Materialized Views
Refresh Specific Materialized Views with REFRESH
Use the DBMS_MVIEW.REFRESH procedure to refresh one or more materialized
views. Some parameters are used only for replication, so they are not mentioned
here. The required parameters to use this procedure are:

■ The comma-delimited list of materialized views to refresh

■ The refresh method: F-Fast, ?-Force, C-Complete

■ The rollback segment to use

■ Refresh after errors (true or false)

A Boolean parameter. If set to true , the number_of_failures output
parameter will be set to the number of refreshes that failed, and a generic error
message will indicate that failures occurred. The alert log for the instance will
give details of refresh errors. If set to false , the default, then refresh will stop
after it encounters the first error, and any remaining materialized views in the
list will not be refreshed.

■ The following four parameters are used by the replication process. For
warehouse refresh, set them to false, 0,0,0 .

■ Atomic refresh (true or false)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE,
then the refresh of each specified materialized view is done in a separate
transaction.

For example, to perform a fast refresh on the materialized view cal_month_
sales_mv , the DBMS_MVIEW package would be called as follows:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV', 'F', '', TRUE, FALSE, 0,0,0, FALSE);

Multiple materialized views can be refreshed at the same time, and they do not all
have to use the same refresh method. To give them different refresh methods,
specify multiple method codes in the same order as the list of materialized views
(without commas). For example, the following specifies that cal_month_sales_
mv be completely refreshed and fweek_pscat_sales_mv receive a fast refresh.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
detailed information about the DBMS_MVIEW package and Oracle9i
Replication explains how to use it in a replication environment
Maintaining the Data Warehouse 14-15

Refreshing Materialized Views
DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV, FWEEK_PSCAT_SALES_MV', 'CF', '',
 TRUE, FALSE, 0,0,0, FALSE);

If the refresh method is not specified, the default refresh method as specified in the
materialized view definition will be used.

Refresh All Materialized Views with REFRESH_ALL_MVIEWS
An alternative to specifying the materialized views to refresh is to use the
procedure DBMS_MVIEW.REFRESH_ALL_MVIEWS. This procedure refreshes all
materialized views. If any of the materialized views fails to refresh, then the
number of failures is reported.

The parameters for this procedure are:

■ The number of failures (this is an OUT variable)

■ The refresh method: F-Fast, ?-Force, C-Complete

■ Refresh after errors (true or false)

A Boolean parameter. If set to true , the number_of_failures output
parameter will be set to the number of refreshes that failed, and a generic error
message will indicate that failures occurred. The alert log for the instance will
give details of refresh errors. If set to false , the default, then refresh will stop
after it encounters the first error, and any remaining materialized views in the
list will not be refreshed.

■ Atomic refresh (true or false)

If set to true , then all refreshes are done in one transaction. If set to false ,
then the refresh of each specified materialized view is done in a separate
transaction.

An example of refreshing all materialized views is:

DBMS_MVIEW.REFRESH_ALL_MVIEWS(failures,'C','', TRUE, FALSE);

Refresh Dependent Materialized Views with REFRESH_DEPENDENT
The third procedure, DBMS_MVIEW.REFRESH_DEPENDENT, refreshes only those
materialized views that depend on a specific table or list of tables. For example,
suppose the changes have been received for the orders table but not for
customer payments. The refresh dependent procedure can be called to refresh
only those materialized views that reference the orders table.
14-16 Oracle9i Data Warehousing Guide

Refreshing Materialized Views
The parameters for this procedure are:

■ The number of failures (this is an OUT variable)

■ The dependent table

■ The refresh method: F-Fast, ?-Force, C-Complete

■ The rollback segment to use

■ Refresh after errors (true or false)

A Boolean parameter. If set to true , the number_of_failures output
parameter will be set to the number of refreshes that failed, and a generic error
message will indicate that failures occurred. The alert log for the instance will
give details of refresh errors. If set to false , the default, then refresh will stop
after it encounters the first error, and any remaining materialized views in the
list will not be refreshed.

■ Atomic refresh (true or false)

If set to TRUE, then all refreshes are done in one transaction. If set to false ,
then the refresh of each specified materialized view is done in a separate
transaction.

To perform a full refresh on all materialized views that reference the customers
table, specify:

DBMS_MVIEW.REFRESH_DEPENDENT(failures, 'CUSTOMERS', 'C', '', FALSE, FALSE);

To obtain the list of materialized views that are directly dependent on a given object
(table or materialized view), use the procedure DBMS_MVIEW.GET_MV_
DEPENDENCIES to determine the dependent materialized views for a given table,
or for deciding the order to refresh nested materialized views.

DBMS_MVIEW.GET_MV_DEPENDENCIES(mvlist IN VARCHAR2, deplist OUT VARCHAR2)

The input to this function is the name or names of the materialized view. The
output is a comma separated list of the materialized views that are defined on it.
For example, the following statement:

GET_MV_DEPENDENCIES("JOHN.SALES_REG, SCOTT.PROD_TIME", deplist)

This populates deplist with the list of materialized views defined on the input
arguments. For example:

deplist <= "JOHN.SUM_SALES_WEST, JOHN.SUM_SALES_EAST, SCOTT.SUM_PROD_MONTH".
Maintaining the Data Warehouse 14-17

Refreshing Materialized Views
Using Job Queues for Refresh
Job queues can be used to refresh multiple materialized views in parallel. If queues
are not available, fast refresh will sequentially refresh each view in the foreground
process. The order in which the materialized views are refreshed cannot be
guaranteed. To make queues available, you must set the JOB_QUEUE_PROCESSES
parameter. This parameter defines the number of background job queue processes
and determines how many materialized views can be refreshed concurrently. This
parameter is only effective when atomic_refresh is set to false .

If the process that is executing DBMS_MVIEW.REFRESH is interrupted or the
instance is shut down, any refresh jobs that were executing in job queue processes
will be requeued and will continue running. To remove these jobs, use the DBMS_
JOB.REMOVE procedure.

When Refresh is Possible
Not all materialized views may be fast refreshable. Therefore, use the package
DBMS_MVIEW.EXPLAIN_MVIEW to determine what refresh methods are available
for a materialized view.

Recommended Initialization Parameters for Parallelism
The following initialization parameters need to be set properly for parallelism to be
effective:

■ PARALLEL_MAX_SERVERS should be set high enough to take care of
parallelism. You need to consider the number of slaves needed for the refresh
statement. For example, with a DOP of eight, you need 16 slave processes.

■ PGA_AGGREGATE_TARGET should be set for the instance to manage the
memory usage for sorts and joins automatically. If the memory parameters are
set manually, SORT_AREA_SIZE should be less than HASH_AREA_SIZE.

■ OPTIMIZER_MODE should equal all_rows (cost-based optimization).

Remember to analyze all tables and indexes for better cost-based optimization.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
and Chapter 8, "Materialized Views" for detailed information about
the DBMS_MVIEW package

See Also: Chapter 21, "Using Parallel Execution" for further
details
14-18 Oracle9i Data Warehousing Guide

Refreshing Materialized Views
Monitoring a Refresh
While a job is running, you can query the V$SESSION_LONGOPS view to tell you
the progress of each materialized view being refreshed.

SELECT * FROM V$SESSION_LONGOPS;

To look at the progress of which jobs are on which queue, use:

SELECT * FROM DBA_JOBS_RUNNING;

Checking the Status of a Materialized View
Three views are provided for checking the status of a materialized view:

■ USER_MVIEWS

■ DBA_MVIEWS

■ ALL_MVIEWS

To check if a materialized view is fresh or stale, issue the following statement:

SELECT MVIEW_NAME, STALENESS, LAST_REFRESH_TYPE, COMPILE_STATE
FROM USER_MVIEWS ORDER BY MVIEW_NAME;

MVIEW_NAME STALENESS LAST_REF COMPILE_STATE
---------- --------- -------- -------------
CUST_MTH_SALES_MV FRESH FAST NEEDS_COMPILE
PROD_YR_SALES_MV FRESH FAST VALID

If the compile_state column shows NEEDS COMPILE, the other displayed
column values cannot be trusted as reflecting the true status. To revalidate the
materialized view, issue the following statement:

ALTER MATERIALIZED VIEW [materialized_view_name] COMPILE;

Then reissue the SELECT statement.

Tips for Refreshing Materialized Views with Aggregates
Following are some guidelines for using the refresh mechanism for materialized
views with aggregates.

■ For fast refresh, create materialized view logs on all detail tables involved in a
materialized view with the ROWID, SEQUENCE and INCLUDING NEW VALUES
clauses.
Maintaining the Data Warehouse 14-19

Refreshing Materialized Views
Include all columns from the table likely to be used in materialized views in the
materialized view logs.

Fast refresh may be possible even if the SEQUENCE option is omitted from the
materialized view log. If it can be determined that only inserts or deletes will
occur on all the detail tables, then the materialized view log does not require the
SEQUENCE clause. However, if updates to multiple tables are likely or required
or if the specific update scenarios are unknown, make sure the SEQUENCE
clause is included.

■ Use Oracle's bulk loader utility or direct-path INSERT (INSERT with the
APPEND hint for loads).

This is a lot more efficient than conventional insert. During loading, disable all
constraints and re-enable when finished loading. Note that materialized view
logs are required regardless of whether you use direct load or conventional
DML.

Try to optimize the sequence of conventional mixed DML operations,
direct-path INSERT and the fast refresh of materialized views. You can use fast
refresh with a mixture of conventional DML and direct loads. Fast refresh can
perform significant optimizations if it finds that only direct loads have
occurred, as illustrated in the following:

1. Direct-path INSERT (SQL*Loader or INSERT /*+ APPEND */) into the
detail table

2. Refresh materialized view

3. Conventional mixed DML

4. Refresh materialized view

You can use fast refresh with conventional mixed DML (INSERT, UPDATE, and
DELETE) to the detail tables. However, fast refresh will be able to perform
significant optimizations in its processing if it detects that only inserts or deletes
have been done to the tables, such as:

■ DML INSERT or DELETE to the detail table

■ Refresh materialized views

■ DML update to the detail table

■ Refresh materialized view

Even more optimal is the separation of INSERT and DELETE.
14-20 Oracle9i Data Warehousing Guide

Refreshing Materialized Views
If possible, refresh should be performed after each type of data change (as
shown earlier) rather than issuing only one refresh at the end. If that is not
possible, restrict the conventional DML to the table to inserts only, to get much
better refresh performance. Avoid mixing deletes and direct loads.

Furthermore, for refresh ON COMMIT, Oracle keeps track of the type of DML
done in the committed transaction. Therefore, do not perform direct-path
INSERT and DML to other tables in the same transaction, as Oracle may not be
able to optimize the refresh phase.

For ON COMMIT materialized views, where refreshes automatically occur at the
end of each transaction, it may not be possible to isolate the DML statements, in
which case keeping the transactions short will help. However, if you plan to
make numerous modifications to the detail table, it may be better to perform
them in one transaction, so that refresh of the materialized view will be
performed just once at commit time rather than after each update.

■ Oracle recommends partitioning the tables because it enables you to use:

■ Parallel DML

For large loads or refresh, enabling parallel DML will help shorten the
length of time for the operation.

■ Partition Change Tracking (PCT) fast refresh

You can refresh your materialized views fast after partition maintenance
operations on the detail tables. "Partition Change Tracking" on page 8-35 for
details on enabling PCT for materialized views.

Partitioning the materialized view will also help refresh performance as refresh
can update the materialized view using parallel DML. For example, assume
that the detail tables and materialized view are partitioned and have a parallel
clause. The following sequence would enable Oracle to parallelize the refresh of
the materialized view.

1. Bulk load into the detail table

2. Enable parallel DML with an ALTER SESSION ENABLE PARALLEL DML
statement

3. Refresh the materialized view

See Also: Chapter 5, "Parallelism and Partitioning in Data
Warehouses"
Maintaining the Data Warehouse 14-21

Refreshing Materialized Views
■ For a complete refresh using DBMS_MVIEW.REFRESH, set the parameter
atomic to false . This will use TRUNCATE to delete existing rows in the
materialized view, which is faster than a delete.

■ When using DBMS_MVIEW.REFRESH with JOB_QUEUES, remember to set
atomic to false . Otherwise, JOB_QUEUES will not get used. Set the number
of job queue processes greater than the number of processors.

If job queues are enabled and there are many materialized views to refresh, it is
faster to refresh all of them in a single command than to call them individually.

■ Use REFRESH FORCE to ensure getting a refreshed materialized view that can
definitely be used for query rewrite. If a fast refresh cannot be done, a complete
refresh will be performed.

Tips for Refreshing Materialized Views Without Aggregates
If a materialized view contains joins but no aggregates, then having an index on
each of the join column rowids in the detail table will enhance refresh performance
greatly, because this type of materialized view tends to be much larger than
materialized views containing aggregates. For example, consider the following
materialized view:

CREATE MATERIALIZED VIEW detail_fact_mv
BUILD IMMEDIATE
 AS
 SELECT
 s.rowid "sales_rid", t.rowid "times_rid", c.rowid "cust_rid",
 c.cust_state_province, t.week_ending_day, s.amount_sold
 FROM sales s, times t, customers c
 WHERE s.time_id = t.time_id AND
 s.cust_id = c.cust_id;

Indexes should be created on columns sales_rid , times_rid and cust_rid .
Partitioning is highly recommended, as is enabling parallel DML in the session
before invoking refresh, because it will greatly enhance refresh performance.

This type of materialized view can also be fast refreshed if DML is performed on the
detail table. It is recommended that the same procedure be applied to this type of
materialized view as for a single table aggregate. That is, perform one type of
change (direct-path INSERT or DML) and then refresh the materialized view. This is
because Oracle can perform significant optimizations if it detects that only one type
of change has been done.
14-22 Oracle9i Data Warehousing Guide

Refreshing Materialized Views
Also, Oracle recommends that the refresh be invoked after each table is loaded,
rather than load all the tables and then perform the refresh.

For refresh ON COMMIT, Oracle keeps track of the type of DML done in the
committed transaction. Oracle therefore recommends that you do not perform
direct-path and conventional DML to other tables in the same transaction because
Oracle may not be able to optimize the refresh phase. For example, the following is
not recommended:

1. Direct load new data into the fact table

2. DML into the store table

3. Commit

Also, try not to mix different types of conventional DML statements if possible. This
would again prevent using various optimizations during fast refresh. For example,
try to avoid the following:

1. Insert into the fact table

2. Delete from the fact table

3. Commit

If many updates are needed, try to group them all into one transaction because
refresh will be performed just once at commit time, rather than after each update.

When you use the DBMS_MVIEW package to refresh a number of materialized views
containing only joins with the ATOMICparameter set to true , if you disable parallel
DML, refresh performance may degrade.

In a data warehousing environment, assuming that the materialized view has a
parallel clause, the following sequence of steps is recommended:

1. Bulk load into the fact table

2. Enable parallel DML

3. An ALTER SESSION ENABLE PARALLEL DML statement

4. Refresh the materialized view

Tips for Refreshing Nested Materialized Views
All underlying objects are treated as ordinary tables when refreshing materialized
views. If the ON COMMIT refresh option is specified, then all the materialized views
are refreshed in the appropriate order at commit time.
Maintaining the Data Warehouse 14-23

Refreshing Materialized Views
Consider the schema in Figure 8–3. Assume all the materialized views are defined
for ON COMMIT refresh. If table sales changes, then, at commit time, join_
sales_cust_time would refresh first, and then sum_sales_cust_time and
join_sales_cust_time_prod . No specific order would apply for sum_sales_
cust_time and join_sales_cust_time_prod as they do not have any
dependencies between them.

In other words, Oracle builds a partially ordered set of materialized views and
refreshes them such that, after the successful completion of the refresh, all the
materialized views are fresh. The status of the materialized views can be checked by
querying the appropriate USER_, DBA_, or ALL_MVIEWS view.

If any of the materialized views are defined as ON DEMAND refresh (irrespective of
whether the refresh method is FAST, FORCE, or COMPLETE), you will need to refresh
them in the correct order (taking into account the dependencies between the
materialized views) because the nested materialized view will be refreshed with
respect to the current contents of the other materialized views (whether fresh or
not).

If a refresh fails during commit time, the list of materialized views that has not been
refreshed is written to the alert log, and you must manually refresh them along with
all their dependent materialized views.

Use the same DBMS_MVIEW procedures on nested materialized views that you use
on regular materialized views.

These procedures have the following behavior when used with nested materialized
views:

■ If REFRESH is applied to a materialized view my_mv that is built on other
materialized views, then my_mv will be refreshed with respect to the current
contents of the other materialized views (that is, they will not be made fresh
first).

■ If REFRESH_DEPENDENT is applied to materialized view my_mv, then only
materialized views that directly depend on my_mv will be refreshed (that is, a
materialized view that depends on a materialized view that depends on my_mv
will not be refreshed).

■ If REFRESH_ALL_MVIEWS is used, the order in which the materialized views
will be refreshed is not guaranteed.

■ GET_MV_DEPENDENCIES provides a list of the immediate (or direct)
materialized view dependencies for an object.
14-24 Oracle9i Data Warehousing Guide

Refreshing Materialized Views
Tips for Fast Refresh with UNION ALL
You can use fast refresh for materialized views that use the UNION ALL operator by
providing a maintenance column in the definition of the materialized view. For
example, a materialized view with a UNION ALL operator such as the following:

CREATE MATERIALIZED VIEW union_all_mv
AS
SELECT x.rowid AS r1, y.rowid AS r2, a, b, c
FROM x, y
WHERE x.a = y.b
UNION ALL
SELECT p.rowid, r.rowid, a, c, d
WHERE p.a = r.y;

This can be made fast refreshable as follows:

CREATE MATERIALIZED VIEW fast_rf_union_all_mv
AS
SELECT x.rowid AS r1, y.rowid AS r2, a, b, c, 1 AS MARKER
FROM x, y
WHERE x.a = y.b
UNION ALL
SELECT p.rowid, r.rowid, a, c, d, 2 AS MARKER
FROM p, r
WHERE p.a = r.y;

The form of the maintenance marker column must be: numeric_or_string_
literal AS column_alias , where each UNION ALL member has a distinct value
for numeric_or_string_literal .

Tips After Refreshing Materialized Views
After you have performed a load or incremental load and rebuilt the detail table
indexes, you need to re-enable integrity constraints (if any) and refresh the
materialized views and materialized view indexes that are derived from that detail
data. In a data warehouse environment, referential integrity constraints are
normally enabled with the NOVALIDATEor RELYoptions. An important decision to
make before performing a refresh operation is whether the refresh needs to be
recoverable. Because materialized view data is redundant and can always be
reconstructed from the detail tables, it might be preferable to disable logging on the
materialized view. To disable logging and run incremental refresh non-recoverably,
use the ALTER MATERIALIZED VIEW ... NOLOGGING statement prior to refreshing.
Maintaining the Data Warehouse 14-25

Using Materialized Views with Partitioned Tables
If the materialized view is being refreshed using the ON COMMIT method, then,
following refresh operations, consult the alert log alert_ SID .log and the trace
file ora_ SID_number.trc to check that no errors have occurred.

Using Materialized Views with Partitioned Tables
A major maintenance component of a data warehouse is synchronizing (refreshing)
the materialized views when the detail data changes. Partitioning the underlying
detail tables can reduce the amount of time taken to perform the refresh task. This is
possible because partitioning enables refresh to use parallel DML to update the
materialized view. Also, it enables the use of Partition Change Tracking.

Fast Refresh with Partition Change Tracking
In a data warehouse, changes to the detail tables can often entail partition
maintenance operations, such as DROP, EXCHANGE, MERGE, and ADD PARTITION. To
maintain the materialized view after such operations in Oracle8i required the use of
manual maintenance (see also CONSIDER FRESH) or complete refresh. Oracle9i
introduces an addition to fast refresh known as Partition Change Tracking (PCT)
refresh.

For PCT to be available, the detail tables must be partitioned. The partitioning of the
materialized view itself has no bearing on this feature. If PCT refresh is possible, it
will occur automatically and no user intervention is required in order for it to occur.

The following examples will illustrate the use of this feature. In "PCT Fast Refresh
Scenario 1", assume sales is a partitioned table using the time_id column and
products is partitioned by the prod_category column. The table times is not a
partitioned table.

PCT Fast Refresh Scenario 1
1. All detail tables must have materialized view logs. To avoid redundancy, only

the materialized view log for the sales table is provided in the following:

CREATE materialized view LOG on SALES
WITH ROWID, SEQUENCE
 (prod_id, time_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

See Also: "Partition Change Tracking" on page 8-35 for the
requirements for PCT
14-26 Oracle9i Data Warehousing Guide

Using Materialized Views with Partitioned Tables
2. The following materialized view satisfies requirements for PCT.

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD IMMEDIATE
REFRESH FAST ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT s.time_id, s.prod_id, SUM(s.quantity_sold), SUM(s.amount_sold),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
 FROM sales s, products p, times t
 WHERE s.time_id = t.time_id AND
 s.prod_id = p.prod_id
 GROUP BY t.calendar_month_name, s.prod_id, p.prod_name, s.time_id;

3. You can use the DBMS_MVIEW.EXPLAIN_MVIEWprocedure to determine which
tables will allow PCT refresh.

MVNAME CAPABILITY_NAME POSSIBLE RELATED_TEXT MSGTXT
----------------- --------------- -------- ------------ ----------------
CUST_MTH_SALES_MV PCT Y SALES
CUST_MTH_SALES_MV PCT_TABLE Y SALES
CUST_MTH_SALES_MV PCT_TABLE N PRODUCTS no partition key or PMARKER
 in SELECT list
CUST_MTH_SALES_MV PCT_TABLE N TIMES relation is not a
 partitioned table

As can be seen from the partial sample output from EXPLAIN_MVIEW, any
partition maintenance operation performed on the sales table will allow PCT
fast refresh. However, PCT is not possible after partition maintenance
operations or updates to the products table as there is insufficient information
contained in cust_mth_sales_mv for PCT refresh to be possible. Note that
the times table is not partitioned and hence can never allow for PCT refresh.
Oracle will apply PCT refresh if it can determine that the materialized view has
sufficient information to support PCT for all the updated tables.

4. Suppose at some later point, a SPLIT operation of one partition in the sales
table becomes necessary.

ALTER TABLE SALES
SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
 INTO (

See Also: "Analyzing Materialized View Capabilities" on
page 8-52 for how to use this procedure
Maintaining the Data Warehouse 14-27

Using Materialized Views with Partitioned Tables
 PARTITION month3_1
 TABLESPACE summ,
 PARTITION month3
 TABLESPACE summ
);

5. Insert some data into the sales table.

6. Fast refresh cust_mth_sales_mv using the DBMS_MVIEW.REFRESH
procedure.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '',TRUE,FALSE,0,0,0,FALSE);

Fast refresh will automatically do a PCT refresh as it is the only fast refresh
possible in this scenario. However, fast refresh will not occur if a partition
maintenance operation occurs when any update has taken place to a table on
which PCT is not enabled. This is shown in "PCT Fast Refresh Scenario 2".

"PCT Fast Refresh Scenario 1" would also be appropriate if the materialized view
was created using the PMARKER clause as illustrated in the following.

CREATE MATERIALIZED VIEW cust_sales_marker_mv
 BUILD IMMEDIATE
 REFRESH FAST ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT DBMS_MVIEW.PMARKER(s.rowid) s_marker,
 SUM(s.quantity_sold), SUM(s.amount_sold),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
 FROM sales s, products p, times t
 WHERE s.time_id = t.time_id AND
 s.prod_id = p.prod_id
 GROUP BY DBMS_MVIEW.PMARKER(s.rowid),
 p.prod_name, t.calendar_month_name;

PCT Fast Refresh Scenario 2
In "PCT Fast Refresh Scenario 2", the first four steps are the same as in "PCT Fast
Refresh Scenario 1" on page 14-26. Then, the SPLIT partition operation to the
sales table is performed, but before the materialized view refresh occurs, records
are inserted into the times table.

1. The same as in "PCT Fast Refresh Scenario 1".

2. The same as in "PCT Fast Refresh Scenario 1".
14-28 Oracle9i Data Warehousing Guide

Using Materialized Views with Partitioned Tables
3. The same as in "PCT Fast Refresh Scenario 1".

4. The same as in "PCT Fast Refresh Scenario 1".

5. After issuing the same SPLIT operation, as shown in "PCT Fast Refresh
Scenario 1", some data will be inserted into the times table.

ALTER TABLE SALES
 SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
 INTO (
 PARTIITION month3_1
 TABLESPACE summ,
 PARTITION month3
 TABLESPACE summ);

6. Refresh cust_mth_sales_mv .

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '',TRUE,FALSE,0,0,0,FALSE);
ORA-12052: cannot fast refresh materialized view SH.CUST_MTH_SALES_MV

The materialized view is not fast refreshable because DML has occurred to a table
on which PCT fast refresh is not possible. To avoid this occurring, Oracle
recommends performing a fast refresh immediately after any partition maintenance
operation on detail tables for which partition tracking fast refresh is available.

If the situation in "PCT Fast Refresh Scenario 2" occurs, there are two possibilities;
perform a complete refresh or switch to the CONSIDER FRESH option outlined in
the following, if suitable. However, it should be noted that CONSIDER FRESH and
partition change tracking fast refresh are not compatible. Once the ALTER
MATERIALIZED VIEW cust_mth_sales_mv CONSIDER FRESH statement has
been issued, PCT refresh will not longer be applied to this materialized view, until a
complete refresh is done.

A common situation in a warehouse is the use of rolling windows of data. In this
case, the detail table and the materialized view may contain say the last 12 months
of data. Every month, new data for a month is added to the table and the oldest
month is deleted (or maybe archived). PCT refresh provides a very efficient
mechanism to maintain the materialized view in this case.

PCT Fast Refresh Scenario 3
1. The new data is usually added to the detail table by adding a new partition and

exchanging it with a table containing the new data.

ALTER TABLE sales ADD PARTITION month_new ...
Maintaining the Data Warehouse 14-29

Using Materialized Views with Partitioned Tables
ALTER TABLE sales EXCHANGE PARTITION month_new month_new_table

2. Next, the oldest partition is dropped or truncated.

ALTER TABLE sales DROP PARTITION month_oldest;

3. Now, if the materialized view satisfies all conditions for PCT refresh.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F', '',
 TRUE, FALSE,0,0,0,FALSE);

Fast refresh will automatically detect that PCT is available and perform a PCT
refresh.

Fast Refresh with CONSIDER FRESH
If the materialized view and a detail table have the same partitioning criteria, then
you could use CONSIDER FRESH to maintain the materialized view after partition
maintenance operations.

The following example demonstrates how you can manually maintain an
unsynchronized detail table and materialized view. Assume the sales table and the
cust_mth_sales_mv are partitioned identically, and contain say 12 months of
data, one month in each partition.

■ Suppose the oldest month is to be removed from the table.

ALTER TABLE sales DROP PARTITION month_oldest;

■ You could manually resynchronize the materialized view by doing a
corresponding partition operation on the materialized view.

ALTER MATERIALIZED VIEW cust_mth_sales_mv DROP PARTITION month_oldest;

■ Use CONSIDER FRESH to declare that the materialized view has been refreshed.

ALTER MATERIALIZED VIEW cust_mth_sales_mv CONSIDER FRESH;

In a data warehouse, you may often wish to accumulate historical information in
the materialized view even though this information is no longer in the detailed
tables. In this case, you could maintain the materialized view using the ALTER
MATERIALIZED VIEW materialized view name CONSIDER FRESH statement.

Note that CONSIDER FRESH declares that the contents of the materialized view are
FRESH(in sync with the detail tables). Care must be taken when using this option in
14-30 Oracle9i Data Warehousing Guide

Using Materialized Views with Partitioned Tables
this scenario in conjunction with query rewrite because you may see unexpected
results.

After using CONSIDER FRESH in an historical scenario, you will be able to apply
traditional fast refresh after DML and direct loads to the materialized view, but not
PCT fast refresh. This is because if the detail table partition at one time contained
data that is currently kept in aggregated form in the materialized view, PCT refresh
in attempting to resynchronize the materialized view with that partition could
delete historical data which cannot be recomputed.

Assume the sales table stores the prior year's data and the cust_mth_sales_mv
keeps the prior 10 years of data in aggregated form.

1. Remove old data from a partition in the sales table:

ALTER TABLE sales TRUNCATE PARTITION month1;

The materialized view is now considered stale and requires a refresh because
of the partition operation. However, as the detail table no longer contains all the
data associated with the partition fast refresh cannot be attempted.

2. Therefore, alter the materialized view to tell Oracle to consider it fresh.

ALTER MATERIALIZED VIEW cust_mth_sales_mv CONSIDER FRESH;

This statement informs Oracle that cust_mth_sales_mv is fresh for your
purposes. However, the materialized view now has a status that is neither
known fresh nor known stale. Instead, it is UNKNOWN. If the materialized view
has query rewrite enabled in QUERY_REWRITE_INTEGRITY=stale_
tolerated mode, it will be used for rewrite.

3. Insert data into sales .

4. Refresh the materialized view.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '', TRUE, FALSE,0,0,0,FALSE);

Because the fast refresh detects that only INSERT statements occurred against
the sales table it will update the materialized view with the new data.
However, the status of the materialized view will remain UNKNOWN. The only
way to return the materialized view to FRESH status is with a complete refresh
which, also will remove the historical data from the materialized view.
Maintaining the Data Warehouse 14-31

Using Materialized Views with Partitioned Tables
14-32 Oracle9i Data Warehousing Guide

Change Dat
15

Change Data Capture

Change Data Capture efficiently identifies and captures data that has been added to,
updated, or removed from, Oracle relational tables, and makes the change data
available for use by applications. Change Data Capture is provided as an Oracle
database server component with Oracle9i.

This chapter introduces Change Data Capture in the following sections:

■ About Change Data Capture

■ Installation and Implementation

■ Security

■ Columns in a Change Table

■ Change Data Capture Views

■ Synchronous Mode of Data Capture

■ Publishing Change Data

■ Managing Change Tables and Subscriptions

■ Subscribing to Change Data

■ Export and Import Considerations

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about the Change Data Capture publish and
subscribe PL/SQL packages.
a Capture 15-1

About Change Data Capture
About Change Data Capture
Oftentimes, data warehousing involves the extraction and transportation of
relational data from one or more source databases, into the data warehouse for
analysis. Change Data Capture quickly identifies and processes only the data that
has changed, not entire tables, and makes the change data available for further use.

Without Change Data Capture, database extraction is a cumbersome process in
which you move the entire contents of tables into flat files, and then load the files
into the data warehouse. This ad hoc approach is expensive in a number of ways.

Change Data Capture does not depend on intermediate flat files to stage the data
outside of the relational database. It captures the change data resulting from
INSERT, UPDATE, and DELETE operations made to user tables. The change data is
then stored in a database object called a change table, and the change data is made
available to applications in a controlled way.

Table 15–1 describes the advantages of performing database extraction with Change
Data Capture.

A Change Data Capture system is based on the interaction of a publisher and
subscribers to capture and distribute change data, as described in the next section.

Table 15–1 Database Extraction With and Without Change Data Capture

Database
Extraction With Change Data Capture Without Change Data Capture

Extraction Database extraction from
INSERT, UPDATE, and DELETE
operations occurs immediately,
at the same time the changes
occur to the source tables.

Database extraction is marginal at best for
INSERT operations, and problematic for
UPDATE and DELETE operations, because
the data is no longer in the table.

Staging Stages data directly to relational
tables; there is no need to use flat
files.

The entire contents of tables are moved
into flat files.

Interface Provides an easy-to-use publish
and subscribe interface using
DBMS_LOGMNR_CDC_PUBLISH
and DBMS_LOGMNR_CDC_
SUBSCRIBE packages.

Error prone and manpower intensive to
administer.

Cost Supplied with the Oracle9i (and
later) database server. Reduces
overhead cost by simplifying the
extraction of change data.

Expensive because you must write and
maintain the capture software yourself, or
purchase it from a third-party vendors.
15-2 Oracle9i Data Warehousing Guide

About Change Data Capture
Publish and Subscribe Model
Most Change Data Capture systems have one publisher that captures and publishes
change data for any number of Oracle source tables. There can be multiple
subscribers accessing the change data. Change Data Capture provides PL/SQL
packages to accomplish the publish and subscribe tasks.

Publisher
The publisher is usually a database administrator (DBA) who is in charge of
creating and maintaining schema objects that make up the Change Data Capture
system. The publisher performs these tasks:

■ Determines the relational tables (called source tables) from which the data
warehouse application is interested in capturing change data.

■ Uses the Oracle supplied package, DBMS_LOGMNR_CDC_PUBLISH, to set up the
system to capture data from one or more source tables.

■ Publishes the change data in the form of change tables.

■ Allows controlled access to subscribers by using the SQL GRANT and REVOKE
statements to grant and revoke the SELECT privilege on change tables for users
and roles.

Subscribers
The subscribers, usually applications, are consumers of the published change data.
Subscribers subscribe to one or more sets of columns in source tables. Subscribers
perform the following tasks:

■ Use the Oracle supplied package, DBMS_LOGMNR_CDC_SUBSCRIBE, to
subscribe to source tables for controlled access to the published change data for
analysis.

■ Extend the subscription window and create a new subscriber view when the
subscriber is ready to receive a set of change data.

■ Use SELECT statements to retrieve change data from the subscriber views.

■ Drop the subscriber view and purge the subscription window when finished
processing a block of changes.

■ Drop the subscription when the subscriber no longer needs its change data.
Change Data Capture 15-3

About Change Data Capture
Example of a Change Data Capture System
The Change Data Capture system captures the effects of DML statements, including
INSERT, DELETE, and UPDATE, when they are performed on the source table. As
these operations are performed, the change data is captured and published to
corresponding change tables.

To capture change data, the publisher creates and administers change tables, which
are special database tables that capture change data from a source table.

For example, for each source table for which you want to capture data, the
publisher creates a corresponding change table. Change Data Capture ensures that
none of the updates are missed or duplicated.

Each subscriber has its own view of the change data. This makes it possible for
multiple subscribers to simultaneously subscribe to the same change table without
interfering with one another.

Figure 15–1 shows the publish and subscribe model in a Change Data Capture
system.

Figure 15–1 Publish and Subscribe Model in a Change Data Capture System

For example, assume that the change tables in Figure 15–1 contains all of the
changes that occurred between Monday and Friday, and also assume that:

■ Subscriber 1 is viewing and processing data from Tuesday.

■ Subscriber 2 is viewing and processing data from Wednesday to Thursday.

Subscribers 1 and 2 each have a unique subscription window that contains a block
of transactions. Change Data Capture manages the subscription window for each
subscriber by creating a subscriber view that returns a range of transactions of
interest to that subscriber. The subscriber accesses the change data by performing
SELECT statements on the subscriber view that was generated by Change Data
Capture.
15-4 Oracle9i Data Warehousing Guide

About Change Data Capture
When a subscriber needs to read additional change data, the subscriber makes
procedure calls to extend the window and to create a new subscriber view. Each
subscriber can walk through the data at its own pace, while Change Data Capture
manages the data storage. As each subscriber finishes processing the data in its
subscription window, it calls procedures to drop the subscriber view and purge the
contents of the subscription window. Extending and purging windows is necessary
to prevent the change table from growing indefinitely, and to prevent the subscriber
from seeing the same data again.

Thus, Change Data Capture provides the following benefits for subscribers:

■ Guarantees that each subscriber sees all of the changes, does not miss any
changes, and does not see the same change data more than once.

■ Keeps track of multiple subscribers and gives each subscriber shared access to
change data.

■ Handles all of the storage management, automatically removing data from
change tables when it is no longer required by any of the subscribers.

Components and Terminology for Synchronous Change Data Capture
This section describes the Change Data Capture components shown in Figure 15–2.
The publisher is responsible for all of the components shown in Figure 15–2, except
for the subscriber views. The publisher creates and maintains all of the schema
objects that make up the Change Data Capture system, and publishes change data
so that subscribers can use it.

Subscribers are the consumers of change data and are granted controlled access to
the change data by the publisher. Subscribers subscribe to one or more columns in
source tables.

With synchronous data capture, the change data is generated as data manipulation
language (DML) operations are made to the source table. Every time a DML
operation occurs on a source table, a record of that operation is written to the
change table.
Change Data Capture 15-5

About Change Data Capture
Figure 15–2 Components in a Synchronous Change Data Capture System

The following subsections describe Change Data Capture components in more
detail.

Source System
A source system is a production database that contains source tables for which
Change Data Capture will capture changes.

Source Table
A source table is a database table that resides on the source system that contains the
data you want to capture. Changes made to the source table are immediately
reflected in the change table.

Change Source
A change source represents a source system. There is a system-generated change
source named SYNC_SOURCE.

Change Source Table 2 Change Source Table 3Change Source Table 2Change Source Table 1

Change Table 3
contains columns:

 C5 C6 C7 C8

Change Table 2
contains columns:

 C1 C2 C3 C4

Change Table 4
contains columns:

 C1 C4 C6 C8

Change Table 1
contains columns:

 C1 C2 C3 C4

Operational
Databases

Subscriber
View 2

Source
Tables

.. . .

Subscriber
View 1

Change Data Capture

Change Data Capture System

SYNC_
SOURCE

SYNC_SET
15-6 Oracle9i Data Warehousing Guide

About Change Data Capture
Change Set
A change set represents the collection of change tables. There is a system-generated
change set named SYNC_SET.

Change Table
A change table contains the change data resulting from DML statements made to a
single source table. A change table consists of two things: the change data itself,
which is stored in a database table, and the system metadata necessary to maintain
the change table. A given change table can capture changes from only one source
table. In addition to published columns, the change table contains control columns
that are managed by Change Data Capture. See "Columns in a Change Table" on
page 15-9 for more information.

Publication
A publication provides a way for publishers to publish multiple change tables on
the same source table, and control subscriber access to the published change data.
For example, Publication A consists of a change table that contains all the columns
from the EMPLOYEE source table, while Publication B contains all the columns
except the salary column from the EMPLOYEE source table. Because each change
table is a separate publication, the publisher can implement security on the salary
column by allowing only selected subscribers to access Publication A.

Subscriber View
A subscriber view is a view created by Change Data Capture that returns all of the
rows in the subscription window. In Figure 15–2, the subscribers have created two
views: one on columns 7 and 8 of Source Table 3 and one on columns 4, 6, and 8 of
Source Table 4 The columns included in the view are based on the actual columns
that the subscribers subscribed to in the source table.

Subscription Window
A subscription window defines the time range of change rows that the subscriber
can currently see. The oldest row in the window is the low watermark; the newest
row in the window is the high watermark. Each subscriber has a subscription
window.
Change Data Capture 15-7

Installation and Implementation
Installation and Implementation
Change Data Capture comes pre-packaged with the appropriate Oracle9i drivers
already installed with which you can implement synchronous data capture.

In addition, note that Change Data Capture uses Java. Therefore, when you install
the Oracle9i database server, ensure that Java is enabled.

Change Data Capture installs systemwide triggers on the CREATE TABLE, ALTER
TABLE, and DROP TABLEstatements. If system triggers are disabled on the database
instance, Change Data Capture will not function correctly. Therefore, you should
never disable system triggers.

To remove Change Data Capture from the database, the SQL script rmcdc.sql is
provided in the admin directory. This will remove the system triggers that CDC
installs on the CREATE TABLE, ALTER TABLE and DROP table statements. In
addition, rmcdc.sql removes all Java classes used by Change Data Capture. Note
that after rmcdc.sql is called, CDC will no longer operate on the system. If the
system administrator decides to remove the Java Virtual Machine from a database
instance, rmcdc.sql must be called before rmjvm is called.

To re-install Change Data Capture, the SQL script initcdc.sql is provided in the
admin directory. It creates the CDC system triggers and Java classes that are
required by Change Data Capture.

Change Data Capture Restriction on Direct-Path INSERT
Change Data Capture does not support the direct-path INSERT statement (and, by
association, the multi_table_insert statement) feature in parallel DML mode.

When you create a change table, Change Data Capture creates triggers on the source
table. Because a direct-path INSERT disables all database triggers, any rows
inserted into the source table using the SQL statement for direct-path INSERT in
parallel DML mode will not be captured in the change table.

Similarly, Change Data Capture cannot capture the inserted rows from multitable
insert operations because the SQL multi_table_insert statement in parallel
DML mode uses direct-path INSERT. Also, note that the multitable insert operation
does not return an error message to indicate that the triggers used by Change Data
Capture did not fire.

See Also: Oracle9i SQL Reference for more information regarding
multitable inserts, direct-path INSERT, and triggers
15-8 Oracle9i Data Warehousing Guide

Columns in a Change Table
Security
You grant privileges for a change table separately from the privileges you grant for
a source table. For example, a subscriber that has privileges to perform a SELECT
operation on a source table might not have privileges to perform a SELECT
operation on a change table.

The publisher controls subscribers' access to change data by using the SQL GRANT
and REVOKE statements to grant and revoke the SELECT privilege on change tables
for users and roles. The publisher must grant the SELECT privilege before a user or
application can subscribe to the change table.

The publisher must not grant any DML access (using either the INSERT, UPDATE, or
DELETE statements) to the subscribers on the change tables because of the risk that
a subscriber might inadvertently change the data in the change table, making it
inconsistent with its source. Furthermore, the publisher should avoid creating
change tables in schemas to which users have DML access.

Columns in a Change Table
A change table contains the change data resulting from DML statements. A change
table consists of two things: the change data itself, which is stored in a database
table and the system metadata necessary to maintain the change table.

The change table contains control columns that are managed by Change Data
Capture. Table 15–2 describes the contents of a change table.

Table 15–2 Control Columns for a Change Table

Column Datatype Nullable? Description

RSID$ NUMBER N Unique row sequence ID.

OPERATION$ CHAR(2) N I: Insert

UO or UU: Update old value

UN: Update new value

UL: Update LOB

D: Delete

CSCN$ NUMBER N Commit SCN.

COMMIT_
TIMESTAMP$

DATE Y Commit time of this transaction.
Change Data Capture 15-9

Change Data Capture Views
Change Data Capture Views
Information about the Change Data Capture environment is provided in the views
described in Table 15–3.

SOURCE_
COLMAP$

NUMBER N Bit mask of updated columns; source
table relative (optional column).

TARGET_
COLMAP$

NUMBER N Bit mask of updated columns; change
table relative (optional column).

USERNAME$ VARCHAR2(30)N Name of the user who caused the
operation (optional column).

TIMESTAMP$ DATE N Time when the operation occurred in the
source table (optional column).

ROW_ID$ ROW_ID N Row ID of affected row in source table
(optional column).

SYS_NC_OID$ RAW(16) Y Object ID (optional column).

Note: See also Oracle9i Database Reference for complete information
about views.

Table 15–3 View Names for Change Data Capture

View Name Description

CHANGE_SOURCES Allows a publisher to see existing change sources

CHANGE_SETS Allow a publisher to see existing change sets

CHANGE_TABLES Allows a publisher to see existing change tables

ALL_SOURCE_TABLES Allows subscribers to see all of the published source tables for
which the subscribers have privileges to subscribe

DBA_SOURCE_TABLES Allows a publisher to see all of the existing (published) source
tables

USER_SOURCE_TABLESAllows the user to see all of the published source tables for
which this user has privileges to subscribe

Table 15–2 Control Columns for a Change Table(Cont.)

Column Datatype Nullable? Description
15-10 Oracle9i Data Warehousing Guide

Change Data Capture Views
ALL_SOURCE_TAB_
COLUMNS

Allows subscribers to see all of the source table columns that
have been published, as well as the schema name and table
name of the source table

DBA_SOURCE_TAB_
COLUMNS

Allows subscribers to see all of the source table columns that
have been published, as well as the schema name and table
name of the source table

USER_SOURCE_TAB_
COLUMNS

Allows users to see all of the source table columns that have
been published, as well as the schema name and table name of
the source table

ALL_PUBLISHED_
COLUMNS

Allows a subscriber to see all of the published source table
columns for which the subscriber has privileges

DBA_PUBLISHED_
COLUMNS

Allows a subscriber to see all of the published source table
columns for which the subscriber has privileges

USER_PUBLISHED_
COLUMNS

Allows a user to see all of the published source table columns
for which the user has privileges

ALL_SUBSCRIPTIONS Allows a user to see all current subscriptions

DBA_SUBSCRIPTIONS Allows a publisher to see all of the subscriptions

USER_SUBSCRIPTIONS Allows a subscriber to see all of their current subscriptions

ALL_SUBSCRIBED_
TABLES

Allows a user to see all of the published tables for which there
are subscribers

DBA_SUBSCRIBED_
TABLES

Allows a publisher to see all of the published tables to which
subscribers have subscribed

USER_SUBSCRIBED_
TABLES

Allows a subscriber to see all of the published tables to which
the subscriber has subscribed

ALL_SUBSCRIBED_
COLUMNS

Allows a user to see all of the published columns for which there
are subscribers

DBA_SUBSCRIBED_
COLUMNS

Allows a publisher to see all of the columns of published tables
to which subscribers have subscribed

USER_SUBSCRIBED_
COLUMNS

Allows a publisher to see all of the columns of published tables
to which the subscriber has subscribed

Table 15–3 View Names for Change Data Capture(Cont.)

View Name Description
Change Data Capture 15-11

Synchronous Mode of Data Capture
Synchronous Mode of Data Capture
Synchronous data capture provides up-to-the-second accuracy because the changes
are being captured continuously and in real time on the production system. The
change tables are populated after DML operations occur on the source table.

While synchronous mode data capture adds overhead to the system at capture time,
it can reduce cost by simplifying the extraction of change data.

Publishing Change Data
This section provides step-by-step instructions for setting up a Change Data
Capture system to capture and publish data from one or more Oracle relational
source tables. Change Data Capture captures and publishes only committed data.

Step 1: Decide which Oracle Instance will be the Source System
You need to decide which Oracle instance will be the source system that will
provide the change data. The publisher needs to gather requirements from the
subscribers and determine which source system contains the relevant source tables.

Step 2: Create the Change Tables that will Contain the Changes
You need to create the change tables that will contain the changes to individual
source tables. Use the DBMS_LOGMNR_CDC_PUBLISH.CREATE_CHANGE_TABLE
procedure to create change tables.

Note: To use the DBMS_LOGMNR_CDC_PUBLISH package, you
must have the EXECUTE_CATALOG_ROLE privilege, and you must
have the SELECT_CATALOG_ROLE privilege to look at all of the
views. Also, you must be able to GRANT SELECT in the change
tables to subscribers.

Note: For synchronous data capture, Change Data Capture
automatically generates a change source, called SYNC_SOURCE, and
a change set called SYNC_SET. Change tables are contained in the
predefined SYNC_SET change set.
15-12 Oracle9i Data Warehousing Guide

Publishing Change Data
Create a change table for each source table to be published, and decide which
columns should be included. For update operations, decide whether to capture old
values, new values, or both.

The publisher can set the options_string field of the DBMS_LOGMNR_CDC_
PUBLISH.CREATE_CHANGE_TABLE procedure to have more control over the
physical properties and tablespace properties of the change tables. The options_
string field can contain any option available on the CREATE TABLE DDL
statement.

Example: Creating a Change Table
The following example creates a change table that captures changes that happen to
a source table. The example uses the sample table SCOTT.EMP.

EXECUTE DBMS_LOGMNR_CDC_PUBLISH.CREATE_CHANGE_TABLE (OWNER => 'cdc',\
CHANGE_TABLE_NAME => 'emp_ct', \
CHANGE_SET_NAME => 'SYNC_SET', \
SOURCE_SCHEMA => 'scott', \
SOURCE_TABLE => 'emp',\
COLUMN_TYPE_LIST =>. 'empno number, ename varchar2(10), job varchar2(9), mgr
number, hiredate date, deptno number', \
CAPTURE_VALUES => 'both', \
RS_ID => 'y' \
ROW_ID => 'n', \
USER_ID => 'n', \
TIMESTAMP => 'n', \
OBJECT_ID => 'n', \
SOURCE_COLMAP => 'y', \
TARGET_COLMAP => 'y', \
OPTIONS_STRING => null);

This statement creates a change table named emp_ct within the change set SYNC_
SET. The column_type_list parameter identifies the columns captured by the
change table. The source_schema and source_table parameters identify the
schema and source table that reside on the production system.

The capture_values setting in the example indicates that for UPDATEoperations,
the change data will contain two separate rows for each row that changed: one row
will contain the row values before the update occurred, and the other row will
contain the row values after the update occurred.
Change Data Capture 15-13

Managing Change Tables and Subscriptions
Managing Change Tables and Subscriptions
This section describes storage management and how the publisher is able to
manage change tables and subscriptions.

To ensure that the size of change tables does not grow without limit, Change Data
Capture manages the data in change tables and automatically purges change data
that is no longer needed. The DBMS_CDC_PUBLISH.PURGE procedure should be
called periodically to removed data from change tables that is no longer required.
PURGE looks at all active subscription windows to determine which change data is
still in use. It will not purge any data as long as subscribers have active subscription
windows that reference the change data.

Subscribers must call DBMS_CDC_SUBSCRIBE.PURGE_WINDOW when they are
finished using change data. This indicates to CDC that the change data is no longer
needed, and that PURGE may safely remove the unneeded rows. Conversely, until
all subscribers have called PURGE_WINDOW on their subscription windows, the
change data is considered still in use: PURGE will not remove those rows from the
change table.

It is possible that a subscriber could fail to call PURGE_WINDOW, with the end result
being that a change table would not be purged. The DBA_SUBSCRIPTIONS view
helps the publisher determine if this is happening. In extreme circumstances a
publisher may decide to drop an active subscription so that space can be reclaimed.
An example might be that the subscriber is an applications program that is not
calling PURGE_WINDOW as needed. The DBA_CDC_PUBLISH.DROP_
SUBSCRIPTION procedure lets the publisher drop active subscriptions if
circumstances require it: however, the publisher should first consider that
subscribers may still be using the change data. You must use DBMS_CDC_
PUBLISH.DROP_SUBSCRIBER_VIEW to drop any subscriber views prior to
dropping a subscription using the DBMS_CDC_PUBLISH.DROP_SUBSCRIPTION
procedure.

The PURGE procedure normally runs in a job queue, therefore it runs automatically.
The publisher can execute PURGE manually at any time however.

Note that it is not possible to drop change tables by using the conventional DROP
TABLE statement. If it is necessary to drop a change table, the procedure DBMS_
CDC_PUBLISH.DROP_CHANGE_TABLE must be called. This procedure ensures that
both the change table itself as well as the CDC metadata for it are both dropped. If
you try to use DROP TABLE on a change table, it will raise the error:

ORA-31496 must use DBMS_CDC_PUBLISH.DROP_CHANGE_TABLE to drop change tables
15-14 Oracle9i Data Warehousing Guide

Subscribing to Change Data
DROP_CHANGE_TABLE procedure also safeguards the publisher from inadvertently
dropping a change table while there are active subscribers that are using the change
table. If DROP_CHANGE_TABLE is dropped while subscriptions are active, the
procedure will fail with the Oracle error:

ORA-31424 change table has active subscriptions

If the publisher really wants to drop the change table in spite of active
subscriptions, DROP_CHANGE_TABLEprocedure must be called using the parameter
FORCE => ’Y’ . This tells CDC to override its normal safeguards and allow the
change table to be dropped despite active subscriptions. The subscriptions will no
longer be valid, and subscribers will lose access to the change data.

Subscribing to Change Data
The subscribers, typically applications, register their interest in one or more source
tables, and obtain subscriptions to these tables. Assuming sufficient access
privileges, the subscribers may subscribe to any source tables that the publisher has
published.

Steps Required to Subscribe to Change Data
The primary role of the subscriber is to access and use the change data. To do this, the
subscriber must first determine which source tables are of interest, and then call the
procedures in the DBMS_LOGMNR_CDC_SUBSCRIBE package to access them.

Step 1: Find the Source Tables for which the Subscriber has Access Privileges
Query the ALL_SOURCE_TABLES view to see all of the published source tables for
which the subscriber has access privileges.

Step 2: Obtain a Subscription Handle
Call the DBMS_LOGMNR_CDC_SUBSCRIBE.GET_SUBSCRIPTION_HANDLE
procedure to create a subscription.

Note: The DROP USER CASCADE statement will drop all of a users
change tables by using the FORCE => ’Y’ option. Therefore, if
any other users have active subscriptions to the (dropped) change
table, these will no longer be valid. In addition to dropping the
user’s change tables, DROP USER CASCADE also drops any
subscriptions that were held by that user.
Change Data Capture 15-15

Subscribing to Change Data
The following example shows how the subscriber first names the change set of
interest (SYNC_SET), and then returns a unique subscription handle that will be
used throughout the session.

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.GET_SUBSCRIPTION_HANDLE (\
CHANGE_SET => 'SYNC_SET',\
DESCRIPTION => 'Change data for emp',\
SUBSCRIPTION_HANDLE => :subhandle);

Step 3: Subscribe to a Source Table and Columns in the Source Table
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.SUBSCRIBE procedure to specify which
columns of the source tables are of interest to the subscriber and are to be captured.

The subscriber identifies the columns of the source table that are of interest. A
subscription can contain one source table or multiple tables from the same change
set. To see all of the published source table columns for which the subscriber has
privileges, query the ALL_PUBLISHED_COLUMNS view.

In the following example, the subscriber wants to see only one source table.

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.SUBSCRIBE (\
SUBSCRIPTION_HANDLE => :subhandle, \
SOURCE_SCHEMA => 'scott', \
SOURCE_TABLE => 'emp', \
COLUMN_LIST => 'empno, ename, hiredate');

Step 4: Activate the Subscription
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION procedure
to activate the subscription.

Subscribers call this procedure when they are finished subscribing to source tables,
and are ready to receive change data. Whether subscribing to one or multiple source
tables, the subscriber needs to call the ACTIVATE_SUBSCRIPTION procedure only
once.

In the following example, the ACTIVATE_SUBSCRIPTION procedure sets the
subscription window to empty. At this point, no additional source tables can be
added to the subscription.

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION (\
SUBSCRIPTION_HANDLE => :subhandle);
15-16 Oracle9i Data Warehousing Guide

Subscribing to Change Data
Step 5: Set the Boundaries to See New Data
Call the DBMS_LOGMNR_CDC_SUBSCRIBE.EXTEND_WINDOW procedure to set the
upper boundary (called a high-water mark) for a subscription window.

For example:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.EXTEND_WINDOW (\
SUBSCRIPTION_HANDLE => :subhandle);

At this point, the subscriber has created a new window that begins where the
previous window ends. The new window contains any data that was added to the
change table. If no new data has been added, the EXTEND_WINDOW procedure has
no effect. To access the new change data, the subscriber must call the CREATE_
SUBSCRIBER_VIEW procedure, and select from the new subscriber view that is
generated by Change Data Capture.

Step 6: Prepare a Subscriber View
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW
procedure to create and prepare a subscriber view. (You must do this for each
change table in the subscription.)

Subscribers do not access data directly from a change table; subscribers see the
change data through subscriber views and perform SELECT operations against
them. The reason for this is because Change Data Capture generates a view that
restricts the data to only the columns to which the application has subscribed, and
returns only the rows that the application has not viewed previously. The contents
of the subscriber view will not change.

The following example shows how to prepare a subscriber view:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW (\
SUBSCRIPTION_HANDLE => :subhandle, \
SOURCE_SCHEMA => 'scott',\
SOURCE_TABLE => 'emp', \
VIEW_NAME => :viewname);

Step 7: Read and Query the Contents of the Change Tables
Use the SQL SELECT statement on the subscriber view to read and query the
contents of change tables (within the boundaries of the subscription window). You
must do this for each change table in the subscription. For example:

SELECT * FROM CDC#CV$119490;
Change Data Capture 15-17

Subscribing to Change Data
The subscriber view name, CDC#CV$119490, is a generated name.

Step 8: Drop the Subscriber View
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW procedure to
drop the subscriber views.

Change Data Capture guarantees not to change the subscriber view, even if new
data has been added. Subscribers continue to have access to a subscriber view until
calling the DROP_SUBSCRIBER_VIEW procedure, which indicates the subscriber is
finished using the view. For example:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW (\
SUBSCRIPTION_HANDLE => :subhandle, \
SOURCE_SCHEMA => 'scott', \
SOURCE_TABLE => 'emp');

Step 9: Empty the Old Data from the Subscription Window
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.PURGE_WINDOW procedure to let the
Change Data Capture software know that the subscriber no longer needs the data in
the current subscription window.

For example:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.PURGE_WINDOW (\
SUBSCRIPTION_HANDLE => :subhandle);

Step 10: Repeat Steps 5 through 9
Repeat steps 5 though 9 as long as you are interested in additional change data.

Step 11: End the Subscription
Use the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure to end
the subscription. This is necessary to prevent the change tables from growing
without bound. For example:

EXECUTE SYS.DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIPTION (\
SUBSCRIPTION_HANDLE => :subhandle);
15-18 Oracle9i Data Warehousing Guide

Subscribing to Change Data
What Happens to Subscriptions when the Publisher Makes Changes
The Change Data Capture environment is dynamic in nature. The publisher can add
and drop change tables at any time. The publisher can also add to and drop
columns from existing change tables at any time. The following list describes how
changes to the Change Data Capture environment affect subscriptions:

■ Subscribers do not get explicit notification if the publisher adds a new change
table. The views can be checked to see if new change tables have been added,
and whether or not you have access to them.

■ If a publisher drops a change table that is currently being subscribed to, the
publisher must use the force flag to get a successful drop. It is expected that the
publisher will warn subscribers before the force flag is actually used. If the
subscribers are unaware of the dropped table, then when the subscriber calls
PREPARE_SUBSCRIBER_VIEW procedure, an appropriate exception is
generated. This becomes the notification mechanism.

■ If the publisher adds a user column to a change table and a new subscription
includes this column, then the subscription window starts at the point the
column was added.

■ If the publisher adds a user column to a change table and a new subscription
does not include this newly added column, then the subscription window starts
at the low-water mark for the change table thus enabling the subscriber to see
the entire table.

■ If the publisher adds a user column to a change table, and old subscriptions
exist, then the subscription windows remain unchanged.

■ Subscribers subscribe to source columns and never to control columns. They
can see the control columns that were present at the time of the subscription.

■ If the publisher adds a control column to a change table and there is a new
subscription, then the subscription window starts at the low-water mark for the
change table. The subscription can see the control column immediately. All
rows that existed in the change table prior to adding the control column will
have the value NULL for the newly added control column field.

■ If the publisher adds a control column to a change table, then any existing
subscriptions can see the new control column when the window is extended
(DBMS_LOGMNR_CDC_PUBLISH.EXTEND_WINDOW procedure) such that the
low watermark for the window crosses over the point when the control column
was added.
Change Data Capture 15-19

Export and Import Considerations
Export and Import Considerations
When exporting or importing change tables for Change Data Capture, consider the
following information:

■ When change tables are imported, the job queue is checked for a Change Data
Capture purge job. If no purge job is found, then one is submitted automatically
(using the DBMS_CDC_PUBLISH.PURGE procedure). If a change table is
imported, but no subscriptions are taken out before the purge job runs (24
hours later, by default), then all rows in the table will be purged.

Choose one of the following methods to prevent the purging of data from a
change table:

– Suspend the purge job using the DBMS_JOB package to either disable the
job (using the BROKEN procedure) or execute the job sometime in the future
when there are subscriptions (using the NEXT_DATE procedure).

– Take out a dummy subscription to preserve the change table data until real
subscriptions appear. Then, you can drop the dummy subscription.

■ When importing data into a source table for which a change table already exists,
the imported data is also recorded in any associated change tables.

Assume that you have a source table Employees that has an associated change
table CT_Employees . When you import data into Employees , that data is also
recorded in CT_Employees .

■ When importing a source table and its change table to a database where the
tables did not previously exist, Change Data Capture for that source table will
not be established until the import process completes. This protects you from
duplicating activity in the change table.

■ When exporting a source table and its associated change table, and then
importing them into a new instance, the imported source table data is not
recorded in the change table because it is already in the change table.

Note: If you disable the purge job by marking it as broken, you
need to remember to reset it once subscriptions have been
activated. This prevents the change table from growing without
bound.
15-20 Oracle9i Data Warehousing Guide

Export and Import Considerations
■ When importing a change table having the optional control ROW_ID column,
the ROW_ID columns stored in the change table have meaning only if the
associated source table has not been imported. If a source table is re-created or
imported, each row will have a new ROW_ID that is unrelated to the ROW_ID
that was previously recorded in a change table.

■ Any time a table is exported from one database and imported to another, there
is a risk that the import target already has tables or objects with the same name.
Moving a change table to a different database where a table exists that has the
same name as the source table may result in import errors.

■ If you need to move a synchronous change table or its source table, then move
both tables together and check the import log for error messages.
Change Data Capture 15-21

Export and Import Considerations
15-22 Oracle9i Data Warehousing Guide

Summary A
16

Summary Advisor

This chapter illustrates how to use the Summary Advisor, a tool for choosing and
understanding materialized views. The chapter contains:

■ Overview of the Summary Advisor in the DBMS_OLAP Package

■ Using the Summary Advisor

■ Estimating Materialized View Size

■ Is a Materialized View Being Used?

■ Summary Advisor Wizard
dvisor 16-1

Overview of the Summary Advisor in the DBMS_OLAP Package
Overview of the Summary Advisor in the DBMS_OLAP Package
Materialized views provide high performance for complex, data-intensive queries.
The Summary Advisor helps you achieve this performance benefit by choosing the
proper set of materialized views for a given workload. In general, as the number of
materialized views and space allocated to materialized views is increased, query
performance improves. But the additional materialized views have some cost: they
consume additional storage space and must be refreshed, which increases
maintenance time. The Summary Advisor considers these costs and makes the most
cost-effective trade-offs when recommending the creation of new materialized
views and evaluating the performance of existing materialized views.

To help you select from among the many possible materialized views in your
schema, Oracle provides a collection of materialized view analysis and advisory
functions and procedures in the DBMS_OLAP package. Collectively, these functions
are called the Summary Advisor, and they are callable from any PL/SQL program.
Figure 16–1 shows how the Summary Advisor recommends materialized views
from a hypothetical or user-defined workload or one obtained from the SQL cache,
or Oracle Trace. You can run the Summary Advisor from Oracle Enterprise Manager
or by invoking the DBMS_OLAP package. You must have Java enabled to use the
Summary Advisor.

All data and results generated by the Summary Advisor is stored in a set of tables
referred to as the Summary Advisor repository. These tables are owned by SYSTEM
and start with MVIEW$_ADV_*. Only DBAs can access these tables directly, but
other users can access the data relevant to them using a set of read-only views.
These views start with MVIEW_. Thus, the table MVIEW$_ADV_WORKLOAD stores the
workload of all users, but a user accesses his workload through the MVIEW_
WORKLOAD view.
16-2 Oracle9i Data Warehousing Guide

Overview of the Summary Advisor in the DBMS_OLAP Package
Figure 16–1 Materialized Views and the Summary Advisor

Using the Summary Advisor or the DBMS_OLAP package, you can:

■ Estimate the size of a materialized view

■ Recommend a materialized view

■ Recommend materialized views based on collected workload information

■ Report actual utilization of materialized views based on collected workload

■ Define a filter to use against a workload

■ Load and validate a workload

■ Purge filters, workloads, and results

■ Generate a unique identifier (for example, run ID, filter ID, or workload ID)

Trace
Log

Warehouse

Oracle9i

Materialized
View and

Dimensions

Workload

Format

User-Defined
Workload

Summary Advisor
DBMS_OLAP

Package

Discoverer or
Third Party Tool

Oracle Trace
Manager

SQL
Cache

Workload Collection
(optional)
Summary Advisor 16-3

Overview of the Summary Advisor in the DBMS_OLAP Package
All of these tasks can be performed independently of one another. However,
sometimes you need to use several procedures from the DBMS_OLAP package to
complete a task. For example, to recommend a set of materialized views based on a
workload, you have to first load the workload and then generate the set of
recommendations.

Before you can use any of these procedures, you must create a unique identifier for
the data they are about to create. This number is obtained by calling the procedure
CREATE_ID and the unique number is known subsequently as a run ID, workload
ID or filter ID depending on the procedure it is given.

The identifier is used to store the Advisor artifacts in the repository. Each activity in
the Advisor requires a unique identifier to distinguish it from other objects. For
example, when you add a filter item, you associate the item with a filter ID. When
you load a workload, the data gets stored using the unique workload ID. In
addition, when you run RECOMMEND_MVIEW_STRATEGY or EVALUATE_MVIEW_
STRATEGY, a unique ID is associated with the run.

Because the ID is just a unique number, Oracle uses the same CREATE_ID function
to acquire the value. It is only when a specific operation is performed (such as a
load workload) that the ID is identified as a workload ID.

You can use the Summary Advisor with or without a workload, but better results
are achieved if a workload is provided. This can be supplied by:

■ The user

■ Oracle Trace

■ The current SQL cache contents

Once the workload is loaded into the Advisor workload repository or at the time
the materialized view recommendations are generated, a filter can be applied to the
workload to restrict what is analyzed. This provides the ability to generate different
sets of recommendations based on different workload scenarios.

These filters are created using the procedure ADD_FILTER_ITEM. You can create
any number of filters, and use more than one at a time to filter a workload. See
"Using Filters with the Summary Advisor" on page 16-18 for further details.
16-4 Oracle9i Data Warehousing Guide

Overview of the Summary Advisor in the DBMS_OLAP Package
The Summary Advisor uses four types of schema objects, some of which are defined
in the user's schema and some are in the system schema:

■ User schema

For both V-table and workload tables, before the workload is available to the
recommendation process. It must be loaded into the advisor workload
repository.

■ V-tables

V-tables are generated by Oracle Trace for storing results of formatting
server-collected trace. Please note that these V-tables are different from the
V$ tables.

■ Workload tables

Workload tables are user tables that store workload information, and can
reside in any schema.

■ System schema

■ Result tables

Result tables are internal tables that store both intermediate and final
results from all Summary Advisor components.

■ Read-only views

Read-only views allow you to access recommendations, filters and
workloads.These views are MVIEW_RECOMMENDATIONS, MVIEW_
EVALUATIONS, MVIEW_FILTER, and MVIEW_WORKLOAD.

Whenever the Summary Advisor is run, the results, with the exception of
estimated size, are placed in internal tables, which can be accessed from
read-only views in the database. These results can be queried, so you do not
have to keep running the Advisor process.

If you want to view the results of the last materialized view recommendation, you
can issue the following statement:

SELECT MVIEW_OWNER, MVIEW_NAME, RECOMMENDED_ACTION, PCT_PERFORMANCE_GAIN,
 BENEFIT_TO_COST_RATIO
FROM SYSTEM.MVIEW_RECOMMENDATIONS
WHERE RUNID= (SELECT MAX(RUNID) FROM SYSTEM.MVIEW_RECOMMENDATIONS)
 ORDER BY RECOMMENDATION_NUMBER ASC

The advisory functions and procedures of the DBMS_OLAP package require you to
gather structural statistics about fact and dimension table cardinalities, and the
Summary Advisor 16-5

Using the Summary Advisor
distinct cardinalities of every dimension level column, JOIN KEY column, and fact
table key column. You do this by loading your data warehouse, then gathering
either exact or estimated statistics with the DBMS_STATS package or the ANALYZE
TABLE statement. Because gathering statistics is time-consuming and extreme
statistical accuracy is not required, it is generally preferable to estimate statistics.

Using information from the system workload table, schema metadata and statistical
information generated by the DBMS_STATS package, the Advisor engine generates
summary recommendations and summary usage evaluations and stores the results
in result tables.

To use the Summary Advisor with a workload, some or all of the following steps
must be followed:

■ Optionally obtain an identifier number as a filter ID and define one or more
filter items.

■ Obtain an identifier number as a workload ID and load a workload. If a filter
was defined in step 1, then it can be used during the operation to refine the SQL
statements as they are collected from the workload source. Load the workload.

■ Call the procedure RECOMMEND_MVIEW_STRATEGY to generate the
recommendations.

These steps can be repeated several times with different workloads to see the effect
on the materialized views.

Using the Summary Advisor
The following sections will help you use the Advisor:

■ Identifier Numbers

■ Workload Management

■ Loading a User-Defined Workload

■ Loading a Trace Workload

■ Loading a SQL Cache Workload

■ Validating a Workload

■ Removing a Workload

■ Using Filters with the Summary Advisor

■ Removing a Filter
16-6 Oracle9i Data Warehousing Guide

Using the Summary Advisor
■ Recommending Materialized Views

■ Summary Data Report

■ When Recommendations are No Longer Required

■ Stopping the Recommendation Process

■ Summary Advisor Sample Sessions

■ Summary Advisor and Missing Statistics

■ Summary Advisor Privileges and ORA-30446

Identifier Numbers
Most of the DBMS_OLAP procedures require a unique identifier as one of their
parameters. You obtain this by calling the procedure CREATE_ID, which is
illustrated in the following section.

DBMS_OLAP.CREATE_ID Procedure

With a SQL utility such as SQL*Plus, do the following:

1. Declare an output variable to receive the new identifier.

VARIABLE MY_ID NUMBER;

2. Call the CREATE_ID function to generate a new identifier.

EXECUTE DBMS_OLAP.CREATE_ID(:MY_ID);

Workload Management
The Advisor performs best when a workload based on usage is available. The
Advisor Workload Repository is capable of storing multiple workloads, so that the
different uses of a real-world data warehousing environment can be viewed over a
long period of time and across the life cycle of database instance startup and
shutdown.

Table 16–1 DBMS_OLAP.CREATE_ID Procedure Parameters

Parameter Datatype Description

id NUMBER The unique identifier that can be used to create a filter,
load a workload, or create an analysis
Summary Advisor 16-7

Using the Summary Advisor
To facilitate wider use of the Summary Advisor, three types of workload are
supported:

■ Current contents of the SQL cache

■ Oracle Trace collection

■ User-specified workload

When the workload is loaded using the appropriate load_workload procedure, it
is stored in a new workload repository in the SYSTEM schema called MVIEW_
WORKLOAD whose format is shown in Table 16–2. A specific workload can be
removed by calling the PURGE_WORKLOAD routine and passing it a valid workload
ID. To remove all workloads for the current user, call PURGE_WORKLOAD and pass
the constant value DBMS_OLAP.WORKLOAD_ALL.

Once the workload has been collected using the appropriate LOAD_WORKLOAD
routine, there is also a filter mechanism that may be applied, this lets you specify
the portion of workload that is to be loaded into the repository. You can also use the

Table 16–2 MVIEW_WORKLOAD Table

Column Datatype Description

APPLICATION VARCHAR2(30) Optional application name for
the query

CARDINALITY NUMBER Total cardinality of all of tables
in query

WORKLOADID NUMBER Workload id identifying a
unique sampling

FREQUENCY NUMBER Number of times query executed

IMPORT_TIME DATE Date at which item was collected

LASTUSE DATE Last date of execution

OWNER VARCHAR2(30) User who last executed query

PRIORITY NUMBER User-supplied ranking of query

QUERY LONG Query text

QUERYID NUMBER Id number identifying a unique
query

RESPONSETIME NUMBER Execution time in seconds

RESULTSIZE NUMBER Total bytes selected by the query
16-8 Oracle9i Data Warehousing Guide

Using the Summary Advisor
same filter mechanism to restrict workload-based summary recommendation and
evaluation to a subset of the queries contained in the workload repository. Once the
workload has been loaded, the Summary Advisor is run by calling the procedure
RECOMMEND_MVIEW_STRATEGY. A major benefit of this approach is that it is easy to
model different workloads by simply modifying the frequency column, removing
some SQL queries, or adding new queries.

Summary Advisor can retrieve workload information from the SQL cache as well as
Oracle Trace. If the collected data was retrieved from a server with the instance
parameter cursor_sharing set to SIMILAR or FORCE, then user queries with
embedded literal values will be converted to a statement that contains
system-generated bind variables.

In Oracle9i, it is not possible to retrieve the bind-variable data in order to
reconstruct the statement in the form originally submitted by the user. This will, in
turn, cause Summary Advisor to not consider the query for rewrite and potentially
miss a critical statement in the user's workload. As a work-around, if the Advisor
will be used to recommend materialized views, then the server should set the
instance parameter CURSOR_SHARING to EXACT.

Loading a User-Defined Workload
A user-defined workload is loaded using the procedure LOAD_WORKLOAD_USER.
The workload_id is obtained by calling the procedure CREATE_ID. The value of
the flags parameter determines whether the workload is considered to be new,
should be used to overwrite an existing workload, or should be appended to an
existing workload. The optional filter_id can be supplied to specify the filter
that is to be used against this workload. Where the filter would have been defined
using the ADD_FILTER_ITEM procedure.

