Oracle9i OLAP

Developer’s Guide to the OLAP DML

Release 2 (9.2)

March 2002
Part No. A95298-01

ORACLE

Oracle9i OLAP Developer’s Guide to the OLAP DML, Release 2 (9.2)
Part No. A95298-01
Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, and SQL*Plus are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

SeNd US YOUT COMMENTES ...t sen sttt XV
=Y =0 =TT XVii
Y U Lo 1T=T o oSSR UOROPROTRPSRRR Xviii
(O] o T- 1o 2= 11 o] o FRT OSSOSO XViii
Related DOCUMENTALIONociciviii ittt ettt e e sttt e e st e s s bte s s sbbesssbtssesabaesssbasesabassssbanessransann XiX
(0701)V7=T o1 110] o 1T OSSPSR XX
Documentation ACCESSIDIIITYooiiiiii e e e e XXili
What's NeW in the OLAP DML? .ottt XXV
Oracle9i Release 2 (9.2) New Features in the OLAP DML........ccocooiiiiiiiiniene e XXVi

Part| Introduction

1 Basic Concepts

What 1S the OLAP DIML?.....oiiiiiee ittt bbbttt bbb s 1-2
ANAIYTIC WOTKSPACES.e ittt sttt ettt b e bbb b e bbb esee e 1-2
SQL and the OLAP DIML.....ccvciiiiiireiss st 1-3
The OLAP APl and the OLAP DML ...ttt 1-3

USING the OLAP DIML ..ottt bt bbbttt sb e e 1-3
How to Use the OLAP DML to ANalyzZe Dataccccceveeerieeeieisse e s 1-4
Creating an ANalytic WOIKSPACE.oiuiiiieiiiric ettt sttt s se s 1-4
Loading Data Into ANalytic WOIKSPACEScoiiiririiiieieieieieeetes et e 1-5

Temporary vs. Persistent ANalytic WOIrKSPACES........coviviiiriiiiiiiieeie e 1-5

Sharing Data IN ANalytic WOIKSPACESccuiveirererieserierieiesesese e ese s 1-5
Accessing a Workspace from OLAP WOrKSNEEL...........ccoi i 1-6
Procedures: How to Open OLAP WOIrKSNEELcccoiiiiiiiiiiee s 1-6
Establishing @ CONNECTIONcccoiiiiiicccec e ens 1-7
EXECULING COMMENTAScviiiiiiiieieeie ettt bbbttt b et sb et st se b e e et 1-8
Editing an OLAP DML PrOQramcccceiieiiieieiesise e sessesie e siesaesassessessessesssssessessssseseeseenes 1-8
(04 o1y T g To IR g = @ o] o1 =Tt 1 T o TS 1-9
Accessing a Workspace from SQL-Based APPlICAtioNScccoocoviiiininiiine e 1-9
UsSIiNg SQL SELECT StatemMENTS.....cc.cieieiecieecece et see e eresesse s ste e seenaenens 1-9
Using Embedded OLAP DML COMMANAScccovviieiiriierieiceeeeese e sresie e ssesseseeseeneens 1-10
Accessing a Workspace from a Java Application ... 1-10
O aTo IO I AN SV 1=1 =T - L - 1-10
Using Embedded OLAP DML COMMANAScccovvieiieriierieriieeeee s eresresiesresse e ssesseseesenseens 1-10

Defining and Working with Analytic Workspaces

Using the OLAP DML to Work with Analytic WOrkSpaces.........cc.ccocvvivvviienenieneneneseseenesenns 2-2
Current ANAlYTIC WOFPKSPEACEooveiviiiiie ettt sttt st sbe e sae e 2-2
How to Create An ANalytic WOIKSPACEcccivivieiciiiccsece s 2-3
How to Attach an Analytic WOIKSPACEccvciviviiie vttt 2-3
Specifying the Analytic Workspace Attachment Mode ... 2-4
Sharing ANalytic WOTKSPACESccviieieiiicire sttt s 2-4
How to Detach an ANalytic WOIKSPACEccvevvevicieiicecise s 2-5
How to Delete an ANalytic WOIKSPACEccviiiiiiiiiiie et e 2-5
Workspace Localization SETtINGS.......cocieieiiieire s 2-6

Attaching Multiple Analytic WOIrKSPACEScccviiiiieiesece s 2-6
QUAlITIEd ODJECE INAIMES ...ttt bbb e ee et 2-6
Multiple AUTOGO and PermissSion Programscccceiveieeiresinsesenesessesesesssssesesessessenees 2-7

Using Names and Aliases for Analytic WOIrKSPACEScccevveveirviiii s snees 2-7
WWOIKSPACE INBIMES ...ttt b et sb e et b e et s bt b e b eaeebese et eneeneebeene e 2-7
AT 0T 6] o T Lot A T LT TSR 2-8

Saving Analytic WOrkspace ChangeS.........ccccviiiiiiie it st re s 2-8
UPDATE COMMEANG......uiiiiitiiiitiieieieeiee ettt st se e be st ebe st esesbebesbeneeseeseeneeseanesseaneas 2-9
COMMIT COMIMANG ..ottt et ettt ettt et e bt e b et e sbebeabe e ane e 2-9

Effect of the ROLLBACK COMMANcoiiiiiiiiii ittt st s san s s s sane s s stan e e 2-10

Minimizing Analytic Workspace GroWEh..........ccccccveiiiiiie i 2-10
Executing Programs AutOMAtiCally ... 2-11
Program NAIMESottt b et be b e e b e s b et e ebe e b e saeenas 2-11
AUTOGO Program EXAMPIEccvcieeiieieise st se ettt 2-11
Adding Security to an ANalytic WOFKSPACE.........ccciiiiiiiiieie et 2-12
e g g TSIy o] I d 0o = Lo 2-12
Creating and Designing Permission ProgramS.........ccocccvevivrerinerieieseseseseeseesesessesessensens 2-13
Importing and Exporting WOrkspace ODjJECES ... 2-14
Obtaining Analytic Workspace INfOrmation..........ccccocvviiiviiciniecce e 2-15
Obtaining General Information About an Analytic Workspace.........ccoccocvvevviveieveininnnnns 2-15
Viewing Objects in an Analytic WOrKSPACEccoceiiriiiiiiiiiee s 2-16
Obtaining Information ADBOUt ODJECTS.........ccceieiecec e 2-17

Defining Data Objects

Overview: Defining Workspace ODBjJECTES.........civiieiiiceie s 3-2
Workspace Objects That YOU Can DefiNe........ccccveviiviiviniiieneese e 3-3

[1tz B Y 01 SRRV UPTUPTUPPRUSTPRUI 3-4
NS =T Lo - - T I/ o =L 3-4
Examples of Literal NUMEriC ValUES........c.ccccivieiireie et ens 3-5

TEXE DAL TYPIES -ttt ettt bttt sttt b e eb e bt ae e et e e ab e ebe e e e s heeb b e s be e st e eb e et e ebe e e e abeeneas 3-5
ESCAPE SEOUEINCESeoieiietieeiiee ettt ettt e e s te e s tesraesaees e te e e e nteeneesneaneesneeeenreeneens 3-6
Examples of Literal TeXt ValUES.......c.ccocoviieiiiie et ene s 3-7
BOOIEAN DALA TYPE ...ttt sttt ettt ettt eb ettt sb et s b e b e be st e b e neese et e ene et e ne e 3-7
DAt DALA TYPIES. . euieeieriieriesteee st ereesessee st e e stee e steeseeaseessease e eeaseessesseesaeareesteaneesteeseessensseneesseenees 3-7
(D= T o YT gTo I Tg g 1=Y o <Y o S 3-8
Determining What Dimensions t0 Define..........cccoiiiiii e 3-9
How Data For Simple Flat Dimensions IS STOredccocoovveveiieiniesinse e 3-10
Defining DIimMeNnSioN SUIMTOQAtES.........ccciiiiieieisesie e seie e ste e e re st s re e e s eneans 3-11
Differences Between Dimensions and Dimension SUrrogates..........c.cocevererereeneiieneneenens 3-12
(=Y] o YT g To =1 U o SRS 3-13
How Relations Are DIMENSIONEMcooiiiiiiiiieie e e 3-13
How Relation Data IS STOFed........cc.oiiiiiieeie et 3-14
Example: Relation Between TWO DIMENSIONS........ccccvciviiriiiiieieniessieesesese e e sae e es 3-15
EXample: SEIf-relationccooi i s 3-15

DefiNiNg Variables...... ..ot bbb bbbt 3-16

TYPES OF VANTADIES ...t ettt st r e en e neene e ren e eneenes 3-17
How Variable Data IS STOred.........ccoooiiiiiiiie et e 3-17
Defining Variables That Handle Sparse Data Efficiently..........cccccooiiiiiiiniiie e, 3-18
DefiNitioN: COMPOSITEcviiiicire et er e e e s e e resreneesreneens 3-18
Why You Should Use Named COMPOSITESc.oviiiiiiriienie et 3-19
HOW 10 USE COMPOSITES ...cvvevievieieee e sieste e sttt e eere et e et st sre et e sae e e aeseenseneenesnesnennens 3-19
Naming, Renaming, and Unnaming COMPOSITES........ccccvvvvrererererieieeieesese e seseeseeseeeens 3-20
Adding Data to a Variable That Uses @ COMPOSITEcccoririririiincieeseee e 3-20
Defining a Variable with a Single-Dimension COMPOSItE..........ccocvevvivrienieniese s 3-22
Defining Hierarchical Dimensions and Variables That Use Themccccccoovivivviiiniene, 3-22
Defining a Variable with a Hierarchical Dimension ... 3-23
Example: Variable with a Hierarchical DIimenSsioN...........ccccooieeieicinecie s 3-24
Defining Concat Dimensions and Variables That Use Them ..., 3-25
Example: Variable with a Concat DIiMeNnSiON ..o 3-26
Changing the Definition of an ODBJECt ... 3-27

4 Working with Expressions

vi

INtrOAUCING EXPIrESSIONS .. .cviiiieie ettt se e e e stesre s ae e e bese e e e e e aeneenserennens 4-2
Data TYPES Of EXPIESSIONS.cceiiieieiecee i se st ste s ese et ese et stesre e sae e e aeseeseaneenenrenens 4-2
How the Data Type of an Expression is Determined............ccocooviieneneniniensieineeene 4-2
Changing the Data Type of an EXPreSSiONccccvcvciveriseneiesse e e srenseens 4-3

L0 o] =1 (0] PR 4-3
SAVING N EXPIESSION ...viiiiiitiiei ettt sttt bbbt e et e et et et e e besbeebesbesbesbenbesbebeane e 4-4
Dimensionality Of EXPreSSIONScccciciiiieiciiece sttt snenne e nenes 4-5
Determining the Dimensions of an EXPreSSION........c.ccvvvvreririeeiesesenesieeeeseseseeseseeseseenens 4-5
How Dimension Status Affects the Results of EXPressions.........cccocvirieieneieinicciccee, 4-6
Specifying a Single Value for the Dimension of an EXPression..........ccovovvveivvivne e, 4-6
QUALITYING @ VAIIADIE ..ot r e 4-7
Replacing a DIimension in a Variable...........c.coii s 4-8
QUALITYING @ REIALIONoeiicicece e e re e et sreere e 4-9
QUALITYING @ DIMENSION ...ttt sttt st et et e s e reeneereenes 4-10
Using Ampersand Substitution With QDRSccccoiiiiiiiiiiie s 4-10
Using the QUAL Function to Specify @ QDRc.ccooveiiieieiisc e 4-10

Using Workspace ODJects in EXPreSSIONSccoviiiiiiiiieieieeieie et s 4-12

Using Dimensions or Dimension Surrogates in EXPresSions.........ocuvvvevereersesieseseniennns 4-12
Using ComMPOSIteS iN EXPreSSIONS ...c.oiuiiiiiiiiiiiciiiieie ettt 4-13
UsiNg Variables iN EXPIESSIONScccouiiiiiiriiiinie ettt sttt st s anas 4-13
Using Variables Defined with Composites in EXPreSSioNS.........ccocvvevveveeniesienenereerenennens 4-14
Default Behavior of Commands That Loop Over Variables.............cccocooiiiiiiiincne 4-14

UsiNg Relations 1N EXPrESSIONSccevirieieieieeesesestesiestesseseseessessesessessessessessessessesenssessasennes 4-15
UsSING FUNCLIONS IN EXPIESSIONSvoiveviiierieieseeteseseestesie st ereeessessessessessesse s ssenseseesesnsesenses 4-15
NUMEIIC EXPIESSTONS. ...ttt ettt sttt sttt s bbb bbb et bt b et e b e s e e st ebesbe b sbeneenea 4-15
AFTNMELIC OPEIALOISeviieeiceeeece ettt e et e besresresteste e e senaeeaneenens 4-16
MiIXiNG NUMETIC DALA TYPES. . cuveierieieieestesiesesteseseeste e aese e ere e s teste e sreseessesaeseensesenseeneasenns 4-17
Automatic Conversion of NUMEriC Data TYPES.....cceorierierirerie e s 4-17
Using Dimensions in Arithmetic EXPreSSiONS.........cociviviireieieeie s 4-18
Using Dates in Arithmetic EXPreSSIONS......cccvviicieieeecisese s e e sseneeens 4-18
Limitations of Floating Point Calculations ... 4-18
Controlling Errors DUring CalCulations...........cccveviiiiiiiniene e 4-19
L= S o] (= 1S1S] [0 TSRS . 4-20
Working with Dates in TeXt EXPreSSIONS.ccooiiiieiiiieeisese e 4-20
WOrking With NTEXT DAtcccccueiveiiieirieiisesese et sse s s ssessesaeneens 4-21

R 0T0] LoTo T T bt o] =11 T o TSR 4-21
Creating BoOIEAN EXPIESSIONScciiiiiiirieie ettt sttt s e e se s ebe e enesieseeseens 4-22
Comparing NA Values in Boolean EXPresSioNscccccoviiiiiieieneeiesiesie e sese e s 4-24
Controlling Errors When Comparing NUMEriC Data.........ccccovvieviinreieresieeiese e 4-24
Controlling Errors Due to Numerical PreciSion ... 4-25
Controlling Errors When Comparing Floating Point Numbers.............ccocoevvevernennen, 4-25
Controlling Errors When Comparing Different Numeric Data TYpesS.......c..ccccveveene. 4-25
Comparing DIMenSsionN VAIUES ..o e 4-26
(00T ga] o T T T To [I 1 (=SSR 4-27
CoMPAring TEXE DALA.......ccoviiiiieie ettt e seese e eenestestesreseesre e eneens 4-27
Comparing a Text Value to a Text Pattern ... 4-28
Comparing Text Literals t0 RelatioNS.........cccccvvviiiiveicisecises e 4-29

(Ofe] alo) dTo] g =L I o Td oL £=11S] o] o 1SS 4-29
SUDSTITULION EXPIrESSIONS. ...ttt eb ettt et e b e b e 4-30
WOTKING WItH INA VAIUES ..ottt e ettt st sttt sa e enaesenneaneas 4-32
Controlling how NA values are treated...........ccceveieiiieinsiesiesc s 4-32

Vii

Working with the NATRIGGER Property ..o 4-33

USING NASKIP ..ottt st st sa et ens e esa e s et e e seste et e besreseenteneeneeneens 4-33
USING NASKIPZ ..ottt sttt ss bt b et nae b s et ne s 4-34
USING NAFILLocviiiice sttt sttt en e n et n e 4-34

5 Populating Workspace Data Objects

Overview: Populating an Analytic WOIKSPACEcccceeuerieriirieieiise e enaere s 5-2
Maintaining Dimensions and COMPOSITESccccveieriieiereie e 5-3
How Maintaining a Dimension Affects Dimension Status..........c.ccoeoeiencieienncinecene, 5-4
Avoiding Deferred MainteNanCe.........cccvvviiiieiiiie et ere s 5-4
Adding Values t0 DIMENSIONS.......c.cciiieieieiiieise st sre e ne e ereenens 5-4
Updating Relations When Merging NewW ValUes ... 5-6
Deleting Values from DIMENSIONSccoviiriiiicicecice et sre e srenes 5-7
Deleting Values from Conjoint DIMENSIONSccceiiveiiieeiece e e enens 5-8
Changing the Position of DImMension ValUEs..........ccccoiiiiiiiiieieee e 5-8
Storing Dimension Values in SOrted Orderccocovvieierciei e 5-8
Maintaining Composites and Conjoint DIMENSIONScccccveeveieieiieeesinne e e seeseee s 5-9
MaintaiNniNng COMPOSITEScouiuiiiiiie ettt ettt bbb e b e 5-10
Maintaining Conjoint DIMENSIONScccciiiirireriereeie it ee et ens 5-10
Maintaining Concat DIMENSIONScccoiviieiiiiiie et ae e e neens 5-10
Assigning Values t0 Data ODJECTSccoiiiiiiieie e e 5-10
Using Objects in AsSigNmMent StatemMENTS........ccvviviivereiierieeeise e 5-11
How Values Are Assigned to Variables with COmposites.........ccococvevviviniicicie s 5-12
ASSIgNING Values t0 REIATIONScovoiiiieieie e e 5-14
AsSIgNING Values t0 DIMENSIONS........cciviiiiiriee ittt sttt e e ereenes 5-14
Assigning Values to Specific Cells of a Data Objectc.cccccveviieciiiiccee e 5-14
Calculating and ANAlYZIiNGg Datal.........cooucoiiiiiiiii et eee s 5-15

6 Selecting Data

viii

INtroducing DimMENSION STATUSccuiiiiiiiiieiee e bbb 6-2
Changing the Current Status LiSt........ccccciviieiiiiiniieiereese s 6-2
Changing the Default Status LiSt.......cccccooereieiieiceie e 6-2
Identifying and RetrieVing Status LiStScooioiiiiiiiiiieie et 6-3
Saving and Restoring DImMeNSIiON STAtUScccveveeieiceee e 6-4

Limiting to a Simple List OF ValUES........cccov v 6-4

Limiting Using a Boolean EXPreSSION.t e 6-5

How LIMIT Handles Boolean Multidimensional EXPressions........cc.ococvvvereereenienienennnns 6-6
Limiting to Values That Match an EXPresSion ... 6-8
Limiting to the Top or BOttOM VaAlUES.........ccccoiiiiii e e 6-9
Limiting to the Values of a Related DIimMenSioN.........cccccoveviiieieeiecn e 6-11
How Limiting to a Related Dimension Determinges Statusccccovveenerencienene e 6-12
Suppressing the Sort When Limiting to a Related DIimensioncccccoevvvevivveievecveeenen, 6-12
Limiting Based on the Position of a Value in a DIMeNSIONcccccovvvevescnn e 6-12
Limiting Using Value Position in itsS DIMEeNSIONc.cccciiiiiiniiin e 6-12
Limiting Using Value Position in an Unrelated DimMensionccccocvvivvivnenieneseneeneenene 6-13
Limiting Based on a Relationship Within a Hierarchycccccoovvviiiiiinninence e 6-13
Differences Between HIERARCHY and DESCENDANTS Keywordsccoccoveieiinennns 6-14
Limiting Composites and Conjoint DIMENSIONScccovevvvveicieneee s 6-18
Ways of Limiting Conjoint DIMENSIONSc.cccvieiiiiese e 6-19
Limiting Conjoint Dimensions Using Value Combinations............c.ccocoeniiiiiiciniciicinne. 6-19
Limiting Conjoint Dimensions Using Base Dimension Valuescc.ccccovveveveiecieannne, 6-20
Limiting CoNCat DIMENSIONScoveiiieiiecesese sttt re sttt et e e e na e e eneenas 6-20
WOrKing WIth NUT STAtUSco.oiiii et e 6-21
Managing NUll Status iN @ Programccoeieiieiiie ettt 6-21
Errors When Limiting Status to a NUI ValUeccccooviiieiiicece e 6-21
WOrKING WILh ValUBSELS.......couiiiiiiee et ettt sttt s eas 6-22
Creating @ VAIUBSELcvoiiecc et sttt s e e e et e be s be st e eereane e 6-22
Limiting USING @ VAIUESEL.......cooiiieieiece ettt nenre e 6-23
Changing the Values 0f @ ValUESEL ..o e 6-24
Identifying and Retrieving the Values in a Valueset............ccooeviveiivicin s 6-25
Retrieving the Values in @ ValUESEL ..o 6-25
Retrieving the Dimension Positions of Values in a Valueset............ccccooviiincicnnee. 6-25

Part Il Applications Development

7 Developing Programs

Introduction t0 OLAP DIML PrOgramiscccoeieiiieiie et sbe st sbe e nneneas 7-2
EXECULING PrOGIAMS ..oviiiieiiec ettt ettt s ae st sttt ne e e e ere et ne e e 7-2
Executing User-Defined FUNCLIONS ..o e s sne e 7-3

Defining and Editing PrOgramsottt st 7-3

Formatting Guidelines for EAiting Programs..........cccoceieiiieiiie s seesie e 7-4
Using Variables 1N PrOGIaIMS ..ottt e bbb b e 7-4
Global Versus Modular Design APPrOaChESccciiiiiiieie et 7-5
Defining Temporary Variables ..o 7-5
Defining LOcal Variables...........ooi i 7-6

L ST o AN o 10 [=T L RS SS 7-7
Using the ARGUMENT COMMANGc..ooviiiiieiiiine v e et sannn s 7-7
USING MUILIPIE AFQUIMENTS ...ttt ettt bbbt see e 7-8
Passing Arguments as Text with Ampersand Substitutioncccccoovivivvcicici e, 7-9
Passing Object Names and KeYWOIdS.........cccviviiiiieieicneieie e eneenaens 7-11
Writing User-Defined FUNCLIONS. ..o 7-11
Data Type of a User-Defined FUNCLIONccooov i 7-12
Arguments in a User-Defined FUNCLIONc.coviv i 7-12
Controlling the FIOW Of EXECULIONcoiiiiiiiie et 7-14
Guidelines for Constructing @ Labelc.ccoviviiiiiiiicseeceer e 7-14
Alternatives to the GOTO COMMANG.........ccoiiiiiiiiiie e 7-15

(BT TE=Toi AT o 1o I @ 10 1 o] U SRRSO 7-17
(0T o (0T [aTo [l =3 o] g |V, (=TT Vo =T 7-19
Preserving the Session ENVIFONMENTcoviiiiiiici st nn s 7-19
Changing the Program ENVIFONMENT ..ottt e 7-19
Ways to Save and Restore ENVIFONMENTScccoviviiiiieicieeece s 7-20
Saving the Status of a Dimension or the Value of an Option.........c.ccccceeeveiivvcivcennns 7-20

Saving Several Values @t ONCE........c.oiiiiiiiieieie et 7-21

O Lol Y WY - U T 7-21
Using CONTEXT to Save Several Values at ONCec.ccvcoveiveiiineeinnnsiesesese s seeneaneas 7-22

[F=Ta o T o T =T g o] £ S PRTTS 7-23
HOW AN Error IS SIignaled ..ot 7-23

[[LYY N o I = o] g FS I o] o =T S 7-23
Handling Errors While Saving the Session ENVIronmMent............ccccoeoneeniennensnicnenennns 7-23
SUPPIESSING EFTOr IMBSSAQES .. e.vevieverviriesieteeisieetesie s e ste et stes e sae e eseasa e e sneesesteseesaeseeseeseenseseenes 7-24
Identifying the Error That OCCUITEdcccociiiiieiicece et 7-24
Creating YOUr OWN Error MESSA0EScviviiiiieirieisieee ettt e 7-25

Handling Errors in Nested ProgramsS.........ccoccveveieieeiii et sesie e sasa e sresnesnens 7-26

8

9

COMPITING PrOGIaMS ...ttt b et ettt b e s b e et st s et bbb s e e e 7-28

Finding Out If a Program Has Been Compiled..........ccocoveieiiicniesic e 7-29
Programming Methods That Prevent Compilation..............ccociiiiiiiniic e 7-29
Testing and Debugging PrOgramMs ...t e e 7-29
Generating DiagnNOStiC MESSAGESccueiveivirierierieieieeeiese e e e sre e seeseesteseeseesseseesesseesesreseesnens 7-30
Identifying Bad Lines Of COUE ..o 7-30
Sending Output to a Debugging File ..o 7-31
Creating a debugging ilccovoieicicr s 7-31
Specifying the contents of the debugging file ... 7-31

Working with Models

Using Models to CalCulate Data ...t e 8-2
How Dimension Values Are Treated ina Model............ccooviiiiiniiniinn e 8-3
Creating a Nested Hierarchy of MOAEIlS ..o 8-4
Working with the INCLUDE COMMANGcooiiiiiiiiieieee et 8-5
Basic Modeling COMMEANAS.........coviiieiiece sttt ene e neenesreene e 8-5
Writing EQUAtions iN @ MOAEL...........cccvieiiicccce et 8-6
Writing DIMENSION and INCLUDE CommMAaNdScccooiriiiniiiineeesene e 8-6
(070 a o] o X1 FTaTo =T 1Y/ (o o 1= SRS 8-7
Y L] o [0 =1 Lo Tod <SPPSR 8-8
STEP BIOCKS ...ttt bbbt bbbt b e bbb bbbt neereane b 8-8
SIMUITANEOUS BIOCKSeiiiieiiciice bbb 8-9
L L YT Yo =T 1Y/ o o 1= LSS 8-9
Using Data from Past and Future Time Periodsccoceriiieiieinieniscnee e 8-10
Solving SIMUltaneous EQUAtIONS...........ccviiiiiire e ena e enens 8-10
Debugging @ IMOTEL.........ccoiiiiieec et a e reens 8-11
Modeling for MUltiple SCENAITOSco.oiiiiee e s 8-12
Building a Scenario MOENccocuiiiiicece e et 8-12

Allocating Data

INErodUCtion tO ATOCALION........cviiciic bbbt 9-2
Preparing for an AHOCAtIONc.ccoiii s eereere e ene s 9-5
Creating an Aggregation Map for AHOCAtION. ... 9-5
Using the Allocation Operators and ArgUMENTS........cccoverviieieienieee s 9-7

Using the HEVEN and MAX Operators and the ADD Argumentcccoeveveveveineeenenns 9-8

Xi

Using the COPY Operator and the PROTECT ArgumEeNt.........ccccooiieiiienieneeieiesese e 9-10

Using the HFIRST and HLAST OPEIatorS........ccccveivieeiereiesinieseseesieseeseseeesessessesseseessessens 9-13

Using the PROPORTIONAL OPEIAtOrccuciiiiiiiieiieeii sttt 9-15
Part [l Analytic Workspace Management

10 Working with Relational Tables

Issuing SQL Statements Through the OLAP DML.......ccccooiiiiiiiiieeee e 10-2
RIUT o] olo] =T IO] IS - 1 (=] g =T o | £ 10-2
Unsupported SQL StateMENTScccvieiiieeiecece e 10-2

Creating an Analytic Workspace from Relational Tables ... 10-3
Process: Designing and Defining an Analytic Workspace to Hold Relational Data 10-3
Process: Writing Programs that Populate Analytic Workspaces with Relational Data... 10-4
(B LCTol U T g To - W O U1 Yo OSSO RSOR PR R 10-5

Example: DeClaring @ CUISONccvcviiiiieriesesee e esestesesse st saenseneeseeneanens 10-6
Using Variables in the WHERE Clause of the SELECT Statementcccceevvvvene. 10-6
Using Conjunctions in @ WHERE ClaUSe..........cccoiiiiiiiiiiie e 10-7
(@] 01T T aTo - WO U1 T TS 10-8
Importing and Fetching Relational Table Data into Analytic Workspace Objects 10-8
Example: Copying Relational Table Data into Analytic Workspace Objects 10-11
(04 L0171 To I W @015 S 10-13
Cleaning UpP the SQL CUISOIScccviieiiieiisieie e eiee s stesesee e ste e saesaesaesaesaesessesesnessessesnens 10-14

Example: Creating an Analytic Workspace from Sales History Tables..........cc.ccocoonenneee. 10-14
Designing and Defining an Analytic Workspace for Sales History Data..............c.c.c...... 10-15
Populating Analytic Workspace Objects with Sales History Data...........cc.ccoceceevverveeennnn 10-19

Writing Data from Analytic Workspace Objects into Relational Tables.............cccccocee 10-28
Using SQL PREPARE and SQL EXECUTEccooiiiiiiisincsie sttt 10-29
Performing @ DIreCt INSEIT........cocviiieveeceeee e re e s ens 10-29
Inserting Workspace Data into Relational Tables: Example ... 10-29
Conditionally Updating a Relational Table ..o 10-31

Using Stored Procedures and TrigQErS. ..o e sesie e se e e st se s re e s ssesannenns 10-32
Executing @ StOred PrOCEAUIEooiiiiieieeeete ettt s 10-33

(01 1=Tod 14T g Vo I (] =L o =SS S T 10-34
SQLCODE OPtION...c.iitiiiiiiiieiesieie ettt sttt bbbttt et n e e n e e 10-34
SQLERRM OPLION w.viiiiiiiiitiseisess ettt bbbttt st b et st en s 10-34

Xii

11

12

SQLMESSAGES OPTION ..otttk b s eb e snere s 10-35

Reading Data from Files
Introducing Data-Reading PrOgramiS.. ...ttt 11-2
== o [Vo T T TSP 11-3
Creating a Program t0 REAd Datacccooiiiiiiieiiiiieie ettt 114
Specifying File Names in the OLAP DIML ... 114
Reading Data from FIlES.........cooi it sreens 11-5
Reading Structured PRIN FIlES ..o s 11-6
Reading and Maintaining DImMension ValUES..........ccccccvveriiiiciesisin s 11-7
Adding New Dimension Values from a Data File..........ccccooviveiiiininiencece e 11-9
Reading Dimension Values by POSItION ... 11-10
The USE Of COMPOSITESuvoviiiiieiiiieseieee et s era e e enaere e sresre e e nnens 11-10
Reading and Maintaining Conjoint DIMENSIONScccccoveieierieeeinn e sese e s 11-10
Translating Coded DIimension VaAlUES...........c.cciiiiiiienine e 11-11
Processing INPUE DALaA........ccceieiiieeieiese et sre sttt e e aeneeneeneenes 11-14
Specifying a Conversion TYPe fOr Datacccevirieeeeise e ere s 11-15
Processing Records INAividually ... s 11-15
Reading DifferenNt RECOITSccueiiiieiieiece ettt et nanes 11-17
Processing Several Values for One Variable............ccccco i 11-17
Aggregating Data
About Aggregating Detail Datacccccveiiieiiiie e st 12-2
Functionality Available With AGGREGATE ..o 12-2
Process OVErvieW: AQOregationcouciviveiriiieiise e e e sre e saeseess e seseeneens 12-4
Preliminary Steps Prior t0 AgQQregationcccoviviiieienese e 12-4
Identifying the Parent and Level Relationscccco oo 12-4
Verifying That All Composites Use BTREE INAEXES.......ccccveviveerivnesineseseeseeesseee e 12-6
Creating an Aggregation IMaPcccccveieeieieiece st nae e ereeneens 12-6
How to Define an Aggmap ODJECT ..o e 12-7
How to Add Contents to an Aggmap ODBJECTccccv e 12-7
Contents of an AQQregation IMapcoueiveieiriiere e et se e neens 12-9
How to Compile an Aggregation IMap ... 12-10
Aggregating Multiple Variables with a Single Command............cccccocevvivninivveicnccennn, 12-11

Xiii

About the RELATION COMMANG......cccooiiiiiiiiie ettt tae s st e e st e e s s be e s srea e e sares 12-12

Specifying an Aggregation Methodcccovviriierin i e 12-14
Selecting Data FOr AQQregation..........coouiiiiiiiiene et sbe bbb eeneas 12-16
Caching RUNTIME AQQIEgAtescooiiiiiiiiiiite ettt se b sneene s 12-17
Aggregating Non-Hierarchical Dataccocveivviiiiiniieieree e 12-18
How to Generate Precalculated Data ... e 12-20
Effects Of DIMENSION STATUSccoiiiiiiiiiee e 12-21
V[0 a1 L (ol T aTo T d 0o | =17 S 12-21
How to Calculate Data at RUNTIME ... e 12-22
Setting Up Calculation 0N the FIY ... 12-22
Adding the SNATRIGGER Property to a Variable...........ccooeiiiiiiiieee, 12-23
Creating CUSTOM AQQIrEQALESc..iiiiiieieie ettt bbbttt be et besbesbesbesbe e e sbe e annaneas 12-23
Balancing Precalculated and Runtime Aggregationcccocevvrveeeerene s 12-24
Selecting Dimensions for Runtime Calculation.............cccoooviiiiioiiniin e 12-26
Selecting Levels for Runtime Calculation ... 12-27
Performing Partial AQQregationscccoooiiieieice ettt 12-27
Aggregation Changes That Cause Problemscccccveviiiiiiiieiiie e 12-28
Incremental Data LOAAINGccoouiiiiiiiii e ea e 12-28
Problem: PRECOMPUTE Status List IS INQCCUratecoccvrvirveinencinncnieenns 12-29
Solution: Regenerate the PRECOMPUTE Status LiSt.........cccccoivviviineninvenineeieinsnennns 12-29

Using a Data-Dependent PRECOMPUTE ClaUSE........ccccoiiiiiiiinie e 12-29
Problem: Values of the Limit Clause Vary With Each Data Update..........c....c.......... 12-30
Solution: Maintain 8 ValUESEL ..ot 12-30
Changing @ HIBIArCRYooiiiie e bbb 12-32
Problem: Previously Aggregated Data is INCOITect.........coooveivvviincieiisie s seeenenen 12-33
Solution: Re-Aggregate Changed Branches..........cccccocvvvveieiiincise s 12-33

How to Aggregate Branches of a Hierarchy ..., 12-34
Combining AGGREGATE with Forecasts and Programs...........ccccccvvvieieneineienesesiese e 12-34
When to Use Multiple Aggregation MapsS........ccccovvereriieneiieieeieiesese e saesse s 12-35
Problem: Different Aggregation Maps Generate Different Status Lists.................... 12-35
Solution: Create a Separate AGGMAP for the AGGREGATE Function.................... 12-36

Index

Xiv

Send Us Your Comments

Oracle9i OLAP Developer’s Guide to the OLAP DML, Release 2 (9.2)
Part No. A95298-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: i nf odev_us@r acl e. com
FAX: 781-238-9850 Attn: Oracle OLAP
Postal service:

Oracle Corporation

Oracle OLAP Documentation

10 Van de Graaff Drive

Burlington, MA 01803

US.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

Preface

The Oracle9i OLAP Developer’s Guide to the OLAP DML provides an overview of the
programming environment, describes workspace objects, and explains how to use
the features of the OLAP DML. It also describes how to write and debug programs
and illustrates programming strategies for accessing and working with data.

Note: All of the OLAP DML commands discussed in this guide
are explained fully in the Oracle9i OLAP DML Reference help. For
detailed information about a specific command, search for it by
name in the reference.

This preface contains these topics:
« Audience

« Organization

« Related Documentation

« Conventions

« Documentation Accessibility

XVii

Audience

Oracle9i OLAP Developer’s Guide to the OLAP DML is intended for users who
perform the following tasks:

= Access multidimensional data
« Perform analysis using the OLAP DML
« Manage analytic workspaces

To use this document, previous programming experience is helpful but not
necessary.

Organization

Xviii

This document contains:
Part I, Introduction

Chapter 1, "Basic Concepts"

Introduces the OLAP data manipulation language and describes various methods
of accessing it.

Chapter 2, "Defining and Working with Analytic Workspaces"

Explains how to create new analytic workspaces and modify existing ones. Also
describes initialization programs and password protection.

Chapter 3, "Defining Data Objects"

Describes the various types of workspace objects and how to create them. Defines
workspace data types.

Chapter 4, "Working with Expressions™
Explains how to define and use expressions.

Chapter 5, "Populating Workspace Data Objects"

Explains how to add, delete, and reorder dimension members and assign values to
data objects.

Chapter 6, "Selecting Data"
Explains how to select data for analysis or display.

Part Il, Applications Development

Chapter 7, "Developing Programs"
Explains how to create, modify, compile, and run DML stored procedures.

Chapter 8, "Working with Models"
Explains how to create, compile, and run a series of equations.

Chapter 9, "Allocating Data"
Explains how to distribute data from parents to children in one or more dimensions.

Part 1ll, Analytic Workspace Management

Chapter 10, "Working with Relational Tables"

Explains how to fetch data from relational tables into workspace objects, and how to
insert data from workspace objects into relational tables.

Chapter 11, "Reading Data from Files"
Explains how to copy data from flat files into workspace objects.

Chapter 12, "Aggregating Data"
Explains how to roll up low-level data.

Related Documentation
For more information, see these Oracle resources:
« Oracle9i OLAP DML Reference help
= Oracle9i OLAP User’s Guide
« Oracle9i OLAP Developer’s Guide to the OLAP API
= Oracle9i OLAP API Javadoc
« Oracle9i Data Warehousing Guide
In North America, printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. cont

XiX

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

ht t p: / / waw or acl ebookshop. cond
Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. com adm n/ account / nenber shi p. ht m
If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. com docs/ i ndex. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning Example

Bold

XX

Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

| over case
italic
nonospace

(fixed-width)

font

elements include parameters, privileges, .
datatypes, RMAN keywords, SQL g&%‘?g&gﬁ#gﬂ?e database by using the
keywords, SQL*Plus or utility commands, :

packages and methods, as well as Query the TABLE_NAMEolumn in the USER _
system-supplied column names, database TABLESdata dictionary view.

?;‘ee;ts and structures, usernames, and o yhe pBMS_STATSENERATE_STATS
) procedure.

Lowercase monospace typeface indicates Enter sqlplus to open SQL*Plus.
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database Back up the datafiles and control files in the
names, net service names, and connect /disk1/oracle/dbs directory.
identifiers, as well as user-supplied
database objects and structures, column - . .
names, packages and classes, usernames ﬁng location_id cot:ILJmns are in the
and roles, program units, and parameter r.departments table.

values. Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

The password is specified in the orapwd file.

The department_id , department_name ,

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. Connect as oe user.

Enter these elements as shown. The JRepUtil class implements these

methods.

Lowercase italic monospace font You can specify the par al | el _cl ause.

represents placeholders or variables. Run of d_rel ease.SQL where ol d_r el ease

refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE,

The following table describes typographic conventions used in code examples and
provides examples of their use.

XXi

Convention

Meaning

Example

[]

{}

Other notation

Italics

UPPERCASE

XXii

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of
which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

DECIMAL (digits [, precision])

{ ENABLE | DI SABLE}

{ENABLE | DI SABLE}
[COMPRESS | NOCOVPRESS]

CREATE TABLE ... AS subquery;

SELECT col 1,
enpl oyees;

col2, ... , coln FROM

SQA> SHECT NAME FROM VBDATAH LE,
NAME

/sl /dbs/tbs_01. dbf
/ fs1/dbs/ t bs_02. dbf

} fsl/dbs/tbs_09. dbf

9 rows sel ected

NUMBER(11, 2) ;

CONSTANT NUMBER(4) := 3;

acct bal
acct

CONNECT SYSTEM syst em passwor d
DB NAME = dat abase_nane

SELECT | ast _nane,
enpl oyees;

SELECT * FROM USER TABLES;
DROP TABLE hr. enpl oyees;

enpl oyee_id FROM

Convention

Meaning Example

| oner case

Lowercase typeface indicates SELECT | ast _name, enpl oyee_id FROM
programmatic elements that you supply. enpl oyees;

For example, lowercase indicates names
of tables, columns, or files. sql plus hr/hr
Note: Some programmatic elements use a (REATE USER m ones | CENTI FI ED BY 1y3MUB;
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //waw or acl e. comd accessi bi | ity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

XXiii

XXiV

What's New in the OLAP DML?

Oraclei Release 2 provides the OLAP data manipulation language (DML) for
multidimensional analysis within the Oracle database. With the OLAP option
installed, you can execute DML commands for manipulating data in an analytic
workspace. Users of Oracle Express Server release 6.3 will find that there are some
new and changed features in the OLAP DML.

See Also:

« Oracle9i OLAP User’s Guide for general information about the
OLAP option in Release 2 and for specific differences between
Express Server and Oracle OLAP.

« Oracle9i OLAP DML Reference help for lists of added, deleted,
renamed, and significantly changed commands in the OLAP
DML.

The following section describes the new features in Oracle9i OLAP:

« Oracle9i Release 2 (9.2) New Features in the OLAP DML

XXV

Oracle9i Release 2 (9.2) New Features in the OLAP DML

The following list briefly describes the new features of the OLAP DML.

XXVi

The DATABASE command and related commands have been renamed.

Because the OLAP engine runs in the Oracle kernel and analytic workspaces are
stored in relational tables, there is no separate file that stores an analytic
workspace. This change is reflected in new names and new functionality for
existing DML commands.

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

Access to the OLAP DML is through SQL and the OLAP API, not through
XCA, SNAPI, or ODBC.

XCA, SNAPI, and ODBC connections are no longer supported, and the related
commands have been removed. Note that session sharing is not supported in
the new access methods.

See Also: The Oracle9i OLAP User’s Guide for information about
SQL access and the Oracle9i OLAP Developer’s Guide to the OLAP
API

In order to save changes to an analytic workspace, you must use both the
UPDATE and COMMIT commands.

The UPDATE command moves changes from a temporary area to the dataase
table in which the workspace is stored. The changes are not saved until you
execute a COMM T command, either from the OLAP DML or from SQL.

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"
Custom aggregates are supported.

Virtual dimension members can be defined at runtime using the new
AGGREGATI ON command within a MODEL object. The AGGREGATE function then
calculates data for the custom aggregate the same as any other aggregate.

See Also: Chapter 12, "Aggregating Data"

Models can be used to aggregate data over nonhierarchical dimensions.

A MODEL command in an aggregation map executes a model either as a data
maintenance step (using the AGGREGATE command) or at runtime (using the
AGGREGATE function).

See Also: Chapter 12, "Aggregating Data"

Allocation of data over a hierarchy is supported.

A new ALLOCATE command provides support for planning applications, such
as enterprise budgeting and demand planning systems, which need to allocate
data to lower levels of a hierarchy based on sophisticated allocation rules.

See Also: Chapter 9, "Allocating Data"
SQL IMPORT command provides a high performance method of copying
data from database tables into an analytic workspace.

The SQL | MPORT command loads fact data into workspace objects more quickly
than an SQL FETCH statement.

See Also: Chapter 10, "Working with Relational Tables"

SQL PREPARE command provides high performance method of loading
workspace data into database tables.

The SQL PREPARE command includes new options that you can use to specify
direct-path insertion of analytic workspace data into relational tables.

See Also: Chapter 10, "Working with Relational Tables"

Concat dimensions join values from multiple dimensions into one
dimension.

In defining a concat dimension, you can combine the values of two or more
dimensions into one dimension. You can use a concat dimension to map
multidimensional structures to relational schemas and thereby improve data
loading from relational sources. You can also use concat dimensions in
performing custom aggregations and other customized operations.

See Also: Chapter 3, "Defining Data Objects" and Chapter 10,
"Working with Relational Tables"

XXVii

« NUMBER dimensions store numeric values other than ordinal integers.

The Oracle OLAP DML has a new NUMBER data type that is the equivalent of
the NUMBER data type in the relational database. You can define a NUVBER
dimension that has NUMBER values. Oracle OLAP always interprets the values
of a NUMBER dimension as dimension values and not as ordinal position values.
You can use a NUMBER dimension to represent a series of unique numeric
values, such as a surrogate key column in a relational database table.

See Also: Chapter 3, "Defining Data Objects"

« Dimension surrogates provide alternative labels for dimension values.

A dimension surrogate is a new type of DML object. You define a dimension
surrogate based on a dimension, but the surrogate can be of a different data
type than its dimension. The surrogate has the same number of positions as the
dimension. You assign values to a surrogate as you would to a variable. You can
use a NUMBER dimension and a dimension surrogate to load surrogate key
values from a relational database into an analytic workspace, and then use
those key values to load data from the relational fact table or tables into
multidimensional structures.

See Also: Chapter 3, "Defining Data Objects"

« Qualified object names allow you to reference identically named objects in
more than one attached analytic workspace.

In OLAP DML commands, you can specify an object using its qualified object
name, which includes not only the name of the object but also the name of the
analytic workspace in which the object resides.

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

« Full names for analytic workspaces allow you to access workspaces that
belong to another user.

In OLAP DML commands, you can specify an analytic workspace that is in
another user’s shema by using the full name of the workspace. The full name
includes the schema name.

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

XXViii

Workspace aliases make possible short and generic names for analytic
workspaces.

Workspace aliases allow you to reference an analytic workspace using a name
that is easier to type than its full name. Aliases also let you write generic code
that includes a reference to a workspace but does not hard-code its name.

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

Directory aliases provide the mechanism through which OLAP DML
commands can access files on disk.

When you read from or write to a disk file using the OLAP DML, you do not
directly specify the directory in which the file resides. Instead, you specify a
directory alias that has been set up for your use by the Oracle database
administrator.

See Also: Chapter 11, "Reading Data from Files" and the Oracle9i
OLAP User’s Guide

The new NTEXT data type can hold data from NCHAR and NVARCHAR2
columns in the database.

All NTEXT values are encoded in the UTF8 Unicode transformation format.

See Also: Chapter 3, "Defining Data Objects"

The default character set for Oracle OLAP is the database character set.

Oracle OLAP no longer has a configuration setting that specifies the default
character set. The Oracle OLAP default is the same as the databse character set.

Oracle OLAP NLS parameter settings are coordinated with the settings for
the database.

All Oracle OLAP NLS settings (such as NLS DATE FORMAT and NLS
LANGUAGE) reflect the session-wide NLS parameter settings. If you set the NLS
options in Oracle OLAP, you change your session-wide NLS parameter settings.

See Also: The NLS options in the Oracle9i OLAP DML Reference
help

XXiX

XXX

The DECIMALCHARS, THOUSANDSCHARS, YESSPELL, and NOSPELL
options are read-only.

The values of these options always mirror the current session-wide NLS
parameter settings. You cannot change these settings by changing the values of
the Oracle OLAP options.

The commands that gave access to operating system activities are no longer
supported

To be compatible with Oracle database conventions, Oracle OLAP does not
provide direct access to system-level information and commands. Therefore, the
SYSI NFOfunction has fewer keywords, and commands such as CHDI R,

CHDRI VE, MKDI R, and SHELL have been removed. In addition, EXTCALL
objects are no longer supported.

See Also: The list of deleted commands in the Oracle9i OLAP
DML Reference help

In-place variables are no longer supported

Because analytic workspaces are stored in database tables, in-place variable
storage is no longer applicable.

Interactive debugging is not supported.

You cannot use the TRACE and WATCH commands for interactive debugging in
OLAP Worksheet, but you can use PRGTRACE, MODTRACE, and DBGOUTFI LE to
record the progress of your programs and models.

See Also: Chapter 7, "Developing Programs" and Chapter 8,
"Working with Models"

Performance statistics are available through relational views, instead of
OLAP DML commands

The DGCART command and function as well as the CACHEHI TS, CACHEM SSES,
and CACHETRI ES options have been removed. However, you can use OLAP
dynamic performance views to monitor performance.

See Also: The Oracle9i OLAP User’s Guide

Forecasting capabilities have been enhanced with the addition of multi-cycle
periodicity.

The FCSET command allows for multi-cycle periodicity in the forcasts created
with FCOPEN, FCCLGSE, and FCEXEC.

See Also: The FCOPEN, FCCLOSE, FCEXEC, FCQUERY, and FCSET
commands in the Oracle9i OLAP DML Reference help

Stripping of programs is no longer supported.

The STRI P command has been removed. Use the HI DE command instead. In
previous releases, programs were stripped of their definitions in an analytic
workspace file before it was delivered as part of an application. Thus, only
compiled code was delivered. Now, analytic workspaces are delivered as EIF
files, which contain only definitions and cannot contain compiled code. In this
new context, stripped programs would not be executable.

XXXI

XXXil

Part |

Introduction

Part | describes the basic features of the OLAP DML.

It contains the following chapters:

Chapter 1, "
Chapter 2, "
Chapter 3, "
Chapter 4, "
Chapter 5, "
Chapter 6, "

Basic Concepts"

Defining and Working with Analytic Workspaces"
Defining Data Objects"

Working with Expressions"

Populating Workspace Data Objects"

Selecting Data"

1

Basic Concepts

This chapter provides an overview of the basic concepts that you should
understand before you begin programming in the OLAP DML. It includes the
following topics:

What Is the OLAP DML?

Using the OLAP DML

Accessing a Workspace from OLAP Worksheet
Accessing a Workspace from SQL-Based Applications

Accessing a Workspace from a Java Application

Basic Concepts 1-1

What Is the OLAP DML?

What Is the OLAP DML?

The OLAP DML is a data manipulation language. You can use DML commands and
functions to perform complex analysis of data. You can also write programs that
contain DML commands and functions.

The basic syntactic units of the OLAP DML are:
« Commands that initiate actions
=« Functions that initiate actions and return a value

« Options to which you assign a value and that can influence the analytic
workspace processing environment in various ways

OLAP DML commands, functions, and options are collectively referred to as
commands. This guide introduces many of these commands. For the complete
syntax for each command, usage notes, and examples, consult in the Oracle9i OLAP
DML Reference help.

The purpose of the OLAP DML is to enable application developers to extend the
analytical capabilities of querying languages such as SQL and the OLAP API.

To describe the purpose of the OLAP DML, it is important to discuss a few
important concepts such as:

« Analytic workspaces
« The relationship of SQL to the OLAP DML
« The relationship of the OLAP API to the OLAP DML

Analytic Workspaces

An analytic workspace is a multidimensional data source. It may be temporary (that
is, for the life of the session), or it may be persistent. When an analytic workspace is
persisted, the data is stored as LOBs in relational tables.

The multidimensional model of the analytic workspace is designed to support rapid
and advanced calculations. Analytic workspaces also provide an alternative to
materialized views as a means of storing aggregate data.

An application can access data that resides in an analytic workspace in either of two
ways. One way is through PL/SQL packages that are provided by Oracle for access
to analytic workspace data. The other way is through the Oracle OLAP API, which
is a Java application programming interface. Both the PL/SQL packages and the

1-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the OLAP DML

OLAP API provide ways to explicitly execute OLAP DML commands and
programs.

SQL and the OLAP DML

SQL table functions can take a set of rows as input and produce a set of rows as
output that can be queried like a physical database table. Oracle provides PL/SQL
packages that use table functions to create views of multidimensional data residing
in an analytic workspace. SQL applications can access these views. Thus, the
calculation engine and analytic workspace data are accessible to SQL, making
analytic and predictive functions available to SQL-based applications. SQL
applications can connect to the database using either the Oracle Call Interface (OCI)
or Java Database Connectivity (JDBC).

In addition to using PL/SQL procedures for accessing analytic workspace data as
SQL views, application programmers can use the Oracle OLAP packages to directly
execute OLAP DML commands and return the results to their applications.

The OLAP APl and the OLAP DML

Java programs using the OLAP API can access data stored either in SQL tables or in
analytic workspaces. The OLAP API provides a wide variety of analytic functions
that allow the application to derive calculated measures from the data.

In some cases, however, the OLAP API does not provide the means to calculate data
needed by an application. Examples include forecasts, solving a model, some types
of consolidations (aggregations), and allocations. In these cases, you can directly
execute OLAP DML commands from within the OLAP API to calculate this data
within an analytic workspace.

Using the OLAP DML

The following are some situations in which you might use the OLAP DML.:

=« When you need to calculate data that cannot be calculated as part of your data
warehouse extraction, transformation, and load (ETL) process or by using the
Java OLAP API.

= When your application needs to perform and persist various calculations, but
you do not want to immediately commit this calculation in SQL tables.

=« When you want to manipulate data that is stored in an analytic workspace.

Basic Concepts 1-3

Using the OLAP DML

The most common types of calculations that the OLAP DML is used for include:
« Forecasts

« Models (a group of calculations in which the results of one calculation are used
as input to another calculation)

« Allocations (a “reverse aggregation” in which you distribute data to lower
levels based on a particular distribution scheme)

« Some types of non-additive aggregations (consolidations), such as hierarchical
weighted averages

In addition, the OLAP DML can be used when you want to perform calculations
that are not easily accomplished in the ETL process or by using the OLAP API.

You can commit data to the analytic workspace without committing it to SQL tables.
This is very useful for work in process. For example, you might have a forecasting
application where you want to allow users to save personal forecasts and reuse
them during a later session, but you do not want users to commit the forecast to the
SQL tables.

How to Use the OLAP DML to Analyze Data
To use the OLAP DML, you:

1. Create an analytic workspace.

2. Define data objects within the analytic workspace.

3. Load data into these objects.

4. Define and execute OLAP DML commands and programs.

After you use the OLAP DML to analyze data, you can then:

« View data in an analytic workspace using the OLAP API or SQL.
« Write data to SQL tables.

Creating an Analytic Workspace
You can create an analytic workspace with a command such as the following:

AW CREATE sal esf or ecast

This command creates a new and empty analytic workspace named
sal esf orecast.

1-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the OLAP DML

For more information about creating an analytic workspace, refer to Chapter 2,
"Defining and Working with Analytic Workspaces".

Loading Data Into Analytic Workspaces

Temporary vs.

To use the OLAP DML, data must exist in the analytic workspace. Data can be
loaded into an analytic workspace from SQL tables or from flat files. In most cases,
tables within the database will be the data source. To load data into the analytic
workspace, you use commands in the OLAP DML.

For more information about loading data into an analytic workspace, refer to
Chapter 10, "Working with Relational Tables" and Chapter 11, "Reading Data from
Files".

Persistent Analytic Workspaces

Analytic workspaces can be either temporary or persistent, depending on your
needs. If the analytic workspace is needed only to perform a specific calculation and
the results of the calculation do not need to be persisted in the workspace, the
workspace can be discarded at the end of the session. This might occur if, for
example, your application needs to forecast a small amount of sales data. Since the
forecast can be rerun at any time, there might not be any point in persisting the
results.

Analytic workspaces can also be persisted across sessions. You might want to
persist data in the analytic workspace if you have calculated a significant amount of
data (for example, a large forecast or the results of solving a model), or if you have
aggregated data using non-additive aggregation methods.

Sharing Data In Analytic Workspaces

Data in analytic workspaces may be shared by many different users. To share data
in an analytic workspace, the workspace needs to be persisted during the period of
time it is to be shared.

For example, if you want to allow a user to share the results of a forecast, you can
allow the user to persist the analytic workspace. If another user attaches that
workspace during their application session, they can be allowed to see the other
user’s forecast.

Basic Concepts 1-5

Accessing a Workspace from OLAP Worksheet

Accessing a Workspace from OLAP Worksheet

OLAP Worksheet is an interactive interface to Oracle OLAP that you can use to
perform the following tasks:

« Connect to an analytic workspace

» Execute most OLAP DML commands

« Create and populate data objects

« Create, modify, compile, and execute DML programs

« Execute SQL statements

OLAP Worksheet has a Command Input window and a program Edit window.

You can enter commands in the query (input) pane at the bottom of the command
input window and see results in the response (output) pane at the top.

Once you have opened OLAP Worksheet, you can use it to establish a connection to
Oracle OLAP, open a workspace, execute OLAP DML commands or write and
debug programs, save any changes, close the workspace, and close the connection.

Note: The following procedures identify menu choices that you
can use to do various tasks. You may prefer to use the icons on the
left side of the window, which provide a short-cut to some of the
tasks.

Procedures: How to Open OLAP Worksheet

You can open OLAP Worksheet either from Oracle Enterprise Manager or from the
operating system command line.

To open OLAP Worksheet from Oracle Enterprise Manager, take these steps:
1. Open Oracle Enterprise Manager and open a connection to your database.
2. Expand the database folder.

3. Rightclick on OLAP to see a menu, then choose OLAP Worksheet.

1-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Accessing a Workspace from OLAP Worksheet

Tip: If you are unable to start OLAP Worksheet, then check
system variables HOMEDRIVE and HOMEPATH. They do not
need to be defined, but if they are, then they must be set to valid
values.

On Unix, to open OLAP Worksheet from the command line, take these steps:

1. Using a command-line interface, go to the bi n subdirectory of the OLAP
Worksheet installation directory.

2. Runthe runapp. sh script.

On Windows, click the OLAP Worksheet icon that was created during installation.

See Also: OLAP Worksheet Help for information about using
OLAP Worksheet.

Establishing a Connection
Take these steps to establish a connection to Oracle OLAP:

1. From the OLAP Worksheet menu bar, choose Server.
2. Choose Connect.
You see the Login to Database box.

3. Enter valid database user credentials and connection information in the Login
dialog box that appears.

In the Service box, type the identification of the Oracle database, in the
following format:

host : port: SID

For example, nyconput er: 1521:rel 9i .

Oracle controls your access to data on the basis of your database user ID. Your user
ID must have access rights to the analytic workspaces and relational tables that you
want to use in OLAP Worksheet, or you will get an error when you try to access
them.

Basic Concepts 1-7

Accessing a Workspace from OLAP Worksheet

Executing Commands

You can execute OLAP DML commands and SQL statements in the Command
Input window of OLAP Worksheet.

By selecting different options in the Options menu, you can specify whether you
want to execute OLAP DML commands or SQL statements. You can also specify
whether you want commands executed individually or saved in a buffer and
executed together.

« To execute OLAP DML commands, select SQL Off from the Options menu. To
execute SQL statements, select SQL On.

« To execute commands as soon as you press Enter, select Execute on Enter from
the Options menu.

Or, to save the commands in a buffer, clear Execute on Enter. Then, to execute
all of the commands that you have entered in the query pane, choose Execute
from the View menu.

Be sure to locate your cursor in the query pane before you start to type. If you want
to break a long command into several lines, you can continue the command on the
next line by typing a continuation character (-) at the end of the current line.

When the SQL option is ON, just type in the SQL statements and press Enter. Do
not terminate SQL statements with a semicolon. If you do, you will get an error.

Editing an OLAP DML Program

You can open a DML program in an Edit window so that you can add or modify
program content. You can have multiple Edit windows open simultaneously, but an
object definition can appear in only one Edit window at a time.

In addition to using the Edit window to work on a program, you can use it to edit a
model or an aggregation map.

To edit a program, follow these steps:
1. Inthe input pane of the Command Input window, type

edit object_nane

Where obj ect _nane is the name of a DML program object that already exists.
Use the DEFI NE command to create a new program object. If you want to edit a
model or an aggregation map, type MODEL or AGGVAP before the object name.

2. Inthe Edit window, you can add, modify, or delete program content.

1-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Accessing a Workspace from SQL-Based Applications

3. To save your changes, choose Save from the File menu. Note that this choice
executes and UPDATE command, which updates all the changes that have been
made in the analytic workspace up to this point.

4. To close the Edit window, choose Quit from the File menu.

See Also: Chapter 7, "Developing Programs" for more
information about DML programs.

Closing the Connection
Use the following procedure to close a connection to Oracle OLAP:

1. Inthe OLAP Worksheet menu bar, choose Server.
2. Choose Disconnect.
3. When prompted to disconnect, choose Yes.

When you disconnect, OLAP Worksheet executes a COVM T command before
ending your session. If you have executed the UPDATE command or chosen Save
from the File menu of an Edit window before disconnecting, then the changes that
you made before the update are made permanent. Otherwise, they are discarded.
Any changes that you have made after the update are discarded when you
disconnect.

Accessing a Workspace from SQL-Based Applications

SQL programmers can query data in the analytic workspace using SQL SELECT
statements that use OLAP table functions and by embedding OLAP DML
commands in their SQL scripts. The Oracle9i OLAP User’s Guide describes these
activities.

Using SQL SELECT Statements

SQL programmers can query analytic workspace data using SQL SELECT
statements.

« If the analytic workspace has already been defined to the relational schema
using the CWM2_OLAP_AW_ACCESS PL/SQL package, views of the analytic
workspace have been created. You can query the analytic workspace by using
SQL SELECT statements against these SQL views. This method requires
minimum knowledge of the underlying data in the analytic workspace.

Basic Concepts 1-9

Accessing a Workspace from a Java Application

= You can query the analytic workspace using the OLAP_TABLE function in SQL
SELECT statements. This method requires intimate knowledge of the analytic
workspace data. The OLAP_TABLE function is provided with Oracle OLAP.

Using Embedded OLAP DML Commands

Using the procedures and functions in the DBMS_AW package, SQL programmers
can issue OLAP DML statements against analytic workspace data. They can move
data from relational tables into an analytic workspace, perform advanced analysis
of the data (for example, forecasting), and move data from the analytic workspace
back into relational tables.

Accessing a Workspace from a Java Application

Typically, a Java application uses the OLAP API to access relational data. In
addition, the Oracle OLAP API supports access to data that resides in an analytic
workspace. The Oracle9i OLAP Developer’s Guide to the OLAP API and the OLAP API
Javadoc describe these activities.

Using OLAP Metadata

Through the OLAP API, a Java application can access workspace data that has been
exposed in OLAP metadata. Because OLAP metadata is compatible with the OLAP
API multidimensional metadata (MDM) model, a Java application can manipulate
workspace data using OLAP API Java classes. For information on how a database
administrator exposes workspace data in OLAP metadata, see the Oracle9i OLAP
User’s Guide..

Using Embedded OLAP DML Commands

The OLAP API provides a way for a Java application to directly manipulate
workspace data, without the need for any metadata and without the use of the
OLAP API data manipulation classes. The Java application uses the SPLExecut or
class in the OLAP API to open a workspace and send DML commands directly to
Oracle OLAP for execution in the workspace.

1-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

2

Defining and Working with
Analytic Workspaces

This chapter discusses creating, attaching, and managing analytic workspaces. It
includes the following topics:

Using the OLAP DML to Work with Analytic Workspaces
Attaching Multiple Analytic Workspaces

Using Names and Aliases for Analytic Workspaces
Saving Analytic Workspace Changes

Executing Programs Automatically

Adding Security to an Analytic Workspace

Importing and Exporting Workspace Objects

Obtaining Analytic Workspace Information

Defining and Working with Analytic Workspaces 2-1

Using the OLAP DML to Work with Analytic Workspaces

Using the OLAP DML to Work with Analytic Workspaces

To make the data and the object definitions of an analytic workspace available to
your session, the analytic workspace must be attached. Analytic workspaces that
are currently attached are known as active analytic workspaces. Attaching analytic
workspaces is described in "How to Attach an Analytic Workspace" on page 2-3.

You can view a list of the active analytic workspaces by using the AWcommand with
the LI ST keyword.

AW LI ST

This command displays a list of the active analytic workspaces. The expr ess
analytic workspace, which is a system analytic workspace that contains objects used
internally, always appears in the analytic workspace list.

