
Oracle9i OLAP

Developer’s Guide to the OLAP DML

Release 2 (9.2)

March 2002

Part No. A95298-01

Oracle9i OLAP Developer’s Guide to the OLAP DML, Release 2 (9.2)

Part No. A95298-01

Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, and SQL*Plus are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xv

Preface... xvii

Audience .. xviii
Organization.. xviii
Related Documentation .. xix
Conventions... xx
Documentation Accessibility .. xxiii

What’s New in the OLAP DML? ... xxv

Oracle9i Release 2 (9.2) New Features in the OLAP DML... xxvi

Part I Introduction

1 Basic Concepts

What Is the OLAP DML?... 1-2
Analytic Workspaces.. 1-2
SQL and the OLAP DML... 1-3
The OLAP API and the OLAP DML.. 1-3

Using the OLAP DML.. 1-3
How to Use the OLAP DML to Analyze Data ... 1-4
Creating an Analytic Workspace.. 1-4
Loading Data Into Analytic Workspaces .. 1-5

iv

Temporary vs. Persistent Analytic Workspaces... 1-5
Sharing Data In Analytic Workspaces ... 1-5

Accessing a Workspace from OLAP Worksheet.. 1-6
Procedures: How to Open OLAP Worksheet ... 1-6
Establishing a Connection ... 1-7
Executing Commands .. 1-8
Editing an OLAP DML Program.. 1-8
Closing the Connection.. 1-9

Accessing a Workspace from SQL-Based Applications .. 1-9
Using SQL SELECT Statements .. 1-9
Using Embedded OLAP DML Commands .. 1-10

Accessing a Workspace from a Java Application .. 1-10
Using OLAP Metadata... 1-10
Using Embedded OLAP DML Commands .. 1-10

2 Defining and Working with Analytic Workspaces

Using the OLAP DML to Work with Analytic Workspaces.. 2-2
Current Analytic Workspace .. 2-2
How to Create An Analytic Workspace .. 2-3
How to Attach an Analytic Workspace ... 2-3
Specifying the Analytic Workspace Attachment Mode .. 2-4
Sharing Analytic Workspaces ... 2-4
How to Detach an Analytic Workspace .. 2-5
How to Delete an Analytic Workspace ... 2-5
Workspace Localization Settings.. 2-6

Attaching Multiple Analytic Workspaces .. 2-6
Qualified Object Names... 2-6
Multiple AUTOGO and Permission Programs .. 2-7

Using Names and Aliases for Analytic Workspaces .. 2-7
Workspace Names .. 2-7
Workspace Aliases.. 2-8

Saving Analytic Workspace Changes.. 2-8
UPDATE Command... 2-9
COMMIT Command .. 2-9

v

Effect of the ROLLBACK Command ... 2-10
Minimizing Analytic Workspace Growth... 2-10

Executing Programs Automatically ... 2-11
Program Names .. 2-11
AUTOGO Program Example .. 2-11

Adding Security to an Analytic Workspace... 2-12
Permission Programs ... 2-12
Creating and Designing Permission Programs.. 2-13

Importing and Exporting Workspace Objects ... 2-14
Obtaining Analytic Workspace Information... 2-15

Obtaining General Information About an Analytic Workspace.. 2-15
Viewing Objects in an Analytic Workspace ... 2-16
Obtaining Information About Objects... 2-17

3 Defining Data Objects

Overview: Defining Workspace Objects.. 3-2
 Workspace Objects That You Can Define .. 3-3

Data Types .. 3-4
Numeric Data Types .. 3-4

Examples of Literal Numeric Values.. 3-5
Text Data Types .. 3-5

Escape Sequences .. 3-6
Examples of Literal Text Values.. 3-7

Boolean Data Type ... 3-7
Date Data Types.. 3-7

Defining Dimensions .. 3-8
Determining What Dimensions to Define... 3-9
How Data For Simple Flat Dimensions Is Stored .. 3-10

Defining Dimension Surrogates.. 3-11
Differences Between Dimensions and Dimension Surrogates... 3-12

Defining Relations ... 3-13
How Relations Are Dimensioned .. 3-13
How Relation Data Is Stored... 3-14
Example: Relation Between Two Dimensions.. 3-15
Example: Self-relation .. 3-15

vi

Defining Variables.. 3-16
Types of Variables .. 3-17
How Variable Data Is Stored... 3-17

Defining Variables That Handle Sparse Data Efficiently... 3-18
Definition: Composite .. 3-18
Why You Should Use Named Composites ... 3-19
How to Use Composites .. 3-19
Naming, Renaming, and Unnaming Composites.. 3-20
Adding Data to a Variable That Uses a Composite ... 3-20
Defining a Variable with a Single-Dimension Composite.. 3-22

Defining Hierarchical Dimensions and Variables That Use Them .. 3-22
Defining a Variable with a Hierarchical Dimension ... 3-23
Example: Variable with a Hierarchical Dimension.. 3-24

Defining Concat Dimensions and Variables That Use Them .. 3-25
Example: Variable with a Concat Dimension... 3-26

Changing the Definition of an Object .. 3-27

4 Working with Expressions

Introducing Expressions .. 4-2
Data Types of Expressions... 4-2

How the Data Type of an Expression is Determined... 4-2
Changing the Data Type of an Expression .. 4-3

Operators ... 4-3
Saving an Expression ... 4-4

Dimensionality of Expressions .. 4-5
Determining the Dimensions of an Expression.. 4-5
How Dimension Status Affects the Results of Expressions.. 4-6

Specifying a Single Value for the Dimension of an Expression.. 4-6
Qualifying a Variable ... 4-7
Replacing a Dimension in a Variable... 4-8
Qualifying a Relation ... 4-9
Qualifying a Dimension... 4-10
Using Ampersand Substitution with QDRs ... 4-10
Using the QUAL Function to Specify a QDR ... 4-10

vii

Using Workspace Objects in Expressions .. 4-12
Using Dimensions or Dimension Surrogates in Expressions... 4-12
Using Composites in Expressions .. 4-13
Using Variables in Expressions .. 4-13
Using Variables Defined with Composites in Expressions .. 4-14

Default Behavior of Commands That Loop Over Variables... 4-14
Using Relations In Expressions .. 4-15
Using Functions in Expressions ... 4-15

Numeric Expressions.. 4-15
Arithmetic Operators ... 4-16
Mixing Numeric Data Types... 4-17
Automatic Conversion of Numeric Data Types... 4-17
Using Dimensions in Arithmetic Expressions.. 4-18
Using Dates in Arithmetic Expressions... 4-18
Limitations of Floating Point Calculations ... 4-18
Controlling Errors During Calculations.. 4-19

Text Expressions 4-20
Working with Dates in Text Expressions... 4-20
Working with NTEXT Data ... 4-21

Boolean Expressions... 4-21
Creating Boolean Expressions .. 4-22
Comparing NA Values in Boolean Expressions .. 4-24
Controlling Errors When Comparing Numeric Data.. 4-24

Controlling Errors Due to Numerical Precision ... 4-25
Controlling Errors When Comparing Floating Point Numbers................................... 4-25
Controlling Errors When Comparing Different Numeric Data Types........................ 4-25

Comparing Dimension Values ... 4-26
Comparing Dates.. 4-27
Comparing Text Data... 4-27

Comparing a Text Value to a Text Pattern .. 4-28
Comparing Text Literals to Relations... 4-29

Conditional Expressions.. 4-29
Substitution Expressions... 4-30
Working with NA Values .. 4-32

Controlling how NA values are treated.. 4-32

viii

Working with the NATRIGGER Property ... 4-33
Using NASKIP ... 4-33
Using NASKIP2 ... 4-34
Using NAFILL.. 4-34

5 Populating Workspace Data Objects

Overview: Populating an Analytic Workspace ... 5-2
Maintaining Dimensions and Composites .. 5-3

How Maintaining a Dimension Affects Dimension Status... 5-4
Avoiding Deferred Maintenance.. 5-4
Adding Values to Dimensions.. 5-4
Updating Relations When Merging New Values .. 5-6
Deleting Values from Dimensions ... 5-7
Deleting Values from Conjoint Dimensions ... 5-8
Changing the Position of Dimension Values.. 5-8
Storing Dimension Values in Sorted Order .. 5-8
Maintaining Composites and Conjoint Dimensions ... 5-9

Maintaining Composites .. 5-10
Maintaining Conjoint Dimensions.. 5-10

Maintaining Concat Dimensions .. 5-10
Assigning Values to Data Objects ... 5-10

Using Objects in Assignment Statements.. 5-11
How Values Are Assigned to Variables with Composites ... 5-12
Assigning Values to Relations .. 5-14
Assigning Values to Dimensions.. 5-14
Assigning Values to Specific Cells of a Data Object .. 5-14

Calculating and Analyzing Data.. 5-15

6 Selecting Data

Introducing Dimension Status ... 6-2
Changing the Current Status List ... 6-2
Changing the Default Status List.. 6-2
Identifying and Retrieving Status Lists ... 6-3
Saving and Restoring Dimension Status ... 6-4

Limiting to a Simple List of Values ... 6-4

ix

Limiting Using a Boolean Expression... 6-5
How LIMIT Handles Boolean Multidimensional Expressions.. 6-6
Limiting to Values That Match an Expression ... 6-8

Limiting to the Top or Bottom Values... 6-9
Limiting to the Values of a Related Dimension.. 6-11

How Limiting to a Related Dimension Determines Status .. 6-12
Suppressing the Sort When Limiting to a Related Dimension .. 6-12

Limiting Based on the Position of a Value in a Dimension ... 6-12
Limiting Using Value Position in its Dimension ... 6-12
Limiting Using Value Position in an Unrelated Dimension .. 6-13

Limiting Based on a Relationship Within a Hierarchy ... 6-13
Differences Between HIERARCHY and DESCENDANTS Keywords 6-14

Limiting Composites and Conjoint Dimensions ... 6-18
Ways of Limiting Conjoint Dimensions .. 6-19

Limiting Conjoint Dimensions Using Value Combinations... 6-19
Limiting Conjoint Dimensions Using Base Dimension Values ... 6-20

Limiting Concat Dimensions ... 6-20
Working with Null Status ... 6-21

Managing Null Status in a Program .. 6-21
Errors When Limiting Status to a Null Value .. 6-21

Working with Valuesets... 6-22
Creating a Valueset .. 6-22
Limiting Using a Valueset ... 6-23
Changing the Values of a Valueset .. 6-24
Identifying and Retrieving the Values in a Valueset... 6-25

Retrieving the Values in a Valueset .. 6-25
Retrieving the Dimension Positions of Values in a Valueset.. 6-25

Part II Applications Development

7 Developing Programs

Introduction to OLAP DML Programs ... 7-2
Executing Programs ... 7-2
Executing User-Defined Functions .. 7-3

x

Defining and Editing Programs ... 7-3
Formatting Guidelines for Editing Programs... 7-4

Using Variables in Programs .. 7-4
Global Versus Modular Design Approaches .. 7-5
Defining Temporary Variables ... 7-5
Defining Local Variables.. 7-6

Passing Arguments ... 7-7
Using the ARGUMENT Command ... 7-7
Using Multiple Arguments ... 7-8
Passing Arguments as Text with Ampersand Substitution ... 7-9
Passing Object Names and Keywords ... 7-11

Writing User-Defined Functions.. 7-11
Data Type of a User-Defined Function.. 7-12
Arguments in a User-Defined Function .. 7-12

Controlling the Flow of Execution .. 7-14
Guidelines for Constructing a Label .. 7-14
Alternatives to the GOTO Command.. 7-15

Directing Output ... 7-17
Capturing Error Messages... 7-19

Preserving the Session Environment .. 7-19
Changing the Program Environment .. 7-19
Ways to Save and Restore Environments ... 7-20

Saving the Status of a Dimension or the Value of an Option....................................... 7-20
Saving Several Values at Once... 7-21

Using Level Markers .. 7-21
Using CONTEXT to Save Several Values at Once ... 7-22

Handling Errors 7-23
How An Error Is Signaled ... 7-23
How An Error Is Trapped ... 7-23
Handling Errors While Saving the Session Environment... 7-23
Suppressing Error Messages ... 7-24
Identifying the Error That Occurred.. 7-24
Creating Your Own Error Messages .. 7-25
Handling Errors in Nested Programs.. 7-26

xi

Compiling Programs .. 7-28
Finding Out If a Program Has Been Compiled.. 7-29
Programming Methods That Prevent Compilation... 7-29

Testing and Debugging Programs ... 7-29
Generating Diagnostic Messages ... 7-30
Identifying Bad Lines of Code .. 7-30
Sending Output to a Debugging File... 7-31

Creating a debugging file... 7-31
Specifying the contents of the debugging file ... 7-31

8 Working with Models

Using Models to Calculate Data .. 8-2
How Dimension Values Are Treated in a Model... 8-3

Creating a Nested Hierarchy of Models ... 8-4
Working with the INCLUDE Command .. 8-5

Basic Modeling Commands .. 8-5
Writing Equations in a Model... 8-6
Writing DIMENSION and INCLUDE Commands ... 8-6

Compiling a Model... 8-7
Simple Blocks .. 8-8
Step Blocks... 8-8
Simultaneous Blocks .. 8-9

Running a Model .. 8-9
Using Data from Past and Future Time Periods .. 8-10
Solving Simultaneous Equations.. 8-10

Debugging a Model.. 8-11
Modeling for Multiple Scenarios .. 8-12

Building a Scenario Model .. 8-12

9 Allocating Data

Introduction to Allocation... 9-2
Preparing for an Allocation .. 9-5
Creating an Aggregation Map for Allocation.. 9-5
Using the Allocation Operators and Arguments .. 9-7

Using the HEVEN and MAX Operators and the ADD Argument 9-8

xii

Using the COPY Operator and the PROTECT Argument .. 9-10
Using the HFIRST and HLAST Operators .. 9-13
Using the PROPORTIONAL Operator.. 9-15

Part III Analytic Workspace Management

10 Working with Relational Tables

Issuing SQL Statements Through the OLAP DML.. 10-2
Supported SQL Statements ... 10-2
Unsupported SQL Statements .. 10-2

Creating an Analytic Workspace from Relational Tables ... 10-3
Process: Designing and Defining an Analytic Workspace to Hold Relational Data 10-3
Process: Writing Programs that Populate Analytic Workspaces with Relational Data ... 10-4
Declaring a Cursor.. 10-5

Example: Declaring a Cursor ... 10-6
Using Variables in the WHERE Clause of the SELECT Statement 10-6
Using Conjunctions in a WHERE Clause... 10-7

Opening a Cursor ... 10-8
Importing and Fetching Relational Table Data into Analytic Workspace Objects 10-8

Example: Copying Relational Table Data into Analytic Workspace Objects 10-11
Closing a Cursor ... 10-13
Cleaning up the SQL Cursors ... 10-14

Example: Creating an Analytic Workspace from Sales History Tables 10-14
Designing and Defining an Analytic Workspace for Sales History Data......................... 10-15
Populating Analytic Workspace Objects with Sales History Data 10-19

Writing Data from Analytic Workspace Objects into Relational Tables.............................. 10-28
Using SQL PREPARE and SQL EXECUTE ... 10-29
Performing a Direct Insert ... 10-29
Inserting Workspace Data into Relational Tables: Example .. 10-29
Conditionally Updating a Relational Table .. 10-31

Using Stored Procedures and Triggers.. 10-32
Executing a stored procedure ... 10-33

Checking for Errors .. 10-34
SQLCODE Option... 10-34
SQLERRM Option .. 10-34

xiii

SQLMESSAGES Option... 10-35

11 Reading Data from Files

Introducing Data-Reading Programs .. 11-2
Reading Files ... 11-3

Creating a Program to Read Data .. 11-4
Specifying File Names in the OLAP DML .. 11-4
Reading Data from Files.. 11-5

Reading Structured PRN Files .. 11-6
Reading and Maintaining Dimension Values... 11-7

Adding New Dimension Values from a Data File... 11-9
Reading Dimension Values by Position .. 11-10
The Use of Composites .. 11-10
Reading and Maintaining Conjoint Dimensions ... 11-10
Translating Coded Dimension Values... 11-11

Processing Input Data .. 11-14
Specifying a Conversion Type for Data .. 11-15

Processing Records Individually ... 11-15
Reading Different Records .. 11-17

Processing Several Values for One Variable.. 11-17

12 Aggregating Data

About Aggregating Detail Data ... 12-2
Functionality Available with AGGREGATE.. 12-2
Process Overview: Aggregation ... 12-4

Preliminary Steps Prior to Aggregation ... 12-4
Identifying the Parent and Level Relations .. 12-4
Verifying That All Composites Use BTREE Indexes... 12-6

Creating an Aggregation Map .. 12-6
How to Define an Aggmap Object ... 12-7
How to Add Contents to an Aggmap Object ... 12-7
Contents of an Aggregation Map... 12-9
How to Compile an Aggregation Map.. 12-10
Aggregating Multiple Variables with a Single Command... 12-11

xiv

About the RELATION Command.. 12-12
Specifying an Aggregation Method ... 12-14
Selecting Data For Aggregation.. 12-16
Caching Runtime Aggregates ... 12-17

Aggregating Non-Hierarchical Data ... 12-18
How to Generate Precalculated Data .. 12-20

Effects of Dimension Status... 12-21
Monitoring Progress... 12-21

How to Calculate Data at Runtime .. 12-22
Setting Up Calculation on the Fly .. 12-22
Adding the $NATRIGGER Property to a Variable.. 12-23

Creating Custom Aggregates .. 12-23
Balancing Precalculated and Runtime Aggregation .. 12-24

Selecting Dimensions for Runtime Calculation.. 12-26
Selecting Levels for Runtime Calculation ... 12-27

Performing Partial Aggregations ... 12-27
Aggregation Changes That Cause Problems .. 12-28
Incremental Data Loading... 12-28

Problem: PRECOMPUTE Status List Is Inaccurate .. 12-29
Solution: Regenerate the PRECOMPUTE Status List... 12-29

Using a Data-Dependent PRECOMPUTE Clause.. 12-29
Problem: Values of the Limit Clause Vary With Each Data Update.......................... 12-30
Solution: Maintain a Valueset.. 12-30

Changing a Hierarchy .. 12-32
Problem: Previously Aggregated Data is Incorrect .. 12-33
Solution: Re-Aggregate Changed Branches... 12-33
How to Aggregate Branches of a Hierarchy.. 12-34

Combining AGGREGATE with Forecasts and Programs ... 12-34
When to Use Multiple Aggregation Maps .. 12-35

Problem: Different Aggregation Maps Generate Different Status Lists.................... 12-35
Solution: Create a Separate AGGMAP for the AGGREGATE Function 12-36

Index

xv

Send Us Your Comments

Oracle9i OLAP Developer’s Guide to the OLAP DML, Release 2 (9.2)

Part No. A95298-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: 781-238-9850 Attn: Oracle OLAP
■ Postal service:

Oracle Corporation
Oracle OLAP Documentation
10 Van de Graaff Drive
Burlington, MA 01803
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xvi

xvii

Preface

The Oracle9i OLAP Developer’s Guide to the OLAP DML provides an overview of the
programming environment, describes workspace objects, and explains how to use
the features of the OLAP DML. It also describes how to write and debug programs
and illustrates programming strategies for accessing and working with data.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

Note: All of the OLAP DML commands discussed in this guide
are explained fully in the Oracle9i OLAP DML Reference help. For
detailed information about a specific command, search for it by
name in the reference.

xviii

Audience
Oracle9i OLAP Developer’s Guide to the OLAP DML is intended for users who
perform the following tasks:

■ Access multidimensional data

■ Perform analysis using the OLAP DML

■ Manage analytic workspaces

To use this document, previous programming experience is helpful but not
necessary.

Organization
This document contains:

Part I, Introduction

Chapter 1, "Basic Concepts"
Introduces the OLAP data manipulation language and describes various methods
of accessing it.

Chapter 2, "Defining and Working with Analytic Workspaces"
Explains how to create new analytic workspaces and modify existing ones. Also
describes initialization programs and password protection.

Chapter 3, "Defining Data Objects"
Describes the various types of workspace objects and how to create them. Defines
workspace data types.

Chapter 4, "Working with Expressions"
Explains how to define and use expressions.

Chapter 5, "Populating Workspace Data Objects"
Explains how to add, delete, and reorder dimension members and assign values to
data objects.

Chapter 6, "Selecting Data"
Explains how to select data for analysis or display.

xix

Part II, Applications Development

Chapter 7, "Developing Programs"
Explains how to create, modify, compile, and run DML stored procedures.

Chapter 8, "Working with Models"
Explains how to create, compile, and run a series of equations.

Chapter 9, "Allocating Data"
Explains how to distribute data from parents to children in one or more dimensions.

Part III, Analytic Workspace Management

Chapter 10, "Working with Relational Tables"
Explains how to fetch data from relational tables into workspace objects, and how to
insert data from workspace objects into relational tables.

Chapter 11, "Reading Data from Files"
Explains how to copy data from flat files into workspace objects.

Chapter 12, "Aggregating Data"
Explains how to roll up low-level data.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i OLAP DML Reference help

■ Oracle9i OLAP User’s Guide

■ Oracle9i OLAP Developer’s Guide to the OLAP API

■ Oracle9i OLAP API Javadoc

■ Oracle9i Data Warehousing Guide

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

xx

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

xxi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

xxii

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf

9 rows selected

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

xxiii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxiv

xxv

What’s New in the OLAP DML?

Oracle9i Release 2 provides the OLAP data manipulation language (DML) for
multidimensional analysis within the Oracle database. With the OLAP option
installed, you can execute DML commands for manipulating data in an analytic
workspace. Users of Oracle Express Server release 6.3 will find that there are some
new and changed features in the OLAP DML.

The following section describes the new features in Oracle9i OLAP:

■ Oracle9i Release 2 (9.2) New Features in the OLAP DML

See Also:

■ Oracle9i OLAP User’s Guide for general information about the
OLAP option in Release 2 and for specific differences between
Express Server and Oracle OLAP.

■ Oracle9i OLAP DML Reference help for lists of added, deleted,
renamed, and significantly changed commands in the OLAP
DML.

xxvi

Oracle9i Release 2 (9.2) New Features in the OLAP DML
The following list briefly describes the new features of the OLAP DML.

■ The DATABASE command and related commands have been renamed.

Because the OLAP engine runs in the Oracle kernel and analytic workspaces are
stored in relational tables, there is no separate file that stores an analytic
workspace. This change is reflected in new names and new functionality for
existing DML commands.

■ Access to the OLAP DML is through SQL and the OLAP API, not through
XCA, SNAPI, or ODBC.

XCA, SNAPI, and ODBC connections are no longer supported, and the related
commands have been removed. Note that session sharing is not supported in
the new access methods.

■ In order to save changes to an analytic workspace, you must use both the
UPDATE and COMMIT commands.

The UPDATE command moves changes from a temporary area to the dataase
table in which the workspace is stored. The changes are not saved until you
execute a COMMIT command, either from the OLAP DML or from SQL.

■ Custom aggregates are supported.