DBMS_OLAP.LOAD_WORKLOAD_USER Procedure

Note: Oracle Trace will be deprecated in a future release.

Table 16–3 DBMS_OLAP.LOAD_WORKLOAD_USER Procedure Parameters

Parameter Datatype Description

workload_id NUMBER The required workload id that was returned by the
create_id call
Summary Advisor 16-9

Using the Summary Advisor
The actual workload is defined in a separate table and the two parameters owner_
name and table_name describe where it is stored. There is no restriction on which
schema the workload resides in, the name for the table, or how many of these
user-defined tables exist. The only restriction is that the format of the user table
must correspond to the USER_WORKLOAD table, as described in Table 16–4:

flags NUMBER Can take one of the following values:

DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing queries
from the workload that are owned by the specified
collection ID

DBMS_OLAP.WORKLOAD_APPEND

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation will
be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW

The load routine assumes there are no existing queries in
the workload. If it finds an existing workload element, the
call will fail with an error

Note: the flags have the same behavior irrespective of the
LOAD_WORKLOAD operation

filter_id NUMBER Specify filter for the workload to be loaded

owner_name VARCHAR2 The schema that contains the user supplied table or view

table_name VARCHAR2 The table or view name containing valid workload data

Table 16–4 USER_WORKLOAD

Column Datatype
Optional/
Required Description

QUERY Can be any
VARCHAR or LONG
type.

All character types
are supported

Required SQL statement

OWNER VARCHAR2(30) Required User who last executed query

APPLICATION VARCHAR2(30) Optional Application name for the query

Table 16–3 DBMS_OLAP.LOAD_WORKLOAD_USER Procedure Parameters(Cont.)

Parameter Datatype Description
16-10 Oracle9i Data Warehousing Guide

Using the Summary Advisor
The following is an example of loading a user workload.

1. Declare an output variable to receive the new identifier.

VARIABLE MY_ID NUMBER;

2. Call the CREATE_ID function to generate a new identifier.

EXECUTE DBMS_OLAP.CREATE_ID(:MY_ID);

3. Insert into the MY_WORKLOAD tables the queries you want advice on.

INSERT INTO advisor_user_workload VALUES
(
'SELECT SUM(s.quantity_sold)

 FROM sales s, products p
 WHERE s.prod_id = p.prod_id AND p.prod_category = ''Boys ''
 GROUP BY p.prod_category ', 'SH', 'app1 ', 10, NULL, 5, NULL, NULL)

4. Load the workload from a target table or view.

EXECUTE DBMS_OLAP.LOAD_WORKLOAD_USER(:MY_ID, DBMS_OLAP.WORKLOAD_NEW,
 DBMS_OLAP.FILTER_NONE, 'SH', 'MY_WORKLOAD');

FREQUENCY NUMBER Optional Number of times query
executed

LASTUSE DATE Optional Last date of execution

PRIORITY NUMBER Optional User-supplied ranking of query

RESPONSETIME NUMBER Optional Execution time in seconds

RESULTSIZE NUMBER Optional Total bytes selected by the
query

SQL_ADDR NUMBER Optional Cache address

SQL_HASH NUMBER Optional Cache hash value

Table 16–4 USER_WORKLOAD(Cont.)

Column Datatype
Optional/
Required Description
Summary Advisor 16-11

Using the Summary Advisor
Loading a Trace Workload
Alternatively, you can collect a Trace workload from Oracle Enterprise Manager to
gather dynamic information about your query workload, which can be used by an
advisory function. If Oracle Trace is available, consider using it to collect
materialized view usage. Doing so enables you to see which materialized views are
in use. It also lets the Advisor detect any unusual query requests from users that
would result in recommending some different materialized views.

A workload collected by Oracle Trace is loaded using the procedure LOAD_
WORKLOAD_TRACE. You obtain workload_id by calling the procedure CREATE_
ID . The value of the flags parameter will determine whether the workload is
considered new, should be used to overwrite an existing workload or should be
appended to an existing workload. The optional filter ID can be supplied to specify
the filter that is to be used against this workload. In addition, you can specify an
application name to describe this workload and give every query a default priority.
The application name is simply a tag that enables you to classify the workload
query. The name can later be used to filter the workload during a RECOMMEND_
MVIEW_STRATEGY or EVALUATE_MVIEW_STRATEGY operation.

The priority is an important piece of information. It tells the Advisor how important
the query is to the business. When recommendations are formed, the priority will
determine its value and will cause the Advisor to make decisions that favor higher
ranking queries.

If the owner_name parameter is not defined, then the procedure will expect to find
the formatted trace tables in the schema for the current user.

DBMS_OLAP.LOAD_WORKLOAD_TRACE Procedure

Table 16–5 DBMS_OLAP.LOAD_WORKLOAD_TRACE Procedure Parameters

Parameter Datatype Description

workload_id NUMBER The required id that was returned by the CREATE_ID
call
16-12 Oracle9i Data Warehousing Guide

Using the Summary Advisor
Oracle Trace collects two types of data. One is a duration event which causes a data
item to be collected twice: once at the start of the operation and once at the end of
the operation. The duration of the data item is the difference between the start and
end of the operation. For example, execution time is collected as a duration event. It
first collects the clock time when the operation starts. Then it collects the clock time
when the operation ends. Execution time is calculated by subtracting the start time
from the end time.

A point event is a static data item that doesn't change over time. For example, an
owner name is a static data item that would be the same at the start and the end of
an operation.

To collect, analyze and load the summary event set, you must do the following:

flags NUMBER Can take one of the following values:

DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing
queries from the workload that are owned by the
specified collection ID

DBMS_OLAP.WORKLOAD_APPEND

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation
will be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW

The load routine assumes there are no existing queries
in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of
the LOAD_WORKLOAD operation

filter_id NUMBER Specify filter for the workload to be loaded

application VARCHAR2 The default business application name. This value will
be used for a query if one is not found in the target
workload

priority NUMBER The default business priority to be assigned to every
query in the target workload

owner_name VARCHAR2 The schema that contains the Oracle Trace data. If
omitted, the current user will be used

Table 16–5 DBMS_OLAP.LOAD_WORKLOAD_TRACE Procedure Parameters(Cont.)

Parameter Datatype Description
Summary Advisor 16-13

Using the Summary Advisor
1. Set six initialization parameters to collect data using Oracle Trace. Enabling
these parameters incurs some additional overhead at database connection, but
is otherwise transparent.

■ ORACLE_TRACE_COLLECTION_NAME = oraclesm or oraclee

ORACLEE is the Oracle Expert collection which contains Summary Advisor
data and additional data that is only used by Oracle Expert.

ORACLESM is the Summary Advisor collection that contains only Summary
Advisor data and is the preferred collection type.

■ ORACLE_TRACE_COLLECTION_PATH= location of collection
files

■ ORACLE_TRACE_COLLECTION_SIZE = 0

■ ORACLE_TRACE_ENABLE = TRUE

■ ORACLE_TRACE_FACILITY_NAME = oraclesm or oralcee

■ ORACLE_TRACE_FACILITY_PATH= location of trace facility
files

2. Run the Oracle Trace Manager, specify a collection name, and select the
SUMMARY_EVENT set. Oracle Trace Manager reads information from the
associated configuration file and registers events to be logged with Oracle.
While collection is enabled, the workload information defined in the event set
gets written to a flat log file.

3. When collection is complete, Oracle Trace automatically formats the Oracle
Trace log file into a set of relations, which have the predefined synonyms
beginning with V_192216243_ . Alternatively, the collection file, which usually
has an extension of .CDF, can be formatted manually using the otrcfmt utility,
as shown in this example:

otrcfmt collection_name.cdf user/password@database

The trace data can be formatted in any schema. The LOAD_WORKLOAD_TRACE
call lets you specify the location of the data.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for further information regarding these parameters
16-14 Oracle9i Data Warehousing Guide

Using the Summary Advisor

S_
4. Run the GATHER_TABLE_STATS procedure of the DBMS_STATS package or
ANALYZE ... ESTIMATE STATISTICS to collect cardinality statistics on all fact
tables, dimension tables, and key columns (any column that appears in a
dimension LEVEL clause or JOIN clause of a CREATE DIMENSION statement).

5. Run the CREATE_ID procedure of the DBMS_OLAP package to get a unique
workload_id for this workload.

6. Run the LOAD_WORKLOAD_TRACE procedure of the DBMS_OLAP package to
load this workload into the repository.

Once these six steps have been completed, you will be ready to make
recommendations about your materialized views. An example of how to load a
trace workload is illustrated as follows.

1. Declare an output variable to receive the new identifier.

VARIABLE MY_ID NUMBER:

2. Call the CREATE_ID function to generate a new identifier.

EXECUTE DBMS_OLAP.CREATE_ID(:MY_ID);

3. Load the workload from the formatted trace collection.

EXECUTE DBMS_OLAP.LOAD_WORKLOAD_TRACE(:MY_ID, DBMS_OLAP.WORKLOAD_NEW, DBM
OLAP.FILTER_NONE, 'myapp', 7, 'SH');

Loading a SQL Cache Workload
You obtain a SQL cache workload using the procedure LOAD_WORKLOAD_CACHE.
At the time this procedure is called, the current contents of the SQL cache are
analyzed and placed into the read-only view SYSTEM.MVIEW_WORKLOAD.

You obtain workload_id by calling the procedure CREATE_ID. The value of the
flags parameter determines whether the workload is treated as new, should be
used to overwrite an existing workload, or should be appended to an existing
workload. The optional filter ID can be supplied to specify the filter that is to be
used against this workload. Where the filter would have been defined using the
ADD_FILTER_ITEM procedure. In addition, you can specify an application name to
describe this workload and give every query a default priority.
Summary Advisor 16-15

Using the Summary Advisor
DBMS_OLAP.LOAD_WORKLOAD_CACHE Procedure

An example of how to load a SQL Cache workload is as follows.

1. Declare an output variable to receive the new identifier.

VARIABLE MY_ID NUMBER:

2. Call the CREATE_ID function to generate a new identifier.

EXECUTE DBMS_OLAP.CREATE_ID(:MY_ID);

Table 16–6 DBMS_OLAP.LOAD_WORKLOAD_CACHE Procedure Parameters

Parameter Datatype Description

workload_id NUMBER The required ID that was returned by the CREATE_ID
call

flags NUMBER Can take one of the following values:

DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing
queries from the workload that are owned by the
specified collection ID

DBMS_OLAP.WORKLOAD_APPEND:

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation
will be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW:

The load routine assumes there are no existing queries
in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of
the LOAD_WORKLOAD operation

filter_id NUMBER Specify filter for the workload to be loaded. The value
DBMS_OLAP.FILTER_NONE indicates no filtering

application VARCHAR2 String workload's application column. Not used by
SQL Cache workload

priority NUMBER The default business priority to be assigned to every
query in the target workload
16-16 Oracle9i Data Warehousing Guide

Using the Summary Advisor

S_
3. Load the workload from the SQL cache.

EXECUTE DBMS_OLAP.LOAD_WORKLOAD_CACHE(:MY_ID, DBMS_OLAP.WORKLOAD_NEW, DBM
OLAP.FILTER_NONE, 'Payroll ', 7);

Validating a Workload
Prior to loading a workload, you can call one of the three VALIDATE_WORKLOAD
procedures to check that the workload exists:

■ VALIDATE_WORKLOAD_USER

■ VALIDATE_WORKLOAD_CACHE

■ VALIDATE_WORKLOAD_TRACE

These procedures do not check that the contents of the workload are valid, they
merely check that the workload exists.

Examples of Validating Workloads
The following are examples of validating the three types of workload:

DECLARE
 isitgood NUMBER;
 err_text VARCHAR2(200);
BEGIN
 DBMS_OLAP.VALIDATE_WORKLOAD_CACHE (isitgood, err_text);
END;

DECLARE
 isitgood NUMBER;
 err_text VARCHAR2(200);
BEGIN
 DBMS_OLAP.VALIDATE_WORKLOAD_TRACE ('SH', isitgood, err_text);
END;

DECLARE
 isitgood NUMBER;
 err_text VARCHAR2(200);
BEGIN
 DBMS_OLAP.VALIDATE_WORKLOAD_USER ('SH', 'USER_WORKLOAD', isitgood, err_text);
END;
Summary Advisor 16-17

Using the Summary Advisor
Removing a Workload
When workloads are no longer needed, they can be removed using the procedure
PURGE_WORKLOAD. You can delete all workloads or a specific collection.

DBMS_OLAP.PURGE_WORKLOAD Procedure

The following is an example of removing a specific workload:

VARIABLE workload_id NUMBER;
DBMS_OLAP.PURGE_WORKLOAD(:workload_id);

The following example removes all workloads:

EXECUTE DBMS_OLAP.PURGE_WORKLOAD(DBMS_OLAP.WORKLOAD_ALL);

Using Filters with the Summary Advisor
The entire contents of a workload do not have to be used during the
recommendation process. Any workload can be filtered by creating a filter item
using the procedure ADD_FILTER_ITEM, which is described is Table 16–8.

DBMS_OLAP.ADD_FILTER_ITEM Procedure

Table 16–7 DBMS_OLAP.PURGE_WORKLOAD Procedure Parameters

Parameter Datatype Description

workload_id NUMBER An ID number originally assigned by the create_id
call. If the value of workload_id is set to DBMS_
OLAP.WORKLOAD_ALL, then all workload collections
for the current user will be deleted

Table 16–8 DBMS_OLAP.ADD_FILTER_ITEM Procedure Parameters

Parameter Datatype Description

filter_id NUMBER An ID that uniquely describes the filter. It is generated by
the create_id call
16-18 Oracle9i Data Warehousing Guide

Using the Summary Advisor
filter_name VARCHAR2 APPLICATION
String-workload's application column

BASETABLE
String-based tables referenced by workload queries. Name
must be fully qualified including owner and table name
(for example, SH.SALES)

CARDINALITY
Numerical-sum of cardinality of the referenced base tables

FREQUENCY
Numerical-workload's frequency column

LASTUSE
Date-workload's lastuse column. Not used by SQL Cache
workload

OWNER
String-workload's owner column. Expected in uppercase
unless owner defined explicitly to be not all in uppercase

PRIORITY
Numerical-workload's priority column. Not used by SQL
Cache workload

RESPONSETIME
Numerical-workload's responsetime column. Not used by
SQL Cache workload

SCHEMA
String-based schema referenced be workload queries.

TRACENAME
String-list of oracle trace collection names. Only used by a
Trace Workload

string_list VARCHAR2 A comma-delimited list of strings

number_min NUMBER The lower bound of a numerical range. NULL represents
the lowest possible value

number_max NUMBER The upper bound of a numerical range, NULLfor no upper
bound. NULL represents the highest possible value

date_min VARCHAR2 The lower bound of a date range. NULL represents the
lowest possible date value

date_max VARCHAR2 The upper bound of a date range. NULL represents the
highest possible date value

Table 16–8 DBMS_OLAP.ADD_FILTER_ITEM Procedure Parameters(Cont.)

Parameter Datatype Description
Summary Advisor 16-19

Using the Summary Advisor
The Advisor supports ten different filter item types. For each filter item, Oracle
stores an attribute that tells Advisor how to apply the selection rule. For example,
an APPLICATION item requires a string attribute that can be either a single name as
in GREG, or it can be a comma-delimited list of names like GREG, ROSE, KALLIE ,
HANNAH. For a single name, the Advisor takes the value and only accept the
workload query if the application name exactly matches the supplied name. For a
list of names, the queries application name must appear in the list. Referring to my
example, a query whose application name is GREG would match either a single
application filter item containing GREG or the list GREG, ROSE, KALLIE , HANNAH.
Conversely, a query whose application is KALLIE will only match the filter item list
GREG, ROSE, KALLIE , HANNAH.

For numeric filter items such as CARDINALITY, the attribute represents a possible
range of values. Advisor will determine if the filter item represents a bounded
range such as 500 to 1000000, or it could be an exact match like 1000 to 1000. When
the range value is specified as NULL, then the value is infinitely small or large,
depending upon which attribute is set.

Data filters, such as LASTUSE behave similar to numeric filter except Advisor treats
the range test as two dates. A value of NULL indicates infinity.

You can define a number of different types of filter as shown in Table 16–9.

Table 16–9 Workload Filters and Attribute Types

Filter Item
Name string_list

number_
min

number_
max date_min date_max Description

APPLICATION Required N/A N/A N/A N/A Query should be from the list
applications defined in
string_list . Multiple
application names must
separated by commas

CARDINALITY N/A Required Required N/A N/A Sum of cardinalities of base
tables found in a query

LASTUSE N/A N/A N/A Required Required Last execution date of the
query

FREQUENCY N/A Required Required N/A N/A Number of executions for the
query

OWNER Required N/A N/A N/A N/A List of database users who
executed queries. Multiple
owners must be separated by
commas
16-20 Oracle9i Data Warehousing Guide

Using the Summary Advisor
When dealing with a workload, the client can optionally attach a filter to reduce or
refine the set of target SQL statements. If no filter is attached, then all target SQL
statements will be collected or used.

A new filter can be created with the CREATE_ID call. Filter items can be added to
the filter by using the ADD_FILTER_ITEM call. When a filter is created, an entry is
stored in the read-only view SYSTEM.MVIEW_FILTER.

The following is an example illustrating how to add three different types of filter

1. Declare an output variable to receive the new identifier.

VARIABLE MY_ID NUMBER:

2. Call the CREATE_ID function to generate a new identifier.

EXECUTE DBMS_OLAP.CREATE_ID(:MY_ID);

PRIORITY N/A Required Required N/A N/A User-supplied priority value

BASETABLE Required N/A N/A N/A N/A List of fully qualified tables
that appear in a candidate
query. Multiple tables must
be separated by commas

RESPONSETIME N/A Required Required N/A N/A Query response time in
seconds

SCHEMA Required N/A N/A N/A N/A Query should be from the list
schemas defined in string_
list . Multiple schema
names must separated by
commas

TRACENAME Required N/A N/A N/A N/A List of Oracle Trace collection
names. If this filter is not
used, then the collection
operation will choose the
entire Oracle Trace collection,
regardless of it collection
name. Multiple names must
be separated by commas

Table 16–9 Workload Filters and Attribute Types(Cont.)

Filter Item
Name string_list

number_
min

number_
max date_min date_max Description
Summary Advisor 16-21

Using the Summary Advisor
3. Add filter items.

EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'BASETABLE', 'SCOTT.EMP',
 NULL, NULL, NULL, NULL);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'OWNER', 'SCOTT,PAYROLL,PERSONNEL',
 NULL, NULL, NULL, NULL);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'FREQUENCY', NULL,
 500, NULL, NULL, NULL);

This example defines a filter with three filter items. The first filter will only allow
queries that reference the table SCOTT.EMP. The second item will accept queries
that were executed by one of the users SCOTT, PAYROLLor PERSONNEL. Finally, the
third filter item accepts queries that execute at least 500 times.

Note, all filter items must match for a single query to be accepted. If any of the
items fail to match, then the query will not be accepted.

In the previous example, three filters will be applied against the data. However,
each filter item could have created with its only unique filter id, thus creating three
different filters as illustrated in the following:

VARIABLE MY_ID NUMBER:
EXECUTE DBMS_OLAP.CREATE_ID(:MY_ID);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'BASETABLE',
 'SCOTT.EMP', NULL, NULL, NULL, NULL);
EXECUTE DBMS_OLAP.CREATE_ID(:MY_ID);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'OWNER',
 'SCOTT, PAYROLL,PERSONNEL', NULL, NULL, NULL, ULL);
EXECUTE DBMS_OLAP.CREATE_ID(:MY_ID);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:MY_ID, 'FREQUENCY', NULL, 500,NULL,
NULL,NULL);

Removing a Filter
A filter can be removed at anytime by calling the procedure PURGE_FILTER, which
is described in the following table. You can delete a specific filter or all filters. You
can remove all filters using the purge_filter call by specifying DBMS_
OLAP.FILTER_ALL as the filter ID.
16-22 Oracle9i Data Warehousing Guide

Using the Summary Advisor
DBMS_OLAP.PURGE_FILTER Procedure

DBMS_OLAP.PURGE_FILTER Example
VARIABLE MY_FILTER_ID NUMBER:
EXECUTE DBMS_OLAP.PURGE_FILTER(:MY_FILTER_ID);
EXECUTE DBMS_OLAP.PURGE_FILTER(DBMS_OLAP.FILTER_ALL);

Recommending Materialized Views
The analysis and advisory procedure for materialized views is RECOMMEND_
MVIEW_STRATEGY in the DBMS_OLAP package. This procedure automatically
recommends which materialized view to create, retain, or drop. RECOMMEND_
MVIEW_STRATEGY uses structural statistics and optionally workload statistics.

You can call this procedure to obtain a list of materialized view recommendations
that you can select, modify, or reject. Alternatively, you can use the DBMS_OLAP
package directly in your PL/SQL programs for the same purpose.

To use the Summary Advisor, you must have the SELECT ANY TABLE privilege.

The parameters for RECOMMEND_MVIEW_STRATEGY and their descriptions are
given in Table 16–11.

RECOMMEND_MVIEW_STRATEGY Procedure Parameters

Table 16–10 DBMS_OLAP.PURGE_FILTER Procedure Parameters

Parameter Datatype Description

filterid NUMBER A filter ID number used to identify the filter to be
deleted

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
detailed information about the DBMS_OLAP package

Table 16–11 RECOMMEND_MVIEW_STRATEGY Parameters

Parameter I/O Datatype Description

run_id IN NUMBER A return value that uniquely identifies the
current operation

workoad_id IN NUMBER An optional workload ID that maps to a
workload in the current repository
Summary Advisor 16-23

Using the Summary Advisor
The results from calling this package are put in the table SYSTEM.MVIEW_
RECOMMENDATIONSshown in Table 16–12. The output can be queried directly using
the MVIEW_RECOMMENDATION table or a structured report can be generated using
the DBMS_OLAP.GENERATE_MVIEW_REPORT procedure.

filter_id IN NUMBER An optional filter ID that maps to a set of
user-supplied filter items

storage_in_
bytes

IN NUMBER Maximum storage, in bytes, that can be used for
storing materialized views. This number must
be non-negative

retention_pct IN NUMBER Number between 0 and 100 that specifies the
percent of existing materialized view storage
that must be retained, based on utilization on
the actual or hypothetical workload

A materialized view is retained if the
cumulative space, ranked by utilization, is
within the retention threshold specified (or if it
is explicitly listed in retention_list).
Materialized views that have a NULL utilization
(for example, non-dimensional materialized
views) are always retained

retention_list IN VARCHAR2 Comma-delimited list of materialized view
table names

A drop recommendation is not made for any
materialized view that appears in this list

fact_table_
filter

IN VARCHAR2 Comma-delimited list of fact table names to
analyze, or NULL to analyze all fact tables

Table 16–12 MVIEW_RECOMMENDATIONS

Column Datatype Description

RUNID NUMBER Run ID identifying a unique advisor call

FACT_TABLES VARCHAR2(1000) A comma-delimited list of fully
qualified table names for structured
recommendations

GROUPING_LEVELS VARCHAR2(2000) A comma-delimited list of grouping
levels, if any, for structured
recommendations

Table 16–11 RECOMMEND_MVIEW_STRATEGY Parameters(Cont.)

Parameter I/O Datatype Description
16-24 Oracle9i Data Warehousing Guide

Using the Summary Advisor
Summary Advisor Usage Examples
The following are several examples of how you can use the Summary Advisor
recommendation process.

Example 1 Summary Advisor (USER_WORKLOAD)
In this example, a workload is loaded from the table USER_WORKLOAD and no
filtering is applied to the workload. The fact table is called sales .

DECLARE
 workload_id NUMBER;
 run_id NUMBER;

QUERY_TEXT LONG Query text of materialized view if
RECOMMENDED_ACTION is CREATE;
NULL otherwise

RECOMMENDATION_
NUMBER

NUMBER Unique identifier for this
recommendation

RECOMMENDED_ACTION VARCHAR(6) CREATE, RETAIN, or DROP

MVIEW_OWNER VARCHAR2(30) Owner of the materialized view
summary if RECOMMENDED_ACTION is
RETAIN or DROP; NULL otherwise

MVIEW_NAME VARCHAR2(30) Name of the materialized view if
RECOMMENDED_ACTION is RETAIN or
DROP; NULL otherwise

STORAGE_IN_BYTES NUMBER Actual or estimated storage in bytes
Storage

PCT_PERFORMANCE_GAIN NUMBER The expected incremental improvement
in performance obtained by accepting
this recommendation relative to the
initial condition, assuming that all
previous recommendations have been
accepted, or NULL if unknown.
Performance gain

BENEFIT_TO_COST_
RATIO

NUMBER Ratio of the incremental improvement in
performance to the size of the
materialized view in bytes, or NULL if
unknown. Benefit / Cost

Table 16–12 MVIEW_RECOMMENDATIONS(Cont.)

Column Datatype Description
Summary Advisor 16-25

Using the Summary Advisor
BEGIN
-- load the workload
 DBMS_OLAP.CREATE_ID (workload_id);
 DBMS_OLAP.LOAD_WORKLOAD_USER(workload_id, DBMS_OLAP.WORKLOAD_NEW,
 DBMS_OLAP.FILTER_NONE, 'SH', 'USER_WORKLOAD');
-- run recommend_mv
 DBMS_OLAP.CREATE_ID (run_id);
 DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(run_id, workload_id, NULL, 1000000, 100,
NULL, 'sales');
END;

Example 2 Summary Advisor (SQL Cache)
In this example, the workload is derived from the current contents of the SQL cache
and then filtered for only the application called sales_hist :

DECLARE
 workload_id NUMBER;
 filter_id NUMBER;
 run_id NUMBER;
BEGIN
-- add a filter for application sales_hist
 DBMS_OLAP.CREATE_ID(filter_id);
 DBMS_OLAP.ADD_FILTER_ITEM(filter_id, 'APPLICATION', 'sales_hist ', NULL, NULL,
NULL, NULL);
-- load the workload
 DBMS_OLAP.CREATE_ID(workload_id);
 DBMS_OLAP.LOAD_WORKLOAD_CACHE (workload_id, DBMS_OLAP.WORKLOAD_NEW, DBMS_
OLAP.FILTER_NONE, NULL
,NULL);
-- run recommend_mv
 DBMS_OLAP.CREATE_ID (run_id);
 DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(run_id, workload_id, NULL, 1000000, 100,
NULL, 'sales ');
END;

Example 3 Summary Advisor (Oracle Trace)
In this example, the workload is from Oracle Trace without filtering.

DECLARE
 workload_id NUMBER;
 run_id NUMBER;
BEGIN
 DBMS_OLAP.CREATE_ID (workload_id);
 DBMS_OLAP.LOAD_WORKLOAD_TRACE (workload_id, DBMS_OLAP.WORKLOAD_NEW, DBMS_
OLAP.FILTER_NONE, NULL,NULL,NULL);
16-26 Oracle9i Data Warehousing Guide

Using the Summary Advisor
-- run recommend_mv
 DBMS_OLAP.CREATE_ID(run_id);
 DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(run_id, workload_id, NULL,10000000, 100,
NULL, 'sales');
END;

SQL Script Generation
When the Summary Advisor is run using Oracle Enterprise Manager the facility is
provided to implement the advisors recommendations. But when the procedure
RECOMMEND_MVIEW_STRATEGY is called directly the procedure GENERATE_
MVIEW_SCRIPT must be used to create a script which will implement the advisors
recommendations. The parameters are as follows:

GENERATE_MVIEW_SCRIPT (filename VARCHAR2, id NUMBER, tablespace_name VARCHAR2)

The resulting script is a executable SQL file that can contain DROP and CREATE
statements for materialized views. For new materialized views, the name of the
materialized views is auto-generated by combining the user-specified ID and the
Rank value of the materialized views. It is recommended that the user review the
generated SQL script before attempting to execute it.

The filename specification requires the same security model as described in the
GENERATE_MVIEW_REPORT routine.

Summary Advisor Sample Output
/***
** Oracle Summary Advisor 9i - Production
**
** Summary Advisor Recommendation Script
***/
/***
** Recommendations for run ID #9999

Table 16–13 GENERATE_MVIEW_SCRIPT Parameters

Parameter Contents

filename The fully-specified output file name

id The Advisor run ID for which the script will be created

tablespace_name An optional tablespace in which new materialized views will
be placed
Summary Advisor 16-27

Using the Summary Advisor
***/
/***
** Rank 1
** Storage 0 bytes
** Gain 0.00%
** Benefit Ratio 0.00
** SELECT COUNT(*), AVG(dollar_cost)
** FROM sales
** GROUP BY store_key
***/

CREATE MATERIALIZED VIEW mv_id_9999_rank_1
 TABLESPACE user
 BUILD IMMEDIATE
 REFRESH COMPLETE
 ENABLE QUERY REWRITE AS
 SELECT COUNT(*),AVG(dollar_cost) FROM sales GROUP BY store_key;

/***

** Rank 2
** Storage 6,000 bytes
** Gain 13.00%
** Benefit Ratio 874.00
***/

DROP MATERIALIZED VIEW sh.mview_fact_01;

/***

** Rank 3
** Storage 6,000 bytes
** Gain 76.00%
** Benefit Ratio 8,744.00
**
** SELECT COUNT(*), MAX(dollar_cost), MIN(dollar_cost)
** FROM sh.sales
** WHERE store_key IN (10, 23)
** AND unit_sales > 5000
** GROUP BY store_key, promotion_key
***/

CREATE MATERIALIZED VIEW mv_id_9999_rank_3
 TABLESPACE user
 BUILD IMMEDIATE
16-28 Oracle9i Data Warehousing Guide

Using the Summary Advisor
 REFRESH COMPLETE
 ENABLE QUERY REWRITE AS
 SELECT COUNT(*), MAX(dollar_cost), MIN(dollar_cost) FROM sh.sales
 WHERE store_key IN (10,23) AND unit_sales > 5000 GROUP BY
 store_key, promotion_key;

Summary Data Report
A Summary Data Report offers you data about workloads and filters, and then
generates recommendations. The report format is HTML and the contents are the
following:

■ Activity Journal Details

This section describes the recorded data. A journal is simply a mechanism to
permit the Advisor to record any interesting event that may occur during
processing. During processing, many decisions can made by the Advisor that
are not necessarily visible to you. The journal enables you to see the internal
processes and steps taken by the Summary Advisor. It contains
work-in-progress messages, debugging messages and error messages for a
particular Advisor element.

■ Activity Log Details

This section describes the various Advisor activities that have been executed by
the current user. Activities include workload filter maintenance, workload
collections and analysis operations.

■ Materialized View Recommendations

This section contains detail information regarding Advisor analysis sessions. It
presents various recommendations on the creation of new materialized views as
well as the removal of inappropriate or expensive materialized views.

■ Materialized View Usage

This section describes the Advisor's results from an evaluation of existing
materialized views.

■ Workload Collection Details

The workload report lists the details of each SQL query for the current user's
workload collections. The report is arranged by table references.

■ Workload Filter Details

The workload filter report lists details of workload filters for the current user.
Summary Advisor 16-29

Using the Summary Advisor
■ Workload Query Details

This report contains the actual SQL queries for the current user's workload
collections. Each query can be linked back to an entry in the Workload report.

PL/SQL Interface Syntax
PROCEDURE GENERATE_MVIEW_REPORT
 (file_name IN VARCHAR2,
 id IN NUMBER,
 flags IN NUMBER)

Because of the Oracle security model, report output file directories must be granted
read and write permission prior to executing this call. The call is described in
Oracle9i Java Developer’s Guide and is as follows:

EXECUTE DBMS_JAVA.GRANT_PERMISSION('Oracle-user-goes-here ',
 'java.io.FilePermission ', 'directory-spec-goes-here/* ', 'read, write ');

Table 16–14 GENERATE_MVIEW_REPORT Parameters

Parameter Description

file_name A valid output file specification. Note, the Oracle9i restricts file
access within Oracle Stored Procedures. This means that file
locations and names must adhere to the known file permissions in
the Policy Table. See the Security and Performance section of the
Oracle9i Java Developer’s Guide for more information on file
permissions

id The Advisor ID number used to collect or analyze data. NULL
indicates all data for the requested section

flags Report flags to indicate required detail sections. Multiple sections
can be selected by referencing the following constants.

RPT_ALL

RPT_ACTIVITY

RPT_JOURNAL

RPT_RECOMMENDATION

RPT_USAGE

RPT_WORKLOAD_DETAIL

RPT_WORKLOAD_FILTER

RPT_WORKLOAD_QUERY
16-30 Oracle9i Data Warehousing Guide

Using the Summary Advisor
The following is an example of how to call this report:

EXECUTE DBMS_OLAP.GENERATE_MVIEW_REPORT(
'/usr/mydev/myname/report.html ', 0, DBMS_OLAP.RPT_ALL);

This produces the HTML file /usr/mydev/myname/report.html . In this
example, report.html is the Table of Contents for the report. It will contain links
to each section of the report, which are found in external files with names derived
from the original filename. Because no ID was specified for the second parameter,
all data for the current user will be reported. If, for example, you want only a report
on a particular recommendation run, then that run ID should be passed into the
call. The report can generate the following HTML files:

In this table, xxxx is the filename portion of the user-supplied file specification.

All files appear in the same directory, which is the one you specify.

When Recommendations are No Longer Required
Every time the Summary Advisor is run, a new set of recommendations is created.
When they are no longer required, they should be removed using the procedure
PURGE_RESULTS. You can remove all results or those for a specific run.

HTML File Description

xxxx.html Table of Contents

xxxx_log.html Activity Section

xxxx_jou.html Journal Section

xxxx_fil.html Workload Filter Section

xxxx_wrk.html Workload Section

xxxx_rec.html Materialized View Recommendation Section

xxxx_usa.html Materialized View Usage Section
Summary Advisor 16-31

Using the Summary Advisor
DBMS_OLAP.PURGE_RESULTS Procedure

EXECUTE DBMS_OLAP.PURGE_RESULTS (DBMS_OLAP.RUNID_ALL);

Stopping the Recommendation Process
If the Summary Advisor takes too long to make its recommendations using the
procedure RECOMMEND_MVIEW_STRATEGY, you can stop it by calling the procedure
SET_CANCELLED and passing in the run_id for this recommendation process.

DBMS_OLAP.SET_CANCELLED Procedure

Summary Advisor Sample Sessions
Here are some complete examples of how to use the Summary Advisor.

Sample Session Setup
REM===
REM Setup for demos
REM===
CONNECT system/manager
GRANT SELECT ON mview_recommendations to sh;
GRANT SELECT ON mview_workload to sh;
GRANT SELECT ON mview_filter to sh;
DISCONNECT

Table 16–15 DBMS_OLAP.PURGE_RESULTS Procedure Parameters

Parameter Datatype Description

run_id NUMBER An ID used to identify the results to delete

Table 16–16 DBMS_OLAP.SET_CANCELLED Procedure Parameters

Parameter Datatype Description

run_id NUMBER Id that uniquely identifies an advisor analysis
operation. This call can be used to cancel a long
running workload collection as well as an Advisor
analysis session
16-32 Oracle9i Data Warehousing Guide

Using the Summary Advisor
Sample Session 1
REM***
REM * Demo 1: Materialized View Recommendation With User Workload*
REM***
REM===
REM Step 1. Define user workload table and add artificial workload queries.
REM===
CONNECT sh/sh
CREATE TABLE user_workload(
 query VARCHAR2(40),
 owner VARCHAR2(40),
 application VARCHAR2(30),
 frequency NUMBER,
 lastuse DATE,
 priority NUMBER,
 responsetime NUMBER,
 resultsize NUMBER
)
/
INSERT INTO user_workload values
(

'SELECT SUM(s.quantity_sold)
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id and p.prod_category = ''Boys ''
 GROUP BY p.prod_category ', 'SH', 'app1 ', 10, NULL, 5, NULL, NULL
)
/
INSERT INTO user_workload values
(

'SELECT SUM(s.amount)
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id AND
 p.prod_category = ''Girls ''
 GROUP BY p.prod_category ',

'SH', 'app1 ', 10, NULL, 6, NULL, NULL
)
/
INSERT INTO user_workload values
(

'SELECT SUM(quantity_sold)
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id and
 p.prod_category = ''Men''
 GROUP BY p.prod_category
Summary Advisor 16-33

Using the Summary Advisor
',
'SH', 'app1 ', 11, NULL, 3, NULL, NULL

)
/
INSERT INTO user_workload VALUES
(

'SELECT SUM(quantity_sold)
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id and
 p.prod_category in (''Women'', ''Men'')
 GROUP BY p.prod_category ', 'SH', 'app1 ', 1, NULL, 8, NULL, NULL
)
/

REM===
REM Step 2. Create a new identifier to identify a new collection in the
REM internal repository and load the user-defined workload into the
REM workload collection without filtering the workload.
REM
===
VARIABLE WORKLOAD_ID NUMBER;
EXECUTE DBMS_OLAP.CREATE_ID(:workload_id);
EXECUTE DBMS_OLAP.LOAD_WORKLOAD_USER(:workload_id,\
 DBMS_OLAP.WORKLOAD_NEW,\
 DBMS_OLAP.FILTER_NONE, 'SH', 'USER_WORKLOAD');
SELECT COUNT(*) FROM SYSTEM.MVIEW_WORKLOAD
 WHERE workloadid = :workload_id;

REM==
REM Step 3. Create a new identifier to identify a new filter object. Add
REM two filter items such that the filter can filter out workload
REM queries with priority >= 5 and frequency <= 10.
REM===
VARIABLE filter_id NUMBER;
EXECUTE DBMS_OLAP.CREATE_ID(:filter_id);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:filter_id, 'PRIORITY',
 NULL, 5, NULL, NULL, NULL);
EXECUTE DBMS_OLAP.ADD_FILTER_ITEM(:filter_id, 'FREQUENCY', NULL,
 NULL, 10, NULL, NULL);
SELECT COUNT(*) FROM SYSTEM.MVIEW_FILTER
WHERE filterid = :filter_id;

REM===
REM Step 4. Recommend materialized views with part of the previous workload
REM collection that satisfy the filter conditions. Create a new
16-34 Oracle9i Data Warehousing Guide

Using the Summary Advisor
REM identifier to identify the recommendation output.
REM===
VARIABLE RUN_ID NUMBER;
EXECUTE DBMS_OLAP.CREATE_ID(:run_id);
EXECUTE DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(:run_id, :workload_id, :filter_id,
100000, 100, NULL, NULL);
SELECT COUNT(*) FROM SYSTEM.MVIEW_RECOMMENDATIONS;

REM===
REM Step 5. Generate HTML reports on the output.
REM===
EXECUTE DBMS_OLAP.GENERATE_MVIEW_REPORT('/tmp/output1.html ', :run_id, DBMS_
OLAP.RPT_RECOMMENDATION);

REM==
REM Step 6. Cleanup current output, filter and workload collection
REM FROM the internal repository, truncate the user workload table
REM for new user workloads.
REM==
EXECUTE DBMS_OLAP.PURGE_RESULTS(:run_id);
EXECUTE DBMS_OLAP.PURGE_FILTER(:filter_id);
EXECUTE DBMS_OLAP.PURGE_WORKLOAD(:workload_id);
SELECT COUNT(*) FROM SYSTEM.MVIEW_WORKLOAD
 WHERE workloadid = :WORKLOAD_ID;
TRUNCATE TABLE user_workload;

DROP TABLE user_workload;
DISCONNECT

Sample Session 2
REM***
REM * Demo 2: Materialized View Recommendation With SQL Cache. *
REM***
CONNECT sh/sh

REM===
REM Step 1. Run some applications or some SQL queries, so that the
REM Oracle SQL Cache is populated with target queries.
REM===
REM Clear Pool of SQL queries

ALTER SYSTEM FLUSH SHARED_POOL;

SELECT SUM(s.quantity_sold)
Summary Advisor 16-35

Using the Summary Advisor
FROM sales s, products p
WHERE s.prod_id = p.prod_id
 GROUP BY p.prod_category;

SELECT SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id = p.prod_id
GROUP BY p.prod_category;

SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

REM==
REM Step 2. Create a new identifier to identify a new collection in the
REM internal repository and grab a snapshot of the Oracle SQL cache
REM into the new collection.
REM==
EXECUTE DBMS_OLAP.CREATE_ID(:WORKLOAD_ID);
EXECUTE DBMS_OLAP.LOAD_WORKLOAD_CACHE(:WORKLOAD_ID,
 DBMS_OLAP.WORKLOAD_NEW, DBMS_OLAP.FILTER_NONE, NULL, 1);
SELECT COUNT(*) FROM SYSTEM.MVIEW_WORKLOAD
 WHERE workloadid = :WORKLOAD_ID;

REM==
REM Step 3. Recommend materialized views with all of the workload workload
REM and no filtering.
REM===
EXECUTE DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY(:run_id, :workload_id, DBMS_
OLAP.FILTER_NONE, 10000000, 100, NULL, NULL);
SELECT COUNT(*) FROM SYSTEM.MVIEW_RECOMMENDATIONS;

REM===
REM Step 4. Generate HTML reports on the output.
REM==
EXECUTE DBMS_OLAP.GENERATE_MVIEW_REPORT('/tmp/output2.html ', :run_id,
 DBMS_OLAP.RPT_RECOMMENDATION);

REM==
16-36 Oracle9i Data Warehousing Guide

Using the Summary Advisor
REM Step 5. Evaluate materialized views.
REM==
EXECUTE DBMS_OLAP.CREATE_ID(:run_id);
EXECUTE DBMS_OLAP.EVALUATE_MVIEW_STRATEGY(:run_id, :workload_id, DBMS_
OLAP.FILTER_NONE);
REM==
REM Step 5. Cleanup current output, and workload collection
REM FROM the internal repository.
REM===
EXECUTE DBMS_OLAP.PURGE_RESULTS(:run_id);
EXECUTE DBMS_OLAP.PURGE_WORKLOAD(:workload_id);
DISCONNECT

Sample Session Cleanup
REM===
REM Cleanup for demos.
REM===
CONNECT system/manager
REVOKE SELECT ON MVIEW_RECOMMENDATIONS FROM sh;
REVOKE SELECT ON MVIEW_WORKLOAD FROM sh;
REVOKE SELECT ON MVIEW_FILTER FROM sh;
DISCONNECT

Summary Advisor and Missing Statistics
The Summary Advisor will only perform materialized view analysis on table
objects that contain a complete set of statistics as generated by the SQL ANALYZE
statement or the DBMS_STATS package. While running Summary Advisor, the
following Oracle error can occur:

QSM-00508: statistics missing on tables/columns

If this error occurs, then at least one table or column is missing the required
statistics. To determine which object has missing statistics, issue the following
statement:

SELECT runid#, text FROM system.mview$_adv_journal

The text column will contain information regarding missing statistics.

Database statistics are required for both the table and its set of defined columns. A
common mistake occurs when the user only checks for valid table statistics,
unaware that the column statistics have not been set.
Summary Advisor 16-37

Estimating Materialized View Size
Summary Advisor Privileges and ORA-30446
When processing a workload, the Summary Advisor attempts to validate each
statement in order to identify table and column references. If the current database
user does not have select privileges to a particular table, the Advisor bypasses the
statement referencing the table. This may cause many statements to be excluded
from analysis. If the Advisor excludes all statements in a workload, the workload is
invalid and the Advisor returns the following message:

ORA-30446, valid workload queries not found

To avoid missing critical workload queries, the current database user must have
select privileges on the tables that are targeted for materialized view analysis.
Moreover, these select privileges cannot be obtained through a role.

Estimating Materialized View Size
A materialized view occupies storage space in the database, so it is helpful to know
how much space will be required before it is created. Rather than guess or wait until
it has been created and then discover that insufficient space is available in the
tablespace, use the procedure ESTIMATE_MVIEW_SIZE. Calling this procedure
instantly returns an estimate of the size in bytes for the materialized view.
Table 16–17 lists the parameters to this procedure.

ESTIMATE_MVIEW_SIZE Parameters

ESTIMATE_SUMMARY_SIZE returns the following:

■ The number of rows it expects in the materialized view

■ The size of the materialized view in bytes

Table 16–17 ESTIMATE_MVIEW_SIZE Procedure Parameters

Parameter Description

stmt_id Arbitrary string used to identify the statement in an EXPLAIN
PLAN

select_clause The SELECT statement to be analyzed

num_rows Estimated cardinality

num_bytes Estimated number of bytes
16-38 Oracle9i Data Warehousing Guide

Is a Materialized View Being Used?
In the following example, the query specified in the materialized view is passed
into the ESTIMATE_SUMMARY_SIZE procedure. Note that the SQL statement is
passed in without a semicolon at the end.

DBMS_OLAP.ESTIMATE_SUMMARY_SIZE ('simple_store',
 'SELECT product_key1, product_key2,
 SUM(dollar_sales) AS sum_dollar_sales,
 SUM(unit_sales) AS sum_unit_sales,
 SUM(dollar_cost) AS sum_dollar_cost,
 SUM(customer_count) AS no_of_customers
 FROM fact GROUP BY product_key1, product_key2', no_of_rows, mv_size);

The procedure returns two values: an estimate for the number of rows, and the size
of the materialized view in bytes, as illustrated in the following.

No of Rows: 17284
Size of Materialized view (bytes): 2281488

Is a Materialized View Being Used?
One of the major administrative problems with materialized views is knowing
whether they are being used. Some materialized views might be in regular use.
Others could have been created for a one-time problem that has now been resolved.
However, the users who requested this level of analysis might never have told you
that it was no longer required, so the materialized views remain in the database
occupying storage space and possibly being regularly refreshed.

If a workload is available, then it can advise you which materialized views are in
use. The workload will report only on materialized views that were used while it
was collecting statistics. Therefore, if too small a window is chosen, not all the
materialized views that are in use will be reported. To obtain the information, the
procedure EVALUATE_MVIEW_STRATEGY is called. It analyzes the data and then
the results can be viewed through the SYSTEM_MVIEW_EVALUATIONS view.

DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure

Table 16–18 EVALUATE_MVIEW_STRATEGY Procedure Parameters

Parameter Datatype Description

run_id NUMBER The Advisor-assigned ID for the current session

workload_id NUMBER An optional workload ID that maps to a user-supplied
workload
Summary Advisor 16-39

Summary Advisor Wizard
In the following example, the utilization of materialized views is analyzed and the
results are displayed:

DBMS_OLAP.EVALUATE_MVIEW_STRATEGY(:run_id, NULL, DBMS_OLAP.FILTER_NONE);

The following is a sample output obtained by querying the view SYSTEM.MVIEW_
EVALUATIONS, which provides the following information:

■ Materialized view owner and name

■ Rank of this materialized view in descending benefit-to-cost ratio

■ Size of the materialized view in bytes

■ The number of times the materialized view appears in the workload

■ The cumulative benefit (calculated each time the materialized view is used)

■ The benefit-to-cost ratio (calculated as the incremental improvement in
performance to the size of the materialized view)

MVIEW_OWNER MVIEW_NAME RANK SIZE FREQ CUMULATIVE BENEFIT
----------- ------------------- ----- ------ ---- ---------- ----------
GROCERY STORE_MIN_SUM 1 340 1 9001 26.4735294
GROCERY STORE_MAX_SUM 2 380 1 9001 23.6868421
GROCERY STORE_STDCNT_SUM 3 3120 1 3000.38333 .961661325
GROCERY QTR_STORE_PROMO_SUM 4 196020 2 0 0
GROCERY STORE_SALES_SUM 5 340 1 0 0
GROCERY STORE_SUM 6 21 10 0 0

Summary Advisor Wizard
The Summary Advisor Wizard in Oracle Enterprise Manager provides an
interactive environment to recommend and build materialized views. Using the
Wizard, you will be asked where the materialized views are to be placed, which fact
tables to use, and which of the existing materialized views are to be retained. If a
workload exists, it may be automatically selected. Otherwise, the Wizard will
display the recommendations that are generated from the RECOMMEND_MVIEW_
STRATEGY procedure.

filter_id NUMBER The optional filter ID is used to identify a filter against
the target workload

Table 16–18 EVALUATE_MVIEW_STRATEGY Procedure Parameters(Cont.)

Parameter Datatype Description
16-40 Oracle9i Data Warehousing Guide

Summary Advisor Wizard
All of the steps required to maintain your materialized views can be completed by
answering the Wizard's questions. No subsequent DML operations are required.

You cannot use it to review or delete the recommendations, display the reports, or
purge the workloads or filters.

Summary Advisor Steps
The Summary Advisor requires only the completion of a few steps to generate the
recommendations. In Figure 16–2, you see the first step where you have to define
the type of workload being used.

Figure 16–2 Summary Advisor Wizard: Workload Statistics

If no workload is available, then select Hypothetical. Otherwise, specify where the
workload comes from:

■ The current contents of the SQL cache

■ A user defined workload table which is selected from the drop down list

See Also: Oracle Enterprise Manager Configuration Guide for further
information regarding the Summary Advisor
Summary Advisor 16-41

Summary Advisor Wizard
■ An Oracle trace workload

Also, at this time, the workload can be filtered by selecting this option and clicking
on the Specify Filter button. A new screen is displayed where the filters can be
specified. There are four tabs: General, SQL, Advanced, and Trace where the
filtering information is specified.

The Summary Advisor then attempts to determine which tables are the fact tables.

Step 2 displays these results and asks you to move the tables it has identified as fact
tables and you want to be used as a fact table from the Available Tables column to
the Selected Tables column using the > button as shown in Figure 16–3.
Alternatively, you can select which are your fact tables.

Figure 16–3 Summary Advisor: Select Fact Tables

If there are any materialized views that already exist, the Summary Advisor wizard
shows how much space they are using and asks if they should be retained. Then, it
actually generates its recommendations and the screen shown in Figure 16–4 is
displayed.
16-42 Oracle9i Data Warehousing Guide

Summary Advisor Wizard
Figure 16–4 Summary Advisor: Recommendations

The graph shown on the left of the screen shows the calculated gains for these
recommendations. By sliding the marker along the line of the graph, depending on
whether more performance is required or less storage space is used.

A set of materialized views will be recommended for that point on the graph. The
actual recommendations are viewed by clicking on the View/Modify
Recommendations button.

Default schema, tablespace and refresh method can be supplied for all
recommendations. Then by pressing the View/Modify Recommendations button,
each recommendation can be accepted or rejected and customized to your own
requirements as to its name and other characteristics as shown in Figure 16–5.
Summary Advisor 16-43

Summary Advisor Wizard
Figure 16–5 Summary Advisor: Customize Recommendations

Finally, once you are satisfied with the recommendations, Figure 16–6 is displayed
where you can see the actual script which will be used to implement the
recommendations. At this time, this script can be saved to a file and run later, or, if
the Finish button is clicked, the recommendations are implemented.
16-44 Oracle9i Data Warehousing Guide

Summary Advisor Wizard
Figure 16–6 Summary Advisor: Final Screen

Figure 16–7 shows the progress of the process implementing the recommendations.
Summary Advisor 16-45

Summary Advisor Wizard
Figure 16–7 Summary Advisor: Monitor Implementation Process

When finished, the materialized views can now be displayed in Oracle Enterprise
Manager as illustrated in Figure 16–8.
16-46 Oracle9i Data Warehousing Guide

Summary Advisor Wizard
Figure 16–8 Materialized Views in Oracle Enterprise Manager
Summary Advisor 16-47

Summary Advisor Wizard
16-48 Oracle9i Data Warehousing Guide

Part V

 Warehouse Performance

This section deals with ways to improve your data warehouse’s performance, and
contains the following chapters:

■ Schema Modeling Techniques

■ SQL for Aggregation in Data Warehouses

■ SQL for Analysis in Data Warehouses

■ OLAP and Data Mining

■ Using Parallel Execution

■ Query Rewrite

Schema Modeling Tech
17

Schema Modeling Techniques

The following topics provide information about schemas in a data warehouse:

■ Schemas in Data Warehouses

■ Third Normal Form

■ Star Schemas

■ Optimizing Star Queries
niques 17-1

Schemas in Data Warehouses
Schemas in Data Warehouses
A schema is a collection of database objects, including tables, views, indexes, and
synonyms.

There is a variety of ways of arranging schema objects in the schema models
designed for data warehousing. One data warehouse schema model is a star
schema. The Sales History sample schema (the basis for most of the examples in
this book) uses a star schema. However, there are other schema models that are
commonly used for data warehouses. The most prevalent of these schema models is
the third normal form (3NF) schema. Additionally, some data warehouse schemas
are neither star schemas nor 3NF schemas, but instead share characteristics of both
schemas; these are referred to as hybrid schema models.

The Oracle9i database is designed to support all data warehouse schemas. Some
features may be specific to one schema model (such as the star transformation
feature, described in "Using Star Transformation" on page 17-7, which is specific to
star schemas). However, the vast majority of Oracle's data warehousing features are
equally applicable to star schemas, 3NF schemas, and hybrid schemas. Key data
warehousing capabilities such as partitioning (including the rolling window load
technique), parallelism, materialized views, and analytic SQL are implemented in
all schema models.

The determination of which schema model should be used for a data warehouse
should be based upon the requirements and preferences of the data warehouse
project team. Comparing the merits of the alternative schema models is outside of
the scope of this book; instead, this chapter will briefly introduce each schema
model and suggest how Oracle can be optimized for those environments.

Third Normal Form
Although this guide primarily uses star schemas in its examples, you can also use
the third normal form for your data warehouse implementation.

Third normal form modeling is a classical relational-database modeling technique
that minimizes data redundancy through normalization. When compared to a star
schema, a 3NF schema typically has a larger number of tables due to this
normalization process. For example, in Figure 17–1, orders and order items
tables contain similar information as sales table in the star schema in Figure 17–2.

3NF schemas are typically chosen for large data warehouses, especially
environments with significant data-loading requirements that are used to feed data
marts and execute long-running queries.
17-2 Oracle9i Data Warehousing Guide

Third Normal Form
The main advantages of 3NF schemas are that they:

■ Provide a neutral schema design, independent of any application or data-usage
considerations

■ May require less data-transformation than more normalized schemas such as
star schemas

Figure 17–1 presents a graphical representation of a third normal form schema.

Figure 17–1 Third Normal Form Schema

Optimizing Third Normal Form Queries
Queries on 3NF schemas are often very complex and involve a large number of
tables. The performance of joins between large tables is thus a primary
consideration when using 3NF schemas.

One particularly important feature for 3NF schemas is partition-wise joins. The
largest tables in a 3NF schema should be partitioned to enable partition-wise joins.
The most common partitioning technique in these environments is composite
range-hash partitioning for the largest tables, with the most-common join key
chosen as the hash-partitioning key.

Parallelism is often heavily utilized in 3NF environments, and parallelism should
typically be enabled in these environments.

customers orders

order
items

products
Schema Modeling Techniques 17-3

Star Schemas
Star Schemas
The star schema is perhaps the simplest data warehouse schema. It is called a star
schema because the entity-relationship diagram of this schema resembles a star,
with points radiating from a central table. The center of the star consists of a large
fact table and the points of the star are the dimension tables.

A star schema is characterized by one or more very large fact tables that contain the
primary information in the data warehouse, and a number of much smaller
dimension tables (or lookup tables), each of which contains information about the
entries for a particular attribute in the fact table.

A star query is a join between a fact table and a number of dimension tables. Each
dimension table is joined to the fact table using a primary key to foreign key join,
but the dimension tables are not joined to each other. The cost-based optimizer
recognizes star queries and generates efficient execution plans for them.

A typical fact table contains keys and measures. For example, in the sh sample
schema, the fact table, sales , contain the measures quantity_sold, amount ,
and cost , and the keys cust_id , time_id , prod_id , channel_id , and promo_
id . The dimension tables are customers , times , products , channels, and
promotions . The product dimension table, for example, contains information
about each product number that appears in the fact table.

A star join is a primary key to foreign key join of the dimension tables to a fact table.

The main advantages of star schemas are that they:

■ Provide a direct and intuitive mapping between the business entities being
analyzed by end users and the schema design.

■ Provide highly optimized performance for typical star queries.

■ Are widely supported by a large number of business intelligence tools, which
may anticipate or even require that the data-warehouse schema contain
dimension tables

Star schemas are used for both simple data marts and very large data warehouses.
17-4 Oracle9i Data Warehousing Guide

Star Schemas
Figure 17–2 presents a graphical representation of a star schema.

Figure 17–2 Star Schema

Snowflake Schemas
The snowflake schema is a more complex data warehouse model than a star
schema, and is a type of star schema. It is called a snowflake schema because the
diagram of the schema resembles a snowflake.

Snowflake schemas normalize dimensions to eliminate redundancy. That is, the
dimension data has been grouped into multiple tables instead of one large table. For
example, a product dimension table in a star schema might be normalized into a
products table, a product_category table, and a product_manufacturer
table in a snowflake schema. While this saves space, it increases the number of
dimension tables and requires more foreign key joins. The result is more complex
queries and reduced query performance. Figure 17–3 presents a graphical
representation of a snowflake schema.

customers

products

Dimension Table Dimension Table

channels

sales
(amount_sold,
quantity_sold)

times

Fact Table
Schema Modeling Techniques 17-5

Optimizing Star Queries
Figure 17–3 Snowflake Schema

Optimizing Star Queries
You should consider the following when using star queries:

■ Tuning Star Queries

■ Using Star Transformation

Tuning Star Queries
To get the best possible performance for star queries, it is important to follow some
basic guidelines:

■ A bitmap index should be built on each of the foreign key columns of the fact
table or tables.

■ The initialization parameter STAR_TRANSFORMATION_ENABLED should be set
to true . This enables an important optimizer feature for star-queries. It is set to
false by default for backward-compatibility.

■ The cost-based optimizer should be used. This does not apply solely to star
schemas: all data warehouses should always use the cost-based optimizer.

Note: Oracle Corporation recommends you choose a star schema
over a snowflake schema unless you have a clear reason not to.

customers

products

channels

sales
(amount_sold,
quantity_sold)

times

suppliers

countries
17-6 Oracle9i Data Warehousing Guide

Optimizing Star Queries
When a data warehouse satisfies these conditions, the majority of the star queries
running in the data warehouse will use a query execution strategy known as the
star transformation. The star transformation provides very efficient query
performance for star queries.

Using Star Transformation
The star transformation is a powerful optimization technique that relies upon
implicitly rewriting (or transforming) the SQL of the original star query. The end
user never needs to know any of the details about the star transformation. Oracle's
cost-based optimizer automatically chooses the star transformation where
appropriate.

The star transformation is a cost-based query transformation aimed at executing
star queries efficiently. Oracle processes a star query using two basic phases. The
first phase retrieves exactly the necessary rows from the fact table (the result set).
Because this retrieval utilizes bitmap indexes, it is very efficient. The second phase
joins this result set to the dimension tables. An example of an end user query is:
"What were the sales and profits for the grocery department of stores in the west
and southwest sales districts over the last three quarters?" This is a simple star
query.

Star Transformation with a Bitmap Index
A prerequisite of the star transformation is that there be a single-column bitmap
index on every join column of the fact table. These join columns include all foreign
key columns.

For example, the sales table of the sh sample schema has bitmap indexes on the
time_id , channel_id , cust_id , prod_id , and promo_id columns.

Consider the following star query:

SELECT ch.channel_class, c.cust_city, t.calendar_quarter_desc,
 SUM(s.amount_sold) sales_amount
FROM sales s, times t, customers c, channels ch
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND s.channel_id = ch.channel_id

Note: Bitmap indexes are available only if you have purchased the
Oracle9i Enterprise Edition. In Oracle9i Standard Edition, bitmap
indexes and star transformation are not available.
Schema Modeling Techniques 17-7

Optimizing Star Queries
AND c.cust_state_province = 'CA'
AND ch.channel_desc in ('Internet','Catalog')
AND t.calendar_quarter_desc IN ('1999-Q1','1999-Q2')
GROUP BY ch.channel_class, c.cust_city, t.calendar_quarter_desc;

Oracle processes this query in two phases. In the first phase, Oracle uses the bitmap
indexes on the foreign key columns of the fact table to identify and retrieve only the
necessary rows from the fact table. That is, Oracle will retrieve the result set from
the fact table using essentially the following query:

SELECT ... FROM sales
WHERE time_id IN
 (SELECT time_id FROM times
 WHERE calendar_quarter_desc IN('1999-Q1','1999-Q2'))
 AND cust_id IN
 (SELECT cust_id FROM customers WHERE cust_state_province='CA')
 AND channel_id IN
 (SELECT channel_id FROM channels WHERE channel_desc IN('Internet','Catalog'));

This is the transformation step of the algorithm, because the original star query has
been transformed into this subquery representation. This method of accessing the
fact table leverages the strengths of Oracle's bitmap indexes. Intuitively, bitmap
indexes provide a set-based processing scheme within a relational database. Oracle
has implemented very fast methods for doing set operations such as AND (an
intersection in standard set-based terminology), OR (a set-based union), MINUS, and
COUNT.

In this star query, a bitmap index on time_id is used to identify the set of all rows
in the fact table corresponding to sales in 1999-Q 1. This set is represented as a
bitmap (a string of 1's and 0's that indicates which rows of the fact table are
members of the set).

A similar bitmap is retrieved for the fact table rows corresponding to the sale from
1999-Q2 . The bitmap OR operation is used to combine this set of Q1 sales with the
set of Q2 sales.

Additional set operations will be done for the customer dimension and the
product dimension. At this point in the star query processing, there are three
bitmaps. Each bitmap corresponds to a separate dimension table, and each bitmap
represents the set of rows of the fact table that satisfy that individual dimension's
constraints.

These three bitmaps are combined into a single bitmap using the bitmap AND
operation. This final bitmap represents the set of rows in the fact table that satisfy
all of the constraints on the dimension table. This is the result set, the exact set of
17-8 Oracle9i Data Warehousing Guide

Optimizing Star Queries
rows from the fact table needed to evaluate the query. Note that none of the actual
data in the fact table has been accessed. All of these operations rely solely on the
bitmap indexes and the dimension tables. Because of the bitmap indexes'
compressed data representations, the bitmap set-based operations are extremely
efficient.

Once the result set is identified, the bitmap is used to access the actual data from the
sales table. Only those rows that are required for the end user's query are retrieved
from the fact table. At this point, Oracle has effectively joined all of the dimension
tables to the fact table using bitmap indexes. This technique provides excellent
performance because Oracle is joining all of the dimension tables to the fact table
with one logical join operation, rather than joining each dimension table to the fact
table independently.

The second phase of this query is to join these rows from the fact table (the result
set) to the dimension tables. Oracle will use the most efficient method for accessing
and joining the dimension tables. Many dimension are very small, and table scans
are typically the most efficient access method for these dimension tables. For large
dimension tables, table scans may not be the most efficient access method. In the
previous example, a bitmap index on product.department can be used to
quickly identify all of those products in the grocery department. Oracle's cost-based
optimizer automatically determines which access method is most appropriate for a
given dimension table, based upon the cost-based optimizer's knowledge about the
sizes and data distributions of each dimension table.

The specific join method (as well as indexing method) for each dimension table will
likewise be intelligently determined by the cost-based optimizer. A hash join is
often the most efficient algorithm for joining the dimension tables. The final answer
is returned to the user once all of the dimension tables have been joined. The query
technique of retrieving only the matching rows from one table and then joining to
another table is commonly known as a semi-join.

Execution Plan for a Star Transformation with a Bitmap Index
The following typical execution plan might result from "Star Transformation with a
Bitmap Index" on page 17-7:

SELECT STATEMENT
 SORT GROUP BY
 HASH JOIN
 TABLE ACCESS FULL CHANNELS
 HASH JOIN
 TABLE ACCESS FULL CUSTOMERS
 HASH JOIN
Schema Modeling Techniques 17-9

Optimizing Star Queries
 TABLE ACCESS FULL TIMES
 PARTITION RANGE ITERATOR
 TABLE ACCESS BY LOCAL INDEX ROWID SALES
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CUSTOMERS
 BITMAP INDEX RANGE SCAN SALES_CUST_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CHANNELS
 BITMAP INDEX RANGE SCAN SALES_CHANNEL_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL TIMES
 BITMAP INDEX RANGE SCAN SALES_TIME_BIX

In this plan, the fact table is accessed through a bitmap access path based on a
bitmap AND, of three merged bitmaps. The three bitmaps are generated by the
BITMAP MERGE row source being fed bitmaps from row source trees underneath it.
Each such row source tree consists of a BITMAP KEY ITERATION row source which
fetches values from the subquery row source tree, which in this example is a full
table access. For each such value, the BITMAP KEY ITERATIONrow source retrieves
the bitmap from the bitmap index. After the relevant fact table rows have been
retrieved using this access path, they are joined with the dimension tables and
temporary tables to produce the answer to the query.

Star Transformation with a Bitmap Join Index
In addition to bitmap indexes, you can use a bitmap join index during star
transformations. Assume you have the following additional index structure:

CREATE BITMAP INDEX sales_c_state_bjix
ON sales(customers.cust_state_province)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

The processing of the same star query using the bitmap join index is similar to the
previous example. The only difference is that Oracle will utilize the join index,
17-10 Oracle9i Data Warehousing Guide

Optimizing Star Queries
instead of a single-table bitmap index, to access the customer data in the first phase
of the star query.

Execution Plan for a Star Transformation with a Bitmap Join Index
The following typical execution plan might result from "Execution Plan for a Star
Transformation with a Bitmap Join Index" on page 17-11:

SELECT STATEMENT
 SORT GROUP BY
 HASH JOIN
 TABLE ACCESS FULL CHANNELS
 HASH JOIN
 TABLE ACCESS FULL CUSTOMERS
 HASH JOIN
 TABLE ACCESS FULL TIMES
 PARTITION RANGE ALL
 TABLE ACCESS BY LOCAL INDEX ROWID SALES
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP INDEX SINGLE VALUE SALES_C_STATE_BJIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CHANNELS
 BITMAP INDEX RANGE SCAN SALES_CHANNEL_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL TIMES
 BITMAP INDEX RANGE SCAN SALES_TIME_BIX

The difference between this plan as compared to the previous one is that the inner
part of the bitmap index scan for the customer dimension has no subselect. This is
because the join predicate information on customer.cust_state_province
can be satisfied with the bitmap join index sales_c_state_bjix .

How Oracle Chooses to Use Star Transformation
The star transformation is a cost-based transformation in the following sense. The
optimizer generates and saves the best plan it can produce without the
transformation. If the transformation is enabled, the optimizer then tries to apply it
to the query and, if applicable, generates the best plan using the transformed query.
Based on a comparison of the cost estimates between the best plans for the two
Schema Modeling Techniques 17-11

Optimizing Star Queries
versions of the query, the optimizer will then decide whether to use the best plan
for the transformed or untransformed version.

If the query requires accessing a large percentage of the rows in the fact table, it
might be better to use a full table scan and not use the transformations. However, if
the constraining predicates on the dimension tables are sufficiently selective that
only a small portion of the fact table needs to be retrieved, the plan based on the
transformation will probably be superior.

Note that the optimizer generates a subquery for a dimension table only if it decides
that it is reasonable to do so based on a number of criteria. There is no guarantee
that subqueries will be generated for all dimension tables. The optimizer may also
decide, based on the properties of the tables and the query, that the transformation
does not merit being applied to a particular query. In this case the best regular plan
will be used.

Star Transformation Restrictions
Star transformation is not supported for tables with any of the following
characteristics:

■ Queries with a table hint that is incompatible with a bitmap access path

■ Queries that contain bind variables

■ Tables with too few bitmap indexes. There must be a bitmap index on a fact
table column for the optimizer to generate a subquery for it.

■ Remote fact tables. However, remote dimension tables are allowed in the
subqueries that are generated.

■ Anti-joined tables

■ Tables that are already used as a dimension table in a subquery

■ Tables that are really unmerged views, which are not view partitions

The star transformation may not be chosen by the optimizer for the following cases:

■ Tables that have a good single-table access path

■ Tables that are too small for the transformation to be worthwhile

In addition, temporary tables will not be used by star transformation under the
following conditions:

■ The database is in read-only mode

■ The star query is part of a transaction that is in serializable mode
17-12 Oracle9i Data Warehousing Guide

SQL for Aggregation in Data War
18

SQL for Aggregation in Data Warehouses

This chapter discusses aggregation of SQL, a basic aspect of data warehousing. It
contains these topics:

■ Overview of SQL for Aggregation in Data Warehouses

■ ROLLUP Extension to GROUP BY

■ CUBE Extension to GROUP BY

■ GROUPING Functions

■ GROUPING SETS Expression

■ Composite Columns

■ Concatenated Groupings

■ Considerations when Using Aggregation

■ Computation Using the WITH Clause
ehouses 18-1

Overview of SQL for Aggregation in Data Warehouses
Overview of SQL for Aggregation in Data Warehouses
Aggregation is a fundamental part of data warehousing. To improve aggregation
performance in your warehouse, Oracle provides the following extensions to the
GROUP BY clause:

■ CUBE and ROLLUP extensions to the GROUP BY clause

■ Three GROUPING functions

■ GROUPING SETS expression

The CUBE, ROLLUP, and GROUPING SETS extensions to SQL make querying and
reporting easier and faster. ROLLUP calculates aggregations such as SUM, COUNT,
MAX, MIN, and AVG at increasing levels of aggregation, from the most detailed up to
a grand total. CUBEis an extension similar to ROLLUP, enabling a single statement to
calculate all possible combinations of aggregations. CUBE can generate the
information needed in cross-tabulation reports with a single query.

CUBE, ROLLUP, and the GROUPING SETS extension let you specify exactly the
groupings of interest in the GROUP BY clause. This allows efficient analysis across
multiple dimensions without performing a CUBE operation. Computing a full cube
creates a heavy processing load, so replacing cubes with grouping sets can
significantly increase performance. CUBE, ROLLUP, and grouping sets produce a
single result set that is equivalent to a UNION ALL of differently grouped rows.

To enhance performance, CUBE, ROLLUP, and GROUPING SETS can be parallelized:
multiple processes can simultaneously execute all of these statements. These
capabilities make aggregate calculations more efficient, thereby enhancing database
performance, and scalability.

The three GROUPINGfunctions help you identify the group each row belongs to and
enable sorting subtotal rows and filtering results.

See Also: Oracle9i SQL Reference for further details
18-2 Oracle9i Data Warehousing Guide

Overview of SQL for Aggregation in Data Warehouses
Analyzing Across Multiple Dimensions
One of the key concepts in decision support systems is multidimensional analysis:
examining the enterprise from all necessary combinations of dimensions. We use
the term dimension to mean any category used in specifying questions. Among the
most commonly specified dimensions are time, geography, product, department,
and distribution channel, but the potential dimensions are as endless as the varieties
of enterprise activity. The events or entities associated with a particular set of
dimension values are usually referred to as facts. The facts might be sales in units or
local currency, profits, customer counts, production volumes, or anything else
worth tracking.

Here are some examples of multidimensional requests:

■ Show total sales across all products at increasing aggregation levels for a
geography dimension, from state to country to region, for 1999 and 2000.

■ Create a cross-tabular analysis of our operations showing expenses by territory
in South America for 1999 and 2000. Include all possible subtotals.

■ List the top 10 sales representatives in Asia according to 2000 sales revenue for
automotive products, and rank their commissions.

All these requests involve multiple dimensions. Many multidimensional questions
require aggregated data and comparisons of data sets, often across time, geography
or budgets.

To visualize data that has many dimensions, analysts commonly use the analogy of
a data cube, that is, a space where facts are stored at the intersection of n
dimensions. Figure 18–1 shows a data cube and how it can be used differently by
various groups. The cube stores sales data organized by the dimensions of
product , market , sales , and time . Note that this is only a metaphor: the actual
data is physically stored in normal tables. The cube data consists of both detail and
aggregated data.
SQL for Aggregation in Data Warehouses 18-3

Overview of SQL for Aggregation in Data Warehouses
Figure 18–1 Logical Cubes and Views by Different Users

You can retrieve slices of data from the cube. These correspond to cross-tabular
reports such as the one shown in Table 18–1. Regional managers might study the
data by comparing slices of the cube applicable to different markets. In contrast,
product managers might compare slices that apply to different products. An ad hoc
user might work with a wide variety of constraints, working in a subset cube.

Answering multidimensional questions often involves accessing and querying huge
quantities of data, sometimes in millions of rows. Because the flood of detailed data
generated by large organizations cannot be interpreted at the lowest level,
aggregated views of the information are essential. Aggregations, such as sums and
counts, across many dimensions are vital to multidimensional analyses. Therefore,
analytical tasks require convenient and efficient data aggregation.