Current Analytic Workspace

The current analytic workspace is the first analytic workspace in the list of the
active analytic workspaces that you view with the AWcommand with the LI ST
keyword. By default, when you define new workspace objects, they reside in the
current analytic workspace, unless you specify the name of another active analytic
workspace. Additionally, programs such as LI STNAMES list only the objects in the
current analytic workspace. However, even when an active analytic workspace is
not current, you can still change and update its data, edit and run its programs, and
modify its object definitions.

Your session does not have to have a current analytic workspace. If you start Oracle
OLAP without specifying an analytic workspace name, then the expr ess analytic
workspace is first on the list. However, the expr ess analytic workspace is not
current; there is no current analytic workspace until you specify one with the AW
command.

You can retrieve the name of the current analytic workspace by using the AW
function with the NAME keyword.

Suppose that you have two analytic workspaces attached, one named nmar ket i ng
and another named per sonnel . The following commands use the AWfunction with
the NAME keyword to retrieve the name of the current analytic workspace into a

2-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the OLAP DML to Work with Analytic Workspaces

variable named MYTEXT, and then display the value of MYTEXT. This value is shown
after the commands.

mytext = AW NAME)
SHOW nyt ext

PERSONNEL

How to Create An Analytic Workspace

The AWcommand is used to create a new analytic workspace. The following
example creates an analytic workspace named f i nance.

AW CREATE fi nance

When you create an analytic workspace, Oracle OLAP automatically executes a
COW T command.

You are the only user who has access to a workspace that you have just created. If
you want others to use the workspace, you must give them access to the relational
table in which the workspace is stored. The name of the table is AW followed by the
workspace name that you specified in your AW CREATE command.

To give read access to another user, execute a command like the following one in
SQL. In this example, the workspace name is denp and the user’s name is scot t .

GRANT SELECT ON aw$denmp TO scott

To give write access to another user, execute a SQL command like the following one.
GRANT UPDATE ON aw$denp TO scot t

As in any SQL GRANT command, you can specify a group or role instead of a user.

How to Attach an Analytic Workspace

You can use the AWcommand to attach and detach analytic workspaces during a
session. In addition, as you work in your session, you can use the AWcommand to
switch freely among active analytic workspaces.

You attach an analytic workspace by using the AWcommand with the ATTACH
keyword. The analytic workspace that you specify is automatically attached and
made to be the current analytic workspace. The following example attaches an
existing analytic workspace named f i nance and makes it the current analytic

Defining and Working with Analytic Workspaces 2-3

Using the OLAP DML to Work with Analytic Workspaces

workspace. Previously attached workspaces move down the list of attached
workspaces to make room for the new one at the top of the list.

AW ATTACH fi nance

When you attach an analytic workspace, the default access to it is read-only. If you
want a different attachment mode, then you must explicitly specify it in the AW
command as described in "Specifying the Analytic Workspace Attachment Mode"
on page 2-4.

Note: You can create programs that are automatically executed
when you attach an analytic workspace. For more information, see
"Executing Programs Automatically" on page 2-11.

Specifying the Analytic Workspace Attachment Mode

You can specify whether you want the analytic workspace attached in read-only
mode, read/write nonexclusive mode, or read/write exclusive mode by using the
RO RWand RX keywords of the AWcommand.

An analytic workspace that is attached in read/write nonexclusive mode or
read-only mode can be accessed simultaneously by several sessions. However, only
one session can have the analytic workspace open with read/write access. If
another user has already attached an analytic workspace in read/write mode, then
you cannot attach the same analytic workspace in read/write mode until that other
user detaches it.

An analytic workspace that is attached in read/write exclusive mode cannot be
accessed by any other session. If other users have already attached an analytic
workspace, then you cannot attach the same analytic workspace in read/write
exclusive mode until all of the other users detach it.

Sharing Analytic Workspaces

An analytic workspace can be accessed simultaneously by several sessions,
assuming that the session users have been granted access by the creator of the
workspace. Many sessions can access a workspace, but only one session can have it
open with read/write access at any given time.

When you attach an analytic workspace, your default access to it is read only.
Oracle OLAP supports simultaneous access for one writer and many readers of an
analytic workspace. Provided your user ID has the appropriate access rights, you
can always get read-only access to an analytic workspace, no matter how many

2-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the OLAP DML to Work with Analytic Workspaces

other users are using it. If another user has read/write access and commits changes
to the analytic workspace, then your view of the analytic workspace does not
change; you must detach and reattach the analytic workspace to see the changes.

If you want read/write access, then you must explicitly specify it in the AW
command. If the analytic workspace is attached in read/write mode by another
session, the response to your request for access depends on the keywords used in
AWcommand.

You can specify whether or not you want to wait until an analytic workspace is
available for the type of access you are you are requesting by using the WAl T and
NOWAI T keywords of the AWcommand.

« If you specify the NOMI T keyword (the default) and if the analytic workspace
is not available for the type of access you are requesting, then an error message
is produced that indicates that the analytic workspace is unavailable.

« If you specify the WAI T keyword and the analytic workspace is not available for
the type of access you are requesting, then Oracle OLAP places you on the wait
list for the analytic workspace.

How to Detach an Analytic Workspace

To detach an analytic workspace, you use the AWcommand with the DETACH
keyword. The following command detaches the f i hance analytic workspace.

AW DETACH fi nance

A detached analytic workspace remains in the database. However, it is no longer
accessible in your session. To access it again, use the AWcommand with the ATTACH
keyword.

How to Delete an Analytic Workspace

To delete an analytic workspace from the database, you use the AWcommand with
the DELETE keyword. Before deleting, you must detach the analytic workspace. The
following commands delete the f i nance analytic workspace.

AW DETACH fi nance
AW DELETE fi nance

A deleted analytic workspace is no longer in the database; you can never access it
again. When you delete an analytic workspace from the database, Oracle OLAP
automatically executes a COVMM T command.

Defining and Working with Analytic Workspaces 2-5

Attaching Multiple Analytic Workspaces

Workspace Localization Settings

Oracle supports locales that vary in their character sets, date formats, currency
symbols, and other language-specific characteristics. Oracle globalization support is
based on the value of parameters that begin with "NLS." For information about NLS
parameters, see the Oracle9i SQL Reference and the Oracle9i Database Globalization
Support Guide.

Within a session you can dynamically modify the value of some NLS parameters by
setting them using the OLAP DML options that begin with "NLS." For example, you
can set the value of NLS_LANGor NLS TERRI TORY in the OLAP DML. When you
set the value of an OLAP DML NLS option, the setting affects your entire database
session. It is not limited to your work in an analytic workspace.

Alternatively, you can use the following SQL command to change an NLS
parameter for your entire session, including Oracle OLAP.

ALTER SESSI ON SET paraneter = val ue

For more information about the OLAP DML NLS options, see the Oracle9i OLAP
DML Reference help.

Attaching Multiple Analytic Workspaces

You can attach more than one analytic workspace at a time. However, when
working with multiple analytic workspaces, you must take care when you name
objects. When you request an object by name, either with the DESCRI BE command
or by referring to it in a command or program, all the active analytic workspaces are
searched until the named object is found. When you intend to use several analytic
workspaces together, do not give the same name to objects in different analytic
workspaces, unless you are prepared to use qualified object names when you
reference the objects.

Qualified Object Names

When you attach more than one workspace, and objects in more than one
workspace have duplicate names, you must use qualified object names to indicate
which objects you want to reference.

A qualified object name uniquely identifies an object by including the workspace
name. By using a qualified object name, you can clearly indicate to Oracle OLAP
which object (in which workspace) you want to access.

2-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using Names and Aliases for Analytic Workspaces

For example, if you have attached the NORTHEAST workspace, which has a variable
called SALES, and you have attached the SOUTHEAST workspace, which also has a
variable called SALES, you must specify these variables using the following
qualified object names (QONS).

nort heast ! sal es
sout heast ! sal es

The first part of a QON is a workspace name, and the second part is the name of the
object. An exclamation point (!) joins the two parts.

You can intermix the use of qualified and unqualified names. You only need to use
the qualified name to identify a specific object in one workspace when an object that
has the same name exists in another attached workspace. If you do not specify a
QON for either duplicate, then Oracle OLAP might use one or the other; the results
are undefined.

Multiple AUTOGO and Permission Programs

If you have AUTOGO or permission programs defined in analytic workspaces that
are currently attached, then the one in the analytic workspace that you are attaching
is executed. However, if you have analytic workspace permission programs in more
than one currently attached analytic workspace, then you must use their qualified
object names when you edit them or use them in any other way. This will ensure
that you access the appropriate version.

See Also: "Executing Programs Automatically” on page 2-11 for
information on AUTOGO programs and "Adding Security to an
Analytic Workspace" on page 2-12 for information on permission
programs.

Using Names and Aliases for Analytic Workspaces

The OLAP DML provides alternative ways to refer to an analytic workspace to
allow your code to be unambiguous and flexible.

Workspace Names

A workspace name is assigned when a workspace is created with the AW CREATE
command. For example, in the command aw cr eat e deno, the workspace name
is DEMO.

Defining and Working with Analytic Workspaces 2-7

Saving Analytic Workspace Changes

By default, a workspace is created in the schema for your database user ID. For
example, if the user SCOTT created the DEMOworkspace, the full name of the
workspace would be SCOTT. DEMO. If you have the rights to access a workspace
that resides in another user’s schema, you can specify the full name when you
attach the workspace. For example SCOTT could attach a workspace called
REPORTS in a schema owned by SUSAN with the following command.

aw attach susan.reports

In almost any DML command, you can specify the full name of a workspace (for
example, SCOTT. DEMO). If the workspace is in your schema, you can specify only
the name (for example, DEMO) instead. Optionally, you can reference a workspace
using an assigned workspace alias.

Workspace Aliases

A workspace alias is an alternative name for an attached workspace. You can assign
or delete an alias with the AW ALIASLIST command.

An alias is in effect from the time it is assigned to the time that the workspace is
detached (or until the alias is deleted). Therefore, each time you attach an
unattached workspace, you must reassign its aliases.

One reason for assigning an alias is to have a short way to reference a workspace
that belongs to a schema that is not yours. For example, you can use the alias in
qualified object names and commands that reference such a workspace. Another
reason for assigning an alias is to write generic code that includes a reference to a
workspace but does not hard-code its name. With the alias providing a generic
reference, you can assign the alias and run the code on different workspaces at
different times.

Saving Analytic Workspace Changes

Typically, you want to save an analytic workspace at the end of your session to save
changes that were made during the session. You can also save an analytic
workspace periodically during a session to save changes as you go along.

If you have read/write access to the analytic workspace, then you can save the
changes you have made. If you have read-only access to the analytic workspace,
then you can make changes to the analytic workspace, but you cannot save these
changes.

Two commands are used together to save changes to an analytic workspace:
UPDATE and COWM T.

2-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Saving Analytic Workspace Changes

UPDATE Command

The UPDATE command moves analytic workspace changes from a temporary area
to the database table in which the workspace is stored. Your changes are not saved
until you execute a COMM T command, either from the OLAP DML or from SQL.

If you want changes that you have made in a workspace to be committed when you
execute a COMM T command, then you must first update the workspace using the
UPDATE command. Changes that have not been moved to the table are not
committed.

The simplified syntax for the UPDATE command is show below.
UPDATE [awnanel [awnane2 . . .]]

An awnarne argument specifies the name of a read/write analytic workspace that is
attached to your session. If you do not specify any analytic workspace names, then
all the attached read/write analytic workspaces are updated.

For example, you can issue the following command to move changes to all attached
analytic workspace from a temporary area to the database tables in which the
workspaces are stored.

UPDATE

COMMIT Command

The COMM T command executes a SQL COVM T command. All changes made
during your session are committed, whether they were made through Oracle OLAP
or through another form of access (such as SQL) to the database.

For example, you can issue the following two commands to save all analytic
workspace changes in the database.

UPDATE
COW T

Many users execute DML commands using SQL*Plus or OLAP Worksheet. Both of
these tools automatically execute a COVMM T command when you end your session.
However, you must first execute an UPDATE command in order to save your
analytic workspace changes.

If you have attached a shared analytic workspace and another user has read/write
access, then that user’s COMM T command does not affect your view of the analytic
workspace. Your view of the data remains the same as when you attached the

Defining and Working with Analytic Workspaces 2-9

Saving Analytic Workspace Changes

analytic workspace. If you want access to the changes, then you must detach the
analytic workspace and reattach it.

Effect of the ROLLBACK Command

The OLAP DML does not provide a way to issue a ROLLBACK command; however,
you could execute one in your session from outside Oracle OLAP (for example,
through PL/SQL). When a ROLLBACK command is executed in your session, Oracle
OLAP checks to see whether there are uncommitted updates in an attached
workspace.

« If there are uncommitted updates (that is, you have made changes and executed
an UPDATE command, but you have not subsequently executed a COVM T
command), then Oracle OLAP discards your changes and detaches the
workspace.

« If you have no uncommitted updates, then Oracle OLAP takes no action in
response to the ROLLBACK command. This means that, if you have not issued
an UPDATE command since your last COMM T command, Oracle OLAP takes no
action and all your changes remain in the workspace during your session.

If you rollback to a savepoint and there are uncommitted updates that occurred
subsequent to the savepoint, Oracle OLAP discards those updates and detaches the
workspace. Uncommitted updates that occurred before the savepoint remain in the
workspace, and you can see them if you reattach the workspace in the same session.

Minimizing Analytic Workspace Growth

You can minimize analytic workspace growth by frequently updating the analytic
workspace when you are attached exclusively. You can reorganize your analytic
workspace files by exporting all of the objects in your analytic workspace and then
importing them into a new analytic workspace. The new workspace may be
substantially smaller.

To reorganize your analytic workspace by exporting and importing workspace
objects, follow the procedure outlined below.

1. Issue an ALLSTAT command against the original analytic workspace.

2. Use the EXPORT command with the ALL keyword to put all of the data in the
original analytic workspace into an EIF file.

3. Create a new analytic workspace with a different name than the original
analytic workspace.

2-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Executing Programs Automatically

4. Use the | MPORT command to import the EIF file into the new analytic
workspace.

5. Use the UPDATE and COVM T commands to save the new analytic workspace.

6. After checking that the objects were successfully moved into the new analytic
workspace, delete the original analytic workspace.

If you have programs that reference a given workspace, they can refer to the
workspace by an alias. This way, it does not matter how many times you import to a
workspace with a different name. The alias can be assigned to the appropriate
workspace each time.

Executing Programs Automatically

You can create programs that are automatically executed when you attach an
analytic workspace. When you attach an analytic workspace by using the AW
ATTACH command with the AUTOGO keyword, the workspace is searched for a
program named AUTOGO, If it exists, then the program is executed before
commands are accepted. If you do not specify the AUTOGOkeyword, or if you
specify the NOAUTOGO keyword, the program is not automatically executed.

Program Names

If you have a program named AUTOGOin more than one currently attached analytic
workspace (and thus multiple programs with the same name), then you must use
their qualified object names when you edit them to ensure that you are accessing
the correct one.

You do not have to name a program AUTOGOto have it automatically execute when
you specify the AUTOGO keyword. Instead, you can use the AUTOGO keyword with
the name of the program that you want executed. Even if a program named AUTOGO
exists in the analytic workspace, Oracle OLAP executes the program you specify
with the AUTOGO keyword.

AUTOGO Program Example

Suppose you have two analytic workspaces of sales data, one for expenses and one
for revenue. You have a third analytic workspace called anal ysi s that contains
programs that analyze the data. In the anal ysi s workspace, you can have an
AUTOGO program that includes the following two lines of code for attaching the
other two workspaces.

Defining and Working with Analytic Workspaces 2-11

Adding Security to an Analytic Workspace

AW ATTACH expense AFTER anal ysi s
AW ATTACH revenue AFTER anal ysis

When you attach the anal ysi s workspace with the following command, its
AUTOGO program runs automatically and attaches the other two workspaces.

AW ATTACH anal ysi s AUTOG0

If you named the program ATTACHDATA instead of AUTOGO, you would attach the
anal ysi s workspace with the following command.

AW ATTACH anal ysi s AUTOR0 at tachdat a

Note that permission programs are executed before any AUTOGO program is
executed.

See Also:

« "Adding Security to an Analytic Workspace" on page 2-12 for
information about permission programs.

« Chapter 7, "Developing Programs" for information on writing
programs.

Adding Security to an Analytic Workspace

An analytic workspace as an entity is protected with all of the security features built
into the database. In addition, you can restrict access to specific workspace objects,
or to an entire workspace, with permission programs.

Permission Programs

When a user attaches an analytic workspace, it is checked to see if it contains
permission programs, which are called pernit _readand permit_write. Youdo
not have to create these programs; however, if they are present, then the appropriate
one is automatically executed when a user attaches the analytic workspace.

IF the user attaches an analytic THEN the following program is executed,
workspace with . . . if it exists . ..

read-only access, pernit _read program.

read/write access, permit_write program.

2-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Adding Security to an Analytic Workspace

Permission programs are executed before any AUTOGO program is executed. If a
user specifies a password when attaching the analytic workspace, then the
password is passed as an argument to the permission program for processing. The
permission program can grant or restrict access to the entire workspace or to
individual objects based on the password that has been provided. For example, in
the following AWcommand, the sal es workspace is attached with gol df i nch as
the password.

AW ATTACH sal es PASSWORD gol df i nch

Creating and Designing Permission Programs

To create permission programs, you define two programs with the names
pernmit_readandpermt_write.Inthese programs, you can specify PERM T
commands that grant or restrict access to individual workspace objects. In addition,
you write these programs as user-defined functions that return a Boolean value, and
the return value indicates to Oracle OLAP whether or not the user has the right to
attach the workspace.

IF the program returns . .. THEN the analytic workspace . ..
YES is attached.
NO is not attached.

Thus, permission programs allow you to control two levels of access to the analytic
workspace in which they reside.

Type of access Description
Analytic workspace Depending on the return value of the permission program, the
level user is or is not granted access to the entire analytic workspace.
Object level Depending on the PERM T commands in the permission

program, the user is granted or denied access to specific objects or
sets of object values.

All of the objects referred to in a given permission program must
exist in the same analytic workspace.

For example, using the PERM T command, you can deny access to the sal ary
variable to one group of users, and you can deny access to the t enur e variable to
another group of users. You can even specify that certain users cannot access a
subset of the cells in the sal ar y variable.If you have permission programs in more
than one currently attached analytic workspace (and thus, multiple programs with

Defining and Working with Analytic Workspaces 2-13

Importing and Exporting Workspace Objects

the same name), then you must use their qualified object names when you edit
them, to ensure that you are accessing the correct one.

See Also: Chapter 7, "Developing Programs" for information on
writing programs.

Importing and Exporting Workspace Objects

You can export an entire workspace, several workspace objects, a single workspace
object, or a portion of a workspace object to a specially formatted EIF file. Then you
can import the information into a different workspace within the same Oracle
database or a different one.

One reason for exporting and importing is to move your data to a new location.
Another purpose is to remove extra space from your analytic workspace after you
have added and then deleted many objects or dimension values. To do this, use the
EXPORT command to put all the data in an EIF file, create another workspace with a
different name, and then use the | MPORT command to import the EIF file into the
new workspace. If you have imported into the same database, you can delete the
old workspace and refer to the new one with the same workspace alias that you
used for the original one.

The following command copies all the data and definitions from the current
analytic workspace to an EIF file called r eor g. ei f in a directory alias called

mydi r.

export all to eif file "nydir/reorg.eif’

Directory aliases are defined in the database, and they control access to directories.
You can use the CDA command to specify a current directory alias. In this case, you
do not have to specify a directory alias in the EXPORT command, because Oracle
OLAP assumes that you want the file to be created in your current directory alias.
Contact your Oracle DBA for access rights to a directory alias where your database
user name can read and write files.

The following command copies the data and definitions from the EIF file to a new
analytic workspace.

aw create new

inport all fromeif file 'reorg.eif’
updat e

comi t

2-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Obtaining Analytic Workspace Information

Obtaining Analytic Workspace Information

The AWDESCRI BE program displays a complete description of your analytic
workspace, including:

« Atable of contents that shows general information about your analytic
workspace, such as the date and time of the last update and the number of each
type of workspace object.

« Alist of workspace objects that are sorted alphabetically.

« Detailed descriptions of all workspace objects, which are sorted by type of
object and sorted alphabetically by name within each type. For each object,
there is a cross-reference list of other objects that use or are used by this object.

Because the output from AWDESCRI BE is frequently very long, you can direct it to a
file with the QUTFI LE command:

QUTFI LE " diralias/fil enane'
AWDESCRI BE
QUTFI LE EOF

Where diralias is the name of a directory alias, and filename is the name of the file
where the information will be written.

Contact your DBA for the name of a directory alias to which you have read and
write privileges.

Obtaining General Information About an Analytic Workspace

The AWfunction returns various kinds of information about attached analytic
workspaces. For example, you can use the AWfunction to learn the name of your
current workspace or whether you have read/write access to it.

The simplified syntax of the AWfunction is shown below.
AW choi ce [wor kspace])
The keyword you specify for choice determines the type of information that is

returned by the AW function. Examples of keywords are: ATTACHED, NAME, RO and
RW

Defining and Working with Analytic Workspaces 2-15

Obtaining Analytic Workspace Information

For example, the following commands check which analytic workspace is active so
the program can choose the appropriate data to report.

| F AW NAME) EQ 'nysal es’
THEN REPORT sal es. m
ELSE REPORT gensal es

Viewing Objects in an Analytic Workspace

You can retrieve a list of the objects in an analytic workspace by using the

L1 STNAMES program. This program lists all the objects in the analytic workspace,
grouped by object type and alphabetized within object type. LI STNAMES shows the
total number of each type of object (dimension, variable, and so on).

Use the LI STBY command to retrieve a list of all objects that are dimensioned by, or
related to, a given dimension.

For example, to find out which objects are dimensioned by, or related to, nont h,
you can use the following command.

LI STBY nonth

The following list is displayed.
14 objects dinmensioned by or related to MONTH in DEMD

ACTUAL ADVERTI SI NG BUDGET

EXPENSE FCST NATI ONAL. SALES
PRI CE PRODUCT. MEMO SALES

SALES. FORECAST SALES. PLAN SHARE

UNI TS UNITS. M

To display the definitions of one or more objects, use the DESCRI BE command. For
example, you can issue the following command.

DESCRI BE price

It produces the following output.
DEFI NE PRI CE VARI ABLE DECI MAL <MONTH PRODUCT>
LD Whol esale Unit Selling Price

If you execute the DESCRI BE command without any object names, all the objects in
the current status list of the NAME dimension are described. The NAME dimension
contains the names of all the objects that are defined in the analytic workspace.

2-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Obtaining Analytic Workspace Information

You can display the values of many workspace objects, such as variables,
dimensions and relations, by executing a REPORT command. For example, the
following command shows the values of a variable called cost s.

report costs

This command might produce the following output.

------------------------ QOSTS- - - rmmmmmmm e eaee e

---------------------- GEOGRAPHY- - - - - == =< m e meee e eeeee oo
DI VI S ON EAST VEST BOSTON SAN FRANCI SCO SEATTLE
DI VA 27,600.00 50,000.00 27,600.00 10,000.00 40, 000. 00
DI VB 30,000.00 62,000.00 30,000.00 12,000.00 50, 000. 00

Obtaining Information About Objects
To obtain information about workspace objects, you can use the OBJ function.

For example, the following command obtains the number of dimensions for the
variable uni t s. The output is shown below the command.

SHOW CBJ(NUMDI MB " units’)
3

The following command obtains the data type of the uni t s variable. The output is
shown below the command.

show obj (data "units’)
| NTEGER

You often use the OBJ function in conjunction with the LI M T command and the
NAME dimension in order to obtain information about groups of objects. The LIM T
command sets the status of a dimension. This means that it restricts the accessibility
of dimension values, which sets a corresponding restriction on any variables or
relations that are dimensioned by them.

You can use the LI M T command together with the OBJ function to identify a
group of objects with a particular characteristic. Then, you can list the objects in the
group using the STATUS command.

Defining and Working with Analytic Workspaces 2-17

Obtaining Analytic Workspace Information

The following commands lists the objects that are dimensioned by both nont h and
product .

LIMT NAME TO OBJ(ISBY 'nmonth’) AND OBJ(1SBY ' product’)
STATUS NAVE

The output of these commands is shown below.

The current status of NAME is:
ADVERTI SI NG EXPENSE, NATI ONAL. SALES, PRI CE, PRODUCT. MEMO, SALES,
SALES. FORECAST, SALES. PLAN, SHARE, UNITS, UNNTS. M

See Also: Chapter 6, "Selecting Data" for information about using
the LI M T command.

2-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

3

Defining Data Objects

This chapter introduces multidimensional data structures. It explains how to define
objects and change the definition of those objects. It includes the following topics:

« Overview: Defining Workspace Objects

« Data Types

« Defining Dimensions

« Defining Relations

« Defining Variables

« Defining Variables That Handle Sparse Data Efficiently

« Defining Hierarchical Dimensions and Variables That Use Them
« Defining Concat Dimensions and Variables That Use Them

« Changing the Definition of an Object

Defining Data Objects 3-1

Overview: Defining Workspace Objects

Overview: Defining Workspace Objects

It is important to understand the distinction between the definition of an object and
its data. An object definition is its description in the analytic workspace. The data of
an object is the value or values that are associated with that definition. All objects
have definitions. However, not all objects have data.

For example, a sal es variable that is dimensioned by nont h, pr oduct, and

di strict has a definition for itself as a variable object. The sal es variable is also
associated with the definitions for its three dimensions. However, the values of

sal es, mont h, product ,and di stri ct are not part of the definitions.

Other objects, such as programs and formulas, do not have data.

Once you have created an analytic workspace, you can begin defining workspace
objects. To define any OLAP DML object, use the DEFI NE command. The simplified
syntax for the DEFI NE command is shown below.

DEFI NE nanme obj ect-type attributes

The nanme argument specifies the name for the new definition.

Note: Because each analytic workspace has its own list of
workspace objects, you can define objects with the same name in
more than one analytic workspace. However, to prevent
unexpected results, you should provide unique names for objects in
separate analytic workspaces that will be active at the same time,
unless you are prepared to use qualified object names as described
in Chapter 2, "Defining and Working with Analytic Workspaces".

The obj ect - t ype argument specifies the type of object that is being defined. The
default is VARI ABLE. You can specify any of the valid object types as outlined in
"Workspace Objects That You Can Define" on page 3-3.

The at t ri but es argument specifies the properties of the object. Attributes are
different for each type of object. The attributes are listed in the entry for each object

type.

3-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Overview: Defining Workspace Objects

Workspace Objects That You Can Define

The OLAP DML data object types that you define using the DEFI NE command are
outlined in the following table.

Object Type Description

DI MENSI ON Contains a list of values that provide categories for data. A
dimension acts as an index for identifying values of a variable. A
dimension is similar to a key in a relational database.

RELATI ON Establishes a correspondence between the values of a given
dimension and the values of that dimension or other dimensions in
the analytic workspace. A relation is similar to a foreign key in a
relational database.

VARI ABLE Stores data. The data type of a variable indicates the kind of data
that it contains. A variable is similar to a table in a relational
database.

COVPOSI TE A named list of dimension-value combinations, in which a given

combination has one value taken from each of the dimensions on
which the composite is based.

Note: An unnamed composite is automatically created when you
define a variable with some dimensions specified as sparse. An
unnamed composite is an internal object; it is not considered an
OLAP DML object.

SURROGATE Contains a list of values that are surrogates for the values of a simple
dimension. You can use a surrogate for adimensioninLIM T
commands, models, qualified data references, and data loading.

FORMULA Represents a stored calculation, expression, or procedure that
produces a value. A formula is similar to a view in a relational
database.

MODEL Contains a set of interrelated equations that are used to calculate

data and assign it to a variable or dimension value. In most cases,
models are used when working with financial data.

PROGRAM Contains a series of OLAP DML commands. A program executes a
set of related commands. A program is similar to a SQL stored
procedure.

VALUESET Contains a list of dimension values for a particular dimension.

Defining Data Objects 3-3

Data Types

Object Type

Description

AGGVAP

Creates an aggregation map, which can contain commands that
specify which data in a variable should be aggregated or allocated
and how the operation is performed. With the AGGMAP command,
you can specify commands used by the AGGREGATE command.
With the ALLOCMAP command, you can specify commands used
by the ALLOCATE command.

Data Types

Workspace data types fall into categories, which are referred to as basic data types.
They are listed in the following table.

Basic Type

Specific Type

Numeric

I NTEGER, SHORTI NTEGER, LONG NTEGER, DECI MAL, SHORTDECI MAL,
NUMBER

Text

TEXT, NTEXT, | D

Boolean

BOCLEAN

Date

DATETI ME, DATE

Different objects support the use of different data types for their values:

= For most data values, such as those stored in variables, the | NTEGER,
SHORTI NTEGER, DECI MAL, SHORTDECI MAL, NUMBER, TEXT, | D, NTEXT,
BOOLEAN, DATETI ME, and DATE data types are supported.

« For dimension values, the | NTEGER, NUMBER, TEXT, | D, and NTEXT data types
are supported.

Numeric Data Types

The following numeric data types are supported.

Data Type

Data Value

I NTEGER

A whole number in the range of (-2**31) to (2**31)-1.

SHORTI NTEGER

A whole number in the range of (-2**15) to (2**15)-1.

LONG NTEGER

A whole number in the range of (-2**63) to (2**63)-1.

DECI MAL

A decimal number with up to 15 significant digits.

3-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Data Types

Data Type Data Value
SHORTDECI MAL A decimal number with up to 7 significant digits.
NUVBER A decimal number with up to 38 significant digits.

For data entry, a value for any of these data types can begin with a plus (+) or minus
(-) sign; it cannot contain commas. Additionally, a decimal value can contain a
decimal point. For data display, thousands and decimal markers are controlled by
the NLS_NUMERI C_CHARACTERS option.

The workspace NUMBER data type is fully compatible with the database NUVBER
data type. It is used for dimensions and surrogates when a text or integer data type
is not appropriate. It is typically assigned to variables that are not used for
calculations (like forecasts and aggregations), and it is used for variables that must
match the rounding behavior of the database or require a high degree of precision.
When deciding whether to assign the NUVBER data type to a variable, keep the
following facts in mind in order to maximize performance:

« Analytic workspace calculations on NUVMBER variables is slower than
calculations on other numeric types such as DECI MAL.

=« When data is fetched from an analytic workspace to a relational column that
has the NUVMBER data type, performance is best if the data already has the
NUVBER data type in the analytic workspace because a conversion step is not
required.

Examples of Literal Numeric Values
Examples of literal numeric values are:

-1

256000
+2147483647
10000000000. 0009

Text Data Types
The following text data types are supported.
Data Type Data Value
TEXT Up to 4000 bytes per line in the database character set. This data type is

equivalent to the CHAR and VARCHAR?Z data types in the database.

Defining Data Objects 3-5

Data Types

Data Type Data Value

NTEXT Up to 4000 bytes per line in UTF-8 character encoding. This data type is
equivalent to the NCHAR and NVARCHAR2 data types in the database.

1D Up to 8 characters per line in the database character set

For data entry, text literals must be enclosed in single quotes. Otherwise, the OLAP
DML command processor will look for a workspace object by that name.

Escape Sequences

In some cases, text data includes values that are not printable. Escape sequences are
provided to allow such values to be input and displayed. An escape sequence is a
series of alphanumeric characters that begins with a backslash.

The following table shows escape sequences that are recognized.

Escape
Sequence Meaning

\b Backspace

\ f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\ Double quote

\’ Single quote

\\ Backslash

\'dnnn Character with ASCII code nnn decimal, where \d indicates a decimal
escape and nnn is the decimal value for the character

\ xnn Character with ASCII code nn hexadecimal, where \ x indicates a
hexadecimal escape and nn is the hexadecimal value for the character

\ ' Unnnn Character with Unicode nnnn, where \ Uindicates a Unicode escape and
nnnn is a four-digit hexadecimal integer that represents the Unicode
codepoint with the value U+nnnn. The Umust be a capital letter.

3-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Data Types

Examples of Literal Text Values
Examples of literal text values are:

"Raoul D\' All esandro’
" NONE'
"January 2002’

Boolean Data Type

A Boolean data type is provided that you can use to represent logical values. In
code, you can use any of the following values (in any combination of uppercase and
lowercase characters) to represent Boolean values:

= YES, TRUE, ON
= NO FALSE, OFF

The values that are used in your installation are determined by the language
identified by the NLS_L ANGUAGE option. You can use the read-only NOSPELL and
YESSPELL options to obtain the values.

Working with Boolean expressions is discussed in "Boolean Expressions" on
page 4-21.

Date Data Types
The following date data types are supported.

Data Type Data Value

DATETI ME Dates between January 1, 4712 B.C. and December 31, 9999 A.D., and
times in hours, minutes and seconds.

DATE Dates between January 1, 1000 A.D. and December 31, 9999 A.D.

The format and language of DATETI ME values are controlled by the NLS DATE _
FORVMAT and NLS DATE LANGUAGE options. The DATETI ME data type is supported
by Oracle standard libraries and operates the same way in the database, and thus is
preferable to the DATE data type. The DATEORDER, DATEFORNMAT, and MONTHNAMES
options, which control the formatting of DATE values, have no effect on DATETI ME
values. However, DATETI MVE and DATE values can be used interchangeably in most
DML commands

Defining Data Objects 3-7

Defining Dimensions

Defining Dimensions

A dimension is an object that holds a list of values that provide the organization for
one or more variables. A dimension value is similar to a key in a relational table;
either alone or with other dimension values, it uniquely identifies a data value. For
example, if you have sales data with a separate sales figure for each month, then the
data has a nont h dimension; that is, the data is organized by month. The dimension
values you add might be f eb02, nar 02, and apr 02.

A simple dimension has a list of values that all have the same data type. The OLAP
DML supports both flat and hierarchical simple dimensions:

= A flat dimension exists when the values within a dimension are all at the same
level. No value is the child or parent of another value.

« A hierarchical dimension exists when values are in a one-to-many
(parent-to-child) relationship with each other. A hierarchical dimension is a
means of organizing and structuring this type of data within a single
dimension. You can then use it to dimension a variable that contains data for all
the levels. Some dimensions have multiple hierarchies. You specify the
parent-to-child relationships of the dimension values by creating a self-relation.

Composite and conjoint dimensions can be derived from these base simple
dimensions to store sparse data more efficiently in a multidimensional format.

Concat dimensions can also be based on simple dimensions or on conjoint
dimensions. You can represent a hierarchy with a concat dimension that is has two
or more simple flat dimensions among its base dimensions. You can use concat
dimensions to easily map dimensions in an analytic workspace to columns in
relational tables and thereby promote more efficient loading of data from the
relational structures into the analytic workspace structures. The base dimensions of
a concat dimension can be of different data types.

3-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Dimensions

See Also:

« "Defining Variables That Handle Sparse Data Efficiently" on
page 3-18 for information about composite and conjoint
dimensions.

« "Defining Hierarchical Dimensions and Variables That Use
Them" on page 3-22 for information about hierarchical
dimensions.

« "Defining Concat Dimensions and Variables That Use Them" on
on page 3-25 for information about concat dimensions.

Determining What Dimensions to Define

If you want your analytic workspace to contain only flat dimensions, you need to
define dimensions for each level of detail in your data that users will access.

For example, if your company is divided into sales districts and each district
handles several store accounts, then you need to decide whether you want sales
figures for every store or only for each district. As shown in the following table, the
answer to this question determines the structure of your analytic workspace.

IF... THEN . ..

you need Store data, you can define a st or e dimension.

you always look at each district as a whole, | all you needisadi strict dimension.

you want to look at data both ways, you can organize data by store and view
aggregates of data by district by creating
bothastoreandadi strict dimension
with a relation between them.

Sometimes, you will decide to store data of varying levels of aggregation within a
single variable, because this type of storage affords a quicker response time for
users who want to view the data. In this case, you can define a single hierarchical
dimension that has all the values of the hierarchy or you can define a concat
dimension that is based on simple flat dimensions. For example, each flat
dimension might have the values of one of the levels of the hierarchy.

For example, if you want to look at data both ways instead of defining both a
storeandadi strict dimension as described above, then you can define a single
hierarchical dimension. This hierarchical dimension would contain all of the values

Defining Data Objects 3-9

Defining Dimensions

for stores and districts. If you dimension a variable by this hierarchical dimension,
then you can store data of varying levels of aggregation within that single variable.
You can still view store data and district data separately.

You can achieve a similar result by defining a concat dimension that has as its base
dimensions the st or e and di st ri ct dimensions. The concat dimension would
also contain all of the store and district values. As with a hierarchical dimension, if
you dimension a variable by this concat dimension, then you can keep data of
varying levels of aggregation within that variable and still view store data and
district data separately.

If you already have simple flat dimensions in your analytic workspace or if you
create simple flat dimensions so that you can easily map them to columns in
relational dimensions, then you might use a concat dimension instead of a
hierarchical dimension. Another reason to use a concat dimension instead of a
hierarchical simple dimension is that all of the values of a simple dimension must
be unique whereas in a concat dimension the same value can exist in two or more of
the base dimensions of the concat.

How Data For Simple Flat Dimensions Is Stored

The data for a simple flat dimension is stored in a one-dimensional array. As you
add values to the dimension, each new value is stored at the end of the array.

Assume that the pr oduct dimension has been defined as a TEXT data type. The
first three values that are added to the dimension are TENTS, CANCES, and
RACQUETS. At this point, a report of the dimension shows the following values.

The pr oduct dimensionvalues are actually stored as shown below.

Position 1 2 3

Value TENTS CANOES RACQUETS

3-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Dimension Surrogates

Later, the values SPORTSWEAR and FOOTVEEAR are added. At this point, a report of
the dimension shows the following values.

Now the pr oduct dimension array looks like the following.

Position 1 2 3 4 5
Value TENTS CANOES RACQUETS [SPORTSWEAR |FOOTWEAR

See Also: Chapter 5, "Populating Workspace Data Objects", for
information about adding dimension values.

Defining Dimension Surrogates

A dimension surrogate is an object that provides an alternative way to specify the
positions of a dimension. As described in "How Data For Simple Flat Dimensions Is
Stored”, on page 3-10 each value of a dimension is identified by a position in the
dimension. The position is specified by an integer. For an | NTEGER type dimension,
the values and the positions are the same. Ina LI M T command or a qualified data
reference (QDR) you can use the value of the dimension or the position of the value
in the dimension. For example, the following commands both set the status of the
pr oduct dimension to the same value.

LIMIT product TO 'TENTS’
LIMIT product TO 1

A primary key column in a relational table might have values that are numbers. To
efficiently load data from the relational structures into your analytic workspace, you
can define a NUMBER dimension to contain the primary key values. NUVBER
dimensions are different than other types of dimension because you cannot specify
a value of a NUMBER dimension by its position in the dimension. However, you can
define an | NTEGER type dimension surrogate for the NUVBER dimension and use

Defining Data Objects 3-11

Defining Dimension Surrogates

the values of the surrogate in LI M T commands, models, QDRs, and data loading
instead of using the primary key values from the NUMBER dimension.

You can define dimension surrogates for simple dimensions and for conjoints but
not for concat dimensions or composites. For example, you might want to have a
conjoint dimension but also want to have a single text value to specify each value of
the conjoint. You can accomplish that by creating a TEXT dimension surrogate for
the conjoint dimension. If you define a dimension surrogate for a conjoint
dimension, then you cannot convert the conjoint dimension to a composite
dimension.

You can define any number of dimension surrogates for a dimension. The type of
the dimension surrogate does not have to be the same as the type of the dimension.
You can define a dimension surrogate for any type of dimension other than the time
types DAY, VEEK, MONTH, QUARTER, or YEAR. However, these time types are
provided only for compatibilty with earlier versions. Using them is not currently
recommended.

Differences Between Dimensions and Dimension Surrogates

You cannot dimension an object by a dimension surrogate. However, you can
dimension an object, such as a variable, by a dimension, define a dimension
surrogate for the dimension, and then use the values of the surrogate instead of the
dimension in LI M T commands, models, QDRs, and data loading.

You cannot define a valueset on a dimension surrogate. However, you can define a
valueset on a dimension, define a dimension surrogate for the dimension, and then
specify values for the valueset by using values of the surrogateinaLIM T
command.

You cannot define a relation on a dimension surrogate. However, you can define
dimension surrogates for the dimensions that dimension a relation and then use the
values of the surrogates in LI M T commands or QDRs.

You cannot use a surrogate as the data type of a program or a formula.

You cannot add new positions directly to a dimension surrogate. However, with the
MAI NTAI Ncommand you can add values to the dimension on which you have
defined the surrogate. The surrogate then automatically has a new position for each
value you that add to the dimension.

A dimension surrogate does not have its own status. It shares the status of its
dimension. You can uses the values or positions of a dimension surrogate or its
dimension with a LI M T command or a QDR to set the status of the dimension and
the dimension surrogate.

3-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Relations

You cannot delete a dimension if a dimension surrogate exists for that dimension.
However, you can delete the dimension surrogate without affecting the dimension.

You cannot use the PERM T command on a dimension surrogate. A surrogate has
the permissions set on its dimension.

You cannot use a dimension surrogate in commands that use the ACRCSS or DO/N
keywords to loop over, total over, or report over specified dimensions. In those
cases, you must specify the dimension and not a surrogate for it.

You cannot use the CHDGFN or MAI NTAI Ncommands on a dimension surrogate.
However, you can use dimension surrogate values in a MAI NTAI Ncommand to
specify values for a dimension.

Defining Relations

A relation is an object that establishes a correspondence between the values of a
given dimension and the values of that same dimension or other dimensions in the
analytic workspace. The structure of a relation is similar to that of a variable.
However, the cells in relations do not hold actual data values; instead, each cell in a
relation holds the index of the value of a dimension.

By creating a relation between two dimensions that participate in a one-to-many
(parent-to-child) relationship, you can organize your data by the child dimension
and view aggregates of data by the parent dimension. For example, if you define
storeanddi strict dimensions and a relation between them, then you can
organize data by st or e and view aggregates of data by di stri ct .

You can explicitly define relations between two or more dimensions, multiple
relations between a set of dimensions, or a dimension with itself (a self-relation).

How Relations Are Dimensioned

Relations are dimensioned arrays. Relations can be dimensioned by the dimension
with the larger number of values or the smaller number of values.

Typically, a relation is dimensioned by the dimension with the larger number of
values (that is, the less aggregate or child dimension) and the related dimension is
the dimension with fewer values (that is, the more aggregate or parent dimension).
For example, you can create a relation called st at e. ci t y to associate each city
with the state that it is in. The relationship is dimensioned by ci t y and the related
dimension is st at e. You assign a state to each city.

Defining Data Objects 3-13

Defining Relations

Less typically, a relation is dimensioned by the dimension with fewer values (the
more aggregate dimension or parent dimension). In this case, not every value of the
other dimension is related. For example, you could create a relationship, named
city. stat e, between states and their capital cities. The relation is dimensioned by
st at e and the related dimension is ci t y. Only the capital cities are assigned to a
state.

How Relation Data Is Stored

The order in which you define the dimensions of a relation determines how its data
is stored and accessed. Dimensions vary in the order you list them in the definition,
with the first dimension varying fastest and the last dimension varying slowest. See
"How Variable Data Is Stored" on page 3-17 for information on faster- and
slower-varying dimensions.

The data values that are stored for a relation are the indexes of the related
dimension. The index is the position of the value in the dimension.

For example, the st at e. ci t y relation (that is dimensioned by ci t y and has a
related dimension of st at e) assigns a state to each city. To implement this
relationship, an index from the st at e dimension is stored for every value (index)
in the ci t y dimension. The following table shows the positions of theci ty
dimension that are assigned to each position of the st at e dimension. It also shows
the values at those positions in the dimensions.

City Position City Value at State Position State Value at

(Index) Position (Index) Position
1 Atlanta 1 Georgia
2 Chicago 2 Illinois
3 Springfield 2 Illinois
See Also:

« Chapter 5, "Populating Workspace Data Objects" for
information about adding values to relations.

« Chapter 4, "Working with Expressions" for information about
using relations in expressions.

3-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Relations

Example: Relation Between Two Dimensions

Most relations are a single-dimensional array that relates the values of one
dimension with another. For example, you can define two simple dimensions,
stateandcity,and arelation st at e. ci t y between them to associate each city
with the state that it is in.

Assume that the st at e. ci t y relation was defined using the following command.
DEFINE state.city RELATION state <city>

Assume that, as shown below, the st at e dimension has two values and the ci ty
dimensions has three values.

CEORG A

CH CARD
SPRI NGFI ELD

The st at e. ci ty relation is dimensioned by ci t y and the related dimension is
state. The st at e. ci ty relation assigns a state to each city as shown below.

aTy STATE. G TY
ATLANTA GEORG A
CH CARD ILLINO S

SPRI NGFI ELD ILLINO S

Example: Self-relation

You can define a self-relation for a single dimension. For example, to keep track of
the reporting structure of a company, you can have the enp. enp relation for the
enpl oyee dimension.

Assume that the enp. enp relation was defined using the following command.

DEFI NE enp. enp RELATI ON enpl oyee <enpl oyee>

Defining Data Objects 3-15

Defining Variables

Assume that the enpl oyee dimension contains the values shown below.
EMPLOYEE

M CHAEL ARON
LUCY BATES
RALPH BURNS

The self-relation enp. enp is dimensioned by the enpl oyee dimension and the
related dimension is also the enpl oyee dimension. As shown below, the enp. enp
relation assigns a manager to each employee.

EMPLOYEE EMP. EMP

M CHAEL ARON ANN LOGAN
LUCY BATES ANN LOGAN
RALPH BURNS LUCY BATES

In this example, Ann Logan, the company president, does not report to anyone;
employees Lucy Bates and Michael Aron report directly to Ann Logan, the
president; and employee Ralph Burns reports to employee Lucy Bates.

See Also:

« "Defining Hierarchical Dimensions and Variables That Use
Them" on page 3-22 for information about using self-relations
with hierarchical dimensions.

« "Defining Concat Dimensions and Variables That Use Them" on
on page 3-25 for information about using self-relations with
concat dimensions.

Defining Variables

A variable is an object that stores data. All of the data in a variable represents the
same unit of measurement with the same data type. Your business might have
several categories of transactions (measured in dollars, units, percentages, and so
on) and each category is stored in its own variable. For example, you might record
sales data in dollars (a sal es variable) and units (a uni t s variable).

Typically, you use variables to contain data values that quantify a particular aspect
of your business.

3-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Variables

Types of Variables

Variables can be either dimensioned or undimensioned:

« Dimensioned variables. If a variable is an array with dimensions, then those
dimensions organize its data, and there is one cell for each combination of
dimension values. This type of variable is called a dimensioned variable. A
variable can be dimensioned by up to 32 dimensions.

« Undimensioned variables. If a variable has no dimensions, then it is a scalar, or
single-cell variable, which contains one data value.

Variables that you define in an analytic workspace can be permanent or temporary.
You can also define variables in programs, as described in "Defining Local
Variables" on page 7-6.

A permanent variable is a variable for which both the variable values and
definitions are stored in an analytic workspace.

Temporary variables have values only during the current session. When you update
and commit the analytic workspace, only the definitions of temporary variables are
saved. When you exit from the analytic workspace, the data values are discarded.

How Variable Data Is Stored

The order in which you list the dimensions in a variable definition determines how
the data of that variable is stored and accessed. The first dimension in the variable
definition is the fastest-varying dimension, and the last dimension is the
slowest-varying dimension.

For example, assume your analytic workspace has an opcost s variable that
contains the operating costs, by month, of each city in which you have offices. In the
definition shown below for the opcost s variable, nont h is the fastest-varying
dimension and ci t y is the slowest-varying dimension.

DEFI NE opcosts VAR ABLE DECI MAL <nonth city>

The data for a multidimensional variable is stored as a linear stream of values, in
which the values of the fastest-varying dimension are clustered together. For
example, for the opcost s variable, the values for Boston for all the months are
stored in a sequence, and then it stores the values for Chicago for all the months in a
sequence, and so on. Thus the month values vary fastest in the opcost s variable,
as shown in the following table.

Defining Data Objects 3-17

Defining Variables That Handle Sparse Data Efficiently

Dimension |JAN97 FEB97 DEC97 JAN97
Values BOSTON BOSTON BOSTON CHICAGO
Variable 16000.77 16000.28 16000.98 19000.24
Values

When you define variables and other dimensioned objects, and when you write
programs that loop over multidimensional expressions in nested loops, you should
always try to maximize performance by matching the fastest-varying dimension
with the inner loop.

Defining Variables That Handle Sparse Data Efficiently

A variable with sparse data is one in which a relatively high percentage of the cells
of the variable do not contain actual data. Such “empty,” or NA, values take up
storage space in the analytic workspace.

There are two types of sparsity:

« Controlled sparsity occurs when a range of values of one or more dimensions
has no data; for example, a new variable dimensioned by nont h for which you
do not have data for past months. The cells exist because you have defined past
months in the nont h dimension, but the cells are empty.

« Random sparsity occurs when NA values are scattered throughout the data
variable, usually because some combinations of dimension values never have
any data. For example, a district might only sell certain products and never
have data for other products. Other districts might sell a different selection of
products.

Definition: Composite

3-18

A composite is an internal object that is used to store sparse data compactly in a
variable. A composite is a list of dimension-value combinations in which one value
is taken from each of the dimensions on which the composite is based.

Composites can be named or unnamed:

=« Anunnamed composite is not a workspace object; it is merely an internal
structure. When you define a variable, you use the SPARSE keyword to request
that an unnamed composite is automatically created.

Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Variables That Handle Sparse Data Efficiently

=« A named composite is an object that is you define using the DEFI NE
COVPCSI TE command. Later, when you are defining or accessing a variable,
you can specify this composite by name along with the names of other
dimensions.

Because the values in composites are maintained automatically, using composites is
the recommended way of handling sparsity in your analytic workspace.

Using composites is one of the most important steps you can take to manage
sparsity, which contributes to keeping analytic workspace size to a minimum and
promoting good performance.

Why You Should Use Named Composites

Using named composites makes it easier to track which variables share the same
composite. A named composite in the dimension list of a variable tells Oracle OLAP
that the dimensions in the named composite are sparse in this variable, and that this
composite is shared only with other variables that have the same sparsity pattern.

In contrast, all variables defined with an unnamed composite that have exactly the
same dimensions in the same order will automatically share that unnamed
composite. If these variables have different sparsity patterns, performance will
suffer.

You can also manage sparsity by using a conjoint dimension to hold
dimension-value combinations for which a given variable has data. However,
because the values in composites are automatically maintained, using composites is
the recommended way of handling sparsity in your analytic workspace.

How to Use Composites

When you define a multidimensional variable, you can specify a composite in the
list of dimensions.

First, define a named composite by using the DEFI NE COVPOSI TE command.
Then, define the variables by using the following syntax to include a named
composite in the dimension list of each variable.

conposi t e- nane <di ns>

For example, suppose you define a composite named pr oddi st , whose
dimensions include pr oduct and di stri ct, as shown in the following command.

DEFI NE proddi st COMPCSI TE <product district>

Defining Data Objects 3-19

Defining Variables That Handle Sparse Data Efficiently

Now, suppose you want to define a sal es variable in which t i me will be the
fastest-varying dimension and the pr oddi st composite will be the slowest-varying
dimension, as shown in the following command.

DEFINE sal es <time proddi st<product district>>

Note that you should never use the SPARSE keyword with a composite. Essentially,
you use the name of the composite instead of the SPARSE keyword.

See Also:

« "Using Composites in Expressions" on page 4-13 for more
information about using composites.

« "Working with NA Values" on page 4-32 for more information
about working with sparse data.

Naming, Renaming, and Unnaming Composites
You can use the RENAME command to:
« Name an unnamed composite.
« Change the name of a named composite.

« Change a named composite to an unnamed composite.

Adding Data to a Variable That Uses a Composite

When you define a multidimensional variable, you can specify that a composite is
used instead of its base dimensions to dimension the data. Later, as you add values
to the dimensions of the variable for which you defined a composite, the following
actions are taken:

« The composite is filled with dimension-value combinations.

= The data for the variable is stored using the composite structure rather than the
structure of the base dimensions.

For a variable that uses a composite, cells are created for only those dimension
values that are used in the composite dimension-value combinations; it does not
create a variable cell for every value in the base dimensions. Data for a variable is
stored in order, cell by cell, for each combination of dimension values. From the
perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. This means that if you

3-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Variables That Handle Sparse Data Efficiently

define a variable with one regular dimension and one composite, then it is stored
like a two-dimensional variable.

Example 3—-1 Defining a Variable That Uses a Named Composite

If your company does promotional marketing for certain products in some but not
all districts, then your variable data will be sparse along the pr oduct and

di strict dimensions. Therefore, suppose you define a composite named

pr oddi st , whose base dimensions are pr oduct and di stri ct. There are
dimension-value combinations in the composite only for those values that have
data. For example, if you run a promotion for tents but not canoes, then the
composite includes the tents and city combinations, but not the canoes and city
combinations.

The following command creates a variable called pr ono that is dimensioned by
nont h and a composite named pr oddi st , whose base dimensions are pr oduct
anddistrict.

DEFI NE pronp | NTEGER <nont h proddi st <product district>>

The following conceptual figure illustrates the pr ono variable that is created by this
command, the nont h, pr oduct and di st ri ct base dimensions, a named
composite (pr oddi st) created from the pr oduct and di stri ct base dimensions,
and the internal relation that is created between the pr oduct and di stri ct base
dimensions and the pr oddi st composite.

MONTH PRODUCT DISTRICT
dimension dimension dimension

PRODDIST

(named composite)

PROMO
variable

Defining Data Objects 3-21

Defining Hierarchical Dimensions and Variables That Use Them

The following table is an example of the sequence in which the data for the pr ono
variable might be stored.

TENTS TENTS TENTS RACQUETS |RACQUETS
BOSTON BOSTON |BOSTON CHICAGO CHICAGO
JAN95 FEB95 MAR95 JAN95 FEB95

257 379 428 635 192

Defining a Variable with a Single-Dimension Composite

When you specify a composite for just one dimension in a variable definition, a
single-dimension composite is created. The values of this composite will be a subset
of the values in its base dimension.

It is a good idea to use single dimension composites when a variable will share the
same dimensions as some other variables, but for a particular single dimension, the
variable will only have data for some of the values of the dimension.

Suppose you have already defined a variable called act ual with the dimensions
I i ne,di vi sion,and nont h. The act ual variable does not contain any NA
values. You need to define a variable called budget , which requires much less
detail than act ual . For example, budget only needs 10 percent of the | i ne
dimension values, while act ual needs all of them.

If you define budget without setting sparsity, then all of the | i ne dimension
values are present for every nont h and di vi si on, but 90 percent of the | i ne
dimension cells will have NA values.

To handle sparse data in this case, you define budget with an unnamed composite
for only the | i ne dimension as shown below.

DEFI NE budget DECI MAL <SPARSE <l i ne> division nonth>

Defining Hierarchical Dimensions and Variables That Use Them

A hierarchical dimension is a means of organizing and structuring parent-child
(one-to-many) data within a single dimension and using self-relations to organize
the values of the hierarchical dimension into groups. A hierarchy exists when
values within a dimension are arranged in levels, with each level representing the
aggregated total of the data from the level below. Some dimensions have multiple
hierarchies.

3-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Hierarchical Dimensions and Variables That Use Them

Hierarchical dimensions allow you to store data of varying levels of aggregation
within a single variable. This type of storage affords a quicker response time for
users who want to view the data, particularly when the variable is large.

Rather than defining two separate dimensions, one for city and the other for region,
you could define a hierarchical dimension named geogr aphy that contains both
city and region values.

BOSTON
SAN FRANC SCO
SEATTLE

Defining a Variable with a Hierarchical Dimension

You use a hierarchical dimension to define a variable that contains data of varying
levels of aggregation within a single variable. This type of storage affords a quicker
response time for users who want to view the data, particularly when the variable is
large.

Frequently, the cells in the variable that correspond to upper level values in the
hierarchical dimension contain the sum or total of the values in the cells of the
variable that correspond to the lower level dimension values. For example, in a

sal es variable that is defined with a hierarchical dimension representing time, the
cells of the variable for each quarter might represent the total sales for the months in
the quarter.

After you have defined a variable with hierarchical dimensions, you can add
variable data to the lowest level of the hierarchy, and then calculate or aggregate the
values for the higher levels of the hierarchy. Conversely, you can distribute or
allocate data from higher levels to lower levels of the hierarchy.

See Also:

« Chapter 9, "Allocating Data" for information about allocating
data.

« Chapter 12, "Aggregating Data" for information about
aggregating data.

Defining Data Objects 3-23

Defining Hierarchical Dimensions and Variables That Use Them

Example: Variable with a Hierarchical Dimension

The conceptual diagram below illustrates the geogr aphy dimension that contains
values for both cities and regions, the geo. geo relation that defines the
relationships between cities and regions, the di vi si on dimension that contains the
list of divisions, and the cost s variable that contains the expenses for each

di vi si on by city and the totals by region.

GEOGRAPHY GEO.GEO
dimension relation
DIVISION COSTS
dimension variable

The di vi si on and geogr aphy dimensions have the following values.
DI VI SI ON

SAN FRANC SCO
SEATTLE

Assume that the geo. geo relation was defined using the following command.

define geo.geo rel ation geography <geography>

After region values have been assigned to the city values in the geo. geo
self-relation, a report of geo. geo produces the following.

3-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Concat Dimensions and Variables That Use Them

GEOGRAPHY GEQ. GEO
EAST NA

VEEST NA
BOSTON EAST

SAN FRANCI SCO VST
SEATTLE VEEST

If you enter data at the lowest level (city level) of cost s, then it has the values
shown below.

------------------------ QOSTS- - - rmmmmmmm e eaee e

---------------------- GEOGRAPHY- - - - - === = m e meee e eeeee oo
DI VI S ON EAST VEST BOSTON SAN FRANCI SCO SEATTLE
DI VA NA NA 27,600.00 10, 000. 00 40, 000. 00
DI VB NA NA 30,000.00 12, 000. 00 50, 000. 00

After you aggregate the data, the cost s variable has values in all of its cells,
including the cells for the totals for the East and West regions.

------------------------ 01051

---------------------- GEQGRAPHY- - - - - == === s e e e e e
DIVISION EAST VEEST BOSTON SAN FRANCI SCO SEATTLE
DI VA 27,600.00 50,000.00 27,600.00 10, 000. 00 40, 000. 00
DI VB 30,000.00 62,000.00 30,000.00 12,000.00 50, 000. 00

Defining Concat Dimensions and Variables That Use Them

A concat dimension combines two or more base dimensions into a single
dimension. You can use a concat dimension instead of a hierarchical simple
dimension as another means of organizing and structuring parent-child data within
a dimension. You use self-relations to organize the values of the concat dimension
into groups by the levels of the hierarchy.

In a relational dimension table, suppose you have one column for districts with city
names as its values, and another column for regions. You can definea di stri ct
dimension and a r egi on dimension in your analytic workspace and load into them
the values of the relational columns. Those dimensions have the following values.

Defining Data Objects 3-25

Defining Concat Dimensions and Variables That Use Them

D STRICT

BOSTON
SAN FRANCI SCO
SEATTLE

You can define a concat dimension named r eg. di st . ccdi mbased on those
simple flat dimensions. The concat dimension contains the values of both
dimensions.

REG DI ST. CCDI M

<REG ON. EAST>

<REG ON: WEST>

<DI STRI CT: BOSTON>

<DI STRI CT: SAN FRANCI SCO>
<DI STRI CT: SEATTLE>

You can then define a self-relation that groups the values of the concat dimension
into hierarchical levels. As with a hierarchical simple dimension, you can use a
concat dimension to define a variable that contains different levels of aggregation.

Example: Variable with a Concat Dimension

You can define a variable dimensioned by the r eg. di st . ccdi mconcat dimension
and the di vi si on dimension from "Example: Variable with a Hierarchical
Dimension" on page 3-24 as follows.

DEFI NE costs VAR ABLE DECI MAL <reg. di st. ccdi m di vi si on>

You can define a self-relation for the r eg. di st . ccdi mconcat dimension that
identifies the parent-to-child relationships of the district-region hierarchy as
follows.

DEFI NE rdccdi mrdccdi m RELATI ON reg. di st. ccdi m <reg. di st. ccdi n»

limt district to ' BOSTON

rdccdi m rdccdi n{REG DI ST. CCDIM di strict) = reg.dist.ccdi n{REG ON ' EAST")
limt district to ' DENVER ' SEATTLE

rdccdi m rdccdi m(REG DI ST. CCDIM di strict) = reg.dist.ccdi n{ REG ON ' VEEST")

3-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

Changing the Definition of an Object

If you enter data at the lowest level (the di st ri ct dimension level), then the
cost s variable has the values shown below.

------------------------ COBTS - --mmmmmmmmemc e eeeaas

-------------------- REG DI ST.CCDIM - -----mmmmmeeem e oo

<REG ON: <REG ON' <DI STRICT: <Dl STRICT: <Dl STRI CT:
DI VI SI ON EAST> VEEST> BOSTON> SAN FRANCI SCO> SEATTLE>
D VA NA NA 27,600.00 10, 000.00 40, 000. 00
D vB NA NA 30,000.00 12,000.00 50, 000. 00

You can aggregate the data in the cost s variable by creating an aggregation map
and then using the AGGREGATE command. After you aggregate the data, the cost s
variable has values in all of its cells, including the cells for the totals for the EAST
and VEST regions.

<REG ON: <REG ON: <Dl STRICT: <Dl STRICT: <DI STRI CT:
Dl VI SI ON EAST> VEEST> BOSTON> SAN FRANCI SCO> SEATTLE>
D VA 27,600.00 50,000.00 27,600.00 10,000.00 40, 000. 00
D VB 30, 000.00 62,000.00 30,000.00 12,000.00 50, 000. 00

Changing the Definition of an Object

The definition of the last object you have defined in your analytic workspace is the
current definition. You can append characteristics, such as a description, property,

or permission to the current definition. If you want to append a characteristic to a

definition that is not current, then you can use the CONSI DER command to make it
the current definition.

The following table lists the OLAP DML commands that you can use to append
characteristics to an object definition.

Command Description
AGGVAP Allows you to specify completely new contents for a new or existing
AGGVAP type aggregation map, which you can use with the AGGREGATE
command
ALLCOCNVAP Allows you to specify completely new contents for a new or existing
ALLCCMAP type aggregation map, which you can use with the ALLOCATE
command

Defining Data Objects 3-27

Changing the Definition of an Object

Command Description

EQ Allows you to specify the expression to be calculated for a formula that
has already been defined

LD Assigns a long description to an object definition

MODEL Allows you to specify completely new contents for a new or existing
model

PERM T Assigns access permission to an object definition

PROGRAM Allows you to specify completely new contents for a new or existing
program

PROPERTY Assigns a property to an object definition

Suppose that you have defined a Boolean variable named onpl an. Later, you want
to add a description to the definition of the variable.