Virtual dimension members can be defined at runtime using the new
AGGREGATION command within a MODEL object. The AGGREGATE function then
calculates data for the custom aggregate the same as any other aggregate.

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

See Also: The Oracle9i OLAP User’s Guide for information about
SQL access and the Oracle9i OLAP Developer’s Guide to the OLAP
API

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

See Also: Chapter 12, "Aggregating Data"

xxvii

■ Models can be used to aggregate data over nonhierarchical dimensions.

A MODEL command in an aggregation map executes a model either as a data
maintenance step (using the AGGREGATE command) or at runtime (using the
AGGREGATE function).

■ Allocation of data over a hierarchy is supported.

A new ALLOCATE command provides support for planning applications, such
as enterprise budgeting and demand planning systems, which need to allocate
data to lower levels of a hierarchy based on sophisticated allocation rules.

■ SQL IMPORT command provides a high performance method of copying
data from database tables into an analytic workspace.

The SQL IMPORT command loads fact data into workspace objects more quickly
than an SQL FETCH statement.

■ SQL PREPARE command provides high performance method of loading
workspace data into database tables.

The SQL PREPARE command includes new options that you can use to specify
direct-path insertion of analytic workspace data into relational tables.

■ Concat dimensions join values from multiple dimensions into one
dimension.

In defining a concat dimension, you can combine the values of two or more
dimensions into one dimension. You can use a concat dimension to map
multidimensional structures to relational schemas and thereby improve data
loading from relational sources. You can also use concat dimensions in
performing custom aggregations and other customized operations.

See Also: Chapter 12, "Aggregating Data"

See Also: Chapter 9, "Allocating Data"

See Also: Chapter 10, "Working with Relational Tables"

See Also: Chapter 10, "Working with Relational Tables"

See Also: Chapter 3, "Defining Data Objects" and Chapter 10,
"Working with Relational Tables"

xxviii

■ NUMBER dimensions store numeric values other than ordinal integers.

The Oracle OLAP DML has a new NUMBER data type that is the equivalent of
the NUMBER data type in the relational database. You can define a NUMBER
dimension that has NUMBER values. Oracle OLAP always interprets the values
of a NUMBER dimension as dimension values and not as ordinal position values.
You can use a NUMBER dimension to represent a series of unique numeric
values, such as a surrogate key column in a relational database table.

■ Dimension surrogates provide alternative labels for dimension values.

A dimension surrogate is a new type of DML object. You define a dimension
surrogate based on a dimension, but the surrogate can be of a different data
type than its dimension. The surrogate has the same number of positions as the
dimension. You assign values to a surrogate as you would to a variable. You can
use a NUMBER dimension and a dimension surrogate to load surrogate key
values from a relational database into an analytic workspace, and then use
those key values to load data from the relational fact table or tables into
multidimensional structures.

■ Qualified object names allow you to reference identically named objects in
more than one attached analytic workspace.

In OLAP DML commands, you can specify an object using its qualified object
name, which includes not only the name of the object but also the name of the
analytic workspace in which the object resides.

■ Full names for analytic workspaces allow you to access workspaces that
belong to another user.

In OLAP DML commands, you can specify an analytic workspace that is in
another user’s shema by using the full name of the workspace. The full name
includes the schema name.

See Also: Chapter 3, "Defining Data Objects"

See Also: Chapter 3, "Defining Data Objects"

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

xxix

■ Workspace aliases make possible short and generic names for analytic
workspaces.

Workspace aliases allow you to reference an analytic workspace using a name
that is easier to type than its full name. Aliases also let you write generic code
that includes a reference to a workspace but does not hard-code its name.

■ Directory aliases provide the mechanism through which OLAP DML
commands can access files on disk.

When you read from or write to a disk file using the OLAP DML, you do not
directly specify the directory in which the file resides. Instead, you specify a
directory alias that has been set up for your use by the Oracle database
administrator.

■ The new NTEXT data type can hold data from NCHAR and NVARCHAR2
columns in the database.

All NTEXT values are encoded in the UTF8 Unicode transformation format.

■ The default character set for Oracle OLAP is the database character set.

Oracle OLAP no longer has a configuration setting that specifies the default
character set. The Oracle OLAP default is the same as the databse character set.

■ Oracle OLAP NLS parameter settings are coordinated with the settings for
the database.

All Oracle OLAP NLS settings (such as NLS_DATE_FORMAT and NLS_
LANGUAGE) reflect the session-wide NLS parameter settings. If you set the NLS
options in Oracle OLAP, you change your session-wide NLS parameter settings.

See Also: Chapter 2, "Defining and Working with
Analytic Workspaces"

See Also: Chapter 11, "Reading Data from Files" and the Oracle9i
OLAP User’s Guide

See Also: Chapter 3, "Defining Data Objects"

See Also: The NLS options in the Oracle9i OLAP DML Reference
help

xxx

■ The DECIMALCHARS, THOUSANDSCHARS, YESSPELL, and NOSPELL
options are read-only.

The values of these options always mirror the current session-wide NLS
parameter settings. You cannot change these settings by changing the values of
the Oracle OLAP options.

■ The commands that gave access to operating system activities are no longer
supported

To be compatible with Oracle database conventions, Oracle OLAP does not
provide direct access to system-level information and commands. Therefore, the
SYSINFO function has fewer keywords, and commands such as CHDIR,
CHDRIVE, MKDIR, and SHELL have been removed. In addition, EXTCALL
objects are no longer supported.

■ In-place variables are no longer supported

Because analytic workspaces are stored in database tables, in-place variable
storage is no longer applicable.

■ Interactive debugging is not supported.

You cannot use the TRACE and WATCH commands for interactive debugging in
OLAP Worksheet, but you can use PRGTRACE, MODTRACE, and DBGOUTFILE to
record the progress of your programs and models.

■ Performance statistics are available through relational views, instead of
OLAP DML commands

The DGCART command and function as well as the CACHEHITS, CACHEMISSES,
and CACHETRIES options have been removed. However, you can use OLAP
dynamic performance views to monitor performance.

See Also: The list of deleted commands in the Oracle9i OLAP
DML Reference help

See Also: Chapter 7, "Developing Programs" and Chapter 8,
"Working with Models"

See Also: The Oracle9i OLAP User’s Guide

xxxi

■ Forecasting capabilities have been enhanced with the addition of multi-cycle
periodicity.

The FCSET command allows for multi-cycle periodicity in the forcasts created
with FCOPEN, FCCLOSE, and FCEXEC.

■ Stripping of programs is no longer supported.

The STRIP command has been removed. Use the HIDE command instead. In
previous releases, programs were stripped of their definitions in an analytic
workspace file before it was delivered as part of an application. Thus, only
compiled code was delivered. Now, analytic workspaces are delivered as EIF
files, which contain only definitions and cannot contain compiled code. In this
new context, stripped programs would not be executable.

See Also: The FCOPEN, FCCLOSE, FCEXEC, FCQUERY, and FCSET
commands in the Oracle9i OLAP DML Reference help

xxxii

Part I
Introduction

Part I describes the basic features of the OLAP DML.

It contains the following chapters:

■ Chapter 1, "Basic Concepts"

■ Chapter 2, "Defining and Working with Analytic Workspaces"

■ Chapter 3, "Defining Data Objects"

■ Chapter 4, "Working with Expressions"

■ Chapter 5, "Populating Workspace Data Objects"

■ Chapter 6, "Selecting Data"

Basic Concepts 1-1

1
Basic Concepts

This chapter provides an overview of the basic concepts that you should
understand before you begin programming in the OLAP DML. It includes the
following topics:

■ What Is the OLAP DML?

■ Using the OLAP DML

■ Accessing a Workspace from OLAP Worksheet

■ Accessing a Workspace from SQL-Based Applications

■ Accessing a Workspace from a Java Application

What Is the OLAP DML?

1-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

What Is the OLAP DML?
The OLAP DML is a data manipulation language. You can use DML commands and
functions to perform complex analysis of data. You can also write programs that
contain DML commands and functions.

The basic syntactic units of the OLAP DML are:

■ Commands that initiate actions

■ Functions that initiate actions and return a value

■ Options to which you assign a value and that can influence the analytic
workspace processing environment in various ways

OLAP DML commands, functions, and options are collectively referred to as
commands. This guide introduces many of these commands. For the complete
syntax for each command, usage notes, and examples, consult in the Oracle9i OLAP
DML Reference help.

The purpose of the OLAP DML is to enable application developers to extend the
analytical capabilities of querying languages such as SQL and the OLAP API.

To describe the purpose of the OLAP DML, it is important to discuss a few
important concepts such as:

■ Analytic workspaces

■ The relationship of SQL to the OLAP DML

■ The relationship of the OLAP API to the OLAP DML

Analytic Workspaces
An analytic workspace is a multidimensional data source. It may be temporary (that
is, for the life of the session), or it may be persistent. When an analytic workspace is
persisted, the data is stored as LOBs in relational tables.

The multidimensional model of the analytic workspace is designed to support rapid
and advanced calculations. Analytic workspaces also provide an alternative to
materialized views as a means of storing aggregate data.

An application can access data that resides in an analytic workspace in either of two
ways. One way is through PL/SQL packages that are provided by Oracle for access
to analytic workspace data. The other way is through the Oracle OLAP API, which
is a Java application programming interface. Both the PL/SQL packages and the

Using the OLAP DML

Basic Concepts 1-3

OLAP API provide ways to explicitly execute OLAP DML commands and
programs.

SQL and the OLAP DML
SQL table functions can take a set of rows as input and produce a set of rows as
output that can be queried like a physical database table. Oracle provides PL/SQL
packages that use table functions to create views of multidimensional data residing
in an analytic workspace. SQL applications can access these views. Thus, the
calculation engine and analytic workspace data are accessible to SQL, making
analytic and predictive functions available to SQL-based applications. SQL
applications can connect to the database using either the Oracle Call Interface (OCI)
or Java Database Connectivity (JDBC).

In addition to using PL/SQL procedures for accessing analytic workspace data as
SQL views, application programmers can use the Oracle OLAP packages to directly
execute OLAP DML commands and return the results to their applications.

The OLAP API and the OLAP DML
Java programs using the OLAP API can access data stored either in SQL tables or in
analytic workspaces. The OLAP API provides a wide variety of analytic functions
that allow the application to derive calculated measures from the data.

In some cases, however, the OLAP API does not provide the means to calculate data
needed by an application. Examples include forecasts, solving a model, some types
of consolidations (aggregations), and allocations. In these cases, you can directly
execute OLAP DML commands from within the OLAP API to calculate this data
within an analytic workspace.

Using the OLAP DML
The following are some situations in which you might use the OLAP DML:

■ When you need to calculate data that cannot be calculated as part of your data
warehouse extraction, transformation, and load (ETL) process or by using the
Java OLAP API.

■ When your application needs to perform and persist various calculations, but
you do not want to immediately commit this calculation in SQL tables.

■ When you want to manipulate data that is stored in an analytic workspace.

Using the OLAP DML

1-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

The most common types of calculations that the OLAP DML is used for include:

■ Forecasts

■ Models (a group of calculations in which the results of one calculation are used
as input to another calculation)

■ Allocations (a “reverse aggregation” in which you distribute data to lower
levels based on a particular distribution scheme)

■ Some types of non-additive aggregations (consolidations), such as hierarchical
weighted averages

In addition, the OLAP DML can be used when you want to perform calculations
that are not easily accomplished in the ETL process or by using the OLAP API.

You can commit data to the analytic workspace without committing it to SQL tables.
This is very useful for work in process. For example, you might have a forecasting
application where you want to allow users to save personal forecasts and reuse
them during a later session, but you do not want users to commit the forecast to the
SQL tables.

How to Use the OLAP DML to Analyze Data
To use the OLAP DML, you:

1. Create an analytic workspace.

2. Define data objects within the analytic workspace.

3. Load data into these objects.

4. Define and execute OLAP DML commands and programs.

After you use the OLAP DML to analyze data, you can then:

■ View data in an analytic workspace using the OLAP API or SQL.

■ Write data to SQL tables.

Creating an Analytic Workspace
You can create an analytic workspace with a command such as the following:

AW CREATE salesforecast

This command creates a new and empty analytic workspace named
salesforecast.

Using the OLAP DML

Basic Concepts 1-5

For more information about creating an analytic workspace, refer to Chapter 2,
"Defining and Working with Analytic Workspaces".

Loading Data Into Analytic Workspaces
To use the OLAP DML, data must exist in the analytic workspace. Data can be
loaded into an analytic workspace from SQL tables or from flat files. In most cases,
tables within the database will be the data source. To load data into the analytic
workspace, you use commands in the OLAP DML.

For more information about loading data into an analytic workspace, refer to
Chapter 10, "Working with Relational Tables" and Chapter 11, "Reading Data from
Files".

Temporary vs. Persistent Analytic Workspaces
Analytic workspaces can be either temporary or persistent, depending on your
needs. If the analytic workspace is needed only to perform a specific calculation and
the results of the calculation do not need to be persisted in the workspace, the
workspace can be discarded at the end of the session. This might occur if, for
example, your application needs to forecast a small amount of sales data. Since the
forecast can be rerun at any time, there might not be any point in persisting the
results.

Analytic workspaces can also be persisted across sessions. You might want to
persist data in the analytic workspace if you have calculated a significant amount of
data (for example, a large forecast or the results of solving a model), or if you have
aggregated data using non-additive aggregation methods.

Sharing Data In Analytic Workspaces
Data in analytic workspaces may be shared by many different users. To share data
in an analytic workspace, the workspace needs to be persisted during the period of
time it is to be shared.

For example, if you want to allow a user to share the results of a forecast, you can
allow the user to persist the analytic workspace. If another user attaches that
workspace during their application session, they can be allowed to see the other
user’s forecast.

Accessing a Workspace from OLAP Worksheet

1-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Accessing a Workspace from OLAP Worksheet
OLAP Worksheet is an interactive interface to Oracle OLAP that you can use to
perform the following tasks:

■ Connect to an analytic workspace

■ Execute most OLAP DML commands

■ Create and populate data objects

■ Create, modify, compile, and execute DML programs

■ Execute SQL statements

OLAP Worksheet has a Command Input window and a program Edit window.

You can enter commands in the query (input) pane at the bottom of the command
input window and see results in the response (output) pane at the top.

Once you have opened OLAP Worksheet, you can use it to establish a connection to
Oracle OLAP, open a workspace, execute OLAP DML commands or write and
debug programs, save any changes, close the workspace, and close the connection.

Procedures: How to Open OLAP Worksheet
You can open OLAP Worksheet either from Oracle Enterprise Manager or from the
operating system command line.

To open OLAP Worksheet from Oracle Enterprise Manager, take these steps:

1. Open Oracle Enterprise Manager and open a connection to your database.

2. Expand the database folder.

3. Right click on OLAP to see a menu, then choose OLAP Worksheet.

Note: The following procedures identify menu choices that you
can use to do various tasks. You may prefer to use the icons on the
left side of the window, which provide a short-cut to some of the
tasks.

Accessing a Workspace from OLAP Worksheet

Basic Concepts 1-7

On Unix, to open OLAP Worksheet from the command line, take these steps:

1. Using a command-line interface, go to the bin subdirectory of the OLAP
Worksheet installation directory.

2. Run the runapp.sh script.

On Windows, click the OLAP Worksheet icon that was created during installation.

Establishing a Connection
Take these steps to establish a connection to Oracle OLAP:

1. From the OLAP Worksheet menu bar, choose Server.

2. Choose Connect.

You see the Login to Database box.

3. Enter valid database user credentials and connection information in the Login
dialog box that appears.

In the Service box, type the identification of the Oracle database, in the
following format:

host:port:SID

For example, mycomputer:1521:rel9i.

Oracle controls your access to data on the basis of your database user ID. Your user
ID must have access rights to the analytic workspaces and relational tables that you
want to use in OLAP Worksheet, or you will get an error when you try to access
them.

Tip: If you are unable to start OLAP Worksheet, then check
system variables HOMEDRIVE and HOMEPATH. They do not
need to be defined, but if they are, then they must be set to valid
values.

See Also: OLAP Worksheet Help for information about using
OLAP Worksheet.

Accessing a Workspace from OLAP Worksheet

1-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Executing Commands
You can execute OLAP DML commands and SQL statements in the Command
Input window of OLAP Worksheet.

By selecting different options in the Options menu, you can specify whether you
want to execute OLAP DML commands or SQL statements. You can also specify
whether you want commands executed individually or saved in a buffer and
executed together.

■ To execute OLAP DML commands, select SQL Off from the Options menu. To
execute SQL statements, select SQL On.

■ To execute commands as soon as you press Enter, select Execute on Enter from
the Options menu.

Or, to save the commands in a buffer, clear Execute on Enter. Then, to execute
all of the commands that you have entered in the query pane, choose Execute
from the View menu.

Be sure to locate your cursor in the query pane before you start to type. If you want
to break a long command into several lines, you can continue the command on the
next line by typing a continuation character (-) at the end of the current line.

When the SQL option is ON, just type in the SQL statements and press Enter. Do
not terminate SQL statements with a semicolon. If you do, you will get an error.

Editing an OLAP DML Program
You can open a DML program in an Edit window so that you can add or modify
program content. You can have multiple Edit windows open simultaneously, but an
object definition can appear in only one Edit window at a time.

In addition to using the Edit window to work on a program, you can use it to edit a
model or an aggregation map.

To edit a program, follow these steps:

1. In the input pane of the Command Input window, type

edit object_name

Where object_name is the name of a DML program object that already exists.
Use the DEFINE command to create a new program object. If you want to edit a
model or an aggregation map, type MODEL or AGGMAP before the object name.

2. In the Edit window, you can add, modify, or delete program content.

Accessing a Workspace from SQL-Based Applications

Basic Concepts 1-9

3. To save your changes, choose Save from the File menu. Note that this choice
executes and UPDATE command, which updates all the changes that have been
made in the analytic workspace up to this point.

4. To close the Edit window, choose Quit from the File menu.

Closing the Connection
Use the following procedure to close a connection to Oracle OLAP:

1. In the OLAP Worksheet menu bar, choose Server.

2. Choose Disconnect.

3. When prompted to disconnect, choose Yes.

When you disconnect, OLAP Worksheet executes a COMMIT command before
ending your session. If you have executed the UPDATE command or chosen Save
from the File menu of an Edit window before disconnecting, then the changes that
you made before the update are made permanent. Otherwise, they are discarded.
Any changes that you have made after the update are discarded when you
disconnect.

Accessing a Workspace from SQL-Based Applications
SQL programmers can query data in the analytic workspace using SQL SELECT
statements that use OLAP table functions and by embedding OLAP DML
commands in their SQL scripts. The Oracle9i OLAP User’s Guide describes these
activities.

Using SQL SELECT Statements
SQL programmers can query analytic workspace data using SQL SELECT
statements.

■ If the analytic workspace has already been defined to the relational schema
using the CWM2_OLAP_AW_ACCESS PL/SQL package, views of the analytic
workspace have been created. You can query the analytic workspace by using
SQL SELECT statements against these SQL views. This method requires
minimum knowledge of the underlying data in the analytic workspace.

See Also: Chapter 7, "Developing Programs" for more
information about DML programs.

Accessing a Workspace from a Java Application

1-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ You can query the analytic workspace using the OLAP_TABLE function in SQL
SELECT statements. This method requires intimate knowledge of the analytic
workspace data. The OLAP_TABLE function is provided with Oracle OLAP.

Using Embedded OLAP DML Commands
Using the procedures and functions in the DBMS_AW package, SQL programmers
can issue OLAP DML statements against analytic workspace data. They can move
data from relational tables into an analytic workspace, perform advanced analysis
of the data (for example, forecasting), and move data from the analytic workspace
back into relational tables.

Accessing a Workspace from a Java Application
Typically, a Java application uses the OLAP API to access relational data. In
addition, the Oracle OLAP API supports access to data that resides in an analytic
workspace. The Oracle9i OLAP Developer’s Guide to the OLAP API and the OLAP API
Javadoc describe these activities.

Using OLAP Metadata
Through the OLAP API, a Java application can access workspace data that has been
exposed in OLAP metadata. Because OLAP metadata is compatible with the OLAP
API multidimensional metadata (MDM) model, a Java application can manipulate
workspace data using OLAP API Java classes. For information on how a database
administrator exposes workspace data in OLAP metadata, see the Oracle9i OLAP
User’s Guide..

Using Embedded OLAP DML Commands
The OLAP API provides a way for a Java application to directly manipulate
workspace data, without the need for any metadata and without the use of the
OLAP API data manipulation classes. The Java application uses the SPLExecutor
class in the OLAP API to open a workspace and send DML commands directly to
Oracle OLAP for execution in the workspace.

Defining and Working with Analytic Workspaces 2-1

2
Defining and Working with

Analytic Workspaces

This chapter discusses creating, attaching, and managing analytic workspaces. It
includes the following topics:

■ Using the OLAP DML to Work with Analytic Workspaces

■ Attaching Multiple Analytic Workspaces

■ Using Names and Aliases for Analytic Workspaces

■ Saving Analytic Workspace Changes

■ Executing Programs Automatically

■ Adding Security to an Analytic Workspace

■ Importing and Exporting Workspace Objects

■ Obtaining Analytic Workspace Information

Using the OLAP DML to Work with Analytic Workspaces

2-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using the OLAP DML to Work with Analytic Workspaces
To make the data and the object definitions of an analytic workspace available to
your session, the analytic workspace must be attached. Analytic workspaces that
are currently attached are known as active analytic workspaces. Attaching analytic
workspaces is described in "How to Attach an Analytic Workspace" on page 2-3.

You can view a list of the active analytic workspaces by using the AW command with
the LIST keyword.

AW LIST

This command displays a list of the active analytic workspaces. The express
analytic workspace, which is a system analytic workspace that contains objects used
internally, always appears in the analytic workspace list.

Current Analytic Workspace
The current analytic workspace is the first analytic workspace in the list of the
active analytic workspaces that you view with the AW command with the LIST
keyword. By default, when you define new workspace objects, they reside in the
current analytic workspace, unless you specify the name of another active analytic
workspace. Additionally, programs such as LISTNAMES list only the objects in the
current analytic workspace. However, even when an active analytic workspace is
not current, you can still change and update its data, edit and run its programs, and
modify its object definitions.

Your session does not have to have a current analytic workspace. If you start Oracle
OLAP without specifying an analytic workspace name, then the express analytic
workspace is first on the list. However, the express analytic workspace is not
current; there is no current analytic workspace until you specify one with the AW
command.

You can retrieve the name of the current analytic workspace by using the AW
function with the NAME keyword.

Suppose that you have two analytic workspaces attached, one named marketing
and another named personnel. The following commands use the AW function with
the NAME keyword to retrieve the name of the current analytic workspace into a

Using the OLAP DML to Work with Analytic Workspaces

Defining and Working with Analytic Workspaces 2-3

variable named MYTEXT, and then display the value of MYTEXT. This value is shown
after the commands.

mytext = AW(NAME)
SHOW mytext

PERSONNEL

How to Create An Analytic Workspace
The AW command is used to create a new analytic workspace. The following
example creates an analytic workspace named finance.