Optimized Performance
Not only multidimensional issues, but all types of processing can benefit from
enhanced aggregation facilities. Transaction processing, financial and
manufacturing systems—all of these generate large numbers of production reports

Regional Mgr. View

Financial Mgr. View Ad Hoc View

PROD

Time

M
ar

ke
t

SALES
Product Mgr. View
18-4 Oracle9i Data Warehousing Guide

Overview of SQL for Aggregation in Data Warehouses
needing substantial system resources. Improved efficiency when creating these
reports will reduce system load. In fact, any computer process that aggregates data
from details to higher levels will benefit from optimized aggregation performance.

Oracle9i extensions provide aggregation features and bring many benefits,
including:

■ Simplified programming requiring less SQL code for many tasks

■ Quicker and more efficient query processing

■ Reduced client processing loads and network traffic because aggregation work
is shifted to servers

■ Opportunities for caching aggregations because similar queries can leverage
existing work

An Aggregate Scenario
To illustrate the use of the GROUP BY extension, this chapter uses the sh data of the
sample schema. All the examples refer to data from this scenario. The hypothetical
company has sales across the world and tracks sales by both dollars and quantities
information. Because there are many rows of data, the queries shown here typically
have tight constraints on their WHERE clauses to limit the results to a small number
of rows.

Example 18–1 Simple Cross-Tabular Report With Subtotals

Table 18–1 is a sample cross-tabular report showing the total sales by country_id
and channel_desc for the US and UK through the Internet and direct sales in
September 2000.

Consider that even a simple report such as this, with just nine values in its grid,
generates four subtotals and a grand total. The subtotals are the shaded numbers.
Half of the values needed for this report would not be calculated with a query that

Table 18–1 Simple Cross-Tabular Report With Subtotals

Channel Country

UK US Total

Direct Sales 1,378,126 2,835,557 4,213,683

Internet 911,739 1,732,240 2,643,979

Total 2,289,865 4,567,797 6,857,662
SQL for Aggregation in Data Warehouses 18-5

ROLLUP Extension to GROUP BY
requested SUM(amount_sold) and did a GROUP BY(channel_desc, country_
id). To get the higher-level aggregates would require additional queries. Database
commands that offer improved calculation of subtotals bring major benefits to
querying, reporting, and analytical operations.

SELECT channel_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc='2000-09'
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, country_id);

CHANNEL_DESC CO SALES$
-------------------- -- --------------
Direct Sales UK 1,378,126
Direct Sales US 2,835,557
Direct Sales 4,213,683
Internet UK 911,739
Internet US 1,732,240
Internet 2,643,979
 UK 2,289,865
 US 4,567,797
 6,857,662

Interpreting NULLs in Examples
NULLs returned by the GROUP BY extensions are not always the traditional null
meaning value unknown. Instead, a NULL may indicate that its row is a subtotal. To
avoid introducing another non-value in the database system, these subtotal values
are not given a special tag.

See "GROUPING Functions" on page 18-13 for details on how the NULLs
representing subtotals are distinguished from NULLs stored in the data.

ROLLUP Extension to GROUP BY
ROLLUP enables a SELECT statement to calculate multiple levels of subtotals across
a specified group of dimensions. It also calculates a grand total. ROLLUP is a simple
extension to the GROUP BY clause, so its syntax is extremely easy to use. The
ROLLUP extension is highly efficient, adding minimal overhead to a query.
18-6 Oracle9i Data Warehousing Guide

ROLLUP Extension to GROUP BY
The action of ROLLUP is straightforward: it creates subtotals that roll up from the
most detailed level to a grand total, following a grouping list specified in the
ROLLUP clause. ROLLUP takes as its argument an ordered list of grouping columns.
First, it calculates the standard aggregate values specified in the GROUP BY clause.
Then, it creates progressively higher-level subtotals, moving from right to left
through the list of grouping columns. Finally, it creates a grand total.

ROLLUPcreates subtotals at n+1 levels, where n is the number of grouping columns.
For instance, if a query specifies ROLLUP on grouping columns of time , region ,
and department (n=3), the result set will include rows at four aggregation levels.

You might want to compress your data when using ROLLUP. This is particularly
useful when there are few updates to older partitions.

When to Use ROLLUP
Use the ROLLUP extension in tasks involving subtotals.

■ It is very helpful for subtotaling along a hierarchical dimension such as time or
geography. For instance, a query could specify a ROLLUP(y, m, day) or
ROLLUP(country, state, city) .

■ For data warehouse administrators using summary tables, ROLLUPcan simplify
and speed up the maintenance of summary tables.

ROLLUP Syntax
ROLLUP appears in the GROUP BY clause in a SELECT statement. Its form is:

SELECT … GROUP BY ROLLUP(grouping_column_reference_list)

Example 18–2 ROLLUP

This example uses the data in the sales history store data, the same data as was used
in Example 18–1. The ROLLUP is across three dimensions.

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND

See Also: Oracle9i SQL Reference for data compression syntax and
restrictions
SQL for Aggregation in Data Warehouses 18-7

ROLLUP Extension to GROUP BY
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet 5,414,303
 13,924,743

Note that results do not always add due to rounding.

This query returns the following sets of rows:

■ Regular aggregation rows that would be produced by GROUP BY without using
ROLLUP

■ First-level subtotals aggregating across country_id for each combination of
channel_desc and calendar_month

■ Second-level subtotals aggregating across calendar_month_desc and
country_id for each channel_desc value

■ A grand total row

Partial Rollup
You can also roll up so that only some of the sub-totals will be included. This partial
rollup uses the following syntax:

GROUP BY expr1, ROLLUP(expr2, expr3);

In this case, the GROUP BY clause creates subtotals at (2+1=3) aggregation levels.
That is, at level (expr1 , expr2 , expr3), (expr1 , expr2), and (expr1).
18-8 Oracle9i Data Warehousing Guide

ROLLUP Extension to GROUP BY
Example 18–3 Partial ROLLUP

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY channel_desc, ROLLUP(calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet 5,414,303

This query returns the following sets of rows:

■ Regular aggregation rows that would be produced by GROUP BY without using
ROLLUP

■ First-level subtotals aggregating across country_id for each combination of
channel_desc and calendar_month_desc

■ Second-level subtotals aggregating across calendar_month_desc and
country_id for each channel_desc value

■ It does not produce a grand total row
SQL for Aggregation in Data Warehouses 18-9

CUBE Extension to GROUP BY
CUBE Extension to GROUP BY
CUBE takes a specified set of grouping columns and creates subtotals for all of their
possible combinations. In terms of multidimensional analysis, CUBE generates all
the subtotals that could be calculated for a data cube with the specified dimensions.
If you have specified CUBE(time , region , department) , the result set will
include all the values that would be included in an equivalent ROLLUP statement
plus additional combinations. For instance, in Example 18–1, the departmental
totals across regions (279,000 and 319,000) would not be calculated by a
ROLLUP(time , region , department) clause, but they would be calculated by a
CUBE(time , region , department) clause. If n columns are specified for a CUBE,
there will be 2 to the n combinations of subtotals returned. Example 18–3 on
page 18-9 gives an example of a three-dimension cube.

When to Use CUBE
Consider Using CUBE in any situation requiring cross-tabular reports. The data
needed for cross-tabular reports can be generated with a single SELECT using
CUBE. Like ROLLUP, CUBE can be helpful in generating summary tables. Note that
population of summary tables is even faster if the CUBE query executes in parallel.

CUBE is typically most suitable in queries that use columns from multiple
dimensions rather than columns representing different levels of a single dimension.
For instance, a commonly requested cross-tabulation might need subtotals for all
the combinations of month , state , and product . These are three independent
dimensions, and analysis of all possible subtotal combinations is commonplace. In
contrast, a cross-tabulation showing all possible combinations of year , month , and
day would have several values of limited interest, because there is a natural
hierarchy in the time dimension. Subtotals such as profit by day of month summed
across year would be unnecessary in most analyses. Relatively few users need to
ask "What were the total sales for the 16th of each month across the year?" See
"Hierarchy Handling in ROLLUP and CUBE" on page 18-28 for an example of
handling rollup calculations efficiently.

See Also: Oracle9i SQL Reference for syntax and restrictions

See Also: Chapter 21, "Using Parallel Execution" for information
on parallel execution
18-10 Oracle9i Data Warehousing Guide

CUBE Extension to GROUP BY
CUBE Syntax
CUBE appears in the GROUP BY clause in a SELECT statement. Its form is:

SELECT … GROUP BY CUBE (grouping_column_reference_list)

Example 18–4 CUBE

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales UK 2,766,177
Direct Sales US 5,744,263
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet UK 1,788,310
Internet US 3,625,993
Internet 5,414,303
 2000-09 UK 2,289,865
 2000-09 US 4,567,797
 2000-09 6,857,662
 2000-10 UK 2,264,622
 2000-10 US 4,802,459
 2000-10 7,067,081
 UK 4,554,487
SQL for Aggregation in Data Warehouses 18-11

CUBE Extension to GROUP BY
 US 9,370,256
 13,924,743

This query illustrates CUBE aggregation across three dimensions.

Partial CUBE
Partial CUBEresembles partial ROLLUPin that you can limit it to certain dimensions
and precede it with columns outside the CUBE operator. In this case, subtotals of all
possible combinations are limited to the dimensions within the cube list (in
parentheses), and they are combined with the preceding items in the GROUP BY list.

Partial CUBE Syntax
GROUP BY expr1, CUBE(expr2, expr3)

This syntax example calculates 2*2, or 4, subtotals. That is:

■ (expr1 , expr2 , expr3)

■ (expr1 , expr2)

■ (expr1 , expr3)

■ (expr1)

Example 18–5 Partial CUBE

Using the sales database, you can issue the following statement:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY channel_desc, CUBE(calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
18-12 Oracle9i Data Warehousing Guide

GROUPING Functions
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales UK 2,766,177
Direct Sales US 5,744,263
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet UK 1,788,310
Internet US 3,625,993
Internet 5,414,303

Calculating Subtotals Without CUBE
Just as for ROLLUP, multiple SELECT statements combined with UNION ALL
statements could provide the same information gathered through CUBE. However,
this might require many SELECT statements. For an n-dimensional cube, 2 to the n
SELECT statements are needed. In the three-dimension example, this would mean
issuing SELECT statements linked with UNION ALL. So many SELECT statements
yield inefficient processing and very lengthy SQL.

Consider the impact of adding just one more dimension when calculating all
possible combinations: the number of SELECT statements would double to 16. The
more columns used in a CUBE clause, the greater the savings compared to the
UNION ALL approach.

GROUPING Functions
Two challenges arise with the use of ROLLUP and CUBE. First, how can you
programmatically determine which result set rows are subtotals, and how do you
find the exact level of aggregation for a given subtotal? You often need to use
subtotals in calculations such as percent-of-totals, so you need an easy way to
determine which rows are the subtotals. Second, what happens if query results
contain both stored NULL values and "NULL" values created by a ROLLUP or CUBE?
How can you differentiate between the two?

See Also: Oracle9i SQL Reference for syntax and restrictions
SQL for Aggregation in Data Warehouses 18-13

GROUPING Functions
GROUPING Function
GROUPING handles these problems. Using a single column as its argument,
GROUPINGreturns 1 when it encounters a NULLvalue created by a ROLLUPor CUBE
operation. That is, if the NULL indicates the row is a subtotal, GROUPINGreturns a 1.
Any other type of value, including a stored NULL, returns a 0.

GROUPING Syntax
GROUPING appears in the selection list portion of a SELECT statement. Its form is:

SELECT … [GROUPING(dimension_column)…] …
 GROUP BY … {CUBE | ROLLUP| GROUPING SETS} (dimension_column)

Example 18–6 GROUPING to Mask Columns

This example uses GROUPING to create a set of mask columns for the result set
shown in Example 18–3. The mask columns are easy to analyze programmatically.

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), ’9,999,999,999’) SALES$,
 GROUPING(channel_desc) as Ch,
 GROUPING(calendar_month_desc) AS Mo,
 GROUPING(country_id) AS Co
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id);

CHANNEL_DESC CALENDAR CO SALES$ CH MO CO
-------------------- -------- -- -------------- --------- --------- ---------
Direct Sales 2000-09 UK 1,378,126 0 0 0
Direct Sales 2000-09 US 2,835,557 0 0 0
Direct Sales 2000-09 4,213,683 0 0 1
Direct Sales 2000-10 UK 1,388,051 0 0 0
Direct Sales 2000-10 US 2,908,706 0 0 0
Direct Sales 2000-10 4,296,757 0 0 1
Direct Sales 8,510,440 0 1 1
Internet 2000-09 UK 911,739 0 0 0
Internet 2000-09 US 1,732,240 0 0 0
Internet 2000-09 2,643,979 0 0 1
Internet 2000-10 UK 876,571 0 0 0
18-14 Oracle9i Data Warehousing Guide

GROUPING Functions
Internet 2000-10 US 1,893,753 0 0 0
Internet 2000-10 2,770,324 0 0 1
Internet 5,414,303 0 1 1
 13,924,743 1 1 1

A program can easily identify the detail rows by a mask of "0 0 0" on the T, R, and D
columns. The first level subtotal rows have a mask of "0 0 1", the second level
subtotal rows have a mask of "0 1 1", and the overall total row has a mask of "1 1 1".

You can improve the readability of result sets by using the GROUPING and DECODE
functions as shown in Example 18–7.

Example 18–7 GROUPING For Readability

SELECT DECODE(GROUPING(channel_desc), 1, 'All Channels', channel_desc)
 AS Channel,
 DECODE(GROUPING(country_id), 1, 'All Countries', country_id)
 AS Country, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc= '2000-09'
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, country_id);

CHANNEL COUNTRY SALES$
-------------------- ------------- --------------
Direct Sales UK 1,378,126
Direct Sales US 2,835,557
Direct Sales All Countries 4,213,683
Internet UK 911,739
Internet US 1,732,240
Internet All Countries 2,643,979
All Channels UK 2,289,865
All Channels US 4,567,797
All Channels All Countries 6,857,662

To understand the previous statement, note its first column specification, which
handles the channel_desc column. Consider the first line of the previous
statement:

SELECT DECODE(GROUPING(channel_desc), 1, 'All Channels', channel_desc)AS Channel
SQL for Aggregation in Data Warehouses 18-15

GROUPING Functions
In this, the channel_desc value is determined with a DECODE function that
contains a GROUPING function. The GROUPING function returns a 1 if a row value is
an aggregate created by ROLLUP or CUBE, otherwise it returns a 0. The DECODE
function then operates on the GROUPING function's results. It returns the text "All
Channels" if it receives a 1 and the channel_desc value from the database if it
receives a 0. Values from the database will be either a real value such as "Internet" or
a stored NULL. The second column specification, displaying country_id , works
the same way.

When to Use GROUPING
The GROUPING function is not only useful for identifying NULLs, it also enables
sorting subtotal rows and filtering results. In Example 18–8, you retrieve a subset of
the subtotals created by a CUBE and none of the base-level aggregations. The
HAVING clause constrains columns that use GROUPING functions.

Example 18–8 GROUPING Combined with HAVING

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 GROUPING(channel_desc) CH, GROUPING(calendar_month_desc) MO,
GROUPING(country_id) CO
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, country_id)
HAVING
 (GROUPING(channel_desc)=1 AND GROUPING(calendar_month_desc)= 1 AND
 GROUPING(country_id)=1) OR
 (GROUPING(channel_desc)=1 AND GROUPING(calendar_month_desc)= 1) OR
 (GROUPING(country_id)=1 AND GROUPING(calendar_month_desc)= 1);

CHANNEL_DESC C CO SALES$ CH MO CO
-------------------- - -- -------------- --------- --------- ---------
 UK 4,554,487 1 1 0
 US 9,370,256 1 1 0
Direct Sales 8,510,440 0 1 1
Internet 5,414,303 0 1 1
 13,924,743 1 1 1
18-16 Oracle9i Data Warehousing Guide

GROUPING Functions
Compare the result set of Example 18–8 with that in Example 18–3 on page 18-9 to
see how Example 18–8 is a precisely specified group: it contains only the yearly
totals, regional totals aggregated over time and department , and the grand total.

GROUPING_ID Function
To find the GROUP BY level of a particular row, a query must return GROUPING
function information for each of the GROUP BY columns. If we do this using the
GROUPING function, every GROUP BY column requires another column using the
GROUPING function. For instance, a four-column GROUP BY clause needs to be
analyzed with four GROUPING functions. This is inconvenient to write in SQL and
increases the number of columns required in the query. When you want to store the
query result sets in tables, as with materialized views, the extra columns waste
storage space.

To address these problems, Oracle9i introduces the GROUPING_ID function.
GROUPING_ID returns a single number that enables you to determine the exact
GROUP BY level. For each row, GROUPING_ID takes the set of 1’s and 0’s that would
be generated if you used the appropriate GROUPING functions and concatenates
them, forming a bit vector. The bit vector is treated as a binary number, and the
number’s base-10 value is returned by the GROUPING_ID function. For instance, if
you group with the expression CUBE(a, b) the possible values are as shown in
Table 18–2.

GROUPING_ID clearly distinguishes groupings created by grouping set
specification, and it is very useful during refresh and rewrite of materialized views.

GROUP_ID Function
While the extensions to GROUP BY offer power and flexibility, they also allow
complex result sets that can include duplicate groupings. The GROUP_ID function
lets you distinguish among duplicate groupings. If there are multiple sets of rows

Table 18–2 GROUPING_ID Example for CUBE(a, b)

Aggregation Level Bit Vector GROUPING_ID

a, b 0 0 0

a 0 1 1

b 1 0 2

Grand Total 1 1 3
SQL for Aggregation in Data Warehouses 18-17

GROUPING Functions
calculated for a given level, GROUP_ID assigns the value of 0 to all the rows in the
first set. All other sets of duplicate rows for a particular grouping are assigned
higher values, starting with 1. For example, consider the following query, which
generates a duplicate grouping:

Example 18–9 GROUP_ID

SELECT country_id, cust_state_province, SUM(amount_sold),
 GROUPING_ID(country_id, cust_state_province) GROUPING_ID, GROUP_ID()
FROM sales, customers, times
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 times.time_id= '30-OCT-00'
 AND country_id IN ('FR', 'ES')
GROUP BY GROUPING SETS (country_id, ROLLUP(country_id, cust_state_province));

CO CUST_STATE_PROVINCE SUM(AMOUNT_SOLD) GROUPING_ID GROUP_ID()
-- -- ---------------- ----------
ES Alicante 8939 0 0
ES Almeria 1053 0 0
ES Barcelona 6312 0 0
ES Girona 220 0 0
ES Malaga 8137 0 0
ES Salamanca 324 0 0
ES Valencia 7588 0 0
FR Alsace 5099 0 0
FR Aquitaine 13183 0 0
FR Brittany 3938 0 0
FR Centre 2968 0 0
FR Ile-de-France 16449 0 0
FR Languedoc-Roussillon 20228 0 0
FR Midi-Pyrenees 2322 0 0
FR Pays de la Loire 1096 0 0
FR Provence-Alpes-Cote d’Azur 1208 0 0
FR Rhtne-Alpes 7637 0 0
 106701 3 0
ES 32573 1 0
FR 74128 1 0
ES 32573 1 1
FR 74128 1 1

This query generates the following groupings: (country_id , cust_state_
province), (country_id), (country_id), and (). Note that the grouping
18-18 Oracle9i Data Warehousing Guide

GROUPING SETS Expression
(country_id) is repeated twice. The syntax for GROUPING SETS is explained in
"GROUPING SETS Expression" on page 18-19.

This function helps you filter out duplicate groupings from the result. For example,
you can filter out duplicate (region) groupings from the previous example by
adding a HAVING clause condition GROUP_ID()=0 to the query.

GROUPING SETS Expression
You can selectively specify the set of groups that you want to create using a
GROUPING SETS expression within a GROUP BY clause. This allows precise
specification across multiple dimensions without computing the whole CUBE. For
example, you can say:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY GROUPING SETS((channel_desc, calendar_month_desc, country_id),
 (channel_desc, country_id), (calendar_month_desc, country_id));

Note that this statement uses composite columns, described in "Composite
Columns" on page 18-21. This statement calculates aggregates over three groupings:

■ (channel_desc, calendar_month_desc, country_id)

■ (channel_desc, country_id)

■ (calendar_month_desc, country_id)

Compare the previous statement with the following alternative, which uses the
CUBE operation and the GROUPING_ID function to return the desired rows:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 GROUPING_ID(channel_desc, calendar_month_desc, country_id) gid
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
SQL for Aggregation in Data Warehouses 18-19

GROUPING SETS Expression
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, country_id)
HAVING GROUPING_ID(channel_desc, calendar_month_desc, country_id)=0
 OR GROUPING_ID(channel_desc, calendar_month_desc, country_id)=2
 OR GROUPING_ID(channel_desc, calendar_month_desc, country_id)=4;;

This statement computes all the 8 (2 *2 *2) groupings, though only the previous 3
groups are of interest to you.

Another alternative is the following statement, which is lengthy due to several
unions. This statement requires three scans of the base table, making it inefficient.
CUBE and ROLLUP can be thought of as grouping sets with very specific semantics.
For example, consider the following statement:

CUBE(a, b, c)

This statement is equivalent to:

GROUPING SETS ((a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), ())

ROLLUP(a, b, c)

And this statement is equivalent to:

GROUPING SETS ((a, b, c), (a, b), ())

GROUPING SETS Syntax
GROUPING SETS syntax lets you define multiple groupings in the same query.
GROUP BY computes all the groupings specified and combines them with UNION
ALL. For example, the following statement:

GROUP BY GROUPING sets (channel_desc, calendar_month_desc, country_id)

This statement is equivalent to:

GROUP BY channel_desc
UNION ALL
GROUP BY calendar_month_desc
UNION ALL country_id

Table 18–3 shows grouping sets specification and equivalent GROUP BY
specification. Note that some examples use composite columns.
18-20 Oracle9i Data Warehousing Guide

Composite Columns
In the absence of an optimizer that looks across query blocks to generate the
execution plan, a query based on UNION would need multiple scans of the base
table, sales. This could be very inefficient as fact tables will normally be huge. Using
GROUPING SETS statements, all the groupings of interest are available in the same
query block.

Composite Columns
A composite column is a collection of columns that are treated as a unit during the
computation of groupings. You specify the columns in parentheses as in the
following statement:

ROLLUP (year, (quarter, month), day)

In this statement, the data is not rolled up across year and quarter, but is instead
equivalent to the following groupings of a UNION ALL:

■ (year , quarter , month , day),

■ (year , quarter , month),

■ (year)

Table 18–3 GROUPING SETS Statements and Equivalent GROUP BY

GROUPING SETS Statement Equivalent GROUP BY Statement

GROUP BY
GROUPING SETS(a, b, c)

GROUP BY a UNION ALL

GROUP BY b UNION ALL

GROUP BY c

GROUP BY
GROUPING SETS(a, b, (b, c))

GROUP BY a UNION ALL

GROUP BY b UNION ALL

GROUP BY b, c

GROUP BY
GROUPING SETS((a, b, c))

GROUP BY a, b, c

GROUP BY
GROUPING SETS(a, (b), ())

GROUP BY a UNION ALL

GROUP BY b UNION ALL

GROUP BY ()

GROUP BY
GROUPING SETS(a, ROLLUP(b, c))

GROUP BY a UNION ALL

GROUP BY ROLLUP(b, c)
SQL for Aggregation in Data Warehouses 18-21

Composite Columns
■ ()

Here, (quarter , month) form a composite column and are treated as a unit. In
general, composite columns are useful in ROLLUP, CUBE, GROUPING SETS, and
concatenated groupings. For example, in CUBE or ROLLUP, composite columns
would mean skipping aggregation across certain levels. That is, the following
statement:

GROUP BY ROLLUP(a, (b, c))

This is equivalent to:

GROUP BY a, b, c UNION ALL
GROUP BY a UNION ALL
GROUP BY ()

Here, (b , c) are treated as a unit and rollup will not be applied across (b , c) . It is
as if you have an alias, for example z, for (b , c) and the GROUP BY expression
reduces to GROUP BY ROLLUP(a, z) . Compare this with the normal rollup as in the
following:

GROUP BY ROLLUP(a, b, c)

This would be the following:

GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY a UNION ALL
GROUP BY ().

Similarly, the following statement:

GROUP BY CUBE((a, b), c)

This would be equivalent to:

GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY c UNION ALL
GROUP By ()

In GROUPING SETS, a composite column is used to denote a particular level of
GROUP BY. See Table 18–3 for more examples of composite columns.
18-22 Oracle9i Data Warehousing Guide

Composite Columns
Example 18–10 Composite Columns

You do not have full control over what aggregation levels you want with CUBE and
ROLLUP. For example, the following statement:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id);

This statement results in Oracle computing the following groupings:

■ (channel_desc, calendar_month_desc, country_id)

■ (channel_desc, calendar_month_desc)

■ (channel_desc)

■ ()

If you are just interested in grouping of lines (1), (3) and (4) in this example, you
cannot limit the calculation to those groupings without using composite columns.
With composite columns, this is possible by treating month and country as a single
unit while rolling up. Columns enclosed in parentheses are treated as a unit while
computing CUBE and ROLLUP. Thus, you would say:

SELECT channel_desc, calendar_month_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY ROLLUP(channel_desc, (calendar_month_desc, country_id));
SQL for Aggregation in Data Warehouses 18-23

Concatenated Groupings
Concatenated Groupings
Concatenated groupings offer a concise way to generate useful combinations of
groupings. Groupings specified with concatenated groupings yield the
cross-product of groupings from each grouping set. The cross-product operation
enables even a small number of concatenated groupings to generate a large number
of final groups. The concatenated groupings are specified simply by listing multiple
grouping sets, cubes, and rollups, and separating them with commas. Here is an
example of concatenated grouping sets:

GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

This SQL defines the following groupings:

(a, c), (a, d), (b, c), (b, d)

Concatenation of grouping sets is very helpful for these reasons:

■ Ease of query development

You need not enumerate all groupings manually.

■ Use by applications

SQL generated by OLAP applications often involves concatenation of grouping
sets, with each grouping set defining groupings needed for a dimension.

Example 18–11 Concatenated Groupings

You can also specify more than one grouping in the GROUP BY clause. For example,
if you want aggregated sales values for each product rolled up across all levels in
the time dimension (year , month and day), and across all levels in the
geography dimension (region), you can issue the following statement:

SELECT channel_desc, calendar_year, calendar_quarter_desc, country_id,
 cust_state_province, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
AND country_id IN ('UK', 'US')
GROUP BY channel_desc,
 GROUPING SETS (ROLLUP(calendar_year, calendar_quarter_desc),
 ROLLUP(country_id, cust_state_province));
18-24 Oracle9i Data Warehousing Guide

Concatenated Groupings
This results in the following groupings:

■ (channel_desc , calendar_year , calendar_quarter_desc)

■ (channel_desc , calendar_year)

■ (channel_desc)

■ (channel_desc , country_id , cust_state_province)

■ (channel_desc , country_id)

■ (channel_desc)

This is the cross-product of the following:

■ The expression, channel_desc

■ ROLLUP(calendar_year , calendar_quarter_desc), which is equivalent to
((calendar_year , calendar_quarter_desc), (calendar_year), ())

■ ROLLUP(country_id, cust_state_province) , which is equivalent to
((country_id , cust_state_province), (country_id), ())

Note that the output contains two occurrences of (channel_desc) group. To filter
out the extra (channel_desc) group, the query could use a GROUP_ID function.

Another concatenated join example is the following, showing the cross product of
two grouping sets:

Example 18–12 Concatenated Groupings (Cross-Product of Two Grouping Sets)

SELECT country_id, cust_state_province,
 calendar_year, calendar_quarter_desc,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id IN ('UK', 'US')
GROUP BY
 GROUPING SETS (country_id, cust_state_province),
 GROUPING SETS (calendar_year, calendar_quarter_desc);
SQL for Aggregation in Data Warehouses 18-25

Concatenated Groupings
This statement results in the computation of groupings:

■ (country_id , year), (country_id , calendar_quarter_desc), (cust_
state_province , year) and (cust_state_province , calendar_
quarter_desc)

Concatenated Groupings and Hierarchical Data Cubes
One of the most important uses for concatenated groupings is to generate the
aggregates needed for a hierarchical cube of data. A hierarchical cube is a data set
where the data is aggregated along the rollup hierarchy of each of its dimensions
and these aggregations are combined across dimensions. It includes the typical set
of aggregations needed for business intelligence queries. By using concatenated
groupings, you can generate all the aggregations needed by a hierarchical cube with
just n ROLLUPs (where n is the number of dimensions), and avoid generating
unwanted aggregations.

Consider just three of the dimensions in the sh sample schema data set, each of
which has a multilevel hierarchy:

■ time: year , quarter , month , day (week is in a separate hierarchy)

■ product: category , subcategory , prod_name

■ geography: region , subregion , country , state , city

This data is represented using a column for each level of the hierarchies, creating a
total of twelve columns for dimensions, plus the columns holding sales figures.

For our business intelligence needs, we would like to calculate and store certain
aggregates of the various combinations of dimensions. In Example 18–13 on
page 18-27, we create the aggregates for all levels, except for "day", which would
create too many rows. In particular, we want to use ROLLUP within each dimension
to generate useful aggregates. Once we have the ROLLUP-based aggregates within
each dimension, we want to combine them with the other dimensions. This will
generate our hierarchical cube. Note that this is not at all the same as a CUBE using
all twelve of the dimension columns: that would create 2 to the 12th power (4,096)
aggregation groups, of which we need only a small fraction. Concatenated grouping
sets make it easy to generate exactly the aggregations we need. Example 18–13
shows where a GROUP BY clause is needed.
18-26 Oracle9i Data Warehousing Guide

Concatenated Groupings
Example 18–13 Concatenated Groupings and Hierarchical Cubes

SELECT
 calendar_year, calendar_quarter_desc,
 calendar_month_desc, country_region, country_subregion, countries.country_id,
 cust_state_province, cust_city,
 prod_cat_desc, prod_subcat_desc, prod_name,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels, countries, products
WHERE
 sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 sales.prod_id=products.prod_id AND
 customers.country_id=countries.country_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc IN ('2000-09', '2000-10') AND
 prod_name IN ('Ruckpart Eclipse', 'Ukko Plain Gortex Boot') AND
 countries.country_id IN ('UK', 'US')
GROUP BY
 ROLLUP(calendar_year, calendar_quarter_desc,
 calendar_month_desc),
 ROLLUP(country_region, country_subregion, countries.country_id,
 cust_state_province, cust_city),
 ROLLUP(prod_cat_desc, prod_subcat_desc, prod_name);

The ROLLUPs in the GROUP BY specification generate the following groups, four for
each dimension.

Table 18–4 Hierarchical CUBE Example

ROLLUP By Time ROLLUP By Product ROLLUP By Geography

year, quarter, month category,
subcategory, name

region, subregion,
country, state, city

region, subregion,
country, state

region, subregion,
country

year, quarter category,
subcategory

region, subregion

year category region

all times all products all geographies
SQL for Aggregation in Data Warehouses 18-27

Considerations when Using Aggregation
The concatenated grouping sets specified in the previous SQL will take the ROLLUP
aggregations listed in the table and perform a cross-product on them. The
cross-product will create the 96 (4x4x6) aggregate groups needed for a hierarchical
cube of the data. There are major advantages in using three ROLLUP expressions to
replace what would otherwise require 96 grouping set expressions: the concise SQL
is far less error-prone to develop and far easier to maintain, and it enables much
better query optimization. You can picture how a cube with more dimensions and
more levels would make the use of concatenated groupings even more
advantageous.

Considerations when Using Aggregation
This section discusses the following topics.

■ Hierarchy Handling in ROLLUP and CUBE

■ Column Capacity in ROLLUP and CUBE

■ HAVING Clause Used with GROUP BY Extensions

■ ORDER BY Clause Used with GROUP BY Extensions

■ Using Other Aggregate Functions with ROLLUP and CUBE

Hierarchy Handling in ROLLUP and CUBE
The ROLLUP and CUBE extensions work independently of any hierarchy metadata
in your system. Their calculations are based entirely on the columns specified in the
SELECT statement in which they appear. This approach enables CUBE and ROLLUP
to be used whether or not hierarchy metadata is available. The simplest way to
handle levels in hierarchical dimensions is by using the ROLLUP extension and
indicating levels explicitly through separate columns. The following code shows a
simple example of this with months rolled up to quarters and quarters rolled up to
years.

Example 18–14 ROLLUP and CUBE Hierarchy Handling

SELECT calendar_year, calendar_quarter_number,
 calendar_month_number, SUM(amount_sold)
FROM sales, times, products, customers
WHERE sales.time_id=times.time_id AND
 sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 prod_name IN ('Ruckpart Eclipse', 'Ukko Plain Gortex Boot')
18-28 Oracle9i Data Warehousing Guide

Considerations when Using Aggregation

LD)
 AND country_id = 'US'
 AND calendar_year=1999
GROUP BY ROLLUP(calendar_year, calendar_quarter_number, calendar_month_number);

CALENDAR_YEAR CALENDAR_QUARTER_NUMBER CALENDAR_MONTH_NUMBER SUM(AMOUNT_SO
------------- ----------------------- --------------------- ----------------
 1999 1 2 79652
 1999 1 3 156738
 1999 1 236390
 1999 2 4 97802
 1999 2 5 116282
 1999 2 6 85914
 1999 2 299998
 1999 3 7 113256
 1999 3 8 79270
 1999 3 9 103200
 1999 3 295726
 1999 832114
 832114

Column Capacity in ROLLUP and CUBE
CUBE, ROLLUP, and GROUPING SETS do not restrict the GROUP BY clause column
capacity. The GROUP BY clause, with or without the extensions, can work with up to
255 columns. However, the combinatorial explosion of CUBE makes it unwise to
specify a large number of columns with the CUBE extension. Consider that a
20-column list for CUBE would create 2 to the 20 combinations in the result set. A
very large CUBE list could strain system resources, so any such query needs to be
tested carefully for performance and the load it places on the system.

HAVING Clause Used with GROUP BY Extensions
The HAVING clause of SELECT statements is unaffected by the use of GROUP BY.
Note that the conditions specified in the HAVING clause apply to both the subtotal
and non-subtotal rows of the result set. In some cases a query may need to exclude
the subtotal rows or the non-subtotal rows from the HAVING clause. This can be
achieved by using a GROUPING or GROUPING_ID function together with the
HAVING clause. See Example 18–8 on page 18-16 and its associated SQL statement
for an example.
SQL for Aggregation in Data Warehouses 18-29

Computation Using the WITH Clause
ORDER BY Clause Used with GROUP BY Extensions
In many cases, a query needs to order the rows in a certain way, and this is done
with the ORDER BY clause. The ORDER BY clause of a SELECT statement is
unaffected by the use of GROUP BY, since the ORDER BY clause is applied after the
GROUP BY calculations are complete.

Note that the ORDER BY specification makes no distinction between aggregate and
non-aggregate rows of the result set. For instance, you might wish to list sales
figures in declining order, but still have the subtotals at the end of each group.
Simply ordering sales figures in descending sequence will not be sufficient, since
that will place the subtotals (the largest values) at the start of each group. Therefore,
it is essential that the columns in the ORDER BY clause include columns that
differentiate aggregate from non-aggregate columns. This requirement means that
queries using ORDER BY along with aggregation extensions to GROUP BY will
generally need to use one or more of the GROUPING functions.

Using Other Aggregate Functions with ROLLUP and CUBE
The examples in this chapter show ROLLUP and CUBE used with the SUM function.
While this is the most common type of aggregation, these extensions can also be
used with all other functions available to the GROUP BY clause, for example, COUNT,
AVG, MIN, MAX, STDDEV, and VARIANCE. COUNT, which is often needed in
cross-tabular analyses, is likely to be the second most commonly used function.

Computation Using the WITH Clause
The WITH clause (formally known as subquery_factoring_clause) enables
you to reuse the same query block in a SELECT statement when it occurs more than
once within a complex query. WITH is a part of the SQL-99 standard. This is
particularly useful when a query has multiple references to the same query block
and there are joins and aggregations. Using the WITH clause, Oracle retrieves the
results of a query block and stores them in the user’s temporary tablespace. Note
that Oracle9i does not support recursive use of the WITH clause.

The following query is an example of where you can improve performance and
write SQL more simply by using the WITH clause. The query calculates the sum of
sales for each channel and holds it under the name channel_summary . Then it
checks each channel’s sales total to see if any channel’s sales are greater than one
third of the total sales. By using the WITH clause, the channel_summary data is
calculated just once, avoiding an extra scan through the large sales table.
18-30 Oracle9i Data Warehousing Guide

Computation Using the WITH Clause
Example 18–15 WITH Clause

WITH channel_summary AS (
SELECT channels.channel_desc, SUM(amount_sold) AS channel_total
FROM sales, channels
WHERE sales.channel_id = channels.channel_id
GROUP BY channels.channel_desc
)
SELECT channel_desc, channel_total
FROM channel_summary
WHERE channel_total > (
SELECT SUM(channel_total) * 1/3
FROM channel_summary);

CHANNEL_DESC CHANNEL_TOTAL
-------------------- -------------
Direct Sales 312829530

Note that this example could also be performed efficiently using the reporting
aggregate functions described in Chapter 19, "SQL for Analysis in Data
Warehouses".

See Also: Oracle9i SQL Reference for more information
SQL for Aggregation in Data Warehouses 18-31

Computation Using the WITH Clause
18-32 Oracle9i Data Warehousing Guide

SQL for Analysis in Data Ware
19

SQL for Analysis in Data Warehouses

The following topics provide information about how to improve analytical SQL
queries in a data warehouse:

■ Overview of SQL for Analysis in Data Warehouses

■ Ranking Functions

■ Windowing Aggregate Functions

■ Reporting Aggregate Functions

■ LAG/LEAD Functions

■ FIRST/LAST Functions

■ Linear Regression Functions

■ Inverse Percentile Functions

■ Hypothetical Rank and Distribution Functions

■ WIDTH_BUCKET Function

■ User-Defined Aggregate Functions

■ CASE Expressions
houses 19-1

Overview of SQL for Analysis in Data Warehouses
Overview of SQL for Analysis in Data Warehouses
Oracle has enhanced SQL's analytical processing capabilities by introducing a new
family of analytic SQL functions. These analytic functions enable you to calculate:

■ Rankings and percentiles

■ Moving window calculations

■ Lag/lead analysis

■ First/last analysis

■ Linear regression statistics

Ranking functions include cumulative distributions, percent rank, and N-tiles.
Moving window calculations allow you to find moving and cumulative
aggregations, such as sums and averages. Lag/lead analysis enables direct
inter-row references so you can calculate period-to-period changes. First/last
analysis enables you to find the first or last value in an ordered group.

Other enhancements to SQL include the CASE expression. CASE expressions
provide if-then logic useful in many situations.

To enhance performance, analytic functions can be parallelized: multiple processes
can simultaneously execute all of these statements. These capabilities make
calculations easier and more efficient, thereby enhancing database performance,
scalability, and simplicity.

Analytic functions are classified as described in Table 19–1.

See Also: Oracle9i SQL Reference for further details

Table 19–1 Analytic Functions and Their Uses

Type Used For

Ranking Calculating ranks, percentiles, and n-tiles of the values
in a result set.

Windowing Calculating cumulative and moving aggregates. Works
with these functions:

SUM, AVG, MIN, MAX, COUNT, VARIANCE, STDDEV,
FIRST_VALUE, LAST_VALUE, and new statistical
functions
19-2 Oracle9i Data Warehousing Guide

Overview of SQL for Analysis in Data Warehouses
To perform these operations, the analytic functions add several new elements to
SQL processing. These elements build on existing SQL to allow flexible and
powerful calculation expressions. With just a few exceptions, the analytic functions
have these new elements. The processing flow is represented in Figure 19–1.

Figure 19–1 Processing Order

The essential concepts used in analytic functions are:

■ Processing order

Query processing using analytic functions takes place in three stages. First, all
joins, WHERE, GROUP BY and HAVING clauses are performed. Second, the result
set is made available to the analytic functions, and all their calculations take
place. Third, if the query has an ORDER BY clause at its end, the ORDER BY is

Reporting Calculating shares, for example, market share. Works
with these functions:

SUM, AVG, MIN, MAX, COUNT (with/without DISTINCT),
VARIANCE, STDDEV, RATIO_TO_REPORT, and new
statistical functions

LAG/LEAD Finding a value in a row a specified number of rows
from a current row.

FIRST/LAST First or last value in an ordered group.

Linear Regression Calculating linear regression and other statistics (slope,
intercept, and so on).

Inverse Percentile The value in a data set that corresponds to a specified
percentile.

Hypothetical Rank and
Distribution

The rank or percentile that a row would have if inserted
into a specified data set.

Table 19–1 Analytic Functions and Their Uses(Cont.)

Type Used For

Joins,
WHERE, GROUP BY,
and HAVING clauses

Partitions created;
Analytic functions
applied to each row in
each partition

Final
ORDER BY
SQL for Analysis in Data Warehouses 19-3

Overview of SQL for Analysis in Data Warehouses
processed to allow for precise output ordering. The processing order is shown
in Figure 19–1.

■ Result set partitions

The analytic functions allow users to divide query result sets into groups of
rows called partitions. Note that the term partitions used with analytic
functions is unrelated to Oracle's table partitions feature. Throughout this
chapter, the term partitions refers to only the meaning related to analytic
functions. Partitions are created after the groups defined with GROUP BY
clauses, so they are available to any aggregate results such as sums and
averages. Partition divisions may be based upon any desired columns or
expressions. A query result set may be partitioned into just one partition
holding all the rows, a few large partitions, or many small partitions holding
just a few rows each.

■ Window

For each row in a partition, you can define a sliding window of data. This
window determines the range of rows used to perform the calculations for the
current row. Window sizes can be based on either a physical number of rows or
a logical interval such as time. The window has a starting row and an ending
row. Depending on its definition, the window may move at one or both ends.
For instance, a window defined for a cumulative sum function would have its
starting row fixed at the first row of its partition, and its ending row would
slide from the starting point all the way to the last row of the partition. In
contrast, a window defined for a moving average would have both its starting
and end points slide so that they maintain a constant physical or logical range.

A window can be set as large as all the rows in a partition or just a sliding
window of one row within a partition. When a window is near a border, the
function returns results for only the available rows, rather than warning you
that the results are not what you want.

When using window functions, the current row is included during calculations,
so you should only specify (n-1) when you are dealing with n items.

■ Current row

Each calculation performed with an analytic function is based on a current row
within a partition. The current row serves as the reference point determining
the start and end of the window. For instance, a centered moving average
calculation could be defined with a window that holds the current row, the six
preceding rows, and the following six rows. This would create a sliding
window of 13 rows, as shown in Figure 19–2.
19-4 Oracle9i Data Warehousing Guide

Ranking Functions
Figure 19–2 Sliding Window Example

Ranking Functions
A ranking function computes the rank of a record compared to other records in the
dataset based on the values of a set of measures. The types of ranking function are:

■ RANK and DENSE_RANK

■ CUME_DIST and PERCENT_RANK

■ NTILE

■ ROW_NUMBER

RANK and DENSE_RANK
The RANK and DENSE_RANK functions allow you to rank items in a group, for
example, finding the top three products sold in California last year. There are two
functions that perform ranking, as shown by the following syntax:

RANK () OVER ([query_partition_clause] order_by_clause)
DENSE_RANK () OVER ([query_partition_clause] order_by_clause)

The difference between RANKand DENSE_RANKis that DENSE_RANKleaves no gaps
in ranking sequence when there are ties. That is, if you were ranking a competition
using DENSE_RANK and had three people tie for second place, you would say that

D
ir

ec
ti

o
n

 o
f

w
in

d
o

w
 m

o
ve

m
en

t

Window Start

Current Row: calculations based on window contents

Window Finish
SQL for Analysis in Data Warehouses 19-5

Ranking Functions
all three were in second place and that the next person came in third. The RANK
function would also give three people in second place, but the next person would
be in fifth place.

The following are some relevant points about RANK:

■ Ascending is the default sort order, which you may want to change to
descending.

■ The expressions in the optional PARTITION BY clause divide the query result
set into groups within which the RANK function operates. That is, RANK gets
reset whenever the group changes. In effect, the value expressions of the
PARTITION BY clause define the reset boundaries.

■ If the PARTITION BY clause is missing, then ranks are computed over the entire
query result set.

■ The ORDER BY clause specifies the measures (<value expression>s) on which
ranking is done and defines the order in which rows are sorted in each group
(or partition). Once the data is sorted within each partition, ranks are given to
each row starting from 1.

■ The NULLS FIRST | NULLS LAST clause indicates the position of NULLs in the
ordered sequence, either first or last in the sequence. The order of the sequence
would make NULLs compare either high or low with respect to non-NULL
values. If the sequence were in ascending order, then NULLS FIRST implies that
NULLs are smaller than all other non-NULL values and NULLS LAST implies
they are larger than non-NULL values. It is the opposite for descending order.
See the example in "Treatment of NULLs" on page 19-11.

■ If the NULLS FIRST | NULLS LAST clause is omitted, then the ordering of the
null values depends on the ASC or DESC arguments. Null values are considered
larger than any other values. If the ordering sequence is ASC, then nulls will
appear last; nulls will appear first otherwise. Nulls are considered equal to
other nulls and, therefore, the order in which nulls are presented is
non-deterministic.

Ranking Order
The following example shows how the [ASC | DESC] option changes the ranking
order.

Example 19–1 Ranking Order

SELECT channel_desc,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
19-6 Oracle9i Data Warehousing Guide

Ranking Functions
 RANK() OVER (ORDER BY SUM(amount_sold)) AS default_rank,
 RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS LAST) AS custom_rank
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_id='US'
GROUP BY channel_desc;

CHANNEL_DESC SALES$ DEFAULT_RANK CUSTOM_RANK
-------------------- -------------- ------------ -----------
Direct Sales 5,744,263 5 1
Internet 3,625,993 4 2
Catalog 1,858,386 3 3
Partners 1,500,213 2 4
Tele Sales 604,656 1 5

While the data in this result is ordered on the measure SALES$, in general, it is not
guaranteed by the RANK function that the data will be sorted on the measures. If
you want the data to be sorted on SALES$ in your result, you must specify it
explicitly with an ORDER BY clause, at the end of the SELECT statement.

Ranking on Multiple Expressions
Ranking functions need to resolve ties between values in the set. If the first
expression cannot resolve ties, the second expression is used to resolve ties and so
on. For example, here is a query ranking four of the sales channels over two months
based on their dollar sales, breaking ties with the unit sales. (Note that the TRUNC
function is used here only to create tie values for this query.)

Example 19–2 Ranking On Multiple Expressions

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(TRUNC(SUM(amount_sold),-6), '9,999,999,999') SALES$,
 TO_CHAR(SUM(quantity_sold), '9,999,999,999') SALES_Count,
 RANK() OVER (ORDER BY trunc(SUM(amount_sold), -6) DESC, SUM(quantity_sold)
DESC) AS col_rank
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
SQL for Analysis in Data Warehouses 19-7

Ranking Functions
 times.calendar_month_desc IN ('2000-09', '2000-10') AND
 channels.channel_desc<>'Tele Sales'
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ SALES_COUNT COL_RANK
-------------------- -------- -------------- -------------- ---------
Direct Sales 2000-10 10,000,000 192,551 1
Direct Sales 2000-09 9,000,000 176,950 2
Internet 2000-10 6,000,000 123,153 3
Internet 2000-09 6,000,000 113,006 4
Catalog 2000-10 3,000,000 59,782 5
Catalog 2000-09 3,000,000 54,857 6
Partners 2000-10 2,000,000 50,773 7
Partners 2000-09 2,000,000 46,220 8

The sales_count column breaks the ties for three pairs of values.

RANK and DENSE_RANK Difference
The difference between RANK and DENSE_RANK functions is illustrated as follows:

Example 19–3 RANK and DENSE_RANK

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(TRUNC(SUM(amount_sold),-6), '9,999,999,999') SALES$,
 RANK() OVER (ORDER BY trunc(SUM(amount_sold),-6) DESC)
 AS RANK,
DENSE_RANK() OVER (ORDER BY TRUNC(SUM(amount_sold),-6) DESC)
 AS DENSE_RANK
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-09', '2000-10') AND
 channels.channel_desc<>'Tele Sales'
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ RANK DENSE_RANK
-------------------- -------- -------------- --------- ----------
Direct Sales 2000-10 10,000,000 1 1
Direct Sales 2000-09 9,000,000 2 2
Internet 2000-09 6,000,000 3 3
Internet 2000-10 6,000,000 3 3
Catalog 2000-09 3,000,000 5 4
19-8 Oracle9i Data Warehousing Guide

Ranking Functions
Catalog 2000-10 3,000,000 5 4
Partners 2000-09 2,000,000 7 5
Partners 2000-10 2,000,000 7 5

Note that, in the case of DENSE_RANK, the largest rank value gives the number of
distinct values in the dataset.

Per Group Ranking
The RANKfunction can be made to operate within groups, that is, the rank gets reset
whenever the group changes. This is accomplished with the PARTITION BY clause.
The group expressions in the PARTITION BY subclause divide the dataset into
groups within which RANK operates. For example, to rank products within each
channel by their dollar sales, you say:

Example 19–4 Per Group Ranking Example 1

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 RANK() OVER (PARTITION BY channel_desc
 ORDER BY SUM(amount_sold) DESC) AS RANK_BY_CHANNEL
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-08', '2000-09', '2000-10', '2000-11') AND
 channels.channel_desc IN ('Direct Sales', 'Internet')
GROUP BY channel_desc, calendar_month_desc;

A single query block can contain more than one ranking function, each partitioning
the data into different groups (that is, reset on different boundaries). The groups can
be mutually exclusive. The following query ranks products based on their dollar
sales within each month (rank_of_product_per_region) and within each
channel (rank_of_product_total).

Example 19–5 Per Group Ranking Example 2

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
RANK() OVER (PARTITION BY calendar_month_desc
 ORDER BY SUM(amount_sold) DESC) AS RANK_WITHIN_MONTH,
 RANK() OVER (PARTITION BY channel_desc
 ORDER BY SUM(amount_sold) DESC) AS RANK_WITHIN_CHANNEL
SQL for Analysis in Data Warehouses 19-9

Ranking Functions
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-08', '2000-09', '2000-10', '2000-11')
 AND
 channels.channel_desc IN ('Direct Sales', 'Internet')
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ RANK_WITHIN_MONTH RANK_WITHIN_CHANNEL
-------------------- -------- -------------- ----------------- -------------------
Direct Sales 2000-08 9,588,122 1 4
Internet 2000-08 6,084,390 2 4
Direct Sales 2000-09 9,652,037 1 3
Internet 2000-09 6,147,023 2 3
Direct Sales 2000-10 10,035,478 1 2
Internet 2000-10 6,417,697 2 2
Direct Sales 2000-11 12,217,068 1 1
Internet 2000-11 7,821,208 2 1

Per Cube and Rollup Group Ranking
Analytic functions, RANKfor example, can be reset based on the groupings provided
by a CUBE, ROLLUP, or GROUPING SETS operator. It is useful to assign ranks to the
groups created by CUBE, ROLLUP, and GROUPING SETS queries.

A sample CUBE and ROLLUP query is the following:

SELECT channel_desc, country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 RANK() OVER (PARTITION BY GROUPING_ID(channel_desc, country_id)
 ORDER BY SUM(amount_sold) DESC) AS RANK_PER_GROUP
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
 sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND
 channels.channel_desc IN ('Direct Sales', 'Internet') AND
 times.calendar_month_desc='2000-09'
 AND country_id IN ('UK', 'US', 'JP')
GROUP BY CUBE(channel_desc, country_id);

See Also: Chapter 18, "SQL for Aggregation in Data Warehouses"
for further information about the GROUPING function
19-10 Oracle9i Data Warehousing Guide

Ranking Functions
CHANNEL_DESC CO SALES$ RANK_PER_GROUP
-------------------- -- -------------- --------------
Direct Sales US 2,835,557 1
Internet US 1,732,240 2
Direct Sales UK 1,378,126 3
Internet UK 911,739 4
Direct Sales JP 91,124 5
Internet JP 57,232 6
Direct Sales 4,304,807 1
Internet 2,701,211 2
 US 4,567,797 1
 UK 2,289,865 2
 JP 148,355 3
 7,006,017 1

Treatment of NULLs
NULLs are treated like normal values. Also, for rank computation, a NULL value is
assumed to be equal to another NULL value. Depending on the ASC | DESC options
provided for measures and the NULLS FIRST | NULLS LAST clause, NULLs will
either sort low or high and hence, are given ranks appropriately. The following
example shows how NULLs are ranked in different cases:

SELECT calendar_year AS YEAR, calendar_quarter_number AS QTR,
 calendar_month_number AS MO, SUM(amount_sold),
RANK() OVER (ORDER BY SUM(amount_sold) ASC NULLS FIRST) AS NFIRST,
RANK() OVER (ORDER BY SUM(amount_sold) ASC NULLS LAST) AS NLASST,
RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS FIRST) AS NFIRST_DESC,
RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS LAST) AS NLAST_DESC
FROM (
 SELECT sales.time_id, sales.amount_sold, products.*, customers.*
 FROM sales, products, customers
 WHERE
 sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 prod_name IN ('Ruckpart Eclipse', 'Ukko Plain Gortex Boot')
 AND country_id ='UK') v, times
 WHERE v.time_id (+) =times.time_id AND
 calendar_year=1999
 GROUP BY calendar_year, calendar_quarter_number, calendar_month_number;

YEAR QTR MO SUM(AMOUNT_SOLD) NFIRST NLASST NFIRST_DESC NLAST_DESC
------------- --------- --------- ---------------- --------- --------- ----------- ----------
 1999 1 3 51820 12 8 5 1
 1999 2 6 45360 11 7 6 2
 1999 3 9 43950 10 6 7 3
 1999 3 8 41180 8 4 9 5
SQL for Analysis in Data Warehouses 19-11

Ranking Functions
 1999 2 5 27431 7 3 10 6
 1999 2 4 20602 6 2 11 7
 1999 3 7 15296 5 1 12 8
 1999 1 1 1 9 1 9
 1999 4 10 1 9 1 9
 1999 4 11 1 9 1 9
 1999 4 12 1 9 1 9

If the value for two rows is NULL, the next group expression is used to resolve the
tie. If they cannot be resolved even then, the next expression is used and so on till
the tie is resolved or else the two rows are given the same rank. For example:

Top N Ranking
You can easily obtain top N ranks by enclosing the RANKfunction in a subquery and
then applying a filter condition outside the subquery. For example, to obtain the top
five countries in sales for a specific month, you can issue the following statement:

SELECT * FROM
 (SELECT country_id,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 RANK() OVER (ORDER BY SUM(amount_sold) DESC) AS COUNTRY_RANK
 FROM sales, products, customers, times, channels
 WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc='2000-09'
 GROUP BY country_id)
WHERE COUNTRY_RANK <= 5;

CO SALES$ COUNTRY_RANK
-- -------------- ------------
US 6,517,786 1
NL 3,447,121 2
UK 3,207,243 3
DE 3,194,765 4
FR 2,125,572 5

Bottom N Ranking
Bottom N is similar to top N except for the ordering sequence within the rank
expression. Using the previous example, you can order SUM(s_amount) ascending
instead of descending.
19-12 Oracle9i Data Warehousing Guide

Ranking Functions
CUME_DIST
The CUME_DIST function (defined as the inverse of percentile in some statistical
books) computes the position of a specified value relative to a set of values. The
order can be ascending or descending. Ascending is the default. The range of values
for CUME_DIST is from greater than 0 to 1. To compute the CUME_DIST of a value x
in a set S of size N, you use the formula:

CUME_DIST(x) = number of values in S coming before and including x
in the specified order/ N

Its syntax is:

CUME_DIST () OVER ([query_partition_clause] order_by_clause)

The semantics of various options in the CUME_DIST function are similar to those in
the RANK function. The default order is ascending, implying that the lowest value
gets the lowest CUME_DIST (as all other values come later than this value in the
order). NULLs are treated the same as they are in the RANK function. They are
counted toward both the numerator and the denominator as they are treated like
non-NULL values. The following example finds cumulative distribution of sales by
channel within each month:

SELECT calendar_month_desc AS MONTH, channel_desc,
 TO_CHAR(SUM(amount_sold) , '9,999,999,999') SALES$,
 CUME_DIST() OVER (PARTITION BY calendar_month_desc ORDER BY
 SUM(amount_sold)) AS
 CUME_DIST_BY_CHANNEL
 FROM sales, products, customers, times, channels
 WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-09', '2000-07','2000-08')
 GROUP BY calendar_month_desc, channel_desc;

MONTH CHANNEL_DESC SALES$ CUME_DIST_BY_CHANNEL
-------- -------------------- -------------- --------------------
2000-07 Tele Sales 1,012,954 .2
2000-07 Partners 2,495,662 .4
2000-07 Catalog 2,946,709 .6
2000-07 Internet 6,045,609 .8
2000-07 Direct Sales 9,563,664 1
2000-08 Tele Sales 1,008,703 .2
2000-08 Partners 2,552,945 .4
SQL for Analysis in Data Warehouses 19-13

Ranking Functions
2000-08 Catalog 3,061,381 .6
2000-08 Internet 6,084,390 .8
2000-08 Direct Sales 9,588,122 1
2000-09 Tele Sales 1,017,149 .2
2000-09 Partners 2,570,666 .4
2000-09 Catalog 3,025,309 .6
2000-09 Internet 6,147,023 .8
2000-09 Direct Sales 9,652,037 1

PERCENT_RANK
PERCENT_RANK is similar to CUME_DIST, but it uses rank values rather than row
counts in its numerator. Therefore, it returns the percent rank of a value relative to a
group of values. The function is available in many popular spreadsheets. PERCENT_
RANK of a row is calculated as:

(rank of row in its partition - 1) / (number of rows in the partition - 1)

PERCENT_RANK returns values in the range zero to one. The row(s) with a rank of 1
will have a PERCENT_RANK of zero.

Its syntax is:

PERCENT_RANK () OVER ([query_partition_clause] order_by_clause)

NTILE
NTILE allows easy calculation of tertiles, quartiles, deciles and other common
summary statistics. This function divides an ordered partition into a specified
number of groups called buckets and assigns a bucket number to each row in the
partition. NTILE is a very useful calculation because it lets users divide a data set
into fourths, thirds, and other groupings.

The buckets are calculated so that each bucket has exactly the same number of rows
assigned to it or at most 1 row more than the others. For instance, if you have 100
rows in a partition and ask for an NTILE function with four buckets, 25 rows will be
assigned a value of 1, 25 rows will have value 2, and so on. These buckets are
referred to as equiheight buckets.

If the number of rows in the partition does not divide evenly (without a remainder)
into the number of buckets, then the number of rows assigned for each bucket will
differ by one at most. The extra rows will be distributed one for each bucket starting
from the lowest bucket number. For instance, if there are 103 rows in a partition
which has an NTILE(5) function, the first 21 rows will be in the first bucket, the
19-14 Oracle9i Data Warehousing Guide

Ranking Functions
next 21 in the second bucket, the next 21 in the third bucket, the next 20 in the
fourth bucket and the final 20 in the fifth bucket.

The NTILE function has the following syntax:

NTILE (expr) OVER ([query_partition_clause] order_by_clause)

In this, the N in NTILE(N) can be a constant (for example, 5) or an expression.

This function, like RANKand CUME_DIST, has a PARTITION BY clause for per group
computation, an ORDER BY clause for specifying the measures and their sort order,
and NULLS FIRST | NULLS LAST clause for the specific treatment of NULLs. For
example,

NTILE Example
The following is an example assigning each month's sales total into one of 4
buckets:

SELECT calendar_month_desc AS MONTH ,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 NTILE(4) OVER (ORDER BY SUM(amount_sold)) AS TILE4
 FROM sales, products, customers, times, channels
 WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_year=1999 AND
 prod_category= 'Men'
 GROUP BY calendar_month_desc;

MONTH SALES$ TILE4
-------- -------------- ---------
1999-10 4,373,102 1
1999-01 4,754,622 1
1999-11 5,367,943 1
1999-12 6,082,226 2
1999-07 6,161,638 2
1999-02 6,518,877 2
1999-06 6,634,401 3
1999-04 6,772,673 3
1999-08 6,954,221 3
1999-03 6,968,928 4
1999-09 7,030,524 4
1999-05 8,018,174 4
SQL for Analysis in Data Warehouses 19-15

Ranking Functions
NTILE ORDER BY statements must be fully specified to yield reproducible results.
Equal values can get distributed across adjacent buckets (75 is assigned to buckets 2
and 3 in the previous example) and buckets 1, 2, and 3 in the example have 3
elements - one more than the size of bucket 4. In this example, JEANS could as well
be assigned to bucket 2 (instead of 3) and SWEATERS to bucket 3 (instead of 2),
because there is no ordering on the p_product_key column. To ensure
deterministic results, you must order on a unique key.

ROW_NUMBER
The ROW_NUMBER function assigns a unique number (sequentially, starting from 1,
as defined by ORDER BY) to each row within the partition. It has the following
syntax:

ROW_NUMBER () OVER ([query_partition_clause] order_by_clause)

ROW_NUMBER Example
SELECT channel_desc, calendar_month_desc,
 TO_CHAR(TRUNC(SUM(amount_sold), -6), '9,999,999,999') SALES$,
 ROW_NUMBER() OVER (ORDER BY TRUNC(SUM(amount_sold), -6) DESC)
 AS ROW_NUMBER
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=times.time_id AND
 sales.channel_id=channels.channel_id AND
 times.calendar_month_desc IN ('2000-09', '2000-10')
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ ROW_NUMBER
-------------------- -------- -------------- ----------
Direct Sales 2000-10 10,000,000 1
Direct Sales 2000-09 9,000,000 2
Internet 2000-09 6,000,000 3
Internet 2000-10 6,000,000 4
Catalog 2000-09 3,000,000 5
Catalog 2000-10 3,000,000 6
Partners 2000-09 2,000,000 7
Partners 2000-10 2,000,000 8
Tele Sales 2000-09 1,000,000 9
Tele Sales 2000-10 1,000,000 10
19-16 Oracle9i Data Warehousing Guide

Windowing Aggregate Functions
Note that there are three pairs of tie values in these results. Like NTILE , ROW_
NUMBER is a non-deterministic function, so each tied value could have its row
number switched. To ensure deterministic results, you must order on a unique key.
Inmost cases, that will require adding a new tie breaker column to the query and
using it in the ORDER BY specification.

Windowing Aggregate Functions
Windowing functions can be used to compute cumulative, moving, and centered
aggregates. They return a value for each row in the table, which depends on other
rows in the corresponding window. These functions include moving sum, moving
average, moving min/max, cumulative sum, as well as statistical functions. They
can be used only in the SELECT and ORDER BY clauses of the query. Two other
functions are available: FIRST_VALUE, which returns the first value in the window;
and LAST_VALUE, which returns the last value in the window. These functions
provide access to more than one row of a table without a self-join. The syntax of the
windowing functions is:

{SUM|AVG|MAX|MIN|COUNT|STDDEV|VARIANCE|FIRST_VALUE|LAST_VALUE}
 ({ value expression1 | *}) OVER
 ([PARTITION BY value expression2 [,...])
 ORDER BY value expression3 [collate clause>]
 [ASC| DESC] [NULLS FIRST | NULLS LAST] [,...]
{ ROWS | RANGE }
{ BETWEEN
 { UNBOUNDED PRECEDING
 | CURRENT ROW
 | value_expr { PRECEDING | FOLLOWING }
 }
 AND
 { UNBOUNDED FOLLOWING
 | CURRENT ROW
 | value_expr { PRECEDING | FOLLOWING }
 }
| { UNBOUNDED PRECEDING
 | CURRENT ROW
 | value_expr PRECEDING
 }
}

See Also: Oracle9i SQL Reference for further information regarding
syntax and restrictions
SQL for Analysis in Data Warehouses 19-17

Windowing Aggregate Functions
Treatment of NULLs as Input to Window Functions
Window functions' NULL semantics match the NULL semantics for SQL aggregate
functions. Other semantics can be obtained by user-defined functions, or by using
the DECODE or a CASE expression within the window function.

Windowing Functions with Logical Offset
A logical offset can be specified with constants such as RANGE 10 PRECEDING, or
an expression that evaluates to a constant, or by an interval specification like RANGE
INTERVAL N DAY/MONTH/YEAR PRECEDING or an expression that evaluates to an
interval. With logical offset, there can only be one expression in the ORDER BY
expression list in the function, with type compatible to NUMERICif offset is numeric,
or DATE if an interval is specified.

Cumulative Aggregate Function Example
The following is an example of cumulative amount_sold by customer ID by
quarter in 1999:

SELECT c.cust_id, t.calendar_quarter_desc,
TO_CHAR (SUM(amount_sold), '9,999,999,999') AS Q_SALES,
TO_CHAR(SUM(SUM(amount_sold)) OVER (PARTITION BY
c.cust_id ORDER BY c.cust_id, t.calendar_quarter_desc ROWS UNBOUNDED
PRECEDING), '9,999,999,999') AS CUM_SALES
FROM sales s, times t, customers c
WHERE
s.time_id=t.time_id AND
s.cust_id=c.cust_id AND
t.calendar_year=1999 AND
c.cust_id IN (6380, 6510)
GROUP BY c.cust_id, t.calendar_quarter_desc
ORDER BY c.cust_id, t.calendar_quarter_desc;

 CUST_ID CALENDA Q_SALES CUM_SALES
--------- ------- -------------- --------------
 6380 1999-Q1 60,621 60,621
 6380 1999-Q2 68,213 128,834
 6380 1999-Q3 75,238 204,072
 6380 1999-Q4 57,412 261,484
 6510 1999-Q1 63,030 63,030
 6510 1999-Q2 74,622 137,652
 6510 1999-Q3 69,966 207,617
 6510 1999-Q4 63,366 270,983
19-18 Oracle9i Data Warehousing Guide

Windowing Aggregate Functions
In this example, the analytic function SUM defines, for each row, a window that
starts at the beginning of the partition (UNBOUNDED PRECEDING) and ends, by
default, at the current row.

Nested SUMs are needed in this example since we are performing a SUMover a value
that is itself a SUM. Nested aggregations are used very often in analytic aggregate
functions.

Moving Aggregate Function Example
This example of a time-based window shows, for one customer, the moving average
of sales for the current month and preceding two months:

SELECT c.cust_id, t.calendar_month_desc,
TO_CHAR (SUM(amount_sold), '9,999,999,999') AS SALES ,
TO_CHAR(AVG(SUM(amount_sold))
OVER (ORDER BY c.cust_id, t.calendar_month_desc ROWS 2 PRECEDING),
'9,999,999,999') AS MOVING_3_MONTH_AVG
FROM sales s, times t, customers c
WHERE
s.time_id=t.time_id AND
s.cust_id=c.cust_id AND
t.calendar_year=1999 AND
c.cust_id IN (6380)
GROUP BY c.cust_id, t.calendar_month_desc
ORDER BY c.cust_id, t.calendar_month_desc;

 CUST_ID CALENDAR SALES MOVING_3_MONTH
--------- -------- -------------- --------------
 6380 1999-01 19,642 19,642
 6380 1999-02 19,324 19,483
 6380 1999-03 21,655 20,207
 6380 1999-04 27,091 22,690
 6380 1999-05 16,367 21,704
 6380 1999-06 24,755 22,738
 6380 1999-07 31,332 24,152
 6380 1999-08 22,835 26,307
 6380 1999-09 21,071 25,079
 6380 1999-10 19,279 21,062
 6380 1999-11 18,206 19,519
 6380 1999-12 19,927 19,137

Note that the first two rows for the three month moving average calculation in the
output data are based on a smaller interval size than specified because the window
SQL for Analysis in Data Warehouses 19-19

Windowing Aggregate Functions
calculation cannot reach past the data retrieved by the query. You need to consider
the different window sizes found at the borders of result sets. In other words, you
may need to modify the query to include exactly what you want.

Centered Aggregate Function
Calculating windowing aggregate functions centered around the current row is
straightforward. This example computes for a customer a centered moving average
of the sales total for the one day preceding the current row and one day following
the current row including the current row as well.

Example 19–6 Centered Aggregate

SELECT cust_id, t.time_id,
TO_CHAR (SUM(amount_sold), '9,999,999,999') AS SALES,
TO_CHAR(AVG(SUM(amount_sold)) OVER
(PARTITION BY s.cust_id ORDER BY t.time_id
RANGE BETWEEN INTERVAL '1' DAY PRECEDING AND INTERVAL '1' DAY FOLLOWING),
'9,999,999,999') AS CENTERED_3_DAY_AVG
FROM sales s, times t
WHERE
s.time_id=t.time_id AND
t.calendar_week_number IN (51) AND
calendar_year=1999 AND cust_id IN (6380, 6510)
GROUP BY cust_id, t.time_id
ORDER BY cust_id, t.time_id;

 CUST_ID TIME_ID SALES CENTERED_3_DAY
--------- --------- -------------- --------------
 6380 20-DEC-99 2,240 1,136
 6380 21-DEC-99 32 873
 6380 22-DEC-99 348 148
 6380 23-DEC-99 64 302
 6380 24-DEC-99 493 212
 6380 25-DEC-99 80 423
 6380 26-DEC-99 696 388
 6510 20-DEC-99 196 106
 6510 21-DEC-99 16 155
 6510 22-DEC-99 252 143
 6510 23-DEC-99 160 305
 6510 24-DEC-99 504 240
 6510 25-DEC-99 56 415
 6510 26-DEC-99 684 370
19-20 Oracle9i Data Warehousing Guide

Windowing Aggregate Functions
The starting and ending rows for each product's centered moving average
calculation in the output data are based on just two days, since the window
calculation cannot reach past the data retrieved by the query. Users need to consider
the different window sizes found at the borders of result sets: the query may need
to be adjusted.

Windowing Aggregate Functions in the Presence of Duplicates
The following example illustrates how window aggregate functions compute values
when there are duplicates, that is, when multiple rows are returned for a single
ordering value. The query retrieves the quantity sold in the US for two products
during a specified time range. The query defines a moving window that runs from
the date of the current row to 10 days earlier.

Note that the RANGE keyword is used to define the windowing clause of this
example. This means that the window can potentially hold many rows for each
value in the range. In this case, there are three rows with the duplicate ordering
value of '04-NOV-98' .

Example 19–7 Windowing Aggregate Functions with Logical Offsets

SELECT time_id, s.quantity_sold,
SUM(s.quantity_sold) OVER (ORDER BY time_id
 RANGE BETWEEN INTERVAL '10' DAY PRECEDING AND CURRENT ROW)
AS current_group_sum
FROM customers c, products p, sales s
WHERE p.prod_id=s.prod_id AND c.cust_id=s.cust_id
 AND c.country_id='US' AND p.prod_id IN (250, 500)
 AND s.time_id BETWEEN '24-OCT-98' AND '14-NOV-98'
ORDER BY TIME_ID;

TIME_ID QUANTITY_SOLD CURRENT_GROUP_SUM /* Source #s for row */
--------- ------------- -----------------
24-OCT-98 19 19 /* 19 */
27-OCT-98 17 36 /* 19+17 */
04-NOV-98 2 24 /* 17+(2+3+2) */
04-NOV-98 3 24 /* 17+(2+3+2) */
04-NOV-98 2 24 /* 17+(2+3+2) */
14-NOV-98 12 19 /* (2+3+2)+12 */

6 rows selected.

In the output, values within parentheses are from the rows with the tied ordering
key value, 04-NOV-98 .
SQL for Analysis in Data Warehouses 19-21

Windowing Aggregate Functions
Consider the row with the output of "04-NOV-98, 3, 24" . In this case, all the
other rows with TIME_ID of 04-NOV-98 (ties) are considered to belong to one
group. Therefore, the CURRENT_GROUP_SUMshould include this row (that is, 3) and
its ties (that is, 2 and 2) in the window. It also includes any rows with dates up to 10
days earlier. In this data, that includes the row with date 27-OCT-98 . Hence the
result is 17+(2+3+2) = 24. The calculation of CURRENT_GROUP_SUM is identical for
each of the tied rows, so the output shows three rows with the value 24.

Note that this example applies only when you use the RANGE keyword rather than
the ROWS keyword. It is also important to remember that with RANGE, you can only
use 1 ORDER BY expression in the analytic function’s ORDER BY clause. With the
ROWS keyword, you can use multiple order by expressions in the analytic function’s
order by clause.

Varying Window Size for Each Row
There are situations where it is useful to vary the size of a window for each row,
based on a specified condition. For instance, you may want to make the window
larger for certain dates and smaller for others. Assume that you want to calculate
the moving average of stock price over three working days. If you have an equal
number of rows for each day for all working days and no non-working days are
stored, then you can use a physical window function. However, if the conditions
noted are not met, you can still calculate a moving average by using an expression
in the window size parameters.