As shown below, to change the definition of the ONPLAN variable, you first make
ONPLAN the current definition, and then you append a description to the definition.

CONSI DER onpl an
LD Are these districts tracked on a special plan?

You can redefine some characteristics of a variable definition by using the CHGDFN
command. In the following example, the segment size of the sal es variable is
changed.

CHGDFN sal es SEGN DTH 150 1000

For more information on the DEFI NE and CHGDFN commands, see the topics for
these commands in the Oracle9i OLAP DML Reference help.

3-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

A4

Working with Expressions

Expressions represent data values in the syntax of the OLAP DML. This chapter
explains how to create and use expressions. It includes the following topics:

Introducing Expressions

Dimensionality of Expressions

Specifying a Single Value for the Dimension of an Expression
Using Workspace Objects in Expressions

Numeric Expressions

Text Expressions

Boolean Expressions

Conditional Expressions

Substitution Expressions

Working with NA Values

Working with Expressions 4-1

Introducing Expressions

Introducing Expressions

Expressions represent data values in the syntax of the OLAP DML. You can use
expressions as arguments in commands or functions and as values for options. An
expression often performs a mathematical or logical operation. It always evaluates
to a result in one of the workspace data types.

An expression can be:

« Asingle, literal value (for example, 10 or’ EAST')

= Avariable or formula that contains multiple values (for example, sal es)

« A function that returns one or more values (for example, TOTAL or JO NLI NES)

= A calculation that combines literal values, dimensions, variables, formulas, and
functions with operators (for example, i nf I ati on*1. 02 or act ual gt
20000)

An expression has a data type. It can also have dimensions. The data type and
dimensions of an expression depend on the values you are using in the expression.

Data Types of Expressions
The data type of an expression can be one of the following basic types:

=« Numeric

« Text

« Date (evaluating to a date value)

« Boolean (evaluating to a YES or NOvalue)

These data types are defined in "Data Types" on page 3-4.

How the Data Type of an Expression is Determined

The data type of an expression is the data type of the resulting value. It may not be
the same as the data type of the data objects that make up the expression; it depends
on the data and on the operators and functions that are involved.

In addition, a conditional expression that is indicated by an | F... THEN. . . ELSE
operator is supported. A conditional expression returns a value whose data type
depends on the expressions in the THEN and EL SE clauses, not on the expression in
the | F clause, which must be Boolean.

4-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Introducing Expressions

Operators

Note: Do not confuse a conditional expression with the | F
command, which has similar syntax but a different purpose. The | F
command does not have a data type and is not evaluated like an
expression.

Changing the Data Type of an Expression

You can use the CONVERT function to change data type of an expression. For
example, you can convert a number to text, or you can convert a text string that
consists of digits to a number.

However, there is no need to convert data to another type within the same basic
category because those conversions are made automatically. In general, you can use
TEXT, NTEXT, or | Ddata anywhere text is called for, and you can use integers and
decimal numbers interchangeably.

OLAP DML data types are discussed in "Data Types" on page 3-4.

An operator is a symbol that transforms a value or combines it in some way with
another value. The following table describes the categories of OLAP DML
operators.

Table 4-1 OLAP DML Operators

Category Description

Arithmetic Operators that you can use in numeric expressions with
numeric data to produce a numeric result. You can also use
some arithmetic operators in date expressions with a mix of
date and numeric data, which returns either a date or numeric
result. For more information on arithmetic operators, see
Table 4-2, "Arithmetic Operators".

Assignment An operator that you use to create an assignment statement
that stores the results of an expression into an object. For more
information on using assignment statements, see "Using
Objects in Assignment Statements" on page 5-11.

Comparison Operators that you can use to compare two values of the same
basic type (numeric, text, date, or, in rare cases, Boolean),
which returns a Boolean result. For more information on
comparison operators, see Table 4-3, "Boolean Operators".

Working with Expressions 4-3

Introducing Expressions

Table 4-1 OLAP DML Operators

Category Description

Conditional Operators that you can use to select one of two values based on
a Boolean condition. For more information on the substitution
operator, see "Conditional Expressions" on page 4-29.

Logical Operators that you can use to transform Boolean values using
logical operations, which returns a Boolean result. For more
information on logical operators, see Table 4-3, "Boolean
Operators".

Substitution An operator that you can use to evaluate an expression and
substitute the resulting value. For more information on the
substitution operator, see "Substitution Expressions" on
page 4-30.

Saving an Expression

You can save an expression in a formula. Typically, you define a formula to save
complex or frequently used expressions. A formula is an object that you name and
define using the DEFI NE FORMULA command.

For example, you can define a formula to calculate dollar sales, as follows.

DEFI NE dol | ar. sal es FORMULA units * price

Each time you use a formula, the expression it represents is evaluated. The results
are not stored.

4-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Dimensionality of Expressions

Dimensionality of Expressions

An expression is dimensioned by a union of the dimensions of all the variables,
dimensions, relations, formulas, qualified data references, and functions in the

expression.

Iltem

Dimensioned By

Comments

Variable
Relation
Formula

The dimensions listed in
the definition of the object

Example 1: If the pri ce variable is
dimensioned by mont h and pr oduct , then the
expression pri ce * 1. 2 is also dimensioned
by nont h and pr oduct .

Example 2: If the uni t s variable is
dimensioned by nont h, pr oduct, and

di stri ct, then the expression

units * price is dimensioned by nont h,
product,anddi strict (even though the
dimensions of the pri ce variable are nont h
and pr oduct only).

Qualified
data
reference

All of the dimensions of
the associated object,
except for the dimensions
being qualified

Qualified data references are described in
"Specifying a Single Value for the Dimension of
an Expression” on page 4-6.

Function

In most cases, the union of
the dimensions of its input
arguments

Unless otherwise noted in the OLAP DML
Reference, when you specify breakout
dimensions or relations in an aggregation
function, you change the dimensionality of the
expression. The first dimension that you
specify as a breakout dimension is the slowest
varying and the last dimension that you specify
is the fastest varying.

Determining the Dimensions of an Expression

You can find out the dimensions of an expression with the PARSE command and the
I NFOfunction. PARSE evaluates the text of an expression; the | NFOfunction
indicates how the expression is interpreted.

Working with Expressions 4-5

Specifying a Single Value for the Dimension of an Expression

This example illustrates the use of the DI MENSI ON keyword with the | NFOfunction
to retrieve the dimensions of the expression just analyzed by the PARSE command.
The following commands produce the output shown below them.

PARSE ' TOTAL(sal es region)’

SHOW | NFQ(PARSE DI MENSI ON)
REG ON

How Dimension Status Affects the Results of Expressions

The number of values an expression yields depends on the dimensions of the
expression and the status of those dimensions. An expression yields one data value
for each combination of dimension values in the current status. For example, if three
dimension values are in status for nont h, and two for pr oduct , then the
expression pri ce gt 100 results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an
expression are limited to the range of data you want to consider. In addition, you
must take into consideration any PERM T commands that might limit access to the
dimensions of the data.

See Also: Chapter 6, "Selecting Data" for more information about
setting the status of a dimension.

Specifying a Single Value for the Dimension of an Expression

A qualified data reference (QDR) is a way of limiting one or more dimensions of an
expression to a single value. QDRs are useful when you want to specify a single
value without changing the current status. Using a QDR, you can qualify a
dimension (which allows you to specify one dimension value in an expression) or
one or more dimensions of a variable or relation.

A qualified data reference takes the following form.
expression(di manel dimexpl [, di mane2 dinmexp2. . .])
The di mmane argument is the name of one of the dimensions, or a dimension

surrogate of the dimension, of the expression and the di nexp argument is one of
the following:

« Avalue of di mmane.

4-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Specifying a Single Value for the Dimension of an Expression

= Atext expression whose result is a value of di rmane.

= A numeric expression whose result is the logical position of a value of
di marne.

= Avrelation of di mmane.

Note: To qualify a complex expression, use the QUAL function.

Qualifying a Variable

You can qualify any or all of a dimensions of a variable using either of the following
techniques:

« The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value can be outside the current status.

« The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the
qualifier. The dimension is temporarily replaced by the dimension(s) of the
relation.

For example, the variable sal es has three dimensions, nont h, pr oduct , and

di stri ct.You might want to compare total sales in Boston to the total sales in all
cities. In a single command, you want di stri ct to be limited to two different
values:

« For the numerator of the expression, you want the status of di stri ct to be
BOSTON.

« For the denominator of the expression, you want the status of di stri ct to be
ALL.

The command below lets you calculate this result by using a QDR.
SHOW sal es(di strict 'BOSTON)/ TOTAL(sal es)
You can qualify more than one of the dimensions of a variable. For example, if you

qualify all the dimensions of the sal es variable by specifying one dimension value
of each dimension, then you narrow sal es down to a single—cell value.

To fetch sales for JUNO2, TENTS, and SEATTLE, use the following QDR.
SHOW sal es(nonth " JUNO2', product 'TENTS', district 'SEATTLE')

Working with Expressions 4-7

Specifying a Single Value for the Dimension of an Expression

This command fetches a single value.

You can use a qualified data reference with the target expression of the = command.
This lets you assign a value to a specific cell in a data object.

The following example assigns the value 10200 to the data cell of the sal es
composite that is specified in the qualified data reference. If the composite named
sal es does not already have a value for the combination BOSTON and TENTS, then
this value combination is added to the composite, thus adding the data cell.

sal es(market 'BOSTON product ' TENTS nonth ' JAN99')= 10200

Replacing a Dimension in a Variable

When you use a relation as the qualifier in the QDR, you replace a dimension of the
variable with the dimension or dimensions of the relation. The relation must be
related to the dimension that you are qualifying, and it must be dimensioned by the
replacement dimension.

Example 4-1 Replacing a Dimension in a Variable

Suppose you have two variables, sal es and quot a, which are dimensioned by
nmont h, product,and di st ri ct . Athird variable, di vi si on.ngr, is dimensioned
by mont h and di vi si on. You also have a relation between di vi si on and
product, called di vi si on.pr oduct . These objects have the following definitions.

DEFI NE SALES VARl ABLE DECI MAL <MONTH PRCDUCT DI STRI CT>
LD Sal es Revenue

DEFI NE QUOTA VAR ABLE DECI MAL <MONTH PRODUCT DI STRI CT>
DEFI NE DI VI SI ON. MaR VARI ABLE TEXT <MONTH DI VI SI ON>

DEFI NE DI VI SI ON. PRODUCT RELATI ON DI VI SI ON <PRODUCT>

LD DIVISION for each PRODUCT

The command below produces the report following it.

REPCRT di vi si on. mgr

CAMPING Hawley Hawey Jones Jones Jones Jones
SPORTING Carey Carey Carey Car ey Car ey Misgrave
CLOTH NG Musgrave Musgrave Misgrave Musgrave Misgrave \Wng

4-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Specifying a Single Value for the Dimension of an Expression

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota; and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
di vi si on.pr oduct, which is related to di vi si on and dimensioned by pr oduct ,
as the qualifier. The QDR replaces the di vi si on dimension with pr oduct , so that
it has the same dimensions as the other expression in the report “sal es / quot a.”
The command below produces the report following it.

REPORT DOMN nonth sales W6 sal es/quota W8 HEADI NG -
" MANAGER di vi sion. ngr(division division. product)

DI STRI CT: BOSTON

----------------------------- PRODUCT- - - - - - - e
-~ TENTS---- --- CANCES---- -- RACQUETS--- -- SPORTSVEAR- - --- FOOTVEAR: - -
SALES/ SALES/ SALES/ SALES/ SALES/

MONTH QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER

JANO2 1.00 Hawey 0.82 Hawey 1.02 Carey 0.91 Musgrave 0.92 Musgrave
FEBO2 0.84 Hawey 0.96 Hawley 1.00 Carey 0.80 Musgrave 1.07 Musgrave
MARO2 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Musgrave 0.91 Musgrave
APRO2 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Musgrave

Qualifying a Relation

You can also use a QDR to qualify a relation (which is really a special kind of
variable).

Suppose the r egi on.di stri ct relation is dimensioned by di stri ct. If you
qualify di stri ct with the value SEATTLE, then the value of the expression is the
value of the relation for SEATTLE. Because the QDR specifies one value of

di stri ct, the expression has a single-cell result.

The definition of r egi on.di stri ct is as follows.

DEFI NE REG ON. DI STRI CT RELATI ON REG ON <DI STRI CT>
LD The region for each district

The command below displays the value WEST.
SHOWregion.district(district ' SEATTLE)

Working with Expressions 4-9

Specifying a Single Value for the Dimension of an Expression

Qualifying a Dimension
You can use a QDR to qualify the dimension itself, which allows you to specify one

dimension value in an expression. The following expression specifies one value of
di stri ct, the one contained in the single-cell variable mydi stri ct.

district(district nydistrict)

For a concat dimension, you can use a QDR to qualify the dimension by specifying
a value from one of the base dimensions of the concat dimension. The following
expression specifies one value of r eg. di st. ccdi m a concat dimension that has
regi onanddi strict asits base dimensions. The costs variable is dimensioned
by the di vi si on and r eg. di st . ccdi mdimensions.

show reg. dist.ccdin(district 'BOSTON)

The preceding expression produces the following result.
<DI STRI CT: BOSTON>

Using Ampersand Substitution with QDRs

An ampersand character (&) at the beginning of an expression substitutes the value
of the expression for the expression itself in a command or function.When you use
an ampersand with a QDR, you must enclose the whole expression in parentheses if
you want the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by r ept ype
and that contains the names of variables. Remember that it is nyvar that is
dimensioned by r ept ype, not the variables named by myvar. Therefore, you must
use parentheses so that myvar is qualified and the resulting value is used in the
REPCORT command.

REPCRT &(nyvar (reptype "ACTUAL'))

If you do not use parentheses and the variable that is specified in myvar is sal es,
then you will get an error message that sal es is not dimensioned by r ept ype.

Using the QUAL Function to Specify a QDR

Sometimes you will find that the syntax of a QDR is ambiguous and could either be
misinterpreted or cause a syntax error. In this case, you can use the QUAL function to
explicitly specify a qualified data reference (QDR).

4-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Specifying a Single Value for the Dimension of an Expression

Example 4-2 Using the QUAL Function

The following example first shows how you might view your data by limiting its
dimensions, and then how you might view it by using QUAL.

These commands produce the report shown below them.

LIMT month TO ' JAN9G' TO ' JUN9E’

LIMT line TO ' COGS

LIMT division TO ' SPORTI NG

REPCRT DOM nmonth W11 MAX(actual, budget) W11 actual W11 budget

DI VI SION: SPORTI NG

--------------- LINE- -« mmmmmmmmeeee

............... COGS-----mmmmmm e e

MAX(ACTUAL,
MONTH BUDGET) ACTUAL BUDGET
JAN9G 287,557.87 287,557.87 279,773.01
FEB96 323,981.56 315,298.82 323,981.56
MARO6 326,184.87 326,184.87 302, 177.88
APR96 394,544.27 394,544.27 386, 100. 82
MAY96 449,862.25 449,862.25 433,997.89
JUN96 457,347.55 457,347.55 448,042. 45

Now consider how you might view the same figures for MAX(act ual , budget)
without changing the status of | i ne or di vi si on.

ALLSTAT

LIMT month TO ' JAN9G' TO ' JUN9E’

REPORT HEADI NG ' For Cogs in Sporting Division DOM rmonth -
W11 HEADI NG ' MAX(actual , budget)’ -
QUAL(MAX(act ual , budget), line 'COGS', division 'SPORTING)

For Cogs in

Sporting MAX(ACTUAL,
Di vi sion BUDCET)
JAN9G 287, 557. 87
FEB96 323,981.56
MAR96 326, 184. 87
APR96 394, 544. 27
MAY96 449, 862. 25
JUN96 457, 347.55

Working with Expressions 4-11

Using Workspace Objects in Expressions

If you attempt to produce the same report with standard QDR syntax, then an error
is signalled.

REPORT HEADI NG ' For Cogs in Sporting Division DOM rmonth -
W11 HEADI NG ' MAX(actual , budget)’ -
MAX(act ual , budget) (line cogs, division sporting)

The following error message is produced.

ERRCR A right parenthesis or an operator is expected after LINE

Using Workspace Objects in Expressions

You can use objects in expressions as described below:

= You can use a dimension, a dimension surrogate, a relation, or a variable as an
array of data by specifying the name of the object.

= You can use a formula or a function as a sub-expression or as an expression in a
command or function by specifying the name of the formula or the function.

= You can use a valueset as a list of dimension values in an expression by
specifying the name of the valueset.

= You can use various data objects as the target or source expression in an
assignment statement.

Using Dimensions or Dimension Surrogates in Expressions

In expressions, a dimension or dimension surrogate is referenced as a
one-dimensional array.

If the dimension or surrogate has a data type of TEXT, then, in most cases, its values
are referenced as text values. NUMBER dimension values are always referenced by
the value itself.

However, for dimension types other than NUMBER dimension values are referenced
by their numeric positions in the dimension array when you do one of the
following:

« Use adimension with a data type of TEXT in a numeric expression
« Compare one value in a dimension to another value in the same dimension

In these cases, the integer position number is based on the default status list, not on
the current status.

4-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using Workspace Objects in Expressions

Using Composites in Expressions

In expressions, composites behave much the same way that dimensions do and,
generally, you can use a composite in an expression anywhere you can use a
dimension:

« If the composite is named, then specify its name.

« If the composite is unnamed, then specify SPARSE <di nensi ons. .. >.

Using Variables in Expressions

In expressions, a variable is referenced as an array containing values of the specified
data type.

When you assign values to a variable or when you use REPORT or another
command or function that loops over the dimensions of a variable, the values of the
fastest-varying dimension of the variable vary first. For example, for the opcost s
variable that is dimensioned by nont h and ci t y, when you view the variable as
REPORT command output, you see the data for all months for the first city before
you see any data for the second city. In this case, nont h is the fastest-varying
dimension because its values change before those of ci t y. When you write
programs that loop over a multidimensional variable in this way, try to maximize
performance by matching the fastest-varying dimension with the inner loop.

Note: When you use a variable as the solution variable in a model,
the model will execute most efficiently if the order of the
dimensions in the definition of the solution variable matches the
order of the dimensions in the DI MENSI ON commands in the
model.

You can uniquely and completely select any item of data within a multidimensional
variable by using a qualified data reference (QDR) to specify one value from each of
the dimensions of the variable.

For example, if the opcost s variable is dimensioned by nonth and ci ty,
specifying’ JANO2’' for the nont h dimension and ' BOSTON' forthecity
dimension uniquely specifies a single cell in the variable.

Working with Expressions 4-13

Using Workspace Objects in Expressions

Using Variables Defined with Composites in Expressions

In most cases, when you use functions and commands with variables that are
defined with composites, the functions and commands treat those variables as if
they were defined with base dimensions:

= You can access a variable that is dimensioned by a composite by requesting any
of the base dimension values.

« The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and
therefore, they do not have any independent status.

Default Behavior of Commands That Loop Over Variables

When you use the REPORT command or any other command that loops over a
variable that uses a composite, the default behavior is to evaluate all the
combinations of the values of the base dimensions of the composite that are in
status. Any combinations that do not exist in the composite display NA for their
associated data.

For example, the following commands create a report for the East region that shows
the number of coupons issued for sportswear from January through March 2002.
Since no coupons were issued in March 2002, the report displays NA in that
column.

LIMT nonth TO 'JANO2' ' FEB02' ' MARO2’
LIMT market TO ' EAST

LIMT product TO ' SPORTSVEAR

REPORT coupons

MARKET: EAST
------------ OOUPONS- - <= === === - - -
------------- NONTH- - = === - - - - -

PRODUCT JANO2 FEB02 NAR02

SPORTSWEAR 1,000 1,000 NA

However, for performance reasons, you can change the default looping behavior for
commands such as REPORT, ROWand = so that they loop over the values in the
composite rather than all of the base dimension values.

4-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Numeric Expressions

Using Relations In Expressions

A relation is, in many ways, just a special type of variable. Instead of holding
general data values, a relation contains values of the related dimension.
Consequently, in an expression, a relation behaves somewhat like a variable and
somewhat like a dimension:

When you use a relation in a text expression, the relation value is referenced as
a text value. The values of the related dimension that is contained in the relation
are converted into text, and you can use these values in an expression. You can
also compare a text literal to a relation.

When you use a relation in a numeric expression, the relation value is
referenced by its position (an integer) in its related dimension array. You can use
this numeric value in an expression. The position number is based on the
default status list of the dimension, not the current status list of the dimension.

Using Functions in Expressions

A function is a predefined calculation that returns a value. A number of built-in
functions are provided, including:

Numeric functions. You can use these functions to make calculations and
analyze data.

Date functions. You can use these functions to manipulate dates.

Text functions. You can use these functions to join characters or lines, search for
or extract a group of characters, or calculate the length of the text.

Numeric Expressions

A numeric expression evaluates to data with any of the numeric data types (that is,
| NTEGER, SHORTI NTEGER, DECI MAL, SHORTDECI MAL, and NUMBER). The data in
a numeric expression can be any combination of the following:

Numeric literals

Numeric variables or formulas
Dimensions

Functions that yield numeric results

Date literals, variables, formulas, or functions

Working with Expressions 4-15

Numeric Expressions

In addition, you can join any of these three-part expressions with the arithmetic
operators for a more complex numeric expression. You use arithmetic operators in
numeric expressions with numeric data, which returns a numeric result. You can
also use some arithmetic operators in date expressions with a mix of date and
numeric data, to retrieve either a date or numeric result.

Arithmetic Operators

The following table shows the OLAP DML arithmetic operators. When you use two
or more operators in a numeric expression, the expression is evaluated according to
standard rules of arithmetic. The column entitled Priority indicates the order in
which that operator is evaluated. Operators of the same priority are evaluated from
left to right.

Table 4-2 Arithmetic Operators

Operator Operation Priority
- Sign reversal 1
** Exponentiation 2
* and/ Multiplicationand 3
division
+and - Addition and 4
subtraction
Note: A comma is required before a negative number that follows

another numeric expression, or the minus sign is interpreted as a
subtraction operator. For example, i nt var, - 4.

4-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Numeric Expressions

Mixing Numeric Data Types

You can include any type of numeric data in the same numeric expression.

The data type of the result is determined according to the following rules.

IF. .. THEN theresultis ...
all the data in the expression is | NTEGER or | NTEGER.

SHORTI NTEGER, and the only operations are addition,

subtraction, and multiplication,

any of the data is NUVBER, NUVBER.

any of the data is DECI MAL or SHORTDEC!I MAL, and no data | DECI MAL.

is NUMBER,

you perform any division or exponentiation operations, DECI MAL.

Automatic Conversion of Numeric Data Types

Numbers are converted to different data types according to the following rules.

IFyou ...

THEN ...

use a value with the SHORTI NTEGER
or SHORTDECI MAL data type in an
expression,

the value is converted to its long counterpart before
using it.

Note: See "Boolean Expressions" on page 4-21 for
information about problems that can occur when
you mix SHORTDECI MAL and DECI VAL data types
in a comparison expression.

save the results of a calculation as a
value with the SHORTI NTEGER data

type,

NA is stored when the result is outside the range of
a SHORTI NTEGER (-32768 to 32767).

assign the value of a DECI MAL
expression to an object with the
| NTEGER data type,

the value is rounded before storing or using it.

Note: If the decimal value is outside the range of an
integer (approximately plus or minus 2 billion),
then an NA is stored.

use a decimal value where a value
with the | NTEGER data type is
required,

the value is rounded before storing or using it.

Note: If the decimal value is outside the range of an
integer (approximately plus or minus 2 billion),
then an NA is stored.

Working with Expressions 4-17

Numeric Expressions

IFyou ... THEN ...

assign the value of a decimal only the first 7 significant digits are stored.
expression to a variable with the
SHORTDEC!I MAL data type,

combine NUMBER values with other all values are converted to NUVBER.
numeric data types,

If these conversions are not what you want, then you can use the CONVERT,
TO _CHAR TO _NCHAR, TO_NUMBER, or TO_DATE functions to get different results.

Using Dimensions in Arithmetic Expressions

When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an integer) and is used numerically. The
position number is based on the default status list, not on current status.

Using Dates in Arithmetic Expressions

When you use dates in arithmetic expressions, the result can be numeric or it can be
a date. The following table shows the legal operations for dates and the data type of

the result.
IFyou.... ... THEN theresultis... . ..
add or subtract a number from a | a future or prior date.
date,
subtract a date from a date, the number of days between them.
add a date to a date, an error; this is an invalid operation.

add or subtract a number from a | the time period at the appropriate interval in the future
time period, or the past, similar to the return values of the LEAD or
LAGfunction. The result is NA when there is no
dimension value that corresponds to the result. The
calculation is made based on the positions of the values
in the default status list of the dimension.

Limitations of Floating Point Calculations

All decimal data are converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a
mantissa and an exponent. The mantissa and the exponent are stored as binary

4-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Numeric Expressions

numbers. The mantissa is a binary fraction which, when multiplied by a number
equal to 2 raised to the exponent, produces a number that equals or closely
approximates the original decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers may result in further
approximations, and the inaccuracy will gradually increase with the number of
operations. In addition to the approximation factor, the available number of
significant digits affects the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECI MAL or SHORTDEC!I MAL variable may differ in the
least significant digits from a result you compute by hand. Because the
SHORTDEC!I MAL data type provides a maximum of only seven significant digits,
you will see more of these differences with SHORTDECI MAL data. Therefore, you
might want to use the NUMBER data type when accuracy is more important than
computational speed, such as variables that contain currency amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECI MAL data type
will offer a different and closer approximation than the SHORTDECI MAL data type,
because it has more significant digits. This can lead to problems when

SHORTDEC!I MAL and DECI MAL data types are mixed in a comparison expression.
See the topic "Boolean Expressions” on page 4-21 for information on how to handle
such comparisons.

Controlling Errors During Calculations
You can control the following types of errors:

= Division by zero. If you divide an NA value by zero, then the result is NA; no
error occurs. Dividing a non-NA value by zero normally produces an error. If a
divide-by-zero error occurs when you are making a calculation on dimensioned
data, then you can end up with partial results. When you use the REPORT or the
= command, values are reported or stored as they are calculated, so the division
by zero halts the loop before it has gone through all the values.

If you want to suppress the divide-by-zero error, then you can change the value
of the DI VI DEBYZERO option to YES. This means that the result of any division
by zero is NA and no error occurs. This allows the calculation of the other
values of a dimensioned expression to continue.

Working with Expressions 4-19

Text Expressions

= Root of negative numbers. It is normally an error to try to take the root of a
negative number (which includes raising a number to a non-integer power). If
you want to suppress the error message and allow the calculation of roots for
non-negative values of the expression to continue, then set the
ROOTOFNEGAT! VE option to YES.

« Overflow errors. The DECI MALOVERFLOWoption works in a similar manner to
Dl VI DEBYZERQ It lets you control whether an error is generated when a
calculation produces a decimal result larger than it can handle.

Text Expressions

A text expression evaluates to data with the TEXT, NTEXT, or | Ddata type. Text
expressions can be any combination of the following:

« Text literals; for example,” BOSTON' or’ Current Sal es Report’
« Text dimensions; for example, di stri ct ornont h
« Text variables or formulas; for example, pr oduct . nane

= Functions that yield text results; for example, JO NLI NES(' Pr oduct : ’
product . nane)

Suppose t ext var is a variable whose value is’ geog’ , which is the name of a
dimension. Whether you enclose the word t ext var in quotation marks determines
whether the following OBJ function calls return the word VARI ABLE (the type of
object t ext var is) or DI MENSI ON (the type of object geog is).

SHOW CBJ(TYPE ' textvar’)
VARI ABLE

SHOW OBJ(TYPE t extvar)
DI MENSI ON

Working with Dates in Text Expressions

If you use a DATETI ME value where a text value (TEXT, NTEXT, or | D) is expected,
or if you store a DATETI ME value in a text variable, then the DATETI ME value is
automatically converted to a text value.

The format of a DATETI ME value is controlled by the NLS _DATE_FORNMAT option.
Once a DATETI ME value is stored in a text variable, the NLS_DATE_FORMAT setting
has no impact.

4-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

Boolean Expressions

Working with NTEXT Data

TEXT and NTEXT data are interchangeable in most cases. However, implicit
conversion can occur, such as when an NTEXT value is assigned to a TEXT variable.
When TEXT is converted to NTEXT, no data loss occurs because the UTF-8 character
encoding of the NTEXT data type encompasses most other data types. However,
when NTEXT is converted to TEXT, data loss will occur if NTEXT characters are not
represented in the workspace character set.

When TEXT and NTEXT values are used together, for example in a call to the
JO NCHARS function, the TEXT value is converted to NTEXT and an NTEXT value is
returned.

Boolean Expressions

A Boolean expression is a logical statement that is either true or false. Boolean
expressions can compare data of any type as long as both parts of the expression
have the same basic data type. You can test data to see if it is equal to, greater than,
or less than other data.

A Boolean expression can consist of Boolean data, such as the following:

« Boolean values (YES and NO, and their synonyms, ON and OFF, and TRUE and
FALSE)

= Boolean variables or formulas
« Functions that yield Boolean results
« Boolean values calculated by comparison operators

For example, if you have the Boolean expression shown below, then each value of
the variable act ual is compared to the constant 20,000. If the value is greater than
20,000, then the statement is true; if the value is less than or equal to 20,000, then the
statement is false.

actual GT 20000

When you are supplying a Boolean value, you can type either yes, on, ort r ue for
atrue value, and no, of f, or f al se for a false value. When the result of a Boolean
calculation is produced, the defaults are yes and no in the language specified by
the NLS_L ANGUAGE option. The read-only YESSPELL and NOSPELL options record
the yes and no values.

The following table shows the comparison operators and the logical operators. You
use these operators to make expressions in much the same way as arithmetic

Working with Expressions 4-21

Boolean Expressions

operators. The column entitled “Priority” indicates the order in which that operator
is evaluated.

Table 4-3 Boolean Operators

Operator Operation Example Priority

NOT Returns opposite of NOT(yes) = no 1
Boolean expression

EQ Equal to 4 EQ 4 = yes 2

NE Not equal to 5 NE 2 = yes 2

GT Greater than 5GI 7 =no 2

LT Less than 5 LT 7 = yes 2

CE Greaterthanorequalto 8 CGE 8 = yes 2

LE Less than or equal to 8 LE 9 = yes 2

I'N Is a date in atime "1JANO2' IN WL. 02 = yes 2
period?

LI KE Does atextvalue matcha ' FI NANCE' LI KE ' %NAN% = yes 2
specified text pattern?

AND Both expressionsaretrue 8 GE 8 AND 5 LT 7 = yes 3

R Either expressionistrue 8 GE 8 OR 5 GI 7 = yes 4

Each operator has a priority that determines its order of evaluation. Operators of
equal priority are evaluated left to right, unless parentheses change the order of
evaluation. However, the evaluation is halted when the truth value is already
decided. For example, in the following expression, the TOTAL function is never
executed because the first phrase determines that the whole expression is true.

yes EQ yes OR TOTAL(sal es) GT 20000

Creating Boolean Expressions

A Boolean expression is a three-part clause that consists of two items to be
compared, separated by a comparison operator. You can create a more complex
Boolean expression by joining any of these three-part expressions with the AND and
ORlogical operators. Each expression that is connected by AND or OR must be a
complete Boolean expression in itself, even when it means specifying the same
variable several times.

4-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

Boolean Expressions

For example, the following expression is not valid because the second part is
incomplete.

sal es GI 50000 AND LE 20000

In the next expression, both parts are complete so the expression is valid.

sal es GI 50000 AND sal es LE 20000

When you combine several Boolean expressions, the whole expression must be
valid even if the truth value can be determined by the first part of the expression.
The whole expression is compiled before it is evaluated, so when there are
undefined variables in the second part of a Boolean expression, you will get an
error.

Use the NOT operator, with parentheses around the expression, to reverse the sense
of a Boolean expression.

The following two expressions are equivalent.

district NE ' BOSTON
NOT(di strict EQ 'BOSTON)

Example 4-3 Using Boolean Comparisons

The following example shows a report that displays whether sales in Boston for
each product were greater than a literal amount.

LIMT time TO FIRST 2
LIMT geography TO ' BOSTON
REPCRT DOMN product ACRGCSS tine: f.sales GI 7500

This REPORT command returns the following data.

CHANNEL: TOTALCHANNEL
CGEOGRAPHY: BOSTON
---F. SALES GT 7500---

-------- TIME---------
PRODUCT JANO2 FEBO2
PORTAUDI O no no
AUDI CCOWP yes yes
v no no
VCR no no
CAMCORDER yes yes
AUDI OTAPE no no
VI DEOCTAPE yes yes

Working with Expressions 4-23

Boolean Expressions

Comparing NA Values in Boolean Expressions

When the data you are comparing in a Boolean expression involves an NA value, a
YES or NOresult is returned when that makes sense. For example, if you test
whether an NA value is equal to a non-NA value, then the result is NO. However, if
the result would be misleading, then NA is returned. For example, testing whether
an NA value is less than or greater than a non—-NA value gives a result of NA.

The following table shows the results of Boolean expressions involving NA values,
which yield non-NA values.

Expression Result
NA EQ NA YES
NA NE NA NO
NA EQ non-NA NO
NA NE non-NA YES
NA AND NO NO
NA OR YES YES

Controlling Errors When Comparing Numeric Data

If you get unexpected results when comparing numeric data, then there are several
possible causes to consider:

« One of the numbers you are comparing may have a small decimal part that
does not show in output because of the setting of the DECI MALS option.

= You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

= You have mixed SHORTDECI MAL and DECI MAL data types in a comparison.

Oracle Corporation recommends that you use the ABS and ROUND functions to do
approximate tests for equality and avoid all three causes of unexpected comparison
failure. When using ABS or ROUND, you can adjust the absolute difference or the
rounding factor to values you feel are appropriate for your application. If speed of
calculation is important, then you will probably want to use the ABS rather than the
ROUND function.

4-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Boolean Expressions

Controlling Errors Due to Numerical Precision

Suppose expense is a decimal variable whose value is set by a calculation. If the
result of the calculation is 100.000001 and the number of decimal places is two, then
the value will appear in output as 100.00. However, the output of the following
command returns NO

SHOW expense EQ 100. 00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

Controlling Errors When Comparing Floating Point Numbers

A standard restriction on the use of floating point numbers in a computer language
is that you cannot expect exact equality in a comparison of two floating point
numbers when either number is the result of an arithmetic operation. For example,
on some systems, the following command returns a NOinstead of the expected YES.

SHON.1 + .2 EQ .3

When you deal with decimal data, you should not code direct comparisons such as
the one above. Instead, you can use the ABS or the ROUND function to allow a
tolerance for approximate equality. For example, either of the following two
commands will produce the desired YES.

SHOWABS((.1 + .2) - .3) LT .00001
SHOW ROUND(. 1 + .2) EQ ROUND(.3, .00001)

Controlling Errors When Comparing Different Numeric Data Types

You cannot expect exact equality between SHORTDECI MAL and DECI MAL or
NUMBER representations of a decimal number with a fractional component, because
the DECI MAL and NUMBER data types have more significant digits to approximate
fractional components that cannot be represented exactly.

Suppose you define a variable with a SHORTDECI MAL data type and set it to a
fractional decimal number, then compare the SHORTDECI MAL number to the
fractional decimal number, as shown here.

DEFI NE sdvar SHORTDECI MAL
sdvar = 1.3
SHOW sdvar EQ 1.3

The comparison is likely to return NO. What happens in this situation is that the
literal is automatically typed as DECI MAL and converts the SHORTDEC!I MAL variable

Working with Expressions 4-25

Boolean Expressions

sdvar to DECI MAL, which extends the decimal places with zeros. A bit-by-bit
comparison is then performed, which fails. The same comparison using a variable
with a DEClI MAL or a NUMBER data type is likely to return YES.

There are several ways to avoid this type of comparison failure:

« Do not mix the SHORTDECI MAL with DECI MAL or NUMBER types in
comparisons. To avoid mixing these two data types, you should generally avoid
defining variables with decimal components as SHORTDEC!I MAL.

« Use the ABS or ROUND function to allow for approximate equality. The
following commands both produce YES.

SHOW ABS(sdvar - 1.3) LT . 00001
SHOW ROUND(sdvar, .00001) EQ ROUND(.3, .00001)

Comparing Dimension Values

Values are not compared in the same dimension based on their textual values.
Instead, Oracle OLAP compares the positions of the values in the default status of
the dimension. This allows you to specify commands like the following command.

REPCRT district LT 'SEATTLE

Commands are interpreted such as these using the process below.

1. The text literal * SEATTLE' is converted to its position in the di stri ct default
status list of the dimension.

2. That position is compared to the position of all other values in the di stri ct
dimension.

3. Asshown by the following report, the value YES is returned for districts that
are positioned before SEATTLE in the di st ri ct default status list of the
dimension, and NOfor SEATTLE itself.

REPORT 22 WDTH district LT ' SEATTLE

D STRICT DI STRICT LT ' SEATTLE

BOSTON YES
ATLANTA YES
CH CARD YES
DALLAS YES
DENVER YES
SEATTLE NO

4-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

Boolean Expressions

A more complex example assigns increasing values to the variable quot a based on
initial values assigned to the first six months. The comparison depends on the
position of the values in the nont h dimension. Because it is a time dimension, the
values will be in chronological order.

quota = | F nonth LE 'JUNO2' THEN 100 ELSE LAG quota, 1, month)* 1.15

However, if you compare values from different dimensions, such as in the
expressionregi onlt district,thenthe only common denominator is TEXT,
and text values are compared, not dimension positions.

See Also: "Conditional Expressions" on page 4-29 for information
about | F.. . THEN. . .ELSE syntax.

Comparing Dates

You can compare two dates with any of the Boolean comparison operators. For
dates, “less” means before and “greater” means after. The expressions being
compared can include any of the date calculations discussed in "Numeric
Expressions"” on page 4-15. For example, in a billing application, you can determine
whether today is 60 or more days after the billing date in order to send out a more
strongly worded bill.

bill.date + 60 LE SYSDATE

Dates also have a numeric value. You can use the TO_ NUVBER and TO _DATE
functions to change dates to integers and integers to dates for comparison.

Comparing Text Data

When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be
enclosed in single quotes. For example, this expression tests whether the first letter
of each employee’s name is greater than the letter “M.”

EXTCHARS(enpl oyee. nane, 1, 1) GT 'M
You can compare TEXT and | Dvalues, but they can only be equal when they are the

same length. When you test whether a text value is greater or less than another, the
ordering is based on the setting of the NLS_SORT option.

You can compare numbers with text by first converting the number to text.
Ordering is based on the values of the characters. This can produce unexpected

Working with Expressions 4-27

Boolean Expressions

results because the text is evaluated from left to right. For example, the text literal
'1234’ is greater than’ 100, 999. 00’ because’ 2’ , the second character in the
first text literal, is greater than ' O’ , the second character in the second text literal.

Suppose nane. | abel isan | Dvariable whose value is’ 3- Per son’ and
nane. desc is a TEXT variable whose value is’ 3- Per son Tents’.

The result of the following SHOMcommand will be NO,
SHOW narme. desc EQ nare. | abel

The result of the following commands will be YES.

nane. desc = ' 3- Person’
SHOW narre. desc EQ nane. | abel

Comparing a Text Value to a Text Pattern
The Boolean operator LI KE is designed for comparing a text value to a text pattern.

A text value is like another text value or pattern when corresponding characters
match.

Besides literal matching, LI KE lets you use wildcard characters to match more than
one character in a string:

= Anunderscore () character in a pattern matches any single character.

« A percent (%) character in a pattern matches zero or more characters in the first
string.

For example, a pattern of %AT_ matches any text that contains zero or more
characters, followed by the characters AT, followed by any other single character.
Both ' DATA' and’ ERRATA' will return YES when LI KE is used to compare them
with the pattern AT _.

The results of expressions using the LI KE operator are affected by the settings of the
LI KECASE and LI KENL options. See the entries in the OLAP DML Reference for
these options, both for examples of their effect on the LI KE operator and for general
examples of the use of the LI KE operator.

No negation operator exists for L1 KE. To accomplish negation, you must negate the
entire expression. For example, the result of the following command is NO.

SHOW NOT (' BOSTON' LI KE ' BO%)

4-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

Conditional Expressions

Comparing Text Literals to Relations

You can also compare a text literal to a relation. A relation contains values of the
related dimension and the text literal is compared to a value of that dimension. For
example, r egi on.di stri ct holds values of r egi on, so you can do the following
comparison.

region.district EQ ' WEST

Conditional Expressions

A conditional expression is an expression you can use to select one of two values
based on a Boolean condition. A conditional expression contains the conditional
operator | F.. .THEN. . .ELSE and has the following format.

| F Bool ean- expression THEN expressi onl ELSE expressi on2

You can use a conditional expression as part of any other expression as long as the
data type is appropriate.

Note: Do not confuse a conditional expression with the | F
command, which has similar syntax but a different purpose. The | F
command does not have a data type and is not evaluated like an
expression.

A conditional expression is processed by first evaluating the Boolean expression;
then:

« If the result of the Boolean expression is TRUE, then expressionl is evaluated and
returns that value.

« If the result of the Boolean expression is FALSE, then expression2 is evaluated
and returns that value.

The expr essi onl and expr essi on2 arguments are any valid OLAP DML
expressions that evaluate to the same basic data type. However, when the data type
of either value is DATE, it is possible for the other value to have a numeric or text
data type. Because both data types are expected to be DATE, it will convert the
numeric or text value to a DATE. The data type of the whole expression is the same
as the two expressions.

If the result of the Boolean expression is NA, then NA is returned.

Working with Expressions 4-29

Substitution Expressions

Example 4-4 Report with Conditional Expression

This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but if sales in the district are below budget, then the bonus is
zero.

LIMT month TO ' JANO2' TO ' JUNO2'

LIMT product TO ' TENTS

REPORT DOMN district |IF sales-sales.plan LT 0 THEN O
ELSE . 05*(sal es-sal es. pl an)

PRODUCT: TENTS
---1F SALES- SALES. PLAN LT O THEN O ELSE . 05*(SALES- SALES. PLAN) - - -

DI STRICT JANO2 FEBO2 MARO2 APRO2 MVAY02 JUNO2

BOSTON 229.53 0.00 0.00 0.00 584.51 749. 13
ATLANTA 0.00 0.00 0.00 190.34 837.62 1,154.87
CH CARD 0.00 0.00 0.00 84.06 504. 95 786. 81

Substitution Expressions

A substitution expression allows you to substitute the value of the expression for
the expression itself in a command or function.

To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that the
expression should be evaluated with the ampersand and substitute the resulting
value before it evaluates the rest of the expression.

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable
that holds the name of another variable, the value of the expression becomes the
data in the second variable. Ampersand substitution lets you write more general
programs that can operate on data that is chosen when the program is run.

You cannot use ampersand substitution in model equations.

4-30 Oracle9i OLAP Developer’s Guide to the OLAP DML

Substitution Expressions

Note: Although ampersand substitution lets you write general
programs that can handle different variables and data, program
lines that use ampersand substitution are executed less efficiently.
Lines with ampersand substitution are not compiled; instead these
lines are interpreted when the program runs. To avoid ampersand
substitution, you can use the | F or SW TCHcommand instead.

See Also: "Controlling the Flow of Execution” on page 7-14 for
information about writing conditional commands.

Example 4-5 Using Ampersand Substitution

Suppose you have a variable called cur name that holds the name of one of the
dimensions in the analytic workspace (pr oduct). If you execute the following
command, then REPORT produces the single value, pr oduct , which is the actual
value stored in the cur nane variable, as shown below.

report curname

However, if you execute the following command, then REPORT produces the values
of the dimension pr oduct , as shown below.

report &curname

Working with Expressions 4-31

Working with NA Values

Working with NA Values

There are cases in which you might specify an operation for which no data is
available. For example, there might be no appropriate value for a given cell in a
variable, for the return value of a function, or for the value of an expression that
includes an arithmetic operator. In these cases, an NA (Not Available) value is
automatically supplied.

NA is the value of any cell to which a specific data value has not been assigned or for
which data cannot be calculated. An NA value has no specific data type.

Certain functions (for example, the aggregation functions) return an NA value when
the information that is requested with the function is not available or cannot be
calculated. Similarly, an expression whose value cannot be calculated has NA as its
value.

To set the value of a variable or relation to NA, you can use the = command, as
shown in the following example.

sales = NA

If sal es is a dimensioned variable, then the = command loops through all of the
values of sal es, setting them to NA.

Controlling how NA values are treated

The following options and functions control how NA values are treated in
expressions:

« Using the PROPERTY command, you can set the value of the NATRI GGER
property on a dimensioned variable so that when a cell of the variable that
contains an NA value is read, the value of the NATRI GGER expression is
substituted for the NA value. You can use this substitution to increase the
efficiency of some kinds of calculations and to eliminate the need for some
formula objects.

« The following options control how NA values are treated in aggregation
functions and in arithmetic operations with the addition (+) and subtraction (-)
operators.

« The NASKI P option controls how NA values are treated in aggregation
functions.

« The NASKI P2 option controls how NA values are treated in arithmetic
operations with the addition (+) and subtraction (-) operators.

4-32 Oracle9i OLAP Developer’s Guide to the OLAP DML

Working with NA Values

= The NAFI LL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function
in an expression to control the format of its value.

Working with the NATRIGGER Property

An NATRI GGER property expression is evaluated before applying the NAFI LL
function or the NASKI P, NASKI P2, or NASPELL options. If the NATRI GGER
expression is NA, then the NAFI LL function and the NA options have an effect.
Additionally, the NATRI GGER property allows you a good deal of flexibility about
handling NA values:

= You can make NA triggers recursive or mutually recursive by including
triggered objects within the value expression. You must set the RECURSI VE
option to yes before a formula, program, or other NATRI GGER expression can
invoke a trigger expression again while it is executing. For limiting the number
of triggers that can execute simultaneously, see the TRI GGERMAXDEPTH option.

= You can replace the NA value in the cells of the variable with the NATRI GGER
expression value by setting the TRI GGERSTORECK option to yes and setting the
STORETRI GGERVAL property on the variable to yes.

The ROLLUP and AGGREGATE commands and the AGGREGATE function ignore the
NATRI GGER property setting for a variable during a rollup or aggregation
operation. Additionally, the NATRI GGER property expression on a variable is not
evaluated when the variable is simply exported with an EXPORT TO El Ffile
command. The NATRI GGER property expression is only evaluated if the variable is
part of an expression that is calculated during the export operation.

Using NASKIP
The NASKI P option controls how NA values are treated in aggregation functions.

« By default, the NASKI P option is set to YES, and NA values are ignored by
aggregation functions. Only expressions with actual values are used in
calculations.

« If you set the NASKI P option to no, then NA values are considered as input to
aggregation functions. If any of the values being considered are NA, then the
function returns NA for that value.

Setting NASKI P to no is useful for cases in which having NA values in the data
makes the calculation itself invalid. For example, when you use the MOVI NGVAX
function, you specify a range from which to select the maximum value.

Working with Expressions 4-33

Working with NA Values

« If NASKI Pis YES (the default), then MOVI NGVAX returns NA only when all the
values in the range are NA.

« If NASKI P is NOand any value in the range is NA, then MOVI NGVAX returns NA.

Using NASKIP2

The NASKI P2 option controls how NA values are treated in arithmetic operations
with the addition (+) and subtraction (-) operators.

« By default, the value of the NASKI P2 option is NO. NA values are treated as NAs
in arithmetic operations using the addition (+) and subtraction (-) operators. If
any of the operands being considered is NA, then the arithmetic operation
evaluates to NA. For example, by default, 2+NA results in NA.

« If you set the value of the NASKI P2 option to yes, then zeroes are substituted
for NA values in arithmetic operations using the addition (+) and subtraction (-)
operators. The two special cases of NA+ NA and NA- NA both result in NA.

Using NAFILL

NASKI P and NASKI P2 do not change your data. They only affect the results of
calculations on your data. If you would prefer a more targeted influence on any
kind of expressions, and want the option of making an actual change in your data,
then you can use the NAFI LL function.

The effect of the NAFI LL function is limited to the single expression you specify. It
can be any kind of expression, not just a function or an addition (+) or subtraction
(-) operation. In addition, you can use NAFI LL to substitute anything for the NAs in
the expression, not just zeroes. Moreover, using assignment statements, you can use
NAFI LL to make a permanent substitution for NAs in your data.

NAFI LL returns the value of a specified expression unless its value is NA, in which
case NAFI LL returns the substitute value you specify.

The following command uses NAFI LL to replace the NA values in the sal es
variable with the number 1 and then assign those values to the variable. This makes
the substitution permanent in your data.

sal es = NAFI LL(sal es, 1)
The following command illustrates the use of NAFI LL for more specialized

purposes. By substituting zeros for NA values, NAFI LL in this example forces the
AVERAGE function to include NA values when it counts the number of values it is

4-34 Oracle9i OLAP Developer’s Guide to the OLAP DML

Working with NA Values

averaging. The substitution is temporary, lasting only for the duration of this
command.

SHOW AVERAGE(NAFI LL(sal es 0.0) district)

Working with Expressions 4-35

Working with NA Values

4-36 Oracle9i OLAP Developer’s Guide to the OLAP DML

D

Populating Workspace Data Objects

This chapter provides an overview of how to populate workspace data objects that
hold source data and how to populate variables with calculated values. It includes
the following topics:

= Overview: Populating an Analytic Workspace
= Maintaining Dimensions and Composites

= Assigning Values to Data Objects

« Calculating and Analyzing Data

Populating Workspace Data Objects 5-1

Overview: Populating an Analytic Workspace

Overview: Populating an Analytic Workspace

To use an analytic workspace, there must be data in it. There are two basic types of
data: fact data and dimensions. Fact data is stored in variable workspace objects;
dimensions, containing dimension values, are stored in dimension workspace
objects.

Variables and dimensions can be populated:

« By loading data from relational tables. For example, you might load sales fact
data into a variable from a sales fact table, load time dimension values from a
time dimension table, customer dimension values from a customer dimension
table, and product dimension values from a product dimension table.

= Asthe result of a calculation. For example, a sales forecast variable might be
populated using the results of a forecasting function.

« By loading data from flat files using data loaders controlled through the OLAP
DML.

« Manually, although this method is typically used only to enter a small number
of values.

To explicitly populate data objects in an analytic workspace, take the following
steps:

1. Specify the values for each dimension. These values provide indexes to the
actual data, which is stored in analytic workspace variables.

2. Specify the values for each relation. These values indicate the relationships
between dimensions.

3. For variables that provide the source data for your application, specify the
actual data values.

5-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Maintaining Dimensions and Composites

You can populate an analytic workspace using programs written using the SQL
command and data loading commands. The OLAP DML commands that you
typically use to populate data objects are listed in the following table.

Command

Description

=or SET

Assigns the results of an expression to a variable, option, or relation. For
more information, see "Assigning Values to Data Objects" on page 5-10 and
"Using Models to Calculate Data" on page 8-2.

MAI NTAI' N

Adds, deletes, renames, moves, or merges values in a dimension; and
adds, deletes, and merges values in a composite. For more information, see
"Maintaining Dimensions and Composites" on page 5-3.

FI LEREAD

Stores the data that is read from an input file into a dimension, composite,
relation, or variable. For more information, see Chapter 11, "Reading Data
from Files".

SQ

Retrieves data from relational tables into a dimension or variable. For
more information, see Chapter 10, "Working with Relational Tables".

| MPORT

Copies workspace data and definitions from an EIF file.

Maintaining Dimensions and Composites

The first step in populating an analytic workspace is to store values in analytic
workspace dimensions. The list of stored dimension values is called the default
status list of the dimension. When you first attach an analytic workspace, the
default status list is the current status list of each dimension.

Using the MAI NTAI N command, you can add, delete, merge, reposition, or change
simple, composite, or conjoint dimension values, and you can reposition concat
dimension values. Storing and manipulating the values of a dimension is called
maintaining the dimension.

Populating Workspace Data Objects 5-3

Maintaining Dimensions and Composites

How Maintaining a Dimension Affects Dimension Status

As outlined in the following table, using the MAI NTAI Ncommand sometimes
affects dimension status.

IF you use the MAINTAIN command with . . . THEN ...

the ADD, DELETE, MERGE, or MOVE keyword and | the dimension status is reset to ALL
the current status of a dimension is not ALL, before it performs the requested
maintenance.

a dimension that has a pushed status list (that is, a | the pushed status list of the
status list that was created using the PUSH dimension is cleared, and popping
commands), that dimension has no effect.

For more information on popping and pushing dimension status, see "Introducing
Dimension Status" on page 6-2.

Avoiding Deferred Maintenance

When you maintain a dimension, the objects that are dimensioned by it must be
modified. If these objects are in memory, then they are modified immediately; if
these objects are not in memory, then maintenance is deferred until they are loaded
into memory.

In situations that involve a lot of dimension maintenance and a large update at the
end, deferred maintenance can trigger errors. Examples are issuing a MAI NTAI N
DELETE ALL command, or performing a data load in which a large number of
values is added to a dimension. Before starting such projects, load into memory the
objects that use that dimension so that deferred maintenance is unnecessary. You
can do this by using commands similar to the following, where the sample
dimension is pr oduct .

LIMT NAME TO OBJ(| SBY product)
LOAD &val ues(NAME)
MAI NTAI'N product ADD ...

Adding Values to Dimensions

To add new values to the end of a dimension or composite, use the MAI NTAI N
command with the ADD keyword. The actual way that the values are added, and the
arguments that you use vary depending on whether you are adding values to a
dimension or a composite.

5-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Maintaining Dimensions and Composites

You do not add values directly to a concat dimension. Instead, if you add a value to
a base dimension of the concat dimension, then Oracle OLAP automatically adds
the value to the concat dimension. Similarly, you do not add values to a dimension
surrogate, but if you add a value to the dimension of the dimension surrogate, then
you can add a surrogate for the new value to the dimension surrogate.

You can use the MAI NTAI Ncommand with the MERGE keyword as a quick way to
make sure all dimension values on a separate list are included in a dimension.
When you use this syntax, the new values from the list are automatically added and
the duplicates are ignored. This method of entering dimension values can save a
significant amount of time when you have a large number of values to enter.

You can use the MAI NTAI Ncommand with the ADD keywords to add values to a
dimension in the following ways:

= You can merely specify the values that you want to add. In this case, the values
are added to the end of the list of dimension values.

= You can specify both the values that you want to add and where you want the
values to be placed.

Example 5-1 Adding Values to Dimensions

This command adds ATLANTA at the beginning of the list of cities and inserts
PEORI A after OVAHA.

MAINTAIN city ADD * ATLANTA" FIRST, ' PECRIA° AFTER ' OVAHA

Displaying the default status list for the ci t y dimension shows that the new values
have been added in the appropriate places in the list.

SHOW VALUES(ci ty NOSTATUS)
ATLANTA

CONCORD

LI NOOLN

NEW YORK

OVAHA

PECR A

SEATTLE

Populating Workspace Data Objects 5-5

Maintaining Dimensions and Composites

Updating Relations When Merging New Values

When you are merging values into a dimension it is a good practice to update any
relations that involve that dimension:

= Insome cases, using the simplified syntax of the MAI NTAI Ncommand shown
below, you can update a relation at the same time you merge values into a
dimension.

MAI NTAI N di mensi on MERCE [exp [RELATE rel ation]]

The exp argument specifies a dimensioned expression whose values you want
to merge into the dimension; for example, the name of a dimensioned text
variable that contains dimension values.

The RELATE r el at i on phrase specifies the name of the relation that you want
to update.

Note: The exp argument must be dimensioned and at least one of these
dimensions must also be in the definition of the relation that is specified in the
RELATE r el at i on phrase.

= Inother cases, you need to explicitly update any relations that involve that
dimension.

For information about explicitly updating relations, see "Assigning Values to Data
Objects" on page 5-10.

Suppose you want to define a composite, named conp_pr oddi st , that is made up
of all combinations of the first three values of the pr oduct dimension and the first
five values of the di st ri ct dimension. You can efficiently include all 15 values
with the following commands.

DEFI NE conp_proddi st COVPOSI TE <product district>
LIMT product TO FIRST 3

LIMT district TOFIRST 5

MAI NTAI N conp_proddi st MERGE <product district>

This method works with conjoint dimensions as well.

5-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Maintaining Dimensions and Composites

Deleting Values from Dimensions

You can use the MAI NTAI Ncommand with the DELETE keyword to remove values
from a dimension. You select the values that you want to delete in much the same
way that you select values using the LIMIT command. You can select for deletion:

« Onevalue, a list of values, a range of values, or all values

= The values that match a list of values of a named related dimension

« The values that are first, last, or in a specified position in the dimension
= The values that meet a Boolean criterion

« After the dimension values are sorted according to a specified criterion, the top
or bottom n values of the dimension, or the top or bottom n performers, by
percentage

« Forahierarchical dimension, the values that have a certain relationship within
the hierarchy

= The values in the dimension that match the values in a valueset

Example 5-2 Deleting Values from a Dimension

Suppose that you want remove from ci t y all those cities with a population of less
than 75,000 people. Before you issue the command, the default status list for the
ci t y dimension contains the six values shown below.

SHOW VALUES (city NOSTATUS)
ATLANTA

CONCORD

LI NOOLN

COLUMBUS

PECR A

SEATTLE

You use the variable popul at i on. ¢, which contains the population for each city.
MAI NTAI'N city DELETE popul ation.c LT 75000
Assuming that only Lincoln and Peoria have populations of fewer than 75,000, the

default status list of the ci t y dimension now contains the following values.

SHOW VALUES (city NOSTATUS)
ATLANTA
CONCORD

Populating Workspace Data Objects 5-7

Maintaining Dimensions and Composites

COLUMBUS
SEATTLE

Deleting Values from Conjoint Dimensions

You can use the MAI NTAI Ncommand with the DELETE keyword to delete values
from a conjoint dimension.

You can also delete values from a conjoint dimension by using the MAI NTAI N
command directly on the base dimension of the conjoint dimension. When you
delete a value from the base dimension, any values associated with that base
dimension value are deleted from the conjoint dimension.

Suppose you have a conjoint dimension named pr od_di st with the base
dimensions of pr oduct and di stri ct. To delete the value

<’ SNOANBHCES' ' ATLANTA' > from that conjoint dimension, you would use the
following command.

MAI NTAI' N prod_di st DELETE < SNOABHOES ' ATLANTA' >

Changing the Position of Dimension Values

You can use the MAI NTAI Ncommand with the MOVE keyword to change the
position of one or more values in a dimension list. You cannot change the position
of a value in a time dimension or in a composite.

When you want to store the dimension values in alphabetical order, you can first
use the SORT command to temporarily sort the values, and then use the MAI NTAI N
command to store the values in the sorted order.

Use the TEXT variable t ext var to move SEATTLE to the end of the list of cities.

textvar = ' SEATTLE
MAI NTAIN city MOVE textvar LAST

Storing Dimension Values in Sorted Order

5-8

You can store the values of a dimension in sorted order by taking the following
actions:

1. Limit the dimension to all of its values.

LIMT dinension TO ALL

Oracle9i OLAP Developer’s Guide to the OLAP DML

Maintaining Dimensions and Composites

2. Sort the dimension values based on your desired sorting criterion.

SORT di nension A sort-criterion

To sort the values alphabetically, sort by the dimension itself.
3. Store the dimension values in their sorted order.

MAI NTAI N di mensi on MOVE VALUES(di mensi on) FI RST

Suppose that the default status list for the ci t y dimension contains the following
values.

SHOW VALUES (city NOSTATUS)
ATLANTA

CONCORD

LI NCOLN

COLUVBUS

PECR A

SEATTLE

The following commands sort the values of ci t y in alphabetical order and then
store the values in that order.

SORT city Acity
MAI NTAI N city MOVE VALUES(city) FIRST

The default status list of ci t y reflects the new sorted order.

SHOW VALUES (city NOSTATUS)
ATLANTA

COLUMBUS

CONCORD

LI NCOLN

PECR A

SEATTLE

Maintaining Composites and Conjoint Dimensions

Both composites and conjoint dimensions are lists of dimension-value combinations
in which one value is taken from each of the dimensions on which the composite or
conjoint dimension is based. Composites and conjoint dimensions differ in the way
that they are maintained.

Populating Workspace Data Objects 5-9

Assigning Values to Data Objects

Maintaining Composites

Composites are internal structures that are automatically maintained. Consequently,
the simplest way to maintain a composite is to merely maintain its base dimensions
and let the values in the composite be maintained automatically.

In most cases, it is not necessary to do anything to maintain composites. However, if
you want to have a very fine degree of control, you may have to explicitly maintain
the composite. In this case, you can use the MAI NTAI Ncommand to add, delete, and
merge values.

Maintaining Conjoint Dimensions

Conjoint dimensions, unlike composites, are actual dimensions that you must
explicitly maintain using the MAI NTAI Ncommand.

Maintaining Concat Dimensions

You can use the MAI NTAI Ncommand to change the order of the values in a concat
dimension. If you use the MAI NTAI N MOVE command on a simple dimension that is
a component of a concat dimension, then the positions of the values of the concat
dimension are not affected.

You cannot use the MAI NTAI N command to add, delete, or rename concat
dimension values or merge values from another dimension to those of the concat
dimension.

If you use the MAI NTAI Ncommand to add a value to a simple dimension that is a
component of a concat dimension, then Oracle OLAP adds that value to the concat
dimension as a value of the component dimension. If you merge values from a
simple dimension with a component simple dimension, then Oracle OLAP adds
those values to the concat dimension as values of the component dimension.

If you delete or rename a value of a simple dimension that is a component of a
concat dimension, then Oracle OLAP deletes or renames the value in the concat
dimension. If you use the MAI NTAI Ncommand to add, merge, or delete the values
of a simple dimension component of a concat dimension, the status of the concat
dimension is automatically set to ALL.

Assigning Values to Data Objects

An expression creates temporary data; you can display the resulting values, but
these values are not automatically saved in your analytic workspace. If you want to
save the result of an expression, then you store it in an object that has the same data

5-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Assigning Values to Data Objects

type and dimensions as the expression. You use an assignment statement to store
the value that is the result of the expression in the object.

An assignment statement is composed of the OLAP DML = operator that is
preceded by an expression (on the left) and followed by an expression (on the right).

target-expressi on = source-expressi on

The assignment statement sets the value of the target expression equal to the results
of the source expression.

See Also: Chapter 3, "Defining Data Objects" for information
about how data is stored in data objects.

Using Objects in Assignment Statements

The following table outlines the objects that you can use in assignment statements
and indicates whether you can use them as a target or source expression.