AW CREATE finance

When you create an analytic workspace, Oracle OLAP automatically executes a
COMMIT command.

You are the only user who has access to a workspace that you have just created. If
you want others to use the workspace, you must give them access to the relational
table in which the workspace is stored. The name of the table is AW$ followed by the
workspace name that you specified in your AW CREATE command.

To give read access to another user, execute a command like the following one in
SQL. In this example, the workspace name is demo and the user’s name is scott.

GRANT SELECT ON aw$demo TO scott

To give write access to another user, execute a SQL command like the following one.

GRANT UPDATE ON aw$demo TO scott

As in any SQL GRANT command, you can specify a group or role instead of a user.

How to Attach an Analytic Workspace
You can use the AW command to attach and detach analytic workspaces during a
session. In addition, as you work in your session, you can use the AW command to
switch freely among active analytic workspaces.

You attach an analytic workspace by using the AW command with the ATTACH
keyword. The analytic workspace that you specify is automatically attached and
made to be the current analytic workspace. The following example attaches an
existing analytic workspace named finance and makes it the current analytic

Using the OLAP DML to Work with Analytic Workspaces

2-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

workspace. Previously attached workspaces move down the list of attached
workspaces to make room for the new one at the top of the list.

AW ATTACH finance

When you attach an analytic workspace, the default access to it is read-only. If you
want a different attachment mode, then you must explicitly specify it in the AW
command as described in "Specifying the Analytic Workspace Attachment Mode"
on page 2-4.

Specifying the Analytic Workspace Attachment Mode
You can specify whether you want the analytic workspace attached in read-only
mode, read/write nonexclusive mode, or read/write exclusive mode by using the
RO, RW, and RX keywords of the AW command.

An analytic workspace that is attached in read/write nonexclusive mode or
read-only mode can be accessed simultaneously by several sessions. However, only
one session can have the analytic workspace open with read/write access. If
another user has already attached an analytic workspace in read/write mode, then
you cannot attach the same analytic workspace in read/write mode until that other
user detaches it.

An analytic workspace that is attached in read/write exclusive mode cannot be
accessed by any other session. If other users have already attached an analytic
workspace, then you cannot attach the same analytic workspace in read/write
exclusive mode until all of the other users detach it.

Sharing Analytic Workspaces
An analytic workspace can be accessed simultaneously by several sessions,
assuming that the session users have been granted access by the creator of the
workspace. Many sessions can access a workspace, but only one session can have it
open with read/write access at any given time.

When you attach an analytic workspace, your default access to it is read only.
Oracle OLAP supports simultaneous access for one writer and many readers of an
analytic workspace. Provided your user ID has the appropriate access rights, you
can always get read-only access to an analytic workspace, no matter how many

Note: You can create programs that are automatically executed
when you attach an analytic workspace. For more information, see
"Executing Programs Automatically" on page 2-11.

Using the OLAP DML to Work with Analytic Workspaces

Defining and Working with Analytic Workspaces 2-5

other users are using it. If another user has read/write access and commits changes
to the analytic workspace, then your view of the analytic workspace does not
change; you must detach and reattach the analytic workspace to see the changes.

If you want read/write access, then you must explicitly specify it in the AW
command. If the analytic workspace is attached in read/write mode by another
session, the response to your request for access depends on the keywords used in
AW command.

You can specify whether or not you want to wait until an analytic workspace is
available for the type of access you are you are requesting by using the WAIT and
NOWAIT keywords of the AW command.

■ If you specify the NOWAIT keyword (the default) and if the analytic workspace
is not available for the type of access you are requesting, then an error message
is produced that indicates that the analytic workspace is unavailable.

■ If you specify the WAIT keyword and the analytic workspace is not available for
the type of access you are requesting, then Oracle OLAP places you on the wait
list for the analytic workspace.

How to Detach an Analytic Workspace
To detach an analytic workspace, you use the AW command with the DETACH
keyword. The following command detaches the finance analytic workspace.

AW DETACH finance

A detached analytic workspace remains in the database. However, it is no longer
accessible in your session. To access it again, use the AW command with the ATTACH
keyword.

How to Delete an Analytic Workspace
To delete an analytic workspace from the database, you use the AW command with
the DELETE keyword. Before deleting, you must detach the analytic workspace. The
following commands delete the finance analytic workspace.

AW DETACH finance
AW DELETE finance

A deleted analytic workspace is no longer in the database; you can never access it
again. When you delete an analytic workspace from the database, Oracle OLAP
automatically executes a COMMIT command.

Attaching Multiple Analytic Workspaces

2-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Workspace Localization Settings
Oracle supports locales that vary in their character sets, date formats, currency
symbols, and other language-specific characteristics. Oracle globalization support is
based on the value of parameters that begin with "NLS." For information about NLS
parameters, see the Oracle9i SQL Reference and the Oracle9i Database Globalization
Support Guide.

Within a session you can dynamically modify the value of some NLS parameters by
setting them using the OLAP DML options that begin with "NLS." For example, you
can set the value of NLS_LANG or NLS_TERRITORY in the OLAP DML. When you
set the value of an OLAP DML NLS option, the setting affects your entire database
session. It is not limited to your work in an analytic workspace.

Alternatively, you can use the following SQL command to change an NLS
parameter for your entire session, including Oracle OLAP.

ALTER SESSION SET parameter = value

For more information about the OLAP DML NLS options, see the Oracle9i OLAP
DML Reference help.

Attaching Multiple Analytic Workspaces
You can attach more than one analytic workspace at a time. However, when
working with multiple analytic workspaces, you must take care when you name
objects. When you request an object by name, either with the DESCRIBE command
or by referring to it in a command or program, all the active analytic workspaces are
searched until the named object is found. When you intend to use several analytic
workspaces together, do not give the same name to objects in different analytic
workspaces, unless you are prepared to use qualified object names when you
reference the objects.

Qualified Object Names
When you attach more than one workspace, and objects in more than one
workspace have duplicate names, you must use qualified object names to indicate
which objects you want to reference.

A qualified object name uniquely identifies an object by including the workspace
name. By using a qualified object name, you can clearly indicate to Oracle OLAP
which object (in which workspace) you want to access.

Using Names and Aliases for Analytic Workspaces

Defining and Working with Analytic Workspaces 2-7

For example, if you have attached the NORTHEAST workspace, which has a variable
called SALES, and you have attached the SOUTHEAST workspace, which also has a
variable called SALES, you must specify these variables using the following
qualified object names (QONs).

northeast!sales
southeast!sales

The first part of a QON is a workspace name, and the second part is the name of the
object. An exclamation point (!) joins the two parts.

You can intermix the use of qualified and unqualified names. You only need to use
the qualified name to identify a specific object in one workspace when an object that
has the same name exists in another attached workspace. If you do not specify a
QON for either duplicate, then Oracle OLAP might use one or the other; the results
are undefined.

Multiple AUTOGO and Permission Programs
If you have AUTOGO or permission programs defined in analytic workspaces that
are currently attached, then the one in the analytic workspace that you are attaching
is executed. However, if you have analytic workspace permission programs in more
than one currently attached analytic workspace, then you must use their qualified
object names when you edit them or use them in any other way. This will ensure
that you access the appropriate version.

Using Names and Aliases for Analytic Workspaces
The OLAP DML provides alternative ways to refer to an analytic workspace to
allow your code to be unambiguous and flexible.

Workspace Names
A workspace name is assigned when a workspace is created with the AW CREATE
command. For example, in the command aw create demo, the workspace name
is DEMO.

See Also: "Executing Programs Automatically" on page 2-11 for
information on AUTOGO programs and "Adding Security to an
Analytic Workspace" on page 2-12 for information on permission
programs.

Saving Analytic Workspace Changes

2-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

By default, a workspace is created in the schema for your database user ID. For
example, if the user SCOTT created the DEMO workspace, the full name of the
workspace would be SCOTT.DEMO. If you have the rights to access a workspace
that resides in another user’s schema, you can specify the full name when you
attach the workspace. For example SCOTT could attach a workspace called
REPORTS in a schema owned by SUSAN with the following command.

aw attach susan.reports

In almost any DML command, you can specify the full name of a workspace (for
example, SCOTT.DEMO). If the workspace is in your schema, you can specify only
the name (for example, DEMO) instead. Optionally, you can reference a workspace
using an assigned workspace alias.

Workspace Aliases
A workspace alias is an alternative name for an attached workspace. You can assign
or delete an alias with the AW ALIASLIST command.

An alias is in effect from the time it is assigned to the time that the workspace is
detached (or until the alias is deleted). Therefore, each time you attach an
unattached workspace, you must reassign its aliases.

One reason for assigning an alias is to have a short way to reference a workspace
that belongs to a schema that is not yours. For example, you can use the alias in
qualified object names and commands that reference such a workspace. Another
reason for assigning an alias is to write generic code that includes a reference to a
workspace but does not hard-code its name. With the alias providing a generic
reference, you can assign the alias and run the code on different workspaces at
different times.

Saving Analytic Workspace Changes
Typically, you want to save an analytic workspace at the end of your session to save
changes that were made during the session. You can also save an analytic
workspace periodically during a session to save changes as you go along.

If you have read/write access to the analytic workspace, then you can save the
changes you have made. If you have read-only access to the analytic workspace,
then you can make changes to the analytic workspace, but you cannot save these
changes.

Two commands are used together to save changes to an analytic workspace:
UPDATE and COMMIT.

Saving Analytic Workspace Changes

Defining and Working with Analytic Workspaces 2-9

UPDATE Command
The UPDATE command moves analytic workspace changes from a temporary area
to the database table in which the workspace is stored. Your changes are not saved
until you execute a COMMIT command, either from the OLAP DML or from SQL.

If you want changes that you have made in a workspace to be committed when you
execute a COMMIT command, then you must first update the workspace using the
UPDATE command. Changes that have not been moved to the table are not
committed.

The simplified syntax for the UPDATE command is show below.

UPDATE [awname1 [awname2 . . .]]

An awname argument specifies the name of a read/write analytic workspace that is
attached to your session. If you do not specify any analytic workspace names, then
all the attached read/write analytic workspaces are updated.

For example, you can issue the following command to move changes to all attached
analytic workspace from a temporary area to the database tables in which the
workspaces are stored.

UPDATE

COMMIT Command
The COMMIT command executes a SQL COMMIT command. All changes made
during your session are committed, whether they were made through Oracle OLAP
or through another form of access (such as SQL) to the database.

For example, you can issue the following two commands to save all analytic
workspace changes in the database.

UPDATE
COMMIT

Many users execute DML commands using SQL*Plus or OLAP Worksheet. Both of
these tools automatically execute a COMMIT command when you end your session.
However, you must first execute an UPDATE command in order to save your
analytic workspace changes.

If you have attached a shared analytic workspace and another user has read/write
access, then that user’s COMMIT command does not affect your view of the analytic
workspace. Your view of the data remains the same as when you attached the

Saving Analytic Workspace Changes

2-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

analytic workspace. If you want access to the changes, then you must detach the
analytic workspace and reattach it.

Effect of the ROLLBACK Command
The OLAP DML does not provide a way to issue a ROLLBACK command; however,
you could execute one in your session from outside Oracle OLAP (for example,
through PL/SQL). When a ROLLBACK command is executed in your session, Oracle
OLAP checks to see whether there are uncommitted updates in an attached
workspace.

■ If there are uncommitted updates (that is, you have made changes and executed
an UPDATE command, but you have not subsequently executed a COMMIT
command), then Oracle OLAP discards your changes and detaches the
workspace.

■ If you have no uncommitted updates, then Oracle OLAP takes no action in
response to the ROLLBACK command. This means that, if you have not issued
an UPDATE command since your last COMMIT command, Oracle OLAP takes no
action and all your changes remain in the workspace during your session.

If you rollback to a savepoint and there are uncommitted updates that occurred
subsequent to the savepoint, Oracle OLAP discards those updates and detaches the
workspace. Uncommitted updates that occurred before the savepoint remain in the
workspace, and you can see them if you reattach the workspace in the same session.

Minimizing Analytic Workspace Growth
You can minimize analytic workspace growth by frequently updating the analytic
workspace when you are attached exclusively. You can reorganize your analytic
workspace files by exporting all of the objects in your analytic workspace and then
importing them into a new analytic workspace. The new workspace may be
substantially smaller.

To reorganize your analytic workspace by exporting and importing workspace
objects, follow the procedure outlined below.

1. Issue an ALLSTAT command against the original analytic workspace.

2. Use the EXPORT command with the ALL keyword to put all of the data in the
original analytic workspace into an EIF file.

3. Create a new analytic workspace with a different name than the original
analytic workspace.

Executing Programs Automatically

Defining and Working with Analytic Workspaces 2-11

4. Use the IMPORT command to import the EIF file into the new analytic
workspace.

5. Use the UPDATE and COMMIT commands to save the new analytic workspace.

6. After checking that the objects were successfully moved into the new analytic
workspace, delete the original analytic workspace.

If you have programs that reference a given workspace, they can refer to the
workspace by an alias. This way, it does not matter how many times you import to a
workspace with a different name. The alias can be assigned to the appropriate
workspace each time.

Executing Programs Automatically
You can create programs that are automatically executed when you attach an
analytic workspace. When you attach an analytic workspace by using the AW
ATTACH command with the AUTOGO keyword, the workspace is searched for a
program named AUTOGO. If it exists, then the program is executed before
commands are accepted. If you do not specify the AUTOGO keyword, or if you
specify the NOAUTOGO keyword, the program is not automatically executed.

Program Names
If you have a program named AUTOGO in more than one currently attached analytic
workspace (and thus multiple programs with the same name), then you must use
their qualified object names when you edit them to ensure that you are accessing
the correct one.

You do not have to name a program AUTOGO to have it automatically execute when
you specify the AUTOGO keyword. Instead, you can use the AUTOGO keyword with
the name of the program that you want executed. Even if a program named AUTOGO
exists in the analytic workspace, Oracle OLAP executes the program you specify
with the AUTOGO keyword.

AUTOGO Program Example
Suppose you have two analytic workspaces of sales data, one for expenses and one
for revenue. You have a third analytic workspace called analysis that contains
programs that analyze the data. In the analysis workspace, you can have an
AUTOGO program that includes the following two lines of code for attaching the
other two workspaces.

Adding Security to an Analytic Workspace

2-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

AW ATTACH expense AFTER analysis
AW ATTACH revenue AFTER analysis

When you attach the analysis workspace with the following command, its
AUTOGO program runs automatically and attaches the other two workspaces.

AW ATTACH analysis AUTOGO

If you named the program ATTACHDATA instead of AUTOGO, you would attach the
analysis workspace with the following command.

AW ATTACH analysis AUTOGO attachdata

Note that permission programs are executed before any AUTOGO program is
executed.

Adding Security to an Analytic Workspace
An analytic workspace as an entity is protected with all of the security features built
into the database. In addition, you can restrict access to specific workspace objects,
or to an entire workspace, with permission programs.

Permission Programs
When a user attaches an analytic workspace, it is checked to see if it contains
permission programs, which are called permit_read and permit_write. You do
not have to create these programs; however, if they are present, then the appropriate
one is automatically executed when a user attaches the analytic workspace.

See Also:

■ "Adding Security to an Analytic Workspace" on page 2-12 for
information about permission programs.

■ Chapter 7, "Developing Programs" for information on writing
programs.

IF the user attaches an analytic
workspace with . . .

THEN the following program is executed,
if it exists . . .

read-only access, permit_read program.

read/write access, permit_write program.

Adding Security to an Analytic Workspace

Defining and Working with Analytic Workspaces 2-13

Permission programs are executed before any AUTOGO program is executed. If a
user specifies a password when attaching the analytic workspace, then the
password is passed as an argument to the permission program for processing. The
permission program can grant or restrict access to the entire workspace or to
individual objects based on the password that has been provided. For example, in
the following AW command, the sales workspace is attached with goldfinch as
the password.

AW ATTACH sales PASSWORD goldfinch

Creating and Designing Permission Programs
To create permission programs, you define two programs with the names
permit_read and permit_write. In these programs, you can specify PERMIT
commands that grant or restrict access to individual workspace objects. In addition,
you write these programs as user-defined functions that return a Boolean value, and
the return value indicates to Oracle OLAP whether or not the user has the right to
attach the workspace.

Thus, permission programs allow you to control two levels of access to the analytic
workspace in which they reside.

For example, using the PERMIT command, you can deny access to the salary
variable to one group of users, and you can deny access to the tenure variable to
another group of users. You can even specify that certain users cannot access a
subset of the cells in the salary variable.If you have permission programs in more
than one currently attached analytic workspace (and thus, multiple programs with

IF the program returns . . . THEN the analytic workspace . . .

YES is attached.

NO is not attached.

Type of access Description

Analytic workspace
level

Depending on the return value of the permission program, the
user is or is not granted access to the entire analytic workspace.

Object level Depending on the PERMIT commands in the permission
program, the user is granted or denied access to specific objects or
sets of object values.

All of the objects referred to in a given permission program must
exist in the same analytic workspace.

Importing and Exporting Workspace Objects

2-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

the same name), then you must use their qualified object names when you edit
them, to ensure that you are accessing the correct one.

Importing and Exporting Workspace Objects
You can export an entire workspace, several workspace objects, a single workspace
object, or a portion of a workspace object to a specially formatted EIF file. Then you
can import the information into a different workspace within the same Oracle
database or a different one.

One reason for exporting and importing is to move your data to a new location.
Another purpose is to remove extra space from your analytic workspace after you
have added and then deleted many objects or dimension values. To do this, use the
EXPORT command to put all the data in an EIF file, create another workspace with a
different name, and then use the IMPORT command to import the EIF file into the
new workspace. If you have imported into the same database, you can delete the
old workspace and refer to the new one with the same workspace alias that you
used for the original one.

The following command copies all the data and definitions from the current
analytic workspace to an EIF file called reorg.eif in a directory alias called
mydir.

export all to eif file ’mydir/reorg.eif’

Directory aliases are defined in the database, and they control access to directories.
You can use the CDA command to specify a current directory alias. In this case, you
do not have to specify a directory alias in the EXPORT command, because Oracle
OLAP assumes that you want the file to be created in your current directory alias.
Contact your Oracle DBA for access rights to a directory alias where your database
user name can read and write files.

The following command copies the data and definitions from the EIF file to a new
analytic workspace.

aw create new
import all from eif file ’reorg.eif’
update
commit

See Also: Chapter 7, "Developing Programs" for information on
writing programs.

Obtaining Analytic Workspace Information

Defining and Working with Analytic Workspaces 2-15

Obtaining Analytic Workspace Information
The AWDESCRIBE program displays a complete description of your analytic
workspace, including:

■ A table of contents that shows general information about your analytic
workspace, such as the date and time of the last update and the number of each
type of workspace object.

■ A list of workspace objects that are sorted alphabetically.

■ Detailed descriptions of all workspace objects, which are sorted by type of
object and sorted alphabetically by name within each type. For each object,
there is a cross-reference list of other objects that use or are used by this object.

Because the output from AWDESCRIBE is frequently very long, you can direct it to a
file with the OUTFILE command:

OUTFILE ’diralias/filename’
AWDESCRIBE
OUTFILE EOF

Where diralias is the name of a directory alias, and filename is the name of the file
where the information will be written.

Contact your DBA for the name of a directory alias to which you have read and
write privileges.

Obtaining General Information About an Analytic Workspace
The AW function returns various kinds of information about attached analytic
workspaces. For example, you can use the AW function to learn the name of your
current workspace or whether you have read/write access to it.

The simplified syntax of the AW function is shown below.

AW(choice [workspace])

The keyword you specify for choice determines the type of information that is
returned by the AW function. Examples of keywords are: ATTACHED, NAME, RO, and
RW.

Obtaining Analytic Workspace Information

2-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

For example, the following commands check which analytic workspace is active so
the program can choose the appropriate data to report.

IF AW(NAME) EQ ’mysales’
 THEN REPORT sales.m
 ELSE REPORT gensales

Viewing Objects in an Analytic Workspace
You can retrieve a list of the objects in an analytic workspace by using the
LISTNAMES program. This program lists all the objects in the analytic workspace,
grouped by object type and alphabetized within object type. LISTNAMES shows the
total number of each type of object (dimension, variable, and so on).

Use the LISTBY command to retrieve a list of all objects that are dimensioned by, or
related to, a given dimension.

For example, to find out which objects are dimensioned by, or related to, month,
you can use the following command.

LISTBY month

The following list is displayed.

14 objects dimensioned by or related to MONTH in DEMO
--
ACTUAL ADVERTISING BUDGET
EXPENSE FCST NATIONAL.SALES
PRICE PRODUCT.MEMO SALES
SALES.FORECAST SALES.PLAN SHARE
UNITS UNITS.M

To display the definitions of one or more objects, use the DESCRIBE command. For
example, you can issue the following command.

DESCRIBE price

It produces the following output.

DEFINE PRICE VARIABLE DECIMAL <MONTH PRODUCT>
LD Wholesale Unit Selling Price

If you execute the DESCRIBE command without any object names, all the objects in
the current status list of the NAME dimension are described. The NAME dimension
contains the names of all the objects that are defined in the analytic workspace.

Obtaining Analytic Workspace Information

Defining and Working with Analytic Workspaces 2-17

You can display the values of many workspace objects, such as variables,
dimensions and relations, by executing a REPORT command. For example, the
following command shows the values of a variable called costs.

report costs

This command might produce the following output.

 ------------------------COSTS------------------------------
 ----------------------GEOGRAPHY----------------------------

DIVISION EAST WEST BOSTON SAN FRANCISCO SEATTLE
--------- ---------- ---------- ---------- ------------- ----------
DIVA 27,600.00 50,000.00 27,600.00 10,000.00 40,000.00
DIVB 30,000.00 62,000.00 30,000.00 12,000.00 50,000.00

Obtaining Information About Objects
To obtain information about workspace objects, you can use the OBJ function.

For example, the following command obtains the number of dimensions for the
variable units. The output is shown below the command.

SHOW OBJ(NUMDIMS ’units’)
3

The following command obtains the data type of the units variable. The output is
shown below the command.

show obj(data ’units’)
INTEGER

You often use the OBJ function in conjunction with the LIMIT command and the
NAME dimension in order to obtain information about groups of objects. The LIMIT
command sets the status of a dimension. This means that it restricts the accessibility
of dimension values, which sets a corresponding restriction on any variables or
relations that are dimensioned by them.

You can use the LIMIT command together with the OBJ function to identify a
group of objects with a particular characteristic. Then, you can list the objects in the
group using the STATUS command.

Obtaining Analytic Workspace Information

2-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

The following commands lists the objects that are dimensioned by both month and
product.

LIMIT NAME TO OBJ(ISBY ’month’) AND OBJ(ISBY ’product’)
STATUS NAME

The output of these commands is shown below.

The current status of NAME is:
ADVERTISING, EXPENSE, NATIONAL.SALES, PRICE, PRODUCT.MEMO, SALES,
SALES.FORECAST, SALES.PLAN, SHARE, UNITS, UNITS.M

See Also: Chapter 6, "Selecting Data" for information about using
the LIMIT command.