Expressions in a window size specification can be made in several different sources.
the expression could be a reference to a column in a table, such as a time table. It
could also be a function that returns the appropriate boundary for the window
based on values in the current row. The following statement for a hypothetical stock
price database uses a user-defined function in its RANGE clause to set window size:

SELECT t_timekey,
 AVG(stock_price)
 OVER (ORDER BY t_timekey RANGE fn(t_timekey) PRECEDING) av_price
FROM stock, time
WHERE st_timekey = t_timekey
ORDER BY t_timekey;

In this statement, t_timekey is a date field. Here, fn could be a PL/SQL function
with the following specification:

fn(t_timekey) returns

■ 4 if t_timekey is Monday, Tuesday
19-22 Oracle9i Data Warehousing Guide

Windowing Aggregate Functions
■ 2 otherwise

■ If any of the previous days are holidays, it adjusts the count appropriately.

Note that, when window is specified using a number in a window function with
ORDER BY on a date column, then it is converted to mean the number of days. You
could have also used the interval literal conversion function, as
NUMTODSINTERVAL(fn(t_timekey), 'DAY') instead of just fn(t_timekey)
to mean the same thing. You can also write a PL/SQL function that returns an
INTERVAL datatype value.

Windowing Aggregate Functions with Physical Offsets
For windows expressed in rows, the ordering expressions should be unique to
produce deterministic results. For example, the following query is not deterministic
because time_id is not unique in this result set.

Example 19–8 Windowing Aggregate Functions With Physical Offsets

SELECT t.time_id,
TO_CHAR(amount_sold, '9,999,999,999') AS INDIV_SALE,
TO_CHAR(SUM(amount_sold) OVER
(PARTITION BY t.time_id ORDER BY t.time_id
ROWS UNBOUNDED PRECEDING), '9,999,999,999') AS CUM_SALES
FROM sales s, times t, customers c
WHERE
s.time_id=t.time_id AND
s.cust_id=c.cust_id AND
t.time_id IN (TO_DATE('11-DEC-1999'), TO_DATE('12-DEC-1999'))
 AND
c.cust_id BETWEEN 6500 AND 6600
ORDER BY t.time_id;

TIME_ID INDIV_SALE CUM_SALES
--------- -------------- --------------
11-DEC-99 1,036 1,036
11-DEC-99 1,932 2,968
11-DEC-99 588 3,556
12-DEC-99 504 504
12-DEC-99 429 933
12-DEC-99 1,160 2,093

The statement could also yield the following:
SQL for Analysis in Data Warehouses 19-23

Reporting Aggregate Functions
TIME_ID INDIV_SALE CUM_SALES
--------- -------------- --------------
11-DEC-99 1,932 2,968
11-DEC-99 588 3,556
11-DEC-99 1,036 1,036
12-DEC-99 504 504
12-DEC-99 1,160 2,093
12-DEC-99 429 933

One way to handle this problem would be to add the prod_id column to the result
set and order on both time_id and prod_id .

FIRST_VALUE and LAST_VALUE
The FIRST_VALUEand LAST_VALUEfunctions allow you to select the first and last
rows from a window. These rows are especially valuable because they are often
used as the baselines in calculations. For instance, with a partition holding sales
data ordered by day, you might ask "How much was each day's sales compared to
the first sales day (FIRST_VALUE) of the period?" Or you might wish to know, for a
set of rows in increasing sales order, "What was the percentage size of each sale in
the region compared to the largest sale (LAST_VALUE) in the region?"

Reporting Aggregate Functions
After a query has been processed, aggregate values like the number of resulting
rows or an average value in a column can be easily computed within a partition and
made available to other reporting functions. Reporting aggregate functions return
the same aggregate value for every row in a partition. Their behavior with respect
to NULLs is the same as the SQL aggregate functions. The syntax is:

{SUM | AVG | MAX | MIN | COUNT | STDDEV | VARIANCE}
 ([ALL | DISTINCT] { value expression1 | *})
 OVER ([PARTITION BY value expression2 [,...]])

In addition, the following conditions apply:

■ An asterisk (*) is only allowed in COUNT(*)

■ DISTINCT is supported only if corresponding aggregate functions allow it

■ value expression1 and value expression2 can be any valid expression
involving column references or aggregates.
19-24 Oracle9i Data Warehousing Guide

Reporting Aggregate Functions
■ The PARTITION BY clause defines the groups on which the windowing
functions would be computed. If the PARTITION BY clause is absent, then the
function is computed over the whole query result set.

Reporting functions can appear only in the SELECT clause or the ORDER BY clause.
The major benefit of reporting functions is their ability to do multiple passes of data
in a single query block and speed up query performance. Queries such as "Count
the number of salesmen with sales more than 10% of city sales" do not require joins
between separate query blocks.

For example, consider the question "For each product category, find the region in
which it had maximum sales". The equivalent SQL query using the MAX reporting
aggregate function would be:

SELECT prod_category, country_region, sales FROM
(SELECT substr(p.prod_category,1,8), co.country_region, SUM(amount_sold)
 AS sales,
MAX(SUM(amount_sold)) OVER (partition BY prod_category) AS MAX_REG_SALES
FROM sales s, customers c, countries co, products p
WHERE s.cust_id=c.cust_id AND
c.country_id=co.country_id AND
s.prod_id=p.prod_id AND
s.time_id=to_DATE('11-OCT-2000')
GROUP BY prod_category, country_region)
WHERE sales=MAX_REG_SALES;

The inner query with the reporting aggregate function MAX(SUM(amount_sold))
returns:

SUBSTR(P COUNTRY_REGION SALES MAX_REG_SALES
-------- -------------------- --------- -------------
Boys Africa 594 41974
Boys Americas 20353 41974
Boys Asia 2258 41974
Boys Europe 41974 41974
Boys Oceania 1402 41974
Girls Americas 13869 52963
Girls Asia 1657 52963
Girls Europe 52963 52963
Girls Middle East 303 52963
Girls Oceania 380 52963
Men Africa 1705 123253
Men Americas 69304 123253
Men Asia 6153 123253
Men Europe 123253 123253
SQL for Analysis in Data Warehouses 19-25

Reporting Aggregate Functions
Men Oceania 2646 123253
Women Africa 4037 255109
Women Americas 145501 255109
Women Asia 20394 255109
Women Europe 255109 255109
Women Middle East 350 255109
Women Oceania 17408 255109

The full query results are:

PROD_CATEGORY COUNTRY_REGION SALES
------------- -------------- ------
Boys Europe 41974
Girls Europe 52963
Men Europe 123253
Women Europe 255109

Reporting Aggregate Example
Reporting aggregates combined with nested queries enable you to answer complex
queries efficiently. For instance, what if we want to know the best selling products
in our most significant product subcategories? We have 4 product categories which
contain a total of 37 product subcategories, and there are 10,000 unique products.
Here is a query which finds the 5 top-selling products for each product subcategory
that contributes more than 20% of the sales within its product category.

SELECT SUBSTR(prod_category,1,8) AS CATEG, prod_subcategory, prod_id, SALES FROM
 (SELECT p.prod_category, p.prod_subcategory, p.prod_id,
 SUM(amount_sold) as SALES,
 SUM(SUM(amount_sold)) OVER (PARTITION BY p.prod_category) AS CAT_SALES,
 AUM(SUM(amount_sold)) OVER
 (PARTITION BY p.prod_subcategory) AS SUBCAT_SALES,
 RANK() OVER (PARTITION BY p.prod_subcategory
 ORDER BY SUM(amount_sold)) AS RANK_IN_LINE
 FROM sales s, customers c, countries co, products p
 WHERE s.cust_id=c.cust_id AND
 c.country_id=co.country_id AND s.prod_id=p.prod_id AND
 s.time_id=to_DATE('11-OCT-2000')
 GROUP BY p.prod_category, p.prod_subcategory, p.prod_id
 ORDER BY prod_category, prod_subcategory)
 WHERE SUBCAT_SALES>0.2*CAT_SALES AND RANK_IN_LINE<=5;
19-26 Oracle9i Data Warehousing Guide

LAG/LEAD Functions
RATIO_TO_REPORT
The RATIO_TO_REPORT function computes the ratio of a value to the sum of a set
of values. If the expression value expression evaluates to NULL, RATIO_TO_
REPORT also evaluates to NULL, but it is treated as zero for computing the sum of
values for the denominator. Its syntax is:

RATIO_TO_REPORT (expr) OVER ([query_partition_clause])

In this, the following applies:

■ expr can be any valid expression involving column references or aggregates.

■ The PARTITION BY clause defines the groups on which the RATIO_TO_
REPORT function is to be computed. If the PARTITION BY clause is absent, then
the function is computed over the whole query result set.

Example 19–9 RATIO_TO_REPORT

To calculate RATIO_TO_REPORT of sales per channel, you might use the following
syntax:

SELECT ch.channel_desc,
 TO_CHAR(SUM(amount_sold),'9,999,999') as SALES,
 TO_CHAR(SUM(SUM(amount_sold)) OVER (), '9,999,999')
 AS TOTAL_SALES,
 TO_CHAR(RATIO_TO_REPORT(SUM(amount_sold)) OVER (), '9.999')
 AS RATIO_TO_REPORT
 FROM sales s, channels ch
 WHERE s.channel_id=ch.channel_id AND
 s.time_id=to_DATE('11-OCT-2000')
 GROUP BY ch.channel_desc;

CHANNEL_DESC SALES TOTAL_SALE RATIO_
-------------------- ---------- ---------- ------
Catalog 111,103 781,613 .142
Direct Sales 335,409 781,613 .429
Internet 212,314 781,613 .272
Partners 91,352 781,613 .117
Tele Sales 31,435 781,613 .040

LAG/LEAD Functions
The LAG and LEAD functions are useful for comparing values when the relative
positions of rows can be known reliably. They work by specifying the count of rows
SQL for Analysis in Data Warehouses 19-27

FIRST/LAST Functions
which separate the target row from the current row. Since the functions provide
access to more than one row of a table at the same time without a self-join, they can
enhance processing speed. The LAG function provides access to a row at a given
offset prior to the current position, and the LEAD function provides access to a row
at a given offset after the current position.

LAG/LEAD Syntax
These functions have the following syntax:

{LAG | LEAD} (value_expr [, offset] [, default])
 OVER ([query_partition_clause] order_by_clause)

offset is an optional parameter and defaults to 1. default is an optional
parameter and is the value returned if offset falls outside the bounds of the table
or partition.

Example 19–10 LAG/LEAD

SELECT time_id, TO_CHAR(SUM(amount_sold),'9,999,999') AS SALES,
TO_CHAR(LAG(SUM(amount_sold),1) OVER (ORDER BY time_id),'9,999,999') AS LAG1,
TO_CHAR(LEAD(SUM(amount_sold),1) OVER (ORDER BY time_id),'9,999,999') AS LEAD1
FROM sales
WHERE
time_id>=TO_DATE('10-OCT-2000') AND
time_id<=TO_DATE('14-OCT-2000')
GROUP BY time_id;

TIME_ID SALES LAG1 LEAD1
--------- ---------- ---------- ----------
10-OCT-00 773,921 781,613
11-OCT-00 781,613 773,921 744,351
12-OCT-00 744,351 781,613 757,356
13-OCT-00 757,356 744,351 791,960
14-OCT-00 791,960 757,356

FIRST/LAST Functions
The FIRST/LAST aggregate functions allow you to return the result of an aggregate
applied over a set of rows that rank as the first or last with respect to a given order
specification. FIRST/LAST lets you order on column A but return an result of an
aggregate applied on column B. This is valuable because it avoids the need for a
self-join or subquery, thus improving performance. These functions begin with a
19-28 Oracle9i Data Warehousing Guide

FIRST/LAST Functions
tiebreaker function, which is a regular aggregate function (MIN, MAX, SUM, AVG,
COUNT, VARIANCE, STDDEV) that produces the return value. The tiebreaker function
is performed on the set rows (1 or more rows) that rank as first or last respect to the
order specification to return a single value.

To specify the ordering used within each group, the FIRST/LAST functions add a
new clause starting with the word KEEP.

FIRST/LAST Syntax
These functions have the following syntax:

aggregate_function KEEP
(DENSE_RANK LAST ORDER BY
 expr [DESC | ASC] [NULLS { FIRST | LAST }]
 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...
)
[OVER query_partitioning_clause]

Note that the ORDER BY clause can take multiple expressions.

FIRST/LAST As Regular Aggregates
You can use the FIRST/LAST family of aggregates as regular aggregate functions.

Example 19–11 FIRST/LAST Example 1

The following query lets us compare minimum price and list price of our products.
For each product subcategory within the Men’s clothing category, it returns the
following:

■ List price of the product with the lowest minimum price

■ Lowest minimum price

■ List price of the product with the highest minimum price

■ Highest minimum price

SELECT prod_subcategory, MIN(prod_list_price)
 KEEP (DENSE_RANK FIRST ORDER BY (prod_min_price))
AS LP_OF_LO_MINP,
MIN(prod_min_price) AS LO_MINP,
MAX(prod_list_price) KEEP (DENSE_RANK LAST ORDER BY (prod_min_price))
 AS LP_OF_HI_MINP,
MAX(prod_min_price) AS HI_MINP
SQL for Analysis in Data Warehouses 19-29

FIRST/LAST Functions
FROM products
WHERE prod_category='Men'
GROUP BY prod_subcategory;

PROD_SUBCATEGORY LP_OF_LO_MINP LO_MINP LP_OF_HI_MINP HI_MINP
---------------- ------------- ------- ------------- -------
Casual Shirts - Men 39.9 16.92 88 59.4
Dress Shirts - Men 42.5 17.34 59.9 41.51
Jeans - Men 38 17.33 69.9 62.28
Outerwear - Men 44.9 19.76 495 334.12
Shorts - Men 34.9 15.36 195 103.54
Sportcoats - Men 195 96.53 595 390.92
Sweaters - Men 29.9 14.59 140 97.02
Trousers - Men 38 15.5 135 120.29
Underwear And Socks - Men 10.9 4.45 39.5 27.02

A query like this can be useful for understanding the sales patterns of your different
channels. For instance, the result set here highlights that Telesales sell relatively
small volumes.

FIRST/LAST As Reporting Aggregates
You can also use the FIRST/LAST family of aggregates as reporting aggregate
functions. An example is calculating which months had the greatest and least
increase in head count throughout the year. The syntax for these functions is similar
to the syntax for any other reporting aggregate.

Consider the example in Example 19–11 for FIRST/LAST . What if we wanted to
find the list prices of individual products and compare them to the list prices of the
products in their subcategory that had the highest and lowest minimum prices?

The following query lets us find that information for the Sportcoats - Men
subcategory by using FIRST/LAST as reporting aggregates. Because there are over
100 products in this subcategory, we show only the first few rows of results.

Example 19–12 FIRST/LAST Example 2

SELECT prod_id, prod_list_price,
MIN(prod_list_price) KEEP (DENSE_RANK FIRST ORDER BY (prod_min_price))
 OVER(PARTITION BY (prod_subcategory)) AS LP_OF_LO_MINP,
MAX(prod_list_price) KEEP (DENSE_RANK LAST ORDER BY (prod_min_price))
 OVER(PARTITION BY (prod_subcategory)) AS LP_OF_HI_MINP
FROM products
WHERE prod_subcategory='Sportcoats - Men';
19-30 Oracle9i Data Warehousing Guide

Linear Regression Functions
PROD_ID PROD_LIST_PRICE LP_OF_LO_MINP LP_OF_HI_MINP
------- --------------- ------------- -------------
 730 365 195 595
 1165 365 195 595
 1560 595 195 595
 2655 195 195 595
 2660 195 195 595
 3840 275 195 595
 3865 275 195 595
 4035 319.9 195 595
 4075 395 195 595
 4245 195 195 595
 4790 365 195 595
 4800 365 195 595
 5560 425 195 595
 5575 425 195 595
 5625 595 195 595
 7915 275 195 595
....

Using the FIRST and LAST functions as reporting aggregates makes it easy to
include the results in calculations such "Salary as a percent of the highest salary."

Linear Regression Functions
The regression functions support the fitting of an ordinary-least-squares regression
line to a set of number pairs. You can use them as both aggregate functions or
windowing or reporting functions.

The functions are:

■ REGR_COUNT

■ REGR_AVGX

■ REGR_AVGY

■ REGR_SLOPE

■ REGR_INTERCEPT

■ REGR_R2

■ REGR_SXX

■ REGR_SYY
SQL for Analysis in Data Warehouses 19-31

Linear Regression Functions
■ REGR_SXY

Oracle applies the function to the set of (e1 , e2) pairs after eliminating all pairs for
which either of e1 or e2 is null. e1 is interpreted as a value of the dependent
variable (a "y value"), and e2 is interpreted as a value of the independent variable
(an "x value"). Both expressions must be numbers.

The regression functions are all computed simultaneously during a single pass
through the data. They are frequently combined with the COVAR_POP, COVAR_
SAMP, and CORR functions.

REGR_COUNT
REGR_COUNT returns the number of non-null number pairs used to fit the
regression line. If applied to an empty set (or if there are no (e1, e2) pairs where
neither of e1 or e2 is null), the function returns 0.

REGR_AVGY and REGR_AVGX
REGR_AVGY and REGR_AVGX compute the averages of the dependent variable and
the independent variable of the regression line, respectively. REGR_AVGY computes
the average of its first argument (e1) after eliminating (e1 , e2) pairs where either of
e1 or e2 is null. Similarly, REGR_AVGX computes the average of its second
argument (e2) after null elimination. Both functions return NULL if applied to an
empty set.

REGR_SLOPE and REGR_INTERCEPT
The REGR_SLOPE function computes the slope of the regression line fitted to
non-null (e1 , e2) pairs.

The REGR_INTERCEPT function computes the y-intercept of the regression line.
REGR_INTERCEPT returns NULL whenever slope or the regression averages are
NULL.

REGR_R2
The REGR_R2 function computes the coefficient of determination (usually called
"R-squared" or "goodness of fit") for the regression line.

See Also: Oracle9i SQL Reference for further information regarding
syntax and semantics
19-32 Oracle9i Data Warehousing Guide

Linear Regression Functions
REGR_R2 returns values between 0 and 1 when the regression line is defined (slope
of the line is not null), and it returns NULL otherwise. The closer the value is to 1,
the better the regression line fits the data.

REGR_SXX, REGR_SYY, and REGR_SXY
REGR_SXX, REGR_SYY and REGR_SXY functions are used in computing various
diagnostic statistics for regression analysis. After eliminating (e1 , e2) pairs where
either of e1 or e2 is null, these functions make the following computations:

REGR_SXX: REGR_COUNT(e1,e2) * VAR_POP(e2)

REGR_SYY: REGR_COUNT(e1,e2) * VAR_POP(e1)

REGR_SXY: REGR_COUNT(e1,e2) * COVAR_POP(e1, e2)

Linear Regression Statistics Examples
Some common diagnostic statistics that accompany linear regression analysis are
given in Table 19–2, "Common Diagnostic Statistics and Their Expressions". Note
that Oracle's new functions allow you to calculate all of these.

Table 19–2 Common Diagnostic Statistics and Their Expressions

Type of Statistic Expression

Adjusted R2 1-((1 - REGR_R2)*((REGR_COUNT-1)/(REGR_
COUNT-2)))

Standard error SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_
SXX))/(REGR_COUNT-2))

Total sum of squares REGR_SYY

Regression sum of squares POWER(REGR_SXY,2) / REGR_SXX

Residual sum of squares REGR_SYY - (POWER(REGR_SXY,2)/REGR_SXX)

t statistic for slope REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for y-intercept REGR_INTERCEPT / ((Standard error)
*
SQRT((1/REGR_COUNT)+(POWER(REGR_
AVGX,2)/REGR_SXX))
SQL for Analysis in Data Warehouses 19-33

Inverse Percentile Functions
Sample Linear Regression Calculation
In this example, we compute an ordinary-least-squares regression line that
expresses the quantity sold of a product as a linear function of the product's list
price. The calculations are grouped by sales channel. The values SLOPE, INTCPT,
RSQR are slope, intercept, and coefficient of determination of the regression line,
respectively. The (integer) value COUNT is the number of products in each channel
for whom both quantity sold and list price data are available.

SELECT s.channel_id,
REGR_SLOPE(s.quantity_sold, p.prod_list_price) SLOPE,
REGR_INTERCEPT(s.quantity_sold, p.prod_list_price) INTCPT,
REGR_R2(s.quantity_sold, p.prod_list_price) RSQR,
REGR_COUNT(s.quantity_sold, p.prod_list_price) COUNT,
REGR_AVGX(s.quantity_sold, p.prod_list_price) AVGLISTP,
REGR_AVGY(s.quantity_sold, p.prod_list_price) AVGQSOLD
FROM sales s, products p
WHERE s.prod_id=p.prod_id
 AND p.prod_category='Men' AND s.time_id=to_DATE('10-OCT-2000')
GROUP BY s.channel_id;

C SLOPE INTCPT RSQR COUNT AVGLISTP AVGQSOLD
- --------- --------- --------- --------- --------- ---------
C -.0683687 16.627808 .05134258 20 65.495 12.15
I .0197103 14.811392 .00163149 46 51.480435 15.826087
P -.0124736 12.854546 .01703979 30 81.87 11.833333
S .00615589 13.991924 .00089844 83 69.813253 14.421687
T -.0041131 5.2271721 .00813224 27 82.244444 4.8888889

Inverse Percentile Functions
Using the CUME_DIST function, you can find the cumulative distribution
(percentile) of a set of values. However, the inverse operation (finding what value
computes to a certain percentile) is neither easy to do nor efficiently computed. To
overcome this difficulty, Oracle introduced the PERCENTILE_CONT and
PERCENTILE_DISC functions. These can be used both as window reporting
functions as well as normal aggregate functions.

These functions need a sort specification and a parameter that takes a percentile
value between 0 and 1. The sort specification is handled by using an ORDER BY
clause with one expression. When used as a normal aggregate function, it returns a
single value for each ordered set.
19-34 Oracle9i Data Warehousing Guide

Inverse Percentile Functions
PERCENTILE_CONT, which is a continuous function computed by interpolation,
and PERCENTILE_DISC, which is a step function that assumes discrete values. Like
other aggregates, PERCENTILE_CONT and PERCENTILE_DISC operate on a group
of rows in a grouped query, but with the following differences:

■ They require a parameter between 0 and 1 (inclusive). A parameter specified
out of this range will result in error. This parameter should be specified as an
expression that evaluates to a constant.

■ They require a sort specification. This sort specification is an ORDER BY clause
with a single expression. Multiple expressions are not allowed.

Normal Aggregate Syntax
[PERCENTILE_CONT | PERCENTILE_DISC](constant expression)
 WITHIN GROUP (ORDER BY single order by expression
[ASC|DESC] [NULLS FIRST| NULLS LAST])

Inverse Percentile Example Basis
We use the following query to return the 17 rows of data used in the examples of
this section:

SELECT cust_id, cust_credit_limit, CUME_DIST()
 OVER (ORDER BY cust_credit_limit) AS CUME_DIST
FROM customers
WHERE cust_city='Marshal';

CUST_ID CUST_CREDIT_LIMIT CUME_DIST
--------- ----------------- ---------
 171630 1500 .23529412
 346070 1500 .23529412
 420830 1500 .23529412
 383450 1500 .23529412
 165400 3000 .35294118
 227700 3000 .35294118
 28340 5000 .52941176
 215240 5000 .52941176
 364760 5000 .52941176
 184090 7000 .70588235
 370990 7000 .70588235
 408370 7000 .70588235
 121790 9000 .76470588
 22110 11000 .94117647
 246390 11000 .94117647
SQL for Analysis in Data Warehouses 19-35

Inverse Percentile Functions
 40800 11000 .94117647
 464440 15000 1

PERCENTILE_DISC(x) is computed by scanning up the CUME_DIST values in each
group till you find the first one greater than or equal to x , where x is the specified
percentile value. For the example query where PERCENTILE_DISC(0.5), the result
is 5,000, as the following illustrates:

SELECT PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_disc,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_cont
 FROM customers WHERE cust_city='Marshal';

PERC_DISC PERC_CONT
--------- ---------
 5000 5000

The result of PERCENTILE_CONTis computed by linear interpolation between rows
after ordering them. To compute PERCENTILE_CONT(x), we first compute the row
number = RN= (1+x*(n-1)), where n is the number of rows in the group and x is the
specified percentile value. The final result of the aggregate function is computed by
linear interpolation between the values from rows at row numbers CRN =
CEIL(RN) and FRN = FLOOR(RN) .

The final result will be: PERCENTILE_CONT(X) = if (CRN = FRN = RN), then
(value of expression from row at RN) else (CRN - RN) * (value of expression for row
at FRN) + (RN -FRN) * (value of expression for row at CRN).

Consider the previous example query, where we compute PERCENTILE_
CONT(0.5) . Here n is 17. The row number RN = (1 + 0.5*(n-1))= 9 for both groups.
Putting this into the formula, (FRN=CRN=9), we return the value from row 9 as the
result.

Another example is, if you want to compute PERCENTILE_CONT(0.66). The
computed row number RN=(1 + 0.66*(n-1))= (1 + 0.66*16)= 11.67. PERCENTILE_
CONT(0.66) = (12-11.67)*(value of row 11)+(11.67-11)*(value of row 12). These results
are:

SELECT PERCENTILE_DISC(0.66) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_disc,
 PERCENTILE_CONT(0.66) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_cont
 FROM customers WHERE cust_city='Marshal';
19-36 Oracle9i Data Warehousing Guide

Inverse Percentile Functions
PERC_DISC PERC_CONT
--------- ---------
 7000 7000

Inverse percentile aggregate functions can appear in the HAVING clause of a query
like other existing aggregate functions.

As Reporting Aggregates
You can also use the aggregate functions PERCENTILE_CONT, PERCENTILE_DISC
as reporting aggregate functions. When used as reporting aggregate functions, the
syntax is similar to those of other reporting aggregates.

[PERCENTILE_CONT | PERCENTILE_DISC](constant expression)
WITHIN GROUP (ORDER BY single order by expression
[ASC|DESC] [NULLS FIRST| NULLS LAST])
OVER ([PARTITION BY value expression [,...]])

This query computes the same thing (median credit limit for customers in this result
set, but reports the result for every row in the result set, as shown in the following
output:

SELECT cust_id, cust_credit_limit,
 PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) OVER () AS perc_disc,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) OVER () AS perc_cont
 FROM customers WHERE cust_city='Marshal';

CUST_ID CUST_CREDIT_LIMIT PERC_DISC PERC_CONT
--------- ----------------- --------- ---------
 171630 1500 5000 5000
 346070 1500 5000 5000
 420830 1500 5000 5000
 383450 1500 5000 5000
 165400 3000 5000 5000
 227700 3000 5000 5000
 28340 5000 5000 5000
 215240 5000 5000 5000
 364760 5000 5000 5000
 184090 7000 5000 5000
 370990 7000 5000 5000
 408370 7000 5000 5000
 121790 9000 5000 5000
 22110 11000 5000 5000
SQL for Analysis in Data Warehouses 19-37

Hypothetical Rank and Distribution Functions
 246390 11000 5000 5000
 40800 11000 5000 5000
 464440 15000 5000 5000

Inverse Percentile Restrictions
For PERCENTILE_DISC, the expression in the ORDER BY clause can be of any data
type that you can sort (numeric, string, date, and so on). However, the expression in
the ORDER BY clause must be a numeric or datetime type (including intervals)
because linear interpolation is used to evaluate PERCENTILE_CONT. If the
expression is of type DATE, the interpolated result is rounded to the smallest unit
for the type. For a DATE type, the interpolated value will be rounded to the nearest
second, for interval types to the nearest second (INTERVAL DAY TO SECOND) or to
the month(INTERVAL YEAR TO MONTH).

Like other aggregates, the inverse percentile functions ignore NULLs in evaluating
the result. For example, when you want to find the median value in a set, Oracle
ignores the NULLs and finds the median among the non-null values. You can use
the NULLS FIRST/NULLS LAST option in the ORDER BY clause, but they will be
ignored as NULLs are ignored.

Hypothetical Rank and Distribution Functions
These functions provide functionality useful for what-if analysis. As an example,
what would be the rank of a row, if the row was hypothetically inserted into a set of
other rows?

This family of aggregates takes one or more arguments of a hypothetical row and an
ordered group of rows, returning the RANK, DENSE_RANK, PERCENT_RANK or
CUME_DIST of the row as if it was hypothetically inserted into the group.

Hypothetical Rank and Distribution Syntax
[RANK | DENSE_RANK | PERCENT_RANK | CUME_DIST](constant expression [, ...])
WITHIN GROUP (ORDER BY order by expression [ASC|DESC] [NULLS FIRST|NULLS
LAST][, ...])

Here, constant expression refers to an expression that evaluates to a constant,
and there may be more than one such expressions that are passed as arguments to
the function. The ORDER BY clause can contain one or more expressions that define
the sorting order on which the ranking will be based. ASC, DESC, NULLS FIRST,
NULLS LAST options will be available for each expression in the ORDER BY.
19-38 Oracle9i Data Warehousing Guide

Hypothetical Rank and Distribution Functions
Example 19–13 Hypothetical Rank and Distribution Example 1

Using the list price data from the products table used throughout this section, you
can calculate the RANK, PERCENT_RANKand CUME_DISTfor a hypothetical sweater
with a price of $50 for how it fits within each of the sweater subcategories. The
query and results are:

SELECT prod_subcategory,
 RANK(50) WITHIN GROUP (ORDER BY prod_list_price DESC) AS HRANK,
 TO_CHAR(PERCENT_RANK(50) WITHIN GROUP
 (ORDER BY prod_list_price),'9.999') AS HPERC_RANK,
 TO_CHAR(CUME_DIST (50) WITHIN GROUP
 (ORDER BY prod_list_price),'9.999') AS HCUME_DIST
FROM products
WHERE prod_subcategory LIKE 'Sweater%'
GROUP BY prod_subcategory;

PROD_SUBCATEGORY HRANK HPERC_RANK HCUME_DIST
---------------- ----- ---------- ----------
Sweaters - Boys 16 .911 .912
Sweaters - Girls 1 1.000 1.000
Sweaters - Men 240 .351 .352
Sweaters - Women 21 .783 .785

Unlike the inverse percentile aggregates, the ORDER BY clause in the sort
specification for hypothetical rank and distribution functions may take multiple
expressions. The number of arguments and the expressions in the ORDER BY clause
should be the same and the arguments must be constant expressions of the same or
compatible type to the corresponding ORDER BY expression. The following is an
example using two arguments in several hypothetical ranking functions.

Example 19–14 Hypothetical Rank and Distribution Example 2

SELECT prod_subcategory,
 RANK(45,30) WITHIN GROUP (ORDER BY prod_list_price DESC,prod_min_price) AS
HRANK,
 TO_CHAR(PERCENT_RANK(45,30) WITHIN GROUP
 (ORDER BY prod_list_price, prod_min_price),'9.999') AS HPERC_RANK,
 TO_CHAR(CUME_DIST (45,30) WITHIN GROUP
 (ORDER BY prod_list_price, prod_min_price),'9.999') AS HCUME_DIST
FROM products
WHERE prod_subcategory
 LIKE 'Sweater%'
GROUP BY prod_subcategory;
SQL for Analysis in Data Warehouses 19-39

WIDTH_BUCKET Function
PROD_SUBCATEGORY HRANK HPERC_RANK HCUME_DIST
---------------- ----- ---------- ----------
Sweaters - Boys 21 .858 .859
Sweaters - Girls 1 1.000 1.000
Sweaters - Men 340 .079 .081
Sweaters - Women 72 .228 .237

These functions can appear in the HAVING clause of a query just like other
aggregate functions. They cannot be used as either reporting aggregate functions or
windowing aggregate functions.

WIDTH_BUCKET Function
For a given expression, the WIDTH_BUCKET function returns the bucket number
that the result of this expression will be assigned after it is evaluated. You can
generate equiwidth histograms with this function. Equiwidth histograms divide
data sets into buckets whose interval size (highest value to lowest value) is equal.
The number of rows held by each bucket will vary. A related function, NTILE ,
creates equiheight buckets.

Equiwidth histograms can be generated only for numeric, date or datetime types.
So the first three parameters should be all numeric expressions or all date
expressions. Other types of expressions are not allowed. If the first parameter is
NULL, the result is NULL. If the second or the third parameter is NULL, an error
message is returned, as a NULLvalue cannot denote any end point (or any point) for
a range in a date or numeric value dimension. The last parameter (number of
buckets) should be a numeric expression that evaluates to a positive integer value;
0, NULL, or a negative value will result in an error.

Buckets are numbered from 0 to (n+1). Bucket 0 holds the count of values less than
the minimum. Bucket(n+1) holds the count of values greater than or equal to the
maximum specified value.

WIDTH_BUCKET Syntax
The WIDTH_BUCKETtakes four expressions as parameters. The first parameter is the
expression that the equiwidth histogram is for. The second and third parameters are
expressions that denote the end points of the acceptable range for the first
parameter. The fourth parameter denotes the number of buckets.

WIDTH_BUCKET(expression , minval expression , maxval expression , num buckets)
19-40 Oracle9i Data Warehousing Guide

WIDTH_BUCKET Function
Consider the following data from table customers , that shows the credit limits of
17 customers. This data is gathered in the query shown in Example 19–15 on
page 19-42.

CUST_ID CUST_CREDIT_LIMIT
-------- -----------------
 22110 11000
 28340 5000
 40800 11000
 121790 9000
 165400 3000
 171630 1500
 184090 7000
 215240 5000
 227700 3000
 246390 11000
 346070 1500
 364760 5000
 370990 7000
 383450 1500
 408370 7000
 420830 1500
 464440 15000

In the table customers, the column cust_credit_limit contains values between
1500 and 15000, and we can assign the values to four equiwidth buckets, numbered
from 1 to 4, by using WIDTH_BUCKET (cust_credit_limit, 0, 20000, 4) .
Ideally each bucket is a closed-open interval of the real number line, for example,
bucket number 2 is assigned to scores between 5000.0000 and 9999.9999...,
sometimes denoted [5000, 10000) to indicate that 5,000 is included in the interval
and 10,000 is excluded. To accommodate values outside the range [0, 20,000), values
less than 0 are assigned to a designated underflow bucket which is numbered 0, and
values greater than or equal to 20,000 are assigned to a designated overflow bucket
which is numbered 5 (num buckets + 1 in general). See Figure 19–3 for a graphical
illustration of how the buckets are assigned.
SQL for Analysis in Data Warehouses 19-41

WIDTH_BUCKET Function
Figure 19–3 Bucket Assignments

You can specify the bounds in the reverse order, for example, WIDTH_BUCKET
(cust_credit_limit , 20000 , 0, 4). When the bounds are reversed, the buckets
will be open-closed intervals. In this example, bucket number 1 is (15000,20000],
bucket number 2 is (10000,15000], and bucket number 4, is (0,5000]. The
overflow bucket will be numbered 0 (20000 , +infinity), and the underflow
bucket will be numbered 5 (-infinity , 0].

It is an error if the bucket count parameter is 0 or negative.

Example 19–15 WIDTH_BUCKET

The following query shows the bucket numbers for the credit limits in the
customers table for both cases where the boundaries are specified in regular or
reverse order. We use a range of 0 to 20,000.

SELECT cust_id, cust_credit_limit,
 WIDTH_BUCKET(cust_credit_limit,0,20000,4) AS WIDTH_BUCKET_UP,
 WIDTH_BUCKET(cust_credit_limit,20000, 0, 4) AS WIDTH_BUCKET_DOWN
FROM customers WHERE cust_city = 'Marshal';

 CUST_ID CUST_CREDIT_LIMIT WIDTH_BUCKET_UP WIDTH_BUCKET_DOWN
 ------- ----------------- --------------- -----------------
 22110 11000 3 2
 28340 5000 2 4
 40800 11000 3 2
 121790 9000 2 3
 165400 3000 1 4
 171630 1500 1 4
 184090 7000 2 3
 215240 5000 2 4
 227700 3000 1 4
 246390 11000 3 2
 346070 1500 1 4
 364760 5000 2 4
 370990 7000 2 3

0 5000 10000 15000 20000

0 1 2 3 4 5

Bucket #

Credit Limits
19-42 Oracle9i Data Warehousing Guide

User-Defined Aggregate Functions
 383450 1500 1 4
 408370 7000 2 3
 420830 1500 1 4
 464440 15000 4 2

User-Defined Aggregate Functions
Oracle offers a facility for creating your own functions, called user-defined
aggregate functions. These functions are written in programming languages such as
PL/SQL, Java, and C, and can be used as analytic functions or aggregates in
materialized views.

The advantages of these functions are:

■ Highly complex functions can be programmed using a fully procedural
language.

■ Higher scalability than other techniques when user-defined functions are
programmed for parallel processing.

■ Object datatypes can be processed.

As a simple example of a user-defined aggregate function, consider the skew
statistic. This calculation measures if a data set has a lopsided distribution about its
mean. It will tell you if one tail of the distribution is significantly larger than the
other. If you created a user-defined aggregate called udskew and applied it to the
credit limit data in the prior example, the SQL statement and results might look like
this:

SELECT USERDEF_SKEW(cust_credit_limit)
FROM customers WHERE cust_city='Marshal';

USERDEF_SKEW
============
0.583891

Before building user-defined aggregate functions, you should consider if your
needs can be met in regular SQL. Many complex calculations are possible directly in
SQL, particularly by using the CASE expression.

See Also: Oracle9i Data Cartridge Developer’s Guide for further
information regarding syntax and restrictions
SQL for Analysis in Data Warehouses 19-43

CASE Expressions
Staying with regular SQL will enable simpler development, and many query
operations are already well-parallelized in SQL. Even the earlier example, the skew
statistic, can be created using standard, albeit lengthy, SQL.

CASE Expressions
Oracle now supports simple and searched CASE statements. CASE statements are
similar in purpose to the Oracle DECODE statement, but they offer more flexibility
and logical power. They are also easier to read than traditional DECODE statements,
and offer better performance as well. They are commonly used when breaking
categories into buckets like age (for example, 20-29, 30-39, and so on). The syntax
for simple statements is:

expr WHEN comparison_expr THEN return_expr
[, WHEN comparison_expr THEN return_expr]...

The syntax for searched statements is:

WHEN condition THEN return_expr [, WHEN condition THEN return_expr]...

You can specify only 255 arguments and each WHEN ... THEN pair counts as two
arguments. For a workaround to this limit, see Oracle9i SQL Reference.

CASE Example
Suppose you wanted to find the average salary of all employees in the company. If
an employee's salary is less than $2000, you want the query to use $2000 instead.
With a CASE statement, you would have to write this query as follows,

SELECT AVG(foo(e.sal)) FROM emps e;

In this, foo is a function that returns its input if the input is greater than 2000, and
returns 2000 otherwise. The query has performance implications because it needs to
invoke a function for each row. Writing custom functions can also add to the
development load.

Using CASE expressions in the database without PL/SQL, this query can be
rewritten as:

SELECT AVG(CASE when e.sal > 2000 THEN e.sal ELSE 2000 end) FROM emps e;

Using a CASE expression lets you avoid developing custom functions and can also
perform faster.
19-44 Oracle9i Data Warehousing Guide

CASE Expressions
Creating Histograms With User-Defined Buckets
You can use the CASE statement when you want to obtain histograms with
user-defined buckets (both in number of buckets and width of each bucket). The
following are two examples of histograms created with CASEstatements. In the first
example, the histogram totals are shown in multiple columns and a single row is
returned. In the second example, the histogram is shown with a label column and a
single column for totals, and multiple rows are returned.

Histogram Example 1
SELECT
SUM(CASE WHEN cust_credit_limit BETWEEN 0 AND 3999 THEN 1 ELSE 0 END)
 AS "0-3999",
SUM(CASE WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN 1 ELSE 0 END)
 AS "4000-7999",
SUM(CASE WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN 1 ELSE 0 END)
 AS "8000-11999",
SUM(CASE WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN 1 ELSE 0 END)
 AS "12000-16000"
FROM customers WHERE cust_city='Marshal';

 0-3999 4000-7999 8000-11999 12000-16000
--------- --------- ---------- -----------
 6 6 4 1

Histogram Example 2
SELECT
 (CASE WHEN cust_credit_limit BETWEEN 0 AND 3999
 THEN ' 0 - 3999'
 WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN ' 4000 - 7999'
 WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN ' 8000 - 11999'
 WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN '12000 - 16000' END)
 AS BUCKET,
 COUNT(*) AS Count_in_Group
FROM customers.WHERE cust_city = 'Marshal'
GROUP BY
 (CASE WHEN cust_credit_limit BETWEEN 0 AND 3999
 THEN ' 0 - 3999'
 WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN ' 4000 - 7999'
 WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN ' 8000 - 11999'
 WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN '12000 - 16000'
 END);
SQL for Analysis in Data Warehouses 19-45

CASE Expressions
BUCKET COUNT_IN_GROUP
------------- --------------
 0 - 3999 6
 4000 - 7999 6
 8000 - 11999 4
12000 - 16000 1
19-46 Oracle9i Data Warehousing Guide

OLAP and Data
20

OLAP and Data Mining

In large data warehouse environments, many different types of analysis can occur.
In addition to SQL queries, you may also apply more advanced analytical
operations to your data. Two major types of such analysis are OLAP (On-Line
Analytic Processing) and data mining. Rather than having a separate OLAP or data
mining engine, Oracle has integrated OLAP and data mining capabilities directly
into the database server. Oracle OLAP and Oracle Data Mining are options to the
Oracle9i Database. This chapter provides a brief introduction to these technologies,
and more detail can be found in these products’ respective documentation.

The following topics provide an introduction to Oracle’s OLAP and data mining
capabilities:

■ OLAP

■ Data Mining

See Also: Oracle9i OLAP User’s Guide for further information
regarding OLAP and Oracle Data Mining documentation for further
information regarding data mining
 Mining 20-1

OLAP
OLAP
Oracle9i OLAP adds the query performance and calculation capability previously
found only in multidimensional databases to Oracle’s relational platform. In
addition, it provides a Java OLAP API that is appropriate for the development of
internet-ready analytical applications. Unlike other combinations of OLAP and
RDBMS technology, Oracle9i OLAP is not a multidimensional database using
bridges to move data from the relational data store to a multidimensional data
store. Instead, it is truly an OLAP-enabled relational database. As a result, Oracle9i
provides the benefits of a multidimensional database along with the scalability,
accessibility, security, manageability, and high availability of the Oracle9i database.
The Java OLAP API, which is specifically designed for internet-based analytical
applications, offers productive data access.

Benefits of OLAP and RDBMS Integration
Basing an OLAP system directly on the Oracle server offers the following benefits:

■ Scalability

■ Availability

■ Manageability

■ Backup and Recovery

■ Security

Scalability
Oracle9i OLAP is highly scalable. In today’s environment, there is tremendous
growth along three dimensions of analytic applications: number of users, size of
data, complexity of analyses. There are more users of analytical applications, and
they need access to more data to perform more sophisticated analysis and target
marketing. For example, a telephone company might want a customer dimension to
include detail such as all telephone numbers as part of an application that is used to
analyze customer turnover. This would require support for multi-million row
dimension tables and very large volumes of fact data. Oracle9i can handle very
large data sets using parallel execution and partitioning, as well as offering support
for advanced hardware and clustering.

See Also: Oracle9i OLAP User’s Guide for further information
regarding OLAP
20-2 Oracle9i Data Warehousing Guide

OLAP
Availability
Oracle9i includes many features that support high availability. One of the most
significant is partitioning, which allows management of precise subsets of tables
and indexes, so that management operations affect only small pieces of these data
structures. By partitioning tables and indexes, data management processing time is
reduced, thus minimizing the time data is unavailable. Another feature supporting
high availability is transportable tablespaces. With transportable tablespaces, large
data sets, including tables and indexes, can be added with almost no processing to
other databases. This enables extremely rapid data loading and updates.

Manageability
Oracle enables you to precisely control resource utilization. The Database Resource
Manager, for example, provides a mechanism for allocating the resources of a data
warehouse among different sets of end-users. Consider an environment where the
marketing department and the sales department share an OLAP system. Using the
Database Resource Manager, you could specify that the marketing department
receive at least 60 percent of the CPU resources of the machines, while the sales
department receive 40 percent of the CPU resources. You can also further specify
limits on the total number of active sessions, and the degree of parallelism of
individual queries for each department.

Another resource management facility is the progress monitor, which gives endusers
and administrators the status of long-running operations. Oracle9i maintains
statistics describing the percent-complete of these operations. Oracle Enterprise
Manager enables you to view a bar-graph display of these operations showing what
percent complete they are. Moreover, any other tool or any database administrator
can also retrieve progress information directly from the Oracle data server, using
system views.

Backup and Recovery
Oracle provides a server-managed infrastructure for backup, restore, and recovery
tasks that enables simpler, safer operations at terabyte scale. Some of the highlights
are:

■ Details related to backup, restore, and recovery operations are maintained by
the server in a recovery catalog and automatically used as part of these
operations. This reduces administrative burden and minimizes the possibility of
human errors.
OLAP and Data Mining 20-3

Data Mining
■ Backup and recovery operations are fully integrated with partitioning.
Individual partitions, when placed in their own tablespaces, can be backed up
and restored independently of the other partitions of a table.

■ Oracle includes support for incremental backup and recovery using Recovery
Manager, enabling operations to be completed efficiently within times
proportional to the amount of changes, rather than the overall size of the
database.

■ The backup and recovery technology is highly scalable, and provides tight
interfaces to industry-leading media management subsystems. This provides
for efficient operations that can scale up to handle very large volumes of data.
Open Platforms for more hardware options & enterprise-level platforms.

Security
Just as the demands of real-world transaction processing required Oracle to develop
robust features for scalability, manageability and backup and recovery, they lead
Oracle to create industry-leading security features. The security features in Oracle
have reached the highest levels of U.S. government certification for database
trustworthiness. Oracle’s fine grained access control feature, enables cell-level
security for OLAP users. Fine grained access control works with minimal burden on
query processing, and it enables efficient centralized security management.

Data Mining
Oracle enables data mining inside the database for performance and scalability.
Some of the capabilities are:

■ An API that provides programmatic control and application integration

■ Analytical capabilities with OLAP and statistical functions in the database

■ Multiple algorithms: Naïve Bayes, decision trees, clustering, and association
rules

■ Real-time and batch scoring modes

■ Multiple prediction types

■ Association insights

See Also: Oracle9i Recovery Manager User’s Guide for further
details
20-4 Oracle9i Data Warehousing Guide

Data Mining
Enabling Data Mining Applications
Oracle9i Data Mining provides a Java API to exploit the data mining functionality
that is embedded within the Oracle9i database.

By delivering complete programmatic control of the database in data mining,
Oracle Data Mining (ODM) delivers powerful, scalable modeling and real-time
scoring. This enables e-businesses to incorporate predictions and classifications in
all processes and decision points throughout the business cycle.

ODM is designed to meet the challenges of vast amounts of data, delivering
accurate insights completely integrated into e-business applications. This integrated
intelligence enables the automation and decision speed that e-businesses require in
order to compete today.

Predictions and Insights
Oracle Data Mining uses data mining algorithms to sift through the large volumes
of data generated by e-businesses to produce, evaluate, and deploy predictive
models. It also enriches mission critical applications in CRM, manufacturing
control, inventory management, customer service and support, Web portals,
wireless devices and other fields with context-specific recommendations and
predictive monitoring of critical processes. ODM delivers real-time answers to
questions such as:

■ Which N items is person A most likely to buy or like?

■ What is the likelihood that this product will be returned for repair?

Mining Within the Database Architecture
Oracle Data Mining performs all the phases of data mining within the database. In
each data mining phase, this architecture results in significant improvements
including performance, automation, and integration.

Data Preparation
Data preparation can create new tables or views of existing data. Both options
perform faster than moving data to an external data mining utility and offer the
programmer the option of snap-shots or real-time updates.

See Also: Oracle Data Mining documentation for more
information
OLAP and Data Mining 20-5

Data Mining
Oracle Data Mining provides utilities for complex, data mining-specific tasks.
Binning improves model build time and model performance, so ODM provides a
utility for user-defined binning. ODM accepts data in either single record format or
in transactional format and performs mining on transactional formats. Single record
format is most common in applications, so ODM provides a utility for transforming
single record format.

Associated analysis for preparatory data exploration and model evaluation is
extended by Oracle’s statistical functions and OLAP capabilities. Because these also
operate within the database, they can all be incorporated into a seamless application
that shares database objects. This allows for more functional and faster applications.

Model Building
Oracle Data Mining provides four algorithms: Naïve Bayes, Decision Tree,
Clustering, and Association Rules. These algorithms address a broad spectrum of
business problems, ranging from predicting the future likelihood of a customer
purchasing a given product, to understand which products are likely be purchased
together in a single trip to the grocery store. All model building takes place inside
the database. Once again, the data does not need to move outside the database in
order to build the model, and therefore the entire data-mining process is
accelerated.

Model Evaluation
Models are stored in the database and directly accessible for evaluation, reporting,
and further analysis by a wide variety of tools and application functions. ODM
provides APIs for calculating traditional confusion matrixes and lift charts. It stores
the models, the underlying data, and these analysis results together in the database
to allow further analysis, reporting and application specific model management.

Scoring
Oracle Data Mining provides both batch and real-time scoring. In batch mode,
ODM takes a table as input. It scores every record, and returns a scored table as a
result. In real-time mode, parameters for a single record are passed in and the scores
are returned in a Java object.
20-6 Oracle9i Data Warehousing Guide

Data Mining
In both modes, ODM can deliver a variety of scores. It can return a rating or
probability of a specific outcome. Alternatively it can return a predicted outcome
and the probability of that outcome occurring. Some examples follow.

■ How likely is this event to end in outcome A?

■ Which outcome is most likely to result from this event?

■ What is the probability of each possible outcome for this event?

Java API
The Oracle Data Mining API lets you build analytical models and deliver real-time
predictions in any application that supports Java. The API is based on the emerging
JSR-073 standard.
OLAP and Data Mining 20-7

Data Mining
20-8 Oracle9i Data Warehousing Guide

Using Parallel E
21

Using Parallel Execution

This chapter covers tuning in a parallel execution environment and discusses:

■ Introduction to Parallel Execution Tuning

■ Types of Parallelism

■ Initializing and Tuning Parameters for Parallel Execution

■ Tuning General Parameters for Parallel Execution

■ Monitoring and Diagnosing Parallel Execution Performance

■ Affinity and Parallel Operations

■ Miscellaneous Parallel Execution Tuning Tips
xecution 21-1

Introduction to Parallel Execution Tuning
Introduction to Parallel Execution Tuning
Parallel execution dramatically reduces response time for data-intensive operations
on large databases typically associated with decision support systems (DSS) and
data warehouses. You can also implement parallel execution on certain types of
online transaction processing (OLTP) and hybrid systems. Parallel execution
improves processing for:

■ Queries requiring large table scans, joins, or partitioned index scans

■ Creation of large indexes

■ Creation of large tables (including materialized views)

■ Bulk inserts, updates, merges, and deletes

You can also use parallel execution to access object types within an Oracle database.
For example, you can use parallel execution to access large objects (LOBs).

Parallel execution benefits systems with all of the following characteristics:

■ Symmetric multiprocessors (SMPs), clusters, or massively parallel systems

■ Sufficient I/O bandwidth

■ Underutilized or intermittently used CPUs (for example, systems where CPU
usage is typically less than 30%)

■ Sufficient memory to support additional memory-intensive processes, such as
sorts, hashing, and I/O buffers

If your system lacks any of these characteristics, parallel execution might not
significantly improve performance. In fact, parallel execution may reduce system
performance on overutilized systems or systems with small I/O bandwidth.

When to Implement Parallel Execution
Parallel execution provides the greatest performance improvements in DSS and
data warehousing environments. OLTP systems also benefit from parallel execution,
but usually only during batch processing.

During the day, most OLTP systems should probably not use parallel execution.
During off-hours, however, parallel execution can effectively process high-volume
batch operations. For example, a bank might use parallelized batch programs to
perform millions of updates to apply interest to accounts.
21-2 Oracle9i Data Warehousing Guide

Introduction to Parallel Execution Tuning
Operations That Can Be Parallelized
The Oracle server can use parallel execution for any of the following:

■ Access methods

For example, table scans, index full scans, and partitioned index range scans.

■ Join methods

For example, nested loop, sort merge, hash, and star transformation.

■ DDL statements

CREATE TABLE AS SELECT, CREATE INDEX, REBUILD INDEX, REBUILD INDEX
PARTITION, and MOVE SPLIT COALESCE PARTITION

■ DML statements

For example, INSERT AS SELECT , updates, deletes, and MERGE operations.

■ Miscellaneous SQL operations

For example, GROUP BY, NOT IN, SELECT DISTINCT, UNION, UNION ALL, CUBE,
and ROLLUP, as well as aggregate and table functions.

The Parallel Execution Server Pool
When an instance starts up, Oracle creates a pool of parallel execution servers
which are available for any parallel operation. The initialization parameter
PARALLEL_MIN_SERVERS specifies the number of parallel execution servers that
Oracle creates at instance startup.

When executing a parallel operation, the parallel execution coordinator obtains
parallel execution servers from the pool and assigns them to the operation. If
necessary, Oracle can create additional parallel execution servers for the operation.
These parallel execution servers remain with the operation throughout job
execution, then become available for other operations. After the statement has been
processed completely, the parallel execution servers return to the pool.

Note: The parallel execution coordinator and the parallel
execution servers can only service one statement at a time. A
parallel execution coordinator cannot coordinate, for example, a
parallel query and a parallel DML statement at the same time.
Using Parallel Execution 21-3

Introduction to Parallel Execution Tuning
When a user issues a SQL statement, the optimizer decides whether to execute the
operations in parallel and determines the degree of parallelism (DOP) for each
operation. You can specify the number of parallel execution servers required for an
operation in various ways.

If the optimizer targets the statement for parallel processing, the following sequence
of events takes place:

1. The SQL statement's foreground process becomes a parallel execution
coordinator.

2. The parallel execution coordinator obtains as many parallel execution servers as
needed (determined by the DOP) from the server pool or creates new parallel
execution servers as needed.

3. Oracle executes the statement as a sequence of operations. Each operation is
performed in parallel, if possible.

4. When statement processing is completed, the coordinator returns any resulting
data to the user process that issued the statement and returns the parallel
execution servers to the server pool.

The parallel execution coordinator calls upon the parallel execution servers during
the execution of the SQL statement, not during the parsing of the statement.
Therefore, when parallel execution is used with the shared server, the server process
that processes the EXECUTEcall of a user's statement becomes the parallel execution
coordinator for the statement.

Variations in the Number of Parallel Execution Servers
If the number of parallel operations processed concurrently by an instance changes
significantly, Oracle automatically changes the number of parallel execution servers
in the pool.

If the number of parallel operations increases, Oracle creates additional parallel
execution servers to handle incoming requests. However, Oracle never creates more
parallel execution servers for an instance than the value specified by the
initialization parameter PARALLEL_MAX_SERVERS.

If the number of parallel operations decreases, Oracle terminates any parallel
execution servers that have been idle for a threshold period of time. Oracle does not
reduce the size of the pool less than the value of PARALLEL_MIN_SERVERS, no
matter how long the parallel execution servers have been idle.

See Also: "Setting the Degree of Parallelism" on page 21-32
21-4 Oracle9i Data Warehousing Guide

Introduction to Parallel Execution Tuning
Processing Without Enough Parallel Execution Servers
Oracle can process a parallel operation with fewer than the requested number of
processes.

If all parallel execution servers in the pool are occupied and the maximum number
of parallel execution servers has been started, the parallel execution coordinator
switches to serial processing.

How Parallel Execution Servers Communicate
To execute a query in parallel, Oracle generally creates a producer queue server and
a consumer server. The producer queue server retrieves rows from tables and the
consumer server performs operations such as join, sort, DML, and DDL on these
rows. Each server in the producer execution process set has a connection to each
server in the consumer set. This means that the number of virtual connections
between parallel execution servers increases as the square of the DOP.

Each communication channel has at least one, and sometimes up to four memory
buffers. Multiple memory buffers facilitate asynchronous communication among
the parallel execution servers.

A single-instance environment uses at most three buffers for each communication
channel. An Oracle Real Application Clusters environment uses at most four buffers
for each channel. Figure 21–1 illustrates message buffers and how producer parallel
execution servers connect to consumer parallel execution servers.

See Also:

■ "Minimum Number of Parallel Execution Servers" on
page 21-36 for information about using the initialization
parameter PARALLEL_MIN_PERCENT

■ Oracle9i Database Performance Tuning Guide and Reference for
information about monitoring an instance's pool of parallel
execution servers and determining the appropriate values for
the initialization parameters
Using Parallel Execution 21-5

Introduction to Parallel Execution Tuning
Figure 21–1 Parallel Execution Server Connections and Buffers

When a connection is between two processes on the same instance, the servers
communicate by passing the buffers back and forth. When the connection is
between processes in different instances, the messages are sent using external
high-speed network protocols. In Figure 21–1, the DOP is equal to the number of
parallel execution servers, which in this case is n. Figure 21–1 does not show the
parallel execution coordinator. Each parallel execution server actually has an
additional connection to the parallel execution coordinator.

Parallelizing SQL Statements
Each SQL statement undergoes an optimization and parallelization process when it
is parsed. When the data changes, if a more optimal execution or parallelization
plan becomes available, Oracle can automatically adapt to the new situation.

After the optimizer determines the execution plan of a statement, the parallel
execution coordinator determines the parallelization method for each operation in
the plan. For example, the parallelization method might be to parallelize a full table
scan by block range or parallelize an index range scan by partition. The coordinator
must decide whether an operation can be performed in parallel and, if so, how
many parallel execution servers to enlist. The number of parallel execution servers
is the DOP.

connections

message
buffer

DOP = 1 DOP = 2

. . .

. . .

DOP = n

Parallel
execution
server set 1

Parallel
execution
server set 2
21-6 Oracle9i Data Warehousing Guide

Introduction to Parallel Execution Tuning
Dividing Work Among Parallel Execution Servers
The parallel execution coordinator examines the redistribution requirements of each
operation. An operation's redistribution requirement is the way in which the rows
operated on by the operation must be divided or redistributed among the parallel
execution servers.

After determining the redistribution requirement for each operation in the
execution plan, the optimizer determines the order in which the operations must be
performed. With this information, the optimizer determines the data flow of the
statement.

Figure 21–2 illustrates the data flow for a query to join the employees and
departments tables:

SELECT department_name, MAX(salary), AVG(salary)
FROM employees, departments
WHERE employees.department_id = departments.department_id
GROUP BY department_name;

See Also:

■ "Setting the Degree of Parallelism" on page 21-32

■ "Parallelization Rules for SQL Statements" on page 21-38
Using Parallel Execution 21-7

Introduction to Parallel Execution Tuning
Figure 21–2 Data Flow Diagram for a Join of EMPLOYEES and DEPARTMENTS

Parallelism Between Operations
Operations that require the output of other operations are known as parent
operations. In Figure 21–2 the GROUP BY SORT operation is the parent of the HASH
JOIN operation because GROUP BY SORT requires the HASH JOIN output.

Parallel
Execution

Coordinator

FULL SCAN
employees

FULL SCAN
departments

GROUP
BY

SORT

HASH
JOIN
21-8 Oracle9i Data Warehousing Guide

Introduction to Parallel Execution Tuning
Parent operations can begin consuming rows as soon as the child operations have
produced rows. In the previous example, while the parallel execution servers are
producing rows in the FULL SCAN dept operation, another set of parallel execution
servers can begin to perform the HASH JOIN operation to consume the rows.

Each of the two operations performed concurrently is given its own set of parallel
execution servers. Therefore, both query operations and the data flow tree itself
have parallelism. The parallelism of an individual operation is called intraoperation
parallelism and the parallelism between operations in a data flow tree is called
interoperation parallelism.

Due to the producer-consumer nature of the Oracle server's operations, only two
operations in a given tree need to be performed simultaneously to minimize
execution time.

To illustrate intraoperation and interoperation parallelism, consider the following
statement:

SELECT * FROM employees ORDER BY last_name;

The execution plan implements a full scan of the employees table. This operation
is followed by a sorting of the retrieved rows, based on the value of the last_name
column. For the sake of this example, assume the last_name column is not
indexed. Also assume that the DOP for the query is set to 4, which means that four
parallel execution servers can be active for any given operation.

Figure 21–3 illustrates the parallel execution of the example query.
Using Parallel Execution 21-9

Introduction to Parallel Execution Tuning
Figure 21–3 Interoperation Parallelism and Dynamic Partitioning

As you can see from Figure 21–3, there are actually eight parallel execution servers
involved in the query even though the DOP is 4. This is because a parent and child
operator can be performed at the same time (interoperation parallelism).

Also note that all of the parallel execution servers involved in the scan operation
send rows to the appropriate parallel execution server performing the SORT
operation. If a row scanned by a parallel execution server contains a value for the
ename column between A and G, that row gets sent to the first ORDER BY parallel
execution server. When the scan operation is complete, the sorting processes can
return the sorted results to the coordinator, which, in turn, returns the complete
query results to the user.

Note: When a set of parallel execution servers completes its
operation, it moves on to operations higher in the data flow. For
example, in Figure 21–3 on page 21-10, if there was another ORDER
BY operation after the ORDER BY, the parallel execution servers
performing the table scan would perform the second ORDER BY
operation after completing the table scan.

SELECT *
 from employees
 ORDER BY last_name;

employees Table

Parallel
Execution

Coordinator

T - Z

H - M

N - S

A - G

User
Process

Parallel execution
servers for
ORDER BY
operation

Parallel execution
servers for full
table scan

Intra-
Operation
parallelism

Inter-
Operation
parallelism

Intra-
Operation
parallelism
21-10 Oracle9i Data Warehousing Guide

Types of Parallelism
Types of Parallelism
The following types of parallelism are discussed in this section:

■ Parallel Query

■ Parallel DDL

■ Parallel DML

■ Parallel Execution of Functions

■ Other Types of Parallelism

Parallel Query
You can parallelize queries and subqueries in SELECT statements. You can also
parallelize the query portions of DDL statements and DML statements (INSERT,
UPDATE, and DELETE).

However, you cannot parallelize the query portion of a DDL or DML statement if it
references a remote object. When you issue a parallel DML or DDL statement in
which the query portion references a remote object, the operation is automatically
executed serially.

Parallel Queries on Index-Organized Tables
The following parallel scan methods are supported on index-organized tables:

■ Parallel fast full scan of a nonpartitioned index-organized table

■ Parallel fast full scan of a partitioned index-organized table

■ Parallel index range scan of a partitioned index-organized table

See Also:

■ "Operations That Can Be Parallelized" on page 21-3 for
information on the query operations that Oracle can parallelize

■ "Parallelizing SQL Statements" on page 21-6 for an explanation
of how the processes perform parallel queries

■ "Distributed Transaction Restrictions" on page 21-27 for
examples of queries that reference a remote object

■ "Rules for Parallelizing Queries" on page 21-38 for information
on the conditions for parallelizing a query and the factors that
determine the DOP
Using Parallel Execution 21-11

Types of Parallelism
These scan methods can be used for index-organized tables with overflow areas and
for index-organized tables that contain LOBs.

Nonpartitioned Index-Organized Tables
Parallel query on a nonpartitioned index-organized table uses parallel fast full scan.
The DOP is determined, in decreasing order of priority, by:

1. A PARALLEL hint (if present)

2. An ALTER SESSION FORCE PARALLEL QUERY statement

3. The parallel degree associated with the table, if the parallel degree is specified
in the CREATE TABLE or ALTER TABLE statement

The allocation of work is done by dividing the index segment into a sufficiently
large number of block ranges and then assigning the block ranges to parallel
execution servers in a demand-driven manner. The overflow blocks corresponding
to any row are accessed in a demand-driven manner only by the process which
owns that row.

Partitioned Index-Organized Tables
Both index range scan and fast full scan can be performed in parallel. For parallel
fast full scan, parallelization is exactly the same as for nonpartitioned
index-organized tables. For parallel index range scan on partitioned
index-organized tables, the DOP is the minimum of the degree picked up from the
previous priority list (like in parallel fast full scan) and the number of partitions in
the index-organized table. Depending on the DOP, each parallel execution server
gets one or more partitions (assigned in a demand-driven manner), each of which
contains the primary key index segment and the associated overflow segment, if
any.

Parallel Queries on Object Types
Parallel queries can be performed on object type tables and tables containing object
type columns. Parallel query for object types supports all of the features that are
available for sequential queries on object types, including:

■ Methods on object types

■ Attribute access of object types

■ Constructors to create object type instances

■ Object views
21-12 Oracle9i Data Warehousing Guide

Types of Parallelism
■ PL/SQL and OCI queries for object types

There are no limitations on the size of the object types for parallel queries.

The following restrictions apply to using parallel query for object types.

■ A MAP function is needed to parallelize queries involving joins and sorts
(through ORDER BY, GROUP BY, or set operations). In the absence of a MAP
function, the query will automatically be executed serially.

■ Parallel queries on nested tables are not supported. Even if the table has a
parallel attribute or parallel hints, the query will execute serially.

■ Parallel DML and parallel DDL are not supported with object types. DML and
DDL statements are always performed serially.

In all cases where the query cannot execute in parallel because of any of these
restrictions, the whole query executes serially without giving an error message.

Parallel DDL
This section includes the following topics on parallelism for DDL statements:

■ DDL Statements That Can Be Parallelized

■ CREATE TABLE ... AS SELECT in Parallel

■ Recoverability and Parallel DDL

■ Space Management for Parallel DDL

DDL Statements That Can Be Parallelized
You can parallelize DDL statements for tables and indexes that are nonpartitioned
or partitioned. Table 21–3 on page 21-45 summarizes the operations that can be
parallelized in DDL statements.

The parallel DDL statements for nonpartitioned tables and indexes are:

■ CREATE INDEX

■ CREATE TABLE ... AS SELECT

■ ALTER INDEX ... REBUILD

The parallel DDL statements for partitioned tables and indexes are:

■ CREATE INDEX

■ CREATE TABLE ... AS SELECT
Using Parallel Execution 21-13

Types of Parallelism
■ ALTER TABLE ... MOVE PARTITION

■ ALTER TABLE ... SPLIT PARTITION

■ ALTER TABLE ... COALESCE PARTITION

■ ALTER INDEX ... REBUILD PARTITION

■ ALTER INDEX ... SPLIT PARTITION

■ This statement can be executed in parallel only if the (global) index
partition being split is usable.

All of these DDL operations can be performed in no-logging mode for either
parallel or serial execution.

CREATE TABLE for an index-organized table can be parallelized either with or
without an AS SELECT clause.

Different parallelism is used for different operations (see Table 21–3 on page 21-45).
Parallel CREATE TABLE ... AS SELECT statements on partitioned tables and parallel
CREATE INDEX statements on partitioned indexes execute with a DOP equal to the
number of partitions.

Partition parallel analyze table is made less necessary by the ANALYZE {TABLE,
INDEX} PARTITION statements, since parallel analyze of an entire partitioned table
can be constructed with multiple user sessions.

Parallel DDL cannot occur on tables with object columns. Parallel DDL cannot occur
on non-partitioned tables with LOB columns.

CREATE TABLE ... AS SELECT in Parallel
For performance reasons, decision support applications often require large amounts
of data to be summarized or rolled up into smaller tables for use with ad hoc,
decision support queries. Rollup occurs regularly (such as nightly or weekly)
during a short period of system inactivity.

Parallel execution lets you parallelize the query and create operations of creating a
table as a subquery from another table or set of tables.

See Also:

■ Oracle9i SQL Reference for information about the syntax and use
of parallel DDL statements

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for
information about LOB restrictions
21-14 Oracle9i Data Warehousing Guide

Types of Parallelism
Figure 21–4 illustrates creating a table from a subquery in parallel.

Figure 21–4 Creating a Summary Table in Parallel

Recoverability and Parallel DDL
When summary table data is derived from other tables' data, recoverability from
media failure for the smaller summary table may not be important and can be
turned off during creation of the summary table.

If you disable logging during parallel table creation (or any other parallel DDL
operation), you should back up the tablespace containing the table once the table is
created to avoid loss of the table due to media failure.

Note: Clustered tables cannot be created and populated in
parallel.

CREATE TABLE summary
 (C1, AVGC2, SUMC3)
PARALLEL (5)
AS
SELECT
C1, AVG(C2), SUM(C3)
FROM DAILY_SALES
GROUP BY (C1);

DAILY_SALES
Table

SUMMARY
Table

Parallel Execution
Coordinator

Parallel Execution
Servers

Parallel Execution
Servers
Using Parallel Execution 21-15

Types of Parallelism
Use the NOLOGGING clause of the CREATE TABLE, CREATE INDEX, ALTER TABLE,
and ALTER INDEX statements to disable undo and redo log generation.

Space Management for Parallel DDL
Creating a table or index in parallel has space management implications that affect
both the storage space required during a parallel operation and the free space
available after a table or index has been created.

Storage Space When Using Dictionary-Managed Tablespaces
When creating a table or index in parallel, each parallel execution server uses the
values in the STORAGE clause of the CREATE statement to create temporary
segments to store the rows. Therefore, a table created with a NEXT setting of 5 MB
and a PARALLEL DEGREE of 12 consumes at least 60 megabytes (MB) of storage
during table creation because each process starts with an extent of 5 MB. When the
parallel execution coordinator combines the segments, some of the segments may
be trimmed, and the resulting table may be smaller than the requested 60 MB.

Free Space and Parallel DDL
When you create indexes and tables in parallel, each parallel execution server
allocates a new extent and fills the extent with the table or index data. Thus, if you
create an index with a DOP of 3, the index will have at least three extents initially.
Allocation of extents is the same for rebuilding indexes in parallel and for moving,
splitting, or rebuilding partitions in parallel.

Serial operations require the schema object to have at least one extent. Parallel
creations require that tables or indexes have at least as many extents as there are
parallel execution servers creating the schema object.

When you create a table or index in parallel, it is possible to create pockets of free
space—either external or internal fragmentation. This occurs when the temporary

See Also: Oracle9i Database Administrator’s Guide for information
about recoverability of tables created in parallel

See Also:

■ Oracle9i SQL Reference for a discussion of the syntax of the
CREATE TABLE statement

■ Oracle9i Database Administrator’s Guide for information about
dictionary-managed tablespaces
21-16 Oracle9i Data Warehousing Guide

Types of Parallelism
segments used by the parallel execution servers are larger than what is needed to
store the rows.

■ If the unused space in each temporary segment is larger than the value of the
MINIMUM EXTENT parameter set at the tablespace level, then Oracle trims the
unused space when merging rows from all of the temporary segments into the
table or index. The unused space is returned to the system free space and can be
allocated for new extents, but it cannot be coalesced into a larger segment
because it is not contiguous space (external fragmentation).

■ If the unused space in each temporary segment is smaller than the value of the
MINIMUM EXTENT parameter, then unused space cannot be trimmed when the
rows in the temporary segments are merged. This unused space is not returned
to the system free space; it becomes part of the table or index (internal
fragmentation) and is available only for subsequent inserts or for updates that
require additional space.

For example, if you specify a DOP of 3 for a CREATE TABLE ... AS SELECT
statement, but there is only one datafile in the tablespace, then internal
fragmentation may occur, as shown in Figure 21–5 on page 21-18. The pockets of
free space within the internal table extents of a datafile cannot be coalesced with
other free space and cannot be allocated as extents.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about creating tables and indexes in parallel
Using Parallel Execution 21-17

Types of Parallelism
Figure 21–5 Unusable Free Space (Internal Fragmentation)

Parallel DML
Parallel DML (PARALLEL, INSERT, UPDATE, and DELETE) uses parallel execution
mechanisms to speed up or scale up large DML operations against large database
tables and indexes.

Note: Although DML generally includes queries, in this chapter
the term DML refers only to inserts, updates, merges, and deletes.

DATA1.ORA

CREATE TABLE emp
 AS SELECT ...

USERS Tablespace

EXTENT 1

Free space
for INSERTs

Free space
for INSERTs

Free space

EXTENT 2

EXTENT 3

for INSERTs

Parallel
Execution

Server

Parallel
Execution

Server

Parallel
Execution

Server
21-18 Oracle9i Data Warehousing Guide

Types of Parallelism
This section discusses the following parallel DML topics:

■ Advantages of Parallel DML over Manual Parallelism

■ When to Use Parallel DML

■ Enabling Parallel DML

■ Transaction Restrictions for Parallel DML

■ Rollback Segments

■ Recovery for Parallel DML

■ Space Considerations for Parallel DML

■ Lock and Enqueue Resources for Parallel DML

■ Restrictions on Parallel DML

Advantages of Parallel DML over Manual Parallelism
You can parallelize DML operations manually by issuing multiple DML statements
simultaneously against different sets of data. For example, you can parallelize
manually by:

■ Issuing multiple INSERT statements to multiple instances of an Oracle Real
Application Clusters to make use of free space from multiple free list blocks.