Object Target Expression Source Expression
Variable Yes Yes
Relation Yes Yes
Dimension Only in models Yes
Surrogate No Yes
Composite No Yes
Worksheet Yes Yes
Function No Yes
Formula No Yes
Valueset No Yes

When you use the = operator to assign the value of a single-cell expression to a
single cell, a single value is stored. However, when you use the = operator to assign
the value of a single-cell expression to a target variable that has one or more
dimensions, then the assignment loops over the values in status for each dimension
of the target variable and assigns a data value to the corresponding cells of the
variable.

Populating Workspace Data Objects 5-11

Assigning Values to Data Objects

Example 5-3 Assigning Values to Variables

The choi cedesc variable is dimensioned by choi ce. Before you enter data for the
variable, the cells of the variable contain only NA values.

Suppose you initialize the choi cedesc variable using the following command.
choi cedesc = JO NCHARS (' Description for ' choice)

Now all of the choi cedesc cells of the variable contain the appropriate values.

CHO CE CHO CEDESC

REPCRT Description for REPORT
GRAPH Description for GRAPH
ANALYZE Description for ANALYZE
DATA Description for DATA
QUT Description for QUT

The next example shows an expression that is dimensioned by t i ne, pr oduct , and
di strict and is assigned to a new variable. The expression calculates a 2002 sales
plan based on unit sales in 2001.

DEFI NE uni ts. pl an I NTEGER <mont h product district>
LIMIT month TO 'DEC02'
units.plan = LAG(units 12 month) * 1.15

How Values Are Assigned to Variables with Composites

When assighing data to variables with composites, the source expression is
evaluated for every combination of the dimension values in status for the target
variable, including combinations of the sparse dimensions for which the target
variable currently has no cells. If the source expression is not NA for those
combinations where the target currently has no cells, then new cells are created and
the data is assigned to them.

5-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Assigning Values to Data Objects

When you use the = command to assign values to a target variable that has a
composite, the command does the following automatically:

« Creates any missing target variable cells that are being assigned non-NA values.

= Adds to the composite all the dimension-value combinations that correspond to
those new cells.

Thus, both the target variable and the composite might be larger after an
assignment. If you want to assign values only to cells that already exist in the target
variable, then use the ACROSS keyword in the = command.

The OLAP DML gives you the ability to specify a different evaluation behavior
when it assigns data to variables with composites. You can alter the default
evaluation behavior of the assignment statement so that the source expression is
evaluated only for those combinations of the dimension values in status for which
the target variable currently has cells.

Because the composite of the sparse dimension is what keeps track of which
combinations of the sparse dimensions have data cells, you use the following syntax
to specify this different evaluation behavior.

varnane = expressi on ACROSS conposite

The var name argument is the name of the variable. It is the target to which the data
is assigned.

The expr essi on argument is the source expression that holds the data that will be
assigned to the target variable.

The ACRGCSS keyword indicates that you want to alter the default evaluation
behavior and cause the evaluation of the composite of the target variable.

The conposi t e argument is the composite for the sparse dimensions on the target
variable. If the variable was defined with a named composite, then specify the name
of the composite. If the variable was defined with an unnamed composite, then use
the SPARSE keyword to refer to the unnamed composite (for example, SPARSE
<MARKET PRODUCT>).

Example 5-4 Assigning Values to Variables with Composites

To have data assigned from sal es only into existing data cells of spar se_sal es,
whose associated dimension values are in status, use the following command.

sparse_sal es = sal es ACROSS SPARSE<product narket >

Populating Workspace Data Objects 5-13

Assigning Values to Data Objects

The ACRGSS keyword is particularly helpful when the source expression is a single
value. If there are no limits on the dimensions of spar se_sal es, then an
assignment command like the following will create cells for every combination of
dimension values because there are no cases where the source expression is NA.

sparse_sales = 0

This defeats the purpose of a sparse variable.

In contrast, the following command will set only existing cells of spar se_sal es to
0.

sparse_sal es = 0 ACROSS SPARSE<product market >

Assigning Values to Relations

You can assign values to a relation using an assignment statement. When executing
the assignment statement, a loop is performed over the values in status for each
dimension of the target relation and assigns a data value to the corresponding cell
of the target relation.

You can assign values to a relation with a text dimension by assigning one of the
following:

« A text value of the dimension.

= Aninteger that represents the position of the dimension value in the default
status list of the dimension.

Assigning Values to Dimensions

In most cases, you cannot use an assignment statement to assign values to
dimensions. However, in model equations, if the result of a calculation is numeric,
then you can use the = operator to assign the results to a dimension value.
However, equations (that is, expressions) in models differ in several ways from
expressions used in other contexts.

See Also: Chapter 8, "Working with Models" for more
information on working with models.

Assigning Values to Specific Cells of a Data Object

You can use a QDR with the target of an assignment statement. This lets you assign
a value to specific cells in a variable or relation.

5-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Calculating and Analyzing Data

The following example assigns the value 10200 to the data cell of the sal es
variable that is specified in the qualified data reference. If the variable named

sal es does not already have a value in the cell associated with BOSTON, TENTS,
and JAN99, then the value is assigned to the cell and thus it is added to the variable.
If a value already exists in the cell, the value 10200 overwrites the previous value.

sal es(market 'BOSTON product ' TENTS nonth ' JAN99')= 10200

See Also: "Specifying a Single Value for the Dimension of an
Expression" on page 4-6 for information about QDRs.

Calculating and Analyzing Data

Typically, using the OLAP DML, you calculate and analyze data in the following
ways:

Perform common calculations using built-in functions that are described in
detail in the Oracle9i OLAP DML Reference help.

Aggregate (or roll up) data in variables that are dimensioned by one or more
hierarchical dimensions as outlined in Chapter 12, "Aggregating Data".

Allocate data to a variable from a source object based on the data of a base
object as described in Chapter 9, "Allocating Data".

Create populated solution variables using the MODEL object as described in
Chapter 8, "Working with Models".

Forecast data based on analysis of trends as described in the entries for the
FCSET, FCOPEN, FCEXEC, FCCLCOSE, and FCQUERY commands in the Oracle9i
OLAP DML Reference help.

Populating Workspace Data Objects 5-15

Calculating and Analyzing Data

The OLAP DML provides built-in functions for numeric analysis. The categories of
these functions are described below.

Category

Description

Numeric cell-by-cell

Operate on each cell of an expression or variable.

Time series Retrieve values from a previous or future time period and perform
calculations on those values.

Statistical Perform calculations for statistical analysis.

Financial Perform calculations for financial analysis.

Aggregation

Return an aggregate value, generally consisting of a single value for
many values of the input expression.

See Also:

« Oracle9i OLAP DML Reference help for a categorized list of

functions.

« "Numeric Expressions" on page 4-15 for information on
working with numeric expressions.

5-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

S

Selecting Data

This chapter introduces dimension status and the use of the LI M T command to
temporarily change your view of the data in an analytic workspace. The LIM T
command is equivalent to the WHERE clause of a SQ. SELECT statement.

This chapter includes the following topics:

« Introducing Dimension Status

« Limiting to a Simple List of Values

« Limiting Using a Boolean Expression

« Limiting to the Top or Bottom Values

« Limiting to the Values of a Related Dimension

« Limiting Based on the Position of a Value in a Dimension
« Limiting Based on a Relationship Within a Hierarchy
« Limiting Composites and Conjoint Dimensions

= Ways of Limiting Conjoint Dimensions

« Limiting Concat Dimensions

« Working with Null Status

« Working with Valuesets

Selecting Data 6-1

Introducing Dimension Status

Introducing Dimension Status

The current status list of a dimension is an ordered list of currently accessible
values for the dimension. Values that are in the current status list of a dimension are
said to be “in status.” The current status list of a dimension determines the selection
of the data from all of the objects that are dimensioned by it.

For dimensions, only those dimension values that are in the current status list are
accessed. For dimensioned objects, only those data values that are indexed by
dimension values in the current status list are accessed.

As aloop is performed through a dimensioned object, the order of the dimension
values in the current status list is used to determine the order in which the values of
the object are accessed.

Whether or not a dimension value is in status merely restricts your view of the
value during a given session; it does not permanently affect the values that are
stored in the analytic workspace.

When you first attach an analytic workspace, the current status list of each
dimension consists of all of the values of the dimension that have read permission,
in the order in which the values are stored. This list of values is called the default
status list for the dimension.

A status list of a dimension surrogate is the same as the status list of its dimension.
A surrogate does not have a current or default status list separate from its
dimension.

Changing the Current Status List

You can change the current status list for a dimension by using:

« TheLl M T command to change the values and the order of the values in the
current status list of a dimension.

« The SORT command to arrange the order of values in the current status list of a
dimension.

Changing the Default Status List

6-2

You can change the default status list of a dimension in the following ways:

= You can add, delete, move, merge, and rename values in a dimension by using
the MAI NTAI N command. However, with a concat dimension you use the
MAI NTAI Ncommand only to move its values to a different order in the
dimension.

Oracle9i OLAP Developer’s Guide to the OLAP DML

Introducing Dimension Status

= You can change the read permission of values that are associated with a
dimension by using the PERM T command or the PERM TRESET command.

See Also:

« "Maintaining Dimensions and Composites" on page 5-3 for
information on storing and maintaining dimension values.

« "Adding Security to an Analytic Workspace" on page 2-12 for
information on setting permissions on workspace objects.

Identifying and Retrieving Status Lists

You can use the following commands and functions to identify and retrieve the
status of dimension values.

Command or
function Description

| NSTAT function Checks whether a dimension value is in the current status list of a
dimension.

STATFI RST function | Retrieves the first value in the current status list of a dimension.

STATLAST function Retrieves the last value in the current status list of a dimension.

STATUS command Sends to the current outfile the status of one or more values in a
dimension, or the status of all dimensions in an analytic
workspace.

VAL UES function Retrieves different values depending on the keyword that you
specify:

« If you specify the NOSTATUS keyword, then the function
retrieves the default status list of a dimension list.

« If you specify the STATUS keyword, then the function
retrieves the current status list of a dimension.

« Depending on whether you specify the | NTEGER keyword,
the function either returns a multiline text value that contains
one dimension value per line or returns, as integers, the
position numbers of the dimension values.

Selecting Data 6-3

Limiting to a Simple List of Values

Saving and Restoring Dimension Status
You can save the current status of a dimension in the following ways.

« If you want to save the current status (or the value of a dimension) for use in
any session, then use a named valueset. Use the DEFI NE VALUESET command
to define the valueset.

« If you want to save the current status (or the value of a dimension, a valueset,
an option, or a single-cell variable) for use in the current program, then use the
PUSHLEVEL and PUSH commands. You can restore the current status values
using the POPLEVEL and POP commands.

« If you want to save, access, or update the current status (or the value of a
dimension, a valueset, an option, a single-cell variable, or a single-cell relation)
for use in the current session, then use a named context. Use the CONTEXT
command to define the context.

Contexts are the most sophisticated way to save object values for use in an analytic
workspace. With contexts, you can access, update, and commit the saved object
values. In contrast, PUSH and POP simply allow you to save and restore values.
Typically, you only used the PUSHand POP commands within a program to make
changes that apply only during the program execution.

See Also: "Preserving the Session Environment" on page 7-19 for
more information about saving environment settings.

Limiting to a Simple List of Values

A common way of selecting data is to limit a dimension to a value or list of values.
When limiting dimension values, you can substitute a dimension surrogate for its
dimension. The simplified syntax for using the LI M T command in this way is
shown below.

LIMT dinension TO val ues

The val ues argument can consist of any combination of:

« Dimension values, expressed as literal values separated by commas, or as a
multiline text expression, each line of which is a value of the dimension.

« Ranges of dimension values, expressed as val uel TOval ue2.

6-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Limiting Using a Boolean Expression

« Integer values that represent the logical positions of dimension values,
expressed as comma-separated integers.

« Ranges of integer values that represent the logical positions of dimension
values, expressed as val uel TO val ue2.

= Valuesets.

Suppose that you want a report of footwear sales in Boston for January through
March 1995. The following commands limit the appropriate dimensions and request
the report.

LIMT month TO ' JAN9S' ' FEB95' ' MAR9S’
LIMT product TO ' FOOTVWEAR

LIMT district TO ' BOSTON

REPCRT sal es

The report output looks like this.
DI STRI CT: BOSTON

------------- SALES - ------------
------------- MONTH - - - - - - - =< -

PRODUCT JAN95 FEB95 NVAR95

FOOTVEAR 91,406.82 86, 827.32 100, 199. 46

As an example of limiting dimension values using a dimension substitute, suppose
you have a NUMBER dimension named st or ei d that has store identification
numbers as values. The values of st or ei d are 10, 20, 30, 100, 110, 120, and 200. You
have an | NTEGER dimension surrogate for st or ei d, named st or enum that has an
integer value for each position of the values of st or ei d. The values of st or enum
are the integers 1 through 7. You can limit the current status list of both st or ei d
and st or enumto the same set of values with any of the following commands.

LIMT storeid TO 10, 100

LIMT storenumTO 1, 4

LIMT storenum TO storeid 10, 100
LIMT storenum TO storenum 1, 4

Limiting Using a Boolean Expression

You can use the LI M T command to limit a dimension according to the result of a
Boolean expression. The simplified syntax for using the LI M T command in this
way is shown below:

LIMT dinensi on TO Bool ean- expressi on

Selecting Data 6-5

Limiting Using a Boolean Expression

When you use this form of the LI M T command, the values that are currently in
status are replaced with those dimension values for which the Boolean expression is
true.

When you are constructing a Boolean expression, keep the following points in
mind:

= The Boolean expression must be dimensioned by the dimension whose status is
being set.

« The data types of the expressions you are comparing in the Boolean expression
must be similar.

For example, the following Boolean expression has similar data types on both
sides of the Boolean operator GT.

LIMT market TO units.m GI 50000

In the following example, the values of the TOTAL function are broken out by

pr oduct and compared to a literal (that is, the number 12000000). The LIM T
command replaces the values that are currently in status for the pr oduct
dimension with the values of the pr oduct dimension whose sales, totaled for all
months and districts, are greater than 12 million.

LIMT product TO TOTAL(sal es product) GI 12000000

How LIMIT Handles Boolean Multidimensional Expressions

An understanding of how the LI M T command handles Boolean expressions with
more than one dimension is important to the successful use of the command.

The result of a simple Boolean expression is a single value. When you use the

LI M T command with a Boolean expression, no looping is performed through the
dimensions to create and return an array of values for the expression. Instead, the
first value in the dimension status list is identified for each dimension in the
expression, the expression using those values is evaluated, and a single value is
returned.

If you want the result of the Boolean expression to have dimensionality, then use the
EVERY, ANY, or NONE functions, which let you specify the dimensions of the result of
the Boolean expression.

6-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Limiting Using a Boolean Expression

Suppose that mont h, di stri ct, and product have the dimension status shown
below.

The current status of MONTH is:
JAN95 TO MAR95

The current status of DISTRICT is:
BOSTON

The current status of PRODUCT is:
ALL

Now you want products that have more than $90,000 worth of sales in at least one
of the months to be in status for the pr oduct dimension. By issuing the following
command, you can see which values in the current dimension status meet this
condition.

REPCRT sal es GT 90000
As shown below, the report displays YES in both the FOOTV\EAR and CANCES rows.

Both of these products have sold more than $90,000 on at least one occasion during
January through March 1995.

DI STRI CT: BOSTON

------------- MONTH--------------
PRCDUCT JAN9S FEB95 MAR95
TENTS NO NO NO
CANCES NO NO YES
RACQUETS NO NO NO
SPORTSVEAR NO NO NO
FOOTVEAR YES NO YES

You might think that limiting the pr oduct dimension using only the simple
Boolean expression shown below would give you your desired result.

LIMT product TO sal es GI 90000

However, when the Boolean expression is evaluated, no looping is performed
through the sal es variable to create and return an array of values for the pr oduct
dimension. Instead, only the first value in the dimension status list is used for each
dimension in sal es other than the pr oduct dimension. In this case, JAN95 is used
for the value of the nont h dimension of the sal es variable and BOSTON is used for
the value of the DI STRI CT dimension.

Selecting Data 6-7

Limiting Using a Boolean Expression

For JAN95 and BOSTQN, the Boolean expression evaluates to TRUE only for the
FOOTWEAR product. Consequently, only FOOTWEAR is in status for the pr oduct
dimension.

As shown below, a report of sales in Boston only displays values for the FOOTVEAR
product that have sold more than $90,000 on at least one occasion during January
through March 1995.

REPCRT sal es
The current status of PRODUCT is:

FOOTVEEAR
DI STRI CT: BOSTON

------------- SALES----==nnmmon--
------------- NONTH- - = === - - - - -

PRODUCT JAND5 FEB95 NAR95

FOOTWEAR 91,406.82 86, 827.32 100, 199. 46

Limiting to Values That Match an Expression

The way to limit a dimension to all dimension values that match a Boolean
expression is to use the ANY function with the Boolean expression.

Example 6-1 Limiting Using the ANY function

The LI M T command (shown below) illustrates how to use the ANY function to
limit the pr oduct dimension to all dimension values that have a value of more
than $90,000 in the sal es variable (that is, CANOES and FOOTVEAR):

« The first argument for the ANY function (that is, sal es GI' 90000) is the
Boolean expression you want to evaluate.

« The second argument for the ANY function (that is, pr oduct) indicates the
dimensionality of the result of the Boolean expression.

In this example, when the Boolean function is evaluated, a test is performed for
TRUE values along the pr oduct dimension, and returns an array of values.

LIMT product TO ANY(sal es GI 90000, product)
The pr oduct dimension has both CANOES and FOOTWEAR in status. Both of these

products sold more than $90,000 on at least one occasion during January through
March 1995.

6-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Limiting to the Top or Bottom Values

As shown below, a report for sales in Boston displays both the CANCES and
FOOTWEAR products.

REPCRT sal es
The current status of PRODUCT is:

CANCES, FOOTVEAR
D STRI CT: BOSTON

------------- SALES----==nnmnon--
------------- NONTH- - = === - - - - -
PRODUCT JAND5 FEB95 NAR95
CANCES 66,013.92 76,083.84 91,748.16
FOOTWEAR 91,406.82 86, 827.32 100, 199. 46

Limiting to the Top or Bottom Values

You can set the dimension values that are currently in status to the top or bottom
performers based on a criterion represented as an expression. The simplified syntax
for using the LI M T command in this way is shown below:

LIMT dinension TO [BOTTOM TOP] n BASEDON expression

You can also set the dimension values that are currently in status to the top or
bottom performers, by percentage, based on a criterion represented as an
expression. The simplified syntax for using the LI M T command in this way is
shown below.

LIMT dinension TO [BOTTOM TOP] percent PERCENTOF expression

This construction sorts values based on their contribution, by percentage, to an
expression and then places the identified values in status.

It can happen that the last item in status, based on a PERCENTOF criterion, is one of
a number of dimension values having the same associated criterion value. In this
case, LI M T includes all dimension values with that criterion value in the resulting
status, even when that causes the total of the criterion value to far exceed the
specified percentage.

Note: Do not use a criterion expression that changes its own
value.

Selecting Data 6-9

Limiting to the Top or Bottom Values

Example 6-2 Limiting to the Top or Bottom Values Based on Criterion

Suppose the status list is sorted in descending order according to the values of

sal es, and only the top two performers are kept in status. Here the TOP and
BASEDON keywords are used to limit the status of a dimension, using the values of a
variable as a criterion.

LIMT product TO ' SPORTSWEAR

LIMT nonth TO ’JUL96’

LIMT district TO TOP 2 BASEDON sal es

Suppose that you issue the following REPORT command.

REPORT DOM district sales

The following report is produced, which shows the results of the LI M T commands.

PRODUCT: SPORTSWEAR

--SALES- - -
-- MONTH- - -
DI STRI CT JUL96
DALLAS 220, 416. 81
ATLANTA 211, 666. 14

Example 6-3 Limiting to the Top or Bottom Values Based on Percentage

Suppose you want to sort products in descending order by the contribution of each
product to TOTAL(sal es) and then add values to the status list, starting from the
top, until the cumulative total of sal es by pr oduct reaches or exceeds 30 percent
of all sales. To limit the dimension in this way, you can use the following command.

LIMT product TO TOP 30 PERCENTOF TOTAL(sal es, product)
The following commands produce a report for January through March 2002 of
products in the Boston district that reached or exceeded 30 percent of all sales.

LIMT nonth TO 'JANO2' ' FEB02' ' MARO2’

LIMT district TO ' BOSTON

LIMT product TO TOP 30 PERCENTOF TOTAL(sal es, product)
REPCRT sal es

6-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Limiting to the Values of a Related Dimension

This output of the report is shown below.

DI STRI CT: BOSTON

------------- SALES-----rmmnnn-
------------- MONTH- - - - === oo oo - -
PRODUCT JAND2 FEB02 MARD2
FOOTVEAR 91, 406.82 86,827.32 100, 199. 46
CANCES 66,013.92 76,083.84 91,748. 16

Limiting to the Values of a Related Dimension

You can use the LI M T command to limit a dimension to the values of one or more
related dimensions. The simplified syntax for using the LI M T command in this
way is shown below:

LIMT dinension TO reldim|[rel dimval]

The r el di m argument is the name of a relation or a dimension that is related to the
dimension being limited. Using a relation name allows you to choose which relation
is used when there is more than one.

The rel di m val argument is a list of values of the related dimension, and not the
dimension being limited. If this argument is presentina LI M T command, then
status is obtained by selecting the values of the dimension being limited, which are
related to related values. If rel di m val is omitted, then the current status of rel/ di m
is used.

Example 6-4 Limiting Using a Related Dimension

The following command limits di st ri ct to BOSTONand ATLANTA, which are in
the EAST region.

LIMT district TO region ' EAST

This command limits pr oduct to SPORTSWEAR and FOOTWEAR, which are in the
division that appears last in the list of DI VI SI ON values.

LIMT product TO division LAST 1

Selecting Data 6-11

Limiting Based on the Position of a Value in a Dimension

How Limiting to a Related Dimension Determines Status

When you limit a dimension to a related dimension, the current status list is created
in a two-step process:

1. The values in the dimension current status list are arranged in the order of the
values of the related dimension.

2. If there is more than one value of the dimension for any value of the related
dimension, then the values in the dimension current status list are arranged in
the order of their default status list.

Suppressing the Sort When Limiting to a Related Dimension

The LI M T. SORTREL option controls whether or not a sort is done when you limit
a dimension to a related dimension. You can suppress the sort that occurs when you
limit a dimension to a related dimension by setting LI M T. SORTREL to no. This
can significantly improve performance when the dimension you are limiting is
large.

Note: When LI M T. SORTREL is NO, printed output of a
dimension may not appear in logical order.

Limiting Based on the Position of a Value in a Dimension

Using the LI M T command, you can set dimension status based on the position of
values in either:

« The dimension you are limiting

« Anunrelated dimension

Limiting Using Value Position in its Dimension

You can use the LI M T command with the FI RST, LAST, NTH, and POSLI ST
keywords to set dimension status based on the position of a value within a
dimension.

The simplified syntax for using the LI M T command in this way is shown below.
LIMT dinension TO {FIRST n| LAST n| NTH n| PCSLI ST pos! i st - exp}

6-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Limiting Based on a Relationship Within a Hierarchy

The FI RST, LAST, and NTH keywords specify where the value is in the full set of
dimension values. The n argument following it specifies the number of values.

The POSLI ST keyword indicates that the pos/ i st - exp argument following it is a
text expression, each line of which is a numeric value that evaluates to a numeric
position of the dimension being limited.

Limiting Using Value Position in an Unrelated Dimension

You can use the LI M T command with the NOCONVERT keyword to insert a value
into a dimension status list based on the numeric position of the values in the status
list of the unrelated dimension. This is particularly useful when the two dimensions
are in different analytic workspaces (for example, when there is a one-to-one
correspondence between the product dimension in two analytic workspaces).

The simplified syntax for using the LI M T command in this way is shown below:
LIMT dimensi on TO NOCONVERT unr el at ed- di mensi on

The unr el at ed- di nensi on argument specifies the name of a dimension not
related to the dimension being limited.

Limiting Based on a Relationship Within a Hierarchy

You can use a family tree to place dimension values in status. You can limit a
dimension as follows:

= You can limit a dimension to the parents, children, ancestors, or descendants of
each value in a list of specified values or for each value in status.

= You can also find the descendants based on a particular parent relationship.
This is useful with hierarchical dimensions that contain both a detail level and
levels that are aggregations of lower levels. To use the LI M T command in this
way, you must ensure that the analytic workspace contains a relation that holds
the parent for each value of the dimension.

The simplified syntax for limiting a dimension based on a relationship within a
hierarchy is shown below.

LIM T di nensi on TO { PARENTS| CHI LDREN| ANCESTORS| DESCENDANTS| H ERARCHY} -
USI NG parent-rel [val uel i st]

The PARENTS keyword finds the parent of each value in val uel i st or, when there
isno val uel i st it finds the parent for each value in status. It uses the
par ent - r el to look up the parent.

Selecting Data 6-13

Limiting Based on a Relationship Within a Hierarchy

The CHI LDREN keyword finds the children of each value in val uel i st or, when
there is no val uel i st, finds the children for each value in status. It uses the
parent -rel tolook up the children.

The ANCESTORS keyword finds the ancestors (that is, parents, grandparents, and so
on) of each value in val uel i st or, when there is no val uel i st, finds the
ancestors of each value in status.

The DESCENDANTS keyword finds the descendants (that is, children, grandchildren,
and so on) of each value in val uel i st or, when there is no val uel i st, finds
descendants for each value in status.

The HI ERARCHY keyword is similar to DESCENDANTS and finds the descendants
(that is, children, grandchildren, and so on) based on the value of the parent - r el
argument.

The par ent - r el argument is the name of a relation between the dimension and
itself. For each dimension value, the relation holds another value of the dimension
that is its parent dimension value (the one immediately above it in a given
hierarchy). This parent-relation can have more than one dimension.

The val uel i st argument can be any inclusive list of values.

See Also:

« "Defining Hierarchical Dimensions and Variables That Use Them" on
page 3-22 for more information about hierarchical dimensions.

« "Defining Concat Dimensions and Variables That Use Them" on page
on page 3-25 for more information about concat dimensions and
hierarchies.

« "Differences Between HIERARCHY and DESCENDANTS Keywords"
on page 6-14 for more information about using the HIERARCHY
keyword.

Differences Between HIERARCHY and DESCENDANTS Keywords

Both the HI ERARCHY and DESCENDANTS keywords of the LI M T command allow
you to set the status of a dimension based on its family tree; however, the different
keywords give you different results.

6-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Limiting Based on a Relationship Within a Hierarchy

One difference is the order of the values:

« DESCENDANTS groups the values by level (all children, and then all
grandchildren).

« HI ERARCHY places each group of children next to its parent.

Additionally, if you use the H ERARCHY keyword, then you can include the
additional arguments described in the following table that let you further
manipulate the contents of the current status list.

IF youwantto... THEN use the . ..
list children before their parents, | NVERTED keyword.
skip n generations for each value in SKI P n phrase.

val uel i st, or, when there is no
val uel i st skip n generations for each
value in status,

include n generations down from each value | DEPTH n phrase.
of val uel i st or, when there is no

val uel i st ,include n generations for each
value in status,

run a command, represented as a text RUN t ext exp phrase.
expression, every time it constructs a group
of children,

exclude the original values from the current | NOORI G N keyword.
status list,

Example 6-5 Skipping Generations
Suppose your application issues the following command.

LIMT market TO H ERARCHY DEPTH 2 SKIP 1 USI NG narket. market ' TOTUS

In processing this command, the parent relation is searched (mar ket . mar ket) to
find the children and the grandchildren (DEPTH 2) of TOTUS and discards the first
generation (SKI P 1).

The resulting status follows.

TOTUS
BOSTON
ATLANTA
CH CARD
DALLAS

Selecting Data 6-15

Limiting Based on a Relationship Within a Hierarchy

DENVER
SEATTLE

Note that TOTUS is included in status. With HI ERARCHY, the original values are
included in status.

Example 6-6 Sorting a Group of Children

When you are using the H ERARCHY keyword with the LI M T command, you can
use the RUN keyword to execute a command, specified as a text expression, every
time a group of children is constructed. This lets you further manipulate the values
that are being placed in status.

The following command not only limits the values of the mar ket dimension to
descendants using the mar ket . mar ket self-relation but also, every time a group of
children is constructed, sorts the values in the mar ket dimension in increasing
order based on unit sales.

LIMT market TO H ERARCHY RUN ' SORT market A unit.m USI NG narket. mar ket

Note: In this command, if you use KEEP or REMOVE instead of TO
in the LI M T command, then the SORT command has no effect.

Example 6-7 Dirilling Down on a Hierarchy Using a Relation

Suppose you want to drill down on districts from the region level of the mar ket
dimension. This is a two step process.

The first step in the process is to limit the mar ket dimension, which has embedded
totals at the district, region, and total U.S. level, to the region-level data. This is done
using the relation m v. mar ket , which is a relation between mar ket and

mar ket | evel .

The following command produces the report shown below it, which shows the
values of M v. nmar ket .

REPCRT ml v. nar ket

MARKET M.V. MARKET
TOTUS TOTUS

EAST REG ON
BOSTON D STRI CT

6-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Limiting Based on a Relationship Within a Hierarchy

ATLANTA DI STRI CT
CENTRAL REG ON

CH CARD D STRI CT
DALLAS D STRI CT
VEEST REG ON

DENVER DI STRI CT
SEATTLE DI STRI CT

The following commands limit the values of mar ket to the desired values and
display the values that are currently in status for the mar ket dimension.

LIMT market TO mv. market ' REG ON
STATUS mar ket

The current status of MARKET is:
EAST, CENTRAL, VEST

The second step in the process is to drill down on the district-level data from the
region level. You can use the self-relation mar ket . mar ket to perform the drill
down. For each value of the mar ket dimension, this relation contains the name of
its parent.

DEFI NE MARKET. MARKET RELATI ON MARKET <MARKET>
LD Self-relation for the Market Dinension

A report of mar ket . mar ket produces the following output.

MARKET MARKET. MARKET
TOTUS NA

EAST TOTUS
BOSTON CENTRAL
ATLANTA EAST
CENTRAL TOTUS
CHI CAGO CENTRAL
DALLAS CENTRAL
VEEST TOTUS
DENVER VEEST
SEATTLE VEEST

The following commands limit mar ket to the children of the EAST, CENTRAL, and
VAEST regions and drill down to the district-level data by using the CHI LDREN
keyword with the LI M T command.

LIMT market TO mlv. narket ' REG ON
LIMT market tO CH LDREN USI NG mar ket . nar ket

Selecting Data 6-17

Limiting Composites and Conjoint Dimensions

A report of mar ket produces the following output and shows the values that are
now in status.

Limiting Composites and Conjoint Dimensions

You cannot explicitly limit the values of a composite. Composites are not
dimensions and, therefore, do not have any independent status. The values of a
composite that are in status are determined by the values that are in status in the
base dimensions of the composite. In general, when OLAP DML functions and
commands deal with objects that are defined with composites, the default behavior
is to treat those objects as if no SPARSE keyword or named composite had been
used when the object was defined.

You can use the LI M T command to set status for the dimensions of a variable that
is defined with a composite in the same way you would when the variable is not
defined with a composite.

See Also: "Defining Variables That Handle Sparse Data
Efficiently” on page 3-18 for more information about composites.

Example 6-8 Limiting Dimensions Used by a Composite

Suppose your analytic workspace contains a variable named coupons that is
dimensioned by nont h and (using the pr od_nar ket composite) pr oduct and
mar ket as shown in the following definition.

DEFI NE coupons VARI ABLE | NTEGER <nonth prod_market <product narket>>

6-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Ways of Limiting Conjoint Dimensions

The following commands display the default status of all of the base dimensions of
the coupons variable.

STATUS coupons

The current status of MONTH is:
ALL

The current status of PRODUCT is:
ALL

The current status of MARKET is:
ALL

Later, when you want to access only the values of coupon that apply to sportswear,
you limit the base dimension pr oduct as shown below.

LIMT product TO ' SPORTSWEAR

Ways of Limiting Conjoint Dimensions
You can limit a conjoint dimension in either of the following ways:
= Limit the base dimensions.

« Limit the conjoint dimension itself.

See Also: "Defining Variables That Handle Sparse Data
Efficiently” on page 3-18 for more information about conjoint
dimensions.

Limiting Conjoint Dimensions Using Value Combinations

To limit a conjoint dimension to a list of values, you can use the following
constructions:

= Specify the actual values, surrounding each combination with angle brackets.

LIMT proddist TO < TENTS ' BOSTON > <' FOOTVEAR ' DENVER >

« Use avariable name for the values, surrounding the combination with angle

brackets.
prodnane = ' CANCES
di stnane = ' SEATTLE

LIMT proddi st TO <prodnane di st name>

Selecting Data 6-19

Limiting Concat Dimensions

« Create a multiline list, in which each line is a combination surrounded by angle
brackets and separated by \ n (the linefeed escape sequence).

namel ist = nytext = '<\" TENTS\" \'BOSTON\' >\n <\' FOOTWEAR ' \' DENVER\' >’
LIMT proddi st TO naneli st

Limiting Conjoint Dimensions Using Base Dimension Values

Because there is an implicit relation between a conjoint dimension and its base
dimensions, you can limit the conjoint dimension by limiting the base dimensions.

For example, the following command limits a conjoint dimension named pr oddi st
to all conjoint values having CANCES as one of the values of the base dimension
product .

LIMT proddi st TO product ' CANCES'

Limiting Concat Dimensions

The current status list of a concat dimension is separate from the current status lists
of its base dimensions. However, you limit a concat dimension by specifying values
of its base dimensions.

In Example 6-9, the base dimensions of the concat dimension r eg. di st. cc are the
simple dimension r egi on and the conjoint dimension pr oddi st . The example
limits the concat dimension to the VEST region and pr oddi st to the conjoint
values TENTS DENVER and RACQUETS DENVER and then reports the values of the
concat dimension.

Example 6-9 Limiting Base Dimensions of a Concat Dimension

LIMT reg.dist.ccdimTO regi on’ WEST’
LIMT reg. proddist.ccdi m ADD proddi st <" TENTS' ' DENVER > -
< RACQUETS', ' DENVER >

REPCRT reg. proddi st. ccdi m

REG. PRCDDI ST. CCDI M

<REG ON: VEST>
<PRODDI ST: <TENTS, DENVER>>
<PRCDDI ST: <RACQUETS, DENVER>>

6-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

Working with Null Status

Working with Null Status

You can set the current status list of a dimension to null (empty status) only when
you have explicitly specified that you want null status to be permitted. You can give
this permission in either of two ways:

« Setthe OKNULLSTATUS option to yes. This specification indicates that null
status should be allowed whenever it occurs except when the | FNONE
argument is presentina Ll M T command.

« Usethe NULL keyword ina LI M T command to set the status of a particular
dimension or valueset to null. You can do this by specifying TO NULL or KEEP
NULL. This specification indicates that null status should be allowed for this
LI M T command only.

If you have not used either of these two methods to give permission for null status
and you execute a LI M T command that would result in null status, then the status
is not changed to null when the command is executed. Instead, the status remains
the same as it was before the command was issued.

You cannot use the | FNONE and NULL keywords in the same LI M T command.

Managing Null Status in a Program

An | FNONE argument ina LI M T command indicates that you do not want
program execution to take its normal course when a dimension status is set to null.
Therefore, when | FNONE is present, a branch is performed to the IFNONE label and
the status is not set to null, even if OKNULLSTATUS is YES. If the NULL keyword is
present together with | FNONE, then the inconsistency is signaled with an error.

Tip: Using the | FNONE argument provides limited flexibility for
handling null status because it simply branches to a label. For more
flexibility, investigate the possibility of setting the OKNULLSTATUS
option to control whether or not execution will branch when status
is null, and the possibility of using a WHI LE loop to test for null
status.

Errors When Limiting Status to a Null Value

An error will not be sighaled when you try to limit the status of a dimension or
valueset that has no values, unless you explicitly list values that do not exist. For

Selecting Data 6-21

Working with Valuesets

example, if you have not added any values to a newly defined dimension VEEK,
then the following command does not cause an error.

LIMT week TO FIRST 10

However, the following command does cause an error because PETE is not a value.

LIMT week TO ' PETE

Similarly, the following command causes an error because WEEK does not have a
value at position 20.

LIMT week TO 20

Working with Valuesets

A valueset is a workspace object that contains a list of dimension values for a
particular dimension. You use a valueset to save a dimension status list for later use.
The values in a valueset can be saved across OLAP sessions. When you attach an
analytic workspace, each dimension has all of the values in the default status list.
You can then limit a dimension to the values stored in the valueset for that
dimension. When you first define a valueset, its value is null. After defining a
valueset, you use the LI M T command to assign values from the dimension to the
valueset. You can use the LI M T command with valuesets in many of the ways that
you use it with dimensions. For example, you can use the LI M T command to
expand, reduce, and replace values in the list of values of a valueset.

Creating a Valueset
To create a valueset, take the following steps.

1. Define a valueset for the dimension values. Use the DEFI NE command with the
VALUESET keyword.

2. Limit the dimension for which you want to create a valueset to the values you
want to save.

3. Limit the valueset you created in Step 1 to the dimension you limited in Step 2.
Example 6-10 Creating a Valueset

This example defines a valueset named | i neset . It is dimensioned by | i ne and,
therefore, it can be limited by the current values of the | i ne dimension.

6-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

Working with Valuesets

The following commands limit the | i ne dimension to the first two values, then
show the current status of | i ne.

LIMT line TO FIRST 2
STATUS |ine

The current status of LINE is:
REVENUE, COGS

These commands define a valueset names | i neset , set it to the current status list
of the | i ne dimension, and show its values. The LD command attaches a
description to the object.

DEFINE |ineset VALUESET |ine

LD Val ueset for LINE di mension val ues
LIMT lineset TOline

SHOW VALUES(| i neset)

REVENUE
CoGS

Limiting Using a Valueset

After you have defined a valueset, you can use it to limit a dimension with a single
LI M T command.

For example, the following commands limit the | i ne dimension to the values
stored in the | i neset valueset and display the new status of | i ne.

LIMT line TO |ineset
STATUS |ine

The current status of LINE is:
REVENUE, COGS

Example 6-11 Limiting Using a Valueset

The following commands limit di st ri ct to the districts in which sportswear sales
exceeded $1,000,000 in 1996. The current status list for the di st ri ct dimension is
saved in the valueset SPORTS. DI STRI CT. Once you have created the valueset, you
can limitthe di stri ct dimension to the same values with one LI M T command.

DEFI NE sports.district VALUESET district
LIMT product TO ' SPORTSVEAR
LIMT nonth TO year ' YR96’

Selecting Data 6-23

Working with Valuesets

LIMT sports.district TO TOTAL(sal es district) GI 1000000
LIMT district TO sports.district

The STATUS command shows the new status of di stri ct.

STATUS district

The current status of DISTRICT is:
ATLANTA TO DENVER

Changing the Values of a Valueset

You can use the LI M T command to change the values in a valueset. The simplified
syntax for using the LI M T command in this way is shown below:

LIMT val ueset keyword sel ection

The val ueset argument specifies the name of the valueset you want to change.

The keywor d that you specify determines how the command affects the values that
are currently in the valueset. The following table outlines the use of the keywords.

IF youwantto... THEN use the LIMIT command with . ..

replace the values that are currently in the either the TOor COVPLEMENT keyword.
valueset with new values,

remove values from the current valueset, either the REMOVE or KEEP keyword.
expand the valueset, either the ADD or | NSERT keyword.
sort the values in the valueset, the SORT keyword.

The sel ect i on argument specifies the selection criteria that you want to be used
to determine what values to assign to the valueset. In general, you can use the same
arguments when you are using the LI M T command to select values for a valueset
that you can use when you use the LI M T command to limit a dimension.

6-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Working with Valuesets

Identifying and Retrieving the Values in a Valueset

You can use the following commands and functions to identify and retrieve
dimension values that are in a valueset.

Command or function Description

| NSTAT function Checks whether a dimension value is in a valueset.

STATFI RST function Retrieves the first value in a valueset.

STATLAST function Retrieves the last value in a valueset.

STATUS command Sends to the current outfile the status of one or more values in a
valueset.

VALUES function Retrieves the values in a valueset. Depending on whether you
specify the | NTEGER keyword, the function either returns a
multiline text value that contains one dimension value per line
or returns, as integers, the position numbers of the values in the
existing dimension, not in the valueset.

Retrieving the Values in a Valueset

Suppose an analytic workspace contains a valueset called mont hset that has the
values JAN95, MAY95, and DEC95. You can use the VALUES function to list the
values in that valueset.

The following OLAP DML command produces the output shown below it.
SHOW VALUES(nont hset)

JAN9S
MAY95
DEC95

Retrieving the Dimension Positions of Values in a Valueset

Suppose that you want to retrieve the position of the values in the mont hset
valueset, rather than retrieve the actual values themselves. To retrieve the position
of values, you use the VALUES function with the | NTEGER keyword. When you use
this keyword, the position numbers are returned instead of the actual dimension
values that are included in a valueset. The position numbers that are returned do
not represent positions in the valueset; they represent positions in the dimension on
which the valueset is based.

Selecting Data 6-25

Working with Valuesets

The following OLAP DML command produces the output shown below it.
SHOW VALUES(nont hset | NTEGER)
61

65
72

The value JAN95 is shown as the sixty-first value in the nont h dimension, MAY95

as the sixty-fifth value, and DEC95 as the seventy-second value, although they are
the first, second, and third values in nont hset .

6-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

Part Il

Applications Development

Part Il contains information of particular interest to applications developers.
It contains the following chapters:

« Chapter 7, "Developing Programs"

« Chapter 8, "Working with Models"

« Chapter 9, "Allocating Data"

v

Developing Programs

This chapter provides information about writing, compiling, testing, and calling
programs that are written in the OLAP DML. It includes the following topics:

Introduction to OLAP DML Programs
Defining and Editing Programs

Using Variables in Programs

Passing Arguments

Writing User-Defined Functions
Controlling the Flow of Execution
Directing Output

Preserving the Session Environment
Handling Errors

Compiling Programs

Testing and Debugging Programs

Developing Programs 7-1

Introduction to OLAP DML Programs

Introduction to OLAP DML Programs

An OLAP DML program is written in the OLAP DML. It acts on data in the analytic
workspace and helps you accomplish some workspace management or analysis
task. You can write OLAP DML programs to perform tasks that you must do
repeatedly in the analytic workspace, or you can write them as part of an
application that you are developing.

There are two main types of OLAP DML programs: programs that do not return
values, and programs that return values. A program that returns a value is called a
user-defined function.

You can use an OLAP DML program that does not return a value as a standalone
program or as the main program or subprogram of a multiprogram application.
These programs behave like OLAP DML commands.

You can use a user-defined function in commands and expressions in the same way
that you use built-in OLAP DML functions.

In contrast to the form of a program, the content is related to the job it was created
to do, and it is the individual lines of a program that provide its content. Program
lines that accomplish specific purposes are discussed in other chapters in this guide.

Executing Programs

You can invoke a program that does not return a value by using the CALL
command. You enclose arguments in parentheses, and they are passed by value.

For example, suppose you create a simple program named addi t to add two
integers. You can use the CALL command in the main program of your application
to invoke the program.

CALL addit (3, 4)

The syntax for using the CALL command to invoke a program is shown below.

CALL programname [(argl [arg2 ...])]

The pr ogr am name argument is the name of the program to be called.

The argl. .. arguments are optional and specify any arguments that are expected
by the called program. Specify the arguments so that they match the order in which
they are defined in the program.

7-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining and Editing Programs

Executing User-Defined Functions

A user-defined function is a program that returns a value. You invoke user-defined
functions in the same way as you use built-in functions. You merely use the
program’s name in an expression and enclose the program’s arguments, if any, in
parentheses.

For example:
= You can use the program name as an expression in a command.

The following REPORT command uses the value that is returned by the
user-defined function i sr ecent that has a single argument, act ual .

REPCRT i srecent (actual)
= You can use the = command to assign the return value of the function to a
variable.

The following command assigns the return value of the user-defined function
named t enpsal es to a temporary variable called nyt enpsal es.

myt enpsal es = tenpsal es

Important: Although you can also run user-defined functions
using the CALL command, you will not be able to access the return
value.

Defining and Editing Programs

A program, like a dimension or a variable, is a workspace object. You define a
program using the DEFI NE command. The following example defines a program
named hel | o.

DEFI NE hel | o PROGRAM

Once you have defined a program object, you need to add the body of the program
to it.

OLAP Worksheet provides an editor that you can use to add content to the program
definition.

Developing Programs 7-3

Using Variables in Programs

See Also: "Accessing a Workspace from OLAP Worksheet" on
page 1-6 for more information about using OLAP Worksheet.

Formatting Guidelines for Editing Programs

Use the following formatting guidelines as you add lines to your program:

Each line of code can have a maximum of 4000 bytes.

To continue a single command on the next line, place a hyphen (-) at the end of
the line to be broken. The hyphen is called a continuation character.

You cannot use a continuation character in the middle of a text literal.

To write more than one command on a single line, separate the commands with
semicolon (;).

Enclose literal text in single quotation marks ('). To include a single quotation
mark within literal text, precede it with a backslash (\).

Precede comments with double quotation marks ("). You can place a comment,
preceded by double quotation marks, either at the beginning of a line or at the
end of a line, after some commands.

The following program named hel | o displays the phrase “Hello World.”

DEFI NE hel | o PROGRAM
PROGRAM
SHOW ' Hel |l o Worl d’

END

See Also: "Escape Sequences" on page 3-6 for information about
escape sequences.

Using Variables in Programs

Variables that hold the data in your analytic workspaces are permanent variables.
These variables persist from one OLAP session to another. However, you might not
need to save variables that your programs use to hold processing information while

7-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using Variables in Programs

they manipulate data. So that you do not clutter your analytic workspaces with
unnecessary variables, you can define temporary and local variables:

A temporary variable has a value only during the current session. When you
update and commit the analytic workspace, only the definitions of the variables
are saved. When you detach the analytic workspace, the data values are
discarded.

A local variable is a single-cell variable that exists only while the program in
which it is defined is running. Using local variables within a program is a useful
alternative to using temporary variables.

Local variables have no dimensions, so you cannot use them for storing
dimensioned data. Because they exist only for the duration of the program in
which they are defined, you cannot store information in a local variable in one
program and then use that variable in another program. If you must store
dimensioned data, or use information in more than one program, then define a
temporary variable instead.

Global Versus Modular Design Approaches

The purpose of most OLAP DML programs is to manipulate data. Depending on
your programming style and the requirements of your application, you might use
either of the following approaches:

Use permanent variables, to which all programs have access. This approach
requires less programming overhead (for example, fewer definitions), but it is
less modular. If you are not careful, then programs can interfere with one
another when they set the values of permanent variables.

Use program arguments, local variables, and return values from user-defined
functions. This approach forces you to write modular programs with clear input
and output responsibilities.

Most applications combine these approaches, using permanent variables and
user-defined functions when they are appropriate. In general, modular programs
are considered to be easier to read, debug, and maintain.

Defining Temporary Variables

You define temporary variables with the TEMP keyword in the DEFI NE command,
as in the following example.

DEFINE total.sales DECI MAL TEMP

Developing Programs 7-5

Using Variables in Programs

Defining temporary variables for use in programs helps you avoid cluttering your
analytic workspace with temporary data, but it still adds objects to your analytic
workspace. For most simple applications, the addition of a few temporary objects is
not a problem. However, in complex applications that require many programs, the
number of temporary objects can sometimes get very large, and this can affect the
application’s performance.

Once defined, a temporary variable will exist for the remainder of a user’s session
unless it is deleted. Be sure to delete the temporary variable as part of the cleanup of
your program, or create it on the condition that it does not already exist, so that it
can be rerun during a session without causing an error.

Defining Local Variables

You must specify local variables at the beginning of your program, before any
executable commands. You specify a local variable with the VARI ABLE command,
which has the following syntax.

VARI ABLE nane dat at ype

The name argument specifies the name of the variable. To minimize confusion or
problems, you should avoid using the same name for both an analytic workspace
variable and a local variable. When both an analytic workspace variable and a local
variable have the same name, then the local variable usually takes precedence.
However, in a few commands and functions that operate on workspace objects (for
example, the OBJ function), the defined variable takes precedence.

The dat at ype argument specifies the data type of the local variable. For more
information on data types, see "Data Types" on page 3-4.

The program named west . r pt, listed below, includes definitions for two local
variables named dat a and r pt . nont h.

DEFI NE west . rpt PROGRAM

LD Produce report for Western Sales District
PROGRAM

VARI ABLE data TEXT

VARI ABLE rpt. nmonth TEXT

LIMT nonth TO LAST 3

7-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Passing Arguments

Passing Arguments
The OLAP DML provides two ways for you to accept arguments in a program:

« ARGUMENT command. You can use the ARGUMENT command to declare
arguments in a program. ARGUVENT command allows you to use both simple
and complex arguments (such as expressions). The ARGUVENT command also
makes it convenient to pass arguments from one program to another, or to
create your own user-defined functions.

« ARGfunctions. You can use the ARG ARGS, and ARGFR functions in any
program to retrieve arguments from a command. These functions are primarily
useful for simple text arguments.

Using the ARGUMENT Command

The ARGUMVENT command lets you declare an argument of any data type,
dimension, or valueset. Any ARGUMENT commands must precede the first
executable line in the program. When you run the program, these declared
arguments are initialized with the values you provided as arguments to the
program. The program can then use these arguments in the same way it would use
local variables.

Example 7-1 Using the ARGUMENT Command

Suppose you are writing a program, called pr oduct . r pt . The pr oduct . r pt
program produces a report, and you want to supply an argument to the report
program that specifies the text that should appear for an NA value in the report. In
the pr oduct . r pt program, you can use the declared argument nat ext inan =
command to set the NASPELL option to the value provided as an argument.

ARGUMENT nat ext TEXT

NASPELL = nat ext

To specify M ssi ng as the text for NA values, you can execute the following
command.

CALL product.rpt ('Mssing')

Developing Programs 7-7

Passing Arguments

In this example, literal text enclosed in single quotes provides the value of the text
argument. However, any other type of text expression works equally well, as shown
in the next example.

DEFI NE nat enp VARI ABLE TEXT TEMP
natemp = 'Missing’
CALL product.rpt (natemp)

Using Multiple Arguments

A program can declare as many arguments as needed. When the program is
executed with arguments specified, the arguments are matched positionally with
the declared arguments in the program.

When you run the program, you must separate arguments with spaces rather than
with commas or other punctuation. Punctuation is treated as part of the arguments.

Example 7-2 Passing Multiple Arguments

Suppose, in the pr oduct . r pt program, that you want to supply a second
argument that specifies the column width for the data columns in the report. In the
product . r pt program, you would add a second ARGUMENT command to declare
the integer argument to be used in setting the value of the COLW DTH option.

ARGUMENT nat ext TEXT
ARGUMENT wi dt hant | NTEGER
NASPELL = nat ext

COLW DTH = wi dt hant

To specify eight-character columns, you could run the pr oduct . r pt program with
the following command.

CALL product.rpt ('Mssing 8)

If the pr oduct . r pt program also requires the name of a product as a third
argument, then in the pr oduct . r pt program you would add a third ARGUVENT
command to handle the product argument, and you would set the status of the
pr oduct dimension using this argument.

ARGUMENT nat ext TEXT
ARGUMENT wi dt hant | NTEGER
ARGUMENT r pt prod PRODUCT
NASPELL = nat ext

COLW DTH = wi dt hant

LIMT product TO rptprod

7-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Passing Arguments

You can run the pr oduct . r pt program with the following command.

CALL product.rpt ('Mssing’ 8 'TENTS')

In this example, the third argument is specified in uppercase letters with the
assumption that all the dimension values in the analytic workspace are in uppercase
letters.

Passing Arguments as Text with Ampersand Substitution

It is very common to pass a simple text argument to a program. However, there are
some situations in which you might want to pass a more complicated text
argument, such as an argument that is composed of more than one dimension value
or is composed of the text of an expression. In these cases, you want to substitute
the text you pass, exactly as you specify it, wherever the argument name appears.

To indicate that you want a text argument handled in this way, you precede the
argument name with an ampersand when you use it in the command lines of your
program. Specifying arguments in this way is called ampersand substitution.

When you use ampersand substitution to pass the names of workspace objects to a
program (rather than their values), the program has access to the objects themselves
because the names are known to the program. This is useful when the program
must manipulate the objects in several operations.

Important: You cannot compile and save any program line that
contains an ampersand. Instead, the line is evaluated at run time,
which can reduce the speed of your programs. Therefore, to
maximize performance, avoid using ampersand substitution when
another technique is available.

Example 7-3 Passing Multiple Dimension Values

If you want to specify exactly two products for the pr oduct . r pt program
discussed earlier, then you could declare two dimension-value arguments to handle
them. But if you want to be able to specify any number of products using LI M T
keywords, then you can use a single argument with ampersand substitution.

Developing Programs 7-9

Passing Arguments

Suppose you use the following commands in your program.

ARGUMENT nat ext TEXT
ARGUMENT wi dt hanmt | NTEGER
ARGUMENT rpt prod TEXT

LIMT product TO &rptprod

You can run the program and specify that you want the first three products in the
report.

CALL product.rpt ('Mssing 8 "first 3")

The single quotation marks are necessary to indicate that “first 3” should be taken
as a single argument, rather than two separate arguments separated by a space. The
ampersand causes LI M T to interpret’ fi rst 3’ asakeyword expression rather
than as a dimension value.

Example 7-4 Passing the Text of an Expression

Suppose you have a program named cust om r pt that includes a REPORT
command, but you want to be able to use the program to present the values of an
expression, such as sal es - expense, as well as single variables.

customrpt 'sales - expense’

Note: You must enclose the expression in single quotation marks.
Because the expression contains punctuation (the minus sign), the
guotation marks are necessary to indicate that the entire expression
is a single argument.

In the cust om r pt program, you could use the following commands to produce a
report of this expression.

ARGUMVENT 1 pt exp TEXT
REPCRT &r pt exp

7-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Writing User-Defined Functions

Passing Object Names and Keywords

For the following types of arguments, you must always use an ampersand to make
the appropriate substitution:

« Names of workspace objects, such as uni t s or pr oduct

« Command keywords, such as COMVA or NOCOWMA in the REPORT command, or
Aor Din the SORT command

Example 7-5 Passing Workspace Object Names and Keywords

Suppose you design a program called sal es. r pt that produces a report on a
variable that is specified as an argument and sorts the pr oduct dimension in the
order that is specified in another argument. You would run the sal es. r pt
program by executing a command like the following one.

sales.rpt units d

In the sal es. r pt program, you can use the following commands.

ARGUMENT var name TEXT
ARGUMENT sortkey TEXT

SORT product &sortkey &varname
REPCRT &var nane

After substituting the arguments, these commands are executed in the sal es. r pt
program.

SORT product D units
REPORT units

See Also: "Substitution Expressions” on page 4-30 for more
information about ampersand substitution.

Writing User-Defined Functions

When an OLAP DML program returns a value, it is called a user-defined function.
You can use it in commands and expressions.

A user-defined function contains a RETURN command followed by an expression.

RETURN expressi on

The RETURN command returns a single value when the program terminates.

Developing Programs 7-11

Writing User-Defined Functions

Data Type of a User-Defined Function

When you create a user-defined function, you define the program with a data type
or dimension name, using the following syntax of the DEFI NE command.

DEFI NE programane PROGRAM [dat at ype| di mensi on]

The dat at ype argument specifies the data type of the value to be returned by the
program when it is called as a function.

The di mensi on argument specifies the name of a dimension whose value the
program returns when it is called as a function. The return value will be a single
value of the dimension, not a position (integer). The dimension must be defined in
the same analytic workspace as the program. The value that is returned by the
program has the data type that is specified in the definition. If you specify a
dimension name, then the program returns a value of that dimension.

The return expression in the program should match the data type that is specified in
its definition. If the data type of the return value does not match the data type that
is specified in its definition, then the value is converted to the data type in the
definition.

If you do not specify a data type for the program, then the return value is converted
to the data type that is required by the caller.

Arguments in a User-Defined Function

User-defined functions can accept arguments. A user-defined function returns only
a single value. However, if you supply an argument to a user-defined function in a
context that loops over a dimension (for example, in a REPORT command), then the
function returns results with the same dimensions as its argument.

You must declare the arguments using the ARGUMENT command within the
program, and you must specify the arguments in parentheses following the name of
the program.

See Also: "Passing Arguments" on page 7-7 for more information
about using arguments with programs.

Example 7-6 User-Defined Function

Suppose your analytic workspace contains a variable called uni t s. pl an, which is
dimensioned by the pr oduct, di stri ct, and nont h dimensions. The variable

7-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Writing User-Defined Functions

holds integer data that indicates the number of product units that are expected to be
sold.

Suppose also that you define a program named uni t s_goal s_nmet . This program
is a user-defined function. It accepts three dimension-value arguments that specify a
given cell of the uni t s. pl an variable, and it accepts a fourth argument that
specifies the number of units that were actually sold for that cell. The program
returns a Boolean value to the calling program. It returns YES when the actual
figure comes up to within 10 percent of the planned figure; it returns NOwhen the
actual figure does not.

The definition of the uni t s_goal s_net program is listed below.

DEFI NE units_goal _met PROGRAM BOOLEAN

LD Tests whether actual units net the planned estinate
"Program Initialization

ARGUMENT userprod TEXT

ARGUMENT userdi st TEXT

ARGUMENT user mont h TEXT

ARGUMENT userunits integer

VARI ABLE answer bool ean

TRAP ON errorl abel

PUSH product district nonth

"Program Body

LIMT product TO userprod

LIMT district TO userdi st

LIMT nonth TO usernonth

IF (units.plan - userunits) / units.plan GT .10

THEN answer = NO
ELSE answer = YES
"Nornmal Exit

POP product district nonth
RETURN answer

"Abnormal Exit

errorl abel :

POP product district nonth
SI GNAL errornane errortext
END

To execute the uni t s_goal _met program and store the return value in a variable
called success, you can use an assignment statement.

success = units_goal _met (' TENTS ' BOSTON ' JUN96' 2000)

Developing Programs 7-13

Controlling the Flow of Execution

Controlling the Flow of Execution

Ordinarily, the lines of a program are executed sequentially, that is, in linear fashion.
However, a well-designed program controls the flow of execution by using
commands that redirect the path of execution when appropriate.

You can use the following control structures to modify the sequence of command

execution.

Command or
Keyword

Action

Event that Triggers Action

| F command

Executes alternative commands or
groups of commands.

A specified Boolean condition
is or is not met.

VWH LE command

Executes a group of commands
repeatedly.

As long as a specified Boolean
condition is met.

location.

FOR command Executes a command or a group of | Once for each value of a
commands. dimension.

GOTOcommand Branches to a specific labeled Issuing the command.
location.

SW TCHcommand Branches to particular branch in a A specific criterion is met.
multipath branch.

TRAP command Branches to a specific labeled An error occurs during

program execution.

| FNONE keyword in
aLl M T, REPORT,
ROWor HEADI NG
command

Branches to a specific labeled
location.

An attempt to set status
would result in no values or
null status.

RETURN command

Branches out of a program or
returns to a calling program before
the final command in the program.

Issuing the command.

Guidelines for Constructing a Label

When you use control structures to branch to a particular location, you must
provide a label for the location in order to identify it clearly. When creating a label,
follow these guidelines:

= The first character in the label must be a letter, period (.), or underscore ().

« The remaining characters in a label can be any combination of letters, numbers,
periods, or underscores.

7-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Controlling the Flow of Execution

« Alabel must be followed immediately by a colon (:).

« Make sure that the first eight bytes in the label are unique. (Note that, in your
character set, a byte might or might not be equivalent to one character.) A label
can contain up to 3999 bytes (the maximum length of a text line minus 1 byte
for the colon that identifies a label). However, because only the first eight bytes
of a label name are used, you can experience problems with label names greater
than eight bytes when the first eight bytes are not unique.

Alternatives to the GOTO Command

While GOTOmakes it easy to branch within a program, frequent use of it can
obscure the logic of your program, making it difficult to follow its flow. This is
particularly true when you have a complex program with several labels and GOTO
commands that skip over large portions of code.

To keep the logic of your programs clear, minimize your use of GOTO.

Sometimes a GOTOcommand is the best programming technique, but often there are
better alternatives. For example:

« Instead of using GOTOcommands in an | F command, you can often place your
alternative sets of commands between DOand DOEND commands within the | F
command itself.

« If each set of commands is long or you want to use them in more than one place
in your program, then you might consider placing them in subprograms. Then,
you can use the | F command to choose between two different programs, or use
the SW TCHcommand to choose among many different programs.

Example 7-7 Using the FOR Command for Looping Over Dimension Values

The FOR command executes the commands in the loop for each value in the current
status of the dimension. You must limit the dimension to the desired values before
executing the FOR command. For example, you can produce a series of output lines
that show the price for each product.

LIMT nonth TO FIRST 1

LIMT product TO ALL

FOR product

SHOW JO NCHARS(' Price for ' product ': $' price)
Each output line has the following format.

Price for TENTS: $165.50

Developing Programs 7-15

Controlling the Flow of Execution

When your data is multidimensional, you can specify more than one dimension in a
FOR command to control the order of processing. For example, you can use the
following command to control the order in which dimension values of the uni t s
data are processed.

FOR nonth district product
units = ...

When this assignment statement is executed, the nont h dimension varies the
slowest, the di stri ct dimension varies the next slowest, and the pr oduct
dimension varies the fastest. Thus, a loop is performed over all products for the first
district before doing the next district, and over all districts for the first month before
doing the next month.

Within the FOR loop, each specified dimension is temporarily limited to a single
value while it executes the commands in the loop. You can therefore work with
specific combinations of dimension values within the loop.

Example 7-8 Using DO/DOEND in a FOR Loop

If actual figures for unit sales are stored in a variable called uni t s and projected
figures for unit sales are stored in a variable called uni t s. pl an, then the code in
your loop can compare these figures for the same combination of dimension values.

LIMT nonth TO FIRST 1
LIMT product TO ALL
LIMT district TO ALL
FOR district product
DO
IF (units.plan - units)/units.plan GT .1
THEN SHOW JO NCHARS(-
"Unit sales for ' product ' in’
district ' are not within 10%of plan.”)
DOEND

These lines of code are processed as described below.
1. The data is limited to a specific month.
2. All the districts and products are placed in status, and the FOR loop is entered.

3. Inthe FOR loop, the actual figure is tested against the planned figure. If the unit
sales figure for TENTS in BOSTONis more than 10 percent below the planned
figure, then the following message is sent to the current outfile.

Unit sales for TENTS in BOSTON are not within 10% of plan.

7-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Directing Output

4. After processing all the products, the FOR loop is complete for the first district.

5. The loop is executed for the second district, and so on.

Note: While the FOR loop executes, each dimension that is
specified in a FOR command is limited temporarily to a single
value. If you specify di stri ct inthe FORloop, but not pr oduct ,
then all the values of pr oduct are in status while the FOR loop
executes. The | F command then tests data for only the first value of
the pr oduct dimension.