Defining Data Objects 3-1

3
Defining Data Objects

This chapter introduces multidimensional data structures. It explains how to define
objects and change the definition of those objects. It includes the following topics:

■ Overview: Defining Workspace Objects

■ Data Types

■ Defining Dimensions

■ Defining Relations

■ Defining Variables

■ Defining Variables That Handle Sparse Data Efficiently

■ Defining Hierarchical Dimensions and Variables That Use Them

■ Defining Concat Dimensions and Variables That Use Them

■ Changing the Definition of an Object

Overview: Defining Workspace Objects

3-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Overview: Defining Workspace Objects
It is important to understand the distinction between the definition of an object and
its data. An object definition is its description in the analytic workspace. The data of
an object is the value or values that are associated with that definition. All objects
have definitions. However, not all objects have data.

For example, a sales variable that is dimensioned by month, product, and
district has a definition for itself as a variable object. The sales variable is also
associated with the definitions for its three dimensions. However, the values of
sales, month, product, and district are not part of the definitions.

Other objects, such as programs and formulas, do not have data.

Once you have created an analytic workspace, you can begin defining workspace
objects. To define any OLAP DML object, use the DEFINE command. The simplified
syntax for the DEFINE command is shown below.

DEFINE name object-type attributes

The name argument specifies the name for the new definition.

The object-type argument specifies the type of object that is being defined. The
default is VARIABLE. You can specify any of the valid object types as outlined in
"Workspace Objects That You Can Define" on page 3-3.

The attributes argument specifies the properties of the object. Attributes are
different for each type of object. The attributes are listed in the entry for each object
type.

Note: Because each analytic workspace has its own list of
workspace objects, you can define objects with the same name in
more than one analytic workspace. However, to prevent
unexpected results, you should provide unique names for objects in
separate analytic workspaces that will be active at the same time,
unless you are prepared to use qualified object names as described
in Chapter 2, "Defining and Working with Analytic Workspaces".

Overview: Defining Workspace Objects

Defining Data Objects 3-3

 Workspace Objects That You Can Define
The OLAP DML data object types that you define using the DEFINE command are
outlined in the following table.

Object Type Description

DIMENSION Contains a list of values that provide categories for data. A
dimension acts as an index for identifying values of a variable. A
dimension is similar to a key in a relational database.

RELATION Establishes a correspondence between the values of a given
dimension and the values of that dimension or other dimensions in
the analytic workspace. A relation is similar to a foreign key in a
relational database.

VARIABLE Stores data. The data type of a variable indicates the kind of data
that it contains. A variable is similar to a table in a relational
database.

COMPOSITE A named list of dimension-value combinations, in which a given
combination has one value taken from each of the dimensions on
which the composite is based.

Note: An unnamed composite is automatically created when you
define a variable with some dimensions specified as sparse. An
unnamed composite is an internal object; it is not considered an
OLAP DML object.

SURROGATE Contains a list of values that are surrogates for the values of a simple
dimension. You can use a surrogate for a dimension in LIMIT
commands, models, qualified data references, and data loading.

FORMULA Represents a stored calculation, expression, or procedure that
produces a value. A formula is similar to a view in a relational
database.

MODEL Contains a set of interrelated equations that are used to calculate
data and assign it to a variable or dimension value. In most cases,
models are used when working with financial data.

PROGRAM Contains a series of OLAP DML commands. A program executes a
set of related commands. A program is similar to a SQL stored
procedure.

VALUESET Contains a list of dimension values for a particular dimension.

Data Types

3-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Data Types
Workspace data types fall into categories, which are referred to as basic data types.
They are listed in the following table.

Different objects support the use of different data types for their values:

■ For most data values, such as those stored in variables, the INTEGER,
SHORTINTEGER, DECIMAL, SHORTDECIMAL, NUMBER, TEXT, ID, NTEXT,
BOOLEAN, DATETIME, and DATE data types are supported.

■ For dimension values, the INTEGER, NUMBER, TEXT, ID, and NTEXT data types
are supported.

Numeric Data Types
The following numeric data types are supported.

AGGMAP Creates an aggregation map, which can contain commands that
specify which data in a variable should be aggregated or allocated
and how the operation is performed. With the AGGMAP command,
you can specify commands used by the AGGREGATE command.
With the ALLOCMAP command, you can specify commands used
by the ALLOCATE command.

Basic Type Specific Type

Numeric INTEGER, SHORTINTEGER, LONGINTEGER, DECIMAL, SHORTDECIMAL,
NUMBER

Text TEXT, NTEXT, ID

Boolean BOOLEAN

Date DATETIME, DATE

Data Type Data Value

INTEGER A whole number in the range of (-2**31) to (2**31)-1.

SHORTINTEGER A whole number in the range of (-2**15) to (2**15)-1.

LONGINTEGER A whole number in the range of (-2**63) to (2**63)-1.

DECIMAL A decimal number with up to 15 significant digits.

Object Type Description

Data Types

Defining Data Objects 3-5

For data entry, a value for any of these data types can begin with a plus (+) or minus
(-) sign; it cannot contain commas. Additionally, a decimal value can contain a
decimal point. For data display, thousands and decimal markers are controlled by
the NLS_NUMERIC_CHARACTERS option.

The workspace NUMBER data type is fully compatible with the database NUMBER
data type. It is used for dimensions and surrogates when a text or integer data type
is not appropriate. It is typically assigned to variables that are not used for
calculations (like forecasts and aggregations), and it is used for variables that must
match the rounding behavior of the database or require a high degree of precision.
When deciding whether to assign the NUMBER data type to a variable, keep the
following facts in mind in order to maximize performance:

■ Analytic workspace calculations on NUMBER variables is slower than
calculations on other numeric types such as DECIMAL.

■ When data is fetched from an analytic workspace to a relational column that
has the NUMBER data type, performance is best if the data already has the
NUMBER data type in the analytic workspace because a conversion step is not
required.

Examples of Literal Numeric Values
Examples of literal numeric values are:

-1
256000
+2147483647
10000000000.0009

Text Data Types
The following text data types are supported.

SHORTDECIMAL A decimal number with up to 7 significant digits.

NUMBER A decimal number with up to 38 significant digits.

Data Type Data Value

TEXT Up to 4000 bytes per line in the database character set. This data type is
equivalent to the CHAR and VARCHAR2 data types in the database.

Data Type Data Value

Data Types

3-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

For data entry, text literals must be enclosed in single quotes. Otherwise, the OLAP
DML command processor will look for a workspace object by that name.

Escape Sequences
 In some cases, text data includes values that are not printable. Escape sequences are
provided to allow such values to be input and displayed. An escape sequence is a
series of alphanumeric characters that begins with a backslash.

The following table shows escape sequences that are recognized.

NTEXT Up to 4000 bytes per line in UTF-8 character encoding. This data type is
equivalent to the NCHAR and NVARCHAR2 data types in the database.

ID Up to 8 characters per line in the database character set

Escape
Sequence Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\" Double quote

\’ Single quote

\\ Backslash

\dnnn Character with ASCII code nnn decimal, where \d indicates a decimal
escape and nnn is the decimal value for the character

\xnn Character with ASCII code nn hexadecimal, where \x indicates a
hexadecimal escape and nn is the hexadecimal value for the character

\Unnnn Character with Unicode nnnn, where \U indicates a Unicode escape and
nnnn is a four-digit hexadecimal integer that represents the Unicode
codepoint with the value U+nnnn. The U must be a capital letter.

Data Type Data Value

Data Types

Defining Data Objects 3-7

Examples of Literal Text Values
Examples of literal text values are:

’Raoul D\’Allesandro’
’NONE’
’January 2002’

Boolean Data Type
A Boolean data type is provided that you can use to represent logical values. In
code, you can use any of the following values (in any combination of uppercase and
lowercase characters) to represent Boolean values:

■ YES, TRUE, ON

■ NO, FALSE, OFF

The values that are used in your installation are determined by the language
identified by the NLS_LANGUAGE option. You can use the read-only NOSPELL and
YESSPELL options to obtain the values.

Working with Boolean expressions is discussed in "Boolean Expressions" on
page 4-21.

Date Data Types
The following date data types are supported.

The format and language of DATETIME values are controlled by the NLS_DATE_
FORMAT and NLS_DATE_LANGUAGE options. The DATETIME data type is supported
by Oracle standard libraries and operates the same way in the database, and thus is
preferable to the DATE data type. The DATEORDER, DATEFORMAT, and MONTHNAMES
options, which control the formatting of DATE values, have no effect on DATETIME
values. However, DATETIME and DATE values can be used interchangeably in most
DML commands

Data Type Data Value

DATETIME Dates between January 1, 4712 B.C. and December 31, 9999 A.D., and
times in hours, minutes and seconds.

DATE Dates between January 1, 1000 A.D. and December 31, 9999 A.D.

Defining Dimensions

3-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining Dimensions
A dimension is an object that holds a list of values that provide the organization for
one or more variables. A dimension value is similar to a key in a relational table;
either alone or with other dimension values, it uniquely identifies a data value. For
example, if you have sales data with a separate sales figure for each month, then the
data has a month dimension; that is, the data is organized by month. The dimension
values you add might be feb02, mar02, and apr02.

A simple dimension has a list of values that all have the same data type. The OLAP
DML supports both flat and hierarchical simple dimensions:

■ A flat dimension exists when the values within a dimension are all at the same
level. No value is the child or parent of another value.

■ A hierarchical dimension exists when values are in a one-to-many
(parent-to-child) relationship with each other. A hierarchical dimension is a
means of organizing and structuring this type of data within a single
dimension. You can then use it to dimension a variable that contains data for all
the levels. Some dimensions have multiple hierarchies. You specify the
parent-to-child relationships of the dimension values by creating a self-relation.

Composite and conjoint dimensions can be derived from these base simple
dimensions to store sparse data more efficiently in a multidimensional format.

Concat dimensions can also be based on simple dimensions or on conjoint
dimensions. You can represent a hierarchy with a concat dimension that is has two
or more simple flat dimensions among its base dimensions. You can use concat
dimensions to easily map dimensions in an analytic workspace to columns in
relational tables and thereby promote more efficient loading of data from the
relational structures into the analytic workspace structures. The base dimensions of
a concat dimension can be of different data types.

Defining Dimensions

Defining Data Objects 3-9

Determining What Dimensions to Define
If you want your analytic workspace to contain only flat dimensions, you need to
define dimensions for each level of detail in your data that users will access.

For example, if your company is divided into sales districts and each district
handles several store accounts, then you need to decide whether you want sales
figures for every store or only for each district. As shown in the following table, the
answer to this question determines the structure of your analytic workspace.

Sometimes, you will decide to store data of varying levels of aggregation within a
single variable, because this type of storage affords a quicker response time for
users who want to view the data. In this case, you can define a single hierarchical
dimension that has all the values of the hierarchy or you can define a concat
dimension that is based on simple flat dimensions. For example, each flat
dimension might have the values of one of the levels of the hierarchy.

For example, if you want to look at data both ways instead of defining both a
store and a district dimension as described above, then you can define a single
hierarchical dimension. This hierarchical dimension would contain all of the values

See Also:

■ "Defining Variables That Handle Sparse Data Efficiently" on
page 3-18 for information about composite and conjoint
dimensions.

■ "Defining Hierarchical Dimensions and Variables That Use
Them" on page 3-22 for information about hierarchical
dimensions.

■ "Defining Concat Dimensions and Variables That Use Them" on
on page 3-25 for information about concat dimensions.

IF . . . THEN . . .

you need Store data, you can define a store dimension.

you always look at each district as a whole, all you need is a district dimension.

you want to look at data both ways, you can organize data by store and view
aggregates of data by district by creating
both a store and a district dimension
with a relation between them.

Defining Dimensions

3-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

for stores and districts. If you dimension a variable by this hierarchical dimension,
then you can store data of varying levels of aggregation within that single variable.
You can still view store data and district data separately.

You can achieve a similar result by defining a concat dimension that has as its base
dimensions the store and district dimensions. The concat dimension would
also contain all of the store and district values. As with a hierarchical dimension, if
you dimension a variable by this concat dimension, then you can keep data of
varying levels of aggregation within that variable and still view store data and
district data separately.

If you already have simple flat dimensions in your analytic workspace or if you
create simple flat dimensions so that you can easily map them to columns in
relational dimensions, then you might use a concat dimension instead of a
hierarchical dimension. Another reason to use a concat dimension instead of a
hierarchical simple dimension is that all of the values of a simple dimension must
be unique whereas in a concat dimension the same value can exist in two or more of
the base dimensions of the concat.

How Data For Simple Flat Dimensions Is Stored
The data for a simple flat dimension is stored in a one-dimensional array. As you
add values to the dimension, each new value is stored at the end of the array.

Assume that the product dimension has been defined as a TEXT data type. The
first three values that are added to the dimension are TENTS, CANOES, and
RACQUETS. At this point, a report of the dimension shows the following values.

PRODUCT

TENTS
CANOES
RACQUETS

The product dimensionvalues are actually stored as shown below.

Position 1 2 3

Value TENTS CANOES RACQUETS

Defining Dimension Surrogates

Defining Data Objects 3-11

Later, the values SPORTSWEAR and FOOTWEAR are added. At this point, a report of
the dimension shows the following values.

PRODUCT

TENTS
CANOES
RACQUETS
SPORTSWEAR
FOOTWEAR

Now the product dimension array looks like the following.

Defining Dimension Surrogates
A dimension surrogate is an object that provides an alternative way to specify the
positions of a dimension. As described in "How Data For Simple Flat Dimensions Is
Stored", on page 3-10 each value of a dimension is identified by a position in the
dimension. The position is specified by an integer. For an INTEGER type dimension,
the values and the positions are the same. In a LIMIT command or a qualified data
reference (QDR) you can use the value of the dimension or the position of the value
in the dimension. For example, the following commands both set the status of the
product dimension to the same value.

LIMIT product TO ’TENTS’
LIMIT product TO 1

A primary key column in a relational table might have values that are numbers. To
efficiently load data from the relational structures into your analytic workspace, you
can define a NUMBER dimension to contain the primary key values. NUMBER
dimensions are different than other types of dimension because you cannot specify
a value of a NUMBER dimension by its position in the dimension. However, you can
define an INTEGER type dimension surrogate for the NUMBER dimension and use

Position 1 2 3 4 5

Value TENTS CANOES RACQUETS SPORTSWEAR FOOTWEAR

See Also: Chapter 5, "Populating Workspace Data Objects", for
information about adding dimension values.

Defining Dimension Surrogates

3-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

the values of the surrogate in LIMIT commands, models, QDRs, and data loading
instead of using the primary key values from the NUMBER dimension.

You can define dimension surrogates for simple dimensions and for conjoints but
not for concat dimensions or composites. For example, you might want to have a
conjoint dimension but also want to have a single text value to specify each value of
the conjoint. You can accomplish that by creating a TEXT dimension surrogate for
the conjoint dimension. If you define a dimension surrogate for a conjoint
dimension, then you cannot convert the conjoint dimension to a composite
dimension.

You can define any number of dimension surrogates for a dimension. The type of
the dimension surrogate does not have to be the same as the type of the dimension.
You can define a dimension surrogate for any type of dimension other than the time
types DAY, WEEK, MONTH, QUARTER, or YEAR. However, these time types are
provided only for compatibilty with earlier versions. Using them is not currently
recommended.

Differences Between Dimensions and Dimension Surrogates
You cannot dimension an object by a dimension surrogate. However, you can
dimension an object, such as a variable, by a dimension, define a dimension
surrogate for the dimension, and then use the values of the surrogate instead of the
dimension in LIMIT commands, models, QDRs, and data loading.

You cannot define a valueset on a dimension surrogate. However, you can define a
valueset on a dimension, define a dimension surrogate for the dimension, and then
specify values for the valueset by using values of the surrogate in a LIMIT
command.

You cannot define a relation on a dimension surrogate. However, you can define
dimension surrogates for the dimensions that dimension a relation and then use the
values of the surrogates in LIMIT commands or QDRs.

You cannot use a surrogate as the data type of a program or a formula.

You cannot add new positions directly to a dimension surrogate. However, with the
MAINTAIN command you can add values to the dimension on which you have
defined the surrogate. The surrogate then automatically has a new position for each
value you that add to the dimension.

A dimension surrogate does not have its own status. It shares the status of its
dimension. You can uses the values or positions of a dimension surrogate or its
dimension with a LIMIT command or a QDR to set the status of the dimension and
the dimension surrogate.

Defining Relations

Defining Data Objects 3-13

You cannot delete a dimension if a dimension surrogate exists for that dimension.
However, you can delete the dimension surrogate without affecting the dimension.

You cannot use the PERMIT command on a dimension surrogate. A surrogate has
the permissions set on its dimension.

You cannot use a dimension surrogate in commands that use the ACROSS or DOWN
keywords to loop over, total over, or report over specified dimensions. In those
cases, you must specify the dimension and not a surrogate for it.

You cannot use the CHDGFN or MAINTAIN commands on a dimension surrogate.
However, you can use dimension surrogate values in a MAINTAIN command to
specify values for a dimension.

Defining Relations
A relation is an object that establishes a correspondence between the values of a
given dimension and the values of that same dimension or other dimensions in the
analytic workspace. The structure of a relation is similar to that of a variable.
However, the cells in relations do not hold actual data values; instead, each cell in a
relation holds the index of the value of a dimension.

By creating a relation between two dimensions that participate in a one-to-many
(parent-to-child) relationship, you can organize your data by the child dimension
and view aggregates of data by the parent dimension. For example, if you define
store and district dimensions and a relation between them, then you can
organize data by store and view aggregates of data by district.

You can explicitly define relations between two or more dimensions, multiple
relations between a set of dimensions, or a dimension with itself (a self-relation).

How Relations Are Dimensioned
Relations are dimensioned arrays. Relations can be dimensioned by the dimension
with the larger number of values or the smaller number of values.

Typically, a relation is dimensioned by the dimension with the larger number of
values (that is, the less aggregate or child dimension) and the related dimension is
the dimension with fewer values (that is, the more aggregate or parent dimension).
For example, you can create a relation called state.city to associate each city
with the state that it is in. The relationship is dimensioned by city and the related
dimension is state. You assign a state to each city.

Defining Relations

3-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Less typically, a relation is dimensioned by the dimension with fewer values (the
more aggregate dimension or parent dimension). In this case, not every value of the
other dimension is related. For example, you could create a relationship, named
city.state, between states and their capital cities. The relation is dimensioned by
state and the related dimension is city. Only the capital cities are assigned to a
state.

How Relation Data Is Stored
The order in which you define the dimensions of a relation determines how its data
is stored and accessed. Dimensions vary in the order you list them in the definition,
with the first dimension varying fastest and the last dimension varying slowest. See
"How Variable Data Is Stored" on page 3-17 for information on faster- and
slower-varying dimensions.

The data values that are stored for a relation are the indexes of the related
dimension. The index is the position of the value in the dimension.

For example, the state.city relation (that is dimensioned by city and has a
related dimension of state) assigns a state to each city. To implement this
relationship, an index from the state dimension is stored for every value (index)
in the city dimension. The following table shows the positions of the city
dimension that are assigned to each position of the state dimension. It also shows
the values at those positions in the dimensions.

City Position
(Index)

City Value at
Position

State Position
(Index)

State Value at
Position

1 Atlanta 1 Georgia

2 Chicago 2 Illinois

3 Springfield 2 Illinois

See Also:

■ Chapter 5, "Populating Workspace Data Objects" for
information about adding values to relations.

■ Chapter 4, "Working with Expressions" for information about
using relations in expressions.

Defining Relations

Defining Data Objects 3-15

Example: Relation Between Two Dimensions
Most relations are a single-dimensional array that relates the values of one
dimension with another. For example, you can define two simple dimensions,
state and city, and a relation state.city between them to associate each city
with the state that it is in.

Assume that the state.city relation was defined using the following command.

DEFINE state.city RELATION state <city>

Assume that, as shown below, the state dimension has two values and the city
dimensions has three values.

STATE

GEORGIA
ILLINOIS

CITY

ATLANTA
CHICAGO
SPRINGFIELD

The state.city relation is dimensioned by city and the related dimension is
state. The state.city relation assigns a state to each city as shown below.

CITY STATE.CITY
-------------- ---------------
ATLANTA GEORGIA
CHICAGO ILLINOIS
SPRINGFIELD ILLINOIS

Example: Self-relation
You can define a self-relation for a single dimension. For example, to keep track of
the reporting structure of a company, you can have the emp.emp relation for the
employee dimension.

Assume that the emp.emp relation was defined using the following command.

DEFINE emp.emp RELATION employee <employee>

Defining Variables

3-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Assume that the employee dimension contains the values shown below.

EMPLOYEE

ANN LOGAN
MICHAEL ARON
LUCY BATES
RALPH BURNS

The self-relation emp.emp is dimensioned by the employee dimension and the
related dimension is also the employee dimension. As shown below, the emp.emp
relation assigns a manager to each employee.

EMPLOYEE EMP.EMP
-------------- ----------
ANN LOGAN NA
MICHAEL ARON ANN LOGAN
LUCY BATES ANN LOGAN
RALPH BURNS LUCY BATES

In this example, Ann Logan, the company president, does not report to anyone;
employees Lucy Bates and Michael Aron report directly to Ann Logan, the
president; and employee Ralph Burns reports to employee Lucy Bates.

Defining Variables
A variable is an object that stores data. All of the data in a variable represents the
same unit of measurement with the same data type. Your business might have
several categories of transactions (measured in dollars, units, percentages, and so
on) and each category is stored in its own variable. For example, you might record
sales data in dollars (a sales variable) and units (a units variable).

Typically, you use variables to contain data values that quantify a particular aspect
of your business.

See Also:

■ "Defining Hierarchical Dimensions and Variables That Use
Them" on page 3-22 for information about using self-relations
with hierarchical dimensions.

■ "Defining Concat Dimensions and Variables That Use Them" on
on page 3-25 for information about using self-relations with
concat dimensions.

Defining Variables

Defining Data Objects 3-17

Types of Variables
Variables can be either dimensioned or undimensioned:

■ Dimensioned variables. If a variable is an array with dimensions, then those
dimensions organize its data, and there is one cell for each combination of
dimension values. This type of variable is called a dimensioned variable. A
variable can be dimensioned by up to 32 dimensions.

■ Undimensioned variables. If a variable has no dimensions, then it is a scalar, or
single-cell variable, which contains one data value.

Variables that you define in an analytic workspace can be permanent or temporary.
You can also define variables in programs, as described in "Defining Local
Variables" on page 7-6.

A permanent variable is a variable for which both the variable values and
definitions are stored in an analytic workspace.

Temporary variables have values only during the current session. When you update
and commit the analytic workspace, only the definitions of temporary variables are
saved. When you exit from the analytic workspace, the data values are discarded.