■ Issuing multiple UPDATE and DELETE statements with different key value
ranges or rowid ranges.

However, manual parallelism has the following disadvantages:

■ It is difficult to use. You have to open multiple sessions (possibly on different
instances) and issue multiple statements.

■ There is a lack of transactional properties. The DML statements are issued at
different times; and, as a result, the changes are done with inconsistent
snapshots of the database. To get atomicity, the commit or rollback of the
various statements must be coordinated manually (maybe across instances).

■ The work division is complex. You may have to query the table in order to find
out the rowid or key value ranges to correctly divide the work.

■ The calculation is complex. The calculation of the degree of parallelism can be
complex.

■ There is a lack of affinity and resource information. You need to know affinity
information to issue the right DML statement at the right instance when
Using Parallel Execution 21-19

Types of Parallelism
running an Oracle Real Application Clusters. You also have to find out about
current resource usage to balance workload across instances.

Parallel DML removes these disadvantages by performing inserts, updates, and
deletes in parallel automatically.

When to Use Parallel DML
Parallel DML operations are mainly used to speed up large DML operations against
large database objects. Parallel DML is useful in a DSS environment where the
performance and scalability of accessing large objects are important. Parallel DML
complements parallel query in providing you with both querying and updating
capabilities for your DSS databases.

The overhead of setting up parallelism makes parallel DML operations infeasible
for short OLTP transactions. However, parallel DML operations can speed up batch
jobs running in an OLTP database.

Some of the scenarios where parallel DML is used include:

■ Refreshing Tables in a Data Warehouse System

■ Creating Intermediate Summary Tables

■ Using Scoring Tables

■ Updating Historical Tables

■ Running Batch Jobs

Refreshing Tables in a Data Warehouse System In a data warehouse system, large tables
need to be refreshed (updated) periodically with new or modified data from the
production system. You can do this efficiently by using parallel DML combined
with updatable join views. You can also use the MERGE statement.

The data that needs to be refreshed is generally loaded into a temporary table before
starting the refresh process. This table contains either new rows or rows that have
been updated since the last refresh of the data warehouse. You can use an updatable
join view with parallel UPDATE to refresh the updated rows, and you can use an
anti-hash join with parallel INSERT to refresh the new rows.

Creating Intermediate Summary Tables In a DSS environment, many applications
require complex computations that involve constructing and manipulating many

See Also: Chapter 14, "Maintaining the Data Warehouse" for
further information
21-20 Oracle9i Data Warehousing Guide

Types of Parallelism
large intermediate summary tables. These summary tables are often temporary and
frequently do not need to be logged. Parallel DML can speed up the operations
against these large intermediate tables. One benefit is that you can put incremental
results in the intermediate tables and perform parallel update.

In addition, the summary tables may contain cumulative or comparison
information which has to persist beyond application sessions; thus, temporary
tables are not feasible. Parallel DML operations can speed up the changes to these
large summary tables.

Using Scoring Tables Many DSS applications score customers periodically based on a
set of criteria. The scores are usually stored in large DSS tables. The score
information is then used in making a decision, for example, inclusion in a mailing
list.

This scoring activity queries and updates a large number of rows in the large table.
Parallel DML can speed up the operations against these large tables.

Updating Historical Tables Historical tables describe the business transactions of an
enterprise over a recent time interval. Periodically, the DBA deletes the set of oldest
rows and inserts a set of new rows into the table. Parallel INSERT ... SELECT and
parallel DELETE operations can speed up this rollover task.

Although you can also use parallel direct loader (SQL*Loader) to insert bulk data
from an external source, parallel INSERT ... SELECT is faster for inserting data that
already exists in another table in the database.

Dropping a partition can also be used to delete old rows. However, to do this, the
table has to be partitioned by date and with the appropriate time interval.

Running Batch Jobs Batch jobs executed in an OLTP database during off hours have a
fixed time window in which the jobs must complete. A good way to ensure timely
job completion is to parallelize their operations. As the work load increases, more
machine resources can be added; the scaleup property of parallel operations ensures
that the time constraint can be met.

Enabling Parallel DML
A DML statement can be parallelized only if you have explicitly enabled parallel
DML in the session with the ENABLE PARALLEL DML clause of the ALTER
SESSIONstatement. This mode is required because parallel DML and serial DML
have different locking, transaction, and disk space requirements.
Using Parallel Execution 21-21

Types of Parallelism
The default mode of a session is DISABLE PARALLEL DML. When parallel DML is
disabled, no DML will be executed in parallel even if the PARALLEL hint is used.

When parallel DML is enabled in a session, all DML statements in this session will
be considered for parallel execution. However, even if parallel DML is enabled, the
DML operation may still execute serially if there are no parallel hints or no tables
with a parallel attribute or if restrictions on parallel operations are violated.

The session's PARALLEL DML mode does not influence the parallelism of SELECT
statements, DDL statements, and the query portions of DML statements. Thus, if
this mode is not set, the DML operation is not parallelized, but scans or join
operations within the DML statement may still be parallelized.

Transaction Restrictions for Parallel DML
To execute a DML operation in parallel, the parallel execution coordinator acquires
or spawns parallel execution servers, and each parallel execution server executes a
portion of the work under its own parallel process transaction.

■ Each parallel execution server creates a different parallel process transaction.

■ To reduce contention on the rollback segments, only a few parallel process
transactions should reside in the same rollback segment. See "Rollback
Segments" on page 21-23.

The coordinator also has its own coordinator transaction, which can have its own
rollback segment. In order to ensure user-level transactional atomicity, the
coordinator uses a two-phase commit protocol to commit the changes performed by
the parallel process transactions.

A session that is enabled for parallel DML may put transactions in the session in a
special mode: If any DML statement in a transaction modifies a table in parallel, no
subsequent serial or parallel query or DML statement can access the same table
again in that transaction. This means that the results of parallel modifications
cannot be seen during the transaction.

Serial or parallel statements that attempt to access a table that has already been
modified in parallel within the same transaction are rejected with an error message.

See Also:

■ "Space Considerations for Parallel DML" on page 21-24

■ "Lock and Enqueue Resources for Parallel DML" on page 21-24

■ "Restrictions on Parallel DML" on page 21-24
21-22 Oracle9i Data Warehousing Guide

Types of Parallelism
If a PL/SQL procedure or block is executed in a parallel DML enabled session, then
this rule applies to statements in the procedure or block.

Rollback Segments
Oracle assigns transactions to rollback segments that have the fewest active
transactions. To speed up both forward and undo operations, you should create and
bring online enough rollback segments so that at most two parallel process
transactions are assigned to one rollback segment.

The SET TRANSACTION USE ROLLBACK SEGMENT statement is ignored when
parallel DML is used because parallel DML requires more than one rollback
segment for performance.

You should create the rollback segments in tablespaces that have enough space for
them to extend when necessary. You can then set the MAXEXTENTS storage
parameters for the rollback segments to UNLIMITED. Also, set the OPTIMAL value
for the rollback segments so that after the parallel DML transactions commit, the
rollback segments are shrunk to the OPTIMAL size.

Recovery for Parallel DML
The time required to roll back a parallel DML operation is roughly equal to the time
it takes to perform the forward operation.

Oracle supports parallel rollback after transaction and process failures, and after
instance and system failures. Oracle can parallelize both the rolling forward stage
and the rolling back stage of transaction recovery.

Transaction Recovery for User-Issued Rollback A user-issued rollback in a transaction
failure due to statement error is performed in parallel by the parallel execution
coordinator and the parallel execution servers. The rollback takes approximately the
same amount of time as the forward transaction.

Process Recovery Recovery from the failure of a parallel execution coordinator or
parallel execution server is performed by the PMON process. If a parallel execution
server or a parallel execution coordinator fails, PMON rolls back the work from that
process and all other processes in the transaction roll back their changes.

See Also: Oracle9i Backup and Recovery Concepts for details about
parallel rollback
Using Parallel Execution 21-23

Types of Parallelism
System Recovery Recovery from a system failure requires a new startup. Recovery is
performed by the SMON process and any recovery server processes spawned by
SMON. Parallel DML statements may be recovered using parallel rollback. If the
initialization parameter COMPATIBLE is set to 8.1.3 or greater, Fast-Start
On-Demand Rollback enables terminated transactions to be recovered, on demand
one block at a time.

Instance Recovery (Oracle Real Application Clusters) Recovery from an instance failure
in Oracle Real Application Clusters is performed by the recovery processes (that is,
the SMON processes and any recovery server processes they spawn) of other live
instances. Each recovery process of the live instances can recover the parallel
execution coordinator or parallel execution server transactions of the failed instance
independently.

Space Considerations for Parallel DML
Parallel UPDATEuses the space in the existing object, while direct-path INSERT gets
new segments for the data.

Space usage characteristics may be different in parallel than sequential execution
because multiple concurrent child transactions modify the object.

Lock and Enqueue Resources for Parallel DML
A parallel DML operation's lock and enqueue resource requirements are very
different from the serial DML requirements. Parallel DML holds many more locks,
so you should increase the starting value of the ENQUEUE_RESOURCES and DML_
LOCKS parameters.

Restrictions on Parallel DML
The following restrictions apply to parallel DML (including direct-path INSERT):

■ Intra-partition parallelism for UPDATE, MERGE, and DELETE operations require
that the COMPATIBLE initialization parameter be set to 9.2 or greater.

■ INSERT, UPDATE, MERGE, and DELETE operations on nonpartitioned tables are
not parallelized if there is a bitmap index on the table. If the table is partitioned
and there is a bitmap index on the table, the degree of parallelism will be
restricted to at most the number of partitions accessed.

■ A transaction can contain multiple parallel DML statements that modify
different tables, but after a parallel DML statement modifies a table, no

See Also: "DML_LOCKS" on page 21-61
21-24 Oracle9i Data Warehousing Guide

Types of Parallelism
subsequent serial or parallel statement (DML or query) can access the same
table again in that transaction.

– This restriction also exists after a serial direct-path INSERT statement: no
subsequent SQL statement (DML or query) can access the modified table
during that transaction.

– Queries that access the same table are allowed before a parallel DML or
direct-path INSERT statement, but not after.

– Any serial or parallel statements attempting to access a table that has
already been modified by a parallel UPDATE, DELETE, or MERGE, or a
direct-path INSERT during the same transaction are rejected with an error
message.

■ If the initialization parameter ROW_LOCKING is set to intent , then inserts,
updates, merges, and deletes are not parallelized (regardless of the serializable
mode).

■ Parallel DML operations cannot be done on tables with triggers.

■ Replication functionality is not supported for parallel DML.

■ Parallel DML cannot occur in the presence of certain constraints: self-referential
integrity, delete cascade, and deferred integrity. In addition, for direct-path
INSERT, there is no support for any referential integrity.

■ Parallel DML can be done on tables with object columns provided you are not
touching the object columns.

■ Parallel DML can be done on tables with LOB columns provided the table is
partitioned. However, intra-partition parallelism is not supported.

■ A transaction involved in a parallel DML operation cannot be or become a
distributed transaction.

■ Clustered tables are not supported.

Violations of these restrictions cause the statement to execute serially without
warnings or error messages (except for the restriction on statements accessing the
same table in a transaction, which can cause error messages). For example, an
update is serialized if it is on a nonpartitioned table.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for more information about LOB restrictions
Using Parallel Execution 21-25

Types of Parallelism
Partitioning Key Restriction You can only update the partitioning key of a partitioned
table to a new value if the update does not cause the row to move to a new
partition. The update is possible if the table is defined with the row movement
clause enabled.

Function Restrictions The function restrictions for parallel DML are the same as those
for parallel DDL and parallel query.

Data Integrity Restrictions
This section describes the interactions of integrity constraints and parallel DML
statements.

NOT NULL and CHECK These types of integrity constraints are allowed. They are not a
problem for parallel DML because they are enforced on the column and row level,
respectively.

UNIQUE and PRIMARY KEY These types of integrity constraints are allowed.

FOREIGN KEY (Referential Integrity) Restrictions for referential integrity occur
whenever a DML operation on one table could cause a recursive DML operation on
another table. These restrictions also apply when, in order to perform an integrity
check, it is necessary to see simultaneously all changes made to the object being
modified.

Table 21–1 lists all of the operations that are possible on tables that are involved in
referential integrity constraints.

See Also: "Parallel Execution of Functions" on page 21-28

Table 21–1 Referential Integrity Restrictions

DML Statement Issued on Parent Issued on Child Self-Referential

INSERT (Not applicable) Not parallelized Not parallelized

MERGE (Not applicable) Not parallelized Not parallelized

UPDATE No Action Supported Supported Not parallelized

DELETE No Action Supported Supported Not parallelized

DELETE Cascade Not parallelized (Not applicable) Not parallelized
21-26 Oracle9i Data Warehousing Guide

Types of Parallelism
Delete Cascade Delete on tables having a foreign key with delete cascade is not
parallelized because parallel execution servers will try to delete rows from multiple
partitions (parent and child tables).

Self-Referential Integrity DML on tables with self-referential integrity constraints is not
parallelized if the referenced keys (primary keys) are involved. For DML on all
other columns, parallelism is possible.

Deferrable Integrity Constraints If any deferrable constraints apply to the table being
operated on, the DML operation will not be parallelized.

Trigger Restrictions
A DML operation will not be parallelized if the affected tables contain enabled
triggers that may get fired as a result of the statement. This implies that DML
statements on tables that are being replicated will not be parallelized.

Relevant triggers must be disabled in order to parallelize DML on the table. Note
that, if you enable or disable triggers, the dependent shared cursors are invalidated.

Distributed Transaction Restrictions
A DML operation cannot be parallelized if it is in a distributed transaction or if the
DML or the query operation is against a remote object.

Examples of Distributed Transaction Parallelization
This section contains several examples of distributed transaction processing.

Example 1 Distributed Transaction Parallelization
In this example, the DML statement queries a remote object:

INSERT /* APPEND PARALLEL (t3,2) */ INTO t3 SELECT * FROM t4@dblink;

The query operation is executed serially without notification because it references a
remote object.

Example 2 Distributed Transaction Parallelization
In this example, the DML operation is applied to a remote object:

DELETE /*+ PARALLEL (t1, 2) */ FROM t1@dblink;

The DELETE operation is not parallelized because it references a remote object.
Using Parallel Execution 21-27

Types of Parallelism
Example 3 Distributed Transaction Parallelization
In this example, the DML operation is in a distributed transaction:

SELECT * FROM t1@dblink;
DELETE /*+ PARALLEL (t2,2) */ FROM t2;
COMMIT;

The DELETE operation is not parallelized because it occurs in a distributed
transaction (which is started by the SELECT statement).

Parallel Execution of Functions
SQL statements can contain user-defined functions written in PL/SQL, in Java, or as
external procedures in C that can appear as part of the SELECT list, SET clause, or
WHERE clause. When the SQL statement is parallelized, these functions are executed
on a per-row basis by the parallel execution server. Any PL/SQL package variables
or Java static attributes used by the function are entirely private to each individual
parallel execution process and are newly initialized when each row is processed,
rather than being copied from the original session. Because of this, not all functions
will generate correct results if executed in parallel.

User-written table functions can appear in the statement's FROMlist. These functions
act like source tables in that they output rows. Table functions are initialized once
during the statement at the start of each parallel execution process. All variables are
entirely private to the parallel execution process.

Functions in Parallel Queries
In a SELECT statement or a subquery in a DML or DDL statement, a user-written
function may be executed in parallel if it has been declared with the PARALLEL_
ENABLE keyword, if it is declared in a package or type and has a PRAGMA
RESTRICT_REFERENCES that indicates all of WNDS, RNPS, and WNPS, or if it is
declared with CREATE FUNCTION and the system can analyze the body of the
PL/SQL code and determine that the code neither writes to the database nor reads
or modifies package variables.

Other parts of a query or subquery can sometimes execute in parallel even if a given
function execution must remain serial.
21-28 Oracle9i Data Warehousing Guide

Types of Parallelism
Functions in Parallel DML and DDL Statements
In a parallel DML or DDL statement, as in a parallel query, a user-written function
may be executed in parallel if it has been declared with the PARALLEL_ENABLE
keyword, if it is declared in a package or type and has a PRAGMA RESTRICT_
REFERENCES that indicates all of RNDS, WNDS, RNPS, and WNPS, or if it is declared
with CREATE FUNCTION and the system can analyze the body of the PL/SQL code
and determine that the code neither reads nor writes to the database or reads nor
modifies package variables.

For a parallel DML statement, any function call that cannot be executed in parallel
causes the entire DML statement to be executed serially.

For an INSERT ... SELECTor CREATE TABLE... AS SELECTstatement, function calls
in the query portion are parallelized according to the parallel query rules in the
prior paragraph. The query may be parallelized even if the remainder of the
statement must execute serially, or vice versa.

Other Types of Parallelism
In addition to parallel SQL execution, Oracle can use parallelism for the following
types of operations:

■ Parallel recovery

■ Parallel propagation (replication)

■ Parallel load (the SQL*Loader utility)

Like parallel SQL, parallel recovery and propagation are performed by a parallel
execution coordinator and multiple parallel execution servers. Parallel load,
however, uses a different mechanism.

The behavior of the parallel execution coordinator and parallel execution servers
may differ, depending on what kind of operation they perform (SQL, recovery, or
propagation). For example, if all parallel execution servers in the pool are occupied
and the maximum number of parallel execution servers has been started:

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for
information about the PRAGMA RESTRICT_REFERENCES

■ Oracle9i SQL Reference for information about CREATE
FUNCTION
Using Parallel Execution 21-29

Initializing and Tuning Parameters for Parallel Execution
■ In parallel SQL, the parallel execution coordinator switches to serial processing.

■ In parallel propagation, the parallel execution coordinator returns an error.

For a given session, the parallel execution coordinator coordinates only one kind of
operation. A parallel execution coordinator cannot coordinate, for example, parallel
SQL and parallel recovery or propagation at the same time.

Initializing and Tuning Parameters for Parallel Execution
You can initialize and automatically tune parallel execution by setting the
initialization parameter PARALLEL_AUTOMATIC_TUNING to true . Once enabled,
automated parallel execution controls values for all parameters related to parallel
execution. These parameters affect several aspects of server processing, namely, the
DOP, the adaptive multiuser feature, and memory sizing.

With parallel automatic tuning enabled, Oracle determines parameter settings for
each environment based on the number of CPUs on your system at database startup
and the value set for PARALLEL_THREADS_PER_CPU. The default values Oracle
sets for parallel execution processing when PARALLEL_AUTOMATIC_TUNING is
true are usually optimal for most environments. In most cases, Oracle's
automatically derived settings are at least as effective as manually derived settings.

You can also manually tune parallel execution parameters; however, Oracle
recommends using automated parallel execution. Manual tuning of parallel
execution is more complex than using automated tuning for two reasons: manual
parallel execution tuning requires more attentive administration than automated
tuning, and manual tuning is prone to user-load and system-resource
miscalculations.

See Also:

■ Oracle9i Database Utilities for information about parallel load
and SQL*Loader

■ Oracle9i User-Managed Backup and Recovery Guide for
information about parallel media recovery

■ Oracle9i Database Performance Tuning Guide and Reference for
information about parallel instance recovery

■ Oracle9i Replication for information about parallel propagation
21-30 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Initializing and tuning parallel execution involves the following steps:

■ Selecting Automated or Manual Tuning of Parallel Execution

■ Using Automatically Derived Parameter Settings

■ Setting the Degree of Parallelism

■ How Oracle Determines the Degree of Parallelism for Operations

■ Balancing the Workload

■ Parallelization Rules for SQL Statements

■ Enabling Parallelism for Tables and Queries

■ Degree of Parallelism and Adaptive Multiuser: How They Interact

■ Forcing Parallel Execution for a Session

■ Controlling Performance with the Degree of Parallelism

Selecting Automated or Manual Tuning of Parallel Execution
There are several ways to initialize and tune parallel execution. You can make your
environment fully automated for parallel execution. As mentioned, by setting
PARALLEL_AUTOMATIC_TUNING to true . You can further customize this type of
environment by overriding some of the automatically derived values.

You can also leave PARALLEL_AUTOMATIC_TUNING at its default value of false
and manually set the parameters that affect parallel execution. For most OLTP
environments and other types of systems that would not benefit from parallel
execution, do not enable parallel execution.

Using Automatically Derived Parameter Settings
When PARALLEL_AUTOMATIC_TUNING is true , Oracle automatically sets other
parameters, as shown in Table 21–2. For most systems, you do not need to make
further adjustments to have an adequately tuned, fully automated parallel
execution environment.

Note: Well-established, manually tuned systems that achieve
desired resource-use patterns might not benefit from automated
parallel execution.
Using Parallel Execution 21-31

Initializing and Tuning Parameters for Parallel Execution
As mentioned, you can manually adjust the parameters shown in Table 21–2, even if
you set PARALLEL_AUTOMATIC_TUNING to true . You might need to do this if you
have a highly customized environment or if your system does not perform
optimally using the completely automated settings.

Setting the Degree of Parallelism
The parallel execution coordinator may enlist two or more of the instance's parallel
execution servers to process a SQL statement. The number of parallel execution
servers associated with a single operation is known as the degree of parallelism.

Table 21–2 Parameters Affected by PARALLEL_AUTOMATIC_TUNING

Parameter Default

Default if
PARALLEL_AUTOMATIC_
TUNING = true Comments

PARALLEL_
ADAPTIVE_
MULTI_USER

false true

PROCESSES 6 The greater of: 1.2 x
PARALLEL_MAX_SERVERS or
PARALLEL_MAX_SERVERS
+ 6 + 5 + (CPUs x 4)

Value is forced up to minimum if
PARALLEL_AUTOMATIC_TUNING
is true .

SESSIONS (PROCESSESx
1.1) + 5

(PROCESSES x 1.1) + 5 Automatic parallel tuning
indirectly affects SESSIONS. If you
do not set SESSIONS, Oracle sets it
based on the value for PROCESSES.

PARALLEL_MAX_
SERVERS

5 CPU x 10 Use this limit to maximize the
number of processes that parallel
execution uses. The value for this
parameter is port-specific so
processing can vary from system to
system.

LARGE_POOL_SIZE None PARALLEL_EXECUTION_POOL
+ Shared Server heap
requirements +
Backup buffer requests +
300 KB

Oracle does not allocate parallel
execution buffers from the
SHARED_POOL when PARALLEL_
AUTOMATIC_TUNING is set to
false .

PARALLEL_
EXECUTION_
MESSAGE_SIZE

2 KB
(port specific)

4 KB (port specific) Default increases because Oracle
allocates memory from the LARGE_
POOL.
21-32 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
The DOP is specified in the following ways:

■ At the statement level:

– With hints

– With the PARALLEL clause

■ At the session level by issuing the ALTER SESSION FORCE PARALLEL
statement

■ At the table level in the table's definition

■ At the index level in the index's definition

The following example shows a statement that sets the DOP to 4 on a table:

ALTER TABLE employees PARALLEL 4;

This next example sets the DOP on an index to 4:

ALTER INDEX iemployees PARALLEL 4;

This last example sets a hint to 4 on a query:

SELECT /*+ PARALLEL(employees, 4) */ COUNT(*) FROM employees;

Note that the DOP applies directly only to intraoperation parallelism. If
interoperation parallelism is possible, the total number of parallel execution servers
for a statement can be twice the specified DOP. No more than two operations can be
performed simultaneously.

Parallel execution is designed to effectively use multiple CPUs and disks to answer
queries quickly. When multiple users employ parallel execution at the same time,
available CPU, memory, and disk resources may be quickly exhausted. Oracle
provides several ways to deal with resource utilization in conjunction with parallel
execution, including:

■ The adaptive multiuser algorithm, which reduces the DOP as the load on the
system increases. You can turn this option on with the PARALLEL_ADAPTIVE_
MULTI_USER parameter of the ALTER SYSTEM statement or in your
initialization file.

■ User resource limits and profiles, which allow you to set limits on the amount
of various system resources available to each user as part of a user's security
domain.

■ The Database Resource Manager, which enables you to allocate resources to
different groups of users.
Using Parallel Execution 21-33

Initializing and Tuning Parameters for Parallel Execution
How Oracle Determines the Degree of Parallelism for Operations
The parallel execution coordinator determines the DOP by considering several
specifications. The coordinator:

1. Checks for hints or a PARALLEL clause specified in the SQL statement itself

2. Checks for a session value set by the ALTER SESSION FORCE PARALLEL
statement

3. Looks at the table's or index's definition

After a DOP is found in one of these specifications, it becomes the DOP for the
operation.

Hints, PARALLEL clauses, table or index definitions, and default values only
determine the number of parallel execution servers that the coordinator requests for
a given operation. The actual number of parallel execution servers used depends
upon how many processes are available in the parallel execution server pool and
whether interoperation parallelism is possible.

Hints
You can specify hints in a SQL statement to set the DOP for a table or index and for
the caching behavior of the operation.

■ The PARALLEL hint is used only for operations on tables. You can use it to
parallelize queries and DML statements (INSERT, UPDATE, and DELETE).

See Also:

■ Oracle9i Database Reference and Oracle9i Database Performance
Tuning Guide and Reference for information

■ Oracle9i SQL Reference for the syntax of the ALTER SYSTEM
statement

■ "Forcing Parallel Execution for a Session" on page 21-48

See Also:

■ "The Parallel Execution Server Pool" on page 21-3

■ "Parallelism Between Operations" on page 21-8

■ "Default Degree of Parallelism" on page 21-35

■ "Parallelization Rules for SQL Statements" on page 21-38
21-34 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
■ The PARALLEL_INDEX hint parallelizes an index range scan of a partitioned
index. (In an index operation, the PARALLEL hint is not valid and is ignored.)

Table and Index Definitions
You can specify the DOP within a table or index definition by using one of the
following statements: CREATE TABLE, ALTER TABLE, CREATE INDEX, or ALTER
INDEX.

Default Degree of Parallelism
The default DOP is used when you ask to parallelize an operation but you do not
specify a DOP in a hint or within the definition of a table or index. The default DOP
is appropriate for most applications.

The default DOP for a SQL statement is determined by the following factors:

■ The number of CPUs for all Oracle Real Application Clusters instances in the
system, and the value of the parameter PARALLEL_THREADS_PER_CPU.

■ For parallelizing by partition, the number of partitions that will be accessed,
based on partition pruning.

■ For parallel DML operations with global index maintenance, the minimum
number of transaction free lists among all the global indexes to be updated. The
minimum number of transaction free lists for a partitioned global index is the
minimum number across all index partitions. This is a requirement to prevent
self-deadlock.

These factors determine the default number of parallel execution servers to use.
However, the actual number of processes used is limited by their availability on the
requested instances during run time. The initialization parameter PARALLEL_MAX_

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information about using hints in SQL statements and the
specific syntax for the PARALLEL, NOPARALLEL, PARALLEL_
INDEX, CACHE, and NOCACHE hints

See Also: Oracle9i SQL Reference for information about the
complete syntax of SQL statements

Note: Oracle obtains the information about CPUs from the
operating system.
Using Parallel Execution 21-35

Initializing and Tuning Parameters for Parallel Execution
SERVERS sets an upper limit on the total number of parallel execution servers that
an instance can have.

If a minimum fraction of the desired parallel execution servers is not available
(specified by the initialization parameter PARALLEL_MIN_PERCENT), a user error is
produced. The user can then retry the query with less parallelism.

Adaptive Multiuser Algorithm
When the adaptive multiuser algorithm is enabled, the parallel execution
coordinator varies the DOP according to the system load. The Database Resource
Manager determines the load by calculating the number of allocated threads. If the
number of threads currently allocated is larger than the optimal number of threads,
given the number of available CPUs, the algorithm reduces the DOP. This reduction
improves throughput by avoiding overallocation of resources.

Minimum Number of Parallel Execution Servers
Oracle can perform an operation in parallel as long as at least two parallel execution
servers are available. If too few parallel execution servers are available, your SQL
statement may execute slower than expected. You can specify the minimum
percentage of requested parallel execution servers that must be available in order
for the operation to execute. This strategy ensures that your SQL statement executes
with a minimum acceptable parallel performance. If the minimum percentage of
requested parallel execution servers is not available, the SQL statement does not
execute and returns an error.

The initialization parameter PARALLEL_MIN_PERCENT specifies the desired
minimum percentage of requested parallel execution servers. This parameter affects
DML and DDL operations as well as queries.

For example, if you specify 50 for this parameter, then at least 50 percent of the
parallel execution servers requested for any parallel operation must be available in
order for the operation to succeed. If 20 parallel execution servers are requested,
then at least 10 must be available or an error is returned to the user. If PARALLEL_
MIN_PERCENT is set to null, then all parallel operations will proceed as long as at
least two parallel execution servers are available for processing.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information about adjusting the DOP
21-36 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Limiting the Number of Available Instances
In Oracle Real Application Clusters, instance groups can be used to limit the
number of instances that participate in a parallel operation. You can create any
number of instance groups, each consisting of one or more instances. You can then
specify which instance group is to be used for any or all parallel operations. Parallel
execution servers will only be used on instances which are members of the specified
instance group.

Balancing the Workload
To optimize performance, all parallel execution servers should have equal work
loads. For SQL statements parallelized by block range or by parallel execution
servers, the workload is dynamically divided among the parallel execution servers.
This minimizes workload skewing, which occurs when some parallel execution
servers perform significantly more work than the other processes.

For SQL statements parallelized by partitions, if the workload is evenly distributed
among the partitions, you can optimize performance by matching the number of
parallel execution servers to the number of partitions or by choosing a DOP in
which the number of partitions is a multiple of the number of processes.

For example, suppose a table has 10 partition, and a parallel operation divides the
work evenly among them. You can use 10 parallel execution servers (DOP equals
10) to do the work in approximately one-tenth the time that one process would take.
You might also use five processes to do the work in one-fifth the time, or two
processes to do the work in one-half the time.

If, however, you use nine processes to work on 10 partitions, the first process to
finish its work on one partition then begins work on the 10th partition; and as the
other processes finish their work, they become idle. This configuration does not
provide good performance when the work is evenly divided among partitions.
When the work is unevenly divided, the performance varies depending on whether
the partition that is left for last has more or less work than the other partitions.

Similarly, suppose you use four processes to work on 10 partitions and the work is
evenly divided. In this case, each process works on a second partition after finishing
its first partition, but only two of the processes work on a third partition while the
other two remain idle.

See Also: Oracle9i Real Application Clusters Administration and
Oracle9i Real Application Clusters Deployment and Performance for
more information about instance groups
Using Parallel Execution 21-37

Initializing and Tuning Parameters for Parallel Execution
In general, you cannot assume that the time taken to perform a parallel operation
on a given number of partitions (N) with a given number of parallel execution
servers (P) will be N/P. This formula does not take into account the possibility that
some processes might have to wait while others finish working on the last
partitions. By choosing an appropriate DOP, however, you can minimize the
workload skew and optimize performance.

Parallelization Rules for SQL Statements
A SQL statement can be parallelized if it includes a parallel hint or if the table or
index being operated on has been declared PARALLEL with a CREATE or ALTER
statement. In addition, a DDL statement can be parallelized by using the PARALLEL
clause. However, not all of these methods apply to all types of SQL statements.

Parallelization has two components: the decision to parallelize and the DOP. These
components are determined differently for queries, DDL operations, and DML
operations.

To determine the DOP, Oracle looks at the reference objects:

■ Parallel query looks at each table and index, in the portion of the query being
parallelized, to determine which is the reference table. The basic rule is to pick
the table or index with the largest DOP.

■ For parallel DML (INSERT, UPDATE, MERGE, and DELETE), the reference object
that determines the DOP is the table being modified by an insert, update, or
delete operation. Parallel DML also adds some limits to the DOP to prevent
deadlock. If the parallel DML statement includes a subquery, the subquery's
DOP is the same as the DML operation.

■ For parallel DDL, the reference object that determines the DOP is the table,
index, or partition being created, rebuilt, split, or moved. If the parallel DDL
statement includes a subquery, the subquery's DOP is the same as the DDL
operation.

Rules for Parallelizing Queries
This section discusses some rules for parallelizing queries.

Decision to Parallelize A SELECT statement can be parallelized only if the following
conditions are satisfied:

See Also: "Affinity and Parallel DML" on page 21-76 for
information about balancing the workload with disk affinity
21-38 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
■ The query includes a parallel hint specification (PARALLEL or PARALLEL_
INDEX) or the schema objects referred to in the query have a
PARALLELdeclaration associated with them.

■ At least one of the tables specified in the query requires one of the following:

■ A full table scan

■ An index range scan spanning multiple partitions

Degree of Parallelism The DOP for a query is determined by the following rules:

■ The query uses the maximum DOP taken from all of the table declarations
involved in the query and all of the potential indexes that are candidates to
satisfy the query (the reference objects). That is, the table or index that has the
greatest DOP determines the query's DOP (maximum query directive).

■ If a table has both a parallel hint specification in the query and a parallel
declaration in its table specification, the hint specification takes precedence over
parallel declaration specification. See Table 21–3 on page 21-45 for precedence
rules.

Rules for Parallelizing UPDATE, MERGE, and DELETE
UPDATE, MERGE, and DELETE operations are parallelized by partition or
subpartition. Updates, merges, and deletes can only be parallelized on partitioned
tables. Update, merge, and delete parallelism are not possible within a partition, nor
on a nonpartitioned table.

You have two ways to specify parallel directives for UPDATE, MERGE, and DELETE
operations (assuming that PARALLEL DML mode is enabled):

1. Use a parallel clause in the definition of the table being updated or deleted (the
reference object).

2. Use an update, merge, or delete parallel hint in the statement.

Parallel hints are placed immediately after the UPDATE, MERGE, or DELETE
keywords in UPDATE, MERGE, and DELETE statements. The hint also applies to the
underlying scan of the table being changed.

You can use the ALTER SESSION FORCE PARALLEL DML statement to override
parallel clauses for subsequent UPDATE, MERGE, and DELETE statements in a
session. Parallel hints in UPDATE, MERGE, and DELETE statements override the
ALTER SESSION FORCE PARALLEL DML statement.
Using Parallel Execution 21-39

Initializing and Tuning Parameters for Parallel Execution
Decision to Parallelize The following rule determines whether the UPDATE, MERGE, or
DELETE operation should be parallelized:

The UPDATE or DELETE operation will be parallelized if and only if at least one
of the following is true:

■ The table being updated or deleted has a PARALLEL specification.

■ The PARALLEL hint is specified in the DML statement.

■ An ALTER SESSION FORCE PARALLEL DML statement has been issued
previously during the session.

If the statement contains subqueries or updatable views, then they may have their
own separate parallel hints or clauses. However, these parallel directives do not
affect the decision to parallelize the UPDATE, MERGE, or DELETE.

The parallel hint or clause on the tables is used by both the query and the UPDATE,
MERGE, DELETE portions to determine parallelism, the decision to parallelize the
UPDATE, MERGE, or DELETE portion is made independently of the query portion,
and vice versa.

Degree of Parallelism The DOP is determined by the same rules as for the queries.
Note that in the case of UPDATE and DELETE operations, only the target table to be
modified (the only reference object) is involved. Thus, the UPDATE or DELETE
parallel hint specification takes precedence over the parallel declaration
specification of the target table. In other words, the precedence order is: MERGE,
UPDATE, DELETE hint > Session > Parallel declaration specification of target table

See Table 21–3 on page 21-45 for precedence rules.

The maximum DOP you can achieve is equal to the number of partitions (or
subpartitions in the case of composite subpartitions) in the table. A parallel
execution server can update or merge into, or delete from multiple partitions, but
each partition can only be updated or deleted by one parallel execution server.

If the DOP is less than the number of partitions, then the first process to finish work
on one partition continues working on another partition, and so on until the work is
finished on all partitions. If the DOP is greater than the number of partitions
involved in the operation, then the excess parallel execution servers will have no
work to do.
21-40 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Example 21–1 Parallelization: Example 1

UPDATE tbl_1 SET c1=c1+1 WHERE c1>100;

If tbl_1 is a partitioned table and its table definition has a parallel clause, then the
update operation is parallelized even if the scan on the table is serial (such as an
index scan), assuming that the table has more than one partition with c1 greater
than 100.

Example 21–2 Parallelization: Example 2

UPDATE /*+ PARALLEL(tbl_2,4) */ tbl_2 SET c1=c1+1;

Both the scan and update operations on tbl_2 will be parallelized with degree
four.

Rules for Parallelizing INSERT ... SELECT
An INSERT ... SELECT statement parallelizes its INSERT and SELECT operations
independently, except for the DOP.

You can specify a parallel hint after the INSERT keyword in an INSERT ... SELECT
statement. Because the tables being queried are usually not the same as the table
being inserted into, the hint enables you to specify parallel directives specifically for
the insert operation.

You have the following ways to specify parallel directives for an INSERT ... SELECT
statement (assuming that PARALLEL DML mode is enabled):

■ SELECT parallel hints specified at the statement

■ Parallel clauses specified in the definition of tables being selected

■ INSERT parallel hint specified at the statement

■ Parallel clause specified in the definition of tables being inserted into

You can use the ALTER SESSION FORCE PARALLEL DML statement to override
parallel clauses for subsequent INSERT operations in a session. Parallel hints in
insert operations override the ALTER SESSION FORCE PARALLEL DML statement.

Decision to Parallelize The following rule determines whether the INSERT operation
should be parallelized in an INSERT ... SELECT statement:

The INSERT operation will be parallelized if and only if at least one of the
following is true:
Using Parallel Execution 21-41

Initializing and Tuning Parameters for Parallel Execution
■ The PARALLEL hint is specified after the INSERT in the DML statement.

■ The table being inserted into (the reference object) has a PARALLEL
declaration specification.

■ An ALTER SESSION FORCE PARALLEL DML statement has been issued
previously during the session.

The decision to parallelize the INSERT operation is made independently of the
SELECT operation, and vice versa.

Degree of Parallelism Once the decision to parallelize the SELECT or INSERT
operation is made, one parallel directive is picked for deciding the DOP of the
whole statement, using the following precedence rule Insert hint directive >
Session> Parallel declaration specification of the inserting table > Maximum query
directive.

In this context, maximum query directive means that among multiple tables and
indexes, the table or index that has the maximum DOP determines the parallelism
for the query operation.

The chosen parallel directive is applied to both the SELECT and INSERT operations.

Example 21–3 Parallelization: Example 3

The DOP used is 2, as specified in the INSERT hint:

INSERT /*+ PARALLEL(tbl_ins,2) */ INTO tbl_ins
SELECT /*+ PARALLEL(tbl_sel,4) */ * FROM tbl_sel;

Rules for Parallelizing DDL Statements

Decision to Parallelize DDL operations can be parallelized if a PARALLEL clause
(declaration) is specified in the syntax. In the case of CREATE INDEX and ALTER
INDEX ... REBUILD or ALTER INDEX ... REBUILD PARTITION, the parallel
declaration is stored in the data dictionary.

You can use the ALTER SESSION FORCE PARALLEL DDL statement to override the
parallel clauses of subsequent DDL statements in a session.

Degree of Parallelism The DOP is determined by the specification in the PARALLEL
clause, unless it is overridden by an ALTER SESSION FORCE PARALLEL DDL
statement. A rebuild of a partitioned index is never parallelized.
21-42 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Parallel clauses in CREATE TABLE and ALTER TABLE statements specify table
parallelism. If a parallel clause exists in a table definition, it determines the
parallelism of DDL statements as well as queries. If the DDL statement contains
explicit parallel hints for a table, however, those hints override the effect of parallel
clauses for that table. You can use the ALTER SESSION FORCE PARALLEL DDL
statement to override parallel clauses.

Rules for Parallelizing CREATE INDEX, REBUILD INDEX, MOVE or SPLIT
PARTITION
The following rules apply:

Parallel CREATE INDEX or ALTER INDEX ... REBUILD The CREATE INDEX and ALTER
INDEX ... REBUILD statements can be parallelized only by a PARALLEL clause or an
ALTER SESSION FORCE PARALLEL DDL statement.

ALTER INDEX ... REBUILD can be parallelized only for a nonpartitioned index, but
ALTER INDEX ... REBUILD PARTITION can be parallelized by a PARALLEL clause
or an ALTER SESSION FORCE PARALLEL DDL statement.

The scan operation for ALTER INDEX... REBUILD(nonpartitioned), ALTER INDEX...
REBUILD PARTITION, and CREATE INDEX has the same parallelism as the
REBUILD or CREATE operation and uses the same DOP. If the DOP is not specified
for REBUILD or CREATE, the default is the number of CPUs.

Parallel MOVE PARTITION or SPLIT PARTITION The ALTER INDEX ... MOVE PARTITION
and ALTER INDEX ... SPLIT PARTITION statements can be parallelized only by a
PARALLEL clause or an ALTER SESSION FORCE PARALLEL DDL statement. Their
scan operations have the same parallelism as the corresponding MOVE or SPLIT
operations. If the DOP is not specified, the default is the number of CPUs.

Rules for Parallelizing CREATE TABLE AS SELECT
The CREATE TABLE ... AS SELECT statement contains two parts: a CREATE part
(DDL) and a SELECT part (query). Oracle can parallelize both parts of the
statement. The CREATE part follows the same rules as other DDL operations.

Decision to Parallelize (Query Part) The query part of a CREATE TABLE ... AS SELECT
statement can be parallelized only if the following conditions are satisfied:

■ The query includes a parallel hint specification (PARALLEL or PARALLEL_
INDEX) or the CREATE part of the statement has a PARALLEL clause
Using Parallel Execution 21-43

Initializing and Tuning Parameters for Parallel Execution
specification or the schema objects referred to in the query have a
PARALLELdeclaration associated with them.

■ At least one of the tables specified in the query requires one of the following:

■ A full table scan

■ An index range scan spanning multiple partitions

Degree of Parallelism (Query Part) The DOP for the query part of a CREATE TABLE...
AS SELECT statement is determined by one of the following rules:

■ The query part uses the values specified in the PARALLEL clause of the CREATE
part.

■ If the PARALLEL clause is not specified, the default DOP is the number of CPUs.

■ If the CREATE is serial, then the DOP is determined by the query.

Note that any values specified in a hint for parallelism are ignored.

Decision to Parallelize (CREATE Part) The CREATE operation of CREATE TABLE ... AS
SELECT can be parallelized only by a PARALLEL clause or an ALTER SESSION
FORCE PARALLEL DDL statement.

When the CREATEoperation of CREATE TABLE... AS SELECTis parallelized, Oracle
also parallelizes the scan operation if possible. The scan operation cannot be
parallelized if, for example:

■ The SELECT clause has a NOPARALLEL hint

■ The operation scans an index of a nonpartitioned table

When the CREATE operation is not parallelized, the SELECT can be parallelized if it
has a PARALLEL hint or if the selected table (or partitioned index) has a parallel
declaration.

Degree of Parallelism (CREATE Part) The DOP for the CREATE operation, and for the
SELECT operation if it is parallelized, is specified by the PARALLEL clause of the
CREATE statement, unless it is overridden by an ALTER SESSION FORCE
PARALLEL DDL statement. If the PARALLEL clause does not specify the DOP, the
default is the number of CPUs.

See Also: "Rules for Parallelizing Queries" on page 21-38
21-44 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Summary of Parallelization Rules
Table 21–3 shows how various types of SQL statements can be parallelized and
indicates which methods of specifying parallelism take precedence.

■ The priority (1) specification overrides priority (2) and priority (3).

■ The priority (2) specification overrides priority (3).

See Also: Oracle9i SQL Reference for information about parallel
clauses and hints in SQL statements

Table 21–3 Parallelization Rules

Parallel Operation

Parallelized by Clause, Hint, or Underlying Table/Index Declaration
(priority order: 1, 2, 3)

PARALLEL
Hint

PARALLEL
Clause ALTER SESSION

Parallel
Declaration

Parallel query table scan
(partitioned or nonpartitioned
table)

(1) PARALLEL (2) FORCE
PARALLEL
QUERY

(3) of table

Parallel query index range scan
(partitioned index)

(1) PARALLEL_
INDEX

(2) FORCE
PARALLEL
QUERY

(2) of index

Parallel UPDATE or DELETE
(partitioned table only)

(1) PARALLEL (2) FORCE
PARALLEL DML

(3) of table being
updated or deleted
from

INSERT operation of parallel
INSERT... SELECT (partitioned or
nonpartitioned table)

(1) PARALLEL
of insert

(2) FORCE
PARALLEL DML

(3) of table being
inserted into

SELECToperation of INSERT ...
SELECT when INSERT is parallel

Takes degree from INSERT statement

SELECToperation of INSERT ...
SELECT when INSERT is serial

(1) PARALLEL (2) of table being
selected from

CREATEoperation of parallel
CREATE TABLE ... AS SELECT
(partitioned or nonpartitioned
table)

(Note: Hint in
select clause
does not affect
the create
operation.)

(2) (1) FORCE
PARALLEL DDL

SELECToperation of CREATE
TABLE ... AS SELECT when
CREATE is parallel

Takes degree from CREATE statement
Using Parallel Execution 21-45

Initializing and Tuning Parameters for Parallel Execution
Enabling Parallelism for Tables and Queries
The DOP of tables involved in parallel operations affect the DOP for operations on
those tables. Therefore, after setting parallel tuning parameters, you must also
enable parallel execution for each table you want parallelized, using the PARALLEL
clause of the CREATE TABLE or ALTER TABLE statements. You can also use the
PARALLEL hint with SQL statements to enable parallelism for that operation only,
or use the FORCE option of the ALTER SESSION statement to enable parallelism for
all subsequent operations in the session.

When you parallelize tables, you can also specify the DOP or allow Oracle to use a
default DOP. The value of the default DOP is derived automatically, based on the
value of PARALLEL_THREADS_PER_CPU and the number of CPUs available to
Oracle.

ALTER TABLE employees PARALLEL; -- uses default DOP
ALTER TABLE employees PARALLEL 4; -- users DOP of 4

SELECToperation of CREATE
TABLE ... AS SELECT when
CREATE is serial

(1) PARALLEL
or PARALLEL_
INDEX

(2) of querying
tables or
partitioned indexes

Parallel CREATE INDEX
(partitioned or nonpartitioned
index)

(2) (1) FORCE
PARALLEL DDL

Parallel REBUILD INDEX
(nonpartitioned index)

(2) (1) FORCE
PARALLEL DDL

REBUILD INDEX (partitioned
index)—never parallelized

Parallel REBUILD INDEX partition (2) (1) FORCE
PARALLEL DDL

Parallel MOVE or SPLIT partition (2) (1) FORCE
PARALLEL DDL

Table 21–3 Parallelization Rules(Cont.)

Parallel Operation

Parallelized by Clause, Hint, or Underlying Table/Index Declaration
(priority order: 1, 2, 3)

PARALLEL
Hint

PARALLEL
Clause ALTER SESSION

Parallel
Declaration
21-46 Oracle9i Data Warehousing Guide

Initializing and Tuning Parameters for Parallel Execution
Degree of Parallelism and Adaptive Multiuser: How They Interact
The DOP specifies the number of available processes, or threads, used in parallel
operations. Each parallel thread can use one or two query processes, depending on
the query's complexity.

The adaptive multiuser feature adjusts the DOP based on user load. For example,
you might have a table with a DOP of 5. This DOP might be acceptable with 10
users. However, if 10 more users enter the system and you enable the PARALLEL_
ADAPTIVE_MULTI_USERfeature, Oracle reduces the DOP to spread resources more
evenly according to the perceived system load.

It is best to use the parallel adaptive multiuser feature when users process
simultaneous parallel execution operations. If you enable PARALLEL_AUTOMATIC_
TUNING, Oracle automatically sets PARALLEL_ADAPTIVE_MULTI_USER to true .

How the Adaptive Multiuser Algorithm Works
The adaptive multiuser algorithm has several inputs. The algorithm first considers
the number of allocated threads as calculated by the Database Resource Manager.
The algorithm then considers the default settings for parallelism as set in the
initialization parameter file, as well as parallelism options used in CREATE TABLE
and ALTER TABLE statements and SQL hints.

When a system is overloaded and the input DOP is larger than the default DOP, the
algorithm uses the default degree as input. The system then calculates a reduction
factor that it applies to the input DOP. For example, using a 16-CPU system, when
the first user enters the system and it is idle, it will be granted a DOP of 32. The next
user will be give a DOP of eight, the next four, and so on. If the system settles into a
steady state of eight users issuing queries, all the users will eventually be given a
DOP of 4, thus dividing the system evenly among all the parallel users.

Note: Once Oracle determines the DOP for a query, the DOP does
not change for the duration of the query.

Note: Disable adaptive multiuser for single-user, batch processing
systems or if your system already provides optimal performance.
Using Parallel Execution 21-47

Initializing and Tuning Parameters for Parallel Execution
Forcing Parallel Execution for a Session
If you are sure you want to execute in parallel and want to avoid setting the DOP
for a table or modifying the queries involved, you can force parallelism with the
following statement:

ALTER SESSION FORCE PARALLEL QUERY;

All subsequent queries will be executed in parallel provided no restrictions are
violated. You can also force DML and DDL statements. This clause overrides any
parallel clause specified in subsequent statements in the session, but is overridden
by a parallel hint.

In typical OLTP environments, for example, the tables are not set parallel, but
nightly batch scripts may want to collect data from these tables in parallel. By
setting the DOP in the session, the user avoids altering each table in parallel and
then altering it back to serial when finished.

Controlling Performance with the Degree of Parallelism
The initialization parameter PARALLEL_THREADS_PER_CPU affects algorithms
controlling both the DOP and the adaptive multiuser feature. Oracle multiplies the
value of PARALLEL_THREADS_PER_CPU by the number of CPUs for each instance
to derive the number of threads to use in parallel operations.

The adaptive multiuser feature also uses the default DOP to compute the target
number of query server processes that should exist in a system. When a system is
running more processes than the target number, the adaptive algorithm reduces the
DOP of new queries as required. Therefore, you can also use PARALLEL_THREADS_
PER_CPU to control the adaptive algorithm.

PARALLEL_THREADS_PER_CPU enables you to adjust for hardware configurations
with I/O subsystems that are slow relative to the CPU speed and for application
workloads that perform few computations relative to the amount of data involved.
If the system is neither CPU-bound nor I/O-bound, then the PARALLEL_THREADS_
PER_CPU value should be increased. This increases the default DOP and allow
better utilization of hardware resources. The default for PARALLEL_THREADS_
PER_CPU on most platforms is 2. However, the default for machines with relatively
slow I/O subsystems can be as high as eight.

See Also: Oracle9i Database Administrator’s Guide for additional
information on forcing parallel execution
21-48 Oracle9i Data Warehousing Guide

Tuning General Parameters for Parallel Execution
Tuning General Parameters for Parallel Execution
This section discusses the following topics:

■ Parameters Establishing Resource Limits for Parallel Operations

■ Parameters Affecting Resource Consumption

■ Parameters Related to I/O

Parameters Establishing Resource Limits for Parallel Operations
The parameters that establish resource limits are:

■ PARALLEL_MAX_SERVERS

■ PARALLEL_MIN_SERVERS

■ LARGE_POOL_SIZE or SHARED_POOL_SIZE

■ SHARED_POOL_SIZE

■ PARALLEL_MIN_PERCENT

■ CLUSTER_DATABASE_INSTANCES

PARALLEL_MAX_SERVERS
The recommended value for the PARALLEL_MAX_SEVERS parameter is as follows:

2 x DOP x NUMBER_OF_CONCURRENT_USERS

The PARALLEL_MAX_SEVERS parameter sets a resource limit on the maximum
number of processes available for parallel execution. If you set PARALLEL_
AUTOMATIC_TUNING to false , you need to manually specify a value for
PARALLEL_MAX_SERVERS.

Most parallel operations need at most twice the number of query server processes
as the maximum DOP attributed to any table in the operation.

If PARALLEL_AUTOMATIC_TUNING is false , the default value for PARALLEL_
MAX_SERVERS is 5. This is sufficient for some minimal operations, but not enough
for effective use of parallel execution. If you manually set the PARALLEL_MAX_
SERVERS parameter, set it to 16 times the number of CPUs. This is a reasonable
starting value that will allow you to run four parallel queries simultaneously,
assuming that each query is using a DOP of eight.
Using Parallel Execution 21-49

Tuning General Parameters for Parallel Execution
If the hardware system is neither CPU bound nor I/O bound, then you can increase
the number of concurrent parallel execution users on the system by adding more
query server processes. When the system becomes CPU- or I/O-bound, however,
adding more concurrent users becomes detrimental to the overall performance.
Careful setting of PARALLEL_MAX_SERVERS is an effective method of restricting
the number of concurrent parallel operations.

If users initiate too many concurrent operations, Oracle might not have enough
query server processes. In this case, Oracle executes the operations sequentially or
displays an error if PARALLEL_MIN_PERCENT is set to a value other than the
default value of 0 (zero).

This condition can be verified through the GV$SYSSTAT view by comparing the
statistics for parallel operations not downgraded and parallel operations
downgraded to serial. For example:

SELECT * FROM GV$SYSSTAT WHERE name LIKE 'Parallel operation%';

When Users Have Too Many Processes When concurrent users have too many query
server processes, memory contention (paging), I/O contention, or excessive context
switching can occur. This contention can reduce system throughput to a level lower
than if parallel execution were not used. Increase the PARALLEL_MAX_SERVERS
value only if the system has sufficient memory and I/O bandwidth for the resulting
load.

You can use operating system performance monitoring tools to determine how
much memory, swap space and I/O bandwidth are free. Look at the runq lengths
for both your CPUs and disks, as well as the service time for I/Os on the system.
Verify that the machine has sufficient swap space exists on the machine to add more
processes. Limiting the total number of query server processes might restrict the
number of concurrent users who can execute parallel operations, but system
throughput tends to remain stable.

Increasing the Number of Concurrent Users
To increase the number of concurrent users, you can restrict the number of
concurrent sessions that resource consumer groups can have. For example:

■ You can enable PARALLEL_ADAPTIVE_MULTI_USER.

■ You can set a large limit for users running batch jobs.

■ You can set a medium limit for users performing analyses.

■ You can prohibit a particular class of user from using parallelism.
21-50 Oracle9i Data Warehousing Guide

Tuning General Parameters for Parallel Execution
Limiting the Number of Resources for a User
You can limit the amount of parallelism available to a given user by establishing a
resource consumer group for the user. Do this to limit the number of sessions,
concurrent logons, and the number of parallel processes that any one user or group
of users can have.

Each query server process working on a parallel execution statement is logged on
with a session ID. Each process counts against the user's limit of concurrent
sessions. For example, to limit a user to 10 parallel execution processes, set the
user's limit to 11. One process is for the parallel coordinator and the other 10 consist
of two sets of query server servers. This would allow one session for the parallel
coordinator and 10 sessions for the parallel execution processes.

PARALLEL_MIN_SERVERS
The recommended value for the PARALLEL_MIN_SERVERS parameter is 0 (zero),
which is the default.

This parameter is used at startup and lets you specify in a single instance the
number of processes to be started and reserved for parallel operations. The syntax
is:

PARALLEL_MIN_SERVERS=n

The n variable is the number of processes you want to start and reserve for parallel
operations.

Setting PARALLEL_MIN_SERVERS balances the startup cost against memory usage.
Processes started using PARALLEL_MIN_SERVERS do not exit until the database is
shut down. This way, when a query is issued the processes are likely to be available.
It is desirable, however, to recycle query server processes periodically since the
memory these processes use can become fragmented and cause the high water mark

See Also: Oracle9i Database Administrator’s Guide and Oracle9i
Database Concepts for more information about resource consumer
groups and the Database Resource Manager

See Also:

■ Oracle9i Database Administrator’s Guide for more information
about managing resources with user profiles

■ Oracle9i Real Application Clusters Administration for more
information on querying GV$ views
Using Parallel Execution 21-51

Tuning General Parameters for Parallel Execution
to slowly increase. When you do not set PARALLEL_MIN_SERVERS, processes exit
after they are idle for five minutes.

LARGE_POOL_SIZE or SHARED_POOL_SIZE
The following discussion of how to tune the large pool also applies to tuning the
shared pool, except as noted in "SHARED_POOL_SIZE" on page 21-56. You must
also increase the value for this memory setting by the amount you determine.

Parallel execution requires additional memory resources in addition to those
required by serial SQL execution. Additional memory is used for communication
and passing data between query server processes and the query coordinator.

There is no recommended value for LARGE_POOL_SIZE. Instead, Oracle
recommends leaving this parameter unset and having Oracle set it for you by
setting the PARALLEL_AUTOMATIC_TUNING parameter to true . The exception to
this is when the system-assigned value is inadequate for your processing
requirements.

Oracle automatically computes LARGE_POOL_SIZE if PARALLEL_AUTOMATIC_
TUNING is true . To manually set a value for LARGE_POOL_SIZE, query the
V$SGASTAT view and increase or decrease the value for LARGE_POOL_SIZE
depending on your needs. For example, suppose Oracle displays the following
error on startup:

ORA-27102: out of memory
SVR4 Error: 12: Not enough space

You should reduce the value for LARGE_POOL_SIZE low enough so your database
starts. After reducing the value of LARGE_POOL_SIZE, you might see the error:

ORA-04031: unable to allocate 16084 bytes of shared memory
 ("large pool","unknown object","large pool heap","PX msg pool")

If so, execute the following query to determine why Oracle could not allocate the
16,084 bytes:

Note: When PARALLEL_AUTOMATIC_TUNING is set to true ,
Oracle allocates parallel execution buffers from the large pool.
When this parameter is false , Oracle allocates parallel execution
buffers from the shared pool.
21-52 Oracle9i Data Warehousing Guide

Tuning General Parameters for Parallel Execution
SELECT NAME, SUM(BYTES)
FROM V$SGASTAT
WHERE POOL='LARGE POOL'
 GROUP BY ROLLUP (NAME);

Your output should resemble the following:

NAME SUM(BYTES)
-------------------------- ----------
PX msg pool 1474572
free memory 562132
 2036704
3 rows selected.

If you specify LARGE_POOL_SIZE and the amount of memory you need to reserve
is bigger than the pool, Oracle does not allocate all the memory it can get. Instead, it
leaves some space. When the query runs, Oracle tries to get what it needs. Oracle
uses the 560 KB and needs another 16KB when it fails. The error does not report the
cumulative amount that is needed. The best way of determining how much more
memory is needed is to use the formulas in "Adding Memory for Message Buffers"
on page 21-53.

To resolve the problem in the current example, increase the value for LARGE_POOL_
SIZE . As shown in the sample output, the LARGE_POOL_SIZE is about 2 MB.
Depending on the amount of memory available, you could increase the value of
LARGE_POOL_SIZEto 4 MB and attempt to start your database. If Oracle continues
to display an ORA-4031 message, gradually increase the value for LARGE_POOL_
SIZE until startup is successful.

Computing Additional Memory Requirements for Message Buffers
After you determine the initial setting for the large or shared pool, you must
calculate additional memory requirements for message buffers and determine how
much additional space you need for cursors.

Adding Memory for Message Buffers You must increase the value for the LARGE_POOL_
SIZE or the SHARED_POOL_SIZE parameters to accommodate message buffers.
The message buffers allow query server processes to communicate with each other.
If you enable automatic parallel tuning, Oracle allocates space for the message
buffer from the large pool. Otherwise, Oracle allocates space from the shared pool.

Oracle uses a fixed number of buffers for each virtual connection between producer
query servers and consumer query servers. Connections increase as the square of
the DOP increases. For this reason, the maximum amount of memory used by
Using Parallel Execution 21-53

Tuning General Parameters for Parallel Execution
parallel execution is bound by the highest DOP allowed on your system. You can
control this value by using either the PARALLEL_MAX_SERVERS parameter or by
using policies and profiles.

To calculate the amount of memory required, use one of the following formulas:

■ For SMP systems:

mem in bytes = (3 x size x users x groups x connections)

■ For SMP Real Application Clusters and MPP systems:

mem in bytes = ((3 x local) + (2 x remote) x (size x users x groups))

Each instance uses the memory computed by the formula.

The terms are:

■ SIZE = PARALLEL_EXECUTION_MESSAGE_SIZE

■ USERS = the number of concurrent parallel execution users that you expect to
have running with the optimal DOP

■ GROUPS = the number of query server process groups used for each query

A simple SQL statement requires only one group. However, if your queries
involve subqueries which will be processed in parallel, then Oracle uses an
additional group of query server processes.

■ CONNECTIONS = (DOP2 + 2 x DOP)

If your system is a cluster or MPP, then you should account for the number of
instances because this will increase the DOP. In other words, using a DOP of 4
on a two instance cluster results in a DOP of 8. A value of PARALLEL_MAX_
SERVERS times the number of instances divided by four is a conservative
estimate to use as a starting point.

■ LOCAL = CONNECTIONS/INSTANCES

■ REMOTE = CONNECTIONS - LOCAL

Add this amount to your original setting for the large or shared pool. However,
before setting a value for either of these memory structures, you must also consider
additional memory for cursors, as explained in the following section.

Calculating Additional Memory for Cursors Parallel execution plans consume more space
in the SQL area than serial execution plans. You should regularly monitor shared
pool resource use to ensure that the memory used by both messages and cursors
can accommodate your system's processing requirements.
21-54 Oracle9i Data Warehousing Guide

Tuning General Parameters for Parallel Execution
Adjusting Memory After Processing Begins
The formulas in this section are just starting points. Whether you are using
automated or manual tuning, you should monitor usage on an on-going basis to
make sure the size of memory is not too large or too small. To do this, tune the large
and shared pools after examining the size of structures in the large pool, using the
following query:

SELECT POOL, NAME, SUM(BYTES)
FROM V$SGASTAT
WHERE POOL LIKE '%pool%'
 GROUP BY ROLLUP (POOL, NAME);

Your output should resemble the following:

POOL NAME SUM(BYTES)
----------- -------------------------- ----------
large pool PX msg pool 38092812
large pool free memory 299988
large pool 38392800
shared pool Checkpoint queue 38496
shared pool KGFF heap 1964
shared pool KGK heap 4372
shared pool KQLS heap 1134432
shared pool LRMPD SGA Table 23856
shared pool PLS non-lib hp 2096
shared pool PX subheap 186828
shared pool SYSTEM PARAMETERS 55756
shared pool State objects 3907808
shared pool character set memory 30260
shared pool db_block_buffers 200000
shared pool db_block_hash_buckets 33132
shared pool db_files 122984
shared pool db_handles 52416
shared pool dictionary cache 198216
shared pool dlm shared memory 5387924
shared pool enqueue_resources 29016
shared pool event statistics per sess 264768
shared pool fixed allocation callback 1376
shared pool free memory 26329104
shared pool gc_* 64000
shared pool latch nowait fails or sle 34944
shared pool library cache 2176808
shared pool log_buffer 24576
shared pool log_checkpoint_timeout 24700
shared pool long op statistics array 30240
Using Parallel Execution 21-55

Tuning General Parameters for Parallel Execution
shared pool message pool freequeue 116232
shared pool miscellaneous 267624
shared pool processes 76896
shared pool session param values 41424
shared pool sessions 170016
shared pool sql area 9549116
shared pool table columns 148104
shared pool trace_buffers_per_process 1476320
shared pool transactions 18480
shared pool trigger inform 24684
shared pool 52248968
 90641768
41 rows selected.

Evaluate the memory used as shown in your output, and alter the setting for
LARGE_POOL_SIZE based on your processing needs.

To obtain more memory usage statistics, execute the following query:

SELECT * FROM V$PX_PROCESS_SYSSTAT WHERE STATISTIC LIKE 'Buffers%';

Your output should resemble the following:

STATISTIC VALUE
------------------- -----
Buffers Allocated 23225
Buffers Freed 23225
Buffers Current 0
Buffers HWM 3620
4 Rows selected.

The amount of memory used appears in the Buffers Current and Buffers HWM
statistics. Calculate a value in bytes by multiplying the number of buffers by the
value for PARALLEL_EXECUTION_MESSAGE_SIZE. Compare the high water mark
to the parallel execution message pool size to determine if you allocated too much
memory. For example, in the first output, the value for large pool as shown in px
msg pool is 38,092,812 or 38 MB. The Buffers HWM from the second output is
3,620, which when multiplied by a parallel execution message size of 4,096 is
14,827,520, or approximately 15 MB. In this case, the high water mark has reached
approximately 40 percent of its capacity.

SHARED_POOL_SIZE
As mentioned earlier, if PARALLEL_AUTOMATIC_TUNING is false , Oracle
allocates query server processes from the shared pool. In this case, tune the shared
21-56 Oracle9i Data Warehousing Guide

Tuning General Parameters for Parallel Execution
pool as described under the previous heading for large pool, with the following
exceptions:

■ Allow for other clients of the shared pool, such as shared cursors and stored
procedures

■ Remember that larger values improve performance in multiuser systems, but
smaller values use less memory

You must also take into account that using parallel execution generates more
cursors. Look at statistics in the V$SQLAREA view to determine how often Oracle
recompiles cursors. If the cursor hit ratio is poor, increase the size of the pool. This
happens only when you have a large number of distinct queries.

You can then monitor the number of buffers used by parallel execution in the same
way as explained previously, and compare the shared pool PX msg pool to the
current high water mark reported in output from the view V$PX_PROCESS_
SYSSTAT.

PARALLEL_MIN_PERCENT
The recommended value for the PARALLEL_MIN_PERCENT parameter is 0 (zero).

This parameter allows users to wait for an acceptable DOP, depending on the
application in use. Setting this parameter to values other than 0 (zero) causes Oracle
to return an error when the requested DOP cannot be satisfied by the system at a
given time.

For example, if you set PARALLEL_MIN_PERCENT to 50, which translates to 50
percent, and the DOP is reduced by 50 percent or greater because of the adaptive
algorithm or because of a resource limitation, then Oracle returns ORA-12827 . For
example:

SELECT /*+ PARALLEL(e, 8, 1) */ d.department_id, SUM(SAL)
FROM employees e, departments d WHERE e.department_id = d.department_id
GROUP BY d.department_id ORDER BY d.department_id;

Oracle responds with this message:

ORA-12827: insufficient parallel query slaves available

CLUSTER_DATABASE_INSTANCES
The CLUSTER_DATABASE_INSTANCES parameter should be set to a value that is
equal to the number of instances in your Real Application Clusters environment.
Using Parallel Execution 21-57

Tuning General Parameters for Parallel Execution
The CLUSTER_DATABASE_INSTANCESparameter specifies the number of instances
configured in an Oracle Real Application Clusters environment. Oracle uses the
value of this parameter to compute values for LARGE_POOL_SIZE when
PARALLEL_AUTOMATIC_TUNING is set to true .

Parameters Affecting Resource Consumption
The first group of parameters discussed in this section affects memory and resource
consumption for all parallel operations, in particular, for parallel execution. These
parameters are:

■ PGA_AGGREGATE_TARGET

■ PARALLEL_EXECUTION_MESSAGE_SIZE

A second subset of parameters discussed in this section explains parameters
affecting parallel DML and DDL.

To control resource consumption, you should configure memory at two levels:

■ At the Oracle level, so the system uses an appropriate amount of memory from
the operating system.

■ At the operating system level for consistency. On some platforms, you might
need to set operating system parameters that control the total amount of virtual
memory available, summed across all processes.

The SGA is typically part of real physical memory. The SGA is static and of fixed
size; if you want to change its size, shut down the database, make the change, and
restart the database. Oracle allocates the large and shared pools out of the SGA.

A large percentage of the memory used in data warehousing operations is more
dynamic. This memory comes from process memory (PGA), and both the size of
process memory and the number of processes can vary greatly. Use the PGA_
AGGREGATE_TARGET parameter to control both the process memory and the
number of processes.

PGA_AGGREGATE_TARGET
With Oracle9i, you can simplify and improve the way PGA memory is allocated, by
enabling automatic PGA memory management. In this mode, Oracle dynamically
adjusts the size of the portion of the PGA memory dedicated to work areas, based

See Also: Oracle9i Database Concepts for further details regarding
the SGA
21-58 Oracle9i Data Warehousing Guide

Tuning General Parameters for Parallel Execution
on an overall PGA memory target explicitly set by the DBA. To enable automatic
PGA memory management, you have to set the initialization parameter PGA_
AGGREGATE_TARGET.

HASH_AREA_SIZE HASH_AREA_SIZE has been deprecated and you should use PGA_
AGGREGATE_TARGET instead.

SORT_AREA_SIZE SORT_AREA_SIZE has been deprecated and you should use PGA_
AGGREGATE_TARGET instead.

PARALLEL_EXECUTION_MESSAGE_SIZE
The recommended value for PARALLEL_EXECUTION_MESSAGE_SIZE is 4 KB. If
PARALLEL_AUTOMATIC_TUNING is true , the default is 4 KB. If PARALLEL_
AUTOMATIC_TUNING is false , the default is slightly greater than 2 KB.

The PARALLEL_EXECUTION_MESSAGE_SIZE parameter specifies the upper limit
for the size of parallel execution messages. The default value is operating system
specific and this value should be adequate for most applications. Larger values for
PARALLEL_EXECUTION_MESSAGE_SIZE require larger values for LARGE_POOL_
SIZE or SHARED_POOL_SIZE, depending on whether you have enabled parallel
automatic tuning.

While you might experience significantly improved response time by increasing the
value for PARALLEL_EXECUTION_MESSAGE_SIZE, memory use also drastically
increases. For example, if you double the value for PARALLEL_EXECUTION_
MESSAGE_SIZE, parallel execution requires a message source pool that is twice as
large.

Therefore, if you set PARALLEL_AUTOMATIC_TUNING to false , you must adjust
the SHARED_POOL_SIZE to accommodate parallel execution messages. If you have
set PARALLEL_AUTOMATIC_TUNING to true , but have set LARGE_POOL_SIZE
manually, then you must adjust the LARGE_POOL_SIZE to accommodate parallel
execution messages.

Parameters Affecting Resource Consumption for Parallel DML and Parallel DDL
The parameters that affect parallel DML and parallel DDL resource consumption
are:

See Also: Oracle9i Database Performance Tuning Guide and Reference
for descriptions of how to use PGA_AGGREGATE_TARGET in
different scenarios
Using Parallel Execution 21-59

Tuning General Parameters for Parallel Execution
■ TRANSACTIONS

■ ROLLBACK_SEGMENTS

■ FAST_START_PARALLEL_ROLLBACK

■ LOG_BUFFER

■ DML_LOCKS

■ ENQUEUE_RESOURCES

Parallel inserts, updates, and deletes require more resources than serial DML
operations. Similarly, PARALLEL CREATE TABLE ... AS SELECT and PARALLEL
CREATE INDEX can require more resources. For this reason, you may need to
increase the value of several additional initialization parameters. These parameters
do not affect resources for queries.

TRANSACTIONS For parallel DML and DDL, each query server process starts a
transaction. The parallel coordinator uses the two-phase commit protocol to commit
transactions; therefore, the number of transactions being processed increases by the
DOP. As a result, you might need to increase the value of the TRANSACTIONS
initialization parameter.

The TRANSACTIONS parameter specifies the maximum number of concurrent
transactions. The default assumes no parallelism. For example, if you have a DOP
of 20, you will have 20 more new server transactions (or 40, if you have two server
sets) and 1 coordinator transaction. In this case, you should increase
TRANSACTIONS by 21 (or 41) if the transactions are running in the same instance. If
you do not set this parameter, Oracle sets it to a value equal to 1.1 x SESSIONS.

ROLLBACK_SEGMENTS The increased number of transactions for parallel DML and
DDL requires more rollback segments. For example, one command with a DOP of
five uses 5 server transactions distributed among different rollback segments. The
rollback segments should belong to tablespaces that have free space. The rollback
segments should also be unlimited, or you should specify a high value for the
MAXEXTENTS parameter of the STORAGE clause. In this way, the rollback segments
can extend and not run out of space.

FAST_START_PARALLEL_ROLLBACK If a system fails when there are uncommitted
parallel DML or DDL transactions, you can speed up transaction recovery during
startup by using the FAST_START_PARALLEL_ROLLBACK parameter.

This parameter controls the DOP used when recovering terminated transactions.
Terminated transactions are transactions that are active before a system failure. By
21-60 Oracle9i Data Warehousing Guide

Tuning General Parameters for Parallel Execution
default, the DOP is chosen to be at most two times the value of the CPU_COUNT
parameter.