Example 7-9 Branching to Avoid Setting Null Status

Your program might try to set or refine the status of the pr oduct dimension to
include only the products for which unit sales are greater than 500. If no products
have unit sales of more than 500, then you can use the | FNONE keyword to specify
that execution branch to the noval s label.

LIMT product KEEP units GI 500 | FNONE noval s

In the commands following the noval s label, you can handle the special situation
in which no products have units sales greater than 500.

Example 7-10 Branching After Setting Null Status

As an alternative to branching to an | FNONE label, you can also handle null status
for a dimension with the OKNULLSTATUS option. If you set OKNULLSTATUS to YES,
then you will be allowed to set the status of a dimension to null. You can then check
for null status and execute appropriate commands with an | F command, or you can
handle null status as one of the cases in a SW TCHcommand.

OKNULLSTATUS = YES
LIMT nmonth TO sal es GT sal esnum
| F STATLEN(rmonth) LT 1

THEN GOTO shower r

Directing Output

To send output to a file, use the OUTFI LE command followed by a directory alias
and a file name, and separatae the two with a slash (/). A file will be created with
the name you specify. Before you execute the OUTFI LE command, you can use the

Developing Programs 7-17

Directing Output

CDA command to specify a current directory alias. In this case, you do not have to
specify a directory alias in the OUTFI LE command because Oracle OLAP assumes
that you want the file to be created in your current directory alias.

Directory aliases are defined in the database and control access to directories.
Contact your Oracle DBA for the name of a directory alias to which your database
user name has read/write access. The file name that you specify must follow the
standard filename format for your operating system.

The QUTFI LE command changes the routing for all subsequent output. Therefore, if
your program routes a report to a file, then you should reroute output to the default
outfile before leaving the program. If you want to send subsequent output to the
default outfile, then place the OUTFI LE EOF command directly after your report
commands. To make sure the OUTFI LE ECF command is executed when errors
cause abnormal termination of the program, also place the command in the
abnormal exit section.

If you are working in OLAP Worksheet, the default outfile is its response window.
The current destination is called the current outfile.

Example 7-11 Directing Output to a File

Suppose you have a program called year . end. sal es, and you want to save the
report it creates in a file. Type the following commands to write a file of the report.
In this example, user fi | es is a directory alias and year end. t xt is the name of
the file.

QUTFI LE "userfiles/yearend. txt’
year. end. sal es
QUTFI LE EOF

Now the file contains the year . end. sal es report. You can add more reports to
the same file with the APPEND keyword for OUTFI LE. Suppose you have another
program called year . end. expenses. Add its report to the file with the following
commands. Note that without APPEND, the OUTFI LE command overwrites the
expense report.

QUTFI LE APPEND ' userfil es/yearend.txt’
year . end. expenses
QUTFI LE EOF

7-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Preserving the Session Environment

Capturing Error Messages
You can capture error messages by setting the ECHOPROMPT option to YES.

ECHOPROWPT = YES

When you set ECHOPROWPT to YES, input lines and error messages are echoed, as
well as output lines, to the current outfile. If you use the OUTFI LE or DBGOUTFI LE
command, you can capture the error messages in a file. For information about
DBGOUTFI LE, see "Sending Output to a Debugging File" on page 7-31.

Whenever you change a setting, remember to save and restore its original value
with the PUSH and POP commands.

Preserving the Session Environment

One advantage to the modular design approach is that each program has a clearly
defined area of responsibility, and it does not affect the workings of other programs.
To make this possible, each program must act as a “good citizen” by saving global
settings before it changes them and restoring global settings before it finishes
execution.

There are two types of environment settings:

« Session environment. The dimension status, option values, and output
destination that are in effect before a program is run make up the session
environment.

« Program environment. The dimension status, option values, and output
destination that you use in a program make up the program environment.

Changing the Program Environment

To perform a task within a program, you often need to change the output
destination or some dimension and option values. For example, you might run a
monthly sales report that always shows the last six months of sales data. You might
want to show the data without decimal places, include the text “No Sales” where
the sales figure is zero, and send the report to a file. To set up this program
environment, you can use the following commands in your program.

LIMT month TO LAST 6
DECI MALS = 0

ZSPELL = ' No Sal es’
QUTFI LE nonsal es. t xt

Developing Programs 7-19

Preserving the Session Environment

To avoid disrupting the session environment, the initialization section of a program
should save the values of the dimensions and options that will be set in the
program. In the normal and abnormal exit sections at the end of the program, you
can restore the saved environment, so that other programs do not need to be
concerned about whether any values have been changed. In addition, if you have
sent output to a file, then the exit sections should return the output destination to
the default outfile.

Ways to Save and Restore Environments
The following suggestions let you save the environment of a program or a session:

« If you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable for use in the current program, then use the
PUSHLEVEL and PUSH commands. You can restore the current status values
using the POPLEVEL and POP commands.

« If you want to save, access, or update the current status or value of a dimension,
a valueset, an option, a single-cell variable, or a single-cell relation for use in the
current session, then use a named context. Use the CONTEXT command to
define the context.

Contexts are the most sophisticated way to save object values for use during a
session. With contexts, you can access, update, and commit the saved object values.
In contrast, PUSHand POP simply allow you to save and restore values. Typically,
you use the PUSH and POP commands within a program to make changes that
apply only during the program’s execution.

Saving the Status of a Dimension or the Value of an Option

The PUSHcommand saves the current status of a dimension, the value of an option,
or the value of a single-cell variable. For example, to save the current value of the
DECI MALS option so you can set it to a different value for the duration of the
program, use the following command in the initialization section.

PUSH DECI MALS

You do not need to know the original value of the option to save it or to restore it
later. You can restore the saved value with the POP command.

PCP DECI MALS

You must make sure the POP command is executed when errors cause abnormal
termination of the program as well as when the program ends normally. Therefore,

7-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

Preserving the Session Environment

you should place the POP command in the normal and abnormal exit sections of the
program.

Saving Several Values at Once

You can save the status of one or more dimensions and the values of any number of
options and variables in a single PUSH command, and you can restore the values
with a single POP command, as shown in the following example.

PUSH nonth DECI MALS ZSPELL

POP rmont h DECI MALS ZSPELL

Using Level Markers

If you are saving the values of several dimensions and options, then the
PUSHLEVEL and POPLEVEL commands provide a convenient way to save and
restore the session environment.

You first use the PUSHLEVEL command to establish a level marker. Once the level
marker is established, you use the PUSHcommand to save the status of dimensions
and the values of options or single-cell variables.

If you place more than one PUSH command between the PUSHLEVEL and
POPLEVEL commands, then all the objects that are specified in those PUSH
commands are restored with a single POPLEVEL command.

By using PUSHLEVEL and POPLEVEL, you save some typing as you write your
program because you only need to type the list of objects once. You also reduce the
risk of omitting an object from the list or misspelling the name of an object.

Example 7-12 Creating Level Markers
For example, you can use the PUSHLEVEL command to establish a level marker
called fi rstl evel , and then use PUSH to save the current values.

PUSHLEVEL 'firstlevel’
PUSH nonth DECI MALS ZSPELL

The level marker can be any text that is enclosed in single quotation marks. It can
also be the name of a single-cell ID or TEXT variable, whose value becomes the
name of the level marker. In the exit sections of the program, you can then use the

Developing Programs 7-21

Preserving the Session Environment

POPLEVEL command to restore all the values you saved since establishing the
firstlevel marker.

POPLEVEL 'firstlevel’

Example 7-13 Nesting PUSHLEVEL and POPLEVEL Commands

You can nest PUSHLEVEL and POPLEVEL commands to save certain groups of
values in one place in a program and other groups of values in another place in a
program. The next example shows two sets of nested PUSHLEVEL and POPLEVEL
commands.

PUSHLEVEL 'firstlevel’
PUSH PAGESI ZE DECI MALS "Saves val ues in FI RSTLEVEL

PUSHLEVEL ' secondl evel’
PUSH nont h product "Saves val ues in SECONDLEVEL

POPLEVEL 'secondl evel ' "Restores val ues in SECONDLEVEL

POPLEVEL 'firstlevel’ "Restores values in FI RSTLEVEL

Normally, you will not use more than one set of PUSHLEVEL and POPLEVEL
commands in a single program. However, the nesting feature comes into play
automatically when one program calls another program, and each program contains
a set of PUSHLEVEL and POPLEVEL commands.

Using CONTEXT to Save Several Values at Once

As an alternative to using PUSHLEVEL and POPLEVEL, you can use the CONTEXT
command. After you create a context, you can save the current status of dimensions
and the values of options, single-cell variables, valuesets, and single-cell relations in
the context. You can then restore some or all of the object values from the context.
The CONTEXT function returns information about objects in a context.

7-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

Handling Errors

Handling Errors

A well-designed program handles errors gracefully and reports each error in an
informative way. The OLAP DML provides commands such as TRAP to help you
detect and report errors in your programs.

How An Error Is Signaled

When an error occurs anywhere in a program, the error is signaled. To signal the
error, the following actions are performed.

1. The name of the error is stored in the ERRORNAME option, and the text of the
error message is stored in the ERRORTEXT option.

2. If ECHOPROWPT is YES, then the error message is sent to the current outfile or to
the debugging file, when there is one.

3. Iferror trapping is off, then the execution of the program is halted. If error
trapping is on, then the error is trapped.

How An Error Is Trapped

To make sure the program works correctly, you should anticipate errors and set up a
system for handling them. You can use the TRAP command to turn on an
error-trapping mechanism in a program. If error trapping is on when an error is

signaled, then the execution of the program is not halted. Instead, error trapping
does the following:

1. Turns off the error-trapping mechanism to prevent endless looping in case
additional errors occur during the error-handling process

2. Branches to the label that is specified in the TRAP command

3. Executes the commands following the label

Handling Errors While Saving the Session Environment

To correctly handle errors that might occur while you are saving the session
environment, place your PUSHLEVEL command before the TRAP command and
your PUSH commands after the TRAP command.

PUSHLEVEL 'firstlevel’
TRAP ON error
PUSH . . .

Developing Programs 7-23

Handling Errors

In the abnormal exit section of your program, place the error label (followed by a
colon) and the commands that restore the session environment and handle errors.
The abnormal exit section might look like this.

error:
POPLEVEL 'firstlevel’
QUTFI LE ECF

These commands restore saved dimension status and option values and reroute
output to the default outfile.

Suppressing Error Messages

If you do not want to produce the error message that is normally provided for a
given error, then you can use the NOPRI NT keyword with the TRAP command.

TRAP ON error NOPRINT

When you use the NOPRI NT keyword with TRAP, control branches to the er r or
label, and an error message is not issued when an error occurs. The commands
following the er r or label are then executed.

When you suppress the error message, you might want to produce your own
message in the abnormal exit section. The SHOMcommand produces the text you
specify but does not signal an error.

TRAP ON error NOPRINT

error:

SHOW' The report will not be produced.’

The program continues with the next command after producing the message.

Identifying the Error That Occurred

All errors have names. Whenever an error is signaled, the error name is stored in
the ERRORNANME option. If you want to perform one set of activities when one type
of error occurs, and a different set of activities if another type of error occurs, then
you can test the value of the ERRORNAME option. The ERRORTEXT option contains a
description of the error.

7-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Handling Errors

Creating Your Own Error Messages

All errors that occur when commands or command sequences do not conform to its
requirements are signaled automatically. In your program, you can establish
additional requirements for your own application. When a requirement is not met,
you can execute the SI GNAL command to signal an error.

You can give the error any name. When the SI GNAL command is executed, the error
name you specify is stored in the ERRORNANME option, just as an error name is
stored. If you specify your own error message in the SI GNAL command, then your
message is produced just as an error message is produced. When you are using a
TRAP command to trap errors, a SI GNAL command branches to the TRAP label after
the error message is produced.

Example 7-14 Signaling an Error

Suppose your program produces a report that can present from one to nine months
of data. You can signal an error when the program is called with an argument value
greater than nine. In this example, numront hs is the name of the argument that
must be no greater than nine.

sel ect:

TRAP ON error

PUSH nont h

LIMT nmonth TO numont hs

| F STATLEN(nonth) GT 9
THEN SI GNAL toomany -

"You can specify no nore than 9 nonths.’
REPCRT DOMN district W6 units
finish:

POP mont h
RETURN
error:
PCP nont h
| F ERRORNAME EQ ' TOOMANY'
THEN SHOW' No report produced’

If you want to produce a warning message without branching to an error label, then
you can use the SHOWcommand.

sel ect:
LIMT nmonth TO nunmont hs
| F STATLEN(rmonth) GT 9
THEN DO
SHOW ' You can select no nore than 9 nonths.’

Developing Programs 7-25

Handling Errors

Q01O finish
DCEND
REPCRT DOMN district W6 units
finish:
POP nont h
RETURN

Handling Errors in Nested Programs

When you write a program that runs another program, the second program is
nested within the first program. The second program might, in turn, run another
nested program.

The error-handling section in each program should restore the environment. It can
also handle any special error conditions that are particular to that program. For
example, if your program signals its own error, then you can include commands
that test for that error.

Any other errors that occur in a nested program should be passed up through the

chain of programs and handled in each program. To pass errors through a chain of
nested programs, you can use one of two methods, depending on when you want

the error message to be produced:

« The error message is produced immediately, and the error condition is then
passed through the chain of programs.

= The error is passed through the chain of programs first, and the error message is
produced at the end of the chain.

The SI GNAL command is used in both methods.

Example 7-15 Producing the Error Message Immediately

To produce the error message immediately, use a TRAP command in each nested
program, but do not use the NOPRI NT keyword. When an error occurs, an error
message is produced immediately, and execution branches to the trap label.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute a SI GNAL command with the PRGERR
keyword.

SI GNAL PRGERR
When you use the PRGERR keyword with the SI GNAL command, no error message

is produced, and the name PRGERR is not stored in ERRORNAME. The SI GNAL
command signals an error condition that is passed up to the program from which

7-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

Handling Errors

the current program was run. If the calling program contains a trap label, then
execution branches to that label.

When each program in a chain of nested programs uses the TRAP and SI GNAL
commands in this way, you can pass the error condition up through the entire
chain. Each program has commands like these.

TRAP ON error
"Body of program and normal exit commands

RETURN

error:
"Error-handling and exit commands
SI GNAL PRGERR

Example 7-16 Producing the Error Message at the End of the Chain

To produce the error message at the end of a chain of nested programs, use a TRAP
command with the NOPRI NT keyword. When an error occurs in a nested program,
execution branches to the trap label, but the error message is suppressed.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute the following SI GNAL command.

SI GNAL ERRORNAME ERRORTEXT
The ERRORNAME option contains the name of the original error, and the ERRORTEXT
option contains the error message for the original error. The SI GNAL command

shown above passes the original error name and error text to the calling program. If
the calling program contains a trap label, then execution branches to that label.

When each program in a chain of nested programs uses the TRAP and SI GNAL
commands in this way, the original error message is produced at the end of the
chain. Each program has commands like these.

TRAP ON error NOPRINT
"Body of programand normal exit commands

RETURN

Developing Programs 7-27

Compiling Programs

error:
"Error-handling and exit commands

SI GNAL ERRCRNAME ERRORTEXT

Compiling Programs

You can explicitly compile a program by using the COMPI LE command. If you do
not explicitly compile a program, then it is compiled when you run the program for
the first time.

When a program is compiled, it translates the program commands into efficient
processed code that executes much more rapidly than the original text of the
program. If errors are encountered in the program, then the compilation is not
completed, and the program is considered to be uncompiled.

After you compile a program, the compiled code is used each time you run the
program in the current session. When you update and commit your analytic
workspace after compiling a program, the compiled code is saved in your analytic
workspace and used to run the program in future sessions. Therefore, you should
be sure to update and commit after compiling a program. This is particularly critical
when the program is part of an application that is run by many users. Unless the
compiled version of the program is saved in the analytic workspace, the program is
recompiled individually in each user session.

Example 7-17 Using the COMPILE Command

The following is an example of a COVPI LE command that compiles the mypr og
program.

COWPI LE nypr og

Suppose you misspell the dimension nont h ina Ll M T command in the nypr og
program.

LIMT notnh TO LAST 6

When the COVPI LE command encounters this command, it produces the following
message.

ERRCR (MXMBERROO) Anal ytic workspace object MOTNH does not exi st.
I'n DEMO MYPROG PROGRAM
limt notnh to last 6

7-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

Testing and Debugging Programs

You can edit the program to correct the error and then try to compile it again.

Finding Out If a Program Has Been Compiled

You can use the | SCOVPI LED choice of the OBJ function to determine whether a
specific program in your analytic workspace has been compiled since the last time it
was modified. The function returns a Boolean value.

SHOW OBJ(| SCOWPI LED ' nypr ograni)

Programming Methods That Prevent Compilation

Program lines that include ampersand substitution will not be compiled. Any
syntax errors will not be caught until the program is run. A program whose other
lines compiled correctly is considered to be a compiled program.

When your program defines an object and then uses the object in the program, the
program will not compile. COVPI LE treats the reference to the object as a
misspelling because the object does not yet exist in the analytic workspace.

See Also: "Passing Arguments as Text with Ampersand
Substitution" on page 7-9 for information about ampersand
substitution.

Testing and Debugging Programs

Even when your program compiles cleanly, you must also test the program by
running it. Running a program helps you detect errors in commands with
ampersand substitution, errors in logic, and errors in any nested programs.

To test a program by running it, use a full set of test data that is typical of the data
that the program will process. To confirm that you test all the features of the
program, including error-handling mechanisms, run the program several times,
using different data and responses. Use test data that:

« Falls within the expected range
« Falls outside the expected range

« Causes each section of a program to execute

Developing Programs 7-29

Testing and Debugging Programs

Generating Diagnostic Messages

Each time you run the program, confirm that the program executes its commands in
the correct sequence and that the output is correct. As an aid in analyzing the
execution of your program, you can include SHONcommands in the program to
produce diagnostic or status messages. Then delete the SHONMcommands after your
tests are complete.

When you detect or suspect an error in your program or a nested program, you can
track down the error by using the debugging techniques that are described in the
the rest of this section.

Identifying Bad Lines of Code

When you set the BADLI NE option to YES, additional information will be produced,
along with any error message when a bad line of code is encountered. When the
error occurs, the error message, the name of the program, and the program line that
triggered the error are sent to the current outfile.

You can edit the specified program to correct the error and then run the original
program.

Example 7-18 Using the BADLINE Option
In a simple program called t est , the variable myi nt 1 is divided by zero.

DEFI NE test PROGRAM
PROGRAM

VARI ABLE nyint1 | NTEGER
VARI ABLE nyint2 | NTEGER

myintl =0
myint2 = 250/ nyint 1
END

If you run the program when the DI VI DEBYZEROoption is set to NO, then an error
occurs because division by zero is not allowed. When BADLI NE is set to YES, the
following messages are recorded in the current outfile.

ERROR (MXXEQD1) A division by zero was attenpted. Set DI VI DEBYZERO to
YES if you want NA to be returned as the result of division by zero.
I'n DEMO TEST PROGRAM

myint2 = 250/ nyint 1

7-30 Oracle9i OLAP Developer’s Guide to the OLAP DML

Testing and Debugging Programs

Sending Output to a Debugging File

If your program contains an error in logic, then the program might execute without
producing an error message, but it will execute the wrong set of commands or
produce incorrect results. For example, suppose you write a Boolean expression
incorrectly in an | F command (for example, you use NE instead of EQ). The
program will execute the commands you specified, but it will do so under the
wrong conditions.

To find an error in program logic, you often need to see the order in which the
commands are being executed. One way you can do this is to create a debugging
file and then examine the file to diagnose any problems in your programs.

Creating a debugging file
To create a debugging file, you use the DBGOUTFI LE command. The syntax of the
DBGOUTFI LE command is shown below.

DBGOUTFI LE { ECF| [APPEND] file-id [NOCACHE]}

The command has the following arguments:

« The EOF keyword specifies that the current debugging file should be closed,
and that debugging output should no longer be sent to a file.

« The APPEND keyword specifies that the output should be added to the end of an
existing disk file. If you omit this argument and a file exists with the specified
name, then the new output replaces the current contents of the file.

« The fil e-idargument specifies the name of the file to receive the debugging
output.

« The NOCACHE keyword causes the OLAP DML to write to the debugging file
each time it executes a line of code. Without this keyword, file 1/0 activity is
reduced by saving text and writing it periodically to the file.

For more information about the DBGOUTFI LE command, see the entry for the
command in Oracle9i OLAP DML Reference help.

Specifying the contents of the debugging file

Using the DBGOUTFI LE command merely creates a file for debugging. To specify
that you want each program line to be sent, as it executes, to the debugging file, set
the PRGTRACE option to YES.

If you want the debugging file to interweave the program lines with both the
program’s input and error messages, then set the ECHOPROVPT option to YES.

Developing Programs 7-31

Testing and Debugging Programs

For the syntax of the ECHOPROWVPT and PRGTRACE options, see the entry for each
option in Oracle9i OLAP DML Reference help.

Example 7-19 Using a Debugging File

The following commands create a useful debugging file called debug. t xt in the
current directory alias.

prgtrace = yes
echoprompt = yes
dbgoutfile 'debug.txt’

After executing these commands, you can run your program as usual. To close the
debugging file, execute this command.

dbgoutfile eof

In the following sample program, the first LI M T command has a syntax error.

DEFI NE ERROR_TRAP PROGRAM
PROGRAM

trap on trapl abel

[imt nonth to first badarg
[imt product to first 3
[imt district to first 3
report sales

trapl abel :
signal errorname errortext
END

With PRGTRACE and ECHOPROWPT both set to YES and with DBGOUTFI LE set to
send debugging output to a file called debug. t xt , the following text is sent to the
debug. t xt file when you execute the error _tr ap program.

(PRG= ERROR_TRAP)

(PRG= ERROR_TRAP) trap on trapl abel

(PRG= ERRCR_TRAP)

(PRG ERROR_TRAP) limt nonth to first badarg

ERRCR BADARG does not exist in any attached database.
(PRG= ERROR_TRAP) trapl abel :

(PRG= ERROR_TRAP) signal errornane errortext

ERROR BADARG does not exist in any attached database.

7-32 Oracle9i OLAP Developer’s Guide to the OLAP DML

8

Working with Models

This chapter describes how to use models to calculate data. It includes the following
topics:

« Using Models to Calculate Data

« Creating a Nested Hierarchy of Models
« Basic Modeling Commands

« Compiling a Model

=« Running a Model

« Debugging a Model

« Modeling for Multiple Scenarios

Working with Models 8-1

Using Models to Calculate Data

Using Models to Calculate Data

A model is a set of interrelated equations that can assign results either to a variable
or to a dimension value. For example, in a financial model, you can assign values to
specific line items, such as gr oss. mar gi n or net . i ncone.

gross.margin = revenue - cogs

If an = command assigns data to a dimension value or refers to a dimension value
in its calculations, then it is called a dimension-based equation. A dimension-based
equation does not refer to the dimension itself, but only to the values of the
dimension. Therefore, if the model contains any dimension-based equations, then
you must specify the name of each of these dimensions in a DI MENSI ON command
at the beginning of the model.

If a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model. The solution variable is both
a source of data and the assignment target of model equations. It holds the input
data used in dimension-based equations, and the calculated results are stored in
designated values of the solution variable. For example, when you run a financial
model based on the | i ne dimension, you might specify act ual as the solution
variable.

Dimension-based equations provide flexibility in financial modeling. Since you do
not need to specify the modeling variable until you solve a model, you can run the
same model with the act ual variable, the budget variable, or any other variable
that is dimensioned by | i ne.

Example 8-1 Creating a Model

Suppose that you define a model, called i ncone. cal c, that will calculate line
items in the income statement.

define incone.cal ¢ nodel
Id Calculate line items in income statement

After defining the model, you can use the MODEL command or the OLAP Worksheet
editor to specify the contents of the model. A model can contain DI MENSI ON
commands, = commands, and comments. All the DI MENSI ON commands must

8-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using Models to Calculate Data

come before the first equation. For the current example, you can specify the lines
shown in the following model.

DEFI NE | NCOVE. CALC MODEL

LD Calculate line items in income statement

MODEL

DI MENSI ON |i ne

net.income = opr.income - taxes

opr.incone = gross.margin - (narketing + selling + r.d)
gross.margin = revenue - cogs

END

When you write the equations in a model, you can place them in any order. When
you compile the model, either with the COVPI LE command or by running the
model, the order in which the model equations are solved is determined. If the
calculated results of one equation are used as input to another equation, then the
equations are solved in the order in which they are needed.

To run the i ncon®e. cal ¢ model and use act ual as the solution variable, you
execute the following command.

i ncone. cal ¢ actual

If the solution variable has dimensions other than the dimensions on which model
equations are based, then a loop is performed automatically over the current status
list of each of these “extra” dimensions. For example, act ual is dimensioned by
nont h and di vi si on,aswell as by | i ne. If di vi si on is limited to ALL, and
nont h is limited to OCT96 to DEC96, then the i ncone. cal ¢ model is solved for
the three months in the status for each of the divisions.

How Dimension Values Are Treated in a Model

If a model contains an = command that assigns data to a dimension value, then the
dimension is limited temporarily to that value, performs the calculation, and then
restores the initial status of the dimension.

For example, a model might have the following commands.

DI MENSI ON |i ne
gross.margin = revenue - cogs

Working with Models 8-3

Creating a Nested Hierarchy of Models

If you specify act ual as the solution variable when you run the model, then the
following code is constructed and executed.

PUSH |i ne

LIMT line TO gross. margin

actual = actual (line revenue) - actual (Iine cogs)
PCP |ine

This behind-the-scenes construction lets you perform complex calculations with
simple model equations. For example, line item data might be stored in the act ual
variable, which is dimensioned by | i ne. However, detail line item data might be
stored in a variable named det ai | . dat a, with a dimension named
detail.line.

If your analytic workspace contains a relation between | i ne anddetai |l . | i ne,
which specifies the line item to which each detail item pertains, then you might
write model equations such as the following ones.

revenue = total (detail.data |ine)
expenses = total (detail.data |ine)

The relation between det ai | . | i ne and | i ne is used automatically to aggregate
the detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the | i ne
dimension. For example, while the equation for the r evenue item is calculated,

I i ne is temporarily limited to r evenue, and the TOTAL function returns the total
of detail items for the r evenue value of | i ne.

Creating a Nested Hierarchy of Models

The | NCLUDE command allows you to include one model within another model. A
model can contain only one | NCLUDE command. The | NCLUDE command must
come before any equations in the model, and it can specify the name of just one
model to include. The model that contains the | NCLUDE command is referred to as
the parent model. The included model is referred to as the base model.

You can nest models by placing an | NCLUDE command in a base model. For
example, model nil can include model n2, and model n2 can include model n8. The
nested models form a hierarchy. In this example, mil is at the top of the hierarchy;,
and n8 is at the root.

8-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Basic Modeling Commands

Working with the INCLUDE Command

If a model contains an | NCLUDE command, then it cannot contain any DI MENSI ON
commands. A parent model inherits its dimensions, if any, from the DI MENSI ON
commands in the root model of the included hierarchy. In the example just given,
models ml and nR both inherit their dimensions from the DI MENSI ON commands in
model n8.

The | NCLUDE command allows you to create modular models. If certain equations
are common to several models, then you can place these equations in a separate
model and include that model in other models as needed.

The | NCLUDE command also facilitates what-if analyses. An experimental model
can draw equations from a base model and selectively replace them with new
equations. To support what-if analysis, you can use equations in a model to mask
previous equations. The previous equations can come from the same model or from
included models. A masked equation is not executed.

After you compile a model, either by running it or by using the COVPI LE
command, you can run an OLAP DML program called MODEL. COVPRPT to
produce a report on the structure of the compiled model. If you run

MODEL. COVPRPT after compiling a model that contains a masked equation, then
you will find that the masked equation is not shown in the report.

Basic Modeling Commands

The following table lists the most common OLAP DML commands that you will use
when you define and run models.

Command Description
DEFI NE Adds a new model to an analytic workspace.
MODEL Specifies completely new contents for a new or existing model.

DI MENSI ON Lists one or more dimensions that are referred to in dimension-based
equations in the model.

I NCLUDE Specifies a base model to include in the parent model.

= Performs a calculation and assigns the result to a target. The target can be
a variable or it can be represented by a dimension value.

COWPI LE Compiles a model without running it and saves the compiled code in the
workspace. If you run a new or revised model without first compiling it,
then the model is compiled automatically at that time.

Working with Models 8-5

Basic Modeling Commands

Writing Equations in a Model
When you write the equations in a model, you should keep these points in mind:

Within a single dimension-based equation, all the dimension values must
belong to the same dimension.

You cannot use ampersand substitution in model equations.

Writing DIMENSION and INCLUDE Commands

When you write DI MENSI ON and | NCLUDE commands, you should keep these
points in mind:

Any DI MENSI ON commands or | NCLUDE command must come before the first
equation in a model.

In the DI MENSI ON commands, you must list the names of all the dimensions on
which model equations are based. In the following example, gr oss. nmar gi n,

r evenue, and cogs are values of the | i ne dimension, so |l i ne is specified in a
DI MENSI ON command.

DI MENSI ON |i ne
gross.margin = revenue - cogs

DI MENSI ON commands must also list any dimension that is an argument to a
function that refers to a dimension value. In the following example, nont h
must be specified in a DI MENSI ON command.

DI MENSION |ine, nonth
revenue = LAGrevenue, 1, nonth) * 1.05

If a model contains an | NCLUDE command, then it cannot contain any
DI MENSI ON commands. The included model (or the root model in a hierarchy)
must contain the DI MENSI ON commands needed by the parent model(s).

If a model equation assigns results to a dimension value, then code is
constructed that loops over the values of any of the other nontarget dimensions
listed in the DI MENSI ON commands. The nontarget dimension listed first in the
DI MENSI ON commands is treated as the slowest-varying dimension.

A model will execute most efficiently when you observe the following
guidelines for coordinating the dimensions in DI MENSI ON commands and the
dimensions of the solution variable:

8-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Compiling a Model

« List the target dimension of the model as the first dimension in the

DI MENSI ONcommands and as the last dimension in the definition of the
solution variable.

« In DI MENSI ONcommands, list the nontarget dimensions in the reverse order
of their appearance in the definition of the solution variable. This means
that the nontarget dimensions will have the same order in the model and in
the solution variable in terms of fastest-varying and slowest-varying
dimension.

If the solution variable has dimensions that are not used or referred to in model
equations, then do not include them in DI MENSI ON commands.

If your analytic workspace contains a variable whose name is the same as a
dimension value, or if the same dimension value exists in two different
dimensions, then there could be ambiguities in your model equations. Since you
can use a variable and a dimension value in exactly the same way in a model
equation, a name might be the name of a variable, or it might be a value of any
dimension in your analytic workspace.

Your DI MENSI ON commands are used to determine whether each name
reference in an assignment statement (that is, the = command) is a variable or a
dimension value. "Compiling a Model" on page 8-7 explains how the name
references are resolved.

Compiling a Model

When you finish writing the commands in a model, you can use the COVPI LE
command to compile the model. During compilation, COVPI LE checks for format
errors, so you can use COVPI LE to help debug your code before running a model. If
you do not use the COVPI LE command before you run the model, then the model
will be compiled automatically before it is solved.

When you compile a model, either by using the COVPI LE command or by running
the model, the model compiler examines each equation to determine whether the
assignment target and each data source is a variable or a dimension value.

To resolve each name reference, the following procedure is used.

1.

The dimensions in the DI MENSI ON commands are searched, in the order they
are listed, to determine whether the name matches a dimension value of a listed
dimension. The search concludes as soon as a match is found.

If the name does not match a value of a listed dimension, then the variables in
the attached analytic workspaces are searched to find a match.

Working with Models 8-7

Compiling a Model

After resolving each name reference, the model compiler analyzes dependencies
between the equations in the model. A dependence exists when the expression on
the right-hand side of the equal sign in one equation refers to the assignment target
of another equation. If an = command indirectly depends on itself as the result of
the dependencies among equations, then a cyclic dependence exists between the
equations.

The model compiler structures the equations into blocks and orders the equations
within each block, and the blocks themselves, to reflect dependencies. The compiler
can produce three types of solution blocks: simple blocks, step blocks, and
simultaneous blocks.

Simple Blocks

Simple blocks include equations that are independent of each other and equations
that have dependencies on each other that are noncyclic.

If a block contains equations that solve for values A, B, and C, then a noncyclic
dependence can be illustrated as shown below where the arrows indicate that A
depends on B, and B depends on C.

A >B >C

Step Blocks

Step blocks include equations that have a cyclic dependence that is a one-way
dimensional dependence. A dimensional dependence occurs when the data for the
current dimension value depends on data from previous or later dimension values.
The dimensional dependence is one way when the data depends on previous values
only or later values only, but not both.

Dimensional dependence typically occurs over a time dimension. For example, it is
common for a line item value to depend on the value of the same line item or a
different line item in a previous time period. If a block contains equations that solve
for values A and B, then a one-way dimensional dependence can be illustrated as
shown in the figure below where arrows indicate that A depends on B, and B
depends on the value of A from a previous time period.

A » B > LAG(A)

8-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Running a Model

Simultaneous Blocks

Simultaneous blocks include equations that have a cyclic dependence that is other
than one-way dimensional. The cyclic dependence may be two-way dimensional, or
it may involve no dimensional qualifiers at all.

An example of a cyclic dependence that is two-way dimensional can be illustrated
as shown below where the arrows indicate that A depends on the value of B from a
future period, while B depends on the value of A from a previous period.

A » LEAD(B) > LAG(A)

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as shown below where the arrows indicate that A
depends on B and B depends on A.

A >B >A

Running a Model

When you run a model, you should keep these points in mind:

« Before you run a model, the input data must be available in the solution
variable. For example, before running the i ncome. cal ¢ model (shown earlier
in this chapter) with act ual as the solution variable, you must have current
datainther evenue, cogs, mar ket i ng,sel li ng,r. d,andt axes line items
of act ual .

« Before running a model that contains a block of simultaneous equations, you
might want to check or modify the values of some OLAP DML options that
control the solution of simultaneous blocks. Simultaneous equations are
discussed in the section entitled "Solving Simultaneous Equations" on
page 8-10.

« If your model contains any dimension-based equations, then you must provide
a numeric solution variable that serves both as a source of data and as the
assignment target for equation results. The solution variable is usually
dimensioned by all the dimensions on which model equations are based, and it
can have “extra” dimensions as well.

= When you run a model, a loop is performed automatically over the values in
the current status list of each of the extra dimensions of the solution variable.

Working with Models 8-9

Running a Model

« If amodel equation bases its calculations on data from previous time periods
(for example, if you use a LAGfunction), then the solution variable must contain
data for these previous periods. If it does not, or if the first value of the time
dimension is in the status, then the results of the calculation will be NA.

Using Data from Past and Future Time Periods

Several OLAP DML functions make it easy for you to use data from past or future
time periods. For example, the LAGfunction returns data from a specified previous
time period, and the LEAD function returns data from a specified future period. The
Oracle9i OLAP DML Reference help lists some built-in functions that are useful in
analyzing financial data.

When you run a model that uses past or future data in its calculations, you must
make sure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement (that is, the = command)
that bases an estimate of the r evenue line item for the current month on the

r evenue line item for the previous month.

DI MENSI ON |'i ne nonth

revenue = LAGrevenue, 1, nonth) * 1.05

If the nont h dimension is limited to apr 96 to j un96 when you run the model,
then you must be sure that the solution variable contains r evenue data for mar 96.

If your model contains a LEAD function, then your solution variable must contain
the necessary future data. For example, if you want to calculate data for the months
of April through June of 1996, and if the model retrieves data from one month in the
future, then the solution variable must contain data for July 1996 when you run the
model.

Solving Simultaneous Equations

An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation, and compares the new value to the
value from the previous iteration. If the comparison falls within a specified
tolerance, then the equation is considered to have converged to a solution. If the
comparison exceeds a specified limit, then the equation is considered to have
diverged.

8-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Debugging a Model

If all the equations in the block converge, then the block is considered solved. If any
equation diverges or fails to converge within a specified number of iterations, then
the solution of the block (and the model) fails and an error occurs.

You can use OLAP DML options to exercise control over the solution of
simultaneous equations. For example, you can specify the solution method to use,
the factors to use in testing for convergence and divergence, the maximum number
of iterations to perform, and the action to take when the = command diverges or

fails to converge.

Debugging a Model

The OLAP DML provides an assortment of tools that will help you debug your
models. These tools are listed in the following table.

Tool

Purpose

MODTRACE

An option that controls whether each line of a model is sent to
the current outfile while you run the model. When MODTRACE is
set to YES, the model lines are shown, and you can observe the
order in which the equations are solved.

DBGOUTFI LE

A command that creates a debugging file to which the MODTRACE
output is sent. For information about this command see "Sending
Output to a Debugging File" on page 7-31.

MODEL. COVPRPT

A program that produces a report on the structure of a compiled
model. The report shows how model equations are grouped into
blocks.

MODEL. DEPRPT

A program that produces a report on the dependencies in model
equations. The report lists the assignment target and data sources
for each equation and specifies any dimensions of the
dependencies in the equation.

MODEL. XEQRPT

A program that produces a report on the solution status of a
model. If the model contains simultaneous equations, then the
report specifies the values of the options that control
simultaneous solutions.

I NFO

A function that lets you obtain specific information about a
model that you have compiled or executed.

Working with Models 8-11

Modeling for Multiple Scenarios

Modeling for Multiple Scenarios

Instead of calculating a single set of figures for a month and division, you might
want to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget
figures based on different sets of input figures. For example, you might want to
calculate profit based on “optimistic,” “pessimistic,” and “best-guess” figures.

Building a Scenario Model
To build a scenario model, follow these steps.
1. Define a scenario dimension.
2. Define a solution variable dimensioned by the scenario dimension.
3. Enter input data into the solution variable.
4. Write a model to calculate results based on the input data.

Suppose, for example, you want to calculate profit figures based on optimistic,
pessimistic, and best-guess revenue figures for each division. The steps for building
this scenario model are explained in the following example.

Example 8-2 Building a Scenario Model

You can call the scenario dimension scenar i o and give it values that represent the
scenarios you want to calculate.

These commands give scenar i o the valuesopt i m sti c, pessi nmi sti c and
best guess.

DEFI NE scenario DI MENSI ON TEXT
LD Names of scenarios
MAI NTAI N scenario ADD optim stic pessimstic bestguess

These commands create a variable named pl an dimensioned by three other
dimensions (nont h, | i ne, and di vi si on) in addition to the scenari o
dimension.

DEFI NE pl an DECI MAL <month |ine division scenario>
LD Scenarios for financials

For this example, you need to enter input data, such as revenue and cost of goods
sold, into the pl an variable.

8-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Modeling for Multiple Scenarios

For the best-guess data, you can use the data in the budget variable. Limit the
I i ne dimension to the input line items, and then copy the budget data into the
pl an variable.

LIMT scenario TO ' BESTAUESS
LIMT line TO'REVENUE 'COGS 'MARKETING 'SELLING 'R D
pl an = budget

You might want to base the optimistic and pessimistic data on the best-guess data.
For example, optimistic data might be 15 percent higher than best-guess data, and
pessimistic data might be 12 percent less than best-guess data. With | i ne still
limited to the input line items, execute the following commands.

pl an(scenario 'OPTIMSTIC) = 1.15 * plan(scenario ' BESTGUESS')
plan(scenario 'PESSIMSTIC) = .88 * plan(scenario ' BESTGUESS')

The final step in building a scenario model is to write a model that calculates results
based on input data. The model might contain calculations very similar to those in
the budget . cal ¢ model shown earlier in this chapter.

You can use the same equations for each scenario or you can use different equations.
For example, you might want to calculate the cost of goods sold and use a different
constant factor in the calculation for each scenario. To use a different constant factor
for each scenario, you can define a variable dimensioned by scenar i o and place
the appropriate values in the variable. If the name of your variable is cogsval ,
then your model might include the following equation for calculating the cogs line
item.

cogs = cogsval * revenue
By using variables dimensioned by scenar i 0, you can introduce a great deal of
flexibility into your scenario model.

Similarly, you might want to use a different constant factor for each division. You
can define a variable dimensioned by di vi si on to hold the values for each
division. For example, if labor costs vary from division to division, then you might
dimension cogsval by di vi si on aswell as by scenari o.

When you run your model, you specify pl an as the solution variable. For example,
if your model is called scenari o. cal c, then you solve the model with this
command.

scenario.calc plan

Working with Models 8-13

Modeling for Multiple Scenarios

A loop is performed automatically over the current status list of each of the
dimensions of pl an. Therefore, if the scenari o dimension is limited to ALL when
you run the scenari 0. cal ¢ model, then the model is solved for all three
scenarios: opti mi sti c, pessi mi stic,and best guess.

8-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

9

Allocating Data

This chapter describes how to use the ALLOCATE command to allocate data from a
source to a target variable. This chapter includes the following topics:

Introduction to Allocation
Preparing for an Allocation
Creating an Aggregation Map for Allocation

Using the Allocation Operators and Arguments

Allocating Data 9-1

Introduction to Allocation

Introduction to Allocation

The Oracle OLAP ALLOCATE command distributes data from a source object to the
cells of a target. The target is a variable that is dimensioned by one or more
hierarchical dimensions. The source data is specified by dimension values at a
higher level in a hierarchical dimension than the values that specify the target cells.

ALLQOCATE uses an aggregation map to specify the dimensions and the values of the
hierarchies to use in the allocation, the method of operation to use for a dimension,
and other aspects of the allocation.

Some of the allocation operations are based on existing data. The object containing
that data is the basis object for the allocation. In those operations, ALLOCATE
distributes the data from the source based on the values of the basis object.

Forecasting and budgeting systems often use allocation in operations such as the
automatic distribution of a bonus pool with the amounts based on the current salary
and performance ratings of the employee.

An allocation is the opposite of an aggregation that you perform with the
AGGREGATE command. In an aggregation, the data at lower levels of a hierarchy is
combined into data at higher levels. In an allocation, data at a higher level in the
hierarchy is distributed to lower levels.

The ALLOCATE command has operations that are the inverse of the operations of
the AGGREGATE command. Figure 9-1 shows an aggregation up a simple hierarchy.
In a SUMoperation, the aggregation adds the detail level values 2, 3, and 4 to derive
the value 9 at the aggregate level.

Figure 9-1 Aggregation in a Simple Hierarchy

PN

As an example of an allocation, you could take the aggregate value 9, double it to
18, and allocate the results to the detail level with the previous values of the detail
level cells as the basis of the allocation. In Figure 9-2 the hierarchy on the left shows

9-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Introduction to Allocation

the result of an EVEN allocation operation, in which the source value is distributed
evenly. Each detail level cell receives a value of 6. The hierarchy on the right shows
a PROPORTI ONAL allocation operation, in which the source value is distributed
proportionately. The values allocated to the detail level are 4, 6 and 8.

Figure 9-2 Allocation in a Simple Hierarchy

18 18

The allocation operation methods range from simple allocations, such as copying
the source data to the cells of the target variable, to very complex allocations, such
as a proportional distribution of data from a source that is a formula, with the
amount distributed being based on another formula, with multiple variables as
targets, and with an aggregation map that specifies different methods of allocation
for different dimensions.

The Oracle OLAP allocation system is very flexible and has many features,
including the following:

= The source, basis, and target objects can be the same variable or they can be
different objects.

= The source and basis objects can be formulas, so you can perform computations
on existing data and use the result as the source or basis of the allocation.

= You can specify the method of operation of the allocation for a dimension. The
operations range from simple to very complex. The operations of the allocation
system are the inverse of the aggregation operations.

= You can specify whether the allocated value is added to or replaces the existing
value of the target cell.

= You can specify an amount to add to or multiply by the allocated value before
the result is assigned to the target cell.

Allocating Data 9-3

Introduction to Allocation

You can lock individual values in a dimension hierarchy so that the data of the
target cells for those dimension values is not changed by the allocation. If you

lock a dimension value, then the allocation system normalizes the source data,
which subtracts the locked data from the source before the allocation. You can

choose to not normalize the source data.

You can specify minimum, maximum, floor, or ceiling values for certain
operations.

You can copy the allocated data to a second variable so that you can have a
record of individual allocations to a cell that is the target of multiple allocations.

You can specify ways of handling allocations when the basis has a null value.

You can use the same aggregation map in different ALLOCATE commands to use
the same set of dimension hierarchy values, operations, and arguments with
different source, basis, or target objects.

Along with the ALLOCATE command, the OLAP DML contains other commands
that support allocation. Table 9-1 lists those commands.

Table 9-1

Command Description

AGGVAPI NFOcommand Returns information about the contents of an aggregation map

object, such as the type of the aggregation map, which
indicates whether it contains commands for aggregation or

allocation.

ALLCCATE command Allocates data from a source object to a target variable.

ALL CCERRL OGFORVAT Determines the contents and the formatting for the error log

command that you specify with the ERRORLOGargument to the
ALLCCATE command.

ALLCCERRLOGHEADER Determines the column headings for the error log.

command

ALLCOCVAP command Adds contents to an aggmap object that specify the path of the
allocation down a dimension hierarchy, the method of
operation, and other aspects of the allocation. Marks the object
as an ALLOCMAP type aggregation map.

POUTFI LEUNI T option Identifies a location that receives information on the progress

of an ALLOCATE command.

The remainder of this chapter describes the objects that you use to allocate data and
the types of allocation operations, and provides examples of various allocations.

9-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Aggregation Map for Allocation

Preparing for an Allocation

To prepare for allocating data, you decide on the data to allocate, the data on which
to base the allocation, and the variable cells to which you want to assign the
allocated data. You determine or create objects that contain or produce the data.

The target must be a variable that is dimensioned by one or more hierarchical
dimensions. The source is a variable or a formula and the basis is a formula, a
relation, or a variable. The source, basis, and target can all be the same variable.

You also decide whether to use a target log object to keep a copy of the allocation
and whether to specify a file to log errors. For a target log, you use a variable and
for the error log you specify a fileunit.

You create an aggregation map to use for the allocation. The contents of the
aggregation map specify the dimensions and the values of the dimension
hierarchies to use in the allocation, the method of operation, and other aspects of
the allocation.

You specify the values of the dimension hierarchies to use in the allocation with a
relation object. If you do not already have a relation that specifies the child-parent
relations from the hierarchy that you want to use in the allocation, then you create a
self-relation, which is a relation on the dimension dimensioned by the same
dimension. The child-parent relationships that you assign to the relation specify the
path of the allocation.

Creating an Aggregation Map for Allocation

An aggregation map for allocation contains commands that specify relations that
define the path of an allocation through a dimension hierarchy, the method of the
allocation operation, and other aspects of the allocation. To create an aggregation
map you define an aggmap object with the DEFI NE command or specify an existing
aggregation map with the CONSI DER command. You then use the ALLOCVAP
command to add commands to the aggregation map and to mark it as an
ALLOCVAP type aggregation map.

You can add the following commands to an ALLOCMAP aggregation map:
= Oneor more RELATI ONcommands

= A CH LDLOCK command

= A DEADLOCK command

= A DI MENSI ONcommand

Allocating Data 9-5

Creating an Aggregation Map for Allocation

= An ERRORLOGcommand
= An ERRORMASK command
= A SOURCEVAL command

A RELATI ONcommand specifies a self-relation that identifies the child-parent
relationships of a dimension hierarchy that you want to use in the allocation. You
use a separate RELATI ONcommand for each dimension that you want to
participate in the allocation. The order of the RELATI ON commands in the
aggregation map determines the order of the allocation.

With a RELATI ON command you specify an operator that determines the method of
the allocation for the hierarchy. The RELATI ONcommand also has arguments with
which you can specify other aspects of an allocation. For example, you can use the
ARGS M Nminval argument to specify a value that the allocation assigns to the
target cell if the allocated value is below a minimum value. You can use the ARGS
ADD argument to specify that the allocation adds the allocated data to the current
data of the target cell before assigning the result to the cell instead of replacing the
current data with the allocated data.

The CHI LDLOCK command tells the ALLOCATE command whether to determine if
RELATI ONcommands in the aggregation map specify locks on both a parent and a
child element of a dimension hierarchy.

The DEADLOCK command tells the ALLOCATE command whether to continue an
allocation if it encounters a deadlock, which occurs when the allocation cannot
distribute a value because the targeted cell is locked or, for some operations, has a
basis value of NA.

The DI MENSI ON command specifies a single value to set as the status of a
dimension that is not shared by the target variable and the source or the basis
objects.

The ERRORLOG command specifies how many errors to allow in the error log
specified by the ALLOCATE command and whether to continue the allocation if the
maximum number of errors has occurred.

The ERRORMASK command specifies which error conditions to exclude from the
error log.

The SOURCEVAL command specifies whether ALLOCATE changes the source data
value after the allocation. You use SOURCEVAL only if the source is a variable. With
SOURCEVAL you can specify that the value of the source after the allocation is zero
or NA or the current value, which is the value that the cell had before the allocation.

9-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the Allocation Operators and Arguments

In a recursive allocation, ALLOCATE applies the value specified by SOURCEVAL to
any cell used as a source in the allocation.

Using the Allocation Operators and Arguments

With the OPERATOR argument to a RELATI ON command in an aggregation map for
allocation, you must specify a method of operation for the allocation. The methods
of operation fall into the following categories:

« Copy operators
« Even distribution operators
= Proportional distribution operator

The copy operators are COPY, HCOPY, M N, MAX, FI RST, LAST, HFI RST, and HLAST.
The even distribution operators are EVEN and HEVEN, and the proportional
distribution operator is PROPORTI ONAL.

The H versions of the operators are hierarchical operators that allocate data based
on the hierarchical relationships specified in the relation object. The nonhierarchical
operators, such as COPY and EVEN, do not assign a value to a target cell if the basis
value for that cell is NA.

The hierarchical operators do not use basis values. Instead, they allocate data to all
of the values in the dimension hierarchy specified by the relation even if the existing
value of the target cell is NA. You must use the hierarchical operators carefully
because they assign values to cells that have an NA basis and can therefore cause a
huge increase in the detail level data.

With a RELATI ON command, you can also use the ARGS keyword to specify
arguments that affect the allocation. With the arguments you can specify the
following:

= A minimum or maximum value for the allocation to assign to the target cells.

« Afloor or ceiling value so that if the allocated value is below the floor or above
the ceiling value, then ALLOCATE assigns NA to the target cell.

= Whether to add the allocated value to the existing value or to replace the
existing value with the allocated value.

« Locks on the cells of the target variable that are specified by the dimension
values in a valueset object. The PROTECT argument protects the existing values
of the cells and prevents them from being targets of the allocation. You can also
specify whether the locked cell can be a source in the allocation. For example, if

Allocating Data 9-7

Using the Allocation Operators and Arguments

the valueset specifies a dimension value that is at an intermediate level in the
dimension hierarchy and you use the WRI TE keyword, then ALLOCATE uses the
locked value as the source that it allocates down the hierarchy. If you use the
READWRI TE keyword, then ALLOCATE does not continue the allocation down
that branch of the hierarchy. You can also specify whether to normalize the
source value, which subtracts the locked value from the source before the
allocation.

« A weighting object that specifies a value that ALLOCATE adds to or multiplies
by the allocated value before assigning the resulting value to the target cell. You
can also specify whether to fill an NA value before applying the weighting
factor.

Using the HEVEN and MAX Operators and the ADD Argument

The HEVEN operator allocates source data evenly to the target cells without
considering a basis value. The MAX operator allocates the source value to the target
cell that corresponds to the highest basis value. Example 9-1 demonstrates the use
of these operators and of the ADD argument in a multidimensional allocation. The
allocation path is directly from higher to lower values in the dimension hierarchies,
with no allocation to intermediate hierarchy values.

The f cst uni t s variable is dimensioned by the hierarchical dimensionsti ne,
geog, and pr oduct . The dimensions are limited to one product, a few cities and
regions, and the year 2002 and four months of 2002.

The cells of f cst uni t s that are dimensioned by the lower hierarchical dimension
values, which are the cities and the months, have values assigned to them. Those
values are forecasts of the number of product units to ship to those cities in those
months. In the cells dimensioned by the higher hierarchical dimension values,
which are the YEARO2 and the region values, are additional product units to
allocate to the cities and months.

A report of the f cst uni t s variable produces the following.

----------------- FCSTUNI TS - -« - - - - -

------------------- TIME- < - memeeemmemeee
CECG YEAR02 JUNO2 JUL02 AUGD2
EAST 755 NA NA NA
VEEST 515 NA NA NA
CENTRAL 625 NA NA NA
BOSTON NA 5,760 5, 690 4,750
ATLANTA NA 7, 600 8,520 7,300

9-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the Allocation Operators and Arguments

CHI CAGO NA 4, 660 4,840 5,120
DALLAS NA 8, 380 9, 380 8, 150
DENVER NA 5,400 6, 080 5,170
SEATTLE NA 7,210 7,490 7,310

The geogci t yr eg relation relates the city values to the regions. The
ti menont hyear relation relates the month values to the year. Reports of the
relations produce the following.

GGG GEOGCI TYREG
EAST NA

VEEST NA

CENTRAL NA

BOSTON EAST

YEARO2 NA

JUNO2 YEARO2
JULO2 YEARO2
AU2 YEARO2

The first RELATI ONcommand in the xuni t sal | oc aggregation map specifies that
the first allocation occurs down the geog dimension hierarchy specified by the
geogci t yr eg relation. The allocation evenly divides the values from the cells
dimensioned by YEARO2 and the region values and assigns the results to the
children of the regions. The REMOPERATOR LAST keywords assign any remainder
from the division to the last cell.

The values allocated to the regions in the first allocation do not appear in the report
of the variable after the ALLOCATE command completes because the SOURCEVAL
command in xuni t sal | oc specifies that ALLOCATE assign a zero value to cells
that contained source values for the allocation. The region data allocated to the
cities for YEARO2 is BOSTON 377, ATLANTA 378, CH CAGO 312, DALLAS 313,
DENVER 257, and SEATTLE 258.

The second RELATI ONcommand in xuni t sal | oc specifies that a second
allocation occur down the t i me dimension hierarchy specified by the
ti menont hyear relation. The source values of the allocation are the values of the

Allocating Data 9-9

Using the Allocation Operators and Arguments

cells dimensioned by YEARO2 and a city value. The allocation assigns each source
value to the month that has the highest value for that city.

The ALLOCATE command in the example specifies only the f cst uni t s variable.
Therefore, that variable is the source, the basis, and the target of the allocation. The
command also specifies that the allocation use the xuni t sal | oc aggregation map.

Example 9-1 A Multidimensional Allocation Using the HEVEN and MAX Operators

LIMT product TO ' SHORTS - BOYS
LIMT geog TO ' EAST' 'VEST' 'CENTRAL' -
"BOSTON ' ATLANTA' ' CH CAGO 'DALLAS 'DENVER ' SEATTLE
LIMT tinme TO ' YEARO2' 'JUNO2' TO ' AUX2’
DEFI NE xunitsal | oc AGGVAP
ALLOCVAP JO NLI NES(-
'RELATION geogstcity OPERATOR HEVEN REMOPERATOR LAST' -
'RELATION timemonthyear OPERATOR MAX ARGS ADD' -
'SOURCEVAL ZEROQ’)
ALLOCATE festunits USING xunitsalloc
REPORT fcstunits

The REPORT of the f cst uni t s variable after the allocation produces the following.
PRODUCT: SHORTS - BOYS

----------------- FCSTUNITS---------mm-
TIME

GEOG YEARO2 JUNO2 JULO2 AUGO2
EAST 0 NA NA NA
WEST 0 NA NA NA
CENTRAL 0 NA NA NA
BOSTON 0 6137 569 4,750
ATLANTA 0 7600 8898 7,300
CHICAGO 0 4,660 4840 5432
DALLAS 0 8380 9693 8,150
DENVER 0 5400 6337 5170
SEATTLE 0 7210 7,748 7310

Using the COPY Operator and the PROTECT Argument

Example 9-2 demonstrates the recursive copying of source data that is specified by
a parent in a dimension hierarchy. The data is allocated to children of the parent and
then that allocated data is the source of the allocation to the children of those
children. It also demonstrates a second allocation in which different source data is
copied to only one child and to its children.

9-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the Allocation Operators and Arguments

The uni t cost variable is dimensioned by t i ne and pr odi d. The pr odi d
dimension is a NUMBER dimension that has product identification numbers as
values. The first LI M T command sets the status of the pr odi d dimension to one
value. The next LI M T command sets the status of the t i ne dimension to the year
2002, the first two quarters of 2002, and the first six months of 2002.

The YEAROZ2 cell of uni t cost for the product is assigned the source value. A report
of uni t cost produces the following.

- UNI TCOST-
-- PRODI D- -
TI VE 45285

YEARO2 34.25

EESEESEE

Example 9-2 defines the cost al | oc aggregation map and adds contents to it with
the ALLOCVAP command. The RELATI ON command specifies the t i mepar ent
relation as the path for the allocation and the HCOPY operator as the method. The
ti mepar ent relation relates the children in the t i me dimension hierarchy to their
parents.

The ALLOCATE command uses the uni t cost variable as the source and the target
of the allocation. Because the method is HCOPY, the allocation does not use a basis
object.

A report of uni t cost after the first allocation produces the following.

- UNI TCOST-
-- PRODI D- -
TI VE 45285
YEARO2 34.25
Q. 02 34.25
Q@. 02 34.25
JANO2 34. 25
FEBO2 34. 25
MARD2 34.25
APRO2 34.25

Allocating Data 9-11

Using the Allocation Operators and Arguments

MAY02 34.25
JUNO2 34.25

The example then changes the source value for YEARO2. It defines a valueset and
limits the value of it to QL. 02.

The second ALLOCVAP command changes the contents of the aggregation map. The
RELATI ON command specifies the same relation and COPY operation but it also
specifies the PROTECT argument. The SOURCEVAL command specifies that the cells
that contained source data are assigned a value of zero after the data is allocated.

The second allocation copies the value from the YEARO2 cell, but it locks the QL. 02
child and its children so that only the 2. 02 child and its children receive the
allocated value.

A report of uni t cost after the second allocation produces the following.

- UNI TCOST-

-- PRODI D- -
TIME 45285
YEARO2 0. 00
QL. 02 34.25
Q. 02 35. 00
JANO2 34.25
FEBO2 34.25
MARO2 34.25
APRO2 35.00
MAY02 35. 00
JUNO2 35. 00

Example 9-2 Using the COPY Operator with the PROTECT Argument

LIMT prodid TO 45285
LIMT time TO ' YEAR02' 'QL.02" ' @.02" 'JANO2' TO 'JUNOZ’

unitcost (tine ' YEARO2' prodid 45285) = 34.25
DEFI NE costal | oc AGAVAP

ALLCCMVAP ' RELATI ON ti mepar ent OPERATOR HCCOPY'
ALLOCATE unitcost USING costal |l oc

uni tcost (tine ' YEARD2' prodid 45285) = 35.00

DEFI NE | vset VALUESET tine
LIMT lvset TO'QL. 02

9-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the Allocation Operators and Arguments

CONSI DER cost al | oc

ALLOCVAP JO NLI NES(-
'RELATION timeparent OPERATOR COPY ARGS PROTECT NONORMALIZE Ivset' -
'SOURCEVAL ZERQ)

ALLOCATE unitcost USING costalloc

Using the HFIRST and HLAST Operators

Use the HFI RST and HLAST operators when you want to allocate data to the first or
last child of a parent without considering a basis value. Example 9-3 assigns cash
balance forward and cash forward data from the act ual variable to the budget
variable and then allocates the data from the budget cell specified by a parent

t i me value to one specified by a child t i me value.

The act ual and budget variables are dimensioned by theti e, | i ne, and
pr oduct dimensions. The ti mepar ent relation relates values of children in the
t i me dimension to their parents.

The first LI M T commands set the status of the t i me and | i ne dimensions and
limit the pr oduct dimension to one value. A report of the act ual variable with
that dimension status produces the following.

PRCDUCT: DRESSES - WOMEN

----------------------- o 1

------------------------- TIME- - we e mmmmemm e e oo
LI NE Q. 01 JAND2 FEB02 MARD?2 QL. 02
CASH B/F 1,000.00 NA NA NA NA
CASH W/T 500. 00 NA NA NA NA
CASH CF 1,500.00 NA NA NA NA

The source data for the allocation is assigned from the cash forward line of the

act ual variable to the cash balance forward line of the budget variable. The next
LI M T command limits the | i ne dimension to CASH B/ F to restrict the allocation
to that value. Example 9-3 then defines an aggregation map and adds contents to it
with the ALLOCMAP command. The contents are a single RELATI ON command that
specifies the HFl RST operator. The ALLOCATE command allocates the data from the
QL. 02 parent to its first child, JANO2.

Forecasting a fifty per cent increase in the cash forward amount by the end of the
quarter, the example multiplies by 1.5 the value from the Q4. 01 cash forward line
of the act ual variable and assigns the result to the QL. 02 cash forward line of the

Allocating Data 9-13

Using the Allocation Operators and Arguments

budget variable. The CONSI DER and ALLOCMAP commands change the contents of
the aggregation map so that the RELATI ON command specifies the HLAST operator.

The | i ne dimension is limited to cash forward and then the ALLOCATE command
allocates the data from the QL. 02 parent to its last child, MARO2. Finally, the last
LI M T command resets the status of the | i ne dimension. A report of the budget
variable after the allocation produces the following.

PRCDUCT: DRESSES - WOMEN

------------------------ =10 =

------------------------- TIME- - = wemmmmmemm e e oo
LI NE Q. 01 JAND2 FEBO2 MARD2 QL. 02
CASH B/ F NA 1,500.00 NA NA 1,500.00
CASH WT NA NA NA NA NA
CASH O/ F NA NA NA 2,250.00 2,250.00

Example 9-3 Allocating Data to the First and Last Children of a Parent

LIMT tine TO' Q. 01" ' JANO2® TO ' MAROZ' QL. 02’
LIMT line TO' CASH B/F ' CASH WT' 'CASH O'F
LIMT product TO ' DRESSES - WOVEN

" Assign the value of actual Q4.01 CASH C/F to budget QL.02 CASH B/ F
budget (time 'QL.02" line "CASH B/F') = actual (time 'Q4.01" line "CASH U F)

LIMT line TO ' CASH B/ F'

DEFI NE gt ormal | oc AGGVAP
ALLOCVAP * RELATI ON ti neparent OPERATCR HFl RST'

" Alocate the QL.02 value to the first nmonth of the quarter
ALLCOCATE budget USI NG gt omal | oc

" Forecast a 50%increase in cash forward by the end of the quarter
budget (time 'QL.02' line "CASH O F) = actual (tine 'Q4.01" line "CASHCF) * 1.5

CONSI DER qt omal | oc
ALLOCCVAP ' RELATI ON ti mepar ent OPERATOR HLAST'

LIMT line TO'CASH U F

" Allocate the QL.02 value to the last nonth of the quarter
ALLOCATE budget USI NG gt omal | oc

LIMT line TO' CASH B/F ' CASH WT 'CASH U F

9-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the Allocation Operators and Arguments

Using the PROPORTIONAL Operator

The PROPORTI ONAL operator allocates source data proportionately to the target
cells based on the values of the basis object. Example 9-4 demonstrates two
proportional allocations of data recursively down thet i me dimension hierarchy.