How Variable Data Is Stored
The order in which you list the dimensions in a variable definition determines how
the data of that variable is stored and accessed. The first dimension in the variable
definition is the fastest-varying dimension, and the last dimension is the
slowest-varying dimension.

For example, assume your analytic workspace has an opcosts variable that
contains the operating costs, by month, of each city in which you have offices. In the
definition shown below for the opcosts variable, month is the fastest-varying
dimension and city is the slowest-varying dimension.

DEFINE opcosts VARIABLE DECIMAL <month city>

The data for a multidimensional variable is stored as a linear stream of values, in
which the values of the fastest-varying dimension are clustered together. For
example, for the opcosts variable, the values for Boston for all the months are
stored in a sequence, and then it stores the values for Chicago for all the months in a
sequence, and so on. Thus the month values vary fastest in the opcosts variable,
as shown in the following table.

Defining Variables That Handle Sparse Data Efficiently

3-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

When you define variables and other dimensioned objects, and when you write
programs that loop over multidimensional expressions in nested loops, you should
always try to maximize performance by matching the fastest-varying dimension
with the inner loop.

Defining Variables That Handle Sparse Data Efficiently
A variable with sparse data is one in which a relatively high percentage of the cells
of the variable do not contain actual data. Such “empty,” or NA, values take up
storage space in the analytic workspace.

There are two types of sparsity:

■ Controlled sparsity occurs when a range of values of one or more dimensions
has no data; for example, a new variable dimensioned by month for which you
do not have data for past months. The cells exist because you have defined past
months in the month dimension, but the cells are empty.

■ Random sparsity occurs when NA values are scattered throughout the data
variable, usually because some combinations of dimension values never have
any data. For example, a district might only sell certain products and never
have data for other products. Other districts might sell a different selection of
products.

Definition: Composite
A composite is an internal object that is used to store sparse data compactly in a
variable. A composite is a list of dimension-value combinations in which one value
is taken from each of the dimensions on which the composite is based.

Composites can be named or unnamed:

■ An unnamed composite is not a workspace object; it is merely an internal
structure. When you define a variable, you use the SPARSE keyword to request
that an unnamed composite is automatically created.

Dimension
Values

JAN97
BOSTON

FEB97
BOSTON

. . .

. . .
DEC97
BOSTON

JAN97
CHICAGO

. . .

. . .

Variable
Values

16000.77 16000.28 . . . 16000.98 19000.24 . . .

Defining Variables That Handle Sparse Data Efficiently

Defining Data Objects 3-19

■ A named composite is an object that is you define using the DEFINE
COMPOSITE command. Later, when you are defining or accessing a variable,
you can specify this composite by name along with the names of other
dimensions.

Because the values in composites are maintained automatically, using composites is
the recommended way of handling sparsity in your analytic workspace.

Using composites is one of the most important steps you can take to manage
sparsity, which contributes to keeping analytic workspace size to a minimum and
promoting good performance.

Why You Should Use Named Composites
Using named composites makes it easier to track which variables share the same
composite. A named composite in the dimension list of a variable tells Oracle OLAP
that the dimensions in the named composite are sparse in this variable, and that this
composite is shared only with other variables that have the same sparsity pattern.

In contrast, all variables defined with an unnamed composite that have exactly the
same dimensions in the same order will automatically share that unnamed
composite. If these variables have different sparsity patterns, performance will
suffer.

You can also manage sparsity by using a conjoint dimension to hold
dimension-value combinations for which a given variable has data. However,
because the values in composites are automatically maintained, using composites is
the recommended way of handling sparsity in your analytic workspace.

How to Use Composites
When you define a multidimensional variable, you can specify a composite in the
list of dimensions.

First, define a named composite by using the DEFINE COMPOSITE command.
Then, define the variables by using the following syntax to include a named
composite in the dimension list of each variable.

composite-name <dims>

For example, suppose you define a composite named proddist, whose
dimensions include product and district, as shown in the following command.

DEFINE proddist COMPOSITE <product district>

Defining Variables That Handle Sparse Data Efficiently

3-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

Now, suppose you want to define a sales variable in which time will be the
fastest-varying dimension and the proddist composite will be the slowest-varying
dimension, as shown in the following command.

DEFINE sales <time proddist<product district>>

Note that you should never use the SPARSE keyword with a composite. Essentially,
you use the name of the composite instead of the SPARSE keyword.

Naming, Renaming, and Unnaming Composites
You can use the RENAME command to:

■ Name an unnamed composite.

■ Change the name of a named composite.

■ Change a named composite to an unnamed composite.

Adding Data to a Variable That Uses a Composite
When you define a multidimensional variable, you can specify that a composite is
used instead of its base dimensions to dimension the data. Later, as you add values
to the dimensions of the variable for which you defined a composite, the following
actions are taken:

■ The composite is filled with dimension-value combinations.

■ The data for the variable is stored using the composite structure rather than the
structure of the base dimensions.

For a variable that uses a composite, cells are created for only those dimension
values that are used in the composite dimension-value combinations; it does not
create a variable cell for every value in the base dimensions. Data for a variable is
stored in order, cell by cell, for each combination of dimension values. From the
perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. This means that if you

See Also:

■ "Using Composites in Expressions" on page 4-13 for more
information about using composites.

■ "Working with NA Values" on page 4-32 for more information
about working with sparse data.

Defining Variables That Handle Sparse Data Efficiently

Defining Data Objects 3-21

define a variable with one regular dimension and one composite, then it is stored
like a two-dimensional variable.

Example 3–1 Defining a Variable That Uses a Named Composite

If your company does promotional marketing for certain products in some but not
all districts, then your variable data will be sparse along the product and
district dimensions. Therefore, suppose you define a composite named
proddist, whose base dimensions are product and district. There are
dimension-value combinations in the composite only for those values that have
data. For example, if you run a promotion for tents but not canoes, then the
composite includes the tents and city combinations, but not the canoes and city
combinations.

The following command creates a variable called promo that is dimensioned by
month and a composite named proddist, whose base dimensions are product
and district.

DEFINE promo INTEGER <month proddist<product district>>

The following conceptual figure illustrates the promo variable that is created by this
command, the month, product and district base dimensions, a named
composite (proddist) created from the product and district base dimensions,
and the internal relation that is created between the product and district base
dimensions and the proddist composite.

PRODUCT
dimension

PROMO
 variable

 PRODDIST
(named composite)

 MONTH
dimension

DISTRICT
dimension

Defining Hierarchical Dimensions and Variables That Use Them

3-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

The following table is an example of the sequence in which the data for the promo
variable might be stored.

Defining a Variable with a Single-Dimension Composite
When you specify a composite for just one dimension in a variable definition, a
single-dimension composite is created. The values of this composite will be a subset
of the values in its base dimension.

It is a good idea to use single dimension composites when a variable will share the
same dimensions as some other variables, but for a particular single dimension, the
variable will only have data for some of the values of the dimension.

Suppose you have already defined a variable called actual with the dimensions
line, division, and month. The actual variable does not contain any NA
values. You need to define a variable called budget, which requires much less
detail than actual. For example, budget only needs 10 percent of the line
dimension values, while actual needs all of them.

If you define budget without setting sparsity, then all of the line dimension
values are present for every month and division, but 90 percent of the line
dimension cells will have NA values.

To handle sparse data in this case, you define budget with an unnamed composite
for only the line dimension as shown below.

DEFINE budget DECIMAL <SPARSE <line> division month>

Defining Hierarchical Dimensions and Variables That Use Them
A hierarchical dimension is a means of organizing and structuring parent-child
(one-to-many) data within a single dimension and using self-relations to organize
the values of the hierarchical dimension into groups. A hierarchy exists when
values within a dimension are arranged in levels, with each level representing the
aggregated total of the data from the level below. Some dimensions have multiple
hierarchies.

TENTS
BOSTON
JAN95

TENTS
BOSTON
FEB95

TENTS
BOSTON
MAR95

. . .

. . .

. . .

RACQUETS
CHICAGO
JAN95

RACQUETS
CHICAGO
FEB95

. . .

. . .

. . .

257 379 428 . . . 635 192 . . .

Defining Hierarchical Dimensions and Variables That Use Them

Defining Data Objects 3-23

Hierarchical dimensions allow you to store data of varying levels of aggregation
within a single variable. This type of storage affords a quicker response time for
users who want to view the data, particularly when the variable is large.

Rather than defining two separate dimensions, one for city and the other for region,
you could define a hierarchical dimension named geography that contains both
city and region values.

GEOGRAPHY

EAST
WEST
BOSTON
SAN FRANCISCO
SEATTLE

Defining a Variable with a Hierarchical Dimension
You use a hierarchical dimension to define a variable that contains data of varying
levels of aggregation within a single variable. This type of storage affords a quicker
response time for users who want to view the data, particularly when the variable is
large.

Frequently, the cells in the variable that correspond to upper level values in the
hierarchical dimension contain the sum or total of the values in the cells of the
variable that correspond to the lower level dimension values. For example, in a
sales variable that is defined with a hierarchical dimension representing time, the
cells of the variable for each quarter might represent the total sales for the months in
the quarter.

After you have defined a variable with hierarchical dimensions, you can add
variable data to the lowest level of the hierarchy, and then calculate or aggregate the
values for the higher levels of the hierarchy. Conversely, you can distribute or
allocate data from higher levels to lower levels of the hierarchy.

See Also:

■ Chapter 9, "Allocating Data" for information about allocating
data.

■ Chapter 12, "Aggregating Data" for information about
aggregating data.

Defining Hierarchical Dimensions and Variables That Use Them

3-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Variable with a Hierarchical Dimension
The conceptual diagram below illustrates the geography dimension that contains
values for both cities and regions, the geo.geo relation that defines the
relationships between cities and regions, the division dimension that contains the
list of divisions, and the costs variable that contains the expenses for each
division by city and the totals by region.

The division and geography dimensions have the following values.

DIVISION

DIVA
DIVB

GEOGRAPHY

EAST
WEST
BOSTON
SAN FRANCISCO
SEATTLE

Assume that the geo.geo relation was defined using the following command.

define geo.geo relation geography <geography>

After region values have been assigned to the city values in the geo.geo
self-relation, a report of geo.geo produces the following.

GEOGRAPHY
 dimension

GEO.GEO
 relation

COSTS
variable

DIVISION
dimension

Defining Concat Dimensions and Variables That Use Them

Defining Data Objects 3-25

GEOGRAPHY GEO.GEO
-------------- ----------
EAST NA
WEST NA
BOSTON EAST
SAN FRANCISCO WEST
SEATTLE WEST

If you enter data at the lowest level (city level) of costs, then it has the values
shown below.

 ------------------------COSTS------------------------------
 ----------------------GEOGRAPHY----------------------------

DIVISION EAST WEST BOSTON SAN FRANCISCO SEATTLE
--------- ---------- ---------- ---------- ------------- ----------
DIVA NA NA 27,600.00 10,000.00 40,000.00
DIVB NA NA 30,000.00 12,000.00 50,000.00

After you aggregate the data, the costs variable has values in all of its cells,
including the cells for the totals for the East and West regions.

 ------------------------COSTS------------------------------
 ----------------------GEOGRAPHY----------------------------

DIVISION EAST WEST BOSTON SAN FRANCISCO SEATTLE
--------- ---------- ---------- ---------- ------------- ----------
DIVA 27,600.00 50,000.00 27,600.00 10,000.00 40,000.00
DIVB 30,000.00 62,000.00 30,000.00 12,000.00 50,000.00

Defining Concat Dimensions and Variables That Use Them
A concat dimension combines two or more base dimensions into a single
dimension. You can use a concat dimension instead of a hierarchical simple
dimension as another means of organizing and structuring parent-child data within
a dimension. You use self-relations to organize the values of the concat dimension
into groups by the levels of the hierarchy.

In a relational dimension table, suppose you have one column for districts with city
names as its values, and another column for regions. You can define a district
dimension and a region dimension in your analytic workspace and load into them
the values of the relational columns. Those dimensions have the following values.

Defining Concat Dimensions and Variables That Use Them

3-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

DISTRICT

BOSTON
SAN FRANCISCO
SEATTLE

REGION

EAST
WEST

You can define a concat dimension named reg.dist.ccdim based on those
simple flat dimensions. The concat dimension contains the values of both
dimensions.

REG.DIST.CCDIM

<REGION: EAST>
<REGION: WEST>
<DISTRICT: BOSTON>
<DISTRICT: SAN FRANCISCO>
<DISTRICT: SEATTLE>

You can then define a self-relation that groups the values of the concat dimension
into hierarchical levels. As with a hierarchical simple dimension, you can use a
concat dimension to define a variable that contains different levels of aggregation.

Example: Variable with a Concat Dimension
You can define a variable dimensioned by the reg.dist.ccdim concat dimension
and the division dimension from "Example: Variable with a Hierarchical
Dimension" on page 3-24 as follows.

DEFINE costs VARIABLE DECIMAL <reg.dist.ccdim division>

You can define a self-relation for the reg.dist.ccdim concat dimension that
identifies the parent-to-child relationships of the district-region hierarchy as
follows.

DEFINE rdccdim.rdccdim RELATION reg.dist.ccdim <reg.dist.ccdim>
limit district to ’BOSTON’
rdccdim.rdccdim(REG.DIST.CCDIM district) = reg.dist.ccdim(REGION ’EAST’)
limit district to ’DENVER’ ’SEATTLE’
rdccdim.rdccdim(REG.DIST.CCDIM district) = reg.dist.ccdim(REGION ’WEST’)

Changing the Definition of an Object

Defining Data Objects 3-27

If you enter data at the lowest level (the district dimension level), then the
costs variable has the values shown below.

 ------------------------COSTS------------------------------
 --------------------REG.DIST.CCDIM-------------------------
 <REGION: <REGION: <DISTRICT: <DISTRICT: <DISTRICT:
DIVISION EAST> WEST> BOSTON> SAN FRANCISCO> SEATTLE>
--------- ---------- ---------- ---------- --------------- ----------
DIVA NA NA 27,600.00 10,000.00 40,000.00
DIVB NA NA 30,000.00 12,000.00 50,000.00

You can aggregate the data in the costs variable by creating an aggregation map
and then using the AGGREGATE command. After you aggregate the data, the costs
variable has values in all of its cells, including the cells for the totals for the EAST
and WEST regions.

 ------------------------COSTS------------------------------
 --------------------REG.DIST.CCDIM-------------------------

 <REGION: <REGION: <DISTRICT: <DISTRICT: <DISTRICT:
DIVISION EAST> WEST> BOSTON> SAN FRANCISCO> SEATTLE>
--------- ---------- ---------- ---------- --------------- ----------
DIVA 27,600.00 50,000.00 27,600.00 10,000.00 40,000.00
DIVB 30,000.00 62,000.00 30,000.00 12,000.00 50,000.00

Changing the Definition of an Object
The definition of the last object you have defined in your analytic workspace is the
current definition. You can append characteristics, such as a description, property,
or permission to the current definition. If you want to append a characteristic to a
definition that is not current, then you can use the CONSIDER command to make it
the current definition.

The following table lists the OLAP DML commands that you can use to append
characteristics to an object definition.

Command Description

AGGMAP Allows you to specify completely new contents for a new or existing
AGGMAP type aggregation map, which you can use with the AGGREGATE
command

ALLOCMAP Allows you to specify completely new contents for a new or existing
ALLOCMAP type aggregation map, which you can use with the ALLOCATE
command

Changing the Definition of an Object

3-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

Suppose that you have defined a Boolean variable named onplan. Later, you want
to add a description to the definition of the variable.

As shown below, to change the definition of the ONPLAN variable, you first make
ONPLAN the current definition, and then you append a description to the definition.

CONSIDER onplan
LD Are these districts tracked on a special plan?

You can redefine some characteristics of a variable definition by using the CHGDFN
command. In the following example, the segment size of the sales variable is
changed.

CHGDFN sales SEGWIDTH 150 1000

For more information on the DEFINE and CHGDFN commands, see the topics for
these commands in the Oracle9i OLAP DML Reference help.

EQ Allows you to specify the expression to be calculated for a formula that
has already been defined

LD Assigns a long description to an object definition

MODEL Allows you to specify completely new contents for a new or existing
model

PERMIT Assigns access permission to an object definition

PROGRAM Allows you to specify completely new contents for a new or existing
program

PROPERTY Assigns a property to an object definition

Command Description

Working with Expressions 4-1

4
Working with Expressions

Expressions represent data values in the syntax of the OLAP DML. This chapter
explains how to create and use expressions. It includes the following topics:

■ Introducing Expressions

■ Dimensionality of Expressions

■ Specifying a Single Value for the Dimension of an Expression

■ Using Workspace Objects in Expressions

■ Numeric Expressions

■ Text Expressions

■ Boolean Expressions

■ Conditional Expressions

■ Substitution Expressions

■ Working with NA Values

Introducing Expressions

4-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Introducing Expressions
Expressions represent data values in the syntax of the OLAP DML. You can use
expressions as arguments in commands or functions and as values for options. An
expression often performs a mathematical or logical operation. It always evaluates
to a result in one of the workspace data types.

An expression can be:

■ A single, literal value (for example, 10 or ’EAST’)

■ A variable or formula that contains multiple values (for example, sales)

■ A function that returns one or more values (for example, TOTAL or JOINLINES)

■ A calculation that combines literal values, dimensions, variables, formulas, and
functions with operators (for example, inflation*1.02 or actual gt
20000)

An expression has a data type. It can also have dimensions. The data type and
dimensions of an expression depend on the values you are using in the expression.

Data Types of Expressions
The data type of an expression can be one of the following basic types:

■ Numeric

■ Text

■ Date (evaluating to a date value)

■ Boolean (evaluating to a YES or NO value)

These data types are defined in "Data Types" on page 3-4.

How the Data Type of an Expression is Determined
The data type of an expression is the data type of the resulting value. It may not be
the same as the data type of the data objects that make up the expression; it depends
on the data and on the operators and functions that are involved.

In addition, a conditional expression that is indicated by an IF... THEN. . . ELSE
operator is supported. A conditional expression returns a value whose data type
depends on the expressions in the THEN and ELSE clauses, not on the expression in
the IF clause, which must be Boolean.

Introducing Expressions

Working with Expressions 4-3

Changing the Data Type of an Expression
You can use the CONVERT function to change data type of an expression. For
example, you can convert a number to text, or you can convert a text string that
consists of digits to a number.

However, there is no need to convert data to another type within the same basic
category because those conversions are made automatically. In general, you can use
TEXT, NTEXT, or ID data anywhere text is called for, and you can use integers and
decimal numbers interchangeably.

OLAP DML data types are discussed in "Data Types" on page 3-4.

Operators
An operator is a symbol that transforms a value or combines it in some way with
another value. The following table describes the categories of OLAP DML
operators.

Note: Do not confuse a conditional expression with the IF
command, which has similar syntax but a different purpose. The IF
command does not have a data type and is not evaluated like an
expression.

Table 4–1 OLAP DML Operators

Category Description

Arithmetic Operators that you can use in numeric expressions with
numeric data to produce a numeric result. You can also use
some arithmetic operators in date expressions with a mix of
date and numeric data, which returns either a date or numeric
result. For more information on arithmetic operators, see
Table 4–2, "Arithmetic Operators".

Assignment An operator that you use to create an assignment statement
that stores the results of an expression into an object. For more
information on using assignment statements, see "Using
Objects in Assignment Statements" on page 5-11.

Comparison Operators that you can use to compare two values of the same
basic type (numeric, text, date, or, in rare cases, Boolean),
which returns a Boolean result. For more information on
comparison operators, see Table 4–3, "Boolean Operators".

Introducing Expressions

4-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Saving an Expression
You can save an expression in a formula. Typically, you define a formula to save
complex or frequently used expressions. A formula is an object that you name and
define using the DEFINE FORMULA command.

For example, you can define a formula to calculate dollar sales, as follows.

DEFINE dollar.sales FORMULA units * price

Each time you use a formula, the expression it represents is evaluated. The results
are not stored.

Conditional Operators that you can use to select one of two values based on
a Boolean condition. For more information on the substitution
operator, see "Conditional Expressions" on page 4-29.

Logical Operators that you can use to transform Boolean values using
logical operations, which returns a Boolean result. For more
information on logical operators, see Table 4–3, "Boolean
Operators".

Substitution An operator that you can use to evaluate an expression and
substitute the resulting value. For more information on the
substitution operator, see "Substitution Expressions" on
page 4-30.

Table 4–1 OLAP DML Operators

Category Description

Dimensionality of Expressions

Working with Expressions 4-5

Dimensionality of Expressions
An expression is dimensioned by a union of the dimensions of all the variables,
dimensions, relations, formulas, qualified data references, and functions in the
expression.

Determining the Dimensions of an Expression
You can find out the dimensions of an expression with the PARSE command and the
INFO function. PARSE evaluates the text of an expression; the INFO function
indicates how the expression is interpreted.

Item Dimensioned By Comments

Variable

Relation

Formula

The dimensions listed in
the definition of the object

Example 1: If the price variable is
dimensioned by month and product, then the
expression price * 1.2 is also dimensioned
by month and product.

Example 2: If the units variable is
dimensioned by month, product, and
district, then the expression
units * price is dimensioned by month,
product, and district (even though the
dimensions of the price variable are month
and product only).

Qualified
data
reference

All of the dimensions of
the associated object,
except for the dimensions
being qualified

Qualified data references are described in
"Specifying a Single Value for the Dimension of
an Expression" on page 4-6.

Function In most cases, the union of
the dimensions of its input
arguments

Unless otherwise noted in the OLAP DML
Reference, when you specify breakout
dimensions or relations in an aggregation
function, you change the dimensionality of the
expression. The first dimension that you
specify as a breakout dimension is the slowest
varying and the last dimension that you specify
is the fastest varying.

Specifying a Single Value for the Dimension of an Expression

4-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

This example illustrates the use of the DIMENSION keyword with the INFO function
to retrieve the dimensions of the expression just analyzed by the PARSE command.
The following commands produce the output shown below them.

PARSE ’TOTAL(sales region)’

SHOW INFO(PARSE DIMENSION)
REGION

How Dimension Status Affects the Results of Expressions
The number of values an expression yields depends on the dimensions of the
expression and the status of those dimensions. An expression yields one data value
for each combination of dimension values in the current status. For example, if three
dimension values are in status for month, and two for product, then the
expression price gt 100 results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an
expression are limited to the range of data you want to consider. In addition, you
must take into consideration any PERMIT commands that might limit access to the
dimensions of the data.

Specifying a Single Value for the Dimension of an Expression
A qualified data reference (QDR) is a way of limiting one or more dimensions of an
expression to a single value. QDRs are useful when you want to specify a single
value without changing the current status. Using a QDR, you can qualify a
dimension (which allows you to specify one dimension value in an expression) or
one or more dimensions of a variable or relation.

A qualified data reference takes the following form.

expression(dimname1 dimexp1 [, dimname2 dimexp2. . .])

The dimname argument is the name of one of the dimensions, or a dimension
surrogate of the dimension, of the expression and the dimexp argument is one of
the following:

■ A value of dimname.

See Also: Chapter 6, "Selecting Data" for more information about
setting the status of a dimension.