If the default DOP is insufficient, set the parameter to the HIGH. This gives a
maximum DOP of at most four times the value of the CPU_COUNT parameter. This
feature is available by default.

LOG_BUFFER Check the statistic redo buffer allocation retries in the
V$SYSSTAT view. If this value is high relative to redo blocks written , try to
increase the LOG_BUFFER size. A common LOG_BUFFER size for a system
generating numerous logs is 3 MB to 5 MB. If the number of retries is still high after
increasing LOG_BUFFER size, a problem might exist with the disk on which the log
files reside. In that case, tune the I/O subsystem to increase the I/O rates for redo.
One way of doing this is to use fine-grained striping across multiple disks. For
example, use a stripe size of 16 KB. A simpler approach is to isolate redo logs on
their own disk.

DML_LOCKS This parameter specifies the maximum number of DML locks. Its value
should equal the total number of locks on all tables referenced by all users. A
parallel DML operation's lock and enqueue resource requirement is very different
from serial DML. Parallel DML holds many more locks, so you should increase the
value of the ENQUEUE_RESOURCES and DML_LOCKS parameters by equal amounts.

Table 21–4 shows the types of locks acquired by coordinator and parallel execution
server processes for different types of parallel DML statements. Using this
information, you can determine the value required for these parameters.

Table 21–4 Locks Acquired by Parallel DML Statements

Type of statement
Coordinator process
acquires:

Each parallel execution
server acquires:

Parallel UPDATE or DELETE
into partitioned table; WHERE
clause pruned to a subset of
partitions or subpartitions

1 table lock SX

1 partition lock X for
each pruned
(sub)partition

1 table lock SX

1 partition lock NULL for each
pruned (sub)partition owned
by the query server process

1 partition-wait lock S for each
pruned (sub)partition owned
by the query server process
Using Parallel Execution 21-61

Tuning General Parameters for Parallel Execution
Consider a table with 600 partitions running with a DOP of 100. Assume all
partitions are involved in a parallel UPDATE or DELETE statement with no
row-migrations.

The coordinator acquires:

■ 1 table lock SX

■ 600 partition locks X

Total server processes acquires:

Parallel row-migrating UPDATE
into partitioned table; WHERE
clause pruned to a subset of
(sub)partitions

1 table lock SX 1 table lock SX

1 partition X lock for
each pruned
(sub)partition

1 partition lock NULL for each
pruned (sub)partition owned
by the query server process

1 partition-wait lock S for each
pruned partition owned by the
query server process

1 partition lock SX for all
other (sub)partitions

1 partition lock SX for all other
(sub)partitions

Parallel UPDATE, MERGE,
DELETE, or INSERT into
partitioned table

1 table lock SX

Partition locks X for all
(sub)partitions

1 table lock SX

1 partition lock NULL for each
(sub)partition

1 partition-wait lock S for each
(sub)partition

Parallel INSERT into
partitioned table; destination
table with partition or
subpartition clause

1 table lock SX

1 partition lock X for
each specified
(sub)partition

1 table lock SX

1 partition lock NULL for each
specified (sub)partition

1 partition-wait lock S for each
specified (sub)partition

Parallel INSERT into
nonpartitioned table

1 table lock X None

Note: Table, partition, and partition-wait DML locks all appear as
TM locks in the V$LOCK view.

Table 21–4 Locks Acquired by Parallel DML Statements(Cont.)

Type of statement
Coordinator process
acquires:

Each parallel execution
server acquires:
21-62 Oracle9i Data Warehousing Guide

Tuning General Parameters for Parallel Execution
■ 100 table locks SX

■ 600 partition locks NULL

■ 600 partition-wait locks S

ENQUEUE_RESOURCES This parameter sets the number of resources that can be
locked by the lock manager. Parallel DML operations require many more resources
than serial DML. Oracle allocates more enqueue resources as needed.

Parameters Related to I/O
The parameters that affect I/O are:

■ DB_CACHE_SIZE

■ DB_BLOCK_SIZE

■ DB_FILE_MULTIBLOCK_READ_COUNT

■ DISK_ASYNCH_IO and TAPE_ASYNCH_IO

These parameters also affect the optimizer which ensures optimal performance for
parallel execution I/O operations.

DB_CACHE_SIZE
When you perform parallel updates, merges, and deletes, the buffer cache behavior
is very similar to any OLTP system running a high volume of updates.

DB_BLOCK_SIZE
The recommended value for this parameter is 8 KB or 16 KB.

Set the database block size when you create the database. If you are creating a new
database, use a large block size such as 8 KB or 16 KB.

DB_FILE_MULTIBLOCK_READ_COUNT
The recommended value for this parameter is eight for 8 KB block size, or four for
16 KB block size. The default is 8.

This parameter determines how many database blocks are read with a single
operating system READ call. The upper limit for this parameter is
platform-dependent. If you set DB_FILE_MULTIBLOCK_READ_COUNT to an

See Also: "DML_LOCKS" on page 21-61
Using Parallel Execution 21-63

Monitoring and Diagnosing Parallel Execution Performance
excessively high value, your operating system will lower the value to the highest
allowable level when you start your database. In this case, each platform uses the
highest value possible. Maximum values generally range from 64 KB to 1 MB.

DISK_ASYNCH_IO and TAPE_ASYNCH_IO
The recommended value for both of these parameters is true .

These parameters enable or disable the operating system's asynchronous I/O
facility. They allow query server processes to overlap I/O requests with processing
when performing table scans. If the operating system supports asynchronous I/O,
leave these parameters at the default value of true . Figure 21–6 illustrates how
asynchronous read works.

Figure 21–6 Asynchronous Read

Asynchronous operations are currently supported for parallel table scans, hash
joins, sorts, and serial table scans. However, this feature can require operating
system specific configuration and may not be supported on all platforms. Check
your Oracle operating system-specific documentation.

Monitoring and Diagnosing Parallel Execution Performance
You should do the following tasks when diagnosing parallel execution performance
problems:

I/O:
read block #1

CPU:
process block #1

I/O:
read block #2

CPU:
process block #2

Synchronous read

I/O:
read block #1

CPU:
process block #1

I/O:
read block #2

CPU:
process block #2

Asynchronous read
21-64 Oracle9i Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
■ Quantify your performance expectations to determine whether there is a
problem.

■ Determine whether a problem pertains to optimization, such as inefficient plans
that might require reanalyzing tables or adding hints, or whether the problem
pertains to execution, such as simple operations like scanning, loading,
grouping, or indexing running much slower than published guidelines.

■ Determine whether the problem occurs when running in parallel, such as load
imbalance or resource bottlenecks, or whether the problem is also present for
serial operations.

Performance expectations are based on either prior performance metrics (for
example, the length of time a given query took last week or on the previous version
of Oracle) or scaling and extrapolating from serial execution times (for example,
serial execution took 10 minutes while parallel execution took 5 minutes). If the
performance does not meet your expectations, consider the following questions:

■ Did the execution plan change?

If so, you should gather statistics and decide whether to use index-only access
and a CREATE TABLE AS SELECT statement. You should use index hints if your
system is CPU-bound.

You should also study the EXPLAIN PLAN output.

■ Did the data set change?

If so, you should gather statistics to evaluate any differences.

■ Is the hardware overtaxed?

If so, you should check CPU, I/O, and swap memory.

After setting your basic goals and answering these questions, you need to consider
the following topics:

■ Is There Regression?

■ Is There a Plan Change?

■ Is There a Parallel Plan?

■ Is There a Serial Plan?

■ Is There Parallel Execution?

■ Is the Workload Evenly Distributed?
Using Parallel Execution 21-65

Monitoring and Diagnosing Parallel Execution Performance
Is There Regression?
Does parallel execution's actual performance deviate from what you expected? If
performance is as you expected, could there be an underlying performance
problem? Perhaps you have a desired outcome in mind to which you are comparing
the current outcome. Perhaps you have justifiable performance expectations that the
system does not achieve. You might have achieved this level of performance or a
particular execution plan in the past, but now, with a similar environment and
operation, the system is not meeting this goal.

If performance is not as you expected, can you quantify the deviation? For data
warehousing operations, the execution plan is key. For critical data warehousing
operations, save the EXPLAIN PLANresults. Then, as you analyze and reanalyze the
data, upgrade Oracle, and load new data, over time you can compare new
execution plans with old plans. Take this approach either proactively or reactively.

Alternatively, you might find that plan performance improves if you use hints. You
might want to understand why hints are necessary and determine how to get the
optimizer to generate the desired plan without hints. Try increasing the statistical
sample size: better statistics can give you a better plan.

Is There a Plan Change?
If there has been a change in the execution plan, determine whether the plan is or
should be parallel or serial.

Is There a Parallel Plan?
If the execution plan is or should be parallel, study the EXPLAIN PLAN output. Did
you analyze all the tables? Perhaps you need to use hints in a few cases. Verify that
the hint provides better performance.

Is There a Serial Plan?
If the execution plan is or should be serial, consider the following strategies:

■ Use an index. Sometimes adding an index can greatly improve performance.
Consider adding an extra column to the index. Perhaps your operation could
obtain all its data from the index, and not require a table scan. Perhaps you
need to use hints in a few cases. Verify that the hint provides better results.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on preserving plans throughout changes to your
system, using plan stability and outlines
21-66 Oracle9i Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
■ Compute statistics. If you do not analyze often and you can spare the time, it is
a good practice to compute statistics. This is particularly important if you are
performing many joins, and it will result in better plans. Alternatively, you can
estimate statistics.

■ Use histograms for nonuniform distributions.

■ Check initialization parameters to be sure the values are reasonable.

■ Replace bind variables with literals unless CURSOR_SHARINGis set to force or
similar .

■ Determine whether execution is I/O- or CPU-bound. Then check the optimizer
cost model.

■ Convert subqueries to joins.

■ Use the CREATE TABLE ... AS SELECT statement to break a complex operation
into smaller pieces. With a large query referencing five or six tables, it may be
difficult to determine which part of the query is taking the most time. You can
isolate bottlenecks in the query by breaking it into steps and analyzing each
step.

Is There Parallel Execution?
If the cause of regression cannot be traced to problems in the plan, the problem
must be an execution issue. For data warehousing operations, both serial and
parallel, consider how the plan uses memory. Check the paging rate and make sure
the system is using memory as effectively as possible. Check buffer, sort, and hash
area sizing. After you run a query or DML operation, look at the V$SESSTAT,
V$PX_SESSTAT, and V$PQ_SYSSTAT views to see the number of server processes
used and other information for the session and system.

Is the Workload Evenly Distributed?
If you are using parallel execution, is there unevenness in workload distribution?
For example, if there are 10 CPUs and a single user, you can see whether the
workload is evenly distributed across CPUs. This can vary over time, with periods

Note: Using different sample sizes can cause the plan to change.
Generally, the higher the sample size, the better the plan.
Using Parallel Execution 21-67

Monitoring and Diagnosing Parallel Execution Performance
that are more or less I/O intensive, but in general each CPU should have roughly
the same amount of activity.

The statistics in V$PQ_TQSTAT show rows produced and consumed for each
parallel execution server. This is a good indication of skew and does not require
single user operation.

Operating system statistics show you the per-processor CPU utilization and
per-disk I/O activity. Concurrently running tasks make it harder to see what is
going on, however. It may be useful to run in single-user mode and check operating
system monitors that show system level CPU and I/O activity.

If I/O problems occur, you might need to reorganize your data by spreading it over
more devices. If parallel execution problems occur, check to be sure you have
followed the recommendation to spread data over at least as many devices as CPUs.

If there is no skew in workload distribution, check for the following conditions:

■ Is there device contention?

■ Is there controller contention?

■ Is the system I/O-bound with too little parallelism? If so, consider increasing
parallelism up to the number of devices.

■ Is the system CPU-bound with too much parallelism? Check the operating
system CPU monitor to see whether a lot of time is being spent in system calls.
The resource might be overcommitted, and too much parallelism might cause
processes to compete with themselves.

■ Are there more concurrent users than the system can support?

Monitoring Parallel Execution Performance with Dynamic Performance Views
After your system has run for a few days, monitor parallel execution performance
statistics to determine whether your parallel processing is optimal. Do this using
any of the views discussed in this section.

In Oracle Real Application Clusters, global versions of the views described in this
section aggregate statistics from multiple instances. The global views have names
beginning with G, such as GV$FILESTAT for V$FILESTAT, and so on.

V$PX_SESSION
The V$PX_SESSIONview shows data about query server sessions, groups, sets, and
server numbers. It also displays real-time data about the processes working on
21-68 Oracle9i Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
behalf of parallel execution. This table includes information about the requested
DOP and the actual DOP granted to the operation.

V$PX_SESSTAT
The V$PX_SESSTAT view provides a join of the session information from V$PX_
SESSIONand the V$SESSTATtable. Thus, all session statistics available to a normal
session are available for all sessions performed using parallel execution.

V$PX_PROCESS
The V$PX_PROCESS view contains information about the parallel processes,
including status, session ID, process ID, and other information.

V$PX_PROCESS_SYSSTAT
The V$PX_PROCESS_SYSSTAT view shows the status of query servers and
provides buffer allocation statistics.

V$PQ_SESSTAT
The V$PQ_SESSTAT view shows the status of all current server groups in the
system such as data about how queries allocate processes and how the multiuser
and load balancing algorithms are affecting the default and hinted values. V$PQ_
SESSTAT will be obsolete in a future release.

You might need to adjust some parameter settings to improve performance after
reviewing data from these views. In this case, refer to the discussion of "Tuning
General Parameters for Parallel Execution" on page 21-49. Query these views
periodically to monitor the progress of long-running parallel operations.

V$FILESTAT
The V$FILESTAT view sums read and write requests, the number of blocks, and
service times for every datafile in every tablespace. Use V$FILESTAT to diagnose
I/O and workload distribution problems.

Note: For many dynamic performance views, you must set the
parameter TIMED_STATISTICS to true in order for Oracle to
collect statistics for each view. You can use the ALTER SYSTEM or
ALTER SESSION statements to turn TIMED_STATISTICS on and
off.
Using Parallel Execution 21-69

Monitoring and Diagnosing Parallel Execution Performance
You can join statistics from V$FILESTAT with statistics in the DBA_DATA_FILES
view to group I/O by tablespace or to find the filename for a given file number.
Using a ratio analysis, you can determine the percentage of the total tablespace
activity used by each file in the tablespace. If you make a practice of putting just one
large, heavily accessed object in a tablespace, you can use this technique to identify
objects that have a poor physical layout.

You can further diagnose disk space allocation problems using the DBA_EXTENTS
view. Ensure that space is allocated evenly from all files in the tablespace.
Monitoring V$FILESTAT during a long-running operation and then correlating I/O
activity to the EXPLAIN PLAN output is a good way to follow progress.

V$PARAMETER
The V$PARAMETER view lists the name, current value, and default value of all
system parameters. In addition, the view shows whether a parameter is a session
parameter that you can modify online with an ALTER SYSTEM or ALTER SESSION
statement.

V$PQ_TQSTAT
As a simple example, consider a hash join between two tables, with a join on a
column with only 2 distinct values. At best, this hash function will have one hash
value to parallel execution server A and the other to parallel execution server B. A
DOP of two is fine, but, if it is 4, then at least 2 parallel execution servers have no
work. To discover this type of skew, use a query similar to the following example:

SELECT dfo_number, tq_id, server_type, process, num_rows
FROM V$PQ_TQSTAT
ORDER BY dfo_number DESC, tq_id, server_type, process;

The best way to resolve this problem might be to choose a different join method; a
nested loop join might be the best option. Alternatively, if one of the join tables is
small relative to the other, a BROADCAST distribution method can be hinted using
PQ_DISTRIBUTE hint. Note that the optimizer considers the BROADCAST
distribution method, but requires OPTIMIZER_FEATURE_ENABLED set to 9.0.2 or
higher.

Now, assume that you have a join key with high cardinality, but one of the values
contains most of the data, for example, lava lamp sales by year. The only year that
had big sales was 1968, and thus, the parallel execution server for the 1968 records
will be overwhelmed. You should use the same corrective actions as described
previously.
21-70 Oracle9i Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
The V$PQ_TQSTAT view provides a detailed report of message traffic at the table
queue level. V$PQ_TQSTAT data is valid only when queried from a session that is
executing parallel SQL statements. A table queue is the pipeline between query
server groups, between the parallel coordinator and a query server group, or
between a query server group and the coordinator. Table queues are represented in
EXPLAIN PLAN output by the row labels of PARALLEL_TO_PARALLEL, SERIAL_
TO_PARALLEL, or PARALLEL_TO_SERIAL, respectively.

V$PQ_TQSTAT has a row for each query server process that reads from or writes to
in each table queue. A table queue connecting 10 consumer processes to 10
producer processes has 20 rows in the view. Sum the bytes column and group by
TQ_ID, the table queue identifier, to obtain the total number of bytes sent through
each table queue. Compare this with the optimizer estimates; large variations might
indicate a need to analyze the data using a larger sample.

Compute the variance of bytes grouped by TQ_ID. Large variances indicate
workload imbalances. You should investigate large variances to determine whether
the producers start out with unequal distributions of data, or whether the
distribution itself is skewed. If the data itself is skewed, this might indicate a low
cardinality, or low number of distinct values.

V$SESSTAT and V$SYSSTAT
The V$SESSTAT view provides parallel execution statistics for each session. The
statistics include total number of queries, DML and DDL statements executed in a
session and the total number of intrainstance and interinstance messages exchanged
during parallel execution during the session.

V$SYSSTAT provides the same statistics as V$SESSTAT, but for the entire system.

Monitoring Session Statistics
These examples use the dynamic performance views described in "Monitoring
Parallel Execution Performance with Dynamic Performance Views" on page 21-68.

Use GV$PX_SESSION to determine the configuration of the server group executing
in parallel. In this example, sessions 9 is the query coordinator, while sessions 7 and
21 are in the first group, first set. Sessions 18 and 20 are in the first group, second
set. The requested and granted DOP for this query is 2, as shown by Oracle's
response to the following query:

Note: The V$PQ_TQSTATview will be renamed in a future release
to V$PX_TQSTSAT.
Using Parallel Execution 21-71

Monitoring and Diagnosing Parallel Execution Performance
SELECT QCSID, SID, INST_ID "Inst",
 SERVER_GROUP "Group", SERVER_SET "Set",
 DEGREE "Degree", REQ_DEGREE "Req Degree"
FROM GV$PX_SESSION ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

Your output should resemble the following:

QCSID SID Inst Group Set Degree Req Degree
---------- ---------- ---------- ---------- ---------- ---------- ----------
 9 9 1
 9 7 1 1 1 2 2
 9 21 1 1 1 2 2
 9 18 1 1 2 2 2
 9 20 1 1 2 2 2
5 rows selected.

The processes shown in the output from the previous example using
GV$PX_SESSION collaborate to complete the same task. The next example shows
the execution of a join query to determine the progress of these processes in terms
of physical reads. Use this query to track any specific statistic:

SELECT QCSID, SID, INST_ID "Inst",
 SERVER_GROUP "Group", SERVER_SET "Set",
 NAME "Stat Name", VALUE
FROM GV$PX_SESSTAT A, V$STATNAME B
WHERE A.STATISTIC# = B.STATISTIC#
 AND NAME LIKE 'PHYSICAL READS'
 AND VALUE > 0
ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

Your output should resemble the following:

QCSID SID Inst Group Set Stat Name VALUE
------ ----- ------ ------ ------ ------------------ ----------
 9 9 1 physical reads 3863
 9 7 1 1 1 physical reads 2
 9 21 1 1 1 physical reads 2
 9 18 1 1 2 physical reads 2
 9 20 1 1 2 physical reads 2
5 rows selected.

Note: For a single instance, use SELECT FROM V$PX_SESSION
and do not include the column name Instance ID .
21-72 Oracle9i Data Warehousing Guide

Monitoring and Diagnosing Parallel Execution Performance
Use the previous type of query to track statistics in V$STATNAME. Repeat this query
as often as required to observe the progress of the query server processes.

The next query uses V$PX_PROCESS to check the status of the query servers.

SELECT * FROM V$PX_PROCESS;

Your output should resemble the following:

SERV STATUS PID SPID SID SERIAL
---- --------- ------ --------- ------ ------
P002 IN USE 16 16955 21 7729
P003 IN USE 17 16957 20 2921
P004 AVAILABLE 18 16959
P005 AVAILABLE 19 16962
P000 IN USE 12 6999 18 4720
P001 IN USE 13 7004 7 234
6 rows selected.

Monitoring System Statistics
The V$SYSSTAT and V$SESSTAT views contain several statistics for monitoring
parallel execution. Use these statistics to track the number of parallel queries,
DMLs, DDLs, data flow operators (DFOs), and operations. Each query, DML, or
DDL can have multiple parallel operations and multiple DFOs.

In addition, statistics also count the number of query operations for which the DOP
was reduced, or downgraded, due to either the adaptive multiuser algorithm or the
depletion of available parallel execution servers.

Finally, statistics in these views also count the number of messages sent on behalf of
parallel execution. The following syntax is an example of how to display these
statistics:

SELECT NAME, VALUE FROM GV$SYSSTAT
WHERE UPPER (NAME) LIKE '%PARALLEL OPERATIONS%'
OR UPPER (NAME) LIKE '%PARALLELIZED%'
OR UPPER (NAME) LIKE '%PX%';

See Also: Oracle9i Database Reference for more information about
these views
Using Parallel Execution 21-73

Monitoring and Diagnosing Parallel Execution Performance
Your output should resemble the following:

NAME VALUE
-- ----------
queries parallelized 347
DML statements parallelized 0
DDL statements parallelized 0
DFO trees parallelized 463
Parallel operations not downgraded 28
Parallel operations downgraded to serial 31
Parallel operations downgraded 75 to 99 pct 252
Parallel operations downgraded 50 to 75 pct 128
Parallel operations downgraded 25 to 50 pct 43
Parallel operations downgraded 1 to 25 pct 12
PX local messages sent 74548
PX local messages recv'd 74128
PX remote messages sent 0
PX remote messages recv'd 0

14 rows selected.

Monitoring Operating System Statistics
There is considerable overlap between information available in Oracle and
information available though operating system utilities (such as sar and vmstat
on UNIX-based systems). Operating systems provide performance statistics on I/O,
communication, CPU, memory and paging, scheduling, and synchronization
primitives. The V$SESSTATview provides the major categories of operating system
statistics as well.

Typically, operating system information about I/O devices and semaphore
operations is harder to map back to database objects and operations than is Oracle
information. However, some operating systems have good visualization tools and
efficient means of collecting the data.

Operating system information about CPU and memory usage is very important for
assessing performance. Probably the most important statistic is CPU usage. The
goal of low-level performance tuning is to become CPU bound on all CPUs. Once
this is achieved, you can work at the SQL level to find an alternate plan that might
be more I/O intensive but use less CPU.

Operating system memory and paging information is valuable for fine tuning the
many system parameters that control how memory is divided among
memory-intensive warehouse subsystems like parallel communication, sort, and
hash join.
21-74 Oracle9i Data Warehousing Guide

Affinity and Parallel Operations
Affinity and Parallel Operations

In a shared-disk cluster or MPP configuration, an instance of the Oracle Real
Application Clusters is said to have affinity for a device if the device is directly
accessed from the processors on which the instance is running. Similarly, an
instance has affinity for a file if it has affinity for the devices on which the file is
stored.

Determination of affinity may involve arbitrary determinations for files that are
striped across multiple devices. Somewhat arbitrarily, an instance is said to have
affinity for a tablespace (or a partition of a table or index within a tablespace) if the
instance has affinity for the first file in the tablespace.

Oracle considers affinity when allocating work to parallel execution servers. The
use of affinity for parallel execution of SQL statements is transparent to users.

Affinity and Parallel Queries
Affinity in parallel queries increases the speed of scanning data from disk by doing
the scans on a processor that is near the data. This can provide a substantial
performance increase for machines that do not naturally support shared disks.

The most common use of affinity is for a table or index partition to be stored in one
file on one device. This configuration provides the highest availability by limiting
the damage done by a device failure and makes the best use of partition-parallel
index scans.

DSS customers might prefer to stripe table partitions over multiple devices
(probably a subset of the total number of devices). This configuration allows some
queries to prune the total amount of data being accessed using partitioning criteria
and still obtain parallelism through rowid-range parallel table (partition) scans. If
the devices are configured as a RAID, availability can still be very good. Even when
used for DSS, indexes should probably be partitioned on individual devices.

Note: The features described in this section are available only if
you have purchased Oracle9i Enterprise Edition with the Real
Application Clusters Option. See Oracle9i Database New Features for
information about the features and options available with Oracle9i
Enterprise Edition.
Using Parallel Execution 21-75

Miscellaneous Parallel Execution Tuning Tips
Other configurations (for example, multiple partitions in one file striped over
multiple devices) will yield correct query results, but you may need to use hints or
explicitly set object attributes to select the correct DOP.

Affinity and Parallel DML
For parallel DML (inserts, updates, and deletes), affinity enhancements improve
cache performance by routing the DML operation to the node that has affinity for
the partition.

Affinity determines how to distribute the work among the set of instances or
parallel execution servers to perform the DML operation in parallel. Affinity can
improve performance of queries in several ways:

■ For certain MPP architectures, Oracle uses device-to-node affinity information
to determine on which nodes to spawn parallel execution servers (parallel
process allocation) and which work granules (rowid ranges or partitions) to
send to particular nodes (work assignment). Better performance is achieved by
having nodes mainly access local devices, giving a better buffer cache hit ratio
for every node and reducing the network overhead and I/O latency.

■ For SMP, cluster, and MPP architectures, process-to-device affinity is used to
achieve device isolation. This reduces the chances of having multiple parallel
execution servers accessing the same device simultaneously. This
process-to-device affinity information is also used in implementing stealing
between processes.

For partitioned tables and indexes, partition-to-node affinity information
determines process allocation and work assignment. For shared-nothing MPP
systems, Oracle Real Application Clusters tries to assign partitions to instances,
taking the disk affinity of the partitions into account. For shared-disk MPP and
cluster systems, partitions are assigned to instances in a round-robin manner.

Affinity is only available for parallel DML when running in an Oracle Real
Application Clusters configuration. Affinity information which persists across
statements improves buffer cache hit ratios and reduces block pings between
instances.

Miscellaneous Parallel Execution Tuning Tips
This section contains some ideas for improving performance in a parallel execution
environment and includes the following topics:

See Also: Oracle9i Real Application Clusters Concepts
21-76 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
■ Setting Buffer Cache Size for Parallel Operations

■ Overriding the Default Degree of Parallelism

■ Rewriting SQL Statements

■ Creating and Populating Tables in Parallel

■ Creating Temporary Tablespaces for Parallel Sort and Hash Join

■ Executing Parallel SQL Statements

■ Using EXPLAIN PLAN to Show Parallel Operations Plans

■ Additional Considerations for Parallel DML

■ Creating Indexes in Parallel

■ Parallel DML Tips

■ Incremental Data Loading in Parallel

■ Using Hints with Cost-Based Optimization

■ FIRST_ROWS(n) Hint

■ Enabling Dynamic Statistic Sampling

Setting Buffer Cache Size for Parallel Operations
With the exception of parallel update and delete, parallel operations do not
generally benefit from larger buffer cache sizes. Other parallel operations can
benefit only if you increase the size of the buffer pool and thereby accommodate the
inner table or index for a nested loop join.

Overriding the Default Degree of Parallelism
The default DOP is appropriate for reducing response time while guaranteeing use
of CPU and I/O resources for any parallel operations.

If it is memory-bound, or if several concurrent parallel operations are running, you
might want to decrease the default DOP.

Oracle uses the default DOP for tables that have PARALLEL attributed to them in
the data dictionary or that have the PARALLEL hint specified. If a table does not
have parallelism attributed to it, or has NOPARALLEL (the default) attributed to it,
and parallelism is not being forced through ALTER SESSION FORCE PARALLEL,

See Also: Oracle9i Database Performance Tuning Guide and Reference
Using Parallel Execution 21-77

Miscellaneous Parallel Execution Tuning Tips
then that table is never scanned in parallel. This override occurs regardless of the
default DOP indicated by the number of CPUs, instances, and devices storing that
table.

You can adjust the DOP by using the following guidelines:

■ Modify the default DOP by changing the value for the PARALLEL_THREADS_
PER_CPU parameter.

■ Adjust the DOP either by using ALTER TABLE, ALTER SESSION, or by using
hints.

■ To increase the number of concurrent parallel operations, reduce the DOP, or set
the parameter PARALLEL_ADAPTIVE_MULTI_USER to true .

Rewriting SQL Statements
The most important issue for parallel execution is ensuring that all parts of the
query plan that process a substantial amount of data execute in parallel. Use
EXPLAIN PLAN to verify that all plan steps have an OTHER_TAG of PARALLEL_TO_
PARALLEL, PARALLEL_TO_SERIAL, PARALLEL_COMBINED_WITH_PARENT, or
PARALLEL_COMBINED_WITH_CHILD. Any other keyword (or null) indicates serial
execution and a possible bottleneck.

You can also use the utlxplp.sql script to present the EXPLAIN PLAN output
with all relevant parallel information.

You can increase the optimizer's ability to generate parallel plans converting
subqueries, especially correlated subqueries, into joins. Oracle can parallelize joins
more efficiently than subqueries. This also applies to updates.

Creating and Populating Tables in Parallel
Oracle cannot return results to a user process in parallel. If a query returns a large
number of rows, execution of the query might indeed be faster. However, the user
process can only receive the rows serially. To optimize parallel execution
performance for queries that retrieve large result sets, use PARALLEL CREATE

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information on using EXPLAIN PLAN

See Also: "Updating the Table in Parallel" on page 21-91
21-78 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
TABLE ... AS SELECT or direct-path INSERT to store the result set in the database.
At a later time, users can view the result set serially.

When combined with the NOLOGGING option, the parallel version of CREATE
TABLE ... AS SELECT provides a very efficient intermediate table facility, for
example:

CREATE TABLE summary PARALLEL NOLOGGING
 AS SELECT dim_1, dim_2 ..., SUM (meas_1)
 FROM facts
 GROUP BY dim_1, dim_2;

These tables can also be incrementally loaded with parallel INSERT. You can take
advantage of intermediate tables using the following techniques:

■ Common subqueries can be computed once and referenced many times. This
can allow some queries against star schemas (in particular, queries without
selective WHERE-clause predicates) to be better parallelized. Note that star
queries with selective WHERE-clause predicates using the star-transformation
technique can be effectively parallelized automatically without any
modification to the SQL.

■ Decompose complex queries into simpler steps in order to provide
application-level checkpoint or restart. For example, a complex multitable join
on a database 1 terabyte in size could run for dozens of hours. A failure during
this query would mean starting over from the beginning. Using CREATE TABLE
... AS SELECTor PARALLEL INSERT AS SELECT, you can rewrite the query as a
sequence of simpler queries that run for a few hours each. If a system failure
occurs, the query can be restarted from the last completed step.

■ Implement manual parallel deletes efficiently by creating a new table that omits
the unwanted rows from the original table, and then dropping the original
table. Alternatively, you can use the convenient parallel delete feature, which
directly deletes rows from the original table.

■ Create summary tables for efficient multidimensional drill-down analysis. For
example, a summary table might store the sum of revenue grouped by month,
brand, region, and salesman.

Note: Performing the SELECT in parallel does not influence the
CREATE statement. If the CREATE is parallel, however, the
optimizer tries to make the SELECT run in parallel also.
Using Parallel Execution 21-79

Miscellaneous Parallel Execution Tuning Tips
■ Reorganize tables, eliminating chained rows, compressing free space, and so on,
by copying the old table to a new table. This is much faster than export/import
and easier than reloading.

Creating Temporary Tablespaces for Parallel Sort and Hash Join
For optimal space management performance, you should use locally managed
temporary tablespaces. The following is an example:

CREATE TEMPORARY TABLESPACE TStemp TEMPFILE '/dev/D31'
SIZE 4096MB REUSE
EXTENT MANAGEMENT LOCAL
UNIFORM SIZE 10m;

You can associate temporary tablespaces to a database by issuing a statement such
as:

ALTER DATABASE TEMPORARY TABLESPACE TStemp;

Once this is done, explicit assignment of users to tablespaces is not needed.

Size of Temporary Extents
When using a locally managed temporary tablespace, extents are all the same size
because this helps avoid fragmentation. As a general rule, temporary extents should
be smaller than permanent extents because there are more demands for temporary
space, and parallel processes or other operations running concurrently must share
the temporary tablespace. Normally, temporary extents should be in the range of
1MB to 10MB. Once you allocate an extent, it is available for the duration of an
operation. If you allocate a large extent but only need to use a small amount of
space, the unused space in the extent is unavailable.

At the same time, temporary extents should be large enough that processes do not
have to wait for space. Temporary tablespaces use less overhead than permanent
tablespaces when allocating and freeing a new extent. However, obtaining a new

Note: Be sure to use the DBMS_STATS package on newly created
tables. Also consider creating indexes. To avoid I/O bottlenecks,
specify a tablespace with at least as many devices as CPUs. To
avoid fragmentation in allocating space, the number of files in a
tablespace should be a multiple of the number of CPUs. See
Chapter 4, "Hardware and I/O Considerations in Data
Warehouses", for more information about bottlenecks.
21-80 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
temporary extent still requires the overhead of acquiring a latch and searching
through the SGA structures, as well as SGA space consumption for the sort extent
pool.

Executing Parallel SQL Statements
After analyzing your tables and indexes, you should see performance
improvements based on the DOP used.

As a general process, you should start with simple parallel operations and evaluate
their total I/O throughput with a SELECT COUNT(*) FROM facts statement. Then,
evaluate total CPU power by adding a complex WHERE clause to the statement. An
I/O imbalance might suggest a better physical database layout. After you
understand how simple scans work, add aggregation, joins, and other operations
that reflect individual aspects of the overall workload. In particular, you should
look for bottlenecks.

Besides query performance, you should also monitor parallel load, parallel index
creation, and parallel DML, and look for good utilization of I/O and CPU resources.

Using EXPLAIN PLAN to Show Parallel Operations Plans
Use the EXPLAIN PLAN statement to see the execution plans for parallel queries.
EXPLAIN PLAN output shows optimizer information in the COST, BYTES, and
CARDINALITY columns. You can also use the utlxplp.sql script to present the
EXPLAIN PLAN output with all relevant parallel information.

There are several ways to optimize the parallel execution of join statements. You can
alter system configuration, adjust parameters as discussed earlier in this chapter, or
use hints, such as the DISTRIBUTION hint.

The key points when using EXPLAIN PLAN are to:

■ Verify optimizer selectivity estimates. If the optimizer thinks that only one row
will be produced from a query, it tends to favor using a nested loop. This could
be an indication that the tables are not analyzed or that the optimizer has made
an incorrect estimate about the correlation of multiple predicates on the same

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information regarding locally-managed temporary tablespaces

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information on using EXPLAIN PLAN
Using Parallel Execution 21-81

Miscellaneous Parallel Execution Tuning Tips
table. A hint may be required to force the optimizer to use another join method.
Consequently, if the plan says only one row is produced from any particular
stage and this is incorrect, consider hints or gather statistics.

■ Use hash join on low cardinality join keys. If a join key has few distinct values,
then a hash join may not be optimal. If the number of distinct values is less than
the DOP, then some parallel query servers may be unable to work on the
particular query.

■ Consider data skew. If a join key involves excessive data skew, a hash join may
require some parallel query servers to work more than others. Consider using a
hint to cause a BROADCAST distribution method if the optimizer did not choose
it. Note that the optimizer will consider the BROADCAST distribution method
only if the OPTIMIZER_FEATURE_ENABLED is set to 9.0.2 or higher. See
"V$PQ_TQSTAT" on page 21-70 for further details.

Additional Considerations for Parallel DML
When you want to refresh your data warehouse database using parallel insert,
update, or delete on a data warehouse, there are additional issues to consider when
designing the physical database. These considerations do not affect parallel
execution operations. These issues are:

■ PDML and Direct-Path Restrictions

■ Limitation on the Degree of Parallelism

■ Using Local and Global Striping

■ Increasing INITRANS and MAXTRANS

■ Limitation on Available Number of Transaction Free Lists for Segments in
Dictionary-Managed Tablespaces

■ Using Multiple Archivers

■ Database Writer Process (DBWn) Workload

■ [NO]LOGGING Clause

PDML and Direct-Path Restrictions
If a parallel restriction is violated, the operation is simply performed serially. If a
direct-path INSERT restriction is violated, then the APPEND hint is ignored and a
conventional insert is performed. No error message is returned.
21-82 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
Limitation on the Degree of Parallelism
If you are performing parallel UPDATE, MERGE, or DELETE operations, the DOP is
equal to or less than the number of partitions in the table.

Using Local and Global Striping
Parallel updates and deletes work only on partitioned tables. They can generate a
high number of random I/O requests during index maintenance.

For local index maintenance, local striping is most efficient in reducing I/O
contention because one server process only goes to its own set of disks and disk
controllers. Local striping also increases availability in the event of one disk failing.

For global index maintenance (partitioned or nonpartitioned), globally striping the
index across many disks and disk controllers is the best way to distribute the
number of I/Os.

Increasing INITRANS and MAXTRANS
If you have global indexes, a global index segment and global index blocks are
shared by server processes of the same parallel DML statement. Even if the
operations are not performed against the same row, the server processes can share
the same index blocks. Each server transaction needs one transaction entry in the
index block header before it can make changes to a block. Therefore, in the CREATE
INDEX or ALTER INDEX statements, you should set INITRANS , the initial number
of transactions allocated within each data block, to a large value, such as the
maximum DOP against this index. Leave MAXTRANS, the maximum number of
concurrent transactions that can update a data block, at its default value, which is
the maximum your system can support. This value should not exceed 255.

If you run a DOP of 10 against a table with a global index, all 10 server processes
might attempt to change the same global index block. For this reason, you must set
MAXTRANS to at least 10 so all server processes can make the change at the same
time. If MAXTRANS is not large enough, the parallel DML operation fails.

Limitation on Available Number of Transaction Free Lists for Segments in
Dictionary-Managed Tablespaces
Once a segment has been created, the number of process and transaction free lists is
fixed and cannot be altered. If you specify a large number of process free lists in the
segment header, you might find that this limits the number of transaction free lists
that are available. You can abate this limitation the next time you re-create the
Using Parallel Execution 21-83

Miscellaneous Parallel Execution Tuning Tips
segment header by decreasing the number of process free lists; this leaves more
room for transaction free lists in the segment header.

For UPDATE and DELETE operations, each server process can require its own
transaction free list. The parallel DML DOP is thus effectively limited by the
smallest number of transaction free lists available on the table and on any of the
global indexes the DML statement must maintain. For example, if the table has 25
transaction free lists and the table has two global indexes, one with 50 transaction
free lists and one with 30 transaction free lists, the DOP is limited to 25. If the table
had had 40 transaction free lists, the DOP would have been limited to 30.

The FREELISTS parameter of the STORAGE clause is used to set the number of
process free lists. By default, no process free lists are created.

The default number of transaction free lists depends on the block size. For example,
if the number of process free lists is not set explicitly, a 4 KB block has about 80
transaction free lists by default. The minimum number of transaction free lists is 25.

Using Multiple Archivers
Parallel DDL and parallel DML operations can generate a large amount of redo
logs. A single ARCH process to archive these redo logs might not be able to keep up.
To avoid this problem, you can spawn multiple archiver processes. This can be done
manually or by using a job queue.

Database Writer Process (DBWn) Workload
Parallel DML operations dirty a large number of data, index, and undo blocks in the
buffer cache during a short period of time. For example, suppose you see a high
number of free_buffer_waits after querying the V$SYSTEM_EVENT view, as in
the following syntax:

SELECT TOTAL_WAITS FROM V$SYSTEM_EVENT WHERE EVENT = 'FREE BUFFER WAITS';

In this case, you should consider increasing the DBWn processes. If there are no
waits for free buffers, the query will not return any rows.

[NO]LOGGING Clause
The [NO]LOGGING clause applies to tables, partitions, tablespaces, and indexes.
Virtually no log is generated for certain operations (such as direct-path INSERT) if
the NOLOGGING clause is used. The NOLOGGING attribute is not specified at the
INSERT statement level but is instead specified when using the ALTER or CREATE
statement for a table, partition, index, or tablespace.
21-84 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
When a table or index has NOLOGGING set, neither parallel nor serial direct-path
INSERT operations generate undo or redo logs. Processes running with the
NOLOGGING option set run faster because no redo is generated. However, after a
NOLOGGING operation against a table, partition, or index, if a media failure occurs
before a backup is taken, then all tables, partitions, and indexes that have been
modified might be corrupted.

For backward compatibility, [UN]RECOVERABLE is still supported as an alternate
keyword with the CREATE TABLE statement. This alternate keyword might not be
supported, however, in future releases.

At the tablespace level, the logging clause specifies the default logging attribute for
all tables, indexes, and partitions created in the tablespace. When an existing
tablespace logging attribute is changed by the ALTER TABLESPACE statement, then
all tables, indexes, and partitions created after the ALTER statement will have the
new logging attribute; existing ones will not change their logging attributes. The
tablespace-level logging attribute can be overridden by the specifications at the
table, index, or partition level.

The default logging attribute is LOGGING. However, if you have put the database in
NOARCHIVELOG mode, by issuing ALTER DATABASE NOARCHIVELOG, then all
operations that can be done without logging will not generate logs, regardless of the
specified logging attribute.

Creating Indexes in Parallel
Multiple processes can work together simultaneously to create an index. By
dividing the work necessary to create an index among multiple server processes,
Oracle can create the index more quickly than if a single server process created the
index sequentially.

Parallel index creation works in much the same way as a table scan with an ORDER
BY clause. The table is randomly sampled and a set of index keys is found that
equally divides the index into the same number of pieces as the DOP. A first set of
query processes scans the table, extracts key-rowid pairs, and sends each pair to a

Note: Direct-path INSERT operations (except for dictionary
updates) never generate undo logs. The NOLOGGING attribute does
not affect undo, only redo. To be precise, NOLOGGING allows the
direct-path INSERT operation to generate a negligible amount of
redo (range-invalidation redo, as opposed to full image redo).
Using Parallel Execution 21-85

Miscellaneous Parallel Execution Tuning Tips
process in a second set of query processes based on key. Each process in the second
set sorts the keys and builds an index in the usual fashion. After all index pieces are
built, the parallel coordinator simply concatenates the pieces (which are ordered) to
form the final index.

Parallel local index creation uses a single server set. Each server process in the set is
assigned a table partition to scan and for which to build an index partition. Because
half as many server processes are used for a given DOP, parallel local index creation
can be run with a higher DOP.

You can optionally specify that no redo and undo logging should occur during
index creation. This can significantly improve performance but temporarily renders
the index unrecoverable. Recoverability is restored after the new index is backed
up. If your application can tolerate a window where recovery of the index requires
it to be re-created, then you should consider using the NOLOGGING clause.

The PARALLELclause in the CREATE INDEXstatement is the only way in which you
can specify the DOP for creating the index. If the DOP is not specified in the parallel
clause of CREATE INDEX, then the number of CPUs is used as the DOP. If there is no
PARALLEL clause, index creation is done serially.

When you add or enable a UNIQUE or PRIMARY KEY constraint on a table, you
cannot automatically create the required index in parallel. Instead, manually create
an index on the desired columns, using the CREATE INDEX statement and an
appropriate PARALLEL clause, and then add or enable the constraint. Oracle then
uses the existing index when enabling or adding the constraint.

Multiple constraints on the same table can be enabled concurrently and in parallel if
all the constraints are already in the ENABLE NOVALIDATE state. In the following
example, the ALTER TABLE ... ENABLE CONSTRAINT statement performs the table
scan that checks the constraint in parallel:

CREATE TABLE a (a1 NUMBER CONSTRAINT ach CHECK (a1 > 0) ENABLE NOVALIDATE)
PARALLEL;

Note: When creating an index in parallel, the STORAGE clause
refers to the storage of each of the subindexes created by the query
server processes. Therefore, an index created with an INITIAL of 5
MB and a DOP of 12 consumes at least 60 MB of storage during
index creation because each process starts with an extent of 5 MB.
When the query coordinator process combines the sorted
subindexes, some of the extents might be trimmed, and the
resulting index might be smaller than the requested 60 MB.
21-86 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
INSERT INTO a values (1);
COMMIT;
ALTER TABLE a ENABLE CONSTRAINT ach;

Parallel DML Tips
This section provides an overview of parallel DML functionality. The topics covered
include:

■ Parallel DML Tip 1: INSERT

■ Parallel DML Tip 2: Direct-Path INSERT

■ Parallel DML Tip 3: Parallelizing INSERT, MERGE, UPDATE, and DELETE

Parallel DML Tip 1: INSERT
Oracle INSERT functionality can be summarized as follows:

If parallel DML is enabled and there is a PARALLEL hint or PARALLEL attribute set
for the table in the data dictionary, then inserts are parallel and appended, unless a
restriction applies. If either the PARALLEL hint or PARALLEL attribute is missing,
the insert is performed serially.

See Also: Oracle9i Database Concepts for more information on how
extents are allocated when using parallel execution

See Also: Oracle9i Database Concepts for a detailed discussion of
parallel DML and DOP

Table 21–5 Summary of INSERT Features

Insert Type Parallel Serial NOLOGGING

Conventional No Yes No

Direct-path
INSERT

(APPEND)

Yes, but requires:

■ ALTER SESSION
ENABLE PARALLEL
DML

■ Table PARALLEL
attribute or PARALLEL
hint

■ APPEND hint (optional)

Yes, but requires:

■ APPEND hint

Yes, but requires:

■ NOLOGGING attribute
set for partition or
table
Using Parallel Execution 21-87

Miscellaneous Parallel Execution Tuning Tips
Parallel DML Tip 2: Direct-Path INSERT
The append mode is the default during a parallel insert: data is always inserted into
a new block which is allocated to the table. Therefore the APPEND hint is optional.
You should use append mode to increase the speed of INSERT operations, but not
when space utilization needs to be optimized. You can use NOAPPEND to override
append mode.

The APPEND hint applies to both serial and parallel insert: even serial inserts are
faster if you use this hint. APPEND, however, does require more space and locking
overhead.

You can use NOLOGGING with APPEND to make the process even faster. NOLOGGING
means that no redo log is generated for the operation. NOLOGGING is never the
default; use it when you wish to optimize performance. It should not normally be
used when recovery is needed for the table or partition. If recovery is needed, be
sure to take a backup immediately after the operation. Use the ALTER TABLE
[NO]LOGGING statement to set the appropriate value.

Parallel DML Tip 3: Parallelizing INSERT, MERGE, UPDATE, and DELETE
When the table or partition has the PARALLEL attribute in the data dictionary, that
attribute setting is used to determine parallelism of INSERT, UPDATE, and DELETE
statements as well as queries. An explicit PARALLEL hint for a table in a statement
overrides the effect of the PARALLEL attribute in the data dictionary.

You can use the NOPARALLEL hint to override a PARALLEL attribute for the table in
the data dictionary. In general, hints take precedence over attributes.

DML operations are considered for parallelization only if the session is in a
PARALLEL DML enabled mode. (Use ALTER SESSION ENABLE PARALLEL DML to
enter this mode.) The mode does not affect parallelization of queries or of the query
portions of a DML statement.

Parallelizing INSERT ... SELECT In the INSERT ... SELECT statement you can specify a
PARALLEL hint after the INSERT keyword, in addition to the hint after the SELECT
keyword. The PARALLEL hint after the INSERT keyword applies to the INSERT
operation only, and the PARALLEL hint after the SELECT keyword applies to the
SELECT operation only. Thus, parallelism of the INSERT and SELECT operations
are independent of each other. If one operation cannot be performed in parallel, it
has no effect on whether the other operation can be performed in parallel.

See Also: Oracle9i Database Concepts for more information on
parallel INSERT, UPDATE and DELETE
21-88 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
The ability to parallelize inserts causes a change in existing behavior if the user has
explicitly enabled the session for parallel DML and if the table in question has a
PARALLEL attribute set in the data dictionary entry. In that case, existing INSERT ...
SELECT statements that have the select operation parallelized can also have their
insert operation parallelized.

If you query multiple tables, you can specify multiple SELECT PARALLELhints and
multiple PARALLEL attributes.

Example 21–4 Parallelizing INSERT ... SELECT

Add the new employees who were hired after the acquisition of ACME.

INSERT /*+ PARALLEL(EMP) */ INTO employees
SELECT /*+ PARALLEL(ACME_EMP) */ *
FROM ACME_EMP;

The APPEND keyword is not required in this example because it is implied by the
PARALLEL hint.

Parallelizing UPDATE and DELETE The PARALLEL hint (placed immediately after the
UPDATE or DELETE keyword) applies not only to the underlying scan operation,
but also to the UPDATEor DELETEoperation. Alternatively, you can specify UPDATE
or DELETE parallelism in the PARALLEL clause specified in the definition of the
table to be modified.

If you have explicitly enabled parallel DML for the session or transaction, UPDATE
or DELETE statements that have their query operation parallelized can also have
their UPDATEor DELETEoperation parallelized. Any subqueries or updatable views
in the statement can have their own separate PARALLEL hints or clauses, but these
parallel directives do not affect the decision to parallelize the update or delete. If
these operations cannot be performed in parallel, it has no effect on whether the
UPDATE or DELETE portion can be performed in parallel.

Tables must be partitioned in order to support parallel UPDATE and DELETE.

Example 1 Parallelizing UPDATE and DELETE
Give a 10 percent salary raise to all clerks in Dallas.

UPDATE /*+ PARALLEL(EMP) */ employees
SET SAL=SAL * 1.1
 WHERE JOB='CLERK' AND DEPTNO IN
 (SELECT DEPTNO FROM DEPT WHERE LOCATION='DALLAS');
Using Parallel Execution 21-89

Miscellaneous Parallel Execution Tuning Tips
The PARALLEL hint is applied to the UPDATE operation as well as to the scan.

Example 2 Parallelizing UPDATE and DELETE
Remove all products in the grocery category because the grocery business line was
recently spun off into a separate company.

DELETE /*+ PARALLEL(PRODUCTS) */ FROM PRODUCTS
WHERE PRODUCT_CATEGORY ='GROCERY';

Again, the parallelism is applied to the scan as well as UPDATE operation on table
employees .

Incremental Data Loading in Parallel
Parallel DML combined with the updatable join views facility provides an efficient
solution for refreshing the tables of a data warehouse system. To refresh tables is to
update them with the differential data generated from the OLTP production system.

In the following example, assume that you want to refresh a table named
customer that has columns c_key , c_name, and c_addr . The differential data
contains either new rows or rows that have been updated since the last refresh of
the data warehouse. In this example, the updated data is shipped from the
production system to the data warehouse system by means of ASCII files. These
files must be loaded into a temporary table, named diff_customer , before
starting the refresh process. You can use SQL*Loader with both the parallel and
direct options to efficiently perform this task. You can use the APPEND hint when
loading in parallel as well.

Once diff_customer is loaded, the refresh process can be started. It can be
performed in two phases or by merging in parallel, as demonstrated in the
following:

■ Updating the Table in Parallel

■ Inserting the New Rows into the Table in Parallel

■ Merging in Parallel
21-90 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
Updating the Table in Parallel
The following statement is a straightforward SQL implementation of the update
using subqueries:

UPDATE customers
SET(c_name, c_addr) =
 (SELECT c_name, c_addr
 FROM diff_customer
 WHERE diff_customer.c_key = customer.c_key)
 WHERE c_key IN(SELECT c_key FROM diff_customer);

Unfortunately, the two subqueries in this statement affect performance.

An alternative is to rewrite this query using updatable join views. To do this, you
must first add a primary key constraint to the diff_customer table to ensure that
the modified columns map to a key-preserved table:

CREATE UNIQUE INDEX diff_pkey_ind ON diff_customer(c_key)
 PARALLEL NOLOGGING;
ALTER TABLE diff_customer ADD PRIMARY KEY (c_key);

You can then update the customers table with the following SQL statement:

UPDATE /*+ PARALLEL(cust_joinview) */
(SELECT /*+ PARALLEL(customers) PARALLEL(diff_customer) */
CUSTOMER.c_name AS c_name
CUSTOMER.c_addr AS c_addr,
diff_customer.c_name AS c_newname, diff_customer.c_addr AS c_newaddr
 WHERE customers.c_key = diff_customer.c_key) cust_joinview
 SET c_name = c_newname, c_addr = c_newaddr;

The base scans feeding the join view cust_joinview are done in parallel. You can
then parallelize the update to further improve performance, but only if the
customer table is partitioned.

See Also:

■ "Rewriting SQL Statements" on page 21-78

■ Oracle9i Application Developer’s Guide - Fundamentals for
information about key-preserved tables
Using Parallel Execution 21-91

Miscellaneous Parallel Execution Tuning Tips
Inserting the New Rows into the Table in Parallel
The last phase of the refresh process consists of inserting the new rows from the
diff_customer temporary table to the customer table. Unlike the update case,
you cannot avoid having a subquery in the INSERT statement:

INSERT /*+PARALLEL(customers)*/ INTO customers
SELECT * FROM diff_customer
s);

However, you can guarantee that the subquery is transformed into an anti-hash join
by using the HASH_AJ hint. Doing so enables you to use parallel INSERT to execute
the preceding statement efficiently. Parallel INSERT is applicable even if the table is
not partitioned.

Merging in Parallel
In Oracle9i, you combine the previous updates and inserts into one statement,
commonly known as a merge. The following statement achieves the same result as
all of the statements in "Updating the Table in Parallel" on page 21-91 and "Inserting
the New Rows into the Table in Parallel" on page 21-92:

MERGE INTO customers USING diff_customer
ON (diff_customer.c_key = customer.c_key)
WHEN MATCHED THEN
 UPDATE SET (c_name, c_addr) = (SELECT c_name, c_addr
 FROM diff_customer
 WHERE diff_customer.c_key = customers.c_key)
WHEN NOT MATCHED THEN
 INSERT VALUES (diff_customer.c_key,diff_customer.c_data);

Using Hints with Cost-Based Optimization
Cost-based optimization is a sophisticated approach to finding the best execution
plan for SQL statements. Oracle automatically uses cost-based optimization with
parallel execution.

Note: You must use the DBMS_STATS package to gather current
statistics for cost-based optimization. In particular, tables used in
parallel should always be analyzed. Always keep your statistics
current by using the DBMS_STATS package.
21-92 Oracle9i Data Warehousing Guide

Miscellaneous Parallel Execution Tuning Tips
Use discretion in employing hints. If used, hints should come as a final step in
tuning and only when they demonstrate a necessary and significant performance
advantage. In such cases, begin with the execution plan recommended by
cost-based optimization, and go on to test the effect of hints only after you have
quantified your performance expectations. Remember that hints are powerful. If
you use them and the underlying data changes, you might need to change the hints.
Otherwise, the effectiveness of your execution plans might deteriorate.

Always use cost-based optimization unless you have an existing application that
has been hand-tuned for rule-based optimization. If you must use rule-based
optimization, rewriting a SQL statement can greatly improve application
performance.

FIRST_ROWS(n) Hint
Starting with Oracle9i, a hint called FIRST_ROWS(n), where n is a positive integer
was added. This hint enables the optimizer to use a new optimization mode to
optimize the query to return n rows in the shortest amount of time. Oracle
Corporation recommends that you use this new hint in place of the old FIRST_
ROWS hint for online queries because the new optimization mode may improve the
response time compared to the old optimization mode.

Use the FIRST_ROWS(n) hint in cases where you want the first n number of rows
in the shortest possible time. For example, to obtain the first 10 rows in the shortest
possible time, use the hint as follows:

SELECT /*+ FIRST_ROWS(10) */ article_id
FROM articles_tab
WHERE CONTAINS(article, 'Oracle')>0
ORDER BY pub_date DESC;

Enabling Dynamic Statistic Sampling
Dynamic statistic sampling enables Oracle to test some data before running a query
or transaction. This is particularly useful in data warehousing environments or
when you expect long transactions or queries. In these situations, making sure that
Oracle uses the best execution plan is important. Dynamic statistic sampling does,

Note: If any table in a query has a DOP greater than one
(including the default DOP), Oracle uses the cost-based optimizer
for that query, even if OPTIMIZER_MODEis set to RULEor if there is
a RULE hint in the query itself.
Using Parallel Execution 21-93

Miscellaneous Parallel Execution Tuning Tips
however, have a small cost, so you should use it when that cost is likely to be a
small fraction of the total execution time.

If you enable dynamic statistic sampling, Oracle determines at compile time
whether a query would benefit from dynamic sampling. If so, a recursive SQL
statement is issued to scan a small, random sample of the table’s blocks, and to
apply the relevant single table predicates to estimate predicate selectivities. More
accurate selectivity and statistics estimates allow the optimizer to produce better
performing plans.

Dynamic sampling is controlled with the initialization parameter OPTIMIZER_
DYNAMIC_SAMPLING, which can be set to a value between 0 and 10, inclusive.
Increasing the value of the parameter will result in more aggressive application of
dynamic sampling, in terms of both the type (unanalyzed/analyzed) of tables
sampled and the amount of I/O spent on sampling.

The sample cardinality can also be used, in some cases, to estimate table cardinality.
Depending on the value of the OPTIMIZER_DYNAMIC_SAMPLING initialization
parameter, a certain number of blocks is read by the dynamic sampling query.

Oracle also provides the table-specific hint DYNAMIC_SAMPLING. If the table name
is omitted, the hint is considered cursor-level. If a cursor-level hint is specified
anywhere in the query (for example, in a subquery), it will apply to the entire query,
so care should be taken when specifying a cursor-level hint in a view or subquery.
The table-level hint forces dynamic sampling for the table.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information regarding dynamic statistic sampling
21-94 Oracle9i Data Warehousing Guide

Query
22

Query Rewrite

This chapter discusses how Oracle rewrites queries. It contains:

■ Overview of Query Rewrite

■ Enabling Query Rewrite

■ How Oracle Rewrites Queries

■ Special Cases for Query Rewrite

■ Did Query Rewrite Occur?

■ Design Considerations for Improving Query Rewrite Capabilities
 Rewrite 22-1

Overview of Query Rewrite
Overview of Query Rewrite
One of the major benefits of creating and maintaining materialized views is the
ability to take advantage of query rewrite, which transforms a SQL statement
expressed in terms of tables or views into a statement accessing one or more
materialized views that are defined on the detail tables. The transformation is
transparent to the end user or application, requiring no intervention and no
reference to the materialized view in the SQL statement. Because query rewrite is
transparent, materialized views can be added or dropped just like indexes without
invalidating the SQL in the application code.

Before the query is rewritten, it is subjected to several checks to determine whether
it is a candidate for query rewrite. If the query fails any of the checks, then the
query is applied to the detail tables rather than the materialized view. This can be
costly in terms of response time and processing power.

The Oracle optimizer uses two different methods to recognize when to rewrite a
query in terms of one or more materialized views. The first method is based on
matching the SQL text of the query with the SQL text of the materialized view
definition. If the first method fails, the optimizer uses the more general method in
which it compares joins, selections, data columns, grouping columns, and aggregate
functions between the query and a materialized view.

Query rewrite operates on queries and subqueries in the following types of SQL
statements:

■ SELECT

■ CREATE TABLE … AS SELECT

■ INSERT INTO … SELECT

It also operates on subqueries in the set operators UNION, UNION ALL, INTERSECT,
and MINUS, and subqueries in DML statements such as INSERT, DELETE, and
UPDATE.

Several factors affect whether or not a given query is rewritten to use one or more
materialized views:

■ Enabling or disabling query rewrite:

– by the CREATE or ALTER statement for individual materialized views

– by the initialization parameter QUERY_REWRITE_ENABLED

– by the REWRITE and NOREWRITE hints in SQL statements
22-2 Oracle9i Data Warehousing Guide

Overview of Query Rewrite
■ Rewrite integrity levels

■ Dimensions and constraints

There is also an explain rewrite procedure which will advise whether query rewrite
is possible on a query and if so, which materialized views will be used.

Cost-Based Rewrite
Query rewrite is available with cost-based optimization. Oracle optimizes the input
query with and without rewrite and selects the least costly alternative. The
optimizer rewrites a query by rewriting one or more query blocks, one at a time.

If the rewrite logic has a choice between multiple materialized views to rewrite a
query block, it will select the one which can result in reading in the least amount of
data.

After a materialized view has been picked for a rewrite, the optimizer performs the
rewrite, and then tests whether the rewritten query can be rewritten further with
another materialized view. This process continues until no further rewrites are
possible. Then the rewritten query is optimized and the original query is optimized.
The optimizer compares these two optimizations and selects the least costly
alternative.

Since optimization is based on cost, it is important to collect statistics both on tables
involved in the query and on the tables representing materialized views. Statistics
are fundamental measures, such as the number of rows in a table, that are used to
calculate the cost of a rewritten query. They are created by using the DBMS_STATS
package.

Queries that contain in-line or named views are also candidates for query rewrite.
When a query contains a named view, the view name is used to do the matching
between a materialized view and the query. When a query contains an inline view,
the inline view can be merged into the query before matching between a
materialized view and the query occurs.

In addition, if the inline view's text definition exactly matches with that of an inline
view present in any eligible materialized view, general rewrite may be possible.
This is because, whenever a materialized view contains exactly identical inline view
text to the one present in a query, query rewrite treats such an inline view like a
named view or a table.

Figure 22–1 presents a graphical view of the cost-based approach used during the
rewrite process.
Query Rewrite 22-3

Overview of Query Rewrite
Figure 22–1 The Query Rewrite Process

When Does Oracle Rewrite a Query?
A query is rewritten only when a certain number of conditions are met:

■ Query rewrite must be enabled for the session.

■ A materialized view must be enabled for query rewrite.

■ The rewrite integrity level should allow the use of the materialized view. For
example, if a materialized view is not fresh and query rewrite integrity is set to
enforced , then the materialized view will not be used.

Rewrite

Generate
plan

User's SQL

Generate
plan

Choose
(based on cost)

Execute

Oracle9i
22-4 Oracle9i Data Warehousing Guide

Overview of Query Rewrite
■ Either all or part of the results requested by the query must be obtainable from
the precomputed result stored in the materialized view.

To determine this, the optimizer may depend on some of the data relationships
declared by the user using constraints and dimensions. Such data relationships
include hierarchies, referential integrity, and uniqueness of key data, and so on.

Sample Schema and Materialized Views
The following sections use an example schema and a few materialized views to
illustrate how the optimizer uses data relationships to rewrite queries. Oracle's sh
sample schema consists of these tables:

COSTS, COUNTRIES, CUSTOMERS, PRODUCTS, PROMOTIONS, TIMES, CHANNELS, SALES

Examples of Materialized Views for Query Rewrite
The query rewrite examples in this chapter mainly refer to the following
materialized views. Note that those materialized views do not necessarily represent
the most efficient implementation for the sh sample schema. Instead, they are a
base for demonstrating Oracle's rewrite capabilities. Further examples
demonstrating specific functionality can be found in the specific context.

The following materialized views contain joins and aggregates:

CREATE MATERIALIZED VIEW sum_sales_pscat_week_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_subcategory, t.week_ending_day,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
GROUP BY p.prod_subcategory, t.week_ending_day;

CREATE MATERIALIZED VIEW sum_sales_prod_week_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_id, t.week_ending_day, s.cust_id,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id

See Also: Oracle9i Sample Schemas for details regarding the sh
sample schema
Query Rewrite 22-5

Overview of Query Rewrite
AND s.prod_id=p.prod_id
GROUP BY p.prod_id, t.week_ending_day, s.cust_id;

CREATE MATERIALIZED VIEW sum_sales_pscat_month_city_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

The following materialized views contain joins only:

CREATE MATERIALIZED VIEW join_sales_time_product_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id,
 s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id;

CREATE MATERIALIZED VIEW join_sales_time_product_oj_mv
 ENABLE QUERY REWRITE
 AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id,
 s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id(+);

You must collect statistics on the materialized views so that the optimizer can
determine whether to rewrite the queries. You can do this either on a per object base
or for all newly created objects without statistics.

On a per object base, shown for join_sales_time_product_mv :

EXECUTE DBMS_STATS.GATHER_TABLE_STATS ('SH','JOIN_SALES_TIME_PRODUCT_MV',
 estimate_percent=>20,block_sample=>TRUE,cascade=>TRUE);
22-6 Oracle9i Data Warehousing Guide

Enabling Query Rewrite
For all newly created objects without statistics, on schema level:

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS('SH', options => 'GATHER EMPTY',
 estimate_percent=>20, block_sample=>TRUE, cascade=>TRUE);

Enabling Query Rewrite
Several steps must be followed to enable query rewrite:

1. Individual materialized views must have the ENABLE QUERY REWRITE clause.

2. The initialization parameter QUERY_REWRITE_ENABLED must be set to true .

3. Cost-based optimization must be used either by setting the initialization
parameter OPTIMIZER_MODE to all_rows or first_rows , or by analyzing
the tables and setting OPTIMIZER_MODE to choose .

4. The initialization parameter OPTIMIZER_FEATURES_ENABLE should be left
unset for query rewrite to be possible. However, if it is given a value, then it
must be set to at least 8.1.6 or query rewrite and explain rewrite will not be
possible.

If step 1 has not been completed, a materialized view will never be eligible for
query rewrite. ENABLE QUERY REWRITE can be specified either when the
materialized view is created, as illustrated here, or with the ALTER MATERIALIZED
VIEW statement.

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id,
 s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id;

You can use the initialization parameter QUERY_REWRITE_ENABLED to disable
query rewrite for all materialized views, or to enable it again for all materialized
views that are individually enabled. However, the QUERY_REWRITE_ENABLED

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
further information about using the DBMS_STATS package to
maintain statistics
Query Rewrite 22-7

Enabling Query Rewrite
parameter cannot enable query rewrite for materialized views that have disabled it
with the CREATE or ALTER statement.

The NOREWRITE hint disables query rewrite in a SQL statement, overriding the
QUERY_REWRITE_ENABLED parameter, and the REWRITE hint (when used with
mv_name) restricts the eligible materialized views to those named in the hint.

Initialization Parameters for Query Rewrite
Query rewrite requires the following initialization parameter settings:

■ OPTIMIZER_MODE = all_rows , first_rows , or choose

■ QUERY_REWRITE_ENABLED = true

■ COMPATIBLE = 8.1.0 (or greater)

The QUERY_REWRITE_INTEGRITY parameter is optional, but must be set to
stale_tolerated , trusted , or enforced if it is specified (see "Accuracy of
Query Rewrite" on page 22-10). It defaults to enforced if it is undefined.

Because the integrity level is set by default to enforced , all constraints must be
validated. Therefore, if you use ENABLE NOVALIDATE, certain types of query
rewrite might not work. To enable query rewrite in this environment, you should
set your integrity level to a lower level of granularity such as trusted or stale_
tolerated .

With OPTIMIZER_MODE set to choose , a query will not be rewritten unless at least
one table referenced by it has been analyzed. This is because the rule-based
optimizer is used when OPTIMIZER_MODE is set to choose and none of the tables
referenced in a query have been analyzed.

Controlling Query Rewrite
A materialized view is only eligible for query rewrite if the ENABLE QUERY
REWRITE clause has been specified, either initially when the materialized view was
first created or subsequently with an ALTER MATERIALIZED VIEW statement.

The initialization parameters described previously can be set using the ALTER
SYSTEM SET statement. For a given user's session, ALTER SESSION can be used to
disable or enable query rewrite for that session only. For example:

See Also: "View Constraints" on page 22-14 for details regarding
view constraints and query rewrite
22-8 Oracle9i Data Warehousing Guide

Enabling Query Rewrite
ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;

You can set the level of query rewrite for a session, thus allowing different users to
work at different integrity levels. The possible statements are:

ALTER SESSION SET QUERY_REWRITE_INTEGRITY = stale_tolerated;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = trusted;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = enforced;

Rewrite Hints
Hints can be included in SQL statements to control whether query rewrite occurs.
Using the NOREWRITE hint in a query prevents the optimizer from rewriting it.

The REWRITE hint with no argument in a query forces the optimizer to use a
materialized view (if any) to rewrite it regardless of the cost.

The REWRITE(mv1,mv2,...) hint with arguments forces rewrite to select the
most suitable materialized view from the list of names specified.

To prevent a rewrite, you can use the following statement:

SELECT /*+ NOREWRITE */ p.prod_subcategory, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

To force a rewrite using sum_sales_pscat_week_mv , you can use the following
statement:

SELECT /*+ REWRITE (sum_sales_pscat_week_mv) */ p.prod_subcategory,
SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

Note that the scope of a rewrite hint is a query block. If a SQL statement consists of
several query blocks (SELECT clauses), you might need to specify a rewrite hint on
each query block to control the rewrite for the entire statement.

Privileges for Enabling Query Rewrite
Use of a materialized view based not on privileges the user has on that materialized
view, but on privileges the user has on detail tables or views in the query.
Query Rewrite 22-9

Enabling Query Rewrite
The system privilege GRANT QUERY REWRITE lets you enable materialized views in
your own schema for query rewrite only if all tables directly referenced by the
materialized view are in that schema. The GRANT GLOBAL QUERY REWRITE
privilege allows you to enable materialized views for query rewrite even if the
materialized view references objects in other schemas.

The privileges for using materialized views for query rewrite are similar to those for
definer-rights procedures.

Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the
initialization parameter QUERY_REWRITE_INTEGRITY, which can either be set in
your parameter file or controlled using an ALTER SYSTEM or ALTER SESSION
statement. The three values it can take are:

■ enforced

This is the default mode. The optimizer will only use materialized views that it
knows contain fresh data and only use those relationships that are based on
ENABLED VALIDATED primary/unique/foreign key constraints.

■ trusted

In trusted mode, the optimizer trusts that the data in the materialized views
is fresh and the relationships declared in dimensions and RELY constraints are
correct. In this mode, the optimizer will also use prebuilt materialized views or
materialized views based on views, and it will use relationships that are not
enforced as well as those that are enforced. In this mode, the optimizer also
'trusts' declared but not ENABLED VALIDATED primary/unique key constraints
and data relationships specified using dimensions.

■ stale_tolerated

In stale_tolerated mode, the optimizer uses materialized views that are
valid but contain stale data as well as those that contain fresh data. This mode
offers the maximum rewrite capability but creates the risk of generating
inaccurate results.

If rewrite integrity is set to the safest level, enforced , the optimizer uses only
enforced primary key constraints and referential integrity constraints to ensure that
the results of the query are the same as the results when accessing the detail tables
directly. If the rewrite integrity is set to levels other than enforced , there are

See Also: PL/SQL User’s Guide and Reference for further
information
22-10 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
several situations where the output with rewrite can be different from that without
it.

■ A materialized view can be out of synchronization with the master copy of the
data. This generally happens because the materialized view refresh procedure is
pending following bulk load or DML operations to one or more detail tables of
a materialized view. At some data warehouse sites, this situation is desirable
because it is not uncommon for some materialized views to be refreshed at
certain time intervals.

■ The relationships implied by the dimension objects are invalid. For example,
values at a certain level in a hierarchy do not roll up to exactly one parent value.

■ The values stored in a prebuilt materialized view table might be incorrect.

■ Partition operations such as DROP and MOVE PARTITION on the detail table
could affect the results of the materialized view.

■ A wrong answer can occur because of bad data relationships defined by
unenforced table or view constraints.

How Oracle Rewrites Queries
The optimizer uses a number of different methods to rewrite a query. The first, most
important step is to determine if all or part of the results requested by the query can
be obtained from the precomputed results stored in a materialized view.

The simplest case occurs when the result stored in a materialized view exactly
matches what is requested by a query. The Oracle optimizer makes this type of
determination by comparing the text of the query with the text of the materialized
view definition. This method is most straightforward but the number of queries
eligible for this type of query rewrite will be minimal.

When the text comparison test fails, the Oracle optimizer performs a series of
generalized checks based on the joins, selections, grouping, aggregates, and column
data fetched. This is accomplished by individually comparing various clauses
(SELECT, FROM, WHERE, HAVING, or GROUP BY) of a query with those of a
materialized view.
Query Rewrite 22-11

How Oracle Rewrites Queries
Text Match Rewrite Methods
The optimizer uses two methods:

■ Full Text Match

■ Partial Text Match

In full text match, the entire text of a query is compared against the entire text of a
materialized view definition (that is, the entire SELECT expression), ignoring the
white space during text comparison. Given the following query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

This query matches sum_sales_pscat_month_city_mv (white space excluded)
and is rewritten as:

SELECT prod_subcategory, calendar_month_desc, cust_city,
 sum_amount_sold, count_amount_sold
FROM sum_sales_pscat_month_city_mv;

When full text match fails, the optimizer then attempts a partial text match. In this
method, the text starting from the FROM clause of a query is compared against the
text starting with the FROM clause of a materialized view definition. Therefore, the
following query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 AVG(s.amount_sold)
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

This query is rewritten as:

SELECT prod_subcategory, calendar_month_desc, cust_city,
 sum_amount_sold/count_amount_sold
FROM sum_sales_pscat_month_city_mv;
22-12 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
Note that, under the partial text match rewrite method, the average of sales
aggregate required by the query is computed using the sum of sales and count of
sales aggregates stored in the materialized view.