The act ual and budget variables are dimensioned by theti ne, | i ne, and
pr oduct dimensions. The ti nepar ent relation relates values of children in the
t i me dimension to their parents.

The first allocation allocates a forecasted revenue value from YEARO2 to the
quarters and then to the months of that year. The allocation is based on the revenue
from the same time periods for the previous year. Actual values for the first quarter
of 2002 are then assigned to the cells of the budget variables. The second allocation
locks the budget cells for the first quarter and its children, normalizes the source
value by subtracting the locked quarter value from the source, and then allocates
the remaining value to the other quarters and their children.

The first LI M T commands set the status of each of the | i ne and pr oduct
dimensions to one value and limit the pr oduct dimension to the year, quarter, and
month values for 2002.

The budget variable for 2002 has values that were copied from the act ual
variable for 2001. The example does not include that operation. The forecasted total
revenue value for the product for the year 2002 is assigned to the budget variable.
That value is calculated to be ten per cent larger than the actual value for 2001.

The first REPORT of the budget variable produces the following.
PRODUCT: OUTERWEAR - MEN

- - BUDCGET- -

---LINE---
TIME REVENUE
YEARO2 1, 100, 000
QL. 02 275,000
Q. 02 225,000
8. 02 200, 000
. 02 300, 000
JANO2 100, 000
FEBO2 90, 000
MARO2 85, 000
APRO2 82,000
MAY02 70, 000
JUNO2 73,000
JuLo2 64, 000

Allocating Data 9-15

Using the Allocation Operators and Arguments

AUGRD2 69, 000
SEP02 67,000
CCT02 85, 000
NOV02 105, 000
DECO2 110, 000

Example 9—4 then defines an aggregation map and adds contents to it with the
ALLOCVAP command. The contents are a single RELATI ON command that specifies
the PROPORTI ONAL operator. The ALLOCATE command allocates the data from the
YEARO2 parent down the hierarchy specified by the t i mepar ent relation.

The REPORT of the budget variable after the first allocation produces the following.
PRODUCT: COUTERVEAR - MEN

- - BUDGET- -
-~ LINE---
TI VE REVENUE
YEARO2 1, 100, 000
Q. 02 302, 500
Q@. 02 247,500
. 02 220, 000
Q. 02 330, 000
JANO2 110, 000
FEB02 99, 000
MARD2 93, 500
APRO2 90, 200
NAY02 77,000
JUNO2 80, 300
JUL02 70, 400
AUGD2 75, 900
SEP02 73, 700
oCT02 93, 500
NOVO2 115, 500
DECO2 121, 000

The actual data for the first quarter of 2002 is assigned to the act ual variable and
then copied to the budget variable. The t i nel ockvs valueset is defined and
limited to the single value QL. 02.

A variable for a fileunit value is defined and is assigned the value returned by the
FI LEOPEN function. The CONSI DER and ALLOCVAP commands change the contents
of the aggregation map so that the RELATI ON command includes the PROTECT
argument.

9-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the Allocation Operators and Arguments

The second ALLOCATE command allocates the data from the YEARO2 parent down
the hierarchy specified by the t i mepar ent relation but this allocation first
subtracts the locked value for QL. 02 from the source value before distributing the
remaining value. The command also sends error or informational messages to the
al | ocerr 1 og file, which is specified by the er r | ogf uni t fileunit.

The contents of the al | ocer r | og file are the following.

Dim Source Basis
TI VE BUDGET BUDGET Description

YEARO2 850000 1100000 Renormalizing data (6)

The source value for the allocation after normalization is 850,000 instead of the
original value of 1,100,000. The REPORT of the budget variable after the second
allocation, with the QL. 02 value protected, produces the following.

PRCDUCT: CQUTERVEAR - MEN

- - BUDCGET- -

---LINE---
TIME REVENUE
YEARO2 1, 100, 000
QL. 02 250, 000
Q. 02 263, 793
.02 234,483
. 02 351,724
JANO2 90, 000
FEBO2 82, 000
MARO2 78, 000
APRO2 96, 138
MAY02 82, 069
JUNO2 85, 586
JuLo2 75,034
AURD2 80, 897
SEP02 78, 552
CCT02 99, 655
NOV02 123, 103
DECO2 128, 966

Example 9-4 Using the PROPORTIONAL Operator with the PROTECT Argument

LIMT line TO ' REVENUE
LIMT product TO ' QUTERWEAR - MEN
LIMT time TO ' YEAR0O2' TO ' DECO2’

Allocating Data 9-17

Using the Allocation Operators and Arguments

" Specify no decimal places
DECI MALS = 0

budget (time ' YEARO2') = actual (time 'YEAR0OL') * 1.1
REPCRT DOM tine budget

DEFI NE budgal | oc AGGVAP

ALLOCVAP ' RELATI ON ti mepar ent OPERATOR PROPORTI ONAL'
ALLCOCATE budget USI NG budgal | oc

REPCRT DOM tine budget

" Assign actual values for first quarter of 2002.

actual (time 'QL.02" line 'REVENUE product 'OUTERVWEAR - MEN) = 250000
actual (time "JANO2' |ine 'REVENUE product ' OQUTERMEAR - MEN) = 90000
actual (time 'FEB02' |ine 'REVENUE product ' OQUTERVEAR - MEN) = 82000
actual (time 'MARO2' |ine 'REVENUE product ' OQUTERVEAR - MEN) = 78000

LIMT time TO"QL. 02" ' JANO2' ' FEB02' ' MARO2'

" Copy the actual values to the budget variable
budget = actual

LIMT time TO " Q4. 01" *JANO2' ' FEB02' ' MARO2' ' QL.02

DEFI NE timel ockvs val ueset time
LIMT tinelockvs TO ' QL. 02’

DEFINE errlogfunit VAR ABLE | NTEGER
errlogfunit = FILEOPEN(" al l ocerrlog’ VR TE)

CONSI DER budgal | oc
ALLOCVAP ' RELATI ON ti mepar ent OPERATOR PROPORTI ONAL ARGS PROTECT ti nel ockvs’
ALLOCATE budget USI NG budgal | oc ERRORLCG errl ogf uni t

REPCRT DOM tine budget

9-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Part |l

Analytic Workspace Management

Part Il provides information about acquiring and generating data for an analytic
workspace

It contains the following chapters:

= Chapter 10, "Working with Relational Tables"
« Chapter 11, "Reading Data from Files"

« Chapter 12, "Aggregating Data"

10

Working with Relational Tables

In this chapter, you will learn how to write OLAP DML programs that use the
OLAP DML SQ. command. With these programs, you can update relational tables
and copy data between relational tables and analytic workspace objects.

This chapter includes the following topics:

Issuing SQL Statements Through the OLAP DML

Creating an Analytic Workspace from Relational Tables

Example: Creating an Analytic Workspace from Sales History Tables
Writing Data from Analytic Workspace Objects into Relational Tables
Using Stored Procedures and Triggers

Checking for Errors

Working with Relational Tables 10-1

Issuing SQL Statements Through the OLAP DML

Issuing SQL Statements Through the OLAP DML

SQL consists of statements that retrieve, delete, insert, change, and manipulate data
stored in relational tables. You can embed SQL statements in OLAP DML programs
using the OLAP DML SQL command show below.

SQL sql _stat enent

When formatting an SQL statement that is an argument to the OLAP DML SQL
command, wherever you would normally use double quotes (") in a SQL statement,
use a single quote ('). In the OLAP DML, a double quote (") indicates the
beginning of a comment.

Supported SQL Statements

You can use almost any SQL statement that is supported by Oracle in the OLAP
DML SQL command. You can use the | NSERT command to copy data from analytic
workspace objects into relational tables. You can use FETCHto copy data from
relational tables into analytic workspace objects.

The following Oracle SQL extensions are also supported:

« The FOR UPDATE clause in the SELECT statement is supported in a cursor
declaration so that you can update or delete data associated with the cursor.

« The WHERE CURRENT OF cursor clause is supported in UPDATE and
DELETE statements for interactive modifications to a table.

Support is also provided for stored procedures and triggers. Using stored
procedures is discussed in "Using Stored Procedures and Triggers" on page 10-32.

Unsupported SQL Statements

Ordinarily, you use the SQL command in an OLAP DML program, but you can also
execute some SQL commands interactively in the OLAP Worksheet. When using
SQL interactively, you would typically execute a SELECT command to produce a
relational table of data. However, when using SQL within the OLAP DML, you
must define a cursor which contains the SELECT statement as described in
"Declaring a Cursor" on page 10-5.

Also, if you code COMM T or ROLLBACK as arguments to the OLAP DML SQL
command, the commands are ignored. You cannot rollback using the OLAP DML.
To commit your changes, issue the OLAP DML COVM T command.

10-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Analytic Workspace from Relational Tables

Creating an Analytic Workspace from Relational Tables

When relational tables have been defined to the OLAP catalog using CWM1
metadata, you can use a tool provided with Oracle OLAP to design and populate an
analytic workspace for the tables. For more information on creating an analytic
workspace from relational tables in this manner, see Oracle9i OLAP User’s Guide.

In other cases, you can design and populate an analytic workspace by taking the
following steps:

1.

Design the analytic workspace as described in "Process: Designing and Defining
an Analytic Workspace to Hold Relational Data" on page 10-3.

a. Define the analytic workspace using OLAP AW CREATE command.
b. Define the analytic workspace objects using the OLAP DEFI NE command.

Define, write, and execute OLAP DML programs to populate the analytic
workspace objects with relational data as described in "Process: Writing
Programs that Populate Analytic Workspaces with Relational Data" on
page 10-4.

Aggregate the fact data up any hierarchies as described in Chapter 12,
"Aggregating Data".

Process: Designing and Defining an Analytic Workspace to Hold Relational Data

One way that you can map a relational database to an analytic workspace is to take
the following steps:

1.

Identify the table columns that contain the fact data that you want to analyze.
When the relational database is a data warehouse, these columns will be
columns of a measure tables.

Identify the primary keys to the tables identified in step 1 and determine if any
of these keys participate in any hierarchies. When the relational database is
fully normalized, you can do this by following the foreign keys of the table.
When the relational database contains summarized data, you can do this by,
first, determining if the primary key columns are "children" of other columns,
and then, following the "parent” columns up until you determine the complete
hierarchy.

Working with Relational Tables 10-3

Creating an Analytic Workspace from Relational Tables

3.

When there are hierarchies, decide if your applications need aggregated
(summarized) fact data for each level of the hierarchy.

When your applications do not need aggregated data for any of the levels, then
define a non-hierarchical dimension that you can use to hold the values of the
primary key column as described in "Defining Dimensions" on page 3-8.

When your applications need aggregated fact data for some or all of the levels,
then define the following analytic workspace objects to represent the hierarchy:

a. Ananalytic workspace dimensions to hold the values of the levels for
which you want aggregated data. You can define a hierarchical dimension
as described in "Defining Hierarchical Dimensions and Variables That Use
Them" on page 3-22; or you can define a concat dimension as described in
"Defining Concat Dimensions and Variables That Use Them" on page 3-25.

b. A self-relation for the hierarchy. This relation is dimensioned by the
dimension described in step 5a. The values of this self-relation are the
parents of each value in the hierarchy. For an example of a self-relation, see
"Example: Self-relation" on page 3-15.

Define the variables for facts you identified in step 1 and for dimension
attributes that you want to use in your analysis. Typically, these variables are
dimensioned by the dimensions that you identified in steps 4 and 5. However, if
any of these variables are sparsely populated, then you can define a composite
for the dimensions, and dimension the variables by that composite.

For an example, of an analytic workspace designed following this process, see
"Designing and Defining an Analytic Workspace for Sales History Data" on
page 10-15.

Process: Writing Programs that Populate Analytic Workspaces with Relational Data

To populate the analytic workspace structures with data from relational tables, you
write and execute one or more OLAP SQL programs that perform the following

actions:

1. Define a SQL cursor and associate it with a SELECT statement or procedure as
described in "Declaring a Cursor" on page 10-5.

2. Open the SQL cursor defined in step 1 as described in "Opening a Cursor" on
page 10-8.

3. Retrieve and process data specified by the cursor opened in step 2 using wither

the OLAP DML SQ. | MPORT or SQL FETCHcommand as described in

10-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Analytic Workspace from Relational Tables

"Importing and Fetching Relational Table Data into Analytic Workspace
Objects" on page 10-8.

Note: You must declare and open a cursor from within a single OLAP DML
program. You can fetch the data and close the cursor either in the same program
or a different program.

4. Close the SQL cursor opened in step 2 as described in "Closing a Cursor" on
page 10-13.

5. Cancel all SQL cursor definitions and free the memory resources of SQL cursors
as described in "Cleaning up the SQL Cursors" on page 10-14.

Once the analytic workspace objects are populated, you can make these changes
permanent using the OLAP DML UPDATE and COMM T commands.

The rest of the topics in this section describe these steps in more detail. For
examples of programs that populate an analytic workspace with data from
relational tables, see "Populating Analytic Workspace Objects with Sales History
Data" on page 10-109.

Declaring a Cursor

In an OLAP DML program, you cannot issue a SELECT statement interactively.
Instead, you must define a cursor which contains the SELECT statement. In the
context of a query, a cursor can be thought of as simply a row marker in a relational
table of data resulting from a query. Instead of receiving the results of a query all at
once, your program receives the results row by row using the cursor.

A DECLARE CURSOR statement associates a cursor by name with the results of a
data query. As an argument to the OLAP DML SQ. command, the DECLARE
CURSOR statement has the following syntax.

SQL DECLARE cursor-nanme CURSOR FOR sel ect - st at enent

Tip: You should write down SELECT statements that you think
will retrieve the data you want to fetch. When possible, use an
interactive interface such as SQL*Plus, SQL Worksheet, or OLAP
Worksheet to test these SQL statements and make sure that they
produce the results you expect. Afterward, you can modify these
SELECT statements for use in your OLAP DML programs.

Working with Relational Tables 10-5

Creating an Analytic Workspace from Relational Tables

Example: Declaring a Cursor

In Example 10-1, "Declaring a Cursor", the cursor declaration selects rows from a
relational table named cost s in the sample Sales History (sh) schema. The cost s
table has several columns, including a column for product identification codes
(prod_i d)and acolumnforunit_price.Theunit_price columnisusedina
WHERE clause to limit the returned rows to only those products in which the unit
price is greater than $20.00.

Example 10-1 Declaring a Cursor

SQL DECLARE hi ghprice CURSOR FOR -
SELECT prod_id FROM costs -
WHERE unit_price > 20

Using Variables in the WHERE Clause of the SELECT Statement

When you are declaring a cursor to be used by the OLAP DML SQ. | MPORT
command, you can only use literal values in the WHERE clause of a SELECT
statement. However, when you are declaring a cursor to be used by the OLAP DML
SQL FETCHcommand, you can use the values of input host variables instead of
providing literal values in the WHERE clause of a SELECT statement.

Input host variables are values supplied by Oracle OLAP as parameters to a SQL
command. They specify the data to be selected or provide values for data that is
being modified. If you specify a dimension or a dimensioned variable, the first
value in status is used; no implicit looping occurs, although you can use a FOR
command to loop through all of the values. An input host variable can be any
expression with an appropriate data type. When you use input host variables in a
VWHERE clause to match the data in a relational table, any required conversions
between data types is performed wherever conversion is possible. The value of an
input host variable is taken when a cursor is opened, not when it is declared.

An input host variable can be any expression preceded by a colon (for example,

: myvar). However, if you specify a multidimensional expression, such as a variable
or dimension, then the first value in status is used. Table 10-1 gives examples of
expressions that can be used as input host variables. Example 10-2, "Using Input
Host Variables" shows a program fragment that modifies the SQL command shown
previously. Instead of using an explicit value in the WHERE clause, it uses the value
of a local variable named set _pri ce.

10-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Analytic Workspace from Relational Tables

Table 10-1 Examples of Expressions That Can Be Used as Input Host Variables

Type of Expression Example

Variable (database or local) :set_price
Dimension :prod

Quialified data reference ;units(prod 'P8, geog 'Gl2', tine 'T36")

Program argument :newal

Text expression sjoinchars(’ first_name’ 'l|ast_nane’)
Arithmetic expression tintpart(6.3049) + 1

User-defined function : get geog

Example 10-2 Using Input Host Variables

VARI ABLE set _price SHORT
set_price = 20
SQL DECLARE hi ghprice CURSOR FOR -
SELECT prod_id FROM costs -
WHERE unit_price > :set_price

Using Conjunctions in a WHERE Clause

Because both the OLAP DML and SQL include AND and OR as part of their language
syntax, you must use parentheses when using one of these conjunctions with an
input host variable. Otherwise, the command might be ambiguous and produce
unexpected results. Place the parentheses around the input host variable preceding
AND and OR

If a host variable expression begins with a parenthesis, then the matching right
parenthesis is interpreted as the end of the host variable expression. If you plan to
add more text to the expression after a matching right parenthesis, then you must
enclose the entire expression with an extra set of parentheses.

The fragment of the program shown in Example 10-3 uses the values of two
arguments to limit the range of values selected for the pr od_i d column of the
relational table named pr oduct s.

Working with Relational Tables 10-7

Creating an Analytic Workspace from Relational Tables

Example 10-3 Using Conjunctions in a WHERE Clause

prodl = 415
prodl = 49990

SQL DECLARE twoprods CURSOR FOR -
SELECT prod_id FROM products -
WHERE prod_id EQ :(prodl) -

AND : pr od2

Opening a Cursor

After the SQL DECLARE CURSORcommand has associated a cursor with a selection
of data, you use the SQL OPEN statement to get ready to retrieve the data. These
commands for a particular cursor must appear in the same OLAP DML program
and can not contain ampersand substitution.

The following is the syntax of the SQL command with an OPEN statement as an
argument.

SQ. OPEN cursor - nane

The SQL OPEN command:

« Evaluates the input host variables (if any) used in the definition of the specified
Ccursor.

« Determines the active set of the cursor (that is, the rows that satisfy the SELECT
statement).

« Leaves the cursor in the open state for use by SQ. FETCHor SQL | MPORT. The
cursor is positioned before the first row of the result set

The active set of a cursor is determined when it is opened, and it is not updated
later. Therefore, changing the value of an input host variable after opening its cursor
does not affect the active set of a cursor.

Importing and Fetching Relational Table Data into Analytic Workspace Objects

After you open a cursor, you can use a SQL | MPORT or a SQ. FETCH command
statement to copy data from relational tables into analytic workspace objects. Before
you use these SQL commands, ensure that you have access rights to the tables that
you want to use.

SQL | MPORT or a SQL FETCH both copy data from relational tables into analytic
workspace objects. Although SQL FETCH offers the most functionality, SQL | MPORT

10-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Analytic Workspace from Relational Tables

offers improved performance when copying large amounts of data from relational
tables into analytic workspace objects.

« SQ FETCHretrieves and processes data specified by a SQL cursor and assigns
the retrieved data to OLAP objects. When you use a FETCH statement to
retrieve data from relational tables, you must include it in a loop or use the
LOOP argument to retrieve all of the rows of the active set of a cursor. Also, if
you include a THEN clause, SQ. FETCH may perform processing on the
retrieved data. The following is the syntax of the SQL command using a FETCH
statement as an argument.

SQL FETCH cursor [LOOP [/ oopcount]] INTO :targets... -
[THEN action-statenents. . .]

« SQ. | MPORT advances the cursor position to each subsequent row of the active
set of a cursor and delivers the selected fields into analytic workspace objects.
The following is the syntax of the OLAP DML SQ. command using an | MPORT
statement as an argument.

SQ | MPORT cursor INTO :targets...

In the syntax for SQL | MPORT and SQL FETCH, targets represents output host
variables. An output host variable is an analytic workspace object that will be used
to store the data retrieved from the relational tables. The order of the output host
variables must match the order of the columns in the DECLARE CURSOR statement,
and a colon must precede each output host variable name. The variable or
dimension receiving the data must be defined already. It must also have a
compatible data type.

For both | MPORT and FETCH, output host variables can be one or more of the
following:

[MATCH di nmensi on| surrogat e

APPEND di mensi on

ASSI GN surrogat e

variabl e| qual i fied data reference| rel ation| conposite

When an output host variable is a dimension, retrieved values are handled based on
the keyword that you specify before the host variable name. You can specify either
the MATCH keyword (the default) or the APPEND keyword.

= With the MATCH keyword, only values that are the same as existing values of the
dimension are fetched, and an error is signalled when a new value is
encountered. You use it when fetching data into a variable whose dimensions

Working with Relational Tables 10-9

Creating an Analytic Workspace from Relational Tables

are already maintained; the dimensions are included in the fetch only to align
the data.

« With the APPEND keyword, all values that do not match are added to the end of
the list of dimension values. Also, for FETCH, values can be appended to an
output host variable based on position using the following syntax for target:

APPEND [posi tion] dinension

Table 10-2 provides examples of expressions that can be used as output host
variables.

Table 10-2 Examples of Expressions That Can Be Used as Output Host Variables

Type of Expression Example

Variable (database or local) :sal es_quantity_sold
Dimension or surrogate :prodid

Quialified data reference :sales_quantity_sold(prod_id 415 cust_id 18670 tine_id
'1998-01-04" channel _id 'S prono_id 9999)

Whenever you fetch data into a dimensioned workspace variable, you must include
the dimension values in the fetch. While you can add new dimension values at the
same time, you do not need to add them when they already exist in your analytic
workspace; instead, you use the dimension values in the fetch to align the data. In
either case, be sure to fetch the dimension values before you fetch the values of the
variable. Otherwise, the fetch will not loop through the dimension value.

Important: When data is written into a dimension, it temporarily
limits the status of the dimension to the value being matched or
appended. This means that when the | MPORT statement or the
FETCH statement also includes output host variables that are
dimensioned by the specified dimension, the temporary status is
observed when values are assigned to those variables.

Null values in a relational table are equivalent to NAs. In OLAP DML variables, null
values do not pose a problem; they appear as NAs. However, you cannot have a
dimension value of NA. Therefore, any rows that have a value of nul | are discarded
in a column being fetched into a dimension.

10-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Analytic Workspace from Relational Tables

Example: Copying Relational Table Data into Analytic Workspace Objects

Sometimes you want to copy data from relational tables into the analytic workspace
to perform a quick analysis. For example, the sample Sales History database
includes the sal es table (described in Example 10-4 on page 10-12) whose keys
areprod_id,cust _id,time_id,channel _id,and prono_i d and that contains
two facts (quanti ty_sol d and anount _sol d).

Assume that you want to forecast the quantity sold for product 415 for the year 2002
using the forecasting commands available in the OLAP DML. In order to perform
this analysis using the OLAP DML, the data must be in an analytic workspace. To
copy the data into the analytic workspace, you must define the analytic workspace
objects to hold the data, write an OLAP DML program to copy the data from the
relational table to the analytic workspace objects, and, then, execute that program.

The simplest way to map the sal es table to analytic workspace objects is to define
one analytic workspace dimension for each of the key columns (aw_pr od_i d,
aw_cust _id,aw time_id,aw _channel _i d,and aw _prono_i d) and to define
analytic workspace variables (dimensioned by those dimensions) to hold the data
from the other columns (aw_quantity_sol d and aw_anount _sol d). However,
in this case, the variables will be quite sparse along the time dimension. To avoid
this sparsity, you can define a composite that represents all of the key dimensions
and define the analytic workspace variables using this composite as shown in
Example 10-5, "Analytic Workspace Definitions for Sales Data" on page 10-12.

Example 10-6, "import_sales_for_prod415 Program" on page 10-12) illustrates
using SQL | MPORT to copy the data from the relational table into the analytic
workspace objects. The f et ch_sal es_f or _prod415 program (shown in
Example 10-7, "fetch_sales_for_prod415 Program" on page 10-13) illustrates using
SQL FETCHto copy the data from the relational table into the analytic workspace
objects. Both of these programs assume that values for aw _pr od_i d, aw cust _i d,
aw time_id,aw channel _i d,and aw prono_i d have not previously been
copied into the analytic workspace. When you have defined a composite, Oracle
OLAP automatically populates the composite as it populates the other analytic
workspace objects.

Working with Relational Tables 10-11

Creating an Analytic Workspace from Relational Tables

Example 10-4 Description of the sales Table

PRCD_| D NOT NULL NUMBER(6)
CUST ID NOT NULL NUMBER
TIMEID NOT NULL DATE

CHANNEL_| D NOT NULL CHAR(1)
PROVD | D NOT NULL NUMBER(6)
QUANTI TY_SOLD NOT NULL NUMBER(3)
AVOUNT_SOLD NOT NULL NUMBER(10, 2)

Example 10-5 Analytic Workspace Definitions for Sales Data

DEFI NE aw prod_i d DI MENSI ON NUMBER (6)

DEFI NE aw _cust _i d DI MENSI ON NUMBER (6)

DEFI NE aw_dat e DI MENSI ON TEXT

DEFI NE aw_channel _id DI MENSI ON TEXT

DEFI NE aw_promo_i d DI MENSI ON NUMBER (6)

DEFI NE aw sal es_di ns COMPOSI TE <aw prod_id aw cust_id aw date -
aw_channel _id aw_prono_i d>

DEFI NE aw sal es_quantity_sol d VAR ABLE NUMBER (3) <aw_sal es_dims <aw prod_id -
aw_cust _id aw date aw_channel _id paw_rono_i d>>

DEFI NE aw_sal es_anount _sol d VAR ABLE NUMBER (10, 2) <aw sal es_di ns <aw prod_id -
aw_cust _id aw date aw_channel _id aw_prono_i d>>

Example 10-6 import_sales_for_prod415 Program

ALLSTAT
NLS_DATE _FORMAT = ’ <YYYY><Mv><DD>'
DATEFCRMAT = ' <YYYY>- <MVb- <DD>'
" Declare a cursor naned GRABDATA
SQL DECLARE grabdata CURSOR FOR SELECT prod_id, cust_id, tine_id, -
channel _id, promo_id, quantity_sold, amount_sold FROM sh. sal es -
VHERE prod_id = 415
" Inport new values into the anal ytic workspace objects
SQL | MPORT grabdata | NTO : APPEND aw prod_id -
: APPEND aw cust id -
: APPEND aw_date -
: APPEND aw_channel _id -
: APPEND aw _prono_id -
:aw sal es_quantity_sold -
:aw_sal es_amount _sol d
" Update the anal ytic workspace and make the updates permanent
UPDATE
COWM T

10-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Analytic Workspace from Relational Tables

Example 10-7 fetch_sales for_prod415 Program

ALLSTAT
NLS_DATE_FORMAT = ' <YYYY><MW><DD>’
DATEFCRMAT = ' <YYYY>- <MVb- <DD>'
" Declare a cursor named GRABDATA
SQL DECLARE grabdata CURSOR FOR SELECT prod_id, cust_id, tine_id, -
channel _id, promo_id, quantity_sold, amount_sold FROM sh. sal es -
VHERE prod_id = 415
" Qpen the cursor
SQL OPEN grabdat a
" Fetch new val ues into the anal ytic workspace objects
SQL FETCH grabdata LOOP | NTO : APPEND aw prod_id -
: APPEND aw cust id -
. APPEND aw date -
: APPEND aw channel id -
: APPEND aw _prono_id -
;aw_sal es_quantity_sold -
:aw_sal es_anount _sol d
" Cose the cursor
SQL CLOSE grabdata
" Cleanup from SQ query
SQL CLEANUP
" Update the anal ytic workspace and nake the updates permanent
UPDATE
COWM T

Closing a Cursor

After you have used a cursor to retrieve all the data in its active set, you close the
cursor. If you want to use the cursor again to retrieve data starting from the first
row of its active set, then you can use the OPEN statement without having to declare
the cursor again. The CLOSE statement does not cancel a cursor declaration; it only
renders the active set undefined.

The following is the syntax of the CLOSE statement when it is used as an argument
in the OLAP DML SQL command.

SQ. CLOSE cur sor - name

Working with Relational Tables 10-13

Example: Creating an Analytic Workspace from Sales History Tables

Cleaning up the SQL Cursors

Once you are completely done making OLAP DML SQL calls, you should cancel all
the SQL cursor declarations and free the memory resources for all SQL cursors. You
perform these actions by using CLEANUP as the argument to the OLAP DML SQL
command:

SQL CLEANUP

After you have cancelled all SQL cursors in this manner, you cannot use them again
unless you issue new SQL DECLARE CURSORand SQ. OPEN commands.

Example: Creating an Analytic Workspace from Sales History Tables

The sample Sales History database, which is fully described in Oracle9i Sample
Schemas, has six dimension tables and two fact tables:

« countri es,adimension table that has a primary key of country_i d.

« custoners,adimension table that has a primary key of cust oner _i d and a
foreign key of country_i d.

« pronotions, adimension table that has a primary key of prono_i d.
« product s, adimension table that has a primary key of pr oduct _i d.
« channel s, a dimension table that has a primary key of channel _i d.
« tines,adimension table that has a primary key ofti ne_i d.

« sal es, afacttable that has cust oner _i d, prono_i d, product i d,
channel _id,andtine_id askeys.

« costs, afact table that has which has product _idandtine_id as keys.

Assume that you want to analyze all of the fact data in the sample Sales History
database. In order to do this you need to design and define an analytic workspace
as described in "Designing and Defining an Analytic Workspace for Sales History
Data" on page 10-15. Then you need to write OLAP DML programs to copy the
necessary relational data into the analytic workspace as described in "Populating
Analytic Workspace Objects with Sales History Data" on page 10-15.

10-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Creating an Analytic Workspace from Sales History Tables

Designing and Defining an Analytic Workspace for Sales History Data

The analytic workspace for Sales History was designed and defined following the
process described in "Process: Designing and Defining an Analytic Workspace to
Hold Relational Data" on page 10-3. The actual steps are outlined below:

1.

An analytic workspace named awsh was created using the following OLAP
DML command.

AW CREATE awsh

The fact data was identified. In the sal es table, the quant i ty_sol d and the
anount _sol d columns were identified as containing facts for analysis. While,
in the cost s table, the uni t _cost and uni t _pri ce columns contain fact
data of interest.

The primary keys to the sal es and cost s tables were identified. The primary
keys of sal es areprod_i d,cust _id,time_id,channel _id,and
prono_i d. The primary keys of cost s areprod_idandti me_i d.

Looking at the primary keys, the following hierarchies in the Sales History
database were identified:

« Products — This hierarchy has four levels (pr od_i d, pr od_subcat egory,
pr od_cat egory, and product s_al |) that map to columns in the pr oduct s
tables. The lowest level of the hierarchy is pr od_i d and the highest level is
products_all.

« Channels — This hierarchy has three levels (channel _i d,
channel _cl ass, and channel s_al |) that map to columns in the
channel s tables. The lowest level of the hierarchy is channel _i d and the
highest level is channel s_al | .

« Promotions — This hierarchy has four levels (pr ono_i d,
pronmo_subcat egory, prono_cat egory, and pr onps_al |) that map to
columns in the pr onot i ons tables. The lowest level of the hierarchy is
prono_i d and the highest level is pronos_al | .

« Customers — This hierarchy has seven levels that map to columns in two
different relational tables. Four of these levels (country_i d, regi on,
subr eagi on, and wor | d) map to columns in the count ri es table and
three levels (cust _i d, st at e_provi nce, and ci t y) map to columns in
the cust oner s table. The lowest level of the hierarchy is cust _i d and the
highest level iswor | d.

Working with Relational Tables 10-15

Example: Creating an Analytic Workspace from Sales History Tables

Time hierarchies— Two time hierarchies were identified: Calendar and
Fiscal.

Calendar Time— This hierarchy has five levels (t i me_i d, cal _week_num
cal _nont h_num cal _quarter_numand cal _year) that map to
columnsintheti mes table.

Fiscal Time — This hierarchy has five levels (ti me_i d,fi s_week_num
fis_nmnth _numfis_quarter_numandfis_year)that mapto
columns intheti mes table.

Also, a one-to-many relationship between pr od_i d and suppl i er _i d was
identified.

5. Our application needs to aggregate (summarize) fact data for each level of the
Products, Customers, Channels, and Promotions hierarchies. For the time
hierarchies, our application only needs hierarchies with two levels — the lowest
level of the hierarchy (ti ne_i d) and year (cal _year andfis_year).

6. The following analytic workspace objects were defined to represent the
hierarchies:

For Products, Customers, Channels, and Promotions hierarchies, a
dimension was defined for each level of the hierarchy, a concat dimension
was defined for each hierarchy, and a child-parent self-relation was defined
for each concat dimension. These definitions are shown in examples
Example 10-8 on page 10-17 through Example 10-11 on page 10-18.

For the time hierarchies, two hierarchies were defined. A dimension
containing the names of the two hierarchies was created. Base dimensions
were defined fortine_i d,fis_year,and cal _year and aconcat
dimension was defined that specified all of these dimensions as base
dimensions. Since there are two time hierarchies the child-parent
self-relation created for the Times hierarchy is dimensioned by both the
concat dimension and the hierarchies (by name). These definitions are
shown in Example 10-12, "Analytic Workspace Definitions for the Times
Hierarchies" on page 10-18

For the facts (quantity_sol d, amount _sol d, theunit _cost and

uni t _pri ce), analytic workspace variables were defined. All of these
variables would be sparsely populated if they were dimensioned by the
concat dimensions, so one composite was defined for each variable. The
variables are dimensioned by those composites. The definitions for the
variables for the fact data is shown in Example 10-13, "Analytic Workspace

10-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Creating an Analytic Workspace from Sales History Tables

Definitions for Variables for Facts" on page 10-18 include definitions for
these composites.

Our applications had no need of other data. However, Example 10-14, "Definitions
for Variables for Promotions Dimension Attributes” on page 10-19 show definitions
of analytic workspace variables to which promotions attributes could be mapped.
For an example of how to define relational views of the awsh analytic workspace
see the example of using the OLAP_TABLE function in Oracle9i OLAP User’s Guide.

Example 10-8 Analytic Workspace Definitions for the Products Hierarchy

DEFINE aw_prod_id DI MENSI ON NUMBER (6)

DEFI NE aw_pr od_subcat egory DI MENSI ON TEXT

DEFI NE aw_prod_cat egory DI MENSI ON TEXT

DEFI NE aw_products_al | DI MENSI ON TEXT

DEFI NE aw_products DI MENSI ON CONCAT (aw_products_all -
aw_prod_category -
aw_prod_subcat egory -
aw_prod_i d)

DEFI NE aw_products. parents RELATI ON aw_products <aw_product s>

DEFI NE aw_supplier_id DI MENSI ON TEXT

DEFI NE aw _prod_i d. aw_supplier_id RELATION aw supplier_id <aw prod_i d>

Example 10-9 Analytic Workspace Definitions for the Channels Hierarchy

DEFI NE aw channel _id DI MENSI ON TEXT

DEFI NE aw channel _cl ass DI MENSI ON TEXT

DEFI NE aw_channel s_al | DI MENSI ON TEXT

DEFI NE aw_channel s DI MENSI ON CONCAT(aw_channel s_al | -
aw_channel _cl ass -
aw_channel _i d)

DEFI NE aw_channel s. parents RELATI ON aw_channel s <aw_channel s>

Example 10-10 Analytic Workspace Definitions for the Promotions Hierarchy

DEFI NE aw _prono_i d DI MENSI ON NUVBER(6)

DEFI NE aw_promo_subcat egory DI MENSI ON TEXT

DEFI NE aw_prono_cat egory DI MENSI ON TEXT

DEFI NE aw_promos_al | DI MENSI ON TEXT

DEFI NE aw_pronmos DI MENSI ON CONCAT(aw_pronos_al | -
aw_prono_cat egory -
aw_pronp_subcat egory -
aw_prono_i d)

DEFI NE aw_pr onos. parents RELATI ON aw_pronps <aw_pronps>

Working with Relational Tables 10-17

Example: Creating an Analytic Workspace from Sales History Tables

Example 10-11 Analytic Workspace Definitions for the Customers Hierarchy

DEFI NE aw _cust _i d DI MENSI ON NUMBER (8)

DEFINE aw city DI MENSI ON TEXT

DEFI NE aw st ate_provi nce DI MENSI ON TEXT

DEFINE aw_country_id DI MENSI ON TEXT

DEFI NE aw_subregi on DI MENSI ON TEXT

DEFI NE aw_regi on DI MENSI ON TEXT

DEFI NE aw wor | d DI MENSI ON TEXT

DEFI NE aw_cust ormers DI MENSI ON CONCAT(aw worl d -
aw_region -
aw_subregi on -
aw_country_id -
aw state_province -
aw city -
aw_cust _i d)

DEFI NE aw_cust oner s. parents RELATI ON aw_cust omers <aw_cust oner s>

Example 10-12 Analytic Workspace Definitions for the Times Hierarchies

DEFINE aw time_id DI MENSI ON TEXT
DEFI NE aw_cal _year DI MENSI ON NUMBER(4)
DEFINE aw fis_year DI MENSI ON NUMBER(4)
DEFINE aw times DI MENSI ON CONCAT (aw_cal _year -
aw fis_year -
aw_time_id)
DEFI NE aw_ti mes_hi ernanes DI MENSI ON TEXT
DEFINE aw_tinmes. parents RELATION aw_tinmes <aw_tines aw_times_hi er names>

Example 10-13 Analytic Workspace Definitions for Variables for Facts

DEFI NE aw_cost sdi ns COVWPCSI TE <aw_products aw_ti nes>

DEFINE aw_unit_cost VARIABLE NUMBER (10, 2) <aw costsdins -
<aw_products aw tines>>

DEFINE aw_unit_price VAR ABLE NUMBER (10, 2) <aw costsdins -
<aw_products aw_tines>>

DEFI NE aw_sal esdi ns COVPCSI TE <aw_products aw_custonmers aw_tines -
aw_channel s aw_pronos>
DEFINE aw_quantity_sol d VAR ABLE NUMBER(3) <aw sal esdins -
<aw_products aw _custoners aw tinmes aw_channel s aw_pr onos>>
DEFI NE aw_amount _sol d VARI ABLE NUMBER(10, 2) <aw_sal esdins -
<aw_products aw_custoners aw_tines aw_channel s aw_pr onos>>

10-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Creating an Analytic Workspace from Sales History Tables

Example 10-14 Definitions for Variables for Promotions Dimension Attributes

DEFI NE aw_promo_name VAR ABLE TEXT <aw_prono_i d>

DEFI NE aw_promo_cost VAR ABLE NUVBER(10, 2) <aw_prono_i d>
DEFI NE aw_promo_begi n_dat e VARI ABLE DATE <aw_prono_i d>
DEFI NE aw_promo_end_dat e VARI ABLE DATE <aw prono_i d>

Populating Analytic Workspace Objects with Sales History Data

In this example there are a number of OLAP DML programs that copy the data
from the relational Sales History database into the objects in the analytic workspace
named awsh:

« The following programs copy data from the relational tables into analytic
workspace dimensions and variables:

Example 10-15, "get_products_hier Program" on page 10-20 copies the data
from the dimension tables into the base dimensions of the aw_pr oduct s
concat dimension using SQL FETCHcommands with the APPEND keyword.
As the base dimensions of aw_pr oduct s are populated, Oracle OLAP
automatically populates aw_pr oduct s, itself. As the THEN clause of the
SQ. FETCHcommand executes, Oracle OLAP fetches data into the
child-parent self-relation for aw_pr oduct s. This program also populates
the aw_suppl i er _i d dimension and its relation.

Example 10-16, "get_channels_hier Program" on page 10-21,

Example 10-17, "get_promos_hier Program™ on page 10-22, Example 10-18,
"get_customers_hier Program" on page 10-22, and Example 10-19,
"get_times_hiers Program" on page 10-24 copy the data from the dimension
tables into analytic workspace dimensions and relations that are used to
represent hierarchical dimensions. Because these dimensions are empty
before these programs execute, the SQ. FETCH command uses the APPEND
keyword. As the base dimensions are populated, Oracle OLAP
automatically populates the concat dimension that represents the hierarchy.
As the THEN clause of the SQL FETCH command executes, Oracle OLAP
fetches data into the child-parent self-relation for concat dimension that
represents the hierarchy.

« The following programs copy the facts from the relational tables into analytic
workspace variables. These examples assume that the base dimension for these
variables are already populated. Consequently, the SQL FETCHcommands in
these programs use the MATCH keyword. Also, because the composite that the
variables are dimensioned by is constructed of concat dimensions, the SQL
FETCHcommands uses a QDR to specify dimension values for the variable.

Working with Relational Tables 10-19

Example: Creating an Analytic Workspace from Sales History Tables

« Example 10-20, "get_costs Program" on page 10-25 copies the facts from
the cost s table into analytic workspace variables.

« Example 10-21, "get_sales Program" on page 10-26 copies the facts from the
sal es table into analytic workspace variables.

« Example 10-23, "get_promos_attr Program" on page 10-27 copies attribute data
from the Promotions dimension table into analytic workspace variables. This
program assumes that the base dimensions are already populated and uses a
SQL | MPORT command with the MATCH keyword.

Example 10-15 get products_hier Program

ALLSTAT
" Fetch values into the products hierarchy
SQL DECLARE grabprods CURSOR FOR SELECT prod_total, -
prod_cat egory, -
prod_subcat egory, -
prod_id -
FROM sh. product s
SQL OPEN grabpr ods
SQL FETCH grabprods LOOP | NTO : APPEND aw_products_al |
: APPEND aw_prod_category -
: APPEND aw_prod_subcat egory -
: APPEND aw prod_id

SQL CLOSE grabprods
SQL CLEANUP
" Update the anal ytic workspace and make the updates permanent
UPDATE
COWM T
" Fetch values into supplier_id
SQL DECLARE grabsupi d CURSOR FOR SELECT supplier_id -
FROM sh. product s
SQL OPEN grabsupid
SQL FETCH grabsupid LOOP | NTO : APPEND aw_supplier_id
SQL CLOSE grabsupid
SQL CLEANUP
" Update the anal ytic workspace and nake the updates permanent
UPDATE
COWM T

10-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Creating an Analytic Workspace from Sales History Tables

" Popul ate self-relation for concat dinmension
" and relation between aw prod_id and aw supplier_id
SQL DECLARE mekerel s CURSOR FOR SELECT prod_total, -
prod_category, -
prod_subcategory, -
prod_id, -
supplier_id -
FROM sh. product s
SQ. OPEN rmakerel s
SQL FETCH makerel s LOOP | NTO : MATCH aw_products_al | -
: MATCH aw _prod_cat egory -
: MATCH aw_pr od_subcat egory -
: MATCH aw prod_id -
: MATCH aw_supplier_id -
THEN aw_products. parent s(aw_products aw_prod_id) -
= aw_product s(aw_prod_subcat egory aw prod_subcat egory) -
aw_product s. parent s(aw_products aw_prod_subcat egory) -
= aw_product s(aw_prod_category aw_prod_category) -
aw_products. parent s(aw_products aw_prod_category) -
= aw_product s(aw_products_al | aw products_all) -
aw _prod_i d. aw supplier_id = aw supplier_id
SQ. CLOSE naekerel s
SQL CLEANUP
" Update the anal ytic workspace and nake the updates permanent
UPDATE
COWM T

Example 10-16 get _channels_hier Program

ALLSTAT
" Fetch values for the Channel s hierarchy
" and popul ate self-relation for the hierarchy
SQL DECLARE grabchannel data CURSOR FOR SELECT channel _total, -
channel _cl ass, -
channel _id -
FROM sh. channel s
SQL OPEN grabchannel dat a
" Fetch values into analytic workspace objects for the the channel s hierararchy
SQL FETCH grabchannel data LOOP | NTO : APPEND aw channel s_al | -
: APPEND aw_channel _cl ass -
: APPEND aw_channel _i d -
THEN aw_channel s. parent s(aw_channel s aw_channel _i d) -
= aw_channel s(aw_channel _cl ass aw _channel _cl ass) -
aw_channel s. parent s(aw_channel s aw_channel _cl ass) -
= aw_channel s(aw_channel s_al | aw _channel s_al)

Working with Relational Tables 10-21

Example: Creating an Analytic Workspace from Sales History Tables

SQL CLOSE grabchannel data

SQL CLEANUP

" Update the anal ytic workspace and make the updates permanent
UPDATE

COWM T

Example 10-17 get _promos_hier Program

ALLSTAT
" Fetch values for the Pronos hierarchy
" and popul ate self-relation for the hierarchy
SQL DECLARE grabpronpdata CURSOR FOR SELECT prono_total, -
prono_cat egory, -
prono_subcat egory,
prono_id -
FROM sh. pronoti ons
SQL OPEN grabpronodat a
SQL FETCH grabpronodata LOOP | NTO : APPEND aw _pronos_al | -
: APPEND aw _prono_category -
: APPEND aw_prono_subcat egory -
: APPEND aw prono_id -
THEN aw_pr onms. par ent s(aw_pronos aw_prono_id) -
= aw_pronos(aw_prono_subcat egory aw_prono_subcat egory) -
aw_pr onos. par ent s(aw_pronos aw_pronp_subcat egory) -
= aw_pronos(aw_prono_cat egory aw_prono_cat egory) -
aw_pronos. par ent s(aw_pronos aw_prono_cat egory) -
= aw_pronos(aw_pronos_all aw pronmos_all)
SQL CLOSE grabpronodat a
SQL CLEANUP
" Update the anal ytic workspace and nake the updates permanent
UPDATE
COWM T

Example 10-18 get_customers_hier Program

ALLSTAT
" Fetch values for the Custonmers hierarchy fromthe countries table
" and popul ate the self-relation for the hierarchy with these val ues
SQL DECLARE grabcountrydata CURSOR FOR SELECT country_total, -

country_region, -

country_subregion, -

country_id -

FROM sh. countries

10-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Creating an Analytic Workspace from Sales History Tables

SQL OPEN grabcount rydat a
SQL FETCH grabcountrydata LOOP | NTO : APPEND aw world -
- APPEND aw region -
: APPEND aw_subregi on -
: APPEND aw_country_id -
THEN aw_cust oners. parent s(aw_custoners aw _country_id) = -
aw_cust oner s(aw_subr egi on aw_subr egi on) -
aw_cust oners. parent s(aw_cust oners aw_subregion) = -
aw_cust oners(aw_regi on aw_region) -
aw_cust oners. parent s(aw_customers aw region) = -
aw_cust oners(aw_worl d aw worl d)
SQL CLOSE grabcountrydata
SQL CLEANUP
" Update the anal ytic workspace and nake the updates permanent
UPDATE
COWM T
" Fetch values for the Custonmers hierarchy fromthe custoners table
" and popul ate the self-relation for the hierarchy with these val ues
SQL DECLARE grabcustdata CURSOR FOR SELECT country_id, -
cust_state_province,
cust_city, -
cust_id -
FROM sh. cust omer s
SQL OPEN grabcust dat a
SQL FETCH grabcustdata LOOP | NTO : MATCH aw _country_id -
: APPEND aw st ate_provi nce -
:APPEND aw city -
- APPEND aw cust id -
THEN aw cust oners. parents(aw_cust omers aw cust_id) = -
aw_custoners(aw city awcity) -
aw_custoners. parents(aw_custoners aw city) = -
aw_cust oners(aw_state_provi nce aw _state_province) -
aw_custoners. parents(aw_cust omers aw_state_provi nce) = -
aw_custoners(aw _country_id aw_country_id)
SQL CLOSE grabcust data
SQL CLEANUP
" Update the anal ytic workspace and nake the updates permanent
UPDATE
COWM T

Working with Relational Tables 10-23

Example: Creating an Analytic Workspace from Sales History Tables

Example 10-19 get _times_hiers Program

NLS DATE FORMAT = ' <YYYY><MW><DD>'

DATEFORMAT = ' <YYYY>- <Mwb- <DD>'

" Popul ate the hierachy nane dinension with names of hierarchies
MAI NTAIN aw_ti nes_hi ernanes ADD ' Cal endar’ 'Fiscal’

" Update the anal ytic workspace and nake the updates permanent
UPDATE

COW T

" Fetch values for the Cal Times and FisTimes hierarchies

" and popul ate self-relation tine

SQL DECLARE grabcal year CURSOR FOR SELECT cal endar _year -
FROM sh. times

SQL OPEN grabcal year

SQL FETCH grabcal year LOOP | NTO : APPEND aw cal _year

SQL CLOSE grabcal year

SQL CLEANUP

" Update the anal ytic workspace and nake the updates permanent
UPDATE

COWM T

SQL DECLARE grabfisyear CURSCR FOR SELECT fiscal _year -

FROM sh. ti nes
SQL OPEN grabfi syear
SQL FETCH grabfisyear LOOP | NTO : APPEND aw fis_year
SQL CLOSE grabfisyear

SQ. CLEANUP

" Update the anal ytic workspace and make the updates permanent
UPDATE

COWM T

SQL DECLARE grabtineid CURSOR FOR SELECT tine_id -

FROM sh. times
SQL OPEN grabtineid
SQL FETCH grabtineid LOCOP | NTO : APPEND aw tine_id
SQL CLOSE grabtineid
SQL CLEANUP
" Update the anal ytic workspace and nake the updates permanent
UPDATE
COWM T
ALLSTAT
LIMT aw_tines_hi ernanmes TO ' Cal endar’
SQL DECLARE nekecal hi er CURSOR FOR SELECT cal endar _year, -
time_id -
FROM sh. times
SQ. OPEN makecal hi er

10-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Creating an Analytic Workspace from Sales History Tables

SQL FETCH makecal hi er LOOP | NTO : MATCH aw_cal _year -
: MATCH aw time id -
THEN aw tines. parents(aw times aw tine_id) -
= aw_times(aw cal _year aw cal _year)
SQL CLOSE makecal hi er
SQL CLEANUP
" Update the anal ytic workspace and nake the updates permanent
ALLSTAT
UPDATE
COWM T
LIMT aw times_hiernames TO ' Fiscal’
SQL DECLARE makefishi er CURSCR FOR SELECT fiscal _year, -
time_id -
FROM sh. ti nes
SQ. OPEN makefi shier
SQL FETCH makefishier LOOP I NTO : MATCH aw fis_year -
: MATCH aw time id -
THEN aw_tines. parents(aw_times aw tine_id) -
= aw times(aw fis_year aw fis_year)
SQL CLOSE makefi shier
SQL CLEANUP
" Update the anal ytic workspace and make the updates permanent
ALLSTAT
UPDATE
COWM T

Example 10-20 get_costs Program

ALLSTAT

NLS_DATE_FORVAT = ' <YYYY><Mb<DD>’

DATEFORMAT = ’ <YYYY>- <MV>- <DD>’

" Declare a cursor naned grabcosts

SQL DECLARE grabcosts CURSCR FOR SELECT prod_id, -
tinme_id, -
unit_cost,
unit_price -

FROM sh. cost s
" Qpen the cursor
SQL OPEN grabcosts

Working with Relational Tables 10-25

Example: Creating an Analytic Workspace from Sales History Tables

" Inport the data
SQL FETCH grabcosts LOOP | NTO : MATCH aw prod_id -
: MATCH aw time_id -
saw_unit_cost (aw_products aw prod_id -
aw times aw tinme_id) -
;aw_unit_price (aw_products aw prod_id -
aw tines aw_time_id)
" Cose the cursor
SQL CLOSE grabcosts
" Cleanup from SQL query
SQL CLEANUP
" Update and nake changes pernanent
UPDATE
COWM T

Example 10-21 get sales Program

ALLSTAT

NLS_DATE _FORMAT = ’ <YYYY><M><DD>'

DATEFORMAT = ' <YYYY>- <Mb>- <DD>'

" Declare a cursor naned grabsal es

SQL DECLARE grabsal es CURSCR FOR SELECT prod_id, -
cust_id, -
time_id,
channel _id, -
promo_id, -
quantity_sold, -
amount _sold -

FROM sh. sal es

10-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Creating an Analytic Workspace from Sales History Tables

" Qpen the cursor
SQL OPEN grabsal es
" Inport values into anal ytic workspace objects
SQL FETCH grabsal es LOOP | NTO : MATCH aw prod_id -
. MATCH aw cust _id -
MATCH aw time_id -
: MATCH aw_channel _id -
: MATCH aw prono_id -
raw _quantity_sold (aw_products aw prod_id -
aw custonmers aw cust _id -
aw times awtime id -
aw_channel s aw_channel _id -
aw_pronpbs aw_prono_id) -
:aw_armount _sol d (aw_products aw prod_id -
aw custonmers aw cust _id -
aw times aw time_ id -
aw channel s aw channel id -
aw_pronos aw_prono_i d)
" Cose the cursor
SQL CLOSE grabsal es
" Cleanup from SQL query
SQL CLEANUP
" Update and make changes pernmanent
UPDATE
COWM T

Example 10-22 Definitions for Variables for Promotions Dimension Attributes

DEFI NE aw_promo_name VAR ABLE TEXT <aw_prono_i d>

DEFI NE aw_promo_cost VARI ABLE NUMBER(10, 2) <aw_prono_i d>
DEFI NE aw_promo_begi n_dat e VARI ABLE DATE <aw_prono_i d>
DEFI NE paw_romo_end_dat e VARI ABLE DATE <aw prono_i d>

Example 10-23 get_promos_attr Program

ALLSTAT

" Declare a cursor naned grabpromattr

SQL DECLARE grabprompattr CURSOR FOR SELECT prono_id,
prono_nane, -
prono_cost, -
prono_begi n_date, -
prono_end_date -

FROM sh. pronot i ons
" Qpen the cursor
SQL OPEN grabpronpattr

Working with Relational Tables 10-27

Writing Data from Analytic Workspace Objects into Relational Tables

" Inport new values into the anal ytic workspace objects

SQL | MPORT grabpronoattr | NTO : MATCH aw prono_id -
;aw_prono_nane -
;aw_prono_cost -
:aw_prono_begi n_date -
:aw_prono_end_dat e

" Cose the cursor

SQL CLOSE grabpronoattr

" Cleanup from SQL query

SQL CLEANUP

" Update and nmake changes pernmanent

UPDATE

COWM T

Writing Data from Analytic Workspace Objects into Relational Tables

To copy data from analytic workspace object you can simply use the SQL | NSERT
or UPDATE statements as arguments to the OLAP DML SQ. command. In this case,
you code the OLAP DML SQL in a loop and you use the analytic workspace
variables as input host variables in your SQL statements. However, you can
improve performance by doing a direct insert using the PREPARE and EXECUTE
statements as arguments to the OLAP DML command.

Tip: You can access data in an analytic workspace in a

SQL SELECT statement without copying data from the analytic
workspace into relational tables by defining a view of the analytic
workspace data. For more information on defining relational views
of analytic workspace data, see Oracle9i OLAP User’s Guide.

10-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

Writing Data from Analytic Workspace Objects into Relational Tables

Using SQL PREPARE and SQL EXECUTE
The syntax of the PREPARE and EXECUTE statements is shown below.

SQL PREPARE st at enent - name FROM sql - st at ement [i nsert-options]
SQ. EXECUTE st at enent - nane

The arguments for these statements are described below:

st at enent - name is the name that you assign to the executable code
produced from sql - st at enent . You can redefine st at enent - nane just by
issuing another SQL PREPARE command.

sql - st at enent is the SQL statement that you want to precompile for more
efficient execution. It cannot contain ampersand (&) substitution or variables
that are undefined when the program is compiled.

i nsert-options are DI RECT, NOLOG and PARTI Tl ONthat apply when
sql - st at ement is an | NSERT statement. When you prepare an | NSERT
statement and do not specify any values for the insert options, Oracle OLAP
specifies NOfor the DI RECT and NOLOG insert options and does not specify a
value for the PARTI TI ON option. Thus, by default, a prepared | NSERT is a
normal insert, redo information is recorded in the redo log files, and other
sessions cannot insert data into the table into which your program is inserting
values. You can improve performance of your | NSERT, by changing the values
of these options. You can specify that you want a direct insert, that you do not
want t he redo information recorded in the redo log files, and the partition or
subpartition that you want locked (that is, the partition or subpartition into
which you do not want another session to be able to insert data).

Performing a Direct Insert

Direct-path insert enhances performance during insert operations and is similar to
the functionality of Oracle’s direct-path loader utility, SQL*Loader. To specify a
direct-path insert, specify DI RECT=YES as the first insert option in the OLAP DML
SQ. PREPARE | NSERT command.

Inserting Workspace Data into Relational Tables: Example

Suppose that you have been using the OLAP DML to plan the introduction of a new
product line, and now you want to add information about the product ids and the
product names for these new products to the Sales History database. You can copy
this information from your analytic workspace into the pr oduct s table using an

Working with Relational Tables 10-29

Writing Data from Analytic Workspace Objects into Relational Tables

OLAP DML program. The definitions for the analytic workspace objects that
contain the data are shown in Example 10-24.

The program fragment in Example 10-25 shows how you would use a FOR loop so
that all product values currently in status are copied to a table named Products.
Example 10-25 will run much more efficiently when the | NSERT statement is
compiled with the PREPARE statement. Example 10-26 shows the PREPARE
statement being used to compile the | NSERT statement with a name of
write_product s, which is then run by an EXECUTE statement within the FOR
loop.

Example 10-24 Analytic Workspace definitions for add_newprods program

DEFI NE aw _prod_i d DI MENSI ON NUMBER (10, 0)
DEFI NE aw_product _name DI MENSI ON TEXT

The program fragment in Example 10-25 shows how you would use a FOR loop so
that all product values currently in status are copied to the relational table named
pr oduct s. Example 10-25 will run much more efficiently when the | NSERT
statement is compiled with the PREPARE statement. Example 10-26 shows the
PREPARE statement being used to compile the | NSERT statement with a name of
write_product s, which is then run by an EXECUTE statement within the FOR
loop. Example 10-27 shows the PREPARE statement being used to compile the

| NSERT statement for direct insert (DI RECT=YES).

Example 10-25 Inefficient FOR Loop

FOR prod
DO
SQL INSERT I NTO products -
VALUES(: aw_prod_i d, :aw_product _name)
| F SQLCODE NE 0
THEN BREAK
DOEND

10-30 Oracle9i OLAP Developer’s Guide to the OLAP DML

Writing Data from Analytic Workspace Objects into Relational Tables

Example 10-26 Improving Efficiency Using Precompiled Code

SQL PREPARE write_products FROM -
I NSERT | NTO products -
VALUES(: aw_prod_i d, :aw_product_nane)

FOR prod
DO
SQL EXECUTE write_products
| F SQLCCDE NE 0
THEN BREAK
DOEND

Example 10-27 Improving Efficiency Using a Direct Insert

SQL PREPARE write_products FROM -
I NSERT | NTO products -
VALUES(: aw_prod_i d, :aw_product _nane)
DI RECT=YES

FOR prod
DO
SQL EXECUTE write_products
| F SQLCODE NE 0
THEN BREAK
DOEND

Conditionally Updating a Relational Table

You can also use the values of an analytic workspace variable to update the values
in a relational table. Using a FOR loop, your OLAP DML program steps through the
specified dimension value by value and uses a WHERE clause to point to the
corresponding row in the relational table.

Working with Relational Tables 10-31

Using Stored Procedures and Triggers

The program fragment in Example 10-28 updates only those rows in the pr oduct s
table where the values in the pr od_i d column match the aw pr od_i d dimension
values currently in status.

Example 10-28 Conditionally Updating a Relational Table

FOR prod
DO
SQL UPDATE products -
SET product _name = :aw_newproduct _nane -
WHERE prod_id = :aw prod_id
I F SQLCODE NE 0
THEN BREAK
DOEND

Using Stored Procedures and Triggers

Support is provided for stored procedures and triggers. They cannot contain
SELECT statements. an analytic workspace stored procedure cannot contain output
variables or transactions, nor can it call another procedure. You can create a stored
procedure or trigger in an OLAP DML program. Example 10-29 shows the OLAP
DML syntax for creating a procedure named new_pr oduct s.

OLAP DML syntax differs slightly from the standard SQL syntax. A tilde (~) is
required instead of a semicolon as a terminator, and two colons (: :) are required
instead of one in an assignment statement.

Example 10-29 Creating a Stored Procedure Named new_products

SQL CREATE PROCEDURE new_products -

(aw_id CHAR, aw nanme CHAR aw cost NUMBER) IS -
price nunber~ -

BEG N -
aw price ::= aw_cost * 2.5~ -
I NSERT | NTO products -

VALUES(aw_i d, aw _name, aw price)~ -
END~

10-32 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using Stored Procedures and Triggers

Executing a stored procedure

You use a PROCEDURE statement to run a stored procedure, using the following
syntax.

SQL PROCEDURE procedure-nane (argl, arg2, arg3, . . .)

The arguments can be literal text or input host variables. When you use input host
variables, be sure to use a colon before the variable name. Also be sure to use the
same number of arguments with appropriate data types for the parameters defined
in the procedure. You can use literal arguments when executing a stored procedure
as shown in Example 10-30 which uses the new_pr oduct s procedure to insert a
single row in the pr oduct s table, or you can specify analytic workspace objects as
arguments as shown in Example 10-31 which runs the same procedure but inserts
data stored in analytic workspace dimensions and variables into the pr oduct s
table. The add- pr ods program in Example 10-31, "Using Workspace Objects as
Parameters for a Stored Procedure" illustrates using a FOR loop to loop over all of
the values in status. To call add_pr ods, you issue a command like the following to
set the status of pr od to include only the values you wish to update.

CALL add_prods(’last 5')

Example 10-30 Providing Literal Values to a Stored Procedure

SQL PROCEDURE new_products -
(’ P81, '8mm Cancorder’)

Example 10-31 Using Workspace Objects as Parameters for a Stored Procedure

DEFI NE add_prods PROGRAM

LD Add new products using stored procedure new products
PROGRAM

ARG newprods TEXT

PUSH aw_pr od

LIMT aw_prod TO &newpr ods

" Loop over aw prod to insert the data
FOR aw _prod
DO
SQL PROCEDURE new_product s(:aw_prod_i d, :paw_rod_name)
DOEND
POP aw prod
END

Working with Relational Tables 10-33

Checking for Errors

Checking for Errors

Although the OLAP DML will signal some SQL errors, it does not automatically
signal an error when there is an error in a SQL statement. Instead, the OLAP DML
provides support to help you handle errors that are returned.

In your programs, you will need to provide the logic for handling SQL errors. The
OLAP DML provides two options, SQLCODE and SQLERRM whose values reflect the
SQLCODE and SQLERRMvalues set in the database.