Specifying a Single Value for the Dimension of an Expression

Working with Expressions 4-7

■ A text expression whose result is a value of dimname.

■ A numeric expression whose result is the logical position of a value of
dimname.

■ A relation of dimname.

Qualifying a Variable
You can qualify any or all of a dimensions of a variable using either of the following
techniques:

■ The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value can be outside the current status.

■ The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the
qualifier. The dimension is temporarily replaced by the dimension(s) of the
relation.

For example, the variable sales has three dimensions, month, product, and
district. You might want to compare total sales in Boston to the total sales in all
cities. In a single command, you want district to be limited to two different
values:

■ For the numerator of the expression, you want the status of district to be
BOSTON.

■ For the denominator of the expression, you want the status of district to be
ALL.

The command below lets you calculate this result by using a QDR.

SHOW sales(district ’BOSTON’)/TOTAL(sales)

You can qualify more than one of the dimensions of a variable. For example, if you
qualify all the dimensions of the sales variable by specifying one dimension value
of each dimension, then you narrow sales down to a single–cell value.

To fetch sales for JUN02, TENTS, and SEATTLE, use the following QDR.

SHOW sales(month ’JUN02’, product ’TENTS’, district ’SEATTLE’)

Note: To qualify a complex expression, use the QUAL function.

Specifying a Single Value for the Dimension of an Expression

4-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

This command fetches a single value.

You can use a qualified data reference with the target expression of the = command.
This lets you assign a value to a specific cell in a data object.

The following example assigns the value 10200 to the data cell of the sales
composite that is specified in the qualified data reference. If the composite named
sales does not already have a value for the combination BOSTON and TENTS, then
this value combination is added to the composite, thus adding the data cell.

sales(market ’BOSTON’ product ’TENTS’ month ’JAN99’)= 10200

Replacing a Dimension in a Variable
When you use a relation as the qualifier in the QDR, you replace a dimension of the
variable with the dimension or dimensions of the relation. The relation must be
related to the dimension that you are qualifying, and it must be dimensioned by the
replacement dimension.

Example 4–1 Replacing a Dimension in a Variable

Suppose you have two variables, sales and quota, which are dimensioned by
month, product, and district. A third variable, division.mgr, is dimensioned
by month and division. You also have a relation between division and
product, called division.product. These objects have the following definitions.

DEFINE SALES VARIABLE DECIMAL <MONTH PRODUCT DISTRICT>
LD Sales Revenue
DEFINE QUOTA VARIABLE DECIMAL <MONTH PRODUCT DISTRICT>
DEFINE DIVISION.MGR VARIABLE TEXT <MONTH DIVISION>
DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT

The command below produces the report following it.

REPORT division.mgr

-------------------DIVISION.MGR----------------------
 ----------------------MONTH--------------------------
DIVISION JAN02 FEB02 MAR02 APR02 MAY02 JUN02
-------- -------- -------- -------- -------- -------- --------
CAMPING Hawley Hawley Jones Jones Jones Jones
SPORTING Carey Carey Carey Carey Carey Musgrave
CLOTHING Musgrave Musgrave Musgrave Musgrave Musgrave Wong

Specifying a Single Value for the Dimension of an Expression

Working with Expressions 4-9

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota; and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
division.product, which is related to division and dimensioned by product,
as the qualifier. The QDR replaces the division dimension with product, so that
it has the same dimensions as the other expression in the report “sales / quota.”
The command below produces the report following it.

REPORT DOWN month sales W 6 sales/quota W 8 HEADING -
 ’MANAGER’ division.mgr(division division.product)

DISTRICT: BOSTON
 -----------------------------PRODUCT------------------------------------
 ----TENTS---- ---CANOES---- --RACQUETS--- --SPORTSWEAR-- ---FOOTWEAR---
 SALES/ SALES/ SALES/ SALES/ SALES/
MONTH QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER QUOTA MANAGER
------ ----- ------- ----- ------- ----- ------- ----- -------- ----- --------
JAN02 1.00 Hawley 0.82 Hawley 1.02 Carey 0.91 Musgrave 0.92 Musgrave
FEB02 0.84 Hawley 0.96 Hawley 1.00 Carey 0.80 Musgrave 1.07 Musgrave
MAR02 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Musgrave 0.91 Musgrave
APR02 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Musgrave
.
.
.

Qualifying a Relation
You can also use a QDR to qualify a relation (which is really a special kind of
variable).

Suppose the region.district relation is dimensioned by district. If you
qualify district with the value SEATTLE, then the value of the expression is the
value of the relation for SEATTLE. Because the QDR specifies one value of
district, the expression has a single–cell result.

The definition of region.district is as follows.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD The region for each district

The command below displays the value WEST.

SHOW region.district(district ’SEATTLE’)

Specifying a Single Value for the Dimension of an Expression

4-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Qualifying a Dimension
You can use a QDR to qualify the dimension itself, which allows you to specify one
dimension value in an expression. The following expression specifies one value of
district, the one contained in the single-cell variable mydistrict.

district(district mydistrict)

For a concat dimension, you can use a QDR to qualify the dimension by specifying
a value from one of the base dimensions of the concat dimension. The following
expression specifies one value of reg.dist.ccdim, a concat dimension that has
region and district as its base dimensions. The costs variable is dimensioned
by the division and reg.dist.ccdim dimensions.

show reg.dist.ccdim(district ’BOSTON’)

The preceding expression produces the following result.

<DISTRICT: BOSTON>

Using Ampersand Substitution with QDRs
An ampersand character (&) at the beginning of an expression substitutes the value
of the expression for the expression itself in a command or function.When you use
an ampersand with a QDR, you must enclose the whole expression in parentheses if
you want the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype
and that contains the names of variables. Remember that it is myvar that is
dimensioned by reptype, not the variables named by myvar. Therefore, you must
use parentheses so that myvar is qualified and the resulting value is used in the
REPORT command.

REPORT &(myvar(reptype ’ACTUAL’))

If you do not use parentheses and the variable that is specified in myvar is sales,
then you will get an error message that sales is not dimensioned by reptype.

Using the QUAL Function to Specify a QDR
Sometimes you will find that the syntax of a QDR is ambiguous and could either be
misinterpreted or cause a syntax error. In this case, you can use the QUAL function to
explicitly specify a qualified data reference (QDR).

Specifying a Single Value for the Dimension of an Expression

Working with Expressions 4-11

Example 4–2 Using the QUAL Function

The following example first shows how you might view your data by limiting its
dimensions, and then how you might view it by using QUAL.

These commands produce the report shown below them.

LIMIT month TO ’JAN96’ TO ’JUN96’
LIMIT line TO ’COGS’
LIMIT division TO ’SPORTING’
REPORT DOWN month W 11 MAX(actual,budget) W 11 actual W 11 budget

DIVISION: SPORTING
 ---------------LINE----------------
 ---------------COGS----------------
 MAX(ACTUAL,
MONTH BUDGET) ACTUAL BUDGET
-------------- ----------- ----------- -----------
JAN96 287,557.87 287,557.87 279,773.01
FEB96 323,981.56 315,298.82 323,981.56
MAR96 326,184.87 326,184.87 302,177.88
APR96 394,544.27 394,544.27 386,100.82
MAY96 449,862.25 449,862.25 433,997.89
JUN96 457,347.55 457,347.55 448,042.45

Now consider how you might view the same figures for MAX(actual,budget)
without changing the status of line or division.

ALLSTAT
LIMIT month TO ’JAN96’ TO ’JUN96’
REPORT HEADING ’For Cogs in Sporting Division’ DOWN month -
 W 11 HEADING ’MAX(actual,budget)’-
 QUAL(MAX(actual,budget), line ’COGS’, division ’SPORTING’)

For Cogs in
Sporting MAX(ACTUAL,
Division BUDGET)
-------------- -----------
JAN96 287,557.87
FEB96 323,981.56
MAR96 326,184.87
APR96 394,544.27
MAY96 449,862.25
JUN96 457,347.55

Using Workspace Objects in Expressions

4-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

If you attempt to produce the same report with standard QDR syntax, then an error
is signalled.

REPORT HEADING ’For Cogs in Sporting Division’ DOWN month -
 W 11 HEADING ’MAX(actual,budget)’-
 MAX(actual,budget) (line cogs, division sporting)

The following error message is produced.

ERROR: A right parenthesis or an operator is expected after LINE.

Using Workspace Objects in Expressions
You can use objects in expressions as described below:

■ You can use a dimension, a dimension surrogate, a relation, or a variable as an
array of data by specifying the name of the object.

■ You can use a formula or a function as a sub-expression or as an expression in a
command or function by specifying the name of the formula or the function.

■ You can use a valueset as a list of dimension values in an expression by
specifying the name of the valueset.

■ You can use various data objects as the target or source expression in an
assignment statement.

Using Dimensions or Dimension Surrogates in Expressions
In expressions, a dimension or dimension surrogate is referenced as a
one-dimensional array.

If the dimension or surrogate has a data type of TEXT, then, in most cases, its values
are referenced as text values. NUMBER dimension values are always referenced by
the value itself.

However, for dimension types other than NUMBER dimension values are referenced
by their numeric positions in the dimension array when you do one of the
following:

■ Use a dimension with a data type of TEXT in a numeric expression

■ Compare one value in a dimension to another value in the same dimension

In these cases, the integer position number is based on the default status list, not on
the current status.

Using Workspace Objects in Expressions

Working with Expressions 4-13

Using Composites in Expressions
In expressions, composites behave much the same way that dimensions do and,
generally, you can use a composite in an expression anywhere you can use a
dimension:

■ If the composite is named, then specify its name.

■ If the composite is unnamed, then specify SPARSE <dimensions...>.

Using Variables in Expressions
In expressions, a variable is referenced as an array containing values of the specified
data type.

When you assign values to a variable or when you use REPORT or another
command or function that loops over the dimensions of a variable, the values of the
fastest-varying dimension of the variable vary first. For example, for the opcosts
variable that is dimensioned by month and city, when you view the variable as
REPORT command output, you see the data for all months for the first city before
you see any data for the second city. In this case, month is the fastest-varying
dimension because its values change before those of city. When you write
programs that loop over a multidimensional variable in this way, try to maximize
performance by matching the fastest-varying dimension with the inner loop.

You can uniquely and completely select any item of data within a multidimensional
variable by using a qualified data reference (QDR) to specify one value from each of
the dimensions of the variable.

For example, if the opcosts variable is dimensioned by month and city,
specifying ’JAN02’ for the month dimension and ’BOSTON’ for the city
dimension uniquely specifies a single cell in the variable.

Note: When you use a variable as the solution variable in a model,
the model will execute most efficiently if the order of the
dimensions in the definition of the solution variable matches the
order of the dimensions in the DIMENSION commands in the
model.

Using Workspace Objects in Expressions

4-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using Variables Defined with Composites in Expressions
In most cases, when you use functions and commands with variables that are
defined with composites, the functions and commands treat those variables as if
they were defined with base dimensions:

■ You can access a variable that is dimensioned by a composite by requesting any
of the base dimension values.

■ The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and
therefore, they do not have any independent status.

Default Behavior of Commands That Loop Over Variables
When you use the REPORT command or any other command that loops over a
variable that uses a composite, the default behavior is to evaluate all the
combinations of the values of the base dimensions of the composite that are in
status. Any combinations that do not exist in the composite display NA for their
associated data.

For example, the following commands create a report for the East region that shows
the number of coupons issued for sportswear from January through March 2002.
Since no coupons were issued in March 2002, the report displays NA in that
column.

LIMIT month TO ’JAN02’ ’FEB02’ ’MAR02’
LIMIT market TO ’EAST’
LIMIT product TO ’SPORTSWEAR’
REPORT coupons

MARKET: EAST
 ------------COUPONS-------------
 -------------MONTH--------------
PRODUCT JAN02 FEB02 MAR02
-------------- ---------- ---------- ----------
SPORTSWEAR 1,000 1,000 NA

However, for performance reasons, you can change the default looping behavior for
commands such as REPORT, ROW, and = so that they loop over the values in the
composite rather than all of the base dimension values.

Numeric Expressions

Working with Expressions 4-15

Using Relations In Expressions
A relation is, in many ways, just a special type of variable. Instead of holding
general data values, a relation contains values of the related dimension.
Consequently, in an expression, a relation behaves somewhat like a variable and
somewhat like a dimension:

■ When you use a relation in a text expression, the relation value is referenced as
a text value. The values of the related dimension that is contained in the relation
are converted into text, and you can use these values in an expression. You can
also compare a text literal to a relation.

■ When you use a relation in a numeric expression, the relation value is
referenced by its position (an integer) in its related dimension array. You can use
this numeric value in an expression. The position number is based on the
default status list of the dimension, not the current status list of the dimension.

Using Functions in Expressions
A function is a predefined calculation that returns a value. A number of built-in
functions are provided, including:

■ Numeric functions. You can use these functions to make calculations and
analyze data.

■ Date functions. You can use these functions to manipulate dates.

■ Text functions. You can use these functions to join characters or lines, search for
or extract a group of characters, or calculate the length of the text.

Numeric Expressions
A numeric expression evaluates to data with any of the numeric data types (that is,
INTEGER, SHORTINTEGER, DECIMAL, SHORTDECIMAL, and NUMBER). The data in
a numeric expression can be any combination of the following:

■ Numeric literals

■ Numeric variables or formulas

■ Dimensions

■ Functions that yield numeric results

■ Date literals, variables, formulas, or functions

Numeric Expressions

4-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

In addition, you can join any of these three-part expressions with the arithmetic
operators for a more complex numeric expression. You use arithmetic operators in
numeric expressions with numeric data, which returns a numeric result. You can
also use some arithmetic operators in date expressions with a mix of date and
numeric data, to retrieve either a date or numeric result.

Arithmetic Operators
The following table shows the OLAP DML arithmetic operators. When you use two
or more operators in a numeric expression, the expression is evaluated according to
standard rules of arithmetic. The column entitled Priority indicates the order in
which that operator is evaluated. Operators of the same priority are evaluated from
left to right.

Table 4–2 Arithmetic Operators

Operator Operation Priority

- Sign reversal 1

** Exponentiation 2

* and / Multiplication and
division

3

+ and - Addition and
subtraction

4

Note: A comma is required before a negative number that follows
another numeric expression, or the minus sign is interpreted as a
subtraction operator. For example, intvar,-4.

Numeric Expressions

Working with Expressions 4-17

Mixing Numeric Data Types
You can include any type of numeric data in the same numeric expression.

The data type of the result is determined according to the following rules.

Automatic Conversion of Numeric Data Types
Numbers are converted to different data types according to the following rules.

IF . . . THEN the result is . . .

all the data in the expression is INTEGER or
SHORTINTEGER, and the only operations are addition,
subtraction, and multiplication,

INTEGER.

any of the data is NUMBER, NUMBER.

any of the data is DECIMAL or SHORTDECIMAL, and no data
is NUMBER,

DECIMAL.

you perform any division or exponentiation operations, DECIMAL.

IF you . . . THEN . . .

use a value with the SHORTINTEGER
or SHORTDECIMAL data type in an
expression,

the value is converted to its long counterpart before
using it.

Note: See "Boolean Expressions" on page 4-21 for
information about problems that can occur when
you mix SHORTDECIMAL and DECIMAL data types
in a comparison expression.

save the results of a calculation as a
value with the SHORTINTEGER data
type,

NA is stored when the result is outside the range of
a SHORTINTEGER (-32768 to 32767).

assign the value of a DECIMAL
expression to an object with the
INTEGER data type,

the value is rounded before storing or using it.

Note: If the decimal value is outside the range of an
integer (approximately plus or minus 2 billion),
then an NA is stored.

use a decimal value where a value
with the INTEGER data type is
required,

the value is rounded before storing or using it.

Note: If the decimal value is outside the range of an
integer (approximately plus or minus 2 billion),
then an NA is stored.

Numeric Expressions

4-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

If these conversions are not what you want, then you can use the CONVERT,
TO_CHAR, TO_NCHAR, TO_NUMBER, or TO_DATE functions to get different results.

Using Dimensions in Arithmetic Expressions
When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an integer) and is used numerically. The
position number is based on the default status list, not on current status.

Using Dates in Arithmetic Expressions
When you use dates in arithmetic expressions, the result can be numeric or it can be
a date. The following table shows the legal operations for dates and the data type of
the result.

Limitations of Floating Point Calculations
All decimal data are converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a
mantissa and an exponent. The mantissa and the exponent are stored as binary

assign the value of a decimal
expression to a variable with the
SHORTDECIMAL data type,

only the first 7 significant digits are stored.

combine NUMBER values with other
numeric data types,

all values are converted to NUMBER.

IF you.... . . . THEN the result is... . . .

add or subtract a number from a
date,

a future or prior date.

subtract a date from a date, the number of days between them.

add a date to a date, an error; this is an invalid operation.

add or subtract a number from a
time period,

the time period at the appropriate interval in the future
or the past, similar to the return values of the LEAD or
LAG function. The result is NA when there is no
dimension value that corresponds to the result. The
calculation is made based on the positions of the values
in the default status list of the dimension.

IF you . . . THEN . . .

Numeric Expressions

Working with Expressions 4-19

numbers. The mantissa is a binary fraction which, when multiplied by a number
equal to 2 raised to the exponent, produces a number that equals or closely
approximates the original decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers may result in further
approximations, and the inaccuracy will gradually increase with the number of
operations. In addition to the approximation factor, the available number of
significant digits affects the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECIMAL or SHORTDECIMAL variable may differ in the
least significant digits from a result you compute by hand. Because the
SHORTDECIMAL data type provides a maximum of only seven significant digits,
you will see more of these differences with SHORTDECIMAL data. Therefore, you
might want to use the NUMBER data type when accuracy is more important than
computational speed, such as variables that contain currency amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECIMAL data type
will offer a different and closer approximation than the SHORTDECIMAL data type,
because it has more significant digits. This can lead to problems when
SHORTDECIMAL and DECIMAL data types are mixed in a comparison expression.
See the topic "Boolean Expressions" on page 4-21 for information on how to handle
such comparisons.

Controlling Errors During Calculations
You can control the following types of errors:

■ Division by zero. If you divide an NA value by zero, then the result is NA; no
error occurs. Dividing a non-NA value by zero normally produces an error. If a
divide-by-zero error occurs when you are making a calculation on dimensioned
data, then you can end up with partial results. When you use the REPORT or the
= command, values are reported or stored as they are calculated, so the division
by zero halts the loop before it has gone through all the values.

If you want to suppress the divide-by-zero error, then you can change the value
of the DIVIDEBYZERO option to YES. This means that the result of any division
by zero is NA and no error occurs. This allows the calculation of the other
values of a dimensioned expression to continue.

Text Expressions

4-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ Root of negative numbers. It is normally an error to try to take the root of a
negative number (which includes raising a number to a non-integer power). If
you want to suppress the error message and allow the calculation of roots for
non-negative values of the expression to continue, then set the
ROOTOFNEGATIVE option to YES.

■ Overflow errors. The DECIMALOVERFLOW option works in a similar manner to
DIVIDEBYZERO. It lets you control whether an error is generated when a
calculation produces a decimal result larger than it can handle.

Text Expressions
A text expression evaluates to data with the TEXT, NTEXT, or ID data type. Text
expressions can be any combination of the following:

■ Text literals; for example, ’BOSTON’ or ’Current Sales Report’

■ Text dimensions; for example, district or month

■ Text variables or formulas; for example, product.name

■ Functions that yield text results; for example, JOINLINES(’Product: ’
product.name)

Suppose textvar is a variable whose value is ’geog’, which is the name of a
dimension. Whether you enclose the word textvar in quotation marks determines
whether the following OBJ function calls return the word VARIABLE (the type of
object textvar is) or DIMENSION (the type of object geog is).

SHOW OBJ(TYPE ’textvar’)
VARIABLE

SHOW OBJ(TYPE textvar)
DIMENSION

Working with Dates in Text Expressions
If you use a DATETIME value where a text value (TEXT, NTEXT, or ID) is expected,
or if you store a DATETIME value in a text variable, then the DATETIME value is
automatically converted to a text value.

The format of a DATETIME value is controlled by the NLS_DATE_FORMAT option.
Once a DATETIME value is stored in a text variable, the NLS_DATE_FORMAT setting
has no impact.

Boolean Expressions

Working with Expressions 4-21

Working with NTEXT Data
TEXT and NTEXT data are interchangeable in most cases. However, implicit
conversion can occur, such as when an NTEXT value is assigned to a TEXT variable.
When TEXT is converted to NTEXT, no data loss occurs because the UTF-8 character
encoding of the NTEXT data type encompasses most other data types. However,
when NTEXT is converted to TEXT, data loss will occur if NTEXT characters are not
represented in the workspace character set.

When TEXT and NTEXT values are used together, for example in a call to the
JOINCHARS function, the TEXT value is converted to NTEXT and an NTEXT value is
returned.

Boolean Expressions
A Boolean expression is a logical statement that is either true or false. Boolean
expressions can compare data of any type as long as both parts of the expression
have the same basic data type. You can test data to see if it is equal to, greater than,
or less than other data.

A Boolean expression can consist of Boolean data, such as the following:

■ Boolean values (YES and NO, and their synonyms, ON and OFF, and TRUE and
FALSE)

■ Boolean variables or formulas

■ Functions that yield Boolean results

■ Boolean values calculated by comparison operators

For example, if you have the Boolean expression shown below, then each value of
the variable actual is compared to the constant 20,000. If the value is greater than
20,000, then the statement is true; if the value is less than or equal to 20,000, then the
statement is false.

actual GT 20000

When you are supplying a Boolean value, you can type either yes, on, or true for
a true value, and no, off, or false for a false value. When the result of a Boolean
calculation is produced, the defaults are yes and no in the language specified by
the NLS_LANGUAGE option. The read-only YESSPELL and NOSPELL options record
the yes and no values.

The following table shows the comparison operators and the logical operators. You
use these operators to make expressions in much the same way as arithmetic

Boolean Expressions

4-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

operators. The column entitled “Priority” indicates the order in which that operator
is evaluated.

Each operator has a priority that determines its order of evaluation. Operators of
equal priority are evaluated left to right, unless parentheses change the order of
evaluation. However, the evaluation is halted when the truth value is already
decided. For example, in the following expression, the TOTAL function is never
executed because the first phrase determines that the whole expression is true.

yes EQ yes OR TOTAL(sales) GT 20000

Creating Boolean Expressions
A Boolean expression is a three-part clause that consists of two items to be
compared, separated by a comparison operator. You can create a more complex
Boolean expression by joining any of these three-part expressions with the AND and
OR logical operators. Each expression that is connected by AND or OR must be a
complete Boolean expression in itself, even when it means specifying the same
variable several times.

Table 4–3 Boolean Operators

Operator Operation Example Priority

NOT Returns opposite of
Boolean expression

NOT(yes) = no 1

EQ Equal to 4 EQ 4 = yes 2

NE Not equal to 5 NE 2 = yes 2

GT Greater than 5 GT 7 = no 2

LT Less than 5 LT 7 = yes 2

GE Greater than or equal to 8 GE 8 = yes 2

LE Less than or equal to 8 LE 9 = yes 2

IN Is a date in a time
period?