When neither text match succeeds, the optimizer uses a general query rewrite
method.

Text Match Capabilities
Text match rewrite can distinguish uppercase from lowercase. For example, the
following statement:

SELECT X, 'aBc' FROM Y

This statement matches this statement:

Select x, 'aBc' From y

Text match rewrite can support set operators (UNION ALL, UNION, MINUS,
INTERSECT).

General Query Rewrite Methods
Oracle employs a number of checks to determine if a query can be rewritten to use a
materialized view. These checks are as follows:

■ Selection compatibility

■ Join compatibility

■ Data sufficiency

■ Grouping compatibility

■ Aggregate compatibility

Table 22–1 illustrates how Oracle makes these five checks depending on the type of
materialized view. Note that, depending on the composition of the materialized
view, some or all of the checks may be made.

Table 22–1 Materialized View Types and General Query Rewrite Methods

Query Rewrite Checks
MV with
Joins Only

MV with Joins and
Aggregates

MV with Aggregates
on a Single Table

Selection Compatibility X X X

Join Compatibility X X -
Query Rewrite 22-13

How Oracle Rewrites Queries
To perform these checks, the optimizer uses data relationships on which it can
depend. For example, primary key and foreign key relationships tell the optimizer
that each row in the foreign key table joins with at most one row in the primary key
table. Furthermore, if there is a NOT NULL constraint on the foreign key, it indicates
that each row in the foreign key table must join to exactly one row in the primary
key table.

Data relationships such as these are very important for query rewrite because they
tell what type of result is produced by joins, grouping, or aggregation of data.
Therefore, to maximize the rewritability of a large set of queries when such data
relationships exist in a database, they should be declared by the user.

When are Constraints and Dimensions Needed?
To clarify when dimensions and constraints are required for the different types of
query rewrite, refer to Table 22–2.

View Constraints
Data warehouse applications recognize multi-dimensional cubes in the database by
identifying integrity constraints in the relational schema. Integrity constraints
represent primary and foreign key relationships between fact and dimension tables.

Data Sufficiency X X X

Grouping Compatibility - X X

Aggregate Computability - X X

Table 22–2 Dimension and Constraint Requirements for Query Rewrite

Rewrite Checks Dimensions
Primary Key/Foreign Key/Not
Null Constraints

Matching SQL Text Not Required Not Required

Join Compatibility Not Required Required

Data Sufficiency Required OR Required

Grouping Compatibility Required Required

Aggregate Computability Not Required Not Required

Table 22–1 Materialized View Types and General Query Rewrite Methods(Cont.)

Query Rewrite Checks
MV with
Joins Only

MV with Joins and
Aggregates

MV with Aggregates
on a Single Table
22-14 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
By querying the data dictionary, applications can recognize integrity constraints
and hence the cubes in the database. However, this does not work in an
environment where DBAs, for schema complexity or security reasons, define views
on fact and dimension tables. In such environments, applications cannot identify
the cubes properly. By allowing constraint definitions between views, you can
propagate base table constraints to the views, thereby allowing applications to
recognize cubes even in a restricted environment.

View constraint definitions are declarative in nature, but operations on views are
subject to the integrity constraints defined on the underlying base tables, and
constraints on views can be enforced through constraints on base tables. Defining
constraints on base tables is necessary, not only for data correctness and cleanliness,
but also for materialized view query rewrite purposes using the original base
objects.

Materialized view rewrite extensively uses constraints for query rewrite. They are
used for determining lossless joins, which, in turn, determine if joins in the
materialized view are compatible with joins in the query and thus if rewrite is
possible.

DISABLE NOVALIDATE is the only valid state for a view constraint. However, you
can choose RELY or NORELY as the view constraint state to enable more
sophisticated query rewrites. For example, a view constraint in the RELY state
allows query rewrite to occur when the query integrity level is set to ENFORCED.
Table 22–3 illustrates when view constraints are used for determining lossless joins.

Note that view constraints cannot be used for query rewrite integrity level
TRUSTED. This level enforces the highest degree of constraint enforcement ENABLE
VALIDATE.

Table 22–3 View Constraints and Rewrite Integrity Modes

Constraint States RELY NORELY

ENFORCED No No

TRUSTED Yes No

STALE_TOLERATED Yes No
Query Rewrite 22-15

How Oracle Rewrites Queries
Example 22–1 View Constraints

To demonstrate the rewrite capabilities on views, you have to extend the sh sample
schema as follows:

CREATE VIEW time_view AS
SELECT time_id, TO_NUMBER(TO_CHAR(time_id, 'ddd')) AS day_in_year FROM times;

You can now establish a foreign-primary key relationship (in RELY ON) mode
between the view and the fact table, and thus rewrite will take place as described in
Table 22–3, by adding the following constraints. Rewrite will then work for example
in TRUSTED mode.

ALTER VIEW time_view ADD (CONSTRAINT time_view_pk
 PRIMARY KEY (time_id) DISABLE NOVALIDATE);
ALTER VIEW time_view MODIFY CONSTRAINT time_view_pk RELY;
ALTER TABLE sales ADD (CONSTRAINT time_view_fk FOREIGN key (time_id)
 REFERENCES time_view(time_id) DISABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_view_fk RELY;

Consider the following materialized view definition:

CREATE MATERIALIZED VIEW sales_pcat_cal_day_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_category, t.day_in_year,
 SUM(s.amount_sold) as sum_amount_sold
FROM time_view t, sales s, products p
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
GROUP BY p.prod_category, t.day_in_year;

The following query, omitting the dimension table products , will also be rewritten
without the primary key/foreign key relationships, because the suppressed join
between sales and products is known to be lossless.

SELECT t.day_in_year,
 SUM(s.amount_sold) AS sum_amount_sold
FROM time_view t, sales s
WHERE t.time_id = s.time_id
GROUP BY t.day_in_year;

However, if the materialized view sales_pcat_cal_day_mv were defined only
in terms of the view time_view , then you could not rewrite the following query,
suppressing then join between sales and time_view , because there is no basis for
22-16 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
losslessness of the delta materialized view join. With the additional constraints as
shown previously, this query will also rewrite.

SELECT p.prod_category,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p
WHERE p.prod_id = s.prod_id
GROUP BY p.prod_category;

To revert the changes you have made to the sales history schema, apply the
following SQL commands:

ALTER TABLE sales DROP CONSTRAINT time_view_fk;
DROP VIEW time_view;

View Constraints Restrictions If the referential constraint definition involves a view,
that is, either the foreign key or the referenced key resides in a view, the constraint
can only be in DISABLE NOVALIDATE mode.

A RELY constraint on a view is allowed only if the referenced UNIQUE or PRIMARY
KEY constraint in DISABLE NOVALIDATE mode is also a RELY constraint.

The specification of ON DELETE actions associated with a referential Integrity
constraint, is not allowed (for example, DELETE cascade). However, DELETE,
UPDATE, and INSERT operations are allowed on views and their base tables as view
constraints are in DISABLE NOVALIDATE mode.

Expression Matching
An expression that appears in a query can be replaced with a simple column in a
materialized view provided the materialized view column represents a
precomputed expression that matches with the expression in the query. If a query
can be rewritten to use a materialized view, it will be faster. This is because
materialized views contain precomputed calculations and do not need to perform
expression computation.

The expression matching is done by first converting the expressions into canonical
forms and then comparing them for equality. Therefore, two different expressions
will be matched as long as they are equivalent to each other. Further, if the entire
expression in a query fails to match with an expression in a materialized view, then
subexpressions of it are tried to find a match. The subexpressions are tried in a
top-down order to get maximal expression matching.

Consider a query that asks for sum of sales by age brackets (1-10, 11-20, 21-30, and
so on).
Query Rewrite 22-17

How Oracle Rewrites Queries
CREATE MATERIALIZED VIEW sales_by_age_bracket_mv
ENABLE QUERY REWRITE
AS
SELECT TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999) AS age_bracket,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, customers c
WHERE s.cust_id=c.cust_id
GROUP BY TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999);
The following query rewrites, using expression matching:

SELECT TO_CHAR(((2000-c.cust_year_of_birth)/10)-0.5,999),
 SUM(s.amount_sold)
FROM sales s, customers c
WHERE s.cust_id=c.cust_id
GROUP BY TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999);

This query is rewritten in terms of sum_sales_mv based on the matching of the
canonical forms of the age bracket expressions (that is, 2000 - c.cust_year_of_
birth)/10-0.5), as follows.

SELECT age_bracket, sum_amount_sold
FROM sales_by_age_bracket_mv;

Date Folding
Date folding rewrite is a specific form of expression matching rewrite. In this type
of rewrite, a date range in a query is folded into an equivalent date range
representing higher date granules. The resulting expressions representing higher
date granules in the folded date range are matched with equivalent expressions in a
materialized view. The folding of date range into higher date granules such as
months, quarters, or years is done when the underlying datatype of the column is
an Oracle DATE. The expression matching is done based on the use of canonical
forms for the expressions.

DATE is a built-in datatype which represents ordered time units such as seconds,
days, and months, and incorporates a time hierarchy (second -> minute -> hour ->
day -> month -> quarter -> year). This hard-coded knowledge about DATE is used
in folding date ranges from lower-date granules to higher-date granules.
Specifically, folding a date value to the beginning of a month, quarter, year, or to the
end of a month, quarter, year is supported. For example, the date value
1-jan-1999 can be folded into the beginning of either year 1999 or quarter
1999-1 or month 1999-01 . And, the date value 30-sep-1999 can be folded into
the end of either quarter 1999-03 or month 1999-09 .
22-18 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
Because date values are ordered, any range predicate specified on date columns can
be folded from lower level granules into higher level granules provided the date
range represents an integral number of higher level granules. For example, the
range predicate date_col >= '1-jan-1999' AND date_col <
'30-jun-1999' can be folded into either a month range or a quarter range using
the TO_CHAR function, which extracts specific date components from a date value.

The advantage of aggregating data by folded date values is the compression of data
achieved. Without date folding, the data is aggregated at the lowest granularity
level, resulting in increased disk space for storage and increased I/O to scan the
materialized view.

Consider a query that asks for the sum of sales by product types for the years 1998.

SELECT p.prod_category, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
AND s.time_id >= TO_DATE('01-jan-1998', 'dd-mon-yyyy')
AND s.time_id < TO_DATE('01-jan-1999', 'dd-mon-yyyy')
GROUP BY p.prod_category;

CREATE MATERIALIZED VIEW sum_sales_pcat_monthly_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_category, TO_CHAR(s.time_id,'YYYY-MM') AS month,
 SUM(s.amount_sold) AS sum_amount
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_category, TO_CHAR(s.time_id, 'YYYY-MM');

SELECT p.prod_category, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id

Note: Due to the way date folding works, you should be careful
when using BETWEEN and date columns. The best way to use
BETWEEN and date columns is to increment the later date by 1. In
other words, instead of using date_col BETWEEN
'1-jan-1999' AND '30-jun-1999' , you should use date_
col BETWEEN '1-jan-1999' AND '1-jul-1999' . You could
also use the TRUNC function to get the equivalent result, as in
TRUNC(date_col) BETWEEN '1-jan-1999' AND
'30-jun-1999' . TRUNC will, however, strip time values.
Query Rewrite 22-19

How Oracle Rewrites Queries
AND TO_CHAR(s.time_id, 'YYYY-MM') >= '01-jan-1998'
AND TO_CHAR(s.time_id, 'YYYY-MM') < '01-jan-1999'
GROUP BY p.prod_category;

SELECT mv.prod_category, mv.sum_amount
FROM sum_sales_pcat_monthly_mv mv
WHERE month >= '01-jan-1998' AND month < '01-jan-1999';

The range specified in the query represents an integral number of years, quarters, or
months. Assume that there is a materialized view mv3 that contains
pre-summarized sales by prod_type and is defined as follows:

CREATE MATERIALIZED VIEW mv3
 ENABLE QUERY REWRITE
AS
SELECT prod_type, TO_CHAR(sale_date,'yyyy-mm') AS month, SUM(sales) AS sum_sales
FROM fact, product
WHERE fact.prod_id = product.prod_id
GROUP BY prod_type, TO_CHAR(sale_date, 'yyyy-mm');

The query can be rewritten by first folding the date range into the month range and
then matching the expressions representing the months with the month expression
in mv3. This rewrite is shown in two steps (first folding the date range followed by
the actual rewrite).

SELECT prod_type, SUM(sales) AS sum_sales
FROM fact, product
WHERE fact.prod_id = product.prod_id AND
 TO_CHAR(sale_date, 'yyyy-mm') >=
 TO_CHAR('01-jan-1998', 'yyyy-mm') AND < TO_CHAR('01-jan-1999', 'yyyy-mm')
GROUP BY prod_type;

SELECT prod_type, sum_sales
FROM mv3
WHERE month >=
 TO_CHAR('01-jan-1998', 'yyyy-mm') AND < TO_CHAR('01-jan-1999', 'yyyy-mm');
GROUP BY prod_type;

If mv3 had pre-summarized sales by prod_type and year instead of prod_type
and month, the query could still be rewritten by folding the date range into year
range and then matching the year expressions.
22-20 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
Selection Compatibility
Oracle supports rewriting of queries so that they will use materialized views in
which the HAVING or WHERE clause of the materialized view contains a selection of
a subset of the data in a table or tables. A materialized view's WHERE or HAVING
clause can contain a join, a selection, or both, and still be used by a rewritten query.
Predicate clauses containing expressions, or selecting rows based on the values of
particular columns, are examples of non-join predicates.

To perform this type of query rewrite, Oracle must determine if the data requested
in the query is contained in, or is a subset of, the data stored in the materialized
view. This problem is sometimes referred to as the data containment problem or, in
more general terms, the problem of a restricted subset of data in a materialized
view. The following sections detail the conditions where Oracle can solve this
problem and thus rewrite a query to use a materialized view that contains a
restricted portion of the data in the detail table.

Selection compatibility is performed when both the query and the materialized
view contain selections (non-joins). A selection compatibility check is done on the
WHERE as well as the HAVING clause. If the materialized view contains selections
and the query does not, then selection compatibility check fails because the
materialized view is more restrictive than the query. If the query has selections and
the materialized view does not then selection compatibility check is not needed.
Regardless, selections and any columns mentioned in them must pass the data
sufficiency check.

Definitions The following definitions are introduced to help the discussion:

■ join relop

Is one of the following (=, <, <=, >, >=)

■ selection relop

Is (=, <, <=, >, >=, !=, [NOT] BETWEEN | IN| LIKE |NULL)

■ join predicate

Is of the form (column1 join relop column2) , where columns are from
different tables within the same FROM clause in the current query block. So, for
example, there cannot be an outer reference.

■ selection predicate

Is of the form LHS-expression relop RHS-expression , where LHS
means left-hand side and RHS means right-hand side. All non-join predicates
are selection predicates. The left-hand side usually contains a column and the
Query Rewrite 22-21

How Oracle Rewrites Queries
right-hand side contains the values. For example, color='red' means the
left-hand side is color and the right-hand side is 'red' and the relational
operator is (=) .

■ LHS-constrained

When comparing a selection from the query with a selection from the
materialized view, the left-hand side of the selection is compared with the
left-hand side of the query. If they match, they are said to be LHS-constrained or
just constrained for short.

■ RHS-constrained

When comparing a selection from the query with a selection from the
materialized view, the right-hand side of the selection is compared with the
right-hand side of the query. If they match, they are said to be RHS-constrained
or just constrained. Note that before comparing the selections, the
LHS/RHS-expression is converted to a canonical form and then the comparison
is done. This means that expressions such as column1 + 5 and 5 + column1
will match and be constrained.

Although selection compatibility does not restrict the general form of the WHERE,
there is an optimal pattern and normally most queries fall into this pattern as
follows:

(join predicate AND join predicate AND) AND
 (selection predicate AND|OR selection predicate )

The join compatibility check operates on the joins and the selection compatibility
operates on the selections. If the WHERE clause has an OR at the top, then the
optimizer first checks for common predicates under the OR. If found, the common
predicates are factored out from under the OR then joined with an AND back to the
OR. This helps to put the WHERE into the optimal pattern. This is done only if OR
occurs at the top of the WHERE clause. For example, if the WHERE clause is:

(sales.prod_id = prod.prod_id AND prod.prod_name = 'Kids Polo Shirt')
 OR (sales.prod_id = prod.prod_id AND prod.prod_name = 'Kids Shorts')

The join is factored out and the WHERE becomes:

(sales.prod_id = prod.prod_id) AND (prod.prod_name = 'Kids Polo Shirt'
 OR prod.prod_name = 'Kids Shorts')

Thus putting the WHERE into the most optimal pattern.
22-22 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
If the WHERE is so complex that factoring cannot be done, all predicates under the
OR are treated as selections and join compatibility is not performed but selection
compatibility is still performed. In the HAVING clause, all predicates are considered
selections.

Selection compatibility categorizes selections into the following cases:

■ Simple

Simple selections are of the form expression relop constant .

■ Complex

Complex selections are of the form expression relop expression .

■ Range

Range selections are of a form such as WHERE (cust_last_name BETWEEN
'abacrombe' AND 'anakin') .

Note that simple selections with relational operators (<,<=,>,>=) are also
considered range selections.

■ IN lists

Single and multi-column IN lists such as WHERE(prod_id) IN (102, 233,
....) .

Note that selections of the form (column1='v1' OR column1='v2' OR
column1='v3' OR) are treated as a group and classified as an IN list.

■ IS [NOT] NULL

■ [NOT] LIKE

■ Other

Other selections are when selection compatibility cannot determine
containment of data. For example, EXISTS.

When comparing a selection from the query with a selection from the materialized
view, the left-hand side of the selection is compared with the left-hand side of the
query. If they match, they are said to be LHS-constrained or constrained for short.

If the selections are constrained, then the right-hand side values are checked for
containment. That is, the RHS values of the query selection must be contained by
right-hand side values of the materialized view selection.
Query Rewrite 22-23

How Oracle Rewrites Queries
Example 1 Selection Compatibility
If the query contains the following:

WHERE prod_id = 102

And if a materialized view contains the following:

WHERE prod_id BETWEEN 0 AND 200

In this example, the selections are constrained on prod_id and the right-hand side
value of the query 102 is within the range of the materialized view.

Example 2 Selection Compatibility
A selection can be a bounded range (a range with an upper and lower value), for
example:

If the query contains the following:

WHERE prod_id > 10 AND prod_id < 50

And if a materialized view contains the following:

WHERE prod_id BETWEEN 0 AND 200

In this example, the selections are constrained on prod_id and the query range is
within the materialized view range. In this example, we notice that both query
selections are constrained by the same materialized view selection. The left-hand
side can be an expression.

Example 3 Selection Compatibility
If the query contains the following:

WHERE (sales.amount_sold * .07) BETWEEN 1.00 AND 100.00

And if a materialized view contains the following:

WHERE (sales.amount_sold * .07) BETWEEN 0.0 AND 200.00

In this example, the selections are constrained on (sales.amount_sold *.07)
and the right-hand side value of the query is within the range of the materialized
view. Complex selections require that both the left-hand side and right-hand side be
matched (for example, when the left-hand side and the right-hand side are
constrained).
22-24 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
Example 4 Selection Compatibility
If the query contains the following:

WHERE (cost.unit_price * 0.95) > (cost_unit_cost * 1.25)

And if a materialized view contains the following:

WHERE (cost.unit_price * 0.95) > (cost_unit_cost * 1.25)

If the left-hand side and the right-hand side are constrained and the <selection
relop > is the same, then generally the selection can be dropped from the rewritten
query. Otherwise, the selection must be keep to filter out extra data from the
materialized view.

If query rewrite can drop the selection from the rewritten query, then any columns
from the selection may not have to be in the materialized view so more rewrites can
be done with less data.

Selection compatibility requires that all selections in the materialized view be
LHS-constrained with some selection in the query. This ensures that the
materialized view data is not more restrictive that the query.

Example 5 Selection Compatibility
Selections in the query do not have to be constrained by any selections in the
materialized view but if they are then the right-hand side values must be contained
by the materialized view. For example,

If the query contains the following:

WHERE prod_name = 'Shorts' AND prod_category = 'Men'

And if a materialized view contains the following:

WHERE prod_category = 'Men'

In this example, selection with prod_category is constrained. The query has an
extra selection that is not constrained but this is acceptable because the materialized
view does have the data.

Example 6 Selection Compatibility
If the query contains the following:

WHERE prod_category = 'Men'
Query Rewrite 22-25

How Oracle Rewrites Queries
And if a materialized view contains the following:

WHERE prod_name = 'Shorts' AND prod_category = 'Men'

In this example, the materialized view selection with prod_name is not
constrained. The materialized view is more restrictive that the query because it only
contains the product Shorts , therefore, query rewrite will not occur.

Example 7 Selection Compatibility
Selection compatibility also checks for cases where the query has a multi-column in
list where the columns are fully constrained by individual columns from the
materialized view single column in lists. For example:

If the query contains the following:

WHERE (prod_id, cust_id) IN ((1022, 1000), (1033, 2000))

And if a materialized view contains the following:

WHERE prod_id IN (1022,1033) AND cust_id IN (1000, 2000)

In this example, the materialized view IN lists are constrained by the columns in the
query multi-column in list. Furthermore, the right-hand side values of the query
selection are contained by the materialized view so that rewrite will occur.

Example 8 Selection Compatibility
Selection compatibility also checks for cases where the materialized view has a
multi-column IN -list where the columns are fully constrained by individual
columns or columns from IN -lists in the query. For example:

If the query contains the following:

WHERE prod_id = 1022 AND cust_id IN (1000, 2000)

And if a materialized view contains the following:

WHERE (prod_id, cust_id) IN ((1022, 1000), (1022, 2000))

In this example, the materialized view IN -list columns are fully constrained by the
columns in the query selections. Furthermore, the right-hand side values of the
query selection are contained by the materialized view. However, the following
example fails selection compatibility check.
22-26 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
Example 9 Selection Compatibility
If the query contains the following:

WHERE (prod_id = 1022 AND cust_id IN (1000, 2000)

And if a materialized view contains the following:

WHERE (prod_id, cust_id, cust_city)
 IN ((1022, 1000, 'Boston'), (1022, 2000, 'Nashua'))

In this example, the materialized view in list column cust_city is not constrained
so the materialized view is more restrictive than the query. Selection compatibility
also works with complex ORs. If we assume that the shape of the WHERE is as
follows:

(selection AND selection AND ...) OR (selection AND selection AND ...)

Each group of selections separated by AND is related and the group is called a
disjunct. The disjuncts are separated by ORs. Selection compatibility requires that
every disjunct in the query be contained by some disjunct in the materialized view.
Otherwise, the materialized view is more restrictive than the query. The
materialized view disjuncts do not have to match any query disjunct. This just
means that the materialized view has more data than the query requires. When
comparing a disjunct from the query with a disjunct of the materialized view, the
normal selection compatibility rules apply as specified in the previous discussion.
For example:

Example 10 Selection Compatibility
If the query contains the following:

WHERE (city_population > 15000 AND city_population < 25000
 AND state_name = 'New Hampshire')

And if a materialized view contains the following:

WHERE (city_population < 5000 AND state_name = 'New York') OR
 (city_population BETWEEN 10000 AND 50000 AND state_name = 'New Hampshire')

In this example, the query has a single disjunct (group of selections separated by
AND). The materialized view has two disjuncts separated by OR. The query disjunct
is contained by the second materialized view disjunct so selection compatibility
succeeds. It is clear that the materialized view contains more data than needed by
the query so the query can be rewritten.
Query Rewrite 22-27

How Oracle Rewrites Queries
For example, here is a simple materialized view definition:

CREATE MATERIALIZED VIEW cal_month_sales_id_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE
AS
SELECT t.calendar_month_desc,
 SUM(s.amount_sold) AS dollars
FROM sales s,
 times t
WHERE s.time_id = t.time_id AND s.cust_id = 10
GROUP BY t.calendar_month_desc;

The following query could be rewritten to use this materialized view because the
query asks for the amount where the customer ID is 10 and this is contained in the
materialized view.

SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM times t, sales s
WHERE s.time_id = t.time_id AND s.cust_id = 10
GROUP BY t.calendar_month_desc;

Because the predicate s.cust_id = 10 selects the same data in the query and in
the materialized view, it is dropped from the rewritten query. This means the
rewritten query looks like:

SELECT mv.calendar_month_desc, mv.dollars FROM cal_month_sales_id_mv mv;

Query rewrite can also occur when the query specifies a range of values, such as
s.prod_id > 10000 and s.prod_id < 20000 , as long as the range specified in
the query is within the range specified in the materialized view. For example, if
there is a materialized view defined as:

CREATE MATERIALIZED VIEW product_sales_mv
 BUILD IMMEDIATE
 REFRESH FORCE
 ENABLE QUERY REWRITE
 AS
 SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
 FROM products p, sales s
 WHERE p.prod_id = s.prod_id
 GROUP BY prod_name
 HAVING SUM(s.amount_sold) BETWEEN 5000 AND 50000;
22-28 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
Then a query such as:

SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
 FROM products p, sales s
 WHERE p.prod_id = s.prod_id
 GROUP BY prod_name
 HAVING SUM(s.amount_sold) BETWEEN 10000 AND 20000;

This query would be rewritten as follows:

SELECT prod_name, dollar_sales FROM product_sales_mv
WHERE dollar_sales > 10000 AND dollar_sales < 20000;

Rewrite with select expressions is also supported when the expression evaluates to
a constant, such as TO_DATE(' 12-SEP-1999 ' , ' DD-Mon-YYYY'). For example, if
an existing materialized view is defined as:

CREATE MATERIALIZED VIEW sales_on_valentines_day_99_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE
AS
 SELECT prod_id, cust_id, amount_sold
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.time_id = TO_DATE('04-FEB-1999', 'DD-MON-YYYY');

Then the following query:

SELECT prod_id, cust_id, amount_sold
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.time_id = TO_DATE('14-FEB-1999', 'DD-MON-YYYY');

This query would be rewritten as follows:

SELECT * FROM sales_on_valentines_day_99_mv;

Rewrite can also occur against a materialized view when the selection is contained
in an IN expression. For example, given the following materialized view definition:

CREATE MATERIALIZED VIEW popular_promo_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE
AS
 SELECT p.promo_name, SUM(s.amount_sold) AS sum_amount_sold
Query Rewrite 22-29

How Oracle Rewrites Queries
 FROM promotions p, sales s
 WHERE s.promo_id = p.promo_id
 AND promo_name IN ('coupon', 'premium', 'giveaway')
 GROUP BY promo_name;

The following query:

SELECT p.promo_name, SUM(s.amount_sold)
FROM promotions p, sales s
WHERE s.promo_id = p.promo_id
AND promo_name IN ('coupon', 'premium')
GROUP BY promo_name;

This query is rewritten as follows:

SELECT * FROM popular_promo_sales_mv WHERE promo_name IN ('coupon', 'premium');

You can also use expressions in selection predicates. This process looks like the
following example:

expression relational operator constant

where expression can be any arbitrary arithmetic expression allowed by Oracle.
The expression in the materialized view and the query must match. Oracle attempts
to discern expressions that are logically equivalent, such as A+B and B+A, and will
always recognize identical expressions as being equivalent.

You can also use queries with an expression on both sides of the operator or
user-defined functions as operators. Query rewrite occurs when the complex
predicate in the materialized view and the query are logically equivalent. This
means that, unlike exact text match, terms could be in a different order and rewrite
can still occur, as long as the expressions are equivalent.

In addition, selection predicates can be joined with an AND operator in a query and
the query can still be rewritten to use a materialized view as long as every
restriction on the data selected by the query is matched by a restriction in the
definition of the materialized view. Again, this does not mean an exact text match,
but that the restrictions on the data selected must be a logical match. Also, the query
may be more restrictive in its selection of data and still be eligible, but it can never
be less restrictive than the definition of the materialized view and still be eligible for
rewrite.

For example, given the preceding materialized view definition, a query such as:

SELECT p.promo_name, SUM(s.amount_sold)
FROM promotions p, sales s
22-30 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
WHERE s.promo_id = p.promo_id
AND promo_name = 'coupon'
 GROUP BY promo_name
 HAVING SUM(s.amount_sold) > 1000;

This query would be rewritten as follows:

SELECT * FROM popular_promo_sales_mv
WHERE promo_name = 'coupon' AND sum_amount_sold > 1000;

This is an example where the query is more restrictive than the definition of the
materialized view, so rewrite can occur. However, if the query had selected promo_
category , then it could not have been rewritten against the materialized view,
because the materialized view definition does not contain that column.

For another example, if the definition of a materialized view restricts a city name
column to Boston , then a query that selects Seattle as a value for this column
can never be rewritten with that materialized view, but a query that restricts city
name to Boston and restricts a column value that is not restricted in the
materialized view could be rewritten to use the materialized view.

All the rules noted previously also apply when predicates are combined with an OR
operator. The simple predicates, or simple predicates connect by ANDs, are
considered separately. Each predicate in the query must appear in the materialized
view if rewrite is to occur.

For example, the query could have a restriction like city='Boston' OR city
='Seattle' and to be eligible for rewrite, the materialized view that the query
might be rewritten against must have the same restriction. In fact, the materialized
view could have additional restrictions, such as city='Boston' OR
city='Seattle' OR city='Cleveland' and rewrite might still be possible.

Note, however, that the reverse is not true. If the query had the restriction city =
'Boston' OR city='Seattle' OR city='Cleveland' and the materialized
view only had the restriction city='Boston' OR city='Seattle' , then rewrite
would not be possible since the query seeks more data than is contained in the
restricted subset of data stored in the materialized view.

Join Compatibility Check
In this check, the joins in a query are compared against the joins in a materialized
view. In general, this comparison results in the classification of joins into three
categories:
Query Rewrite 22-31

How Oracle Rewrites Queries
■ Common joins that occur in both the query and the materialized view. These
joins form the common subgraph.

■ Delta joins that occur in the query but not in the materialized view. These joins
form the query delta subgraph.

■ Delta joins that occur in the materialized view but not in the query. These joins
form the materialized view delta subgraph.

These can be visualized as shown in Figure 22–2.

Figure 22–2 Query Rewrite Subgraphs

Common Joins The common join pairs between the two must be of the same type, or
the join in the query must be derivable from the join in the materialized view. For
example, if a materialized view contains an outer join of table A with table B, and a
query contains an inner join of table A with table B, the result of the inner join can
be derived by filtering the anti-join rows from the result of the outer join.

Query
delta

Common
subgraph

MV
delta

countries

customers products

sales

times

Query join
graph

Materialized
view join
graph
22-32 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
For example, consider the following query:

SELECT p.prod_name, t.week_ending_day,
 SUM(amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id
AND t. week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY prod_name, week_ending_day;

The common joins between this query and the materialized view join_sales_
time_product_mv are:

s.time_id = t.time_id AND s.prod_id = p.prod_id

They match exactly and the query can be rewritten as follows:

SELECT prod_name, week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999','DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999','DD-MON-YYYY')
GROUP BY prod_name, week_ending_day;

The query could also be answered using the join_sales_time_product_oj_mv
materialized view where inner joins in the query can be derived from outer joins in
the materialized view. The rewritten version will (transparently to the user) filter
out the anti-join rows. The rewritten query will have the following structure:

SELECT prod_name, week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_oj_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999','DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999','DD-MON-YYYY')
AND prod_id IS NOT NULL
GROUP BY prod_name, week_ending_day;

In general, if you use an outer join in a materialized view containing only joins, you
should put in the materialized view either the primary key or the rowid on the right
side of the outer join. For example, in the previous example, join_sales_time_
product_oj_mv , there is a primary key on both sales and products .

Another example of when a materialized view containing only joins is used is the
case of a semi-join rewrites. That is, a query contains either an EXISTS or an IN
subquery with a single table.
Query Rewrite 22-33

How Oracle Rewrites Queries
Consider this query, which reports the products that had sales greater than $1,000.

SELECT DISTINCT prod_name
FROM products p
WHERE EXISTS
 (SELECT *
 FROM sales s
 WHERE p.prod_id=s.prod_id
 AND s.amount_sold > 1000);

This query could also be seen as:

SELECT DISTINCT prod_name
FROM products p
WHERE p.prod_id IN (SELECT s.prod_id
 FROM sales s
 WHERE s.amount_sold > 1000
);

This query contains a semi-join between the products and the sales table:

s.prod_id = p.prod_id

This query can be rewritten to use either the join_sales_time_product_mv
materialized view, if foreign key constraints are active or join_sales_time_
product_oj_mv materialized view, if primary keys are active. Observe that both
materialized views contain s.prod_id=p.prod_id , which can be used to derive
the semi-join in the query.

The query is rewritten with join_sales_time_product_mv as follows:

SELECT prod_name
FROM (SELECT DISTINCT prod_name
 FROM join_sales_time_product_mv
 WHERE amount_sold > 1000
);

If the materialized view join_sales_time_product_mv is partitioned by time_
id , then this query is likely to be more efficient than the original query because the
original join between sales and products has been avoided.

The query could be rewritten using join_sales_time_product_oj_mv as
follows.

SELECT prod_name
FROM (SELECT DISTINCT prod_name
 FROM join_sales_time_product_oj_mv
22-34 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
 WHERE amount_sold > 1000
 AND prod_id IS NOT NULL
);

Rewrites with semi-joins are currently restricted to materialized views with joins
only and are not available for materialized views with joins and aggregates.

Query Delta Joins A query delta join is a join that appears in the query but not in the
materialized view. Any number and type of delta joins in a query are allowed and
they are simply retained when the query is rewritten with a materialized view.
Upon rewrite, the materialized view is joined to the appropriate tables in the query
delta.

For example, consider the following query:

SELECT p.prod_name, t.week_ending_day, c.cust_city,
 SUM(s.amount_sold)
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id
AND s.cust_id = c.cust_id
GROUP BY prod_name, week_ending_day, cust_city;

Using the materialized view join_sales_time_product_mv , common joins are:
s.time_id=t.time_id and s.prod_id=p.prod_id . The delta join in the query
is s.cust_id=c.cust_id .

The rewritten form will then join the join_sales_time_product_mv
materialized view with the customers table as follows:

SELECT mv.prod_name, mv.week_ending_day, c.cust_city,
 SUM(mv.amount_sold)
FROM join_sales_time_product_mv mv, customers c
WHERE mv.cust_id = c.cust_id
GROUP BY prod_name, week_ending_day, cust_city;

Materialized View Delta Joins A materialized view delta join is a join that appears in
the materialized view but not the query. All delta joins in a materialized view are
required to be lossless with respect to the result of common joins. A lossless join
guarantees that the result of common joins is not restricted. A lossless join is one
where, if two tables called A and B are joined together, rows in table A will always
match with rows in table B and no data will be lost, hence the term lossless join. For
example, every row with the foreign key matches a row with a primary key
provided no nulls are allowed in the foreign key. Therefore, to guarantee a lossless
Query Rewrite 22-35

How Oracle Rewrites Queries
join, it is necessary to have FOREIGN KEY, PRIMARY KEY, and NOT NULL constraints
on appropriate join keys. Alternatively, if the join between tables A and B is an outer
join (A being the outer table), it is lossless as it preserves all rows of table A.

All delta joins in a materialized view are required to be non-duplicating with
respect to the result of common joins. A non-duplicating join guarantees that the
result of common joins is not duplicated. For example, a non-duplicating join is one
where, if table A and table B are joined together, rows in table A will match with at
most one row in table B and no duplication occurs. To guarantee a non-duplicating
join, the key in table B must be constrained to unique values by using a primary key
or unique constraint.

Consider the following query that joins sales and times :

SELECT t.week_ending_day,
 SUM(s.amount_sold)
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The materialized view join_sales_time_product_mv has an additional join
(s.prod_id=p.prod_id) between sales and products . This is the delta join in
join_sales_time_product_mv . You can rewrite the query if this join is lossless
and non-duplicating. This is the case if s.prod_id is a foreign key to p.prod_id
and is not null. The query is therefore rewritten as:

SELECT week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The query can also be rewritten with the materialized view join_sales_time_
product_mv_oj where foreign key constraints are not needed. This view contains
an outer join (s.prod_id=p.prod_id (+)) between sales and products . This
makes the join lossless. If p.prod_id is a primary key, then the non-duplicating
condition is satisfied as well and optimizer will rewrite the query as follows:

SELECT week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_oj_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
22-36 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

Note that the outer join in the definition of join_sales_time_product_mv_oj
is not necessary, because the parent key - foreign key relationship between sales and
products in the Sales History schema is already lossless. It is used for
demonstration purposes only, and would be necessary if sales.prod_id is
nullable, thus violating the losslessness of the join condition sales.prod_id =
products.prod_id .

Current limitations restrict most rewrites with outer joins to materialized views
with joins only. There is limited support for rewrites with materialized aggregate
views with outer joins, so those views should rely on foreign key constraints to
assure losslessness of materialized view delta joins.

Join Equivalence Recognition Query rewrite is able to make many transformations
based upon the recognition of equivalent joins. Query rewrite recognizes the
following construct as being equivalent to a join:

WHERE table1.column1 = F(args) /* sub-expression A */
AND table2.column2 = F(args) /* sub-expression B */

If F(args) is a PL/SQL function that is declared to be deterministic and the
arguments to both invocations of F are the same, then the combination of
sub-expression A with sub-expression B be can be recognized as a join between
table1.column1 and table2.column2 . That is, the following expression is
equivalent to the previous expression:

WHERE table1.column1 = F(args) /* sub-expression A */
AND table2.column2 = F(args) /* sub-expression B */
AND table1.column1 = table2.column2 /* join-expression J */

Because join-expression J can be inferred from sub-expression A and sub-expression
B, the inferred join can be used to match a corresponding join of table1.column1
= table2.column2 in a materialized view.

Data Sufficiency Check
In this check, the optimizer determines if the necessary column data requested by a
query can be obtained from a materialized view. For this, the equivalence of one
column with another is used. For example, if an inner join between table A and table
B is based on a join predicate A.X = B.X , then the data in column A.X will equal
the data in column B.X in the result of the join. This data property is used to match
Query Rewrite 22-37

How Oracle Rewrites Queries
column A.X in a query with column B.X in a materialized view or vice versa. For
example, consider this query:

SELECT p.prod_name, s.time_id, t.week_ending_day,
 SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id
GROUP BY p.prod_name, s.time_id, t.week_ending_day;

This query can be answered with join_sales_time_product_mv even though
the materialized view does not have s.time_id . Instead, it has t.time_id ,
which, through a join condition s.time_id=t.time_id , is equivalent to
s.time_id .

Thus, the optimizer might select this rewrite:

SELECT prod_name, time_id, week_ending_day,
 SUM(amount_sold)
FROM join_sales_time_product_mv
GROUP BY prod_name, time_id, week_ending_day;

If some column data requested by a query cannot be obtained from a materialized
view, the optimizer further determines if it can be obtained based on a data
relationship called functional dependency. When the data in a column can
determine data in another column, such a relationship is called functional
dependency or functional determinance. For example, if a table contains a primary
key column called prod_id and another column called prod_name , then, given a
prod_id value, it is possible to look up the corresponding prod_name . The
opposite is not true, which means a prod_name value need not relate to a unique
prod_id .

When the column data required by a query is not available from a materialized
view, such column data can still be obtained by joining the materialized view back
to the table that contains required column data provided the materialized view
contains a key that functionally determines the required column data.

For example, consider the following query:

SELECT p.prod_category, t.week_ending_day,
 SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id AND p.prod_category='CD'
GROUP BY p.prod_category, t.week_ending_day;
22-38 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
The materialized view sum_sales_prod_week_mv contains p.prod_id , but not
p.prod_category . However, we can join sum_sales_prod_week_mv back to
products to retrieve prod_category because prod_id functionally determines
prod_category . The optimizer rewrites this query using sum_sales_prod_
week_mv as follows:

SELECT p.prod_category, mv.week_ending_day,
 SUM(mv.sum_amount_sold)
FROM sum_sales_prod_week_mv mv, products p
WHERE mv.prod_id=p.prod_id
AND p.prod_category='CD'
GROUP BY p.prod_category, mv.week_ending_day;

Here the products table is called a joinback table because it was originally joined
in the materialized view but joined again in the rewritten query.

There are two ways to declare functional dependency:

■ Using the primary key constraint (as shown in the previous example)

■ Using the DETERMINES clause of a dimension

The DETERMINESclause of a dimension definition might be the only way you could
declare functional dependency when the column that determines another column
cannot be a primary key. For example, the products table is a denormalized
dimension table that has columns prod_id , prod_name , and prod_
subcategory , and prod_subcategory functionally determines prod_subcat_
desc and prod_category determines prod_cat_desc .

The first functional dependency can be established by declaring prod_id as the
primary key, but not the second functional dependency because the prod_
subcategory column contains duplicate values. In this situation, you can use the
DETERMINES clause of a dimension to declare the second functional dependency.

The following dimension definition illustrates how the functional dependencies are
declared:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category
)
Query Rewrite 22-39

How Oracle Rewrites Queries
 ATTRIBUTE product DETERMINES products.prod_name
 ATTRIBUTE product DETERMINES products.prod_desc
 ATTRIBUTE subcategory DETERMINES products.prod_subcat_desc
 ATTRIBUTE category DETERMINES products.prod_cat_desc;

The hierarchy prod_rollup declares hierarchical relationships that are also 1:n
functional dependencies. The 1:1 functional dependencies are declared using the
DETERMINES clause, as seen when prod_subcategory functionally determines
prod_subcat_desc .

Consider the following query:

SELECT p.prod_subcat_desc, t.week_ending_day,
 SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
AND p.prod_subcat_desc LIKE '%Men'
GROUP BY p.prod_subcat_desc, t.week_ending_day;

This can be rewritten by joining sum_sales_pscat_week_mv to the products
table so that prod_subcat_desc is available to evaluate the predicate. But the join
will be based on the prod_subcategory column, which is not a primary key in
the products table; therefore, it allows duplicates. This is accomplished by using
an inline view that selects distinct values and this view is joined to the materialized
view as shown in the rewritten query.

SELECT iv.prod_subcat_desc, mv.week_ending_day,
 SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
 (SELECT DISTINCT prod_subcategory, prod_subcat_desc
 FROM products) iv
WHERE mv.prod_subcategory=iv.prod_subcategory
AND iv.prod_subcat_desc LIKE '%Men'
GROUP BY iv.prod_subcat_desc, mv.week_ending_day;

This type of rewrite is possible because of the fact that prod_subcategory
functionally determines prod_subcat_desc as declared in the dimension.

Grouping Compatibility Check
This check is required only if both the materialized view and the query contain a
GROUP BY clause. The optimizer first determines if the grouping of data requested
by a query is exactly the same as the grouping of data stored in a materialized view.
22-40 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
In other words, the level of grouping is the same in both the query and the
materialized view.

If the grouping of data requested by a query is at a coarser level compared to the
grouping of data stored in a materialized view, the optimizer can still use the
materialized view to rewrite the query. For example, the materialized view sum_
sales_pscat_week_mv groups by week_ending_day , and prod_
subcategory . This query groups by prod_subcategory , a coarser grouping
granularity:

SELECT p.prod_subcategory, SUM(s.amount_sold) AS sum_amount
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

Therefore, the optimizer will rewrite this query as:

SELECT p.prod_subcategory, SUM(sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
GROUP BY p.prod_subcategory;

In another example, a query requests data grouped by prod_category whereas a
materialized view stores data grouped by prod_subcategory . If prod_
subcategory is a CHILD OF prod_category (see the dimension example
earlier), the grouped data stored in the materialized view can be further grouped by
prod_category when the query is rewritten. In other words, aggregates at prod_
subcategory level (finer granularity) stored in a materialized view can be rolled
up into aggregates at prod_category level (coarser granularity).

For example, consider the following query:

SELECT p.prod_category, t.week_ending_day,
 SUM(s.amount_sold) AS sum_amount
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
GROUP BY p.prod_category, t.week_ending_day;

Because prod_subcategory functionally determines prod_category , sum_
sales_pscat_week_mv can be used with a joinback to products to retrieve
prod_category column data, and then aggregates can be rolled up to prod_
category level, as shown here:

SELECT pv.prod_subcategory, mv.week_ending_day, SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
 (SELECT DISTINCT prod_subcategory, prod_category
Query Rewrite 22-41

How Oracle Rewrites Queries
 FROM products) pv
WHERE mv.prod_subcategory=mv.prod_subcategory
GROUP BY pv.prod_subcategory, mv.week_ending_day;

Note that, for this rewrite, the data sufficiency check determines that a joinback to
the products table is necessary, and the grouping compatibility check determines
that aggregate rollup is necessary.

Aggregate Computability Check
This check is required only if both the query and the materialized view contain
aggregates. Here the optimizer determines if the aggregates requested by a query
can be derived or computed from one or more aggregates stored in a materialized
view. For example, if a query requests AVG(X) and a materialized view contains
SUM(X) and COUNT(X), then AVG(X) can be computed as SUM(X)/COUNT(X) .

If the grouping compatibility check determined that the rollup of aggregates stored
in a materialized view is required, then the aggregate computability check
determines if it is possible to roll up each aggregate requested by the query using
aggregates in the materialized view.

For example, SUM(sales) at the city level can be rolled up to SUM(sales) at the
state level by summing all SUM(sales) aggregates in a group with the same state
value. However, AVG(sales) cannot be rolled up to a coarser level unless
COUNT(sales) is also available in the materialized view. Similarly,
VARIANCE(sales) or STDDEV(sales) cannot be rolled up unless
COUNT(sales) and SUM(sales) are also available in the materialized view. For
example, given the query:

SELECT p.prod_subcategory, AVG(s.amount_sold) AS avg_sales
FROM sales s, products p
WHERE s.prod_id = p.prod_id
GROUP BY p.prod_subcategory;

This statement can be rewritten with materialized view sum_sales_pscat_
month_city_mv provided the join between sales and times and sales and
customers are lossless and non-duplicating. Further, the query groups by prod_
subcategory whereas the materialized view groups by prod_subcategory ,
calendar_month_desc and cust_city , which means the aggregates stored in
the materialized view will have to be rolled up. The optimizer will rewrite the
query as:

SELECT mv.prod_subcategory,
 SUM(mv.sum_amount_sold)/COUNT(mv.count_amount_sold)
 AS avg_sales
22-42 Oracle9i Data Warehousing Guide

How Oracle Rewrites Queries
FROM sum_sales_pscat_month_city_mv mv
GROUP BY mv.prod_subcategory;

The argument of an aggregate such as SUMcan be an arithmetic expression like A+B.
The optimizer will try to match an aggregate SUM(A+B) in a query with an
aggregate SUM(A+B) or SUM(B+A) stored in a materialized view. In other words,
expression equivalence is used when matching the argument of an aggregate in a
query with the argument of a similar aggregate in a materialized view. To
accomplish this, Oracle converts the aggregate argument expression into a
canonical form such that two different but equivalent expressions convert into the
same canonical form. For example, A*(B-C) , A*B-C*A , (B-C)*A , and -A*C+A*B
all convert into the same canonical form and, therefore, they are successfully
matched.

Query Rewrite with Inline Views Oracle supports general query rewrite when the user
query contains an inline view, or a subquery in the FROM list. Query rewrite
matches inline views in the materialized view with inline views in the request
query when the text of the two inline views exactly match. In this case, rewrite
treats the matching inline view as it would a named view, and general rewrite
processing is possible.

Here is an example where the materialized view contains an inline view, and the
query has the same inline view, but the aliases for these views are different.
Previously, this query could not be rewritten because neither exact text match nor
partial text match is possible.

Here is the materialized view definition:

CREATE MATERIALIZED VIEW inline_example
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_name, t.calendar_year p.prod_category,
 SUM(V1.revenue) AS sum_revenue
FROM times t, products p,
 (SELECT time_id, prod_id, amount_sold*0.2 as revenue FROM sales) V1
WHERE t.time_id = V1.time_id
AND p.prod_id = V1.prod_id
GROUP BY calendar_month_name, calendar_year, prod_category ;

And here is the query that will be rewritten to use the materialized view:

SELECT t.calendar_month_name, t.calendar_year, p.prod_category,
 SUM(X1.revenue) AS sum_revenue
FROM times t, products p,
 (SELECT time_id, prod_id, amount_sold*0.2 AS revenue FROM sales) X1
WHERE t.time_id = X1.time_id
Query Rewrite 22-43

How Oracle Rewrites Queries
AND p.prod_id = X1.prod_id
GROUP BY calendar_month_name, calendar_year, prod_category ;

Query Rewrite with Selfjoins Query rewrite of queries which contain multiple
references to the same tables, or self joins are possible, to the extent that general
rewrite can occur when the query and the materialized view definition have the
same aliases for the multiple references to a table. This allows Oracle to provide a
distinct identity for each table reference and this in turn allows query rewrite.

The following is an example of a materialized view and a query. In this example, the
query is missing a reference to a column in a table so an exact text match will not
work. But general query rewrite can occur because the aliases for the table
references match.

To demonstrate the self-join rewriting possibility with the Sales History schema,
we are assuming the following addition to include the actual shipping and payment
date in the fact table, referencing the same dimension table times. This is for
demonstration purposes only and will not return any results:

ALTER TABLE sales ADD (time_id_ship DATE);
ALTER TABLE sales ADD (CONSTRAINT time_id_book_fk FOREIGN key (time_id_ship)
REFERENCES times(time_id) ENABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_id_book_fk RELY;
ALTER TABLE sales ADD (time_id_paid DATE);
ALTER TABLE sales ADD (CONSTRAINT time_id_paid_fk FOREIGN key (time_id_paid)
REFERENCES times(time_id) ENABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_id_paid_fk RELY;

To reverse the changes, you can simply drop the columns:

ALTER TABLE sales DROP COLUMN time_id_ship;
ALTER TABLE sales DROP COLUMN time_id_paid;

Now, we can define a materialized view as follows:

CREATE MATERIALIZED VIEW sales_shipping_lag_mv
ENABLE QUERY REWRITE
AS
 SELECT t1.fiscal_week_number, s.prod_id,
 t2.fiscal_week_number - t1.fiscal_week_number as lag
 FROM times t1, sales s, times t2
 WHERE t1.time_id = s.time_id
 AND t2.time_id = s.time_id_ship;

The following query fails the exact text match test but is rewritten because the
aliases for the table references match:
22-44 Oracle9i Data Warehousing Guide

Special Cases for Query Rewrite
SELECT s.prod_id,
 t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id
AND t2.time_id = s.time_id_ship;

Note that Oracle performs other checks to insure the correct match of an instance of
a multiply instanced table in the request query with the corresponding table
instance in the materialized view. For instance, in the following example, Oracle
correctly determines that the matching alias names used for the multiple instances
of table time does not establish a match between the multiple instances of table
time in the materialized view:

The following query cannot be rewritten using sales_shipping_lag_mv even
though the alias names of the multiply instanced table time match because the
joins are not compatible between the instances of time aliased by t2 :

SELECT s.prod_id,
 t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id AND t2.time_id = s.time_id_paid;

This request query joins the instance of the time table aliased by t2 on the
s.time_id_paid column, while the materialized views joins the instance of the
time table aliased by t2 on the s.time_id_ship column. Because the join
conditions differ, Oracle correctly determines that rewrite cannot occur.

Special Cases for Query Rewrite
There are a few special cases when using query rewrite:

■ Query Rewrite Using Partially Stale Materialized Views

■ Query Rewrite Using Complex Materialized Views

■ Query Rewrite Using Nested Materialized Views

■ Query Rewrite When Using GROUP BY Extensions

Query Rewrite Using Partially Stale Materialized Views
In Oracle9i, when a certain partition of the detail table is updated, only specific
sections of the materialized view are marked stale. The materialized view must
have information that can identify the partition of the table corresponding to a
particular row or group of the materialized view. The simplest scenario is when the
Query Rewrite 22-45

Special Cases for Query Rewrite
partitioning key of the table is available in the SELECT list of the materialized view
because this is the easiest way to map a row to a stale partition. The key points
when using partially stale materialized views are:

■ Query rewrite can use an materialized view in ENFORCED or TRUSTED mode if
the rows from the materialized view used to answer the query are known to be
FRESH.

■ The fresh rows in the materialized view are identified by adding selection
predicates to the materialized view's WHERE clause. We will rewrite a query
with this materialized view if its answer is contained within this (restricted)
materialized view. Note that support for materialized views with selection
predicates is a prerequisite for this type of rewrite.

The fact table sales is partitioned based on ranges of time_id as follows:

PARTITION BY RANGE (time_id)
(PARTITION SALES_Q1_1998
 VALUES LESS THAN (TO_DATE('01-APR-1998', 'DD-MON-YYYY')),
 PARTITION SALES_Q2_1998
 VALUES LESS THAN (TO_DATE('01-JUL-1998', 'DD-MON-YYYY')),
 PARTITION SALES_Q3_1998
 VALUES LESS THAN (TO_DATE('01-OCT-1998', 'DD-MON-YYYY')),
...

Suppose you have a materialized view grouping by time_id as follows:

CREATE MATERIALIZED VIEW sum_sales_per_city_mv
ENABLE QUERY REWRITE
AS
SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
GROUP BY time_id, prod_subcategory, cust_city;

Suppose new data will be inserted for December 2000, which will end up in the
partition sales_q4_2000 . For testing purposes, you can apply an arbitrary DML
operation on sales , changing a different partition than sales_q1_2000 when
this materialized view is fresh. For example:

INSERT INTO SALES VALUES(10,10,’01-dec-2000’,’S’,10,123.45,54321);

Until a refresh is done, the materialized view is generically stale and cannot be used
for unlimited rewrite in enforced mode. However, because the table sales is
22-46 Oracle9i Data Warehousing Guide

Special Cases for Query Rewrite
partitioned and not all partitions have been modified, Oracle can identify all
partitions that have not been touched. The fresh rows in the materialized view, that
means the data of all partitions where Oracle knows that no changes have occurred,
can be represented by modifying the materialized view's defining query as follows:

SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
AND s.time_id < TO_DATE('01-OCT-2000','DD-MON-YYYY')
GROUP BY time_id, prod_subcategory, cust_city;

Note that the freshness of partially stale materialized views is tracked on a per
partition base, and not on a logical base. Since the partitioning strategy of the sales
fact table is on a quarterly base, changes in December 2000 causes the complete
partition sales_q4_2000 to become stale.

Consider the following query which asks for sales in quarter 1 and 2 of 2000:

SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2000', 'DD-MON-YYYY')
AND TO_DATE('01-JUL-2000', 'DD-MON-YYYY')
GROUP BY time_id, prod_subcategory, cust_city;

Oracle knows that those ranges of rows in the materialized view are fresh and can
therefore rewrite the query with the materialized view. The rewritten query looks as
follows:

SELECT time_id, prod_subcategory, cust_city, sum_amount_sold
FROM sum_sales_per_city_mv
WHERE time_id BETWEEN TO_DATE('01-JAN-2000', 'DD-MON-YYYY')
AND TO_DATE('01-JUL-2000', 'DD-MON-YYYY');

Instead of the partitioning key, a partition marker (a function that identifies the
partition given a rowid) can be present in the select (and GROUP BY list) of the
materialized view. You can use the materialized view to rewrite queries that require
data from only certain partitions (identifiable by the partition-marker), for instance,
queries that reference a partition-extended table-name or queries that have a
predicate specifying ranges of the partitioning keys containing entire partitions. See
Query Rewrite 22-47

Special Cases for Query Rewrite
Chapter 8, "Materialized Views" for details regarding the supplied partition marker
function DBMS_MVIEW.PMARKER.

The following example illustrates the use of a partition marker in the materialized
view instead of the direct usage of the partition key column.

CREATE MATERIALIZED VIEW sum_sales_per_city_2_mv
ENABLE QUERY REWRITE
AS
SELECT DBMS_MVIEW.PMARKER(s.rowid) AS pmarker,
 t.fiscal_quarter_desc, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
AND s.time_id = t.time_id
GROUP BY DBMS_MVIEW.PMARKER(s.rowid),
 prod_subcategory, cust_city, fiscal_quarter_desc;

Suppose you know that the partition sales_q1_2000 is fresh and DML changes
have taken place for other partitions of the sales table. For testing purposes, you
can apply an arbitrary DML operation on sales , changing a different partition
than sales_q1_2000 when the materialized view is fresh. For example:

INSERT INTO SALES VALUES(10,10,'01-dec-2000','S',10,123.45,54321);

Although the materialized view sum_sales_per_city_2_mv is now considered
generically stale, Oracle can rewrite the following query using this materialized
view. This query restricts the data to the partition sales_q1_2000 , and selects
only certain values of cust_city , as shown in the following:

SELECT p.prod_subcategory, c.cust_city,
SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
AND c.cust_city= 'Nuernberg'
AND s.time_id >= TO_DATE('01-JAN-2000','dd-mon-yyyy')
AND s.time_id < TO_DATE('01-APR-2000','dd-mon-yyyy')
GROUP BY prod_subcategory, cust_city;

The same query could have been expressed with a partition-extended name as in
the following statement:

SELECT p.prod_subcategory, c.cust_city,
SUM(s.amount_sold) AS sum_amount_sold
22-48 Oracle9i Data Warehousing Guide

Special Cases for Query Rewrite
FROM sales partition (sales_q1_2000) s, products p, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
AND c.cust_city= 'Nuernberg'
GROUP BY prod_subcategory, cust_city;

Note that rewrite with a partially stale materialized view that contains a PMARKER
function can only take place when the complete data content of one or more
partitions is accessed and the predicate condition is on the partitioned fact table
itself, as shown in the earlier example.

The DBMS_MVIEW.PMARKER function gives you exactly one distinct value for each
partition. This dramatically reduces the number of rows in a potential materialized
view compared to the partitioning key itself, but you are also giving up any
detailed information about this key. The only thing you know is the partition
number and, therefore, the lower and upper boundary values. This is the trade-off
for reducing the cardinality of the range partitioning column and thus the number
of rows.

Assuming the value of p_marker for partition sales_q1_2000 is 31070, the
previously shown queries can be rewritten against the materialized view as:

SELECT mv.prod_subcategory, mv.cust_city,
SUM(mv.sum_amount_sold)
FROM sum_sales_per_city_2_mv mv
WHERE mv.pmarker = 31070
AND mv.cust_city= 'Nuernberg'
GROUP BY prod_subcategory, cust_city;

So the query can be rewritten against the materialized view without accessing stale
data.

Query Rewrite Using Complex Materialized Views
Complex materialized views are views that are not uniquely resolvable for query
rewrite. Rewrite capability with complex materialized views is restricted to text
match-based rewrite (partial or full). You can define a materialized view using
arbitrarily complex SQL query expressions, but such a materialized view is treated
as complex by query rewrite.

For example some of the constructs that make a materialized view complex are: set
operators (UNION, UNION ALL, INTERSECT, MINUS), START WITHclause, CONNECT
BY clause, and so on. Oracle currently supports general rewrite with inline views
and self-joins on certain cases. These are the cases when the texts of inline view in
Query Rewrite 22-49

Special Cases for Query Rewrite
the query and materialized view exactly match and the aliases of the duplicate
tables in both the query and materialized view exactly match. All other cases
involving inline views and self-joins will make a materialized view complex.

Query Rewrite Using Nested Materialized Views
Query rewrite is attempted iteratively to take advantage of nested materialized
views. Oracle first tries to rewrite a query with a materialized view having
aggregates and joins, then with a materialized join view. If any of the rewrites
succeeds, Oracle repeats that process again until no rewrites have occurred.

For example, assume that you had created a materialized views join_sales_
time_product_mv and sum_sales_time_product_mv :

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE
AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id,
 s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id = p.prod_id;

CREATE MATERIALIZED VIEW sum_sales_time_product_mv
ENABLE QUERY REWRITE
AS
SELECT mv.prod_name, mv.week_ending_day,
 COUNT(*) cnt_all,
 SUM(mv.amount_sold) sum_amount_sold,
 COUNT(mv.amount_sold) cnt_amount_sold
FROM join_sales_time_product_mv mv
GROUP BY mv.prod_name, mv.week_ending_day;

Consider the following query:

SELECT p.prod_name, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id
AND s.prod_id=p.prod_id
GROUP BY p.prod_name, t.week_ending_day;

Oracle first tries to rewrite it with a materialized aggregate view and finds there is
none eligible (note that single-table aggregate materialized view sum_sales_
store_time_mv cannot yet be used), and then tries a rewrite with a materialized
22-50 Oracle9i Data Warehousing Guide

Special Cases for Query Rewrite
join view and finds that join_sales_time_product_mv is eligible for rewrite.
The rewritten query has this form:

SELECT mv.prod_name, mv.week_ending_day, SUM(mv.amount_sold)
FROM join_sales_time_product_mv mv
GROUP BY mv.prod_name, mv.week_ending_day;

Because a rewrite occurred, Oracle tries the process again. This time the query can
be rewritten with single-table aggregate materialized view sum_sales_store_
time into this form:

SELECT mv.prod_name, mv.week_ending_day, mv.sum_amount_sold
FROM sum_sales_time_product_mv mv;

Query Rewrite When Using GROUP BY Extensions
Oracle9i introduced extensions to the GROUP BY clause in the form of GROUPING
SETS, ROLLUP, and their concatenation. These extensions enable you to selectively
specify the groupings of interest in the GROUP BY clause of the query. For example,
the following is a typical query with Grouping Sets:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, customers c, products p, times t
WHERE s.time_id=t.time_id
 AND s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
 (p.prod_subcategory, t.calendar_month_desc),
 (c.cust_city, p.prod_subcategory)
);

The term base grouping for queries with GROUP BY extensions denotes all unique
expressions present in the GROUP BY clause. In the previous query, the following
grouping (p.prod_subcategory, t.calendar_month_desc, c.cust_city,) is a base
grouping.

The extensions can be present in user queries and in the queries defining
materialized views. In both cases, materialized view rewrite applies and you can
distinguish rewrite capabilities into the following scenarios:

Materialized View Has Simple GROUP BY and Query Has Extended GROUP BY
When a query contains an extended GROUP BY clause, it can be rewritten with a
materialized view if its base grouping can be rewritten using the materialized view
Query Rewrite 22-51

Special Cases for Query Rewrite
as listed in the rewrite rules explained in "When Does Oracle Rewrite a Query?" on
page 22-4. For example, in the following query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, customers c, products p, times t
WHERE s.time_id=t.time_id
 AND s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
 (p.prod_subcategory, t.calendar_month_desc),
 (c.cust_city, p.prod_subcategory)
);

The base grouping is: (p.prod_subcategory, t.calendar_month_desc,
c.cust_city, p.prod_subcategory)) and, consequently, Oracle can rewrite
the query using sum_sales_pscat_month_city_mv as follows:

SELECT mv.prod_subcategory, mv.calendar_month_desc, mv.cust_city,
 SUM(mv.sum_amount_sold) AS sum_amount_sold
FROM sum_sales_pscat_month_city_mv mv
GROUP BY GROUPING SETS
(
 (mv.prod_subcategory, mv.calendar_month_desc),
 (mv.cust_city, mv.prod_subcategory)
);

A special situation arises if the query uses the EXPAND_GSET_TO_UNION hint. See
"Hint for Queries with Extended GROUP BY" on page 22-56 for an example of using
EXPAND_GSET_TO_UNION.

Materialized View Has Extended GROUP BY and Query Has Simple GROUP BY
In order for a materialized view with an extended GROUP BY to be used for rewrite,
it must satisfy two additional conditions:

■ It must contain a grouping distinguisher, which is the GROUPING_ID function
on all GROUP BY expressions. For example, if the GROUP BY clause of the
materialized view is GROUP BY CUBE(a, b) , then the SELECT list should
contain GROUPING_ID(a, b) .

■ The GROUP BY clause of the materialized view should not result in any
duplicate groupings. For example, GROUP BY GROUPING SETS ((a, b),
(a, b)) would disqualify an materialized view from general rewrite.
22-52 Oracle9i Data Warehousing Guide

Special Cases for Query Rewrite
A materialized view with an extended GROUP BY contains multiple groupings.
Oracle finds the grouping with the lowest cost from which the query can be
computed and uses that for rewrite. For example, consider the materialized view:

CREATE MATERIALIZED VIEW sum_grouping_set_mv
ENABLE QUERY REWRITE
AS
SELECT
 p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city,
 GROUPING_ID(p.prod_category,p.prod_subcategory,
 c.cust_state_province,c.cust_city) AS gid,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
 (p.prod_category, p.prod_subcategory, c.cust_city),
 (p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city),
 (p.prod_category, p.prod_subcategory)
);

In this case, the following query:

SELECT
 p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_subcategory, c.cust_city;

This query will be rewritten with the closest matching grouping from the
materialized view. That is, the (prodcategory, prod_subcategory, cust_
city) grouping:

SELECT
 prod_subcategory, cust_city,
 SUM(sum_amount_sold) AS sum_amount_sold
FROM sum_grouping_set_mv
WHERE gid = grouping identifier of (prod_category,prod_subcategory, cust_city)
GROUP BY prod_subcategory, cust_city;

Both Materialized View and Query Have Extended GROUP BY
When both materialized view and the query contain GROUP BY extensions, Oracle
uses two strategies for rewrite: grouping match and UNION ALL rewrite. First,
Query Rewrite 22-53

Special Cases for Query Rewrite
Oracle tries grouping match. The groupings in the query are matched against
groupings in the materialized view and if all are matched with no rollup, Oracle
selects them from the materialized view. For example, the following query:

SELECT
 p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
 (p.prod_category, p.prod_subcategory, c.cust_city),
 (p.prod_category, p.prod_subcategory)
);

This query matches two groupings from sum_grouping_set_mv and Oracle
rewrites the query as:

SELECT
 prod_subcategory, cust_city, sum_amount_sold
FROM sum_grouping_set_mv
WHERE gid = grouping identifier of (prod_category,prod_subcategory, cust_city)
 OR gid = grouping identifier of (prod_category,prod_subcategory)

In Oracle9i, release 2, if grouping match fails, Oracle tries a general rewrite
mechanism called UNION ALL rewrite. Oracle first represents the query with the
extended GROUP BY clause as an equivalent UNION ALL query. Every grouping of
the original query is placed in a separate UNION ALLbranch. The branch will have a
simple GROUP BY clause. For example, consider this query:

SELECT
 p.prod_category, p.prod_subcategory, c.cust_state_province,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
(
 (p.prod_subcategory, t.calendar_month_desc),
 (t.calendar_month_desc),
 (p.prod_category, p.prod_subcategory, c.cust_state_province),
 (p.prod_category, p.prod_subcategory)
);

This is first represented as UNION ALL with four branches:
22-54 Oracle9i Data Warehousing Guide

Special Cases for Query Rewrite
SELECT
 null, p.prod_subcategory, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc
UNION ALL
 SELECT
 null, null, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY t.calendar_month_desc
SELECT
 p.prod_category, p.prod_subcategory, c.cust_state_province,
 null, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_category, p.prod_subcategory, c.cust_state_province
UNION ALL
 SELECT
 p.prod_category, p.prod_subcategory, null,
 null, SUM(s.amount_sold) AS sum_amount_sold
 FROM sales s, products p, customers c
 WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
 GROUP BY p.prod_category, p.prod_subcategory

Each branch is then rewritten separately using the rules from "When Does Oracle
Rewrite a Query?" on page 22-4. Using the materialized view sum_grouping_
set_mv , Oracle can rewrite only branches 3 (which requires materialized view
rollup) and 4 (which matches the materialized view exactly). The unrewritten
branches will be converted back to the extended GROUP BY form. Thus, eventually,
the query is rewritten as:

SELECT
 null, p.prod_subcategory, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
 (
 (p.prod_subcategory, t.calendar_month_desc),
 (t.calendar_month_desc),
)
UNION ALL
Query Rewrite 22-55

Did Query Rewrite Occur?
 SELECT
 prod_category, prod_subcategory, cust_state_province,
 null, SUM(sum_amount_sold) AS sum_amount_sold
 FROM sum_grouping_set_mv
 WHERE gid = <grouping id of (prod_category,prod_subcategory, cust_city)>
 GROUP BY p.prod_category, p.prod_subcategory, c.cust_state_province
UNION ALL
 SELECT
 prod_category, prod_subcategory, null,
 null, sum_amount_sold
 FROM sum_grouping_set_mv
 WHERE gid = <grouping id of (prod_category,prod_subcategory)>

Observe the following features of UNION ALL rewrite. First, a query with extended
GROUP BYis represented as an equivalent UNION ALLand recursively submitted for
rewrite optimization. The groupings that cannot be rewritten stay in the last branch
of UNION ALL and access the base data instead.

Hint for Queries with Extended GROUP BY
Oracle9i introduced a new hint, the EXPAND_GSET_TO_UNION hint, to force
expansion of the query with GROUP BY extensions into the equivalent UNION ALL
query. This hint can be in an environment where materialized views have simple
GROUP BY clauses only. In this case, we extend rewrite flexibility as each branch can
be independently rewritten by a separate materialized view.

Did Query Rewrite Occur?
Because query rewrite occurs transparently, special steps have to be taken to verify
that a query has been rewritten. Of course, if the query runs faster, this should
indicate that rewrite has occurred, but that is not proof. Therefore, to confirm that
query rewrite does occur, use the EXPLAIN PLAN statement or the DBMS_
MVIEW.EXPLAIN_REWRITE procedure.

Explain Plan
The EXPLAIN PLANfacility is used as described in Oracle9i SQL Reference. For query
rewrite, all you need to check is that the object_name column in PLAN_TABLE
contains the materialized view name. If it does, then query rewrite will occur when
this query is executed.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information regarding EXPAND_GSET_TO_UNION
22-56 Oracle9i Data Warehousing Guide

Did Query Rewrite Occur?
In this example, the materialized view cal_month_sales_mv has been created.

CREATE MATERIALIZED VIEW cal_month_sales_mv
ENABLE QUERY REWRITE
AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

If EXPLAIN PLAN is used on the following SQL statement, the results are placed in
the default table PLAN_TABLE. However, PLAN_TABLE must first be created using
the utlxplan.sql script.

EXPLAIN PLAN
FOR
SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

For the purposes of query rewrite, the only information of interest from PLAN_
TABLE is the OBJECT_NAME, which identifies the objects that will be used to
execute this query. Therefore, you would expect to see the object name calendar_
month_sales_mv in the output as illustrated here.

SELECT object_name FROM plan_table;

OBJECT_NAME

CALENDAR_MONTH_SALES_MV

2 rows selected.

DBMS_MVIEW.EXPLAIN_REWRITE Procedure
It can be difficult to understand why a query did not rewrite. The rules governing
query rewrite eligibility are quite complex, involving various factors such as
constraints, dimensions, query rewrite integrity modes, freshness of the
materialized views, and the types of queries themselves. In addition, you may want
to know why query rewrite chose a particular materialized view instead of another.
To help with this matter, Oracle provides a PL/SQL procedure (DBMS_
MVIEW.EXPLAIN_REWRITE) to advise you when a query can be rewritten and, if
Query Rewrite 22-57

Did Query Rewrite Occur?
not, why not. Using the results from DBMS_MVIEW.EXPLAIN_REWRITE, you can
take the appropriate action needed to make a query rewrite if at all possible.

DBMS_MVIEW.EXPLAIN_REWRITE Syntax
You can obtain the output from DBMS_MVIEW.EXPLAIN_REWRITE in two ways.
The first is to use a table, while the second is to create a varray. The following shows
the basic syntax for using an output table:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query VARCHAR2(2000),
 mv VARCHAR2(30),
 statement_id VARCHAR2(30)
);

You can create an output table named REWRITE_TABLE by executing the
Oracle-supplied script utlxrw.sql .

The QUERY parameter is a text string representing the SQL query. The parameter,
MV, is a fully qualified materialized view name in the form of SCHEMA.MV. This is an
optional parameter. When it is not specified, EXPLAIN_REWRITE returns any
relevant error messages regarding all the materialized views considered for
rewriting the given query. When SCHEMA is omitted and only MV is specified,
EXPLAIN_REWRITE looks for the materialized view in the current schema.