SQLCODE Option

SQLCODE contains an integer error code number. Your programs should test the
value of SQLCODE after every SQL command to make sure that the command
executed successfully. You can also test the value of SQLCODE to determine whether
you need to break out of a loop. SQLCODE typically has one of the values shown in
Table 10-3.

Table 10-3 Values of SQLCODE

Code Meaning

0 (zero) The last SQL operation was successful.
100 All requested rows have been fetched.
-1 An error has occurred.

Any value that is not 0 or not 100 An error has occurred.

SQLERRM Option

The SQLERRMoption contains the error message associated with the current error
code. It identifies the condition that caused an error to occur. You can control
whether or not this message is sent automatically to the current outfile. When you
are debugging a program, you will probably want all SQL error messages sent to
the current outfile so that you can see them immediately. However, when your
application is in use, you will want to suppress the error messages and handle the
error condition in a way more suited to your application.

10-34 Oracle9i OLAP Developer’s Guide to the OLAP DML

Checking for Errors

SQLMESSAGES Option

The SQLMESSAGES option controls whether SQL messages are sent to the current
outfile, which is usually the screen. To send SQL messages to the current outfile,
issue the following command.

SQLMESSAGES = yes

Working with Relational Tables 10-35

Checking for Errors

10-36 Oracle9i OLAP Developer’s Guide to the OLAP DML

11

Reading Data from Files

This chapter describes how to read data from external files. It includes the following
topics:

« Introducing Data-Reading Programs

« Reading Files

« Specifying File Names in the OLAP DML

« Reading Data from Files

« Reading and Maintaining Dimension Values
« Processing Input Data

« Processing Records Individually

« Processing Several Values for One Variable

Reading Data from Files 11-1

Introducing Data-Reading Programs

Introducing Data-Reading Programs

There is a group of commands, often referred to as data-reading commands, that
you can use in programs to read data from external files in various formats: binary,

packed decimal, or text.

While some of the data-reading commands can be used individually, it is best to
place them in a program that is often referred to as a data-reading program. In this
way you can minimize mistakes in typing and test your commands on smaller sets
of data. A program also allows you to perform operations in which several
commands are used together to loop over many records in a file.

The data-reading commands are described below.

Function or Command

Description

FI LEERROR function

Returns information about the first error that occurred when
you are processing a record from an input file with the
data-reading commands FI LEREAD and FI LEVI EW

FI LENEXT function

Makes a record available for processing by the FI LEVI EW
command. It returns YES when it is able to read a record and
NOwhen it reaches the end of the file.

FI LEREAD command

Reads records from an input file, processes the data, and stores
the data in workspace dimensions, composites, relations, and
variables, according to descriptions of the fields in the input
record.

FI LEVI EWcommand

Works in conjunction with the FI LENEXT function to read one
record at a time of an input file, process the data, and store the
data in workspace dimensions and variables according to the
descriptions of the fields.

RECNO function

Reports the current record number of a file opened for reading.

11-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Reading Files

You use the data-reading commands with file /O commands, such as the
commands described below.

Function or Command Description

FI LECLOSE command Closes an open file.

FI LEGET function Returns text from a file that has been opened for reading.

FI LEOPEN function Opens a file, assigns it a fileunit number (an arbitrary
integer), and returns that number.

FI LEPUT command Writes data that is specified in a text expression to a file that is
opened in WRI TE or APPEND mode.

FI LEQUERY function Returns information about one or more files.

FI LESET command Sets the paging attributes of a specified fileunit.

Reading Files

While reading from a file, you can format the data from each field individually, and
use DML functions to process the information before assigning it to a workspace
object. Reading a file generally involves the following steps.

1. Open the file you want to read.

2. Read data from the file one record or line at a time.

3. Process the data and assign it to one or more workspace objects.
4. Close the file.

The FI LEREAD and FI LEVI EWcommands have the same attributes and can do the
same processing on your data. However, they differ in important ways:

« The FI LEREAD command loops automatically over all records in the file and
processes them automatically. Use FI LEREAD when all records in the file are the same.

« The FI LEVI EWcommand processes one record at a time. Use FI LEVI EWwhen
there is more than one type of record in the file.

Reading Data from Files 11-3

Specifying File Names in the OLAP DML

Creating a Program to Read Data

The following table shows, for each method, the commands you need to open and

close the input file, to read the file, and to handle errors that might occur.

Program Section FILEREAD FILEVIEW
Initialization VARI ABLE funit | NTEGER VARI ABLE funit | NTEGER
TRAP ON error TRAP ON error
Body funit = Fl LEOPEN(- funit = FlI LEOPEN(-
"alias/datafile’ READ) "alias/datafile’ READ)
FI LEREAD funi t VH LE FI LENEXT(funit)
DO
FILEVIEWfunit .
. DCEND
FI LECLOSE funit FI LECLCSE funit
Normal Exit RETURN RETURN
Abnormal Exit error: error:
IF funit NE na IF funit NE na
THEN FI LECLCSE f uni t THEN FI LECLCSE funi t

Note:

The error handling in the abnormal exit section of the

programs closes the file only when the file is open. The FI LEOPEN
function signals an error when for any reason the system cannot
open the file. The program tries to close the file after the ERROR
label only when FUNI T holds a valid file unit number. You can add
additional commands to the error handling section as well. These
sections of the program are the same for both methods.

Specifying File Names in the OLAP DML

The FI LEOPEN function opens a file and returns an integer that uniquely identifies
that file. This file identifier is known as a fileunit. Once you have opened a file and
obtained a fileunit, all subsequent calls to data-reading commands and file I/0
commands for that file reference the fileunit instead of the file name.

A file identifier is a character string that specifies a file stored on disk. The file
identifier includes the directory alias and the file name; these two components are
separated by a forward slash (/). You can use the CDA command to specify a current

11-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Reading Data from Files

directory alias. In this case, you do not have to specify a directory alias in a file
identifier, because Oracle OLAP assumes that the file is in your current directory
alias. Contact your Oracle DBA for access rights to a directory alias where you can
read and write files.

When specifying file identifiers in OLAP DML commands, it is good practice to
always enclose them in single quotation marks. This will prevent parsing errors in
cases where file name components are also workspace object names or reserved

words.

Reading Data from Files

Data-reading programs read data from a file, record-by-record, and assign that data
to variables, relations, dimensions, and composites in your analytic workspace.
When the records in the file contain dimension values, you can limit dimensions to
these values with the FI LEREAD command before assigning the data to a variable
dimensioned by them.

Example 11-1 Using FILEREAD in a Data-Reading Program

Suppose you want to update unit sales data for the pr oduct dimension in an
analytic workspace. The new sales information is stored in a file called uni t s. dat ,
which has the layout shown in the following figure.

1111111111222
1234567890123456789012

DISTRICT PRODUCT Unit Sales

Columns Description
1- 8 District Names
9-16 Product Names
17 - 22 Unit Sales data

The FI LEREAD command that reads the sample uni t s. dat file is shown below.

FI LEREAD funit -
COLUW 1 WDTH 8 district -
COLUW 9 WDTH 8 product -
COLUW 17 WDTH 6 units

Reading Data from Files 11-5

Reading Data from Files

This command is processed in these steps:

1. The field is read beginning in column 1, and di stri ct dimension is limited to
the value read. When the value read is not a dimension value of di stri ct, an
error occurs.

2. The second field is read, and the pr oduct dimension is limited.

3. The third field is read, and the value is assigned to the uni t s variable in the
cell corresponding to the district and product read in Steps 1 and 2.

The full program, with commands to open and close the file, is shown next.

DEFI NE readit1l PROGRAM
LD Read a data file
VARI ABLE funit |NTEGER
TRAP ON error
funit = FILEOPEN(' ol apfiles/units.dat’ READ)
FI LEREAD funit -
COLUW 1 WDTH 8 district -
COLUW 9 WDTH 8 product -
COLUW 17 WDTH 6 units
FI LECLOSE funi t

RETURN
error:
IF funit NE na
THEN FI LECLOSE funit
END

Reading Structured PRN Files

You can also use the data-reading commands to read structured PRN files, which
are produced by many PC software products. In a PRN file, quoted text or a series
of numbers demarcated by spaces or commas constitutes a field of the record.
Instead of specifying the column in which a field starts, you can use the
STRUCTURED keyword to specify that you are reading a structured file. You can also
use one or more FI ELD keywords to indicate the number of the field you want to
read.

Example 11-2 Reading a Structured PRN File
Suppose you want to read sales data from the structured PRN file illustrated below.

010195 "TENTS' "BOSTON' 307 50808. 96
010195 "TENTS' "ATLANTA' 279 46174.92
010195 "TENTS'" "CH CAGO' 189 31279.78

11-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Reading and Maintaining Dimension Values

010195 "TENTS' "DALLAS' 308 50974. 46
010195 "TENTS' "DENVER' 215 35582. 82
010195 "TENTS' "SEATTLE' 276 45678.41
010195 "CANCES" "BOSTON' 352 70489. 44
010195 "CANCES" "ATLANTA" 281 56271.40
010195 "CANCES" "CHI CAGD" 243 48661.74
010195 "CANCES" "DALLAS' 176 35244.72
010195 "CANCES' "DENVER' 222 44456. 41
010195 "CANOES" "SEATTLE' 335 67085.12

The file has pr oduct values in the second field, di stri ct values in the third field,
and sales data in the fifth field.

You can limit the nmont h dimension to the desired month, and then use the
following command to read the sales data from the first six records in the file.

FI LEREAD unit STOPAFTER 6 STRUCTURED FI ELD 2 product -
district FIELD 5 sal es

Reading and Maintaining Dimension Values

The records in a data file often contain dimension values, which are used to identify
the cell in which the data values should be stored. When all of the dimension values
in the file already exist in your analytic workspace, you can use the default attribute
MATCH in the dimension field description. MATCH accepts only dimension values
that already are in the analytic workspace.

When FI LEREAD finds an unrecognized value, the command signals an error that
warns you about the bad data. Your data-reading program can handle the error by
skipping the data and continuing processing, or by halting the processing and
letting you check the validity of the data file.

Example 11-3 Reading Records Only for Existing Dimension Values

The following example shows a data file that contains 6-character values for the
dimension pr oduct i d, names for each product, and the number of units sold.

1234AA00CHOCOLATE CHI P COOKI ES 123
1099BBO0CATMEAL COCKI ES 145
2344CCO0SUGAR COXKI ES 223
3222DDO0OBROMI ES 432
5553EE00G NGER SNAP COCKI ES 233

Reading Data from Files 11-7

Reading and Maintaining Dimension Values

The following workspace objects are used by the example program.

DEFI NE productid DIMENSION | D
DEFI NE product namre VAR ABLE TEXT <productid>
DEFI NE uni ts. sol d VARI ABLE | NTEGER <nont h productid>

The dr. pr og program reads the file. The values of product i d with the associated
product name are already part of the analytic workspace, so the program uses the
product i d values only to set status and assign the units data to the right cells of the
uni t s. sol d variable.

The MATCH attribute is left out of the field description because it is the default.
When the program finds a value for producti d that is not in the analytic workspace,
it branches to the trap label. If the user interrupts the program (that is, the error
name is at t n) or the data file cannot be opened, then the program ends. Otherwise,
the program resets the error trap and branches back to FI LEREAD to continue with
the next record.

The example program, named dr . pr og, has the following definition.

DEFI NE dr. prog PROGRAM
LD Reads a file with existing dinension val ues
PROGRAM
VARI ABLE funit | NTEGER
TRAP ON error
PUSHLEVEL ' save’
PUSH nmont h productid
LIMT nonth TO FIRST 1
funit = FILEOPEN ' ol apfiles/dr.dat’ READ)
next:
FI LEREAD funit -
COLUW 1 WDTH 6 productid -
COLUWN 39 WDTH 3 units.sold
FI LECLOSE funi t
POPLEVEL ' save’
RETURN
error:
"Skip current record and continue processing
IF funit NE na and ERRORNAME NE ' ATTN
THEN DO
TRAP ON error
QOTO next
DOEND

11-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Reading and Maintaining Dimension Values

"Close the file
IF funit NE na
THEN FI LECLCSE funit
POPLEVEL '’ save’
END

Adding New Dimension Values from a Data File

When your data file contains a mixture of existing and new dimension values, you
can add the new values and all the associated data to the analytic workspace by
using the APPEND attribute in the field description.

Example 11-4 Adding New Dimension Values from a Data File

The first FI LEREAD command in the dr . pr 0og2 program uses APPEND to add any
new pr oduct i d values to the analytic workspace. The second FI LEREAD command
includes a field to read the product name so the new data will be complete.

The dimension maintenance performed by APPEND might be done in the same

FI LEREAD command that reads the data, but that would cause inefficient handling
of the data. The data is handled more efficiently when the dimension maintenance
and data reading are performed in two separate passes over the file.

The error processing in this version is shorter because there is no need to skip
nonexistent product values and branch back. If there is an error, then the program
closes the file, restores any pushed values, and terminates.

The program, named dr . pr 0g2, has the following definition.

DEFI NE dr. prog2 PROGRAM
LD Reads a file with new dimension val ues
PROGRAM
VARI ABLE funit |NTEGER
TRAP ON error
PUSHLEVEL ' save’
PUSH nont h productid
LIMT nonth TO FIRST 1
funit = FILEOPEN ' ol apfiles/dr.dat’ READ)
FI LEREAD funit COLUWN 1 APPEND WDTH 6 productid
FI LECLOSE funi t
funit = FILECOPEN' ol apfiles/dr.dat’ READ)
FI LEREAD funit -

COLUW 1 WDTH 6 productid -

COLUW 9 WDTH 30 product nane -

COLUWN 39 WDTH 3 units.sold

Reading Data from Files 11-9

Reading and Maintaining Dimension Values

FI LECLCSE funit
POPLEVEL ' save’

RETURN

error:

IF funit NE na

THEN FI LECLCSE funit

POPLEVEL ' save’

END

Reading Dimension Values by Position

If the target dimension has a data type of TEXT, NTEXT, or | Dand the input field in
the file contains dimension position numbers (rather than dimension values), then
you must specify a conversion type of | NTEGER in the field description. The
conversion type specifies how input data should be converted to values of the target
dimension.

Suppose the target dimension is nont h, then you can use the following command
to read input values that represent positions within the default status of nont h.

FI LEREAD unit COLUWN 1 WDTH 8 | NTEGER nont h

When the input field contains position numbers, you cannot use the APPEND
keyword to add new values to a target dimension.

The Use of Composites

Composites are automatically maintained. The way in which you define and use
composites can dramatically improve or hinder performance. The more you know
about analytic workspace design, especially in regard to the applications that will
be used with an analytic workspace, the more effective your use of composites will
be.

Reading and Maintaining Conjoint Dimensions

When you have conjoint dimensions in your analytic workspace, you can set the
status of those dimensions while reading a file with the FI LEREAD command.
Typically, the records in the data file will have a separate field for each base
dimension of your conjoint dimension. For example, a file might have a market
name in the first field, a product name in the second, and then one or more fields
containing sales data.

11-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Reading and Maintaining Dimension Values

Example 11-5 Reading and Maintaining Conjoint Dimensions

To read the sales data into a variable dimensioned by a conjoint dimension, for
example mar kpr od, you can use a FI LEREAD command as follows.

FI LEREAD funit markprod -
= <W8 market W8 product> W10 sal es

This command will read a value of the mar ket dimension from the first 8-character
field of the record and a value of the pr oduct dimension from the next 8-character
field.

The command will then use the results to set the status of mar kpr od, which is a
conjoint dimension defined as follows.

DEFI NE mar kprod DI MENSI ON <nar ket product >

The command then reads the last field and assigns the value to the variable sal es,
which is dimensioned by mar kpr od.

By including the APPEND keyword in the field description, you can add new values
to mar ket , product, and mar kpr od, when the FI LEREAD command encounters values
in the file that do not match existing dimension values.

FI LEREAD funit APPEND narkprod -
= <W 8 APPEND nar ket W8 APPEND product> W10 sal es

Translating Coded Dimension Values

The fields containing dimension information in your data file might have values
that are not identical to the dimension values in your analytic workspace. The file
values might be abbreviated or otherwise encoded. The way you translate a coded
dimension value varies depending on whether the code is merely an abbreviation
(for example, “P” for pr oduct) or if the code is more complicated.

When the file contains an abbreviated code, you can sometimes complete the value
by using the RSET or LSET attribute to add text to the right or left of the value in
the file.

For example, products in the file might be identified by all-numeric product
numbers, while in your analytic workspace, the values of the pr oduct dimension
might be these same product numbers preceded by the letter P. In this case, you can
use the LSET attribute to add the letter P to the values in the file.

FI LEREAD funit COLUW 1 WDTH 6 LSET ' P product

Reading Data from Files 11-11

Reading and Maintaining Dimension Values

The letter P is added when the value is read from the file; it is not added when the
modified value is matched with or assigned to the pr oduct dimension.

To correctly read values that have less straightforward codes, you can set up
another dimension containing the coded values found in the data file, along with a
relation to the real dimension. FI LEREAD can then use the relation to determine the
actual dimension value. Or you can use any OLAP DML function to alter or
manipulate the coded value to make it match a value in your analytic workspace.

When reading coded data that must be manipulated in some way before being
stored in the target, use an assignment statement (shown below) in the field
description.

target = expression

The expr essi on argument specifies the processing or calculation to be performed.
If you want to include the value just read from the file as part of the expr essi on,
then use the VALUE keyword.

Both of the following field descriptions function identically.

COLUW n WDTH n target

target = COLUW n WDTH n VALUE

Example 11-6 Translating Codes into Dimension Values

This example illustrates the use of an expression for translating codes into
dimension values.

The following example shows the data file, which has 3-character codes for months,
and 2-character codes for districts and products.

BO CH 113945 115
BO CH 118934 115
BO CO 92013 119
BO CO 95820 119
BOW 83201 110
BOW 82986 110
DA CH 111792 115
DA CH 136031 114
DA CO 91641 121
DA CO 96347 120
DA W 89734 109
DA W 88264 109

shifskifspulsjegugh
m m m m m m
o) o o) o

11-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Reading and Maintaining Dimension Values

The following OLAP DML objects are used by the example program.

DEFI NE di st code DI MENSION | D

DEFI NE district.dcode RELATION district <distcode>
DEFI NE prodcode DI MENSION I D

DEFI NE Product. pcode RELATION product <prodcode>

The example program, named dr . pr og3, has the following definition.

DEFI NE dr. prog3 PROGRAM
LD Transl ates coded val ues into valid di nension val ues
PROGRAM
VARI ABLE funit INT
funit = FILEOPEN(' ol apfiles/dr3.dat’ READ)
FI LEREAD funit -
COLUW 1 WDTH 3 APPEND RSET ' 96’ nonth
FI LECLOSE funi t
funit = FILEOPEN(' ol apfiles/dr3.dat’ READ)
FI LEREAD funit -
COLUW 1 WDTH 3 RSET '96’ nonth -
COLUW 5 WDTH 2 district = district.dcode -
(di stcode VALUE) -
COLUW 8 WDTH 2 product = product. pcode -
(prodcode VALUE) -
COLUW 11 WDTH 6 STRIP units -
COLUW 18 WDTH 3 SCALE 2 price
FI LECLOSE funi t
END

The program translates the 2-character codes for districts and products into values
ofadi stri ct dimension and a pr oduct dimension. The program also appends a
2-digit year to the months.

In the first FI LEREAD command, the APPEND keyword is used so that new months
are added to the MONTH dimension.

FILEREAD fileunit COLUW 1 WDTH 3 APPEND RSET ' 96’ nonth
For the district and product fields, the program reads the value from the data file

and finds the corresponding dimension value using the relations di stri ct . dcode
and pr oduct . pcode.

COLUW 5 WDTH 2 district = district.dcode di stcode VALUE)
COLUW 8 WDTH 2 product = product.pcode (prodcode VALUE)

Reading Data from Files 11-13

Processing Input Data

The program uses a QDR with the keyword VALUE representing the code read from
the data file. For the districts, the di st code VALUE QDR modifies the relation

di strict. dcode, which holds district names. It specifies the district that
corresponds to the value of di st code just read from the data file. The QDR for

pr oduct works the same way.

The program assumes the pr oduct and di stri ct dimension values are already in
the analytic workspace, along with the di st code and pr odcode dimensions and
the relations connecting them to di stri ct and pr oduct . Once the coded values
have been processed, the resulting values of di stri ct and product are used to
limit the dimension status so that the data is put in the right cells of the uni t s and
pri ce variables.

Finally, you can see in the data file that the price data, which starts in column 18,
does not have a decimal point. The SCALE attribute on the last line of the FI LEREAD
command puts two decimal places in each price value.

Processing Input Data

Assignment statements created with the = command have a wide application in the
data-reading commands. With the = command you can process any value read from
afile in a variety of ways. Instead of just assigning the values as read to a variable
or relation, you can modify those values to make them more suitable to your
application.

The expression you use can be as simple or complex as you need. You can even
perform conditional processing on the values read, based on other data already
stored in your analytic workspace or previously read from the file.

For an example of using FI LEREAD commands using an assignment statement in a
field description, see "Reading and Maintaining Dimension Values" on page 11-7.

Example 11-7 Modifying Values Read from a File

The following command reads sales data and assigns it to the variable sal es,
replacing whatever value is already stored in that variable.

FI LEREAD funit W8 district W8 product W10 sal es
Using an expression, however, you can add the new data to the value currently
stored in the variable.

FI LEREAD funit W8 district W8 product sales -
= sales + W10 VALUE

11-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Processing Records Individually

The data just read from the file is represented in the expression by the keyword
VALUE.

Suppose you have two different types of records in a file, you can read different
fields for each type of record.

FI LEREAD funit W1 rectype W8 district W8 -
APPEND product -
prodnane = -
IF rectype EQ A" THEN COL 25 W16 VALUE -
ELSE COL 42 W16 VALUE

Specifying a Conversion Type for Data

In general, you do not need to specify a data type when you read input values into
a workspace variable. By default, input values are converted to the data type of the
target variable.

However, when the target variable has a data type of DATE, you can use either the
default conversion type of DATE or an alternative conversion type of RAW DATE.

You might also want to specify a conversion type when you use an expression to
process input values before storing them in a target variable.

Processing Records Individually

Your data files do not always have the same type of data in every record. You might
find that you need different field descriptions and different target objects for each
record, or you might have two or more distinct types of records mixed together in a
single file. You might even have to decide what to do with the data in a record
based on the contents of one or more of its fields.

The FI LENEXT function and the FI LEVI EWcommand allow you to retrieve one
record at a time from a file and look at its data one or more times. FI LENEXT is a
Boolean function, which reads a record from the data file. It returns YES when it
finds a record and NOwhen it reaches the end of the file. The record read by

FI LENEXT is then available to process with the FI LEVI EWcommand.

Typically, FI LENEXT is used as the condition of a WHI LE command, so that the
data-reading program continues reading until it reaches the end of the file and finds
no more records. Within the WHI LE loop, the FI LEVI ENcommand is used one or
more times to process data from any field in the current record. Often the operation
of a FI LEVI EWcommand depends on the data processed by a previous command in
the WHI LE loop.

Reading Data from Files 11-15

Processing Records Individually

Example 11-8 Reading Different Data from the Same Record

In the data shown in the following example, the second field of each record contains
the name of the target variable for the data in the last field.

CEREALS DOl VS100 us JUN96 5000000
CEREALS LBS VS100 uS JUN96 4800000
CEREALS CASE VS100 us JUN96 180000
CEREALS DAL VS100 BOS JUN96 62500
CEREALS LBS VS100 BOS JUN96 62830
CEREALS CASES VS100 BOS JUN96 2750
CEREALS DOl VS100 CH JUN96 75290
CEREALS LBS VS100 CH JUN96 73000
CEREALS CASES VS100 CHI JUN96 2700
CEREALS DAL VS100 LASF JUN96 143070
CEREALS LBS VS100 LASF JUN96 150500
CEREALS CASES VS100 LASF JUN96 NA

The following OLAP DML objects are used by the example program.

DEFI NE dol VAR ABLE DECI MAL <nmonth item market >
DEFI NE | bs VARI ABLE | NTEGER <mont h item mar ket >
DEFI NE cases VARI ABLE | NTEGER <mont h item market >

The dr . pr og4 program tests records against criterion before getting values. In the
program, the first FI LEVI ENcommand gets the name of the variable and stores it in
a local variable named var nane. The second FI LEVI EWcommand gets the value
and assigns it to the object specified in var nane.

The example program, named dr . pr og4, contains the following code.

VARI ABLE funit | NTEGER
VARI ABLE var name TEXT
funit = FILEOPEN(' ol apfiles/dr4.dat’ READ)
VH LE FI LENEXT(funit)
DO
FILEVI EWfunit COLUW 13 WDTH 12 var nane
FILEVIEWfunit COLUW 25 WDTH 12 item -
COLUW 37 WDTH 6 market -
COLUW 43 WDTH 5 nonth -
COLUWN 48 W DTH 10 &varnane
DCEND
FI LECLCSE funit

11-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Processing Several Values for One Variable

Reading Different Records

You might want to process only some of the records in a file, based on some
criterion in the record itself. You can use one FI LEVI EWcommand to check a field
for an appropriate value and, if it is found, then you can process the rest of the
record with a second FI LEVI EWcommand.

When the record does not meet the criterion for processing, you can save it in
another file using the FI LEPUT command. FI LEPUT with the FROMkeyword writes
the last record read by FI LENEXT directly to the designated output file. You can also
use a FI LEPUT command in the error section of your program to keep track of any
records that could not be processed because of errors.

Before you use FI LEPUT in your data-reading program, you must open a second
file in write mode. At the end of the program, you must close it.

Processing Several Values for One Variable

Sometimes several contiguous fields in a file contain data values that you want to
assign to the same variable. Each field corresponds to a different value of one of the
dimensions of the target variable.

For repeating fields, you can use an ACROSS phrase in the field description to read
the successive fields and place the values in the appropriate cells of the target
variable. The ACROSS phrase extracts data for each dimension value in the current
status or until it reaches the end of the record. You can limit the ACROSS dimension
before the FI LEREAD (or FI LEVI EWy command, or you can limit it temporarily in the
ACRGCSS phrase.

When the data file contains the information you need to limit the ACROSS
dimension, you can extract the dimension values using a temporary variable, limit
the dimension, and then read the rest of the file.

Reading Data from Files 11-17

Processing Several Values for One Variable

Example 11-9 Assigning Multiple Fields to the Same Variable

Successive fields might hold sales data for successive months, as shown in the
layout of uni t sal e. dat in the following figure.

1111111111222 ...7777778
1234567890123456789012 ...4567890

PRODUCT JAN96 FEB96 L DEC96

Unit Sales Data

Columns Description

1- 8 Product Names

9-14 Unit sales for January 1996
15-20 Unit sales for February 1996
75 - 80 Unit sales for December 1996

In the uni t sal e. dat file, columns 9 through 80 contain twelve 6-character fields.
Each field contains sales data for one month of 1996.

The full data-reading program, with commands to open and close the file, is shown
next.

DEFI NE dr. prog5 PROGRAM
LD Read a data file
VARI ABLE funit | NTEGER
TRAP ON error
funit = FILEOPEN’ ol apfil es/unitsal e.dat’ READ)
FI LEREAD funit -

COLUW 1 WDTH 8 product -

ACRGCSS nonth jan96 TO dec96: WDTH 6 units

FI LECLOSE funi t

RETURN
error:
IF funit NE na
THEN FI LECLCSE funit
END

The ACRGCSS phrase reads each of these fields into separate cells in theuni t s
variable.

ACRGCSS nonth jan96 TO dec96: WDTH 6 units

11-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Processing Several Values for One Variable

The FI LEREAD command reads the sample uni t sal e. dat file.

FI LEREAD funit -
COLUW 1 WDTH 8 product -
ACRCSS nonth jan96 TO dec96: WDTH 6 units

This command first reads the field beginning in column 1 and limits the pr oduct
dimension to the value read. (When the value read is not a dimension value of
product , an error occurs.) The command then reads the next 12 fields and assigns
the values read to the uni t s variable for each month of 1996.

Example 11-10 Using Input Data to Limit the ACROSS Dimension

As shown in following example, the first record of the data file contains values of
nont h as labels for each column of data.

JAN9G FEB96 MAR96 APR96
TENT 50,808.96 34,641.59 45,742.21 61,436.19
CANCES 70,489.44 82,237.68 97,622.28 134, 265. 60
RACQUETS 56,337.84 60,421.50 62,921.70 74,005.92
SPORTSVEAR 57,079.10 63,121.50 67,005.90 72,077.20
FOOTVEEAR 95, 986. 32 101, 115. 36 103, 679. 88 115, 220. 22

The following workspace objects are used by the example program.

DEFI NE enum DI MENSI ON | NTEGER
DEFI NE nont hnane VARI ABLE | D <enun» TEMPORARY
DEFI NE sal esdata VARI ABLE DECI MAL <nonth product >

The example program, named dr . pr 0g6, has the following definition.

DEFI NE dr. prog6 PROGRAM

PROGRAM

VARI ABLE funit |NTEGER

TRAP ON cl eanup

PUSHLEVEL ' save’

PUSH nont h product

funit = FILEOPEN(' ol apfiles/dr6.dat’ READ)

I F FI LENEXT(funit)
THEN FI LEVIEWfunit COLUWN 16 ACRCSS enum -

W11 nont hname

LIMT nonth TO CHARLI ST(nont hnane)

FI LEREAD funit W15 product COLUW 16 ACRGCSS nonth: -
W11 sal esdata

Reading Data from Files 11-19

Processing Several Values for One Variable

cl eanup:

FI LECLOSE funi t
POPLEVEL ' save’
END

The program does not know how many months the file contains. The program uses
atemporary variable dimensioned by an | NTEGER dimension to read the month
names from the file. The | NTEGER dimension enummust have at least as many
values as the largest data file has months.

FI LENEXT reads only the first record. The CHARLI ST function creates a list of the
month names, which is used to limit the nont h dimension.

Finally, the FI LEREAD command processes the rest of the record using nont h as the
ACRGCSS dimension. All the sales data is assigned to the correct months without the
user having to specify them.

11-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

12

Aggregating Data

This chapter describes how to use the aggregation features of the OLAP DML. This
chapter includes the following topics:

About Aggregating Detail Data

Preliminary Steps Prior to Aggregation

Creating an Aggregation Map

About the RELATION Command

Aggregating Non-Hierarchical Data

How to Generate Precalculated Data

How to Calculate Data at Runtime

Creating Custom Aggregates

Balancing Precalculated and Runtime Aggregation
Performing Partial Aggregations

Combining AGGREGATE with Forecasts and Programs

Aggregating Data 12-1

About Aggregating Detail Data

About Aggregating Detail Data

Business analysis applications typically use hierarchical dimensions for their data.
In Oracle OLAP, all members of a hierarchy, regardless of their level, are stored in a
single dimension. A self-relation and a parent relation identify the parent-child
relationships among the members. Other, nonhierarchical dimension (such as a line
item dimension) may require a model to calculate the values.

Data at the detail level is typically acquired from another source (such as a
transactional database or flat files), but the aggregate data must be calculated. These
calculations can be done in two distinct ways:

« Asadata maintenance procedure. The DBA acquires detail data, calculates the
aggregate values, and stores them in the analytic workspace for all users to
share. This type of aggregate data is sometimes call precomputed or stored
aggregates. It supports the fastest querying time, but increases the size of the
analytic workspace and therefore the size of the relational database. The
amount of precomputed data may also be limited by the amount of time
available for the data task (often called a batch window).

« At run-time when needed. The cells for the aggregate values are NA (that is,
they are empty) until a query requests the aggregate values. The aggregates are
then computed in response to the query. The results can be stored in a
temporary cache for use throughout the session. If the session has write access
to the analytic worksheet, the results can also be stored permanently. This type
of aggregate data is referred to as on-the-fly or run-time aggregates. It slows
querying time since the data must be calculated instead of just retrieved, but it
does not require permanent storage for aggregate values.

Oracle OLAP supports both types of aggregation, and provides a mechanism for
precomputing some values and calculating others at run-time within a single data
variable.

See Also: "Defining Hierarchical Dimensions and Variables That
Use Them" on page 3-22 for more information about hierarchical
dimensions.

Functionality Available with AGGREGATE

The OLAP DML supports a variety of aggregation methods including first, last,
average, weighted average, and sum. In a multidimensional variable, the
aggregation method can vary by dimension.

12-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

About Aggregating Detail Data

When variables are dimensioned with detailed, multilevel hierarchies, the number
of cells of aggregate data can be many times greater than the number of cells of
detail data. In contrast, users typically query some levels of data heavily and other
levels very infrequently. They tend to focus on top-level aggregates and only
occasionally drill to middle-level aggregates, although the middle-level aggregates
comprise the largest proportion of aggregate data.

For this reason, the OLAP DML provides an aggregation method that allows some
of the data to be aggregated and stored, while other data is aggregated at runtime.
The DBA can choose whatever method seems appropriate: by level, individual
member, member attribute, time range, data value, or other criteria. A technique
called “skip level” aggregation pre-aggregates every other level in a dimension
hierarchy. It is described in "Calculating Data Using the Skip-Level Approach" on

page 12-25.

Table 12-1 lists commands that support aggregation in the OLAP DML.

Table 12-1 Commands That Support Aggregation

Command Description

AGGREGATE command Calculates data for permanent storage in the analytic
workspace.

AGGREGATE function Calculates data on-the-fly in response to a query.

AGGVAP command Adds contents to an aggmap object that identify which

AGGVAPI NFOcommand

CLEAR command

MULTI PATHHI ER option

POUTFI LEUNI T option

SESSCACHE option

VARCACHE option

aggregates are calculated by the AGGREGATE command and
which ones are calculated by the AGGREGATE function. It
also identifies whether the run-time aggregates are cached
for use throughout the session. This decision has
implications for whether run-time changes to the detail
values are reflected in the aggregate values.

Returns information about the contents of an aggregation
map object, such as whether it contains commands for
aggregation or allocation.

Clears data values in the aggregate cache.

Controls whether detail data can be aggregated over
multiple paths.

Identifies a location that receives information on the
progress of an AGGREGATE command.

Controls whether an aggregate cache persists throughout a
session.

Controls how on-the-fly aggregates are stored.

Aggregating Data 12-3

Preliminary Steps Prior to Aggregation

Process Overview: Aggregation

These are the basic steps you need to follow to generate and manage aggregate
data:

1. Perform the initial analysis of your data, as described in "Preliminary Steps
Prior to Aggregation” on page 12-4, to make sure that it is set up properly.

2. Create an aggregation map that identifies which data will be precalculated and
which data will be calculated as needed. Identify variables that are
dimensioned identically, because they can share an aggregation map.

3. Setthe POUTFI LEUNI T option so that you can monitor the progress of the
aggregation.

4. Use the AGGREGATE command with the aggregation map to precalculate the
data and store it in the database.

5. If the aggregation map specifies run-time calculations, then:
a. Compile the aggregation map.

b. Add a property to the variable that will trigger the AGGREGATE function in
response to a runtime request for data.

These steps are described in detail in this chapter.

Preliminary Steps Prior to Aggregation

There are several pre-aggregation steps that you should perform to achieve the best
performance:

= Get the names of self-relations or the names of parent and hierarchy relations
defined within the DML.

= Check all composite dimensions to make sure that they have BTREE indexes.

|dentifying the Parent and Level Relations

All aggregation maps require the identity of the parent relation for each dimension
that is being aggregated. The parent relation is a self-relation that defines the
hierarchy by identifying the parent of each dimension value.

If some of the data will be aggregated at runtime, then you may want to use a level
relation to distinguish levels that will be omitted from the pre-calculation. The level
relation identifies the level of the hierarchy for each dimension value. This relation
is needed to identify which levels are precalculated and which ones are calculated

12-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Preliminary Steps Prior to Aggregation

at run-time. Skip-level aggregation is a recommended technique, described in
"Balancing Precalculated and Runtime Aggregation” on page 12-24, which uses
level relations.

Example 12-1 describes the parent and level relations.

You may be able to use the OBJ function to find out information about a workspace
object. For example, the following command may display the name of the level
dimension for the geogr aphy dimension:

REPCORT OBJ(PROPERTY 'l evel dim 'geography’)

Note: This information may or may not be available through the
PROPERTY keyword, depending upon the method originally used
to create these relations.

If the OBJ function does not yield results, then you must look at the contents of the
variables in your analytic worksheet to see if these relations exist, and if not, then
create them.

Example 12-1 Identifying the Parent and Level Relations

The following are the object definitions for three dimensions and two relations.
These objects provide the information that the aggregation map needs to aggregate
data dimensioned by geogr aphy.

DEFI NE GEOGRAPHY DI MENSI ON TEXT WDTH 12
LD Geography di mensi on val ues

DEFI NE GEOGRAPHY. Hl ERARCH ES DI MENSI ON TEXT
LD H erarchy di mension for Ceography

DEFI NE GEOGRAPHY. LEVELDI M DI MENSI ON TEXT
LD List of hierarchy levels for GEOGRAPHY

DEFI NE GEOGRAPHY. PARENTREL RELATI ON GEOGRAPHY <GEOGRAPHY GEOGRAPHY. H ERARCH ES>
LD Parent-child rel ation for Geography

DEFI NE GEOGRAPHY. LEVELREL RELATI ON GEOGRAPHY. LEVELDI M <GEOGRAPHY GEOCGRAPHY. HI ERARCHI ES>
LD Level of each nenber in each Geography hierarchy

The geogr aphy dimension contains values at all levels of the hierarchy, such as
WORLD, AVERI CAS, CANADA, TORONTO, MONTREAL, NEWYORK, CHI CAGO, SEATTLE,
MEXI CO, and so forth.

Aggregating Data 12-5

Creating an Aggregation Map

The geogr aphy. hi er ar chi es dimension identifies the names of the hierarchies.
For example, geography might have two hierarchies, STANDARD and
CONSCLI| DATED.

The geogr aphy. | evel di mdimension identifies the names of the levels, such as
Cl TY, STATE, COUNTRY, REG ON, WORLD.

The geogr aphy. parentr el relation is a self-relation. For each hierarchy and each
dimension value, it identifies the parent value. For example, in the STANDARD
hierarchy, the parent of KYOTOis JAPAN, and the parent of JAPANis ASI A.

The geogr aphy. | evel r el relation identifies the level for each dimension value
in each hierarchy. For example, in the STANDARD hierarchy, KYOTOis at the Cl TY
level, JAPAN s at the COUNTRY level, and ASI Ais at the REG ON level.

Verifying That All Composites Use BTREE Indexes

You will achieve the best performance results with AGGREGATE when all of the
variable’s composites use the BTREE index algorithm. You can use the DESCRI BE
command to find out if a composite uses BTREE or HASH. If a composite uses HASH,
it will be displayed in the composite definition. If a composite uses BTREE, no index
algorithm will be displayed in the composite definition, because BTREE is the
default algorithm for composites.

The following object definition for the mar ket . pr od composite shows that it uses
a HASH index:

DEFI NE MARKET. PROD COWPOSI TE <MARKET PRODUCT> HASH

To change to a BTREE index, use the CHGDFN command:
CHGDFN mar ket . prod BTREE

The composite definition looks like this with a BTREE index:
DEFI NE MARKET. PRCD COVPOSI TE <MARKET PRODUCT>

Creating an Aggregation Map

An aggregation map is a workspace object. You first define the object and then add
its contents, similar to creating a model or program. The contents of an aggregation
map are commands that specify the data that should be aggregated for each
dimension in the variable definition. It also identifies which data should be
pre-calculated and which data should be calculated on the fly. Therefore, both the
AGGREGATE command and the AGGREGATE function require an aggregation map

12-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Aggregation Map

To create an aggregation map, you must:
1. Define an aggmap object.

2. Add contents to the aggmap object.

How to Define an Aggmap Object

You can define an aggregation map with the DEFI NE AGGVAP command. The
syntax of the DEFI NE AGGVAP command is as follows:

DEFI NE nane AGGVAP

Where:

nane is the name of the aggregation map.

How to Add Contents to an Aggmap Object

After you have defined an aggmap object, you must add contents to it. You can use
the following ways to edit an aggregation map. See the examples that follow this list
for details.

« Use the AGGVAP command to enter or replace the contents of the aggregation
map.

« Usethe EDI T AGEVAP command in OLAP Worksheet.

« Create a text file with the contents of the aggregation map, then use the | NFI LE
command to read it into your workspace.

Example 12-2 Using the AGGMAP Command

The following program uses the JO NLI NES function with the AGGVAP command
to add RELATI ON commands to an aggmap object.

DEFI NE AGGTEST PROGRAM
LD Create an aggregation map
PROGRAM
I F NOT EXI STS(' test.agqg')
THEN DEFI NE t est.agg AGGVAP
ELSE CONSI DER test. agg

Aggregating Data 12-7

Creating an Aggregation Map

AGGVAP JO NLI NES(-
" RELATI ON geogr aphy. parentrel’
" RELATI ON product . parentrel’
" RELATI ON channel . parentrel’
"RELATION time. parentrel’
"END')

END

Example 12-3 Using the EDIT AGGMAP command in OLAP Worksheet

To use the EDI T command in OLAP Worksheet to edit an aggmap object, take these

steps:

1. Issue this DML command, where nyaggnmap is the name of an existing aggmap
object.

EDI T AGGVAP nyaggnap

The AGGAVAP edit window will appear.

2. Enter the body of the aggregation map, or make whatever changes you wish to
an existing aggregation map.

3. To save your changes, choose Save from the File menu.

4. To close the edit window, choose Quit from the File menu.

Example 12-4 Using the INFILE Command to Execute Commands in a Text File

You can create a text file that contains the contents of the aggregation map. You can
use this text file to create or modify the aggregation map.

Suppose that you have defined an aggmap object named gpct . aggnmap. You can
create a file with these contents:

CONSI DER gpct . aggmap

AGGVAP

RELATI ON geogr aphy. parentrel
RELATI ON product . parentrel
RELATI ON channel . parentrel
RELATI ON ti nme. parentrel

END

If the file is named aggnmap. i nf inthe userfil es directory alias, then you can
use the following | NFI LE command to execute these commands in your session:

INFILE " userfil es/aggmap.inf’

12-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Aggregation Map

Contents of an Aggregation Map
An aggregation map contains the following commands:

AGGVAP command indicates the beginning of an aggregation map. Depending
upon how you add contents to an aggmap object, you may not need to include
this command explicitly.

RELATI ONcommand identifies a parent relation or self-relation (which acts as a
hierarchy) of a dimension, which will be used to aggregate data. It can also
identify the type of aggregation and the selection of data to be aggregated. By
default, all of the data is summed. All aggregation maps contain one or more
RELATI ON commands.

MODEL command executes a predefined MODEL object. Models can be used to
aggregate data over non-hierarchical dimensions, which do not have a parent
relation.

CACHE command describes how or if the AGGREGATE function stores any data
that is calculated on the fly. This decision controls how quickly all of a data of a
variable will reflect run-time changes that users make to the variable data.

AGG NDEX command describes whether or not Oracle OLAP should create
indexes (composite tuples) that are needed by the MODEL command and by
commands that use the ACRCSS phrase. This is an issue only when the variable
has a composite dimension.

END command indicates the end of an aggregation map. Depending upon how
you add contents to an aggmap object, you may not need to include this
command explicitly.

Note: Both the CACHE and AGGE NDEX commands have default
settings. If these default settings are appropriate for your
application, then you can omit these commands from your
aggregation map. Be sure to read the topics in the Oracle9i OLAP
DML Reference help for each of these commands to determine
whether or not you need to use them.

Example 12-5 Simple Aggregation Map

The following is a simple aggregation map in which the data across all dimensions
is precalculated using the SUMoperator. Note that the body of the aggregation map
begins with an AGGVAP command and ends with an END command. The RELATI ON

Aggregating Data 12-9

Creating an Aggregation Map

commands are listed in the order the dimensions appear in the aggmap object
definition.

DEFI NE GPCT. AGGVAP AGGVAP

LD Aggregation map for sales, units, quota, costs
AGGVAP

RELATI ON geogr aphy. parentrel

RELATI ON product . parentrel

RELATI ON geogr aphy. parentrel

RELATI ON ti me. parentrel

END

How to Compile an Aggregation Map

After you have created the aggregation map, you should compile and save it. This
step is important for aggregation performed at run-time using the AGGREGATE
function. Unless the compiled version of the aggregation map has been saved, the
aggregation map will be recompiled by each session that uses it.

If you use the FUNCDATA argument to the AGGREGATE command, then the
aggregation map is automatically compiled. For example, these commands will
precalculate aggregate data and save a compiled copy of the aggregation map for
runtime aggregation.

AGGREGATE sal es USI NG gpct . aggmap FUNCDATA
UPDATE
COWM T

Alternatively, you can compile the aggregation map explicitly with the COMPI LE
command. Explicitly compiling an aggregation map is also useful for finding syntax
errors in the aggregation map before attempting to use it to generate data.

The following commands create and save the compiled version of the sal es. agg
aggregation map.

COWPI LE gpct . aggnap
UPDATE
COWM T

Important: If some of the data will be calculated on the fly, then
you must compile and save the aggregation map after executing the
AGGREGATE command.

12-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating an Aggregation Map

Compiling an aggregation map can take a significant amount of time. If you fail to
compile the aggregation map, the AGGREGATE function will automatically compile
it in order to get the information that is needed to perform calculation on the fly. If
this happens, query performance will suffer. Every time a user queries the
workspace for the first time, the AGGREGATE function must compile the aggregation
map before it can calculate the data. If 100 users query the same workspace, the
aggregation map will be compiled 100 times. If you precompile the aggregation
map and save it in the analytic workspace, then it is a task that is done once as part
of the build process. If you leave the compilation to be done as a result of user
queries, then it is a task that will be repeated for every user.

Aggregating Multiple Variables with a Single Command

You can use one AGGREGATE command to aggregate data for more than one
variable, as long as the following conditions are true:

= All of the variables have identical dimensionality, which means that every
variable definition has the same dimensions in the same order.

= You can use the same aggregation map for all of the variables. This means you
will be pre-calculating the same levels of data for every variable. Therefore, you
must be sure that your users tend to query the same levels of data for each
variable.

Example 12—-6 Variables That Can Be Aggregated with One Command

Suppose your workspace contains the following named composite and variable
definitions:

DEFI NE PRCD. GEOG. CHAN COMPCSI TE <PRODUCT GECGRAPHY CHANNEL >

DEFI NE SALES DECI MAL <TI ME PROD. GEOG CHAN <PRCDUCT GEOGRAPHY CHANNEL>>
DEFINE UNI TS | NTEGER <TI ME PROD. GEOG CHAN <PRCDUCT GEOGRAPHY CHANNEL>>
DEFI NE PROJECTED SALES DECI MAL <TI ME PROD. GEOG CHAN <PRCDUCT GEOGRAPHY CHANNEL>>

Because these variables have identical dimensionality, you can use one AGGREGATE
command to aggregate the data for all three variables.

Suppose you have defined an aggregation map named sal es. agg. You would use
the following command to aggregate data for all three variables:

AGCREGATE sal es units projected_sal es USING sal es. agg

Aggregating Data 12-11

About the RELATION Command

Example 12-7 Variables That Cannot Be Aggregated with One Command

Suppose your workspace contains the following definitions for a named composite
and three variables:

DEFI NE PROD. GEOG. CHAN COMPCSI TE <PRODUCT, GEOGRAPHY, CHANNEL>

DEFI NE SALES DECI MAL <TI ME PROD. GEOG. CHAN <PRODUCT, GEOGRAPHY, CHANNEL>>
DEFINE UNI TS | NTEGER <TI ME SPARSE <PRODUCT, GECGRAPHY, CHANNEL>>
DEFI NE PRQJECTED_SALES DECI MAL <TI ME SPARSE <PRCDUCT, GEOGRAPHY>>

The following comparisons explain how the dimensionality is different for each
variable:

« The sal es variable uses a named composite, pr od. geog. chan, whose base
dimensions are pr oduct , geogr aphy, and channel .

« Theunit s variable uses an unnamed composite, whose base dimensions are
pr oduct , geogr aphy, and channel . Even though the unnamed composite
has the same dimensions in the same order as the named composite, Oracle
OLAP considers the named composite and the unnamed composite to be two
different workspace objects. Therefore, sal es and uni t s do not have the same
dimensionality.

« Theproject_sal es variable also has an unnamed composite, whose base
dimensions are pr oduct and geogr aphy. However, it is not identical to the
unnamed composite that the uni t s variable uses, because it does not include
the channel dimension.

Because the dimensionality for each variable is different, you will have to define a
different aggregation map to aggregate data for each variable. Therefore, you will
have to use a different AGGREGATE command for each variable.

About the RELATION Command

The RELATI ON command has the following basic syntax:
RELATI ON parent-rel [PRECOMPUTE (linit-phrase)] [OPERATOR opvar]

An aggregation map should have one RELATI ON command for each hierarchical
dimension in the definition of the variable. To promote the best possible
performance, list the RELATI ON commands in the same order as they appear in the
variable definition. This order indicates the way the data is stored, from fastest
varying dimension to slowest varying dimension as described in "How Variable
Data Is Stored" on page 3-17. When aggregating the data, it is much more efficient

12-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

About the RELATION Command

to aggregate the fastest varying dimension first and the slowest varying dimension
last.

For example, if the sal es variable is dimensioned by t i me and the
pr od. geog. chan composite like this:

<tine prod. geog.chan <product, geography, channel >>

Then the first RELATI ON command should be for t i e, the second for pr oduct ,
the third for geogr aphy, and the fourth for channel .

Example 12-8 Aggregating with SUM or MAX

The following examples use the | et t er dimension, thel etter. | etter parent
relation, and the uni t s variable.

LETTER LETTER LETTER UNITS

a NA NA
aa a NA
ab a NA
aab aa NA
aba ab NA
abb ab NA
aaaa aa 1
aaba aab 2
abaa aba 1
abbb abb 1
abba abb 1

Aggregating Data 12-13

About the RELATION Command

The following illustration shows the relations defined by | etter.l etter.

Figure 12-1 Parent-Child Relationships in the LETTER Dimension

A
Parent-Child Relations in
LETTER Dimension
AA AB
AAB ABA ABB
AAAA AABA ABAA ABBA ABBB

LETTER. AGGVAP uses SUMto calculate the value of aa.

DEFI NE LETTER. AGGVAP AGGVAP

AGGVAP

RELATION letter.letter PRECOWPUTE (' aa’)
END

When the data is aggregated, aa has a value of 3:
aa = (aab + aaaa) = (aaba + aaaa) = (2 +1) =3
Note that although aab is the parent of aaba and the child of aa, its value is not

stored as the result of this calculation.

Specifying an Aggregation Method

The aggregation method for each dimension is specified in the RELATI ON
command. The default aggregation method is SUM which adds the values of the

12-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

About the RELATION Command

child cells and stores the total in the parent cell. However, there are other
aggregation methods that you can use:

Sum (SUM

Scaled Sum (SSUM

Weighted Sum (WsUM)

Average (AVERAGE)

Hierarchical Average (HAVERAGE)
Weighted Average (WAVERAGE)
Hierarchical Weighted Average (HWAVERAGE)
Maximum (MAX)

Minimum (M N)

First (FI RST)

Hierarchical First (HFl RST)

Last (LAST)

Hierarchical Last (HLAST)

And (AND)

Or (OR)

These aggregation methods are arguments to the RELATI ONcommand. For
descriptions of these methods, refer to the RELATI ON command entry in Oracle9i
OLAP DML Reference help. Do not confuse the RELATI ON aggregation methods
with the DML aggregation functions.

Example 12-9 Specifying the Aggregation Method

The OPERATOR keyword in the following RELATI ON command changes the method
of aggregation from the default SUMto MAX.

RELATION letter.letter PRECOWPUTE ('aa') OPERATOR MAX

When the data is aggregated with the modified aggregation map, aa has a value of
2, because 2 is the largest value contributing to aa, as shown in Figure 12-1,
"Parent-Child Relationships in the LETTER Dimension".

Example 12-10 Using a Weighted Variable

Several aggregation methods use weighted variables: W6UM WAVERAGE, and
HWAVERAGE. You must first define a weighted variable, then specify it in the
RELATI ONcommand using the ARGS WEI GHTBY argument.

Aggregating Data 12-15

About the RELATION Command

The following aggregation map uses the weights defined in variable
| etter.weights to calculate the value of aa.

DEFI NE LETTER AGGVAP AGGVAP

ACGGVAP

RELATION | etter.letter PRECOVPUTE (' aa’) OPERATOR WBUM -
ARGS VEI GHTBY | etter. weights

END

The output from this REPORT command shows the aggregation.

report down letter letter.weights units

LETTER LETTER LETTER LETTER WEI GHTS UNI TS

a NA NA NA
aa a NA 7
ab a NA NA
aab aa NA NA
aba ab NA NA
abb ab NA NA
aaaa aa 5 1
aaba aab NA 2
abaa aba NA 1
abbb abb NA 1
abba abb NA 1

The value of aa in the uni t s variable is calculated in this way:

aa = ((5 * aaaa) + aab) = ((5*aaaa) + aaba) = (5*1) + 2 =7

Selecting Data For Aggregation

The PRECOVPUTE clause limits the data that is aggregated by the AGGREGATE
command. In its simplest form, the PRECOMPUTE clause is likea LI M T di nensi on
TOcommand. Notice that the default limit is on the dimension, which is not
explicitly named in the RELATI ON command.

For example, this LI M T command selects the AUDI ODI V, VI DECDI V, and ACCDI V
values of the pr oduct dimension:

limt product to 'audiodiv' 'videodiv' 'accdiVv’

12-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

About the RELATION Command

The equivalent RELATI ON command looks like this:
RELATI ON product . parentrel PRECOVPUTE (' AUDIODIV' ' VIDECDI V' ' ACCDI V')

Since these values are all at the same level of the product STANDARD hierarchy (L2),
this LI M T command yields the same results:

[imt product to product.levelrel 'L2

This is the equivalent RELATI ON command:
RELATI ON product. parentrel PRECOVPUTE (product.levelrel 'L2")

The TOclause may not always produce the results you want. To use the other
selection clauses (such as KEEP, REMOVE, and COVPLEMENT), you must explicitly
call the LI M T function.

RELATI ON product . parentrel PRECOVPUTE (lim t(product conplement ' TOTALPROD))

Example 12-11 Aggregation Map with PRECOMPUTE Clauses

This aggregation map uses PRECOVPUTE clauses to limit the data that is aggregated
by the AGGREGATE command.

DEFI NE GPCT. AGGVAP AGGAVAP

LD Aggregation map for sales, units, quota, costs

AGGVAP

RELATI ON geogr aphy. parentrel PRECOMPUTE (geography. levelrel 'L3")

RELATI ON product . parentrel PRECOVPUTE (limt(product conplement ' TOTALPROD))
RELATI ON channel . parentrel

RELATI ON ti me. parentrel PRECOVPUTE (time ne ' 2001")

END

Caching Runtime Aggregates

The CACHE command in an aggregation map determines whether data that is
calculated on the fly is available for the duration of a session. By default, the data
must be recalculated each time it is queried. The user will experience faster
querying time if the data is cached and simply retrieved for subsequent queries,
however, maintaining a cache can have unwanted side-effects.

If users alter the data during their sessions (such as when running forecasts and
what-if analysis), then data that was aggregated previously will not reflect the
changes in the data. Having the data out of synchronization in this way means that
users will view inaccurate data. Do not maintain a cache if users alter the data
during their sessions.

Aggregating Data 12-17

Aggregating Non-Hierarchical Data

If users have write access to the analytic workspace, then the runtime calculations
will be saved along with other changes if a user issues UPDATE and COVM T
commands. This defeats the purpose of runtime aggregation, which is to save
storage space.

If users can save their analytic workspaces, then create a cache using a CACHE
SESSI ONcommand. If they cannot save their workspaces, then you can use either
CACHE SESSI ONor CACHE STORE.

The effectiveness of a cache is tracked in the VAW CALC dynamic performance
view. See the Oracle9i OLAP User’s Guide for information about querying this view.

Aggregating Non-Hierarchical Data

Some dimensions, such as line items, do not have a hierarchical structure. Instead,
individual line items are calculated, sometimes with complex formulas, from one or
more other line items or workspace objects. Models are needed to solve the data
over this type of a dimension.

To execute a model, you include a MODEL command within the aggmap. It has the
following basic syntax:

MODEL nodel name [PRECOVPUTE ALL| NA]

Where:

nodel nane is the name of an existing MODEL object that calculates values for one or
more dimensions of the aggregation map.

PRECOVPUTE ALL indicates that the AGGREGATE command will execute the model
as a data maintenance step. Any RELATI ON or MODEL commands that precede it in
the aggregation map must also be specified as PRECOVPUTE ALL. However, any
RELATI ONor MODEL commands that follow it in the aggregation map can either be
specified as PRECOVPUTE ALL or PRECOMPUTE NA.

PRECOVPUTE NA indicates that the AGGREGATE function will execute the model at
runtime. The following conditions must be met for runtime execution:

« All RELATI ONcommands in the aggmap must appear before the MODEL
command specified as PRECOVPUTE NA.

« Any additional MODEL commands that follow it must also be specified as
PRECOVPUTE NA.

= The model cannot solve simultaneous equations or time series (such as LEAD
and LAGfunctions).

12-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Aggregating Non-Hierarchical Data

« The model cannot reference an object that invokes the AGGREGATE function. For
example, the model can contain an equation such as TAX=PROFI T* RATE where
RATE is a variable or formula. However, RATE cannot require runtime
aggregation.

See Also: Chapter 8, "Working with Models"

Example 12-12 Solving a Model in an Aggregation

This example uses the budget variable:
DEFI NE BUDGET VARI ABLE DECI MAL <LINE TI ME>
LD Budgeted $ Financi al

Thet i me dimension has two hierarchies (STANDARD and YTD) and a parent
relation named ti me. parentrel as follows:

----- TI VE. PARENTREL- - - - - -
---~TI ME. H ERARCH ES- - - - -
TI VE STANDARD YTD
LAST. YTD NA NA
CURRENT. YTD NA NA
JANOL QL. 01 LAST. YTD
FEBO1 QL. 01 LAST. YTD
MAROL QL. 01 LAST. YTD
APRO1 Q@. 01 LAST. YTD
NAYOL Q@. 01 LAST. YTD
JUNOL Q@. 01 LAST. YTD
JuLo1 @. 01 LAST. YTD
AUGD1 @. 01 LAST. YTD
SEPO1 @. 01 LAST. YTD
oCT01 Q. 01 LAST. YTD
NOVO1 Q. 01 LAST. YTD
DECO1 Q. 01 LAST. YTD
JANO2 QL. 02 CURRENT. YTD
FEB02 QL. 02 CURRENT. YTD
NAR02 QL. 02 CURRENT. YTD
APRO2 Q@. 02 CURRENT. YTD
NAY02 Q@. 02 CURRENT. YTD
Q. 01 2001 NA
@. 01 2001 NA
@. 01 2001 NA
Q. 01 2001 NA
Q. 02 2002 NA

Aggregating Data 12-19

How to Generate Precalculated Data

Q. 02 2002 NA
2001 NA NA
2002 NA NA

The relationships among line items are defined in the following model.

DEFI NE | NCOVE. BUDGET MODEL

MODEL

dinmension line tinme

opr.incone = gross.nargin - marketing
gross.margin = revenue - cogs

revenue = |ag(revenue, 12, tine) * 1.02
cogs = lag(cogs, 1, time) * 1.01

marketing = lag(opr.incone, 1, time) * 0.20
END

The following aggregation map pre-aggregates all of the data. Note that all of the
data must be pre-aggregated because the model includes both LAGfunctions and a
simultaneous equation.

DEFI NE BUDGET. AGGVAP1 AGGVAP
AGGVAP

MODEL i ncomne. budget

RELATI ON ti nme. parentrel

END

How to Generate Precalculated Data

Typically, you will general precalculated aggregates in a batch window as part of
maintaining the data in your database. If you wish, you can use Job Manager to
schedule batch jobs in Oracle Enterprise Manager, as described in the Oracle9i OLAP
User’s Guide.

The AGGREGATE command aggregates the data for one or more variables according
to the specifications provided in the aggregation map. The basic syntax of the
AGGREGATE command is:

AGGREGATE vari abl es USI NG aggmap

Where:
vari abl es is the name of one or more variables.

aggmap is the name of the aggregation map.

12-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

How to Generate Precalculated Data

Example 12-13 Precalculating Data in a Batch Job
Your batch job should include commands like the following:

ALLSTAT

POUTFI LEUNI T=FI LEOPEN(" userfil es/ progress.txt’ WRI TE)
AGCGREGATE sal es units USI NG gpct. aggmap

UPDATE

COW T

FI LECLOSE POUTFI LEUNI T

Effects of Dimension Status

The RELATI ONcommand only aggregates those source data values (that is, those
values that are loaded into the analytic workspace and used as the basis of
aggregation) that are in status. The parent values are calculated regardless of
whether they are in status or not. For example, if only JANO1, FEBO1, and MARO1
are in status for the t i me dimension, then QL. 01 will be calculated (but no other
quarters), and 2001 will be calculated (but no other years) using only QL. 01 as
input since the other quarters are NA.

This can be useful when you want to aggregate just the new data in your analytic
workspace. However, you must exercise some care, as described in "Performing
Partial Aggregations"” on page 12-27.

Monitoring Progress

You can monitor the progress of an aggregation by setting the POUTFI LEUNI T
option. You can use the QUTFI LEUNI T option or the QUTFI LE function to set the
value of POUTFI LEUNI T.

This command sets POUTFI LEUNI T to the file unit number of the current outfile,
which is usually the screen:

POUTFI LEUNI T=CUTFI LEUNI T

This command opens a file named pr ogr ess. t xt inthe userfil es directory
alias, and sets POUTFI LEUNI T to the file unit number of pr ogr ess. t xt :

POUTFI LEUNI T=FI LEOPEN(" userfil es/ progress.txt’ WRI TE)

When the aggregation is complete, you must close the file with a FI LECLOSE
command.

Aggregating Data 12-21

How to Calculate Data at Runtime

How to Calculate Data at Runtime

The AGGREGATE function calculates the complement of the data specified in the
PRECOVPUTE clause of the RELATI ONcommand. It returns those values that are
currently in status.

For example, if you are using an aggregation map that contains this RELATI ON
command:

RELATION letter.letter PRECOWUTE (' aa’)

Then the AGGREGATE function calculates all aggregations except aa, as shown here.
REPORT AGGREGATE(units USING | etter. aggmap)

AGCREGATE(UNI TS
LETTER USI NG LETTER. AGGVAP)

aa
ab
aab
aba
abb
aaaa
aaba
abaa
abbb
abba

|—w—w—\l\>|—\|\:|—\|\>oo§w

Setting Up Calculation on the Fly

If you want to calculate some data on the fly, you need to perform the following
steps:

1. Decide which data should be pre-calculated and which data should be
calculated on the fly.

2. Define an aggregation map that contains the PRECOVPUTE keyword in one or
more RELATI ON or MODEL commands. It may also contain a CACHE command if
the default value is not appropriate.