’1JAN02’ IN W1.02 = yes 2

LIKE Does a text value match a
specified text pattern?

’FINANCE’ LIKE ’%NAN%’ = yes 2

AND Both expressions are true 8 GE 8 AND 5 LT 7 = yes 3

OR Either expression is true 8 GE 8 OR 5 GT 7 = yes 4

Boolean Expressions

Working with Expressions 4-23

For example, the following expression is not valid because the second part is
incomplete.

sales GT 50000 AND LE 20000

In the next expression, both parts are complete so the expression is valid.

sales GT 50000 AND sales LE 20000

When you combine several Boolean expressions, the whole expression must be
valid even if the truth value can be determined by the first part of the expression.
The whole expression is compiled before it is evaluated, so when there are
undefined variables in the second part of a Boolean expression, you will get an
error.

Use the NOT operator, with parentheses around the expression, to reverse the sense
of a Boolean expression.

The following two expressions are equivalent.

district NE ’BOSTON’
NOT(district EQ ’BOSTON’)

Example 4–3 Using Boolean Comparisons

The following example shows a report that displays whether sales in Boston for
each product were greater than a literal amount.

LIMIT time TO FIRST 2
LIMIT geography TO ’BOSTON’
REPORT DOWN product ACROSS time: f.sales GT 7500

This REPORT command returns the following data.

CHANNEL: TOTALCHANNEL
GEOGRAPHY: BOSTON
 ---F.SALES GT 7500---
 --------TIME---------
PRODUCT JAN02 FEB02
-------------- ---------- ----------
PORTAUDIO no no
AUDIOCOMP yes yes
TV no no
VCR no no
CAMCORDER yes yes
AUDIOTAPE no no
VIDEOTAPE yes yes

Boolean Expressions

4-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Comparing NA Values in Boolean Expressions
When the data you are comparing in a Boolean expression involves an NA value, a
YES or NO result is returned when that makes sense. For example, if you test
whether an NA value is equal to a non-NA value, then the result is NO. However, if
the result would be misleading, then NA is returned. For example, testing whether
an NA value is less than or greater than a non–NA value gives a result of NA.

The following table shows the results of Boolean expressions involving NA values,
which yield non-NA values.

Controlling Errors When Comparing Numeric Data
If you get unexpected results when comparing numeric data, then there are several
possible causes to consider:

■ One of the numbers you are comparing may have a small decimal part that
does not show in output because of the setting of the DECIMALS option.

■ You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

■ You have mixed SHORTDECIMAL and DECIMAL data types in a comparison.

Oracle Corporation recommends that you use the ABS and ROUND functions to do
approximate tests for equality and avoid all three causes of unexpected comparison
failure. When using ABS or ROUND, you can adjust the absolute difference or the
rounding factor to values you feel are appropriate for your application. If speed of
calculation is important, then you will probably want to use the ABS rather than the
ROUND function.

Expression Result

NA EQ NA YES

NA NE NA NO

NA EQ non-NA NO

NA NE non-NA YES

NA AND NO NO

NA OR YES YES

Boolean Expressions

Working with Expressions 4-25

Controlling Errors Due to Numerical Precision
Suppose expense is a decimal variable whose value is set by a calculation. If the
result of the calculation is 100.000001 and the number of decimal places is two, then
the value will appear in output as 100.00. However, the output of the following
command returns NO.

SHOW expense EQ 100.00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

Controlling Errors When Comparing Floating Point Numbers
A standard restriction on the use of floating point numbers in a computer language
is that you cannot expect exact equality in a comparison of two floating point
numbers when either number is the result of an arithmetic operation. For example,
on some systems, the following command returns a NO instead of the expected YES.

SHOW .1 + .2 EQ .3

When you deal with decimal data, you should not code direct comparisons such as
the one above. Instead, you can use the ABS or the ROUND function to allow a
tolerance for approximate equality. For example, either of the following two
commands will produce the desired YES.

SHOW ABS((.1 + .2) - .3) LT .00001
SHOW ROUND(.1 + .2) EQ ROUND(.3, .00001)

Controlling Errors When Comparing Different Numeric Data Types
You cannot expect exact equality between SHORTDECIMAL and DECIMAL or
NUMBER representations of a decimal number with a fractional component, because
the DECIMAL and NUMBER data types have more significant digits to approximate
fractional components that cannot be represented exactly.

Suppose you define a variable with a SHORTDECIMAL data type and set it to a
fractional decimal number, then compare the SHORTDECIMAL number to the
fractional decimal number, as shown here.

DEFINE sdvar SHORTDECIMAL
sdvar = 1.3
SHOW sdvar EQ 1.3

The comparison is likely to return NO. What happens in this situation is that the
literal is automatically typed as DECIMAL and converts the SHORTDECIMAL variable

Boolean Expressions

4-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

sdvar to DECIMAL, which extends the decimal places with zeros. A bit-by-bit
comparison is then performed, which fails. The same comparison using a variable
with a DECIMAL or a NUMBER data type is likely to return YES.

There are several ways to avoid this type of comparison failure:

■ Do not mix the SHORTDECIMAL with DECIMAL or NUMBER types in
comparisons. To avoid mixing these two data types, you should generally avoid
defining variables with decimal components as SHORTDECIMAL.

■ Use the ABS or ROUND function to allow for approximate equality. The
following commands both produce YES.

SHOW ABS(sdvar - 1.3) LT .00001
SHOW ROUND(sdvar, .00001) EQ ROUND(.3, .00001)

Comparing Dimension Values
Values are not compared in the same dimension based on their textual values.
Instead, Oracle OLAP compares the positions of the values in the default status of
the dimension. This allows you to specify commands like the following command.

REPORT district LT ’SEATTLE’

Commands are interpreted such as these using the process below.

1. The text literal ’SEATTLE’ is converted to its position in the district default
status list of the dimension.

2. That position is compared to the position of all other values in the district
dimension.

3. As shown by the following report, the value YES is returned for districts that
are positioned before SEATTLE in the district default status list of the
dimension, and NO for SEATTLE itself.

REPORT 22 WIDTH district LT ’SEATTLE’

DISTRICT DISTRICT LT ’SEATTLE’
-------------- ----------------------
BOSTON YES
ATLANTA YES
CHICAGO YES
DALLAS YES
DENVER YES
SEATTLE NO

Boolean Expressions

Working with Expressions 4-27

A more complex example assigns increasing values to the variable quota based on
initial values assigned to the first six months. The comparison depends on the
position of the values in the month dimension. Because it is a time dimension, the
values will be in chronological order.

quota = IF month LE ’JUN02’ THEN 100 ELSE LAG(quota, 1, month)* 1.15

However, if you compare values from different dimensions, such as in the
expression region lt district, then the only common denominator is TEXT,
and text values are compared, not dimension positions.

Comparing Dates
You can compare two dates with any of the Boolean comparison operators. For
dates, “less” means before and “greater” means after. The expressions being
compared can include any of the date calculations discussed in "Numeric
Expressions" on page 4-15. For example, in a billing application, you can determine
whether today is 60 or more days after the billing date in order to send out a more
strongly worded bill.

bill.date + 60 LE SYSDATE

Dates also have a numeric value. You can use the TO_NUMBER and TO_DATE
functions to change dates to integers and integers to dates for comparison.

Comparing Text Data
When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be
enclosed in single quotes. For example, this expression tests whether the first letter
of each employee’s name is greater than the letter “M.”

EXTCHARS(employee.name, 1, 1) GT ’M’

You can compare TEXT and ID values, but they can only be equal when they are the
same length. When you test whether a text value is greater or less than another, the
ordering is based on the setting of the NLS_SORT option.

You can compare numbers with text by first converting the number to text.
Ordering is based on the values of the characters. This can produce unexpected

See Also: "Conditional Expressions" on page 4-29 for information
about IF. . .THEN. . .ELSE syntax.

Boolean Expressions

4-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

results because the text is evaluated from left to right. For example, the text literal
’1234’ is greater than ’100,999.00’ because ’2’, the second character in the
first text literal, is greater than ’0’, the second character in the second text literal.

Suppose name.label is an ID variable whose value is ’3-Person’ and
name.desc is a TEXT variable whose value is ’3-Person Tents’.

The result of the following SHOW command will be NO.

SHOW name.desc EQ name.label

The result of the following commands will be YES.

name.desc = ’3-Person’
SHOW name.desc EQ name.label

Comparing a Text Value to a Text Pattern
The Boolean operator LIKE is designed for comparing a text value to a text pattern.
A text value is like another text value or pattern when corresponding characters
match.

Besides literal matching, LIKE lets you use wildcard characters to match more than
one character in a string:

■ An underscore (_) character in a pattern matches any single character.

■ A percent (%) character in a pattern matches zero or more characters in the first
string.

For example, a pattern of %AT_ matches any text that contains zero or more
characters, followed by the characters AT, followed by any other single character.
Both ’DATA’ and ’ERRATA’ will return YES when LIKE is used to compare them
with the pattern %AT_.

The results of expressions using the LIKE operator are affected by the settings of the
LIKECASE and LIKENL options. See the entries in the OLAP DML Reference for
these options, both for examples of their effect on the LIKE operator and for general
examples of the use of the LIKE operator.

No negation operator exists for LIKE. To accomplish negation, you must negate the
entire expression. For example, the result of the following command is NO.

SHOW NOT (’BOSTON’ LIKE ’BO%’)

Conditional Expressions

Working with Expressions 4-29

Comparing Text Literals to Relations
You can also compare a text literal to a relation. A relation contains values of the
related dimension and the text literal is compared to a value of that dimension. For
example, region.district holds values of region, so you can do the following
comparison.

region.district EQ ’WEST’

Conditional Expressions
A conditional expression is an expression you can use to select one of two values
based on a Boolean condition. A conditional expression contains the conditional
operator IF. . .THEN. . .ELSE and has the following format.

IF Boolean-expression THEN expression1 ELSE expression2

You can use a conditional expression as part of any other expression as long as the
data type is appropriate.

A conditional expression is processed by first evaluating the Boolean expression;
then:

■ If the result of the Boolean expression is TRUE, then expression1 is evaluated and
returns that value.

■ If the result of the Boolean expression is FALSE, then expression2 is evaluated
and returns that value.

The expression1 and expression2 arguments are any valid OLAP DML
expressions that evaluate to the same basic data type. However, when the data type
of either value is DATE, it is possible for the other value to have a numeric or text
data type. Because both data types are expected to be DATE, it will convert the
numeric or text value to a DATE. The data type of the whole expression is the same
as the two expressions.

If the result of the Boolean expression is NA, then NA is returned.

Note: Do not confuse a conditional expression with the IF
command, which has similar syntax but a different purpose. The IF
command does not have a data type and is not evaluated like an
expression.

Substitution Expressions

4-30 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 4–4 Report with Conditional Expression

This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but if sales in the district are below budget, then the bonus is
zero.

LIMIT month TO ’JAN02’ TO ’JUN02’
LIMIT product TO ’TENTS’
REPORT DOWN district IF sales-sales.plan LT 0 THEN 0
 ELSE .05*(sales-sales.plan)

PRODUCT: TENTS
 ---IF SALES-SALES.PLAN LT 0 THEN 0 ELSE .05*(SALES-SALES.PLAN)---
 ----------------------MONTH------------------------------
DISTRICT JAN02 FEB02 MAR02 APR02 MAY02 JUN02
--------- -------- -------- -------- ------- --------- ----------
BOSTON 229.53 0.00 0.00 0.00 584.51 749.13
ATLANTA 0.00 0.00 0.00 190.34 837.62 1,154.87
CHICAGO 0.00 0.00 0.00 84.06 504.95 786.81
.
.
.

Substitution Expressions
A substitution expression allows you to substitute the value of the expression for
the expression itself in a command or function.

To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that the
expression should be evaluated with the ampersand and substitute the resulting
value before it evaluates the rest of the expression.

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable
that holds the name of another variable, the value of the expression becomes the
data in the second variable. Ampersand substitution lets you write more general
programs that can operate on data that is chosen when the program is run.

You cannot use ampersand substitution in model equations.

Substitution Expressions

Working with Expressions 4-31

Example 4–5 Using Ampersand Substitution

Suppose you have a variable called curname that holds the name of one of the
dimensions in the analytic workspace (product). If you execute the following
command, then REPORT produces the single value, product, which is the actual
value stored in the curname variable, as shown below.

report curname

CURNAME

PRODUCT

However, if you execute the following command, then REPORT produces the values
of the dimension product, as shown below.

report &curname

PRODUCT

TENTS
CANOES
RACQUETS
SPORTSWEAR
FOOTWEAR

Note: Although ampersand substitution lets you write general
programs that can handle different variables and data, program
lines that use ampersand substitution are executed less efficiently.
Lines with ampersand substitution are not compiled; instead these
lines are interpreted when the program runs. To avoid ampersand
substitution, you can use the IF or SWITCH command instead.

See Also: "Controlling the Flow of Execution" on page 7-14 for
information about writing conditional commands.

Working with NA Values

4-32 Oracle9i OLAP Developer’s Guide to the OLAP DML

Working with NA Values
There are cases in which you might specify an operation for which no data is
available. For example, there might be no appropriate value for a given cell in a
variable, for the return value of a function, or for the value of an expression that
includes an arithmetic operator. In these cases, an NA (Not Available) value is
automatically supplied.

NA is the value of any cell to which a specific data value has not been assigned or for
which data cannot be calculated. An NA value has no specific data type.

Certain functions (for example, the aggregation functions) return an NA value when
the information that is requested with the function is not available or cannot be
calculated. Similarly, an expression whose value cannot be calculated has NA as its
value.

To set the value of a variable or relation to NA, you can use the = command, as
shown in the following example.

sales = NA

If sales is a dimensioned variable, then the = command loops through all of the
values of sales, setting them to NA.

Controlling how NA values are treated
The following options and functions control how NA values are treated in
expressions:

■ Using the PROPERTY command, you can set the value of the NATRIGGER
property on a dimensioned variable so that when a cell of the variable that
contains an NA value is read, the value of the NATRIGGER expression is
substituted for the NA value. You can use this substitution to increase the
efficiency of some kinds of calculations and to eliminate the need for some
formula objects.

■ The following options control how NA values are treated in aggregation
functions and in arithmetic operations with the addition (+) and subtraction (-)
operators.

■ The NASKIP option controls how NA values are treated in aggregation
functions.

■ The NASKIP2 option controls how NA values are treated in arithmetic
operations with the addition (+) and subtraction (-) operators.

Working with NA Values

Working with Expressions 4-33

■ The NAFILL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function
in an expression to control the format of its value.

Working with the NATRIGGER Property
An NATRIGGER property expression is evaluated before applying the NAFILL
function or the NASKIP, NASKIP2, or NASPELL options. If the NATRIGGER
expression is NA, then the NAFILL function and the NA options have an effect.
Additionally, the NATRIGGER property allows you a good deal of flexibility about
handling NA values:

■ You can make NA triggers recursive or mutually recursive by including
triggered objects within the value expression. You must set the RECURSIVE
option to yes before a formula, program, or other NATRIGGER expression can
invoke a trigger expression again while it is executing. For limiting the number
of triggers that can execute simultaneously, see the TRIGGERMAXDEPTH option.

■ You can replace the NA value in the cells of the variable with the NATRIGGER
expression value by setting the TRIGGERSTOREOK option to yes and setting the
STORETRIGGERVAL property on the variable to yes.

The ROLLUP and AGGREGATE commands and the AGGREGATE function ignore the
NATRIGGER property setting for a variable during a rollup or aggregation
operation. Additionally, the NATRIGGER property expression on a variable is not
evaluated when the variable is simply exported with an EXPORT TO EIF file
command. The NATRIGGER property expression is only evaluated if the variable is
part of an expression that is calculated during the export operation.

Using NASKIP
The NASKIP option controls how NA values are treated in aggregation functions.

■ By default, the NASKIP option is set to YES, and NA values are ignored by
aggregation functions. Only expressions with actual values are used in
calculations.

■ If you set the NASKIP option to no, then NA values are considered as input to
aggregation functions. If any of the values being considered are NA, then the
function returns NA for that value.

Setting NASKIP to no is useful for cases in which having NA values in the data
makes the calculation itself invalid. For example, when you use the MOVINGMAX
function, you specify a range from which to select the maximum value.

Working with NA Values

4-34 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ If NASKIP is YES (the default), then MOVINGMAX returns NA only when all the
values in the range are NA.

■ If NASKIP is NO and any value in the range is NA, then MOVINGMAX returns NA.

Using NASKIP2
The NASKIP2 option controls how NA values are treated in arithmetic operations
with the addition (+) and subtraction (-) operators.

■ By default, the value of the NASKIP2 option is NO. NA values are treated as NAs
in arithmetic operations using the addition (+) and subtraction (-) operators. If
any of the operands being considered is NA, then the arithmetic operation
evaluates to NA. For example, by default, 2+NA results in NA.

■ If you set the value of the NASKIP2 option to yes, then zeroes are substituted
for NA values in arithmetic operations using the addition (+) and subtraction (-)
operators. The two special cases of NA+ NA and NA-NA both result in NA.

Using NAFILL
NASKIP and NASKIP2 do not change your data. They only affect the results of
calculations on your data. If you would prefer a more targeted influence on any
kind of expressions, and want the option of making an actual change in your data,
then you can use the NAFILL function.

The effect of the NAFILL function is limited to the single expression you specify. It
can be any kind of expression, not just a function or an addition (+) or subtraction
(-) operation. In addition, you can use NAFILL to substitute anything for the NAs in
the expression, not just zeroes. Moreover, using assignment statements, you can use
NAFILL to make a permanent substitution for NAs in your data.

NAFILL returns the value of a specified expression unless its value is NA, in which
case NAFILL returns the substitute value you specify.

The following command uses NAFILL to replace the NA values in the sales
variable with the number 1 and then assign those values to the variable. This makes
the substitution permanent in your data.

sales = NAFILL(sales, 1)

The following command illustrates the use of NAFILL for more specialized
purposes. By substituting zeros for NA values, NAFILL in this example forces the
AVERAGE function to include NA values when it counts the number of values it is

Working with NA Values

Working with Expressions 4-35

averaging. The substitution is temporary, lasting only for the duration of this
command.

SHOW AVERAGE(NAFILL(sales 0.0) district)

Working with NA Values

4-36 Oracle9i OLAP Developer’s Guide to the OLAP DML

Populating Workspace Data Objects 5-1

5
Populating Workspace Data Objects

This chapter provides an overview of how to populate workspace data objects that
hold source data and how to populate variables with calculated values. It includes
the following topics:

■ Overview: Populating an Analytic Workspace

■ Maintaining Dimensions and Composites

■ Assigning Values to Data Objects

■ Calculating and Analyzing Data

Overview: Populating an Analytic Workspace

5-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Overview: Populating an Analytic Workspace
To use an analytic workspace, there must be data in it. There are two basic types of
data: fact data and dimensions. Fact data is stored in variable workspace objects;
dimensions, containing dimension values, are stored in dimension workspace
objects.

Variables and dimensions can be populated:

■ By loading data from relational tables. For example, you might load sales fact
data into a variable from a sales fact table, load time dimension values from a
time dimension table, customer dimension values from a customer dimension
table, and product dimension values from a product dimension table.

■ As the result of a calculation. For example, a sales forecast variable might be
populated using the results of a forecasting function.

■ By loading data from flat files using data loaders controlled through the OLAP
DML.

■ Manually, although this method is typically used only to enter a small number
of values.

To explicitly populate data objects in an analytic workspace, take the following
steps:

1. Specify the values for each dimension. These values provide indexes to the
actual data, which is stored in analytic workspace variables.

2. Specify the values for each relation. These values indicate the relationships
between dimensions.

3. For variables that provide the source data for your application, specify the
actual data values.

Maintaining Dimensions and Composites

Populating Workspace Data Objects 5-3

You can populate an analytic workspace using programs written using the SQL
command and data loading commands. The OLAP DML commands that you
typically use to populate data objects are listed in the following table.

Maintaining Dimensions and Composites
The first step in populating an analytic workspace is to store values in analytic
workspace dimensions. The list of stored dimension values is called the default
status list of the dimension. When you first attach an analytic workspace, the
default status list is the current status list of each dimension.

Using the MAINTAIN command, you can add, delete, merge, reposition, or change
simple, composite, or conjoint dimension values, and you can reposition concat
dimension values. Storing and manipulating the values of a dimension is called
maintaining the dimension.

Command Description

= or SET Assigns the results of an expression to a variable, option, or relation. For
more information, see "Assigning Values to Data Objects" on page 5-10 and
"Using Models to Calculate Data" on page 8-2.

MAINTAIN Adds, deletes, renames, moves, or merges values in a dimension; and
adds, deletes, and merges values in a composite. For more information, see
"Maintaining Dimensions and Composites" on page 5-3.

FILEREAD Stores the data that is read from an input file into a dimension, composite,
relation, or variable. For more information, see Chapter 11, "Reading Data
from Files".

SQL Retrieves data from relational tables into a dimension or variable. For
more information, see Chapter 10, "Working with Relational Tables".

IMPORT Copies workspace data and definitions from an EIF file.

Maintaining Dimensions and Composites

5-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

How Maintaining a Dimension Affects Dimension Status
As outlined in the following table, using the MAINTAIN command sometimes
affects dimension status.

For more information on popping and pushing dimension status, see "Introducing
Dimension Status" on page 6-2.

Avoiding Deferred Maintenance
When you maintain a dimension, the objects that are dimensioned by it must be
modified. If these objects are in memory, then they are modified immediately; if
these objects are not in memory, then maintenance is deferred until they are loaded
into memory.

In situations that involve a lot of dimension maintenance and a large update at the
end, deferred maintenance can trigger errors. Examples are issuing a MAINTAIN
DELETE ALL command, or performing a data load in which a large number of
values is added to a dimension. Before starting such projects, load into memory the
objects that use that dimension so that deferred maintenance is unnecessary. You
can do this by using commands similar to the following, where the sample
dimension is product.

LIMIT NAME TO OBJ(ISBY product)
LOAD &values(NAME)
MAINTAIN product ADD ...

Adding Values to Dimensions
To add new values to the end of a dimension or composite, use the MAINTAIN
command with the ADD keyword. The actual way that the values are added, and the
arguments that you use vary depending on whether you are adding values to a
dimension or a composite.

IF you use the MAINTAIN command with . . . THEN . . .

the ADD, DELETE, MERGE, or MOVE keyword and
the current status of a dimension is not ALL,

the dimension status is reset to ALL
before it performs the requested
maintenance.

a dimension that has a pushed status list (that is, a
status list that was created using the PUSH
commands),

the pushed status list of the
dimension is cleared, and popping
that dimension has no effect.

Maintaining Dimensions and Composites

Populating Workspace Data Objects 5-5

You do not add values directly to a concat dimension. Instead, if you add a value to
a base dimension of the concat dimension, then Oracle OLAP automatically adds
the value to the concat dimension. Similarly, you do not add values to a dimension
surrogate, but if you add a value to the dimension of the dimension surrogate, then
you can add a surrogate for the new value to the dimension surrogate.