Therefore, to call the EXPLAIN_REWRITE procedure using an output table is as
follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query VARCHAR2(2000),
 mv VARCHAR2(30),
 statekment_id VARCHAR2(30)
);

If you want to direct the output of EXPLAIN_REWRITE to a varray instead of a
table, you should call the procedure as follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query VARCHAR2(2000),
 mv VARCHAR2(30),
 output_array SYS.RewriteArrayType
);

Note: The query specified in the EXPLAIN_REWRITE statement is
never actually executed.
22-58 Oracle9i Data Warehousing Guide

Did Query Rewrite Occur?
Using REWRITE_TABLE
Output of EXPLAIN_REWRITE can be directed to a table named REWRITE_TABLE.
You can create this output table by running the Oracle-supplied script
utlxrw.sql . This script can be found in the admin directory. The format of
REWRITE_TABLE is as follows.

CREATE TABLE REWRITE_TABLE(
 statement_id VARCHAR2(30), -- ID for the query
 mv_owner VARCHAR2(30), -- MV's schema
 mv_name VARCHAR2(30), -- Name of the MV
 sequence INTEGER, -- Seq # of error msg
 query VARCHAR2(2000),-- user query
 message VARCHAR2(512), -- EXPLAIN_REWRITE error msg
 pass VARCHAR2(3), -- Query Rewrite pass no
 flags INTEGER, -- For future use
 reserved1 INTEGER, -- For future use
 reserved2 VARCHAR2(256); -- For future use
);

Example 22–2 EXPLAIN_REWRITE Using REWRITE_TABLE

An example PL/SQL invocation is:

EXECUTE DBMS_MVIEW.EXPLAIN_REWRITE \
('SELECT p.prod_name, SUM(amount_sold) ' ||\
'FROM sales s, products p ' ||\
'WHERE s.prod_id = p.prod_id ' ||\
' AND prod_name > ''B%'' ' ||\
' AND prod_name < ''C%'' ' ||\
'GROUP BY prod_name', \

Note: If the query is less than 256 characters long, EXPLAIN_
REWRITE can be easily invoked by using the EXECUTE command
from SQL*PLUS. Otherwise, the recommended method is to use a
PL/SQL BEGIN... END block, as shown in the examples in
/rdbms/demo/smxrw.sql .

Further, the EXPLAIN_REWRITE cannot accept queries longer than
32627 characters. These restrictions also apply when passing a
materialized view’s defining query to the EXPLAIN_MVIEW
procedure
Query Rewrite 22-59

Did Query Rewrite Occur?
'TestXRW.PRODUCT_SALES_MV', \
'SH');

SELECT message FROM rewrite_table ORDER BY sequence;
MESSAGE
--
QSM-01033: query rewritten with materialized view, PRODUCT_SALES_MV
1 row selected.

Here is another example where you can see a more detailed explanation of why
some materialized views were not considered and eventually the materialized view
sales_mv was chosen as the best one.

DECLARE
 qrytext VARCHAR2(500) :='SELECT cust_first_name, cust_last_name,
SUM(amount_sold) AS dollar_sales FROM sales s, customers c WHERE s.cust_id=
c.cust_id GROUP BY cust_first_name, cust_last_name';
 idno VARCHAR2(30) :='ID1';
BEGIN
DBMS_MVIEW.EXPLAIN_REWRITE(querytxt, '', idno);
END;
/
SELECT message FROM rewrite_table ORDER BY sequence;

SQL> MESSAGE
--
QSM-01082: Joining materialized view, CAL_MONTH_SALES_MV, with table, SALES, not possible
QSM-01022: a more optimal materialized view than PRODUCT_SALES_MV was used to rewrite
QSM-01022: a more optimal materialized view than FWEEK_PSCAT_SALES_MV was used to rewrite
QSM-01033: query rewritten with materialized view, SALES_MV

Using a VARRAY
You can save the output of EXPLAIN_REWRITE in a PL/SQL varray. The elements
of this array are of the type RewriteMessage , which is defined in the SYS schema
as shown in the following:

TYPE RewriteMessage IS record(
 mv_owner VARCHAR2(30), -- MV's schema
 mv_name VARCHAR2(30), -- Name of the MV
 sequence INTEGER, -- Seq # of error msg
 query VARCHAR2(2000),-- user query
 message VARCHAR2(512), -- EXPLAIN_REWRITE error msg
 pass VARCHAR2(3), -- Query Rewrite pass no
 flags INTEGER, -- For future use
 reserved1 INTEGER, -- For future use
22-60 Oracle9i Data Warehousing Guide

Did Query Rewrite Occur?
 reserved2 VARCHAR2(256) -- For future use
);

The array type, RewriteArrayType , which is a varray of RewriteMessage
objects, is defined in SYS schema as follows:

■ TYPE RewriteArrayType AS VARRAY(256) OF RewriteMessage;

Using this array type, now you can declare an array variable and specify it in
the EXPLAIN_REWRITE statement.

■ Each RewriteMessage record provides a message concerning rewrite
processing.

The parameters are the same as for REWRITE_TABLE, except for statement_
id , which is not used when using a varray as output.

■ The mv_owner field defines the owner of materialized view that is relevant to
the message.

■ The mv_name field defines the name of a materialized view that is relevant to
the message.

■ The sequence field defines the sequence in which messages should be
ordered.

■ The query field contains the first 2000 characters of the query text under
analysis.

■ The message field contains the text of message relevant to rewrite processing
of query .

■ The flags , reserved1 , and reserved2 fields are reserved for future use.

Example 22–3 EXPLAIN_REWRITE Using VARRAY

Consider the following query:

SELECT c.cust_state_province,
 AVG(s.amount_sold)
FROM sales s, customers c
WHERE s.cust_id = c.cust_id
GROUP BY c.cust_state_province;

If that is used with the following materialized view:

CREATE MATERIALIZED VIEW avg_sales_city_state_mv
 ENABLE QUERY REWRITE
Query Rewrite 22-61

Did Query Rewrite Occur?
 AS
 SELECT c.cust_city, c.cust_state_province,
 AVG(s.amount_sold)
 FROM sales s, customers c
 WHERE s.cust_id = c.cust_id
 GROUP BY c.cust_city, c.cust_state_province;

The query will not rewrite with this materialized view. This can be quite confusing
to a novice user as it seems like all information required for rewrite is present in the
materialized view. The user can find out from DBMS_MVIEW.EXPLAIN_REWRITE
that AVGcannot be computed from the given materialized view. The problem is that
a ROLLUP is required here and AVG requires a COUNT or a SUM to do ROLLUP.

An example PL/SQL block for the previous query, using a varray as its output
medium, is as follows:

SET SERVEROUTPUT ON
DECLARE
 Rewrite_Array SYS.RewriteArrayType := SYS.RewriteArrayType();
 querytxt VARCHAR2(1500) := 'SELECT S.CITY, AVG(F.DOLLAR_SALES)
 FROM STORE S, FACT F WHERE S.STORE_KEY = F.STORE_KEY
 GROUP BY S.CITY';
 i NUMBER;
BEGIN
 DBMS_MVIEW.Explain_Rewrite(querytxt, 'MV_CITY_STATE', Rewrite_Array);
 FOR i IN 1..Rewrite_Array.count
 LOOP
DBMS_OUTPUT.PUT_LINE(Rewrite_Array(i).message);
 END LOOP;
END;
/

Following is the output of this EXPLAIN_REWRITE statement:

>> MV_NAME : MV_CITY_STATE
>> QUERY : SELECT S.CITY, AVG(F.DOLLAR_SALES) FROM STORE S, FACT F
 WHERE S.ST ORE_KEY = F.STORE_KEY GROUP BY S.CITY
>> MESSAGE : QSM-01065: materialized view, MV_CITY_STATE, cannot compute
 measure, AVG, in the query

DBMS_MVIEW.Explain_Rewrite(querytxt, 'ID1', 'MV_CITY_STATE',
 user_name, Rewrite_Array);
22-62 Oracle9i Data Warehousing Guide

Design Considerations for Improving Query Rewrite Capabilities
Design Considerations for Improving Query Rewrite Capabilities
The following design considerations will help in getting the maximum benefit from
query rewrite. They are not mandatory for using query rewrite and rewrite is not
guaranteed if you follow them. They are general rules of thumb.

Query Rewrite Considerations: Constraints
Make sure all inner joins referred to in a materialized view have referential integrity
(foreign key - primary key constraints) with additional NOT NULL constraints on the
foreign key columns. Since constraints tend to impose a large overhead, you could
make them NO VALIDATE and RELY and set the parameter QUERY_REWRITE_
INTEGRITY to stale_tolerated or trusted . However, if you set QUERY_
REWRITE_INTEGRITY to enforced , all constraints must be enforced to get
maximum rewritability.

Query Rewrite Considerations: Dimensions
You can express the hierarchical relationships and functional dependencies in
normalized or denormalized dimension tables using the HIERARCHY and
DETERMINES clauses of a dimension. Dimensions can express intra-table
relationships which cannot be expressed by any constraints. Set the parameter
QUERY_REWRITE_INTEGRITY to trusted or stale_tolerated for query
rewrite to take advantage of the relationships declared in dimensions.

Query Rewrite Considerations: Outer Joins
Another way of avoiding constraints is to use outer joins in the materialized view.
Query rewrite will be able to derive an inner join in the query, such as (A.a=B.b) ,
from an outer join in the materialized view (A.a = B.b(+)) , as long as the rowid
of B or column B.b is available in the materialized view. Most of the support for
rewrites with outer joins is provided for materialized views with joins only. To
exploit it, a materialized view with outer joins should store the rowid or primary
key of the inner table of an outer join. For example, the materialized view join_
sales_time_product_mv_oj stores the primary keys prod_id and time_id of
the inner tables of outer joins.

Query Rewrite Considerations: Text Match
If you need to speed up an extremely complex, long-running query, you could
create a materialized view with the exact text of the query. Then the materialized
Query Rewrite 22-63

Design Considerations for Improving Query Rewrite Capabilities
view would contain the query results, thus eliminating the time required to perform
any complex joins and search through all the data for that which is required.

Query Rewrite Considerations: Aggregates
To get the maximum benefit from query rewrite, make sure that all aggregates
which are needed to compute ones in the targeted set of queries are present in the
materialized view. The conditions on aggregates are quite similar to those for
incremental refresh. For instance, if AVG(x) is in the query, then you should store
COUNT(x) and AVG(x) or store SUM(x) and COUNT(x) in the materialized view.

Query Rewrite Considerations: Grouping Conditions
Aggregating data at lower levels in the hierarchy is better than aggregating at
higher levels because lower levels can be used to rewrite more queries. Note,
however, that doing so will also take up more space. For example, instead of
grouping on state, group on city (unless space constraints prohibit it).

Instead of creating multiple materialized views with overlapping or hierarchically
related GROUP BY columns, create a single materialized view with all those GROUP
BY columns. For example, instead of using a materialized view that groups by city
and another materialized view that groups by month, use a materialized view that
groups by city and month.

Use GROUP BY on columns which correspond to levels in a dimension but not on
columns that are functionally dependent, because query rewrite will be able to use
the functional dependencies automatically based on the DETERMINES clause in a
dimension. For example, instead of grouping on prod_name , group on prod_id
(as long as there is a dimension which indicates that the attribute prod_id
determines prod_name , you will enable the rewrite of a query involving prod_
name).

Query Rewrite Considerations: Expression Matching
If several queries share the same common subexpression, it is advantageous to
create a materialized view with the common subexpression as one of its SELECT
columns. This way, the performance benefit due to precomputation of the common
subexpression can be obtained across several queries.

See Also: "General Restrictions on Fast Refresh" on page 8-27 for
requirements for fast refresh
22-64 Oracle9i Data Warehousing Guide

Design Considerations for Improving Query Rewrite Capabilities
Query Rewrite Considerations: Date Folding
When creating a materialized view which aggregates data by folded date granules
such as months or quarters or years, always use the year component as the prefix
but not as the suffix. For example, TO_CHAR(date_col , 'yyyy-q') folds the date
into quarters, which collate in year order, whereas TO_CHAR(date_col,
'q-yyyy') folds the date into quarters, which collate in quarter order. The former
preserves the ordering while the latter does not. For this reason, any materialized
view created without a year prefix will not be eligible for date folding rewrite.

Query Rewrite Considerations: Statistics
Optimization with materialized views is based on cost and the optimizer needs
statistics of both the materialized view and the tables in the query to make a
cost-based choice. Materialized views should thus have statistics collected using the
DBMS_STATS package.
Query Rewrite 22-65

Design Considerations for Improving Query Rewrite Capabilities
22-66 Oracle9i Data Warehousing Guide

Glossary

additive

Describes a fact (or measure) that can be summarized through addition. An
additive fact is the most common type of fact. Examples include sales, cost, and
profit. Contrast with nonadditive and semi-additive.

advisor

See: Summary Advisor.

aggregate

Summarized data. For example, unit sales of a particular product could be
aggregated by day, month, quarter and yearly sales.

aggregation

The process of consolidating data values into a single value. For example, sales data
could be collected on a daily basis and then be aggregated to the week level, the
week data could be aggregated to the month level, and so on. The data can then be
referred to as aggregate data. Aggregation is synonymous with summarization,
and aggregate data is synonymous with summary data.

ancestor

A value at any level higher than a given value in a hierarchy. For example, in a Time
dimension, the value 1999 might be the ancestor of the values Q1-99 and Jan-99 .

See Also: fact

See Also: hierarchy and level
Glossary-1

attribute

A descriptive characteristic of one or more levels. For example, the product
dimension for a clothing manufacturer might contain a level called item, one of
whose attributes is color. Attributes represent logical groupings that enable end
users to select data based on like characteristics.

Note that in relational modeling, an attribute is defined as a characteristic of an
entity. In Oracle9i, an attribute is a column in a dimension that characterizes
elements of a single level.

cardinality

From an OLTP perspective, this refers to the number of rows in a table. From a data
warehousing perspective, this typically refers to the number of distinct values in a
column. For most data warehouse DBAs, a more important issue is the degree of
cardinality.

child

A value at the level under a given value in a hierarchy. For example, in a Time
dimension, the value Jan-99 might be the child of the value Q1-99 . A value can be
a child for more than one parent if the child value belongs to multiple hierarchies.

cleansing

The process of resolving inconsistencies and fixing the anomalies in source data,
typically as part of the ETL process.

Common Warehouse Metadata (CWM)

A repository standard used by Oracle data warehousing, and decision support. The
CWM repository schema is a standalone product that other products can
share—each product owns only the objects within the CWM repository that it
creates.

See Also: degree of cardinality

See Also:

■ hierarchy

■ level

■ parent

See Also: ETL
Glossary-2

cross product

A procedure for combining the elements in multiple sets. For example, given two
columns, each element of the first column is matched with every element of the
second column. A simple example is illustrated as follows:

Col1 Col2 Cross Product
---- ---- -------------
a c ac
b d ad
 bc
 bd

Cross products are performed when grouping sets are concatenated, as described in
Chapter 18, "SQL for Aggregation in Data Warehouses".

data mart

A data warehouse that is designed for a particular line of business, such as sales,
marketing, or finance. In a dependent data mart, the data can be derived from an
enterprise-wide data warehouse. In an independent data mart, data can be collected
directly from sources.

data source

A database, application, repository, or file that contributes data to a warehouse.

data warehouse

A relational database that is designed for query and analysis rather than transaction
processing. A data warehouse usually contains historical data that is derived from
transaction data, but it can include data from other sources. It separates analysis
workload from transaction workload and enables a business to consolidate data
from several sources.

In addition to a relational database, a data warehouse environment often consists of
an ETL solution, an OLAP engine, client analysis tools, and other applications that
manage the process of gathering data and delivering it to business users.

See Also: data warehouse

See Also: ETL and online analytical processing (OLAP)
Glossary-3

degree of cardinality

The number of unique values of a column divided by the total number of rows in
the table. This is particularly important when deciding which indexes to build. You
typically want to use bitmap indexes on low degree of cardinality columns and
B-tree indexes on high degree of cardinality columns. As a general rule, a
cardinality of under 1% makes a good candidate for a bitmap index.

denormalize

The process of allowing redundancy in a table. Contrast with normalize.

derived fact (or measure)

A fact (or measure) that is generated from existing data using a mathematical
operation or a data transformation. Examples include averages, totals, percentages,
and differences.

detail

See: fact table.

detail table

See: fact table.

dimension

The term dimension is commonly used in two ways:

■ A general term for any characteristic that is used to specify the members of a
data set. The 3 most common dimensions in sales-oriented data warehouses are
time, geography, and product. Most dimensions have hierarchies.

■ An object defined in a database to enable queries to navigate dimensions. In
Oracle9i, a dimension is a database object that defines hierarchical
(parent/child) relationships between pairs of column sets. In Oracle Express, a
dimension is a database object that consists of a list of values.

dimension table

Dimension tables describe the business entities of an enterprise, represented as
hierarchical, categorical information such as time, departments, locations, and
products. Dimension tables are sometimes called lookup or reference tables.
Glossary-4

dimension value

One element in the list that makes up a dimension. For example, a computer
company might have dimension values in the product dimension called LAPPC and
DESKPC. Values in the geography dimension might include Boston and Paris .
Values in the time dimension might include MAY96 and JAN97.

drill

To navigate from one item to a set of related items. Drilling typically involves
navigating up and down through the levels in a hierarchy. When selecting data, you
can expand or collapse a hierarchy by drilling down or up in it, respectively.

drill down

To expand the view to include child values that are associated with parent values in
the hierarchy.

drill up

To collapse the list of descendant values that are associated with a parent value in
the hierarchy.

element

An object or process. For example, a dimension is an object, a mapping is a process,
and both are elements.

entity

Entity is used in database modeling. In relational databases, it typically maps to a
table.

See Also: drill down and drill up

See Also: drill and drill up
Glossary-5

ETL

Extraction, transformation, and loading. ETL refers to the methods involved in
accessing and manipulating source data and loading it into a data warehouse. The
order in which these processes are performed varies.

Note that ETT (extraction, transformation, transportation) and ETM (extraction,
transformation, move) are sometimes used instead of ETL.

extraction

The process of taking data out of a source as part of an initial phase of ETL.

fact

Data, usually numeric and additive, that can be examined and analyzed. Examples
include sales, cost, and profit. Fact and measure are synonymous; fact is more
commonly used with relational environments, measure is more commonly used
with multidimensional environments.

fact table

A table in a star schema that contains facts. A fact table typically has two types of
columns: those that contain facts and those that are foreign keys to dimension
tables. The primary key of a fact table is usually a composite key that is made up of
all of its foreign keys.

A fact table might contain either detail level facts or facts that have been aggregated
(fact tables that contain aggregated facts are often instead called summary tables).
A fact table usually contains facts with the same level of aggregation.

See Also:

■ data warehouse

■ extraction

■ transformation

■ transportation

See Also: ETL

See Also: derived fact (or measure)
Glossary-6

fast refresh

An operation that applies only the data changes to a materialized view, thus
eliminating the need to rebuild the materialized view from scratch.

file-to-table mapping

Maps data from flat files to tables in the warehouse.

hierarchy

A logical structure that uses ordered levels as a means of organizing data. A
hierarchy can be used to define data aggregation; for example, in a time dimension,
a hierarchy might be used to aggregate data from the Month level to the Quarter
level to the Year level. Hierarchies can be defined in Oracle9i as part of the
dimension object. A hierarchy can also be used to define a navigational drill path,
regardless of whether the levels in the hierarchy represent aggregated totals.

level

A position in a hierarchy. For example, a time dimension might have a hierarchy
that represents data at the Month , Quarter , and Year levels.

level value table

A database table that stores the values or data for the levels you created as part of
your dimensions and hierarchies.

mapping

The definition of the relationship and data flow between source and target objects.

materialized view

A pre-computed table comprising aggregated or joined data from fact and possibly
dimension tables. Also known as a summary or aggregate table.

measure

See: fact.

See Also: dimension and level

See Also: hierarchy
Glossary-7

metadata

Data that describes data and other structures, such as objects, business rules, and
processes. For example, the schema design of a data warehouse is typically stored in
a repository as metadata, which is used to generate scripts used to build and
populate the data warehouse. A repository contains metadata.

Examples include: for data, the definition of a source to target transformation that is
used to generate and populate the data warehouse; for information, definitions of
tables, columns and associations that are stored inside a relational modeling tool;
for business rules, discount by 10 percent after selling 1,000 items.

model

An object that represents something to be made. A representative style, plan, or
design. Metadata that defines the structure of the data warehouse.

nonadditive

Describes a fact (or measure) that cannot be summarized through addition. An
example includes Average. Contrast with additive and semi-additive.

normalize

In a relational database, the process of removing redundancy in data by separating
the data into multiple tables. Contrast with denormalize.

The process of removing redundancy in data by separating the data into multiple
tables.

OLAP

See: online analytical processing (OLAP).

online analytical processing (OLAP)

OLAP functionality is characterized by dynamic, multidimensional analysis of
historical data, which supports activities such as the following:

■ Calculating across dimensions and through hierarchies

■ Analyzing trends

■ Drilling up and down through hierarchies

■ Rotating to change the dimensional orientation

OLAP tools can run against a multidimensional database or interact directly with a
relational database.
Glossary-8

OLTP

See: online transaction processing (OLTP).

online transaction processing (OLTP)

Online transaction processing. OLTP systems are optimized for fast and reliable
transaction handling. Compared to data warehouse systems, most OLTP
interactions will involve a relatively small number of rows, but a larger group of
tables.

parallelism

Breaking down a task so that several processes do part of the work. When multiple
CPUs each do their portion simultaneously, very large performance gains are
possible.

parallel execution

Breaking down a task so that several processes do part of the work. When multiple
CPUs each do their portion simultaneously, very large performance gains are
possible.

parent

A value at the level above a given value in a hierarchy. For example, in a Time
dimension, the value Q1-99 might be the parent of the value Jan-99 .

partition

Very large tables and indexes can be difficult and time-consuming to work with. To
improve manageability, you can break your tables and indexes into smaller pieces
called partitions.

pivoting

A transformation where each record in an input stream is converted to many
records in the appropriate table in the data warehouse. This is particularly
important when taking data from nonrelational databases.

See Also:

■ child

■ hierarchy

■ level
Glossary-9

publisher

Usually a database administrator who is in charge of creating and maintaining
schema objects that make up the Change Data Capture system.

refresh

The mechanism whereby materialized views are changed to reflect new data.

schema

A collection of related database objects. Relational schemas are grouped by database
user ID and include tables, views, and other objects. Whenever possible, a sample
schema called sh is used throughout this Guide.

semi-additive

Describes a fact (or measure) that can be summarized through addition along some,
but not all, dimensions. Examples include headcount and on hand stock. Contrast
with additive and nonadditive.

slice and dice

This is an informal term referring to data retrieval and manipulation. We can
picture a data warehouse as a cube of data, where each axis of the cube represents a
dimension. To "slice" the data is to retrieve a piece (a slice) of the cube by specifying
measures and values for some or all of the dimensions. When we retrieve a data
slice, we may also move and reorder its columns and rows as if we had diced the
slice into many small pieces. A system with good slicing and dicing makes it easy to
navigate through large amounts of data.

snowflake schema

A type of star schema in which the dimension tables are partly or fully normalized.

source

A database, application, file, or other storage facility from which the data in a data
warehouse is derived.

See Also: snowflake schema and star schema

See Also: schema and star schema
Glossary-10

source system

A database, application, file, or other storage facility from which the data in a data
warehouse is derived.

staging area

A place where data is processed before entering the warehouse.

staging file

A file used when data is processed before entering the warehouse.

star query

A join between a fact table and a number of dimension tables. Each dimension table
is joined to the fact table using a primary key to foreign key join, but the dimension
tables are not joined to each other.

star schema

A relational schema whose design represents a multidimensional data model. The
star schema consists of one or more fact tables and one or more dimension tables
that are related through foreign keys.

subject area

A classification system that represents or distinguishes parts of an organization or
areas of knowledge. A data mart is often developed to support a subject area such
as sales, marketing, or geography.

subscribers

Consumers of the published change data. These are normally applications.

summary

See: materialized view.

Summary Advisor

The Summary Advisor recommends which materialized views to retain, create, and
drop. It helps database administrators manage materialized views. It is a GUI in
Oracle Enterprise Manager, and has similar capabilities to the DBMS_OLAP package.

See Also: schema and snowflake schema

See Also: data mart
Glossary-11

target

Holds the intermediate or final results of any part of the ETL process. The target of
the entire ETL process is the data warehouse.

third normal form (3NF)

A classical relational database modeling technique that minimizes data redundancy
through normalization.

third normal form schema

A schema that uses the same kind of normalization as typically found in an OLTP
system. Third normal form schemas are sometimes chosen for large data
warehouses, especially environments with significant data loading requirements
that are used to feed data marts and execute long-running queries.

transformation

The process of manipulating data. Any manipulation beyond copying is a
transformation. Examples include cleansing, aggregating, and integrating data from
multiple sources.

transportation

The process of moving copied or transformed data from a source to a data
warehouse.

unique identifier

An identifier whose purpose is to differentiate between the same item when it
appears in more than one place.

update window

The length of time available for updating a warehouse. For example, you might
have 8 hours at night to update your warehouse.

See Also: data warehouse and ETL

See Also: snowflake schema and star schema

See Also: transformation
Glossary-12

update frequency

How often a data warehouse is updated with new information. For example, a
warehouse might be updated nightly from an OLTP system.

validation

The process of verifying metadata definitions and configuration parameters.

versioning

The ability to create new versions of a data warehouse project for new requirements
and changes.
Glossary-13

Glossary-14

Index

A
access

controlling to change data, 15-3
adaptive multiuser

algorithm for, 21-47
definition, 21-47

ADD PARTITION clause, 5-32
affinity

parallel DML, 21-76
partitions, 21-75

aggregates, 8-13, 22-64
computability check, 22-42

ALL_SOURCE_TABLES view, 15-15
ALTER MATERIALIZED VIEW statement, 8-22

enabling query rewrite, 22-7
ALTER SESSION statement

ENABLE PARALLEL DML clause, 21-21
FORCE PARALLEL DDL clause, 21-42, 21-45

create or rebuild index, 21-43, 21-46
create table as select, 21-44, 21-45
move or split partition, 21-43, 21-46

FORCE PARALLEL DML clause
insert, 21-41, 21-42, 21-45
update and delete, 21-39, 21-40, 21-45

ALTER TABLE statement
NOLOGGING clause, 21-88

altering dimensions, 9-13
analytic functions

concepts, 19-3
analyzing data

for parallel processing, 21-68
APPEND hint, 21-88
applications

data warehouses
star queries, 17-4

decision support, 21-2
decision support systems (DSS), 6-3

parallel SQL, 21-14
direct-path INSERT, 21-21
parallel DML, 21-20

ARCH processes
multiple, 21-84

architecture
data warehouse, 1-5
MPP, 21-76
SMP, 21-76

asynchronous I/O, 21-64
attributes, 2-3, 9-6

B
backups

disk mirroring, 4-11
bandwidth, 5-2, 21-2
bitmap indexes, 6-2

nulls and, 6-5
on partitioned tables, 6-6
parallel query and DML, 6-3

bitmap join indexes, 6-6
block range granules, 5-3
B-tree indexes, 6-10

bitmap indexes versus, 6-3
build methods, 8-23

C
cardinality
Index-1

degree of, 6-3
CASE expressions, 19-44
change data

controlling access to, 15-3
publishing, 15-3

Change Data Capture, 11-5
change sets

definition, 15-7
SYNC_SET, 15-7

change source
definition, 15-6
SYNC_SOURCE, 15-6

change tables
contain published data, 15-3
definition, 15-7
importing for Change Data Capture, 15-21

CLUSTER_DATABASE_INSTANCES initialization
parameter

and parallel execution, 21-57
columns

cardinality, 6-3
common joins, 22-32
COMPATIBLE initialization parameter, 13-28, 22-8
COMPLETE clause, 8-26
complete refresh, 14-13
complex queries

snowflake schemas, 17-5
composite

columns, 18-21
partitioning, 5-9
partitioning methods, 5-9

performance considerations, 5-12, 5-15
compression

See data segment compression, 8-23
concatenated groupings, 18-24
concatenated ROLLUP, 8-43
concurrent users

increasing the number of, 21-50
CONSIDER FRESH clause, 14-30
constraints, 7-2, 9-11

foreign key, 7-5
parallel create table, 21-43
RELY, 7-6
states, 7-3
unique, 7-4

view, 7-7, 22-14
with partitioning, 7-7
with query rewrite, 22-63

cost-based optimization, 21-92
parallel execution, 21-92

cost-based rewrite, 22-3
CPU

utilization, 5-2, 21-2
CREATE DIMENSION statement, 9-4
CREATE INDEX statement, 21-86

rules of parallelism, 21-43
CREATE MATERIALIZED VIEW statement, 8-22

enabling query rewrite, 22-7
CREATE SNAPSHOT statement, 8-3
CREATE TABLE AS SELECT statement, 21-67,

21-78
rules of parallelism

index-organized tables, 21-14
CREATE TABLE statement

AS SELECT
decision support systems, 21-14
rules of parallelism, 21-43
space fragmentation, 21-16
temporary storage space, 21-16

parallelism, 21-14
index-organized tables, 21-14

CUBE clause, 18-10
partial, 18-12
when to use, 18-10

cubes
hierarchical, 8-42

CUME_DIST function, 19-13

D
data

integrity of
parallel DML restrictions, 21-26

partitioning, 5-4
purging, 14-11
sufficiency check, 22-37
transformation, 13-9
transportation, 12-2

data compression
See data segment compression, 8-23
Index-2

data cubes
hierarchical, 18-26

data manipulation language
parallel DML, 21-18
transaction model for parallel DML, 21-22

data marts, 1-7
data mining, 20-4
data segment compression, 3-5

bitmap indexes, 5-18
materialized views, 8-23
partitioning, 3-5, 5-17

data transformation
multistage, 13-2
pipelined, 13-4

data warehouse, 8-2
architectures, 1-5
dimension tables, 8-7
dimensions, 17-4
fact tables, 8-7
logical design, 2-2
partitioned tables, 5-10
physical design, 3-2
refresh tips, 14-18
refreshing table data, 21-20
star queries, 17-4

database
extraction

with and without Change Data
Capture, 15-2

scalability, 21-20
staging, 8-2

database writer process (DBWn)
tuning, 21-84

date folding
with query rewrite, 22-18

DB_BLOCK_SIZE initialization parameter, 21-63
and parallel query, 21-63

DB_FILE_MULTIBLOCK_READ_COUNT
initialization parameter, 21-63

DBA_DATA_FILES view, 21-70
DBA_EXTENTS view, 21-70
DBMS_LOGMNR_CDC_PUBLISH package, 15-3
DBMS_LOGMNR_CDC_SUBSCRIBE

package, 15-3
DBMS_MVIEW package, 14-14

EXPLAIN_MVIEW procedure, 8-53
EXPLAIN_REWRITE procedure, 22-57
REFRESH procedure, 14-12, 14-15
REFRESH_ALL_MVIEWS procedure, 14-12
REFRESH_DEPENDENT procedure, 14-12

DBMS_OLAP package, 16-3, 16-4, 16-5
ADD_FILTER_ITEM procedure, 16-18
LOAD_WORKLOAD_TRACE procedure, 16-12
PURGE_FILTER procedure, 16-23
PURGE_RESULTS procedure, 16-32
PURGE_WORKLOAD procedure, 16-18
SET_CANCELLED procedure, 16-32

DBMS_STATS package, 16-6, 22-3
decision support systems (DSS)

bitmap indexes, 6-3
disk striping, 21-75
parallel DML, 21-20
parallel SQL, 21-14, 21-20
performance, 21-20
scoring tables, 21-21

default partition, 5-8
degree of cardinality, 6-3
degree of parallelism, 21-32, 21-38, 21-40

and adaptive multiuser, 21-47
between query operations, 21-9
parallel SQL, 21-34

DELETE statement
parallel DELETE statement, 21-39

DEMO_DIM package, 9-10
DENSE_RANK function, 19-5
design

logical, 3-2
physical, 3-2

detail tables, 8-7
dimension tables, 2-5, 8-7, 17-4

normalized, 9-9
Dimension Wizard, 9-14
dimensional modeling, 2-3
dimensions, 2-6, 9-2, 9-11

altering, 9-13
analyzing, 18-3
creating, 9-4
definition, 9-2
dimension tables, 8-7
dropping, 9-14
Index-3

hierarchies, 2-6
hierarchies overview, 2-6
multiple, 18-3
star joins, 17-4
star queries, 17-4
validating, 9-12
with query rewrite, 22-63

direct-path INSERT
restrictions, 21-24

disk affinity
disabling with MPP, 4-6
parallel DML, 21-76
partitions, 21-75

disk striping
affinity, 21-75

DISK_ASYNCH_IO initialization parameter, 21-64
distributed transactions

parallel DDL restrictions, 21-11
parallel DML restrictions, 21-11, 21-27

DML statements
captured by Change Data Capture, 15-4

DML_LOCKS initialization parameter, 21-61
drilling down, 9-2

hierarchies, 9-2
DROP MATERIALIZED VIEW statement, 8-22

prebuilt tables, 8-33
DROP PARTITION clause, 5-33
dropping

dimensions, 9-14
materialized views, 8-52

E
ENFORCED mode, 22-10
ENQUEUE_RESOURCES initialization

parameter, 21-61
entity, 2-2
estimating materialized view size, 16-38
ETL. See extraction, transformation, and loading

(ETL), 10-2
EVALUATE_MVIEW_STRATEGY package, 16-39
EXCHANGE PARTITION statement, 7-7
execution plans

parallel operations, 21-66
star transformations, 17-9

EXPLAIN PLAN statement, 21-66, 22-56
query parallelization, 21-81
star transformations, 17-9

exporting
a source table

change data capture, 15-20
EXP utility, 11-10

expression matching
with query rewrite, 22-17

extend window
to create a new view, 15-3

extents
parallel DDL, 21-16
size, 13-28

external tables, 13-6
extraction, transformation, and loading (ETL), 10-2

overview, 10-2
process, 7-2

extractions
data files, 11-8
distributed operations, 11-11
full, 11-3
incremental, 11-3
OCI, 11-10
online, 11-4
overview, 11-2
physical, 11-4
Pro*C, 11-10
SQL*Plus, 11-8

F
fact tables, 2-5

star joins, 17-4
star queries, 17-4

facts, 9-2
FAST clause, 8-26
fast refresh, 14-14

restrictions, 8-27
FAST_START_PARALLEL_ROLLBACK

initialization parameter, 21-60
features, new, xxxiii
FIRST_ROWS(n) hint, 21-93
FIRST_VALUE function, 19-24
FIRST/LAST functions, 19-28
Index-4

FORCE clause, 8-26
foreign key

constraints, 7-5
joins

snowflake schemas, 17-5
fragmentation

parallel DDL, 21-16
FREELISTS parameter, 21-84
full partition-wise joins, 5-21
functions

COUNT, 6-5
CUME_DIST, 19-13
DENSE_RANK, 19-5
FIRST_VALUE, 19-24
FIRST/LAST, 19-28
GROUP_ID, 18-17
GROUPING, 18-13
GROUPING_ID, 18-17
LAG/LEAD, 19-27
LAST_VALUE, 19-24
linear regression, 19-31
NTILE, 19-14
parallel execution, 21-28
PERCENT_RANK, 19-14
RANK, 19-5
ranking, 19-5
RATIO_TO_REPORT, 19-27
REGR_AVGX, 19-32
REGR_AVGY, 19-32
REGR_COUNT, 19-32
REGR_INTERCEPT, 19-32
REGR_SLOPE, 19-32
REGR_SXX, 19-33
REGR_SXY, 19-33
REGR_SYY, 19-33
reporting, 19-24
ROW_NUMBER, 19-16
WIDTH_BUCKET, 19-42
windowing, 19-17

G
global

indexes, 21-83
striping, 4-6

granting access to change data, 15-3
granules, 5-3

block range, 5-3
partition, 5-4

GROUP_ID function, 18-17
grouping

compatibility check, 22-40
conditions, 22-64

GROUPING function, 18-13
when to use, 18-16

GROUPING_ID function, 18-17
GROUPING_SETS expression, 18-19
groups, instance, 21-37
GV$FILESTAT view, 21-68

H
hash partitioning, 5-7
HASH_AREA_SIZE initialization parameter

and parallel execution, 21-59
hierarchical cubes, 8-42
hierarchies, 9-2

how used, 2-6
multiple, 9-7
overview, 2-6
rolling up and drilling down, 9-2

hints
FIRST_ROWS(n), 21-93
PARALLEL, 21-34
PARALLEL_INDEX, 21-35
query rewrite, 22-8, 22-9

histograms
creating with user-defined buckets, 19-45

hypothetical rank, 19-38

I
importing

a change table
Change Data Capture, 15-21

a source table
Change Data Capture, 15-20

indexes
bitmap indexes, 6-6
bitmap join, 6-6
Index-5

B-tree, 6-10
cardinality, 6-3
creating in parallel, 21-85
global, 21-83
local, 21-83
nulls and, 6-5
parallel creation, 21-85, 21-86
parallel DDL storage, 21-16
parallel local, 21-86
partitioned tables, 6-6
partitioning, 5-9
STORAGE clause, 21-86

index-organized tables
parallel CREATE, 21-14
parallel queries, 21-11

INITIAL extent size, 13-28
initialization parameters

CLUSTER_DATABASE_INSTANCES, 21-57
COMPATIBLE, 13-28, 22-8
DB_BLOCK_SIZE, 21-63
DB_FILE_MULTIBLOCK_READ_

COUNT, 21-63
DISK_ASYNCH_IO, 21-64
DML_LOCKS, 21-61
ENQUEUE_RESOURCES, 21-61
FAST_START_PARALLEL_ROLLBACK, 21-60
HASH_AREA_SIZE, 21-59
JOB_QUEUE_PROCESSES, 14-18
LARGE_POOL_SIZE, 21-52
LOG_BUFFER, 21-61
MULTIBLOCK_READ_COUNT, 13-28
OPTIMIZER_MODE, 14-18, 21-93, 22-8
PARALLEL_ADAPTIVE_MULTI_USER, 21-47
PARALLEL_AUTOMATIC_TUNING, 21-30
PARALLEL_EXECUTION_MESSAGE_

SIZE, 21-58, 21-59
PARALLEL_MAX_SERVERS, 14-18, 21-4, 21-50
PARALLEL_MIN_PERCENT, 21-36, 21-50,

21-57
PARALLEL_MIN_SERVERS, 21-3, 21-4, 21-51
PARALLEL_THREADS_PER_CPU, 21-30
PGA_AGGREGATE_TARGET, 14-18
QUERY_REWRITE_ENABLED, 22-7, 22-8
ROLLBACK_SEGMENTS, 21-60
SHARED_POOL_SIZE, 21-52, 21-56

STAR_TRANSFORMATION_ENABLED, 17-6
TAPE_ASYNCH_IO, 21-64
TIMED_STATISTICS, 21-69
TRANSACTIONS, 21-60

INSERT statement
functionality, 21-87
parallelizing INSERT ... SELECT, 21-41

instance groups for parallel operations, 21-37
instance recovery

SMON process, 21-24
instances

instance groups, 21-37
integrity constraints, 7-2
integrity rules

parallel DML restrictions, 21-26
invalidating

materialized views, 8-50
I/O

asynchronous, 21-64
parallel execution, 5-2, 21-2
striping to avoid bottleneck, 4-2

J
Java

used by Change Data Capture, 15-8
JOB_QUEUE_PROCESSES initialization

parameter, 14-18
join compatibility, 22-31
joins

full partition-wise, 5-21
partial partition-wise, 5-27
partition-wise, 5-21
star joins, 17-4
star queries, 17-4

K
key lookups, 13-33
keys, 8-7, 17-4

L
LAG/LEAD functions, 19-27
LARGE_POOL_SIZE initialization
Index-6

parameter, 21-52
LAST_VALUE function, 19-24
level relationships, 2-6

purpose, 2-7
levels, 2-6, 2-7
linear regression functions, 19-31
list partitioning, 5-7
load

parallel, 13-31
LOB datatypes

restrictions
parallel DDL, 21-14
parallel DML, 21-25

local indexes, 6-3, 6-6, 21-83
local striping, 4-5
locks

parallel DML, 21-24
LOG_BUFFER initialization parameter

and parallel execution, 21-61
LOGGING clause, 21-84
logging mode

parallel DDL, 21-14, 21-15
logical design, 3-2
lookup tables, 17-4

See dimension tables, 8-7
star queries, 17-4

M
manual

refresh, 14-14
striping, 4-4

massively parallel processing (MPP)
affinity, 21-75, 21-76
disk affinity, 4-6

massively parallel systems, 5-2, 21-2
materialized views

aggregates, 8-13
altering, 8-51
build methods, 8-23
containing only joins, 8-16
creating, 8-21
data segment compression, 8-23
delta joins, 22-35
dropping, 8-33, 8-52

estimating size, 16-38
invalidating, 8-50
logs, 11-7
naming, 8-22
nested, 8-18
OLAP, 8-41
OLAP cubes, 8-41
partitioned tables, 14-26
partitioning, 8-35
prebuilt, 8-22
query rewrite

hints, 22-8, 22-9
matching join graphs, 8-24
parameters, 22-8
privileges, 22-10

refresh dependent, 14-16
refreshing, 8-26, 14-12
refreshing all, 14-16
registration, 8-33
restrictions, 8-24
rewrites

enabling, 22-7
schema design, 8-8
schema design guidelines, 8-8
security, 8-50
set operators, 8-47
storage characteristics, 8-23
types of, 8-12
uses for, 8-2

MAXEXTENTS keyword, 13-28
MAXEXTENTS UNLIMITED storage

parameter, 21-23
measures, 8-7, 17-4
memory

configure at 2 levels, 21-58
MERGE operation, 13-10
MERGE PARTITIONS clause, 5-35
MERGE statement, 14-9
MINIMUM EXTENT parameter, 21-17
mirroring

disks, 4-10
monitoring

parallel processing, 21-68
refresh, 14-19

MOVE PARTITION statement
Index-7

rules of parallelism, 21-43
MULTIBLOCK_READ_COUNT initialization

parameter, 13-28
multiple archiver processes, 21-84
multiple hierarchies, 9-7
MV_CAPABILITIES_TABLE table, 8-54
MVIEW_WORKLOAD view, 16-2

N
nested materialized views, 8-18

refreshing, 14-23
restrictions, 8-21

nested tables
restrictions, 21-13

NEVER clause, 8-27
new features, xxxiii
NOAPPEND hint, 21-88
NOARCHIVELOG mode, 21-85
nodes

disk affinity in Real Application Clusters, 21-75
NOLOGGING clause, 21-79, 21-84, 21-86

with APPEND hint, 21-88
NOLOGGING mode

parallel DDL, 21-14, 21-15
nonvolatile data, 1-3
NOPARALLEL attribute, 21-77
NOREWRITE hint, 22-8, 22-9
NTILE function, 19-14
nulls

indexes and, 6-5

O
object types

parallel query, 21-12
restrictions, 21-13

restrictions
parallel DDL, 21-14
parallel DML, 21-25

OLAP, 20-2
materialized views, 8-41

OLAP cubes
materialized views, 8-41

OLTP database

batch jobs, 21-21
parallel DML, 21-20

ON COMMIT clause, 8-26
ON DEMAND clause, 8-26
OPTIMAL storage parameter, 21-23
optimizations

parallel SQL, 21-6
query rewrite

enabling, 22-7
hints, 22-8, 22-9
matching join graphs, 8-24

query rewrites
privileges, 22-10

optimizer
with rewrite, 22-2

OPTIMIZER_MODE initialization
parameter, 14-18, 21-93, 22-8

Oracle Real Application Clusters
disk affinity, 21-75
instance groups, 21-37
parallel load, 13-31
system monitor process and, 21-24

ORDER BY clause, 8-31
outer joins

with query rewrite, 22-63

P
PARALLEL clause, 21-87, 21-88

parallelization rules, 21-38
PARALLEL CREATE INDEX statement, 21-60
PARALLEL CREATE TABLE AS SELECT statement

resources required, 21-60
parallel DDL, 21-13

extent allocation, 21-16
parallelization rules, 21-38
partitioned tables and indexes, 21-13
restrictions

LOBs, 21-14
object types, 21-13, 21-14

parallel delete, 21-39
parallel DELETE statement, 21-39
parallel DML, 21-18

applications, 21-20
bitmap indexes, 6-3
Index-8

degree of parallelism, 21-38, 21-40
enabling PARALLEL DML, 21-21
lock and enqueue resources, 21-24
parallelization rules, 21-38
recovery, 21-23
restrictions, 21-24

object types, 21-13, 21-25
remote transactions, 21-27

rollback segments, 21-23
transaction model, 21-22

parallel execution
cost-based optimization, 21-92
index creation, 21-85
interoperator parallelism, 21-9
intraoperator parallelism, 21-9
introduction, 5-2
I/O parameters, 21-63
method of, 21-31
plans, 21-66
process classification, 4-2, 4-6, 4-9, 4-12
resource parameters, 21-58
rewriting SQL, 21-78
solving problems, 21-77
tuning, 5-2, 21-2

PARALLEL hint, 21-34, 21-77, 21-87
parallelization rules, 21-38
UPDATE and DELETE, 21-39

parallel load
example, 13-31
Oracle Real Application Clusters, 13-31
using, 13-25

parallel partition-wise joins
performance considerations, 5-30

parallel query, 21-11
bitmap indexes, 6-3
index-organized tables, 21-11
object types, 21-12

restrictions, 21-13
parallelization rules, 21-38

parallel scan operations, 4-3
parallel SQL

allocating rows to parallel execution
servers, 21-7

degree of parallelism, 21-34
instance groups, 21-37

number of parallel execution servers, 21-3
optimizer, 21-6
parallelization rules, 21-38
shared server, 21-4
summary or rollup tables, 21-14

parallel update, 21-39
parallel UPDATE statement, 21-39
PARALLEL_ADAPTIVE_MULTI_USER

initialization parameter, 21-47
PARALLEL_AUTOMATIC_TUNING initialization

parameter, 21-30
PARALLEL_EXECUTION_MESSAGE_SIZE

initialization parameter, 21-58, 21-59
PARALLEL_INDEX hint, 21-35
PARALLEL_MAX_SERVERS initialization

parameter, 14-18, 21-4, 21-50
and parallel execution, 21-49

PARALLEL_MIN_PERCENT initialization
parameter, 21-36, 21-50, 21-57

PARALLEL_MIN_SERVERS initialization
parameter, 21-3, 21-4, 21-51

PARALLEL_THREADS_PER_CPU initialization
parameter, 21-30, 21-48

parallelism, 5-2
degree, 21-32
degree, overriding, 21-77
enabling for tables and queries, 21-46
interoperator, 21-9
intraoperator, 21-9

parameters
FREELISTS, 21-84

partition
default, 5-8
granules, 5-4

Partition Change Tracking (PCT), 8-35, 14-26
partitioned tables

data warehouses, 5-10
example, 13-29

partitioning, 11-7
composite, 5-9
data, 5-4
data segment compression, 5-17

bitmap indexes, 5-18
hash, 5-7
indexes, 5-9
Index-9

list, 5-7
materialized views, 8-35
prebuilt tables, 8-40
range, 5-6
range-list, 5-15

partitions
adding, 5-32
affinity, 21-75
bitmap indexes, 6-6
coalescing, 5-36
dropping, 5-33
exchanging, 5-34
merging, 5-35
moving, 5-34
parallel DDL, 21-13
partition pruning

disk striping and, 21-75
pruning, 5-19
range partitioning

disk striping and, 21-75
rules of parallelism, 21-43, 21-45
splitting, 5-35
truncating, 5-35

partition-wise joins, 5-21
benefits of, 5-29
full, 5-21
partial, 5-27

PERCENT_RANK function, 19-14
performance

DSS database, 21-20
PGA_AGGREGATE_TARGET initialization

parameter, 14-18
physical design, 3-2

structures, 3-4
pivoting, 13-35
plans

star transformations, 17-9
PL/SQL packages

for publish and subscribe tasks, 15-3
prebuilt materialized views, 8-22
PRIMARY KEY constraints, 21-86
process monitor process (PMON)

parallel DML process recovery, 21-23
processes

and memory contention in parallel

processing, 21-50
classes of parallel execution, 4-2, 4-6, 4-9, 4-12

pruning
partitions, 5-19, 21-75
using DATE columns, 5-20

publication
definition, 15-7

publisher tasks, 15-3
publishers

capture data, 15-3
determines the source tables, 15-3
publish change data, 15-3
purpose, 15-3

purging data, 14-11

Q
queries

ad hoc, 21-14
enabling parallelism for, 21-46
star queries, 17-4

query delta joins, 22-35
query rewrite

controlling, 22-8
correctness, 22-10
enabling, 22-7
hints, 22-8, 22-9
matching join graphs, 8-24
methods, 22-11
parameters, 22-8
privileges, 22-10
restrictions, 8-25
when it occurs, 22-4

QUERY_REWRITE_ENABLED initialization
parameter, 22-7, 22-8

R
RAID

configurations, 4-9
range partitioning, 5-6

performance considerations, 5-9
range-list partitioning, 5-15
RANK function, 19-5
ranking functions, 19-5
Index-10

RATIO_TO_REPORT function, 19-27
REBUILD INDEX PARTITION statement

rules of parallelism, 21-43
REBUILD INDEX statement

rules of parallelism, 21-43
recovery

instance recovery
parallel DML, 21-24
SMON process, 21-24

media, with striping, 4-10
parallel DML, 21-23

redo buffer allocation retries, 21-61
reference tables

See dimension tables, 8-7
refresh

monitoring, 14-19
options, 8-25

refreshing
materialized views, 14-12
nested materialized views, 14-23
partitioning, 14-2

REGR_AVGX function, 19-32
REGR_AVGY function, 19-32
REGR_COUNT function, 19-32
REGR_INTERCEPT function, 19-32
REGR_R2 function, 19-32
REGR_SLOPE function, 19-32
REGR_SXX function, 19-33
REGR_SXY function, 19-33
REGR_SYY function, 19-33
regression

detecting, 21-66
RELY constraints, 7-6
remote transactions

parallel DML and DDL restrictions, 21-11
replication

restrictions
parallel DML, 21-25

reporting functions, 19-24
resources

consumption, parameters affecting, 21-58, 21-60
limiting for users, 21-51
limits, 21-49
parallel query usage, 21-58

restrictions

direct-path INSERT, 21-24
fast refresh, 8-27
nested materialized views, 8-21
nested tables, 21-13
parallel DDL, 21-14

remote transactions, 21-11
parallel DML, 21-24

remote transactions, 21-11, 21-27
query rewrite, 8-25

result set, 17-7
revoking access to change data, 15-3
REWRITE hint, 22-8, 22-9
rewrites

hints, 22-9
parameters, 22-8
privileges, 22-10
query optimizations

hints, 22-8, 22-9
matching join graphs, 8-24

rollback segments, 21-60
MAXEXTENTS UNLIMITED, 21-23
OPTIMAL, 21-23
parallel DML, 21-23

ROLLBACK_SEGMENTS initialization
parameter, 21-60

rolling up hierarchies, 9-2
ROLLUP, 18-6

concatenated, 8-43
partial, 18-8
when to use, 18-7

root level, 2-7
ROW_NUMBER function, 19-16
RULE hint, 21-93

S
sar UNIX command, 21-74
scalability

batch jobs, 21-21
parallel DML, 21-20

scalable operations, 21-81
schemas, 17-2

design guidelines for materialized views, 8-8
snowflake, 2-3
star, 2-3, 17-4
Index-11

third normal form, 17-2
SELECT privilege

granting and revoking for access to change
data, 15-3

sessions
enabling parallel DML, 21-21

set operators
materialized views, 8-47

shared server
parallel SQL execution, 21-4

SHARED_POOL_SIZE initialization
parameter, 21-56

SHARED_POOL_SIZE parameter, 21-52
single table aggregate requirements, 8-15
skewing parallel DML workload, 21-37
SMP architecture

disk affinity, 21-76
snowflake schemas, 17-5

complex queries, 17-5
SORT_AREA_SIZE initialization parameter

and parallel execution, 21-59
source systems, 11-2

definition, 15-6
source tables

definition, 15-6
exporting for Change Data Capture, 15-20
importing for Change Data Capture, 15-20

space management
MINIMUM EXTENT parameter, 21-17
parallel DDL, 21-16

SPLIT PARTITION clause, 5-32, 5-35
rules of parallelism, 21-43

SQL statements
parallelizing, 21-3, 21-6

SQL*Loader, 13-25
staging

areas, 1-6
databases, 8-2
files, 8-2

STALE_TOLERATED mode, 22-10
star joins, 17-4
star queries, 17-4

star transformation, 17-7
star schemas

advantages, 2-4

defining fact tables, 2-6
dimensional model, 2-4, 17-4

star transformations, 17-7
restrictions, 17-12

STAR_TRANSFORMATION_ENABLED
initialization parameter, 17-6

statistics, 22-65
estimating, 21-67
operating system, 21-74

storage
fragmentation in parallel DDL, 21-16

STORAGE clause
parallel execution, 21-16
parallel query, 21-86

storage parameters
MAXEXTENTS UNLIMITED, 21-23
OPTIMAL (in rollback segments), 21-23

striping, 4-2
analyzing, 4-6
automatic, 4-3
example, 13-25
global, 4-5
local, 4-5
manual, 4-4
media recovery, 4-10

subpartition
mapping, 5-14
template, 5-14

subqueries
in DDL statements, 21-14

subscriber views
definition, 15-7
dropping, 15-3
removing, 15-3

subscribers
definition, 15-5
drop the subscriber view, 15-3
drop the subscription, 15-3
extend the window to create a new view, 15-3
purge the subscription window, 15-3
purpose, 15-3
removing subscriber views, 15-3
retrieve change data from the subscriber

views, 15-3
subscribe to source tables, 15-3
Index-12

tasks, 15-3
subscription window

purging, 15-3
Summary Advisor, 16-2

Wizard, 16-40
summary management

components, 8-5
summary tables, 2-5
symmetric multiprocessors, 5-2, 21-2
SYNC_SET change set

system-generated change set, 15-7
SYNC_SOURCE change source

system-generated change source, 15-6
system monitor process (SMON)

Oracle Real Application Clusters and, 21-24
parallel DML instance recovery, 21-24
parallel DML system recovery, 21-24

T
table queues, 21-71
tables

detail tables, 8-7
dimension tables (lookup tables), 8-7
dimensions

star queries, 17-4
enabling parallelism for, 21-46
external, 13-6
fact tables, 8-7

star queries, 17-4
historical, 21-21
lookup tables (dimension tables), 17-4
parallel creation, 21-14
parallel DDL storage, 21-16
refreshing in data warehouse, 21-20
STORAGE clause with parallel execution, 21-16
summary or rollup, 21-14

tablespaces
creating, example, 13-27
transportable, 11-5, 12-3, 12-6

TAPE_ASYNCH_IO initialization parameter, 21-64
temporary segments

parallel DDL, 21-16
text match, 22-12

with query rewrite, 22-63

third normal form
queries, 17-3
schemas, 17-2

TIMED_STATISTICS initialization
parameter, 21-69

timestamps, 11-6
transactions

distributed
parallel DDL restrictions, 21-11
parallel DML restrictions, 21-11, 21-27

TRANSACTIONS initialization parameter, 21-60
transformations, 13-2

scenarios, 13-25
SQL and PL/SQL, 13-9
SQL*Loader, 13-5

transportable tablespaces, 11-5, 12-3, 12-6
transportation

definition, 12-2
distributed operations, 12-2
flat files, 12-2

triggers, 11-7
restrictions, 21-27

parallel DML, 21-25
TRUNCATE PARTITION clause, 5-35
TRUSTED mode, 22-10
two-phase commit, 21-60

U
unique

constraints, 7-4, 21-86
identifier, 2-3, 3-2

UNLIMITED extents, 21-23
update frequencies, 8-12
UPDATE statement

parallel UPDATE statement, 21-39
update windows, 8-12
user resources

limiting, 21-51

V
V$FILESTAT view

and parallel query, 21-69
V$PARAMETER view, 21-70
Index-13

V$PQ_SESSTAT view, 21-67, 21-69
V$PQ_SYSSTAT view, 21-67
V$PQ_TQSTAT view, 21-68, 21-70
V$PX_PROCESS view, 21-69
V$PX_SESSION view, 21-68
V$PX_SESSTAT view, 21-69
V$SESSTAT view, 21-71, 21-74
V$SYSSTAT view, 21-61, 21-71, 21-84
validating dimensions, 9-12
view constraints, 7-7, 22-14
views

ALL_SOURCE_TABLES, 15-15
DBA_DATA_FILES, 21-70
DBA_EXTENTS, 21-70
V$FILESTAT, 21-69
V$PARAMETER, 21-70
V$PQ_SESSTAT, 21-69
V$PQ_TQSTAT, 21-70
V$PX_PROCESS, 21-69
V$SESSTAT, 21-71, 21-74
V$SYSSTAT, 21-71

vmstat UNIX command, 21-74

W
WIDTH_BUCKET function, 19-42
windowing functions, 19-17
workloads

distribution, 21-67
skewing, 21-37
Index-14

	Contents
	Send Us Your Comments
	Preface
	What’s New in Data Warehousing?
	1 Data Warehousing Concepts
	What is a Data Warehouse?
	Subject Oriented
	Integrated
	Nonvolatile
	Time Variant
	Contrasting OLTP and Data Warehousing Environments

	Data Warehouse Architectures
	Data Warehouse Architecture (Basic)
	Data Warehouse Architecture (with a Staging Area)
	Data Warehouse Architecture (with a Staging Area and Data Marts)

	2 Logical Design in Data Warehouses
	Logical Versus Physical Design in Data Warehouses
	Creating a Logical Design
	Data Warehousing Schemas
	Star Schemas
	Other Schemas

	Data Warehousing Objects
	Fact Tables
	Dimension Tables
	Unique Identifiers
	Relationships
	Example of Data Warehousing Objects and Their Relationships

	3 Physical Design in Data Warehouses
	Moving from Logical to Physical Design
	Physical Design
	Physical Design Structures
	Tablespaces
	Tables and Partitioned Tables
	Views
	Integrity Constraints
	Indexes and Partitioned Indexes
	Materialized Views
	Dimensions

	4 Hardware and I/O Considerations in Data Warehouses
	Overview of Hardware and I/O Considerations in Data Warehouses
	Why Stripe the Data?
	Automatic Striping
	Manual Striping
	Local and Global Striping
	Analyzing Striping

	RAID Configurations
	RAID 0 (Striping)
	RAID 1 (Mirroring)
	RAID 0+1 (Striping and Mirroring)
	Striping, Mirroring, and Media Recovery
	RAID 5
	The Importance of Specific Analysis

	5 Parallelism and Partitioning in Data Warehouses
	Overview of Parallel Execution
	When to Implement Parallel Execution

	Granules of Parallelism
	Block Range Granules
	Partition Granules

	Partitioning Design Considerations
	Types of Partitioning
	Partitioning and Data Segment Compression
	Partition Pruning
	Partition-Wise Joins

	Miscellaneous Partition Operations
	Adding Partitions
	Dropping Partitions
	Exchanging Partitions
	Moving Partitions
	Splitting and Merging Partitions
	Truncating Partitions
	Coalescing Partitions

	6 Indexes
	Bitmap Indexes
	Bitmap Join Indexes

	B-tree Indexes
	Local Indexes Versus Global Indexes

	7 Integrity Constraints
	Why Integrity Constraints are Useful in a Data Warehouse
	Overview of Constraint States
	Typical Data Warehouse Integrity Constraints
	UNIQUE Constraints in a Data Warehouse
	FOREIGN KEY Constraints in a Data Warehouse
	RELY Constraints
	Integrity Constraints and Parallelism
	Integrity Constraints and Partitioning
	View Constraints

	8 Materialized Views
	Overview of Data Warehousing with Materialized Views
	Materialized Views for Data Warehouses
	Materialized Views for Distributed Computing
	Materialized Views for Mobile Computing
	The Need for Materialized Views
	Components of Summary Management
	Data Warehousing Terminology
	Materialized View Schema Design
	Loading Data
	Overview of Materialized View Management Tasks

	Types of Materialized Views
	Materialized Views with Aggregates
	Materialized Views Containing Only Joins
	Nested Materialized Views

	Creating Materialized Views
	Naming Materialized Views
	Storage And Data Segment Compression
	Build Methods
	Enabling Query Rewrite
	Query Rewrite Restrictions
	Refresh Options
	ORDER BY Clause
	Materialized View Logs
	Using Oracle Enterprise Manager
	Using Materialized Views with NLS Parameters

	Registering Existing Materialized Views
	Partitioning and Materialized Views
	Partition Change Tracking
	Partitioning a Materialized View
	Partitioning a Prebuilt Table
	Rolling Materialized Views

	Materialized Views in OLAP Environments
	OLAP Cubes
	Specifying OLAP Cubes in SQL
	Querying OLAP Cubes in SQL
	Partitioning Materialized Views for OLAP
	Compressing Materialized Views for OLAP
	Materialized Views with Set Operators

	Choosing Indexes for Materialized Views
	Invalidating Materialized Views
	Security Issues with Materialized Views
	Altering Materialized Views
	Dropping Materialized Views
	Analyzing Materialized View Capabilities
	Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure
	MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details
	MV_CAPABILITIES_TABLE Column Details

	9 Dimensions
	What are Dimensions?
	Creating Dimensions
	Multiple Hierarchies
	Using Normalized Dimension Tables

	Viewing Dimensions
	Using The DEMO_DIM Package
	Using Oracle Enterprise Manager

	Using Dimensions with Constraints
	Validating Dimensions
	Altering Dimensions
	Deleting Dimensions
	Using the Dimension Wizard
	Managing the Dimension Object
	Creating a Dimension

	10 Overview of Extraction, Transformation, and Loading
	Overview of ETL
	ETL Tools
	Daily Operations
	Evolution of the Data Warehouse

	11 Extraction in Data Warehouses
	Overview of Extraction in Data Warehouses
	Introduction to Extraction Methods in Data Warehouses
	Logical Extraction Methods
	Physical Extraction Methods
	Change Data Capture

	Data Warehousing Extraction Examples
	Extraction Using Data Files
	Extraction Via Distributed Operations

	12 Transportation in Data Warehouses
	Overview of Transportation in Data Warehouses
	Introduction to Transportation Mechanisms in Data Warehouses
	Transportation Using Flat Files
	Transportation Through Distributed Operations
	Transportation Using Transportable Tablespaces

	13 Loading and Transformation
	Overview of Loading and Transformation in Data Warehouses
	Transformation Flow

	Loading Mechanisms
	SQL*Loader
	External Tables
	OCI and Direct-Path APIs
	Export/Import

	Transformation Mechanisms
	Transformation Using SQL
	Transformation Using PL/SQL
	Transformation Using Table Functions

	Loading and Transformation Scenarios
	Parallel Load Scenario
	Key Lookup Scenario
	Exception Handling Scenario
	Pivoting Scenarios

	14 Maintaining the Data Warehouse
	Using Partitioning to Improve Data Warehouse Refresh
	Refresh Scenarios
	Scenarios for Using Partitioning for Refreshing Data Warehouses

	Optimizing DML Operations During Refresh
	Implementing an Efficient MERGE Operation
	Maintaining Referential Integrity
	Purging Data

	Refreshing Materialized Views
	Complete Refresh
	Fast Refresh
	ON COMMIT Refresh
	Manual Refresh Using the DBMS_MVIEW Package
	Refresh Specific Materialized Views with REFRESH
	Refresh All Materialized Views with REFRESH_ALL_MVIEWS
	Refresh Dependent Materialized Views with REFRESH_DEPENDENT
	Using Job Queues for Refresh
	When Refresh is Possible
	Recommended Initialization Parameters for Parallelism
	Monitoring a Refresh
	Checking the Status of a Materialized View
	Tips for Refreshing Materialized Views with Aggregates
	Tips for Refreshing Materialized Views Without Aggregates
	Tips for Refreshing Nested Materialized Views
	Tips for Fast Refresh with UNION ALL
	Tips After Refreshing Materialized Views

	Using Materialized Views with Partitioned Tables
	Fast Refresh with Partition Change Tracking
	Fast Refresh with CONSIDER FRESH

	15 Change Data Capture
	About Change Data Capture
	Publish and Subscribe Model
	Example of a Change Data Capture System
	Components and Terminology for Synchronous Change Data Capture

	Installation and Implementation
	Change Data Capture Restriction on Direct-Path INSERT

	Security
	Columns in a Change Table
	Change Data Capture Views
	Synchronous Mode of Data Capture
	Publishing Change Data
	Step 1: Decide which Oracle Instance will be the Source System
	Step 2: Create the Change Tables that will Contain the Changes

	Managing Change Tables and Subscriptions
	Subscribing to Change Data
	Steps Required to Subscribe to Change Data
	What Happens to Subscriptions when the Publisher Makes Changes

	Export and Import Considerations

	16 Summary Advisor
	Overview of the Summary Advisor in the DBMS_OLAP Package
	Using the Summary Advisor
	Identifier Numbers
	Workload Management
	Loading a User-Defined Workload
	Loading a Trace Workload
	Loading a SQL Cache Workload
	Validating a Workload
	Removing a Workload
	Using Filters with the Summary Advisor
	Removing a Filter
	Recommending Materialized Views
	SQL Script Generation
	Summary Data Report
	When Recommendations are No Longer Required
	Stopping the Recommendation Process
	Summary Advisor Sample Sessions
	Summary Advisor and Missing Statistics
	Summary Advisor Privileges and ORA-30446

	Estimating Materialized View Size
	ESTIMATE_MVIEW_SIZE Parameters

	Is a Materialized View Being Used?
	DBMS_OLAP.EVALUATE_MVIEW_STRATEGY Procedure

	Summary Advisor Wizard
	Summary Advisor Steps

	17 Schema Modeling Techniques
	Schemas in Data Warehouses
	Third Normal Form
	Optimizing Third Normal Form Queries

	Star Schemas
	Snowflake Schemas

	Optimizing Star Queries
	Tuning Star Queries
	Using Star Transformation

	18 SQL for Aggregation in Data Warehouses
	Overview of SQL for Aggregation in Data Warehouses
	Analyzing Across Multiple Dimensions
	Optimized Performance
	An Aggregate Scenario
	Interpreting NULLs in Examples

	ROLLUP Extension to GROUP BY
	When to Use ROLLUP
	ROLLUP Syntax
	Partial Rollup

	CUBE Extension to GROUP BY
	When to Use CUBE
	CUBE Syntax
	Partial CUBE
	Calculating Subtotals Without CUBE

	GROUPING Functions
	GROUPING Function
	When to Use GROUPING
	GROUPING_ID Function
	GROUP_ID Function

	GROUPING SETS Expression
	Composite Columns
	Concatenated Groupings
	Concatenated Groupings and Hierarchical Data Cubes

	Considerations when Using Aggregation
	Hierarchy Handling in ROLLUP and CUBE
	Column Capacity in ROLLUP and CUBE
	HAVING Clause Used with GROUP BY Extensions
	ORDER BY Clause Used with GROUP BY Extensions
	Using Other Aggregate Functions with ROLLUP and CUBE

	Computation Using the WITH Clause

	19 SQL for Analysis in Data Warehouses
	Overview of SQL for Analysis in Data Warehouses
	Ranking Functions
	RANK and DENSE_RANK
	Top N Ranking
	Bottom N Ranking
	CUME_DIST
	PERCENT_RANK
	NTILE
	ROW_NUMBER

	Windowing Aggregate Functions
	Treatment of NULLs as Input to Window Functions
	Windowing Functions with Logical Offset
	Cumulative Aggregate Function Example
	Moving Aggregate Function Example
	Centered Aggregate Function
	Windowing Aggregate Functions in the Presence of Duplicates
	Varying Window Size for Each Row
	Windowing Aggregate Functions with Physical Offsets
	FIRST_VALUE and LAST_VALUE

	Reporting Aggregate Functions
	Reporting Aggregate Example
	RATIO_TO_REPORT

	LAG/LEAD Functions
	LAG/LEAD Syntax

	FIRST/LAST Functions
	FIRST/LAST Syntax
	FIRST/LAST As Regular Aggregates
	FIRST/LAST As Reporting Aggregates

	Linear Regression Functions
	REGR_COUNT
	REGR_AVGY and REGR_AVGX
	REGR_SLOPE and REGR_INTERCEPT
	REGR_R2
	REGR_SXX, REGR_SYY, and REGR_SXY
	Linear Regression Statistics Examples
	Sample Linear Regression Calculation

	Inverse Percentile Functions
	Normal Aggregate Syntax
	Inverse Percentile Restrictions

	Hypothetical Rank and Distribution Functions
	Hypothetical Rank and Distribution Syntax

	WIDTH_BUCKET Function
	WIDTH_BUCKET Syntax

	User-Defined Aggregate Functions
	CASE Expressions
	CASE Example
	Creating Histograms With User-Defined Buckets

	20 OLAP and Data Mining
	OLAP
	Benefits of OLAP and RDBMS Integration

	Data Mining
	Enabling Data Mining Applications
	Predictions and Insights
	Mining Within the Database Architecture
	Java API

	21 Using Parallel Execution
	Introduction to Parallel Execution Tuning
	When to Implement Parallel Execution
	Operations That Can Be Parallelized
	The Parallel Execution Server Pool
	How Parallel Execution Servers Communicate
	Parallelizing SQL Statements

	Types of Parallelism
	Parallel Query
	Parallel DDL
	Parallel DML
	Parallel Execution of Functions
	Other Types of Parallelism

	Initializing and Tuning Parameters for Parallel Execution
	Selecting Automated or Manual Tuning of Parallel Execution
	Using Automatically Derived Parameter Settings
	Setting the Degree of Parallelism
	How Oracle Determines the Degree of Parallelism for Operations
	Balancing the Workload
	Parallelization Rules for SQL Statements
	Enabling Parallelism for Tables and Queries
	Degree of Parallelism and Adaptive Multiuser: How They Interact
	Forcing Parallel Execution for a Session
	Controlling Performance with the Degree of Parallelism

	Tuning General Parameters for Parallel Execution
	Parameters Establishing Resource Limits for Parallel Operations
	Parameters Affecting Resource Consumption
	Parameters Related to I/O

	Monitoring and Diagnosing Parallel Execution Performance
	Is There Regression?
	Is There a Plan Change?
	Is There a Parallel Plan?
	Is There a Serial Plan?
	Is There Parallel Execution?
	Is the Workload Evenly Distributed?
	Monitoring Parallel Execution Performance with Dynamic Performance Views
	Monitoring Session Statistics
	Monitoring System Statistics
	Monitoring Operating System Statistics

	Affinity and Parallel Operations
	Affinity and Parallel Queries
	Affinity and Parallel DML

	Miscellaneous Parallel Execution Tuning Tips
	Setting Buffer Cache Size for Parallel Operations
	Overriding the Default Degree of Parallelism
	Rewriting SQL Statements
	Creating and Populating Tables in Parallel
	Creating Temporary Tablespaces for Parallel Sort and Hash Join
	Executing Parallel SQL Statements
	Using EXPLAIN PLAN to Show Parallel Operations Plans
	Additional Considerations for Parallel DML
	Creating Indexes in Parallel
	Parallel DML Tips
	Incremental Data Loading in Parallel
	Using Hints with Cost-Based Optimization
	FIRST_ROWS(n) Hint
	Enabling Dynamic Statistic Sampling

	22 Query Rewrite
	Overview of Query Rewrite
	Cost-Based Rewrite
	When Does Oracle Rewrite a Query?

	Enabling Query Rewrite
	Initialization Parameters for Query Rewrite
	Controlling Query Rewrite
	Privileges for Enabling Query Rewrite
	Accuracy of Query Rewrite

	How Oracle Rewrites Queries
	Text Match Rewrite Methods
	General Query Rewrite Methods
	When are Constraints and Dimensions Needed?

	Special Cases for Query Rewrite
	Query Rewrite Using Partially Stale Materialized Views
	Query Rewrite Using Complex Materialized Views
	Query Rewrite Using Nested Materialized Views
	Query Rewrite When Using GROUP BY Extensions

	Did Query Rewrite Occur?
	Explain Plan
	DBMS_MVIEW.EXPLAIN_REWRITE Procedure

	Design Considerations for Improving Query Rewrite Capabilities
	Query Rewrite Considerations: Constraints
	Query Rewrite Considerations: Dimensions
	Query Rewrite Considerations: Outer Joins
	Query Rewrite Considerations: Text Match
	Query Rewrite Considerations: Aggregates
	Query Rewrite Considerations: Grouping Conditions
	Query Rewrite Considerations: Expression Matching
	Query Rewrite Considerations: Date Folding
	Query Rewrite Considerations: Statistics

	Glossary
	Index