3. Use the AGGREGATE command with the aggregation map to pre-calculate the
data that will be stored on disk.

12-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating Custom Aggregates

4. Compile the aggregation map after executing the AGGREGATE command, as
explained in "How to Compile an Aggregation Map" on page 12-10.

5. Add the $SNATRI GGER property to the variables that use the aggregation map,
so that NAs in queried data will cause the AGGREGATE function to execute.

Adding the $NATRIGGER Property to a Variable

Instead of specifying the AGGREGATE function in every command that you want to
return aggregate data, you can add a property to the variable so that the
AGCGREGATE function is executed automatically.

An $NATRI GGER property on a variable indicates that NA values in the queried
data will cause a particular action to take place. To trigger an aggregation, a call to
the AGGREGATE function is the value assigned to the SNATRI GGER property.

The following commands add the $SNATRI GGER property to the sal es variable, so
that unsolved data will be aggregated using the sal es. aggmap aggregation map:

CONSI DER sal es
PROPERTY ' $NATRI GGER ' AGGREGATE(sal es USI NG sal es. aggnmap)’

Creating Custom Aggregates

Most aggregates are defined with a parent relation that identifies the parent-child
relationships within the dimension. However, users may wish to create their own
aggregates at runtime, perhaps for forecasting or what-if analysis, or just because
they want to view the data in an unforeseen way. This is the process by which a
custom aggregate is created:

1. Create a dimension value for the custom aggregate. The following command
adds ‘bb’ to the letter dimension:

maintain letter add 'bb’

2. Create a MODEL object that contains an AGGREGATI ON function, which
associates child dimension values with the new dimension value. The following
model identifies bb as the parent of aab and aba. Note that the parent
dimension value (in this case, bb) cannot already be defined as a parent in the
parent relation (l etter.l etter).

DEFI NE LETTER MODEL MODEL
MODEL

DI MENSI ON | etter
bb=AGGREGATI O\(’ aab’ ’aba’)

Aggregating Data 12-23

Balancing Precalculated and Runtime Aggregation

3. Execute an AGGVAP ADDcommand to append the model to an existing AGGVAP
object.

AGGVAP ADD | etter.nodel TO |etter.aggmap

The aggregation map from Example 12-8 now looks like this:

DEFI NE LETTER. AGGVAP AGGVAP

AGGVAP

RELATION letter.letter PRECOWPUTE (' aa’)
END

AGGVAP ADD | etter. nodel

4. The model is executed only by the AGGREGATE function like the one shown
here; the AGGREGATE command ignores it.
REPCRT AGGREGATE(units USING | etter. aggmap)

5. If you wish to remove the model from the aggregation map during a session,
use the AGGVAP REMOVE command.

Important: The AGGVAP ADD command is automatically removed
from an aggmap object at the end of a session.

Balancing Precalculated and Runtime Aggregation
Using AGGREGATE, all of the following strategies are possible. You can:

« Pre-aggregate all of the data. This means that all of the data for the variable will
be aggregated and stored in the database. This is likely to result in relatively
slow build performance and extremely fast user query performance.

« Calculate all of the data on the fly, that is, at run-time. In this case, you eliminate
aggregation from the build process, which means that build performance will
be very fast; it will be reduced to the time that it takes to load data into the
workspace. However, user query performance will suffer greatly.

« Pre-aggregate some of the data and calculate the remainder on the fly.

Good performance is a matter of trade-offs. Therefore, one of the most effective
steps you can take to achieve overall good performance is to balance the amount of
the data that you aggregate and store in an analytic workspace with the amount of
data that you specify for calculation on the fly.

12-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Balancing Precalculated and Runtime Aggregation

A typical strategy is skip-level aggregation: that is, select one or two of a variable’s
dimensions and pre-aggregate every other level in those dimension’s hierarchies. If
you know which levels are queried most often by users, you should pre-calculate
those levels of data.

Example 12-14 Calculating Data Using the Skip-Level Approach

Suppose you want to aggregate sal es data. The sal es variable is dimensioned by
geogr aphy, pr oduct , channel ,and ti ne.

First, consider the hierarchy for each dimension. How many levels does each
hierarchy have? What levels of data do users typically query? If you are designing a
new workspace, what levels of data do your users plan to query?

Suppose you learn the following information about how users tend to query sal es
data for the t i ne hierarchy:

Descriptive Level Examples of Do users query this
Time Level Names Name Dimension Values level often?
L1 Year YEAR99, YEAROO yes
L2 Quarter B. 99, B. 99, yes
QL. 00
L3 Month JAN99, DECOO yes

The following information shows how your users tend to query sal es data for the
geogr aphy hierarchy:

Geography Level Descriptive Level Examples of Do users query this
Names Name Dimension Values level often?
L1 World WORLD yes
L2 Continent EURCPE, AMERI CAS no
L3 Country HUNGARY, SPAI N yes
L4 City BUDAPEST, MADRI D yes

Aggregating Data 12-25

Balancing Precalculated and Runtime Aggregation

The following information shows how your users tend to query sal es data for the
pr oduct dimension hierarchy:

Product Level Descriptive Level Examples of Do users query this
Names Name Dimension Values level often?
L1 All Products TOTALPROD yes
L2 Division AUDI ODI V, yes
VI DECDI V
L3 Category TV, VCR yes
L4 Product TUNER, CDPLAYER yes

Using this information about how users query data, you should use the following
strategy for aggregation:

« Fully aggregate t i ne and pr oduct because all levels are queried frequently.

« Forthe geogr aphy dimension, aggregate data for L1 (World) and L3 (Country)
because they are queried frequently. However, L2 is queried less often and so
can be calculated on the fly.

The lowest level of data was loaded into the analytic workspace. The aggregate data
is calculated from this source data.

Therefore, the contents of the aggregation map might look like the following:

RELATI ON time. parentrel
RELATI ON geogr aphy. parentrel PRECOMPUTE (geog.leveldim’L3 'L1")
RELATI ON product . parentrel

Selecting Dimensions for Runtime Calculation

Use a skip-level approach for only one or two dimensions. You should use the
skip-level approach for half or fewer of the dimensions in a variable definition. For
example, if there are three dimensions, then you can use the skip-level approach for
one dimension; if there are four or more dimensions, then you can use the skip-level
approach for two dimensions.

The dimensions that are the best candidates for skip-level aggregation are the
dimensions whose hierarchies have many levels.

If possible, choose a dimension that is either fastest- or intermediate-varying in the
variable dimension. Performance of calculation on the fly will always be best for
dimensions in this position.

12-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

Performing Partial Aggregations

Selecting Levels for Runtime Calculation

Skip every other level in a dimension hierarchy, and avoid skipping more than two
levels that are adjacent to each other. For example, if a hierarchy has seven levels,
you might skip L2, L4, and L6. That means you would precalculate L1, L3, and L5.
(The detail-level data is at L7.) Take into consideration how frequently a level is
queried, as demonstrated in Example 12-14. Users will experience the best
performance if you pre-aggregate the data most frequently queried, and aggregate
on the fly the data that is requested occasionally.

Do not skip adjacent levels. For example, if you skipped L2, L3, L4, and L5, then a
query for L2 data would require AGGREGATE to calculate L5, then aggregate that
data up to L4, then up to L3, and finally to L2. Alternatively, if you skip L2, L4, and
L6, then a query for L2 data requires AGGREGATE to aggregate data only from L3.

The one exception to this rule is when each level has very few children per parent.
When this is true for every adjacent level that you want to skip, then you can skip
two or more adjacent levels.

Performing Partial Aggregations

Maintenance of an analytic workspace must usually be done within a restrictive
batch window. For this reason, many DBAs perform partial aggregations rather
than full aggregations each time they refresh the data. When all of the data is
pre-aggregated, this does not present a problem. However, when partial
aggregations are performed on data that uses both pre-aggregation and runtime
aggregation, then steps must be taken to ensure that the results are correct. Errors in
the data occur when the status list generated by the PRECOVPUTE keyword is
outdated.

The PRECOVPUTE clause produces a status list that:
« Tells the AGGREGATE command which data should be pre-calculated, and
« Tells the AGGREGATE function what the AGGREGATE command has done

If you never use the AGGREGATE command with the AGGREGATE function, you do
not need the information.

Aggregating Data 12-27

Performing Partial Aggregations

Aggregation Changes That Cause Problems
You should read this information to address the following circumstances:

« Incremental data loading: You have already built your analytic workspace and
are now loading new data on a regular basis. You make a change to at least one
PRECOVPUTE clause in a RELATI ONcommand in an aggregation map.

» Using data-dependent PRECOMPUTE clauses: When you use the PRECOMPUTE
keyword in an aggregation map, that PRECOVPUTE clause can be
data-dependent instead of simply identifying dimension values or levels.

« Changing a hierarchy: If you make a change to a dimension’s hierarchy after
you have already aggregated data, then you will need to aggregate all of the
data again. There is a procedure you can use, in some cases, to reduce the time
it takes to re-aggregate the data in your analytic workspace.

Incremental Data Loading

Incremental data loading refers to the process of loading new input data into an
existing analytic workspace and then aggregating that data. This usually happens
on a regular basis, whether it is on a monthly, weekly, or even daily basis.

For example, suppose you design a new analytic workspace. It contains two
variables: sal es and uni t s. Suppose that when you build the analytic workspace
for the first time, you have input data for one year for both variables. Because

sal es and uni t s contain exactly the same dimensions in exactly the same order in
their definitions, you define one aggregation map that will be shared by both

sal es and uni t s. You load that input data into the analytic workspace, then use
the AGGREGATE command to roll up that input data.

You know that you will be getting new input data for sal es and uni t s on the first
day of every month. For example, suppose it is March 1. On this day, you expect to
receive the sales data and units data for the previous month of February. Your
responsibility is to load the February data into the existing analytic workspace and
aggregate that input data. This is an incremental data load. The next incremental
data load will take place on April 1, and so on.

Typically, when you aggregate this new data, you will use a LI M T command to
ensure that only the new input data will be aggregated. For example, to aggregate
only the new input data that you have loaded for February, you might use the
following commands:

LIMT nonth TO ' FEB99’
AGCGREGATE sal es units USI NG sal esuni ts. aggnmap

12-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

Performing Partial Aggregations

This is acceptable as long as you do not change any of the PRECOVPUTE clauses in
the aggregation map. If you do, then you must pre-aggregate all of the data.

Problem: PRECOMPUTE Status List Is Inaccurate

If you change a PRECOVPUTE clause, then the status list will change. This means
that although the data that is produced by the AGGREGATE command after you
change the PRECOVPUTE clause will be correct, Oracle OLAP may not be able to
return the data that is requested by a user using the AGGREGATE function. The
status list might indicate that a value has already been calculated when in fact it has
not.

Solution: Regenerate the PRECOMPUTE Status List

If you make any changes to any PRECOMPUTE clause in one or more RELATI ON
commands in an aggregation map, then you must pre-aggregate all of the data.
Otherwise, the AGGREGATE function will use a PRECOMPUTE status list that is out of
synchronization with the data, and thus may not generate all of the required values.

Use the following procedure to be sure the data will be aggregated correctly:

1. Make sure that you have finished making any changes that you want to make
to the PRECOVPUTE clauses in your aggregation map.

2. Load the incremental input data.

3. Set the current status of all dimensions to ALL. (You can use one ALLSTAT
command,oraLl M T TO ALL command for every dimension in the
aggregation map.)

4. Execute the AGGREGATE command.

5. Recompile the aggregation map. (Alternatively, you can use the FUNCDATA
keyword when you execute the AGGREGATE command in Step 4.)

Using a Data-Dependent PRECOMPUTE Clause

The clause that follows the PRECOVPUTE keyword is like a LI M T command. You
have the flexibility to specify the limit expression using the values of the data. For
example, you can specify the five areas with the lowest sales figures in a time
period. The RELATI ON command might look like this:

RELATI ON geogr aphy. parentrel PRECOMPUTE (BOTTOM 5 BASEDON sal es)

Aggregating Data 12-29

Performing Partial Aggregations

Problem: Values of the Limit Clause Vary With Each Data Update

Data-dependent limit expressions can vary in their results. In other words, the
“bottom five” areas in the analytic workspace that you build in February will not
necessarily be the same “bottom five” areas after performing an incremental data
load in March. Furthermore, the “bottom five” areas in your March will not
necessarily be the same “bottom five” areas after the April incremental data load.

In this situation, the PRECOVPUTE status list is out of synchronization, and the
AGGREGATE function may not calculate a needed value because the status list
indicates that it was precomputed.

Solution: Maintain a Valueset
Instead of using a data-dependent PRECOVPUTE clause, you can either:

« List specific values, or
« Create a valueset that stores specific values

As you load and aggregate incremental data over the course of time, the status list
that is generated by the PRECOMPUTE keyword remains constant when you use one
of these methods. However, the five stores in the limit expression or valueset
remains the same, regardless of whether or not they still represent the stores with
the lowest sales figures.

To keep the limit phrase current, take the following steps:

1. Recompute the limit expression each time you load new data.

2. Change the valueset when the results of your computation are different.
3. Perform a full aggregation of the affected variables.

4. Recompile the aggregation map that is used by the AGGREGATE function.

Refer to "Incremental Data Loading" on page 12-28 for the general guidelines you
should follow.

If you have changed the input data or your hierarchies, then replace any data that
has been aggregated with NA values. These are the steps that you might take: Limit
the dimensions to the input data, create a new variable, copy the data from the
original variable to the new variable, delete the original variable, and rename the
new variable to the name of the original variable.

12-30 Oracle9i OLAP Developer’s Guide to the OLAP DML

Performing Partial Aggregations

Example 12—-15 Listing the Dimension Values

Instead of using data-dependent PRECOVPUTE clauses, use specific dimension
values in the PRECOVPUTE clause. After loading the data, issue a data-dependent
LI M T command to identify the dimension values. Then list those values in the
PRECOVPUTE clause. For example,

LIMT tine TO ' 2001’

LIMT channel TO ' TOTALCHANNEL'

LIMT product TO ' TOTALPROD

LIMT geography TO BOTTOM 5 BASED ON sal es

STATUS geogr aphy
The current status of GEOGRAPHY is:
BOGOTA, BORDEAUX, EDI NBURGH, KYOTO BRUSSELS

You would then change the PRECOVPUTE clause to list these areas:

RELATI ON geogr aphy. parentrel PRECOMPUTE (' BOGOTA' ' BORDEAUX' ' EDI NBURGH
" KYOTO ' BRUSSELS')

If you want to use data-dependent PRECOVPUTE clauses, create and use a valueset
with the PRECOVPUTE clause.

Example 12-16 Using a Valueset

A valueset can be used to store a list of values. For example, the following
commands create a valueset for the geography dimension. After performing an
incremental update, you would need to update the valueset, but you would not
need to edit the aggregation map.

The following commands create a valueset for geogr aphy:

DEFI NE | owsal es. geog VALUESET geogr aphy

LIMT time TO ' 2001

LIMT channel TO ' TOTALCHANNEL’

LIMT product TO ' TOTALPROD

LIMT | owsal es. geog TO BOTTOM 5 BASED ON sal es

Aggregating Data 12-31

Performing Partial Aggregations

The VALUES function returns the status list of the valueset:
SHOW VALUES(| owsal es. geog)

BOGOTA

BORDEAUX

EDI NBURGH

BRUSSELS

KYOTO

This RELATI ON command uses the valueset:

RELATI ON geogr aphy. parentrel PRECOMPUTE (| owsal es. geog)

Changing a Hierarchy

Once you have defined a hierarchy and you have aggregated data, if you move one
or more dimension values to a different parent in the hierarchy, then you have
changed the hierarchy.

For example, suppose your geogr aphy hierarchy has input data for stores. The
store data rolls up into cities. The cities roll up into regions, and so on.

WEST SOUTH

BOSTON BOSTON
WALTHAM HULL

STOREL STORE2 STORE3 STORE22 STORE23 | |STORE24

You define your dimensions and variables. You define the hierarchies for your
dimensions. You load data and roll it up. Several months later, after you have
loaded and rolled up incremental data, one of the stores changes location. For
example, STORE22 closes its location in Hull, Massachusetts and then reopens at a
new location in Waltham, Massachusetts. Therefore, STORE22 now is part of the
WEST BOSTONregion instead of SOUTH BOSTON region.

12-32 Oracle9i OLAP Developer’s Guide to the OLAP DML

Performing Partial Aggregations

WEST
BOSTON

N

WALTHAM

v 4

Xy

-

SOUTH
BOSTON

HULL

STORE1

STORE2

STORE3

STORE22

STORE23

STORE24

Therefore, you must move the STORE22 dimension value so that its data will roll
up to different dimension values in the higher levels of the hierarchy. For example,
you must move STORE22 from the HULL path to the WAL THAMpath.

When you move one or more dimension values so that their data rollsup in a
different path in the hierarchy, you have changed the hierarchy.

Problem: Previously Aggregated Data is Incorrect

Suppose that you receive the most recent month’s worth of data for STORE22. You
load that data and aggregate it.

Today you find out that last month the store moved to a new city, as well as a new
region. This means that you have already aggregated the STORE22 data into HULL,
when the STORE22 data now should be aggregated into WAL THAM

The problem is that you not only need to change the hierarchy, but you need to
correct the data so that the STORE22 data aggregates into WAL THAMinstead of

HULL.

Solution: Re-Aggregate Changed Branches

When you change a hierarchy, you can re-aggregate the data in the analytic
workspace (after you have changed the hierarchy) in one of two ways:

« Perform a full aggregation. This is the best alternative if you make significant

changes to a hierarchy.

« Perform a partial aggregation for the dimension value that has moved, as well
as a previous sibling of that dimension value. This method is acceptable for

very small changes to the hierarchy.

Aggregating Data 12-33

Combining AGGREGATE with Forecasts and Programs

The advantage of a partial aggregation is that it takes a shorter period of time to
complete than a full aggregation. However, the advantage of performing a full
rollup is that you know the results will be correct.

Therefore, if you move one or two dimension values in your hierarchy, and you
have a small window of time to roll up the analytic workspace, you can perform a
partial aggregation; otherwise, perform a full aggregation.

How to Aggregate Branches of a Hierarchy
Follow these steps to aggregate the data for the former parents and the current
parents of the dimension value that moved in the hierarchy.

1. ldentify the dimension value (or group of dimension values) that has moved in
the hierarchy. For example, STORE22 is the dimension value whose data now
aggregates to WALTHAM instead of HULL.

2. Identify a previous sibling of the dimension value that has moved. (If more than
one dimension has moved, you must identify a sibling for each one.) For
example, STORE22 was previously grouped with STORE23 and STORE24;
either one qualifies as a previous sibling of STORE22.

3. Limit the current status of the dimension to the dimension value that has
moved and its previous sibling. For example, use the following command to
limit the geogr aphy dimension to STORE22 and STORE23.

LIMT time TO ' STORE22' ' STORE23'

4. Aggregate the variable’s data. For example, use the following command to
aggregate the sal es variable.
AGCREGATE sal es USI NG sal es. agg

By identifying the dimension value that has moved, you can recalculate its new

ancestors (such as WALTHAM). By identifying a previous sibling of the dimension
value that has moved, you can recalculated its previous ancestors (such as HULL).

Combining AGGREGATE with Forecasts and Programs

You will need to use multiple aggregation maps for a single variable when you use
alternative ways to pre-aggregate data (in addition to the AGGREGATE command)
over one or more dimensions. These alternative ways to aggregate data can include:

« Aforecast
« An OLAP DML program

12-34 Oracle9i OLAP Developer’s Guide to the OLAP DML

Combining AGGREGATE with Forecasts and Programs

For example, suppose the sales variable is dimensioned by geography, product,
channel, and time. You If you aggregate some of a variable’s data with AGGREGATE,
and you aggregate other data for that same variable with a forecast or DML
program, then you need to take extra steps to make sure all of the aggregated data
will be correct.

Important: You should not use the AGGREGATE function with
multiple aggregation maps unless you feel comfortable answering
the following question:

When the aggregation map is compiled for use by the AGGREGATE
function, does the status that results from each PRECOMPUTE clause
accurately define the nodes within that dimension at which data
has been pre-computed?

If you cannot answer “yes” to this question with confidence, you
should not use the AGGREGATE function with multiple aggregation
maps.

When to Use Multiple Aggregation Maps

Ideally, you will use the same aggregation map with both the command and the
function to aggregate data for the same variable or group of variables. However, it
may be necessary to use two or more aggregation map with the command and a
different aggregation map with the function to assure that the results will be correct.

Problem: Different Aggregation Maps Generate Different Status Lists

The reason for using multiple aggregation maps is that each one performs a
different task, and thus produces a different status list.

If the AGGREGATE command and the AGGREGATE function use the same
aggregation map, then there is no problem; they will be using the same status list,
because only one status list exists.

The problem occurs when you use more than one aggregation map with the
AGGREGATE command for the same variable (or group of variables). Each one
produces a different status list, and none of them alone may correctly identify the
current status for the AGGREGATE function.

Aggregating Data 12-35

Combining AGGREGATE with Forecasts and Programs

Solution: Create a Separate AGGMAP for the AGGREGATE Function
If you use more than one aggregation map to pre-calculate data, then you must:

1. Create another aggregation map for the AGGREGATE function, which will be
used for user queries.

2. Make sure that the contents of the aggregation map for user queries combines
the contents of the aggregation maps that you use to pre-calculate data. Refer to
Example 12-17, "Using Multiple Aggregation Maps" for an example of how to
do this.

Example 12-17 Using Multiple Aggregation Maps

If you use a forecast, you must make sure that all of the input data that is required
by that forecast has been pre-calculated. Otherwise, the forecast will use incorrect or
nonexistent data.

For example, suppose your forecast requires that all line items are aggregated.
Using a budget variable that is dimensioned by ti ne, | i ne,and di vi si on,a
typical approach would be to perform a complete aggregation of the | i ne
dimension, forecast the t i me dimension, and then aggregate the remaining
dimension, di vi si on. Define the first aggregation map, named f or ecast . agg1l,
which aggregates the data needed by the forecast. It contains the following
command:

RELATI ON |i ne. parentrel
Define the second aggregation map, named f or ecast . agg2, which aggregates the

data generated using the first aggregation map and the forecast. It contains the
following command:

RELATI ON di vi si on. parentrel PRECOVPUTE (' L3")

Define the third aggregation map, named f or ecast . agg3, which contains the
contents of the first two aggregation maps:

RELATI ON |i ne. parentrel

RELATI ON di vi si on. parentrel PRECOVMPUTE (' L3")

If your forecast is in a program named f or e. pr g, then you would use these
commands to aggregate the data:

AGGREGATE budget USI NG forecast.aggl "Aggregate over LINE
CALL fore.prg "Forecast over TIME
AGGREGATE budget USI NG forecast.agg2 "Aggregate over DI VISION

12-36 Oracle9i OLAP Developer’s Guide to the OLAP DML

Combining AGGREGATE with Forecasts and Programs

"Conpile the limt nmap for LINE and DI VI SI ON
COWPI LE forecast. agg3

"Use the conbined aggregation map for the AGGEREGATE function

CONSI DER budget
PROPERTY ' NATRI GGER ' AGGREGATE(budget USI NG f or ecast. agg3)’

Aggregating Data 12-37

Combining AGGREGATE with Forecasts and Programs

12-38 Oracle9i OLAP Developer’s Guide to the OLAP DML

Symbols

% wildcard, 4-28

& operator, 4-30, 4-31

= command
ACROSS keyword, 5-12
example of, 5-12,5-13
introduced, 4-3,5-3,5-10
saving calculations, 5-12
with composites, 5-12
with dimensions, 5-14
with models, 8-5
with QDR, 4-8,5-14
with relations, 5-14
with variables, 5-11, 5-12
with variables using composites, 5-12, 5-13

= operator, See = command

_wildcard, 4-28

A

ABS function, 4-24, 4-25
ACROSS phrase

used when reading files, 11-17
AGGINDEX command

definition, 12-9

purpose of, 12-9
AGGMAP command, 3-27,12-7
aggmap object, See aggregation map
AGGMAPINFO command, 9-4
AGGREGATE command

introduced, 12-4

multiple variables, 12-11

Index

AGGREGATE function

adding as a property to the variable, 12-23

introduced, 12-4
aggregating data

best practice, 12-24

for multiple variables, 12-11

list of commands, 12-3

methods, 12-14

on-the-fly, 12-2

overview, 12-2

precomputing, 12-2

process, 12-4
aggregation functions, NA values in, 4-33
aggregation map

commands for allocation, 9-5

compiling, 12-10

creating aggmap object, 12-7

for allocation, 9-5

how to define, 12-7

performance tip, 12-12

RELATION command, 9-6, 12-12
alias

analytic workspace, 2-8

directory, 11-4
ALLOCATE command, 9-2,9-4
allocating data

introduction to, 9-2

list of related commands, 9-4

preparing for, 9-5
ALLOCERRLOGFORMAT command, 9-4
ALLOCERRLOGHEADER command, 9-4
ALLOCMAP command, 3-27,9-4,9-5
ampersand (&) operator, 4-30, 4-31

Index-1

ampersand substitution saving changes to, 2-8

avoiding, 4-31 security, 2-12
defined, 4-30 sharing across sessions, 2-4
effect performance, 7-9 updating, 2-9
example of, 4-31 waiting for access, 2-5
prevents compiling, 7-29 AND operator, 4-21,4-22
program arguments and, 7-9 ARG function, 7-7
QDR with, 4-10 ARGFR function, 7-7
restrictions, 8-6 ARGS function, 7-7
using to pass arguments, 7-9 ARGUMENT command
when required, 7-9 placement of, 7-7
analytic workspaces use of, 7-7
access from Java, 1-10 using multiple, 7-8
access from OLAP Worksheet, 1-6 arguments
access from SQL, 1-9 in programs, 7-7
acquiring description of, 2-15 in user-defined functions, 7-12
active workspace, 2-2 passing as text, 7-9
alias, 2-8 using ampersand substitution with, 7-9
attached read-only or read/write, 2-4 arithmetic expressions. See arithmetic operators,
attached workspace, 2-2 numeric expressions
attaching, 2-3 arithmetic operators, 4-16
committing changes, 2-9 assignment operator. See = command
controlling access to, 2-12 assignment statement. See = command
copying data into relational AUTOGO programs, 2-11
tables, 10-28 to 10-32 AW command, 2-5
creating, 2-3 ATTACH keyword, 2-3
current workspace, 2-2 CREATE keyword, 2-3
deleting, 2-5 DETACH keyword, 2-5
detaching, 2-5 LIST keyword, 2-2
exporting, 2-14 NAME keyword, 2-2
importing, 2-14 WAIT keyword, 2-5
introduction to, 1-2 AW function, 2-15
list of attached, 2-2 AWDESCRIBE program, 2-15
minimizing growth of, 2-10
multiple, 2-6 B
name, 2-7
objects, acquiring information about, 2-15, 2-16, backslash (escape sequence), 3-6
2-17 backspace (escape sequence), 3-6
objects, defining, 3-2 BADLINE option, 7-30
objects, defining in a program, 7-29 base model, 8-4
permission programs, 2-12, 2-13 batch window for aggregation, 12-2
populating, 5-1 Boolean
populating from relational tables, 10-3 to 10-20 constants, 3-7,4-21
reorganizing, 2-10 data type, 3-7,4-21

retrieving name of, 2-2

Index-2

Boolean expressions
creating, 4-22
defined, 4-21
example of, 4-23
involving NA values, 4-24
operators, 4-21
values, 4-21
with more than one dimension, 6-6
Boolean operators
evaluation order, 4-21
table of, 4-21
branching in programs, 7-17
BTREE indexes in aggregation, 12-4,12-6

C

CACHE command

definition, 12-9

purpose of, 12-9
calculation on-the-fly

atypical strategy, 12-25

requirements for, 12-22
calculations

controlling errors during, 4-19

in models, 8-6
CALL command, 7-2
carriage return (escape sequence), 3-6
CDA command, 2-14,7-17,11-4
cells, empty, 3-18
characters

representing as decimals, 3-6

representing as hexadecimals, 3-6

representing as Unicode, 3-6
CHGDFN command

aggregation, 12-6

for variables, 3-28
CHILDLOCK command, 9-6
CLEANUP statement (SQL), 10-14
CLOSE statement (SQL), 10-13, 10-14
comments in programs, 7-4
COMMIT command, 2-9
comparison operators, 4-21
COMPILE command

example of, 7-28

in models, 8-5, 8-7

introduction to, 7-28
composites

assigning names to unnamed, 3-20

defined, 3-18

defining single-dimension, 3-22

in expressions, 4-13

limiting base dimensions, 6-18

limiting dimensions used by, 4-14, 6-18

maintaining, 5-9

named, 3-18

naming, 3-20

renaming, 3-20

single-dimension, 3-22

unnamed, 3-18, 3-21

unnaming, 3-20

using commands with, 4-14
concat dimensions, 3-8

defined, 3-25

defining variables for, 3-26

example of, 3-26

limiting, 6-20

maintaining, 5-10

self-relations for, 3-26
conditional expressions, 4-29, 4-30
conditional operators

defined, 4-29

example of, 4-30
conjoint dimensions

deleting values from, 5-8

limiting, 6-19

maintaining, 5-9

maintaining when reading files, 11-10

merging values into, 5-6
CONSIDER command, 3-27
CONTEXT

command, 7-22

function, 7-22
control structures in programs, 7-14
controlled sparsity, 3-18
CONVERT function, 4-3
COPY operator for allocation, 9-10
current analytic workspace, defined, 2-2
current outfile, 7-18
current status, 6-2

Index-3

cursors (SQL)
closing, 10-13,10-14
declaring, 10-5
opening, 10-8

D

data aggregation

best practice, 12-24

creating the aggregation map, 12-7

for multiple variables, 12-11
data types

converting, 4-3,4-17

date, 3-7

numeric, 3-4

of expressions, 4-2

of numeric expressions, 4-15, 4-17

of user-defined function, 7-12

text, 3-5
data values

accessing variable, 4-13

converting when reading files, 11-10

numeric, 4-15

saving calculations, 5-12
DATE data type, 3-7
dates

comparing with times, 4-27

in arithmetic expressions, 4-18

in text expressions, 4-20

reading from files, 11-15
DATETIME data type, 3-7,4-20
DBGOUTFILE command, 7-31, 8-11
DEADLOCK command, 9-6
debugging programs, 7-29
DECIMAL data type, 3-4,4-25
decimal data types, comparing, 4-25
DECIMALOVERFLOW option, 4-20
DECIMALS option, 4-24,4-25
DECLARE CURSOR statement (SQL), 10-5
default outfile, 7-18
DEFINE command, 3-2

AGGMAP, 12-7

COMPOSITE keyword, 3-18, 3-19

DIMENSION keyword, 3-22, 3-25

Index-4

MODEL keyword, 8-5
PROGRAM keyword, 7-3
RELATION keyword, 3-13
SPARSE keyword, 3-18
SURROGATE keyword, 3-11
VALUESET keyword, 6-22
VARIABLE keyword, 3-18
definitions
changing, 3-27
displaying, 2-15, 2-16
distinct from data, 3-2
DELETE keyword, 2-5
DESCRIBE command, 2-16
DIMENSION command, 8-5, 8-6, 9-6
dimension order in models, 8-6
dimension status, 6-2

effect of MAINTAIN command on, 5-4

effect on expressions, 4-6
examining, 6-25

if dimension is empty, 6-21
if valueset is empty, 6-21
null, 6-21

of concat dimension, 6-20
of conjoint dimension, 6-19

of dimensions used by composites, 4-14, 6-18

restoring, 6-4,6-22, 7-20
retrieving current values, 6-25
retrieving default values, 6-25
saving, 6-22
saving current status, 6-4, 7-20
setting to a list of values, 6-4
setting to a literal value, 6-5
setting to null, 6-21
setting using position in dimension,
when reading files, 11-20
dimension surrogates
defining, 3-11
differences from dimensions, 3-12
in expressions, 4-12
dimension values
comparing, 4-26
translating when reading files, 11-11
dimension-based equations, 8-2

6-12, 6-13

dimensions

adding values to, 5-5

assigning values to, 5-14

comparing values, 4-26

concat, 3-8, 3-25

defined, 3-8

defining, 3-22, 3-23, 3-25

defining in a program, 7-29

deleting values from, 5-7

examining values in status, 6-25

hierarchical, 3-22, 3-23

how data is stored, 3-10

in expressions, 4-12

level of detail, 3-9

limiting to a percentage of values, 6-9

limiting to Boolean expressions, 6-5

limiting to bottom performers, 6-10

limiting to related dimension, 6-11

limiting to single value, 4-6

limiting to top performers, 6-10

limiting when reading files, 11-20

limiting, based on position, 6-12, 6-13

limiting, using a valueset, 6-23

limiting, using hierarchical relationship, 6-13,
6-16

looping over values of, 7-15, 7-16

maintaining when reading files, 11-7

merging values into, 5-5

numeric value of text dimension, 4-18

of expression, 4-5, 4-6

of relations, 3-13

position of values in valueset, 6-25

QDR with, 4-6, 4-10

relations between, 3-15

repositioning values in, 5-8, 5-9

restoring previous values, 7-20

retrieving default status list, 6-25

retrieving list of objects related to, 2-16

running programs when limiting, 6-16

saving current values, 7-20

sorting values in, 5-8

storage of, 3-10

surrogate for, 3-11

types of, 3-8

ways to define, 3-22, 3-25

direct allocation, 9-8, 9-13
directory alias, 2-14,7-17,11-4
DIVIDEBYZERO option, 4-19
DML
and SQL, 1-3
and the OLAP API, 1-3
definition, 1-2
using, 1-3
double quotes (escape sequence), 3-6

E

ECHOPROMPT option, 7-19, 7-31
EIF file, 2-14
embedded totals dimension, 3-24, 3-26
empty cells, 3-18
EQ command, 3-28
EQ operator, 4-21,4-22
equations
cyclic dependence (in models), 8-9
dimension-based, 8-2
in models, 8-6
simple blocks, 8-8
step blocks, 8-8
error log, 9-5,9-17
error messages
creating your own, 7-25
deferring, 7-23
routing to a file, 7-19, 9-17
suppressing, 7-24
system, 7-24
error names, 7-24
ERRORLOG command, 9-6
ERRORMASK command, 9-6
ERRORNAME option, 7-23, 7-24

errors
controlling during calculations, 4-19
handling, 7-23

handling in nested programs, 7-26, 7-27
identifying, 7-24
names of, 7-24
signaling, 7-25, 7-26, 7-27
when comparing numeric data, 4-24, 4-25
ERRORTEXT option, 7-23
escape sequences, 3-6

Index-5

EVEN operator for allocation, 9-2
EXECUTE statement (SQL), 10-28
EXPORT command, 2-14
expressions

ampersand substitution, 4-30, 4-31

Boolean, 4-21, 4-29, 4-30, 6-5, 6-6

changing the default behavior, 5-12

conditional, 4-29, 4-30

data type of, 4-2

dates in, 4-18

defined, 4-2

dimension surrogates in, 4-12

dimensionsin, 4-12

dimensions of, 4-5, 4-6

evaluating, default behavior, 5-12

formulasin, 4-12

functions in, 4-12

mixing numeric data types, 4-17

numeric, 4-15

objects in, 4-12

relations in, 4-12, 4-15

substitution, 4-30, 4-31

text, 4-20

using composites in, 4-13

using text dimension in numeric

expression, 4-18
valuesets in, 4-12
variables in, 4-12

F

fastest-varying dimension, 3-17
FETCH statement (SQL), 10-9
file identifier, 11-4

file names, 11-4

FILENEXT function, 11-15
FILEOPEN function, 11-4
FILEREAD command, 5-3

files
appending output, 7-18
fileunit, 11-4

maintaining dimensions from, 11-7, 11-10
modifying data from, 11-14

names and identifiers, 11-4

reading, 11-1

Index-6

reading coded dimension values, 11-12

reading in programs, 11-5
reading individual records, 11-15
reading structured PRN, 11-6

reading with FILENEXT function, 11-15

saving outputin, 7-17,7-18
scaling input data from, 11-13
fileunit, 11-4
FILEVIEW command, 11-15

financial analysis, scenario modeling, 8-12

floating point numbers, comparing, 4-25
floating-point format
limitations when calculating, 4-18
use of, 4-18
FOR command
example of, 7-16

looping over dimension values, 7-15, 7-16

forecasting data, 5-15
form feed (escape sequence), 3-6
formulas in expressions, 4-12
functions
defined, 4-15
in expressions, 4-12
numeric, 5-16
user-defined, 7-3,7-11, 7-12
writing, 7-11

G

GE operator, 4-21, 4-22
globalization, 2-6
GT operator, 4-21,4-22

H

HASH indexes in aggregation, 12-6
HEVEN operator for allocation, 9-8
HFIRST operator for allocation, 9-13
hierarchical dimensions

defined, 3-22

defining variables for, 3-24

drilling down, 6-16

example of, 3-23, 3-24

limiting based on relationship within,

self-relations for, 3-24

6-13, 6-16

HLAST operator for allocation, 9-13
horizontal tab (escape sequence), 3-6
host variables (SQL)

input, 10-6

output, 10-9

ID data type, 3-5
IFNONE keyword, 7-17
implicit relations, 3-13
IMPORT command, 2-14,5-3
IMPORT statement (SQL), 10-9
IN operator, 4-21,4-22
INCLUDE command, 8-4, 8-5, 8-6
INFO function
determining dimensionality with, 4-5
DIMENSION keyword, 4-6
with models, 8-11
input host variables (SQL), 10-6
INSTAT function, 6-3, 6-25
INTEGER data type, 3-4

L

labels
in programs, 7-24
with IFNONE, 7-17
LAG function, 4-18, 8-10
LD command, 3-28
LE operator, 4-21,4-22
LEAD function, 4-18, 8-10
level relation, defined, 12-4
LIKE operator, 4-21, 4-22, 4-28
LIMIT command
DESCENDANT keyword, 6-14
examples of, 6-5, 6-9, 6-10, 6-11, 6-16, 6-23
HIERARCHY keyword, 6-13, 6-14
NOCONVERT keyword, 6-13
NULL keyword, 6-21
overview, 6-4
POSLIST keyword, 6-12
relation dimension, 6-11
RUN keyword, 6-16
with Boolean expression, 6-5, 6-6

with concat dimension, 6-20

with conjoint dimension, 6-19

with variables with composite, 4-14, 6-18
linefeed (escape sequence), 3-6
LISTNAMES program, 2-16

literals
numeric, 3-4
text, 4-20

local variables, 7-5

localization, 2-6

locking values in an allocation, 9-12, 9-15
logical operators, 4-21

LONGINTEGER data type, 3-4

LT operator, 4-21,4-22

M

MAINTAIN command

adding values using, 5-5

deleting values using, 5-7,5-8

effect on dimension status, 5-4

introduced, 5-3

merging values using, 5-5, 5-6

overview of, 5-3

repositioning values using, 5-8

when objects are updated, 5-4

with composites, 5-9

with concat dimensions, 5-10

with conjoint dimensions, 5-9
MAX operator for allocation, 9-8
MODEL command, 3-28, 8-5
MODEL.COMPRPT program, 8-11
MODEL.DEPRPT program, 8-11
models

base, 8-4

basic commands, 8-5

compiling, 8-3,8-7

creating, 8-2

creating a nested hierarchy, 8-4

debugging, 8-11

defined, 8-2
editing, 8-2
parent, 8-4

running, 8-3,8-9
scenario, 8-12

Index-7

solution variables, 8-2

types of solution blocks, 8-8
MODEL.XEQRPT program, 8-11
MODTRACE option, 8-11
multidimensional data model, 3-16
multiple analytic workspaces, 2-6

N

NA values, 3-18
comparing, 4-24
controlling how treated, 4-32
defined, 4-32
in aggregation functions, 4-33
in an allocation, 9-6, 9-7
in arithmetic operations, 4-34
in Boolean expression, 4-24
substituting another value for, 4-34
times when relevant, 4-32
NAFILL function, 4-32,4-34
NAME dimension, 2-16
named composites, defined, 3-18
NASKIP option, 4-32,4-33
NASKIP2 option, 4-32, 4-34
NASPELL option, 7-7
NE operator, 4-21, 4-22
NLS options, 2-6
NOL_SORT option, 4-27

NOPRINT keyword (TRAP), 7-24, 7-27

NOSPELL option, 3-7
NOT operator, 4-21, 4-22
NTEXT data type, 3-5
NUMBER data type, 3-5

NUMBER dimension, surrogate for, 3-11

numeric data types
automatic conversion of, 4-17
comparing, 4-24,4-25
list of, 3-4
mixing, 4-17
numeric expressions
data type of the result, 4-15, 4-17
datesin, 4-18
defined, 4-15
evaluating, 4-16
mixing data types in, 4-17

Index-8

NA values in, 4-34

O

OBJ function

PROPERTY keyword, 12-5

workspace object information, 2-17
objects

assigning values to, 4-3, 5-10

changing definition of, 3-27

definitions, 3-2

displaying definitions of, 2-16

in expressions, 4-12

list of, 3-3

maintaining, 5-4

retrieving information about, 2-17

retrieving list of, 2-16

updating, 5-4
OKNULLSTATUS option, 6-21, 7-17
OLAP Worksheet, 1-6
OPEN statement (SQL), 10-8
operators

arithmetic, 4-16

Boolean, 4-21

comparison, 4-21

conditional, 4-29, 4-30

for allocation, 9-7

logical, 4-21
substitution, 4-30, 4-31
options

restoring previous values, 7-20
saving current values, 7-20
OR operator, 4-21, 4-22
OUTFILE command, 7-17,7-18
OUTFILEUNIT option, 12-21
output
host variables, 10-9
saving in afile, 7-17,7-18

P

parent model, defined, 8-4
parent relation, defined, 12-4
PARSE command, 4-5, 4-6
pattern matching, 4-28

permission programs, 2-12
PERMIT command, 2-13,3-28
PERMIT_READ program, 2-12,2-13
PERMIT_WRITE program, 2-12,2-13
POP command, 7-20, 7-21
POPLEVEL command

nesting, 7-22

using, 7-21
populating analytic workspaces, 5-1
POUTFILEUNIT option, 9-4,12-4,12-21
PREPARE statement (SQL), 10-28
PRGERR keyword (SIGNAL), 7-26
PRGTRACE option, 7-31
PRN files, reading, 11-6
PROGRAM command, 3-28
programs

analytic workspace permission, 2-13

arguments, 7-7

AUTOGO, 2-11

automatic running of, 2-11, 6-16

branching in, 7-17

branching labels, 7-14

comment linesin, 7-4

compiling, 7-9,7-28

control structures, 7-14

debugging, 7-29

declaring arguments in, 7-7, 7-8

defined, 7-2

defining, 7-3

designing, 7-5,7-14

errorsin, 7-23

executing, 7-2

LISTNAMES, 2-16

permission, 2-12

PERMIT_READ, 2-12,2-13

PERMIT_WRITE, 2-12,2-13

preserving environment, 7-19

restoring previous values, 7-20

running, 7-29

sample, 7-12

saving compiled code, 7-28

saving current values, 7-20

testing by running, 7-29

variablesin, 7-4,7-5

PROPERTY command, 3-28
PROPORTIONAL operator for allocation, 9-15
protecting values in an allocation, 9-12, 9-15
PUSH command, 7-21

placement, 7-23

using, 7-20
PUSHLEVEL command

nesting, 7-22

placement, 7-23

Q

QON, 2-6
QUAL function, 4-10
qualified data references
ampersand substitution, 4-10
creating, 4-6
defined, 4-6
qualifying a relation, 4-9
replacing dimension of variable, 4-7,4-8
using with = command, 4-8,5-14
using with relation, 4-9
with dimensions, 4-6
with relations, 4-9
with variables, 4-7, 4-8
qualified object names, 2-6
guotation marks (escape sequence), 3-6

R

random sparsity, 3-18
RAW DATE attribute
when reading files, 11-15
records, reading, 11-15
recursive allocation, 9-10, 9-15
RELATION command, 12-7
arguments for allocation, 9-7
for allocation, 9-6
operators for allocation, 9-7
syntax for aggregation, 12-12
relational data, 10-1
See also SQL
copying into analytic workspace, 10-3 to 10-20
inserting from analytic
workspace, 10-28 to 10-32

Index-9

updating from analytic
workspace, 10-28 to 10-32

relations

assigning values to, 5-14

between two dimensions, 3-15

comparing to text literals, 4-29

defined, 3-13

defining, 3-15

dimensionality of, 3-13

example of, 3-15, 3-24, 3-26

how data is stored, 3-14

implicit, 3-13

in aggregation, 12-4

in allocation, 9-5, 9-6, 9-9

in expressions, 4-12, 4-15

limiting to single value, 4-9

QDR with, 4-9

replacing dimension of, 4-9

self, 3-15, 3-24, 3-26

used when reading files, 11-13
REMOPERATOR in an allocation, 9-9
REPORT command

for viewing objects, 2-17

with sparse data, 4-14
RETURN command, 7-11
ROLLBACK, effect on changes, 2-10
ROOTOFNEGATIVE option, 4-20
ROUND function, 4-24, 4-25
run-time aggregation, 12-2

S

scenario model, defined, 8-12
scenarios for financial modeling, 8-12
sessions
preserving environment, 7-19
restoring environment, 7-20
sharing analytic workspaces across, 2-4
SHORTDECIMAL data type, 4-25
SHORTINTEGER data type, 3-4
SIGNAL command, 7-25
simple blocks (in models), 8-8
simultaneous equations in models, 8-10
single quotes (escape sequence), 3-6
slowest-varying dimension, 3-17

Index-10

solution variables
defined, 8-2
example of, 8-12
source object for allocation, 9-5
SOURCEVAL command, 9-6
sparse data, 3-18
controlled sparsity, 3-18
defined, 3-18, 4-32
eliminating, 3-18to 3-21
random sparsity, 3-18
setting dimension status, 6-18
SQL, 10-1
See also relational data
error handling, 10-34
OLAP DML command, introduced, 5-3
precompiling code, 10-28
stored procedures, 10-32
triggers, 10-32
SQL statements

issuing through OLAP DML, 10-2to 10-33

STATFIRST function, 6-3, 6-25
STATLAST function, 6-3, 6-25
status. See dimension status
step blocks (in models), 8-8
storage

of dimensions, 3-10

of relations, 3-14

of variables, 3-17
stored procedures, 7-2
structured files, reading, 11-6
substitution expressions, 4-30, 4-31
substitution operator, 4-30, 4-31
surrogates. See dimension surrogates
SYSINFO function, 2-13

T

tab (escape sequence), 3-6

temporary variables, 7-5, 11-20

text
comparing values, 4-27, 4-28
comparing values to a pattern, 4-28
data types, 3-5
NLS_SORT option in comparisons, 4-27
passing arguments as, 7-9

TEXT data type, 3-5
text expressions

dates in, 4-20
defined, 4-20
text literals

comparing to relations, 4-29
defined, 4-20
TRAP command, 7-23, 7-26, 7-27

U

unnamed composites, 3-18, 3-21
defining, 3-21
example of, 3-21
naming, 3-20
UPDATE command, 2-9
user-defined functions, 7-11
argumentsin, 7-12
data type of, 7-12
defined, 7-2
executing, 7-3

\Y,

VALUE keyword
used in reading files, 11-12
used when reading files, 11-14
values
assigning to dimensions, 5-14
assigning to objects, 5-10
assigning to relations, 5-14
assigning to variables, 5-12
assigning to variables with composites,
5-13
assigning, using a QDR, 5-14
in current status list, 6-25
in default status list, 6-25
NA, 3-18
restoring previous, 7-20
saving current, 7-20
VALUES function, 6-3, 6-25

valuesets
creating, 6-22
defined, 6-22
defining, 6-22

5-12,

in expressions, 4-12

limiting using, 6-23

listing dimension positions in, 6-25
VARIABLE command, 7-6
variables

accessing, 4-13

aggregating data for multiple, 12-11

assigning values to, 5-11, 5-12, 5-13, 5-14

controlling sparsity in, 3-18

defined, 3-16

defining in a program, 7-29

defining with composite, 3-18to 3-21

defining with unnamed composite, 3-21

dimensioned, 3-17

how data is stored, 3-17

in expressions, 4-12

limiting to single value, 4-7,4-8

local, 7-5

NA valuesin, 3-18

persistence of, 7-4,7-5

QDR with, 4-7,4-8

replacing dimension of, 4-7, 4-8

sparse datain, 4-14

storage of, 3-17

temporary, 7-5

undimensioned, 3-17

with embedded totals, 3-24, 3-26

with NA values, 3-18

with single-dimension composite, 3-22

wW

WHERE clauses (SQL), 10-7
wildcards, 4-28

Y
YESSPELL option, 3-7

Z
zero, dividing by, 4-19

Index-11

Index-12

	Send Us Your Comments
	Preface
	What’s New in the OLAP DML?
	Part I� Introduction
	1 Basic Concepts
	What Is the OLAP DML?
	Analytic Workspaces
	SQL and the OLAP DML
	The OLAP API and the OLAP DML

	Using the OLAP DML
	How to Use the OLAP DML to Analyze Data
	Creating an Analytic Workspace
	Loading Data Into Analytic Workspaces
	Temporary vs. Persistent Analytic Workspaces
	Sharing Data In Analytic Workspaces

	Accessing a Workspace from OLAP Worksheet
	Procedures: How to Open OLAP Worksheet
	Establishing a Connection
	Executing Commands
	Editing an OLAP DML Program
	Closing the Connection

	Accessing a Workspace from SQL-Based Applications
	Using SQL SELECT Statements
	Using Embedded OLAP DML Commands

	Accessing a Workspace from a Java Application
	Using OLAP Metadata
	Using Embedded OLAP DML Commands

	2 Defining and Working with Analytic�Workspaces
	Using the OLAP DML to Work with Analytic Workspaces
	Current Analytic Workspace
	How to Create An Analytic Workspace
	How to Attach an Analytic Workspace
	Specifying the Analytic Workspace Attachment Mode
	Sharing Analytic Workspaces
	How to Detach an Analytic Workspace
	How to Delete an Analytic Workspace
	Workspace Localization Settings

	Attaching Multiple Analytic Workspaces
	Qualified Object Names
	Multiple AUTOGO and Permission Programs

	Using Names and Aliases for Analytic Workspaces
	Workspace Names
	Workspace Aliases

	Saving Analytic Workspace Changes
	UPDATE Command
	COMMIT Command
	Effect of the ROLLBACK Command
	Minimizing Analytic Workspace Growth

	Executing Programs Automatically
	Program Names
	AUTOGO Program Example

	Adding Security to an Analytic Workspace
	Permission Programs
	Creating and Designing Permission Programs

	Importing and Exporting Workspace Objects
	Obtaining Analytic Workspace Information
	Obtaining General Information About an Analytic Workspace
	Viewing Objects in an Analytic Workspace
	Obtaining Information About Objects

	3 Defining Data Objects
	Overview: Defining Workspace Objects
	Workspace Objects That You Can Define

	Data Types
	Numeric Data Types
	Examples of Literal Numeric Values

	Text Data Types
	Escape Sequences
	Examples of Literal Text Values

	Boolean Data Type
	Date Data Types

	Defining Dimensions
	Determining What Dimensions to Define
	How Data For Simple Flat Dimensions Is Stored

	Defining Dimension Surrogates
	Differences Between Dimensions and Dimension Surrogates

	Defining Relations
	How Relations Are Dimensioned
	How Relation Data Is Stored
	Example: Relation Between Two Dimensions
	Example: Self-relation

	Defining Variables
	Types of Variables
	How Variable Data Is Stored

	Defining Variables That Handle Sparse Data Efficiently
	Definition: Composite
	Why You Should Use Named Composites
	How to Use Composites
	Naming, Renaming, and Unnaming Composites
	Adding Data to a Variable That Uses a Composite
	Defining a Variable with a Single-Dimension Composite

	Defining Hierarchical Dimensions and Variables That Use Them
	Defining a Variable with a Hierarchical Dimension
	Example: Variable with a Hierarchical Dimension

	Defining Concat Dimensions and Variables That Use Them
	Example: Variable with a Concat Dimension

	Changing the Definition of an Object

	4 Working with Expressions
	Introducing Expressions
	Data Types of Expressions
	How the Data Type of an Expression is Determined
	Changing the Data Type of an Expression

	Operators
	Saving an Expression

	Dimensionality of Expressions
	Determining the Dimensions of an Expression
	How Dimension Status Affects the Results of Expressions

	Specifying a Single Value for the Dimension of an Expression
	Qualifying a Variable
	Replacing a Dimension in a Variable
	Qualifying a Relation
	Qualifying a Dimension
	Using Ampersand Substitution with QDRs
	Using the QUAL Function to Specify a QDR

	Using Workspace Objects in Expressions
	Using Dimensions or Dimension Surrogates in Expressions
	Using Composites in Expressions
	Using Variables in Expressions
	Using Variables Defined with Composites in Expressions
	Default Behavior of Commands That Loop Over Variables

	Using Relations In Expressions
	Using Functions in Expressions

	Numeric Expressions
	Arithmetic Operators
	Mixing Numeric Data Types
	Automatic Conversion of Numeric Data Types
	Using Dimensions in Arithmetic Expressions
	Using Dates in Arithmetic Expressions
	Limitations of Floating Point Calculations
	Controlling Errors During Calculations

	Text Expressions
	Working with Dates in Text Expressions
	Working with NTEXT Data

	Boolean Expressions
	Creating Boolean Expressions
	Comparing NA Values in Boolean Expressions
	Controlling Errors When Comparing Numeric Data
	Controlling Errors Due to Numerical Precision
	Controlling Errors When Comparing Floating Point Numbers
	Controlling Errors When Comparing Different Numeric Data Types

	Comparing Dimension Values
	Comparing Dates
	Comparing Text Data
	Comparing a Text Value to a Text Pattern
	Comparing Text Literals to Relations

	Conditional Expressions
	Substitution Expressions
	Working with NA Values
	Controlling how NA values are treated
	Working with the NATRIGGER Property
	Using NASKIP
	Using NASKIP2
	Using NAFILL

	5 Populating Workspace Data Objects
	Overview: Populating an Analytic Workspace
	Maintaining Dimensions and Composites
	How Maintaining a Dimension Affects Dimension Status
	Avoiding Deferred Maintenance
	Adding Values to Dimensions
	Updating Relations When Merging New Values
	Deleting Values from Dimensions
	Deleting Values from Conjoint Dimensions
	Changing the Position of Dimension Values
	Storing Dimension Values in Sorted Order
	Maintaining Composites and Conjoint Dimensions
	Maintaining Composites
	Maintaining Conjoint Dimensions

	Maintaining Concat Dimensions

	Assigning Values to Data Objects
	Using Objects in Assignment Statements
	How Values Are Assigned to Variables with Composites
	Assigning Values to Relations
	Assigning Values to Dimensions
	Assigning Values to Specific Cells of a Data Object

	Calculating and Analyzing Data

	6 Selecting Data
	Introducing Dimension Status
	Changing the Current Status List
	Changing the Default Status List
	Identifying and Retrieving Status Lists
	Saving and Restoring Dimension Status

	Limiting to a Simple List of Values
	Limiting Using a Boolean Expression
	How LIMIT Handles Boolean Multidimensional Expressions
	Limiting to Values That Match an Expression

	Limiting to the Top or Bottom Values
	Limiting to the Values of a Related Dimension
	How Limiting to a Related Dimension Determines Status
	Suppressing the Sort When Limiting to a Related Dimension

	Limiting Based on the Position of a Value in a Dimension
	Limiting Using Value Position in its Dimension
	Limiting Using Value Position in an Unrelated Dimension

	Limiting Based on a Relationship Within a Hierarchy
	Differences Between HIERARCHY and DESCENDANTS Keywords

	Limiting Composites and Conjoint Dimensions
	Ways of Limiting Conjoint Dimensions
	Limiting Conjoint Dimensions Using Value Combinations
	Limiting Conjoint Dimensions Using Base Dimension Values

	Limiting Concat Dimensions
	Working with Null Status
	Managing Null Status in a Program
	Errors When Limiting Status to a Null Value

	Working with Valuesets
	Creating a Valueset
	Limiting Using a Valueset
	Changing the Values of a Valueset
	Identifying and Retrieving the Values in a Valueset
	Retrieving the Values in a Valueset
	Retrieving the Dimension Positions of Values in a Valueset

	Part II� Applications Development
	7 Developing Programs
	Introduction to OLAP DML Programs
	Executing Programs
	Executing User-Defined Functions

	Defining and Editing Programs
	Formatting Guidelines for Editing Programs

	Using Variables in Programs
	Global Versus Modular Design Approaches
	Defining Temporary Variables
	Defining Local Variables

	Passing Arguments
	Using the ARGUMENT Command
	Using Multiple Arguments
	Passing Arguments as Text with Ampersand Substitution
	Passing Object Names and Keywords

	Writing User-Defined Functions
	Data Type of a User-Defined Function
	Arguments in a User-Defined Function

	Controlling the Flow of Execution
	Guidelines for Constructing a Label
	Alternatives to the GOTO Command

	Directing Output
	Capturing Error Messages

	Preserving the Session Environment
	Changing the Program Environment
	Ways to Save and Restore Environments
	Saving the Status of a Dimension or the Value of an Option
	Saving Several Values at Once

	Using Level Markers
	Using CONTEXT to Save Several Values at Once

	Handling Errors
	How An Error Is Signaled
	How An Error Is Trapped
	Handling Errors While Saving the Session Environment
	Suppressing Error Messages
	Identifying the Error That Occurred
	Creating Your Own Error Messages
	Handling Errors in Nested Programs

	Compiling Programs
	Finding Out If a Program Has Been Compiled
	Programming Methods That Prevent Compilation

	Testing and Debugging Programs
	Generating Diagnostic Messages
	Identifying Bad Lines of Code
	Sending Output to a Debugging File
	Creating a debugging file
	Specifying the contents of the debugging file

	8 Working with Models
	Using Models to Calculate Data
	How Dimension Values Are Treated in a Model

	Creating a Nested Hierarchy of Models
	Working with the INCLUDE Command

	Basic Modeling Commands
	Writing Equations in a Model
	Writing DIMENSION and INCLUDE Commands

	Compiling a Model
	Simple Blocks
	Step Blocks
	Simultaneous Blocks

	Running a Model
	Using Data from Past and Future Time Periods
	Solving Simultaneous Equations

	Debugging a Model
	Modeling for Multiple Scenarios
	Building a Scenario Model

	9 Allocating Data
	Introduction to Allocation
	Preparing for an Allocation
	Creating an Aggregation Map for Allocation
	Using the Allocation Operators and Arguments
	Using the HEVEN and MAX Operators and the ADD Argument
	Using the COPY Operator and the PROTECT Argument
	Using the HFIRST and HLAST Operators
	Using the PROPORTIONAL Operator

	Part III� Analytic Workspace Management
	10 Working with Relational Tables
	Issuing SQL Statements Through the OLAP DML
	Supported SQL Statements
	Unsupported SQL Statements

	Creating an Analytic Workspace from Relational Tables
	Process: Designing and Defining an Analytic Workspace to Hold Relational Data
	Process: Writing Programs that Populate Analytic Workspaces with Relational Data
	Declaring a Cursor
	Example: Declaring a Cursor
	Using Variables in the WHERE Clause of the SELECT Statement
	Using Conjunctions in a WHERE Clause

	Opening a Cursor
	Importing and Fetching Relational Table Data into Analytic Workspace Objects
	Example: Copying Relational Table Data into Analytic Workspace Objects

	Closing a Cursor
	Cleaning up the SQL Cursors

	Example: Creating an Analytic Workspace from Sales History Tables
	Designing and Defining an Analytic Workspace for Sales History Data
	Populating Analytic Workspace Objects with Sales History Data

	Writing Data from Analytic Workspace Objects into Relational Tables
	Using SQL PREPARE and SQL EXECUTE
	Performing a Direct Insert
	Inserting Workspace Data into Relational Tables: Example
	Conditionally Updating a Relational Table

	Using Stored Procedures and Triggers
	Executing a stored procedure

	Checking for Errors
	SQLCODE Option
	SQLERRM Option
	SQLMESSAGES Option

	11 Reading Data from Files
	Introducing Data-Reading Programs
	Reading Files
	Creating a Program to Read Data

	Specifying File Names in the OLAP DML
	Reading Data from Files
	Reading Structured PRN Files

	Reading and Maintaining Dimension Values
	Adding New Dimension Values from a Data File
	Reading Dimension Values by Position
	The Use of Composites
	Reading and Maintaining Conjoint Dimensions
	Translating Coded Dimension Values

	Processing Input Data
	Specifying a Conversion Type for Data

	Processing Records Individually
	Reading Different Records

	Processing Several Values for One Variable

	12 Aggregating Data
	About Aggregating Detail Data
	Functionality Available with AGGREGATE
	Process Overview: Aggregation

	Preliminary Steps Prior to Aggregation
	Identifying the Parent and Level Relations
	Verifying That All Composites Use BTREE Indexes

	Creating an Aggregation Map
	How to Define an Aggmap Object
	How to Add Contents to an Aggmap Object
	Contents of an Aggregation Map
	How to Compile an Aggregation Map
	Aggregating Multiple Variables with a Single Command

	About the RELATION Command
	Specifying an Aggregation Method
	Selecting Data For Aggregation
	Caching Runtime Aggregates

	Aggregating Non-Hierarchical Data
	How to Generate Precalculated Data
	Effects of Dimension Status
	Monitoring Progress

	How to Calculate Data at Runtime
	Setting Up Calculation on the Fly
	Adding the $NATRIGGER Property to a Variable

	Creating Custom Aggregates
	Balancing Precalculated and Runtime Aggregation
	Selecting Dimensions for Runtime Calculation
	Selecting Levels for Runtime Calculation

	Performing Partial Aggregations
	Aggregation Changes That Cause Problems
	Incremental Data Loading
	Problem: PRECOMPUTE Status List Is Inaccurate
	Solution: Regenerate the PRECOMPUTE Status List

	Using a Data-Dependent PRECOMPUTE Clause
	Problem: Values of the Limit Clause Vary With Each Data Update
	Solution: Maintain a Valueset

	Changing a Hierarchy
	Problem: Previously Aggregated Data is Incorrect
	Solution: Re-Aggregate Changed Branches
	How to Aggregate Branches of a Hierarchy

	Combining AGGREGATE with Forecasts and Programs
	When to Use Multiple Aggregation Maps
	Problem: Different Aggregation Maps Generate Different Status Lists
	Solution: Create a Separate AGGMAP for the AGGREGATE Function

	Index