You can use the MAINTAIN command with the MERGE keyword as a quick way to
make sure all dimension values on a separate list are included in a dimension.
When you use this syntax, the new values from the list are automatically added and
the duplicates are ignored. This method of entering dimension values can save a
significant amount of time when you have a large number of values to enter.

You can use the MAINTAIN command with the ADD keywords to add values to a
dimension in the following ways:

■ You can merely specify the values that you want to add. In this case, the values
are added to the end of the list of dimension values.

■ You can specify both the values that you want to add and where you want the
values to be placed.

Example 5–1 Adding Values to Dimensions

This command adds ATLANTA at the beginning of the list of cities and inserts
PEORIA after OMAHA.

MAINTAIN city ADD ’ATLANTA’ FIRST, ’PEORIA’ AFTER ’OMAHA’

Displaying the default status list for the city dimension shows that the new values
have been added in the appropriate places in the list.

SHOW VALUES(city NOSTATUS)
ATLANTA
CONCORD
LINCOLN
NEW YORK
OMAHA
PEORIA
SEATTLE

Maintaining Dimensions and Composites

5-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Updating Relations When Merging New Values
When you are merging values into a dimension it is a good practice to update any
relations that involve that dimension:

■ In some cases, using the simplified syntax of the MAINTAIN command shown
below, you can update a relation at the same time you merge values into a
dimension.

MAINTAIN dimension MERGE [exp [RELATE relation]]

The exp argument specifies a dimensioned expression whose values you want
to merge into the dimension; for example, the name of a dimensioned text
variable that contains dimension values.

The RELATE relation phrase specifies the name of the relation that you want
to update.

Note: The exp argument must be dimensioned and at least one of these
dimensions must also be in the definition of the relation that is specified in the
RELATE relation phrase.

■ In other cases, you need to explicitly update any relations that involve that
dimension.

For information about explicitly updating relations, see "Assigning Values to Data
Objects" on page 5-10.

Suppose you want to define a composite, named comp_proddist, that is made up
of all combinations of the first three values of the product dimension and the first
five values of the district dimension. You can efficiently include all 15 values
with the following commands.

DEFINE comp_proddist COMPOSITE <product district>
LIMIT product TO FIRST 3
LIMIT district TO FIRST 5
MAINTAIN comp_proddist MERGE <product district>

This method works with conjoint dimensions as well.

Maintaining Dimensions and Composites

Populating Workspace Data Objects 5-7

Deleting Values from Dimensions
You can use the MAINTAIN command with the DELETE keyword to remove values
from a dimension. You select the values that you want to delete in much the same
way that you select values using the LIMIT command. You can select for deletion:

■ One value, a list of values, a range of values, or all values

■ The values that match a list of values of a named related dimension

■ The values that are first, last, or in a specified position in the dimension

■ The values that meet a Boolean criterion

■ After the dimension values are sorted according to a specified criterion, the top
or bottom n values of the dimension, or the top or bottom n performers, by
percentage

■ For a hierarchical dimension, the values that have a certain relationship within
the hierarchy

■ The values in the dimension that match the values in a valueset

Example 5–2 Deleting Values from a Dimension

Suppose that you want remove from city all those cities with a population of less
than 75,000 people. Before you issue the command, the default status list for the
city dimension contains the six values shown below.

SHOW VALUES (city NOSTATUS)
ATLANTA
CONCORD
LINCOLN
COLUMBUS
PEORIA
SEATTLE

You use the variable population.c, which contains the population for each city.

MAINTAIN city DELETE population.c LT 75000

Assuming that only Lincoln and Peoria have populations of fewer than 75,000, the
default status list of the city dimension now contains the following values.

SHOW VALUES (city NOSTATUS)
ATLANTA
CONCORD

Maintaining Dimensions and Composites

5-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

COLUMBUS
SEATTLE

Deleting Values from Conjoint Dimensions
You can use the MAINTAIN command with the DELETE keyword to delete values
from a conjoint dimension.

You can also delete values from a conjoint dimension by using the MAINTAIN
command directly on the base dimension of the conjoint dimension. When you
delete a value from the base dimension, any values associated with that base
dimension value are deleted from the conjoint dimension.

Suppose you have a conjoint dimension named prod_dist with the base
dimensions of product and district. To delete the value
<’SNOWSHOES’ ’ATLANTA’> from that conjoint dimension, you would use the
following command.

MAINTAIN prod_dist DELETE <’SNOWSHOES’ ’ATLANTA’>

Changing the Position of Dimension Values
You can use the MAINTAIN command with the MOVE keyword to change the
position of one or more values in a dimension list. You cannot change the position
of a value in a time dimension or in a composite.

When you want to store the dimension values in alphabetical order, you can first
use the SORT command to temporarily sort the values, and then use the MAINTAIN
command to store the values in the sorted order.

Use the TEXT variable textvar to move SEATTLE to the end of the list of cities.

textvar = ’SEATTLE’
MAINTAIN city MOVE textvar LAST

Storing Dimension Values in Sorted Order
You can store the values of a dimension in sorted order by taking the following
actions:

1. Limit the dimension to all of its values.

LIMIT dimension TO ALL

Maintaining Dimensions and Composites

Populating Workspace Data Objects 5-9

2. Sort the dimension values based on your desired sorting criterion.

SORT dimension A sort-criterion

To sort the values alphabetically, sort by the dimension itself.

3. Store the dimension values in their sorted order.

MAINTAIN dimension MOVE VALUES(dimension) FIRST

Suppose that the default status list for the city dimension contains the following
values.

SHOW VALUES (city NOSTATUS)
ATLANTA
CONCORD
LINCOLN
COLUMBUS
PEORIA
SEATTLE

The following commands sort the values of city in alphabetical order and then
store the values in that order.

SORT city A city
MAINTAIN city MOVE VALUES(city) FIRST

The default status list of city reflects the new sorted order.

SHOW VALUES (city NOSTATUS)
ATLANTA
COLUMBUS
CONCORD
LINCOLN
PEORIA
SEATTLE

Maintaining Composites and Conjoint Dimensions
Both composites and conjoint dimensions are lists of dimension-value combinations
in which one value is taken from each of the dimensions on which the composite or
conjoint dimension is based. Composites and conjoint dimensions differ in the way
that they are maintained.

Assigning Values to Data Objects

5-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Maintaining Composites
Composites are internal structures that are automatically maintained. Consequently,
the simplest way to maintain a composite is to merely maintain its base dimensions
and let the values in the composite be maintained automatically.

In most cases, it is not necessary to do anything to maintain composites. However, if
you want to have a very fine degree of control, you may have to explicitly maintain
the composite. In this case, you can use the MAINTAIN command to add, delete, and
merge values.

Maintaining Conjoint Dimensions
Conjoint dimensions, unlike composites, are actual dimensions that you must
explicitly maintain using the MAINTAIN command.

Maintaining Concat Dimensions
You can use the MAINTAIN command to change the order of the values in a concat
dimension. If you use the MAINTAIN MOVE command on a simple dimension that is
a component of a concat dimension, then the positions of the values of the concat
dimension are not affected.

 You cannot use the MAINTAIN command to add, delete, or rename concat
dimension values or merge values from another dimension to those of the concat
dimension.

If you use the MAINTAIN command to add a value to a simple dimension that is a
component of a concat dimension, then Oracle OLAP adds that value to the concat
dimension as a value of the component dimension. If you merge values from a
simple dimension with a component simple dimension, then Oracle OLAP adds
those values to the concat dimension as values of the component dimension.

If you delete or rename a value of a simple dimension that is a component of a
concat dimension, then Oracle OLAP deletes or renames the value in the concat
dimension. If you use the MAINTAIN command to add, merge, or delete the values
of a simple dimension component of a concat dimension, the status of the concat
dimension is automatically set to ALL.

Assigning Values to Data Objects
An expression creates temporary data; you can display the resulting values, but
these values are not automatically saved in your analytic workspace. If you want to
save the result of an expression, then you store it in an object that has the same data

Assigning Values to Data Objects

Populating Workspace Data Objects 5-11

type and dimensions as the expression. You use an assignment statement to store
the value that is the result of the expression in the object.

An assignment statement is composed of the OLAP DML = operator that is
preceded by an expression (on the left) and followed by an expression (on the right).

target-expression = source-expression

The assignment statement sets the value of the target expression equal to the results
of the source expression.

Using Objects in Assignment Statements
The following table outlines the objects that you can use in assignment statements
and indicates whether you can use them as a target or source expression.

When you use the = operator to assign the value of a single-cell expression to a
single cell, a single value is stored. However, when you use the = operator to assign
the value of a single-cell expression to a target variable that has one or more
dimensions, then the assignment loops over the values in status for each dimension
of the target variable and assigns a data value to the corresponding cells of the
variable.

See Also: Chapter 3, "Defining Data Objects" for information
about how data is stored in data objects.

Object Target Expression Source Expression

Variable Yes Yes

Relation Yes Yes

Dimension Only in models Yes

Surrogate No Yes

Composite No Yes

Worksheet Yes Yes

Function No Yes

Formula No Yes

Valueset No Yes

Assigning Values to Data Objects

5-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 5–3 Assigning Values to Variables

The choicedesc variable is dimensioned by choice. Before you enter data for the
variable, the cells of the variable contain only NA values.

CHOICE CHOICEDESC
-------------- --------------------
REPORT NA
GRAPH NA
ANALYZE NA
DATA NA
QUIT NA

Suppose you initialize the choicedesc variable using the following command.

choicedesc = JOINCHARS (’Description for ’ choice)

Now all of the choicedesc cells of the variable contain the appropriate values.

CHOICE CHOICEDESC
-------------- -------------------------
REPORT Description for REPORT
GRAPH Description for GRAPH
ANALYZE Description for ANALYZE
DATA Description for DATA
QUIT Description for QUIT

The next example shows an expression that is dimensioned by time, product, and
district and is assigned to a new variable. The expression calculates a 2002 sales
plan based on unit sales in 2001.

DEFINE units.plan INTEGER <month product district>
LIMIT month TO ’DEC02’
units.plan = LAG(units 12 month) * 1.15

How Values Are Assigned to Variables with Composites
When assigning data to variables with composites, the source expression is
evaluated for every combination of the dimension values in status for the target
variable, including combinations of the sparse dimensions for which the target
variable currently has no cells. If the source expression is not NA for those
combinations where the target currently has no cells, then new cells are created and
the data is assigned to them.

Assigning Values to Data Objects

Populating Workspace Data Objects 5-13

When you use the = command to assign values to a target variable that has a
composite, the command does the following automatically:

■ Creates any missing target variable cells that are being assigned non-NA values.

■ Adds to the composite all the dimension-value combinations that correspond to
those new cells.

Thus, both the target variable and the composite might be larger after an
assignment. If you want to assign values only to cells that already exist in the target
variable, then use the ACROSS keyword in the = command.

The OLAP DML gives you the ability to specify a different evaluation behavior
when it assigns data to variables with composites. You can alter the default
evaluation behavior of the assignment statement so that the source expression is
evaluated only for those combinations of the dimension values in status for which
the target variable currently has cells.

Because the composite of the sparse dimension is what keeps track of which
combinations of the sparse dimensions have data cells, you use the following syntax
to specify this different evaluation behavior.

varname = expression ACROSS composite

The varname argument is the name of the variable. It is the target to which the data
is assigned.

The expression argument is the source expression that holds the data that will be
assigned to the target variable.

The ACROSS keyword indicates that you want to alter the default evaluation
behavior and cause the evaluation of the composite of the target variable.

The composite argument is the composite for the sparse dimensions on the target
variable. If the variable was defined with a named composite, then specify the name
of the composite. If the variable was defined with an unnamed composite, then use
the SPARSE keyword to refer to the unnamed composite (for example, SPARSE
<MARKET PRODUCT>).

Example 5–4 Assigning Values to Variables with Composites

To have data assigned from sales only into existing data cells of sparse_sales,
whose associated dimension values are in status, use the following command.

sparse_sales = sales ACROSS SPARSE<product market>

Assigning Values to Data Objects

5-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

The ACROSS keyword is particularly helpful when the source expression is a single
value. If there are no limits on the dimensions of sparse_sales, then an
assignment command like the following will create cells for every combination of
dimension values because there are no cases where the source expression is NA.

sparse_sales = 0

This defeats the purpose of a sparse variable.

In contrast, the following command will set only existing cells of sparse_sales to
0.

sparse_sales = 0 ACROSS SPARSE<product market>

Assigning Values to Relations
You can assign values to a relation using an assignment statement. When executing
the assignment statement, a loop is performed over the values in status for each
dimension of the target relation and assigns a data value to the corresponding cell
of the target relation.

You can assign values to a relation with a text dimension by assigning one of the
following:

■ A text value of the dimension.

■ An integer that represents the position of the dimension value in the default
status list of the dimension.

Assigning Values to Dimensions
In most cases, you cannot use an assignment statement to assign values to
dimensions. However, in model equations, if the result of a calculation is numeric,
then you can use the = operator to assign the results to a dimension value.
However, equations (that is, expressions) in models differ in several ways from
expressions used in other contexts.

Assigning Values to Specific Cells of a Data Object
You can use a QDR with the target of an assignment statement. This lets you assign
a value to specific cells in a variable or relation.

See Also: Chapter 8, "Working with Models" for more
information on working with models.

Calculating and Analyzing Data

Populating Workspace Data Objects 5-15

The following example assigns the value 10200 to the data cell of the sales
variable that is specified in the qualified data reference. If the variable named
sales does not already have a value in the cell associated with BOSTON, TENTS,
and JAN99, then the value is assigned to the cell and thus it is added to the variable.
If a value already exists in the cell, the value 10200 overwrites the previous value.

sales(market ’BOSTON’ product ’TENTS’ month ’JAN99’)= 10200

Calculating and Analyzing Data
Typically, using the OLAP DML, you calculate and analyze data in the following
ways:

■ Perform common calculations using built-in functions that are described in
detail in the Oracle9i OLAP DML Reference help.

■ Aggregate (or roll up) data in variables that are dimensioned by one or more
hierarchical dimensions as outlined in Chapter 12, "Aggregating Data".

■ Allocate data to a variable from a source object based on the data of a base
object as described in Chapter 9, "Allocating Data".

■ Create populated solution variables using the MODEL object as described in
Chapter 8, "Working with Models".

■ Forecast data based on analysis of trends as described in the entries for the
FCSET, FCOPEN, FCEXEC, FCCLOSE, and FCQUERY commands in the Oracle9i
OLAP DML Reference help.

See Also: "Specifying a Single Value for the Dimension of an
Expression" on page 4-6 for information about QDRs.

Calculating and Analyzing Data

5-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

The OLAP DML provides built-in functions for numeric analysis. The categories of
these functions are described below.

Category Description

Numeric cell-by-cell Operate on each cell of an expression or variable.

Time series Retrieve values from a previous or future time period and perform
calculations on those values.

Statistical Perform calculations for statistical analysis.

Financial Perform calculations for financial analysis.

Aggregation Return an aggregate value, generally consisting of a single value for
many values of the input expression.

See Also:

■ Oracle9i OLAP DML Reference help for a categorized list of
functions.

■ "Numeric Expressions" on page 4-15 for information on
working with numeric expressions.

Selecting Data 6-1

6
Selecting Data

This chapter introduces dimension status and the use of the LIMIT command to
temporarily change your view of the data in an analytic workspace. The LIMIT
command is equivalent to the WHERE clause of a SQL SELECT statement.

This chapter includes the following topics:

■ Introducing Dimension Status

■ Limiting to a Simple List of Values

■ Limiting Using a Boolean Expression

■ Limiting to the Top or Bottom Values

■ Limiting to the Values of a Related Dimension

■ Limiting Based on the Position of a Value in a Dimension

■ Limiting Based on a Relationship Within a Hierarchy

■ Limiting Composites and Conjoint Dimensions

■ Ways of Limiting Conjoint Dimensions

■ Limiting Concat Dimensions

■ Working with Null Status

■ Working with Valuesets

Introducing Dimension Status

6-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Introducing Dimension Status
The current status list of a dimension is an ordered list of currently accessible
values for the dimension. Values that are in the current status list of a dimension are
said to be “in status.” The current status list of a dimension determines the selection
of the data from all of the objects that are dimensioned by it.

For dimensions, only those dimension values that are in the current status list are
accessed. For dimensioned objects, only those data values that are indexed by
dimension values in the current status list are accessed.

As a loop is performed through a dimensioned object, the order of the dimension
values in the current status list is used to determine the order in which the values of
the object are accessed.

Whether or not a dimension value is in status merely restricts your view of the
value during a given session; it does not permanently affect the values that are
stored in the analytic workspace.

When you first attach an analytic workspace, the current status list of each
dimension consists of all of the values of the dimension that have read permission,
in the order in which the values are stored. This list of values is called the default
status list for the dimension.

A status list of a dimension surrogate is the same as the status list of its dimension.
A surrogate does not have a current or default status list separate from its
dimension.

Changing the Current Status List
You can change the current status list for a dimension by using:

■ The LIMIT command to change the values and the order of the values in the
current status list of a dimension.

■ The SORT command to arrange the order of values in the current status list of a
dimension.

Changing the Default Status List
You can change the default status list of a dimension in the following ways:

■ You can add, delete, move, merge, and rename values in a dimension by using
the MAINTAIN command. However, with a concat dimension you use the
MAINTAIN command only to move its values to a different order in the
dimension.

Introducing Dimension Status

Selecting Data 6-3

■ You can change the read permission of values that are associated with a
dimension by using the PERMIT command or the PERMITRESET command.

Identifying and Retrieving Status Lists
You can use the following commands and functions to identify and retrieve the
status of dimension values.

See Also:

■ "Maintaining Dimensions and Composites" on page 5-3 for
information on storing and maintaining dimension values.

■ "Adding Security to an Analytic Workspace" on page 2-12 for
information on setting permissions on workspace objects.

Command or
function Description

INSTAT function Checks whether a dimension value is in the current status list of a
dimension.

STATFIRST function Retrieves the first value in the current status list of a dimension.

STATLAST function Retrieves the last value in the current status list of a dimension.

STATUS command Sends to the current outfile the status of one or more values in a
dimension, or the status of all dimensions in an analytic
workspace.

VALUES function Retrieves different values depending on the keyword that you
specify:

■ If you specify the NOSTATUS keyword, then the function
retrieves the default status list of a dimension list.

■ If you specify the STATUS keyword, then the function
retrieves the current status list of a dimension.

■ Depending on whether you specify the INTEGER keyword,
the function either returns a multiline text value that contains
one dimension value per line or returns, as integers, the
position numbers of the dimension values.

Limiting to a Simple List of Values

6-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Saving and Restoring Dimension Status
You can save the current status of a dimension in the following ways.

■ If you want to save the current status (or the value of a dimension) for use in
any session, then use a named valueset. Use the DEFINE VALUESET command
to define the valueset.

■ If you want to save the current status (or the value of a dimension, a valueset,
an option, or a single-cell variable) for use in the current program, then use the
PUSHLEVEL and PUSH commands. You can restore the current status values
using the POPLEVEL and POP commands.

■ If you want to save, access, or update the current status (or the value of a
dimension, a valueset, an option, a single-cell variable, or a single-cell relation)
for use in the current session, then use a named context. Use the CONTEXT
command to define the context.

Contexts are the most sophisticated way to save object values for use in an analytic
workspace. With contexts, you can access, update, and commit the saved object
values. In contrast, PUSH and POP simply allow you to save and restore values.
Typically, you only used the PUSH and POP commands within a program to make
changes that apply only during the program execution.

Limiting to a Simple List of Values
A common way of selecting data is to limit a dimension to a value or list of values.
When limiting dimension values, you can substitute a dimension surrogate for its
dimension. The simplified syntax for using the LIMIT command in this way is
shown below.

LIMIT dimension TO values

The values argument can consist of any combination of:

■ Dimension values, expressed as literal values separated by commas, or as a
multiline text expression, each line of which is a value of the dimension.

■ Ranges of dimension values, expressed as value1 TO value2.

See Also: "Preserving the Session Environment" on page 7-19 for
more information about saving environment settings.

Limiting Using a Boolean Expression

Selecting Data 6-5

■ Integer values that represent the logical positions of dimension values,
expressed as comma-separated integers.

■ Ranges of integer values that represent the logical positions of dimension
values, expressed as value1 TO value2.

■ Valuesets.

Suppose that you want a report of footwear sales in Boston for January through
March 1995. The following commands limit the appropriate dimensions and request
the report.

LIMIT month TO ’JAN95’ ’FEB95’ ’MAR95’
LIMIT product TO ’FOOTWEAR’
LIMIT district TO ’BOSTON’
REPORT sales

The report output looks like this.

DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
FOOTWEAR 91,406.82 86,827.32 100,199.46

As an example of limiting dimension values using a dimension substitute, suppose
you have a NUMBER dimension named storeid that has store identification
numbers as values. The values of storeid are 10, 20, 30, 100, 110, 120, and 200. You
have an INTEGER dimension surrogate for storeid, named storenum, that has an
integer value for each position of the values of storeid. The values of storenum
are the integers 1 through 7. You can limit the current status list of both storeid
and storenum to the same set of values with any of the following commands.

LIMIT storeid TO 10, 100
LIMIT storenum TO 1, 4
LIMIT storenum TO storeid 10, 100
LIMIT storenum TO storenum 1, 4

Limiting Using a Boolean Expression
You can use the LIMIT command to limit a dimension according to the result of a
Boolean expression. The simplified syntax for using the LIMIT command in this
way is shown below:

LIMIT dimension TO Boolean-expression

Limiting Using a Boolean Expression

6-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

When you use this form of the LIMIT command, the values that are currently in
status are replaced with those dimension values for which the Boolean expression is
true.

When you are constructing a Boolean expression, keep the following points in
mind:

■ The Boolean expression must be dimensioned by the dimension whose status is
being set.

■ The data types of the expressions you are comparing in the Boolean expression
must be similar.

For example, the following Boolean expression has similar data types on both
sides of the Boolean operator GT.

LIMIT market TO units.m GT 50000

In the following example, the values of the TOTAL function are broken out by
product and compared to a literal (that is, the number 12000000). The LIMIT
command replaces the values that are currently in status for the product
dimension with the values of the product dimension whose sales, totaled for all
months and districts, are greater than 12 million.

LIMIT product TO TOTAL(sales product) GT 12000000

How LIMIT Handles Boolean Multidimensional Expressions
An understanding of how the LIMIT command handles Boolean expressions with
more than one dimension is important to the successful use of the command.

The result of a simple Boolean expression is a single value. When you use the
LIMIT command with a Boolean expression, no looping is performed through the
dimensions to create and return an array of values for the expression. Instead, the
first value in the dimension status list is identified for each dimension in the
expression, the expression using those values is evaluated, and a single value is
returned.

If you want the result of the Boolean expression to have dimensionality, then use the
EVERY, ANY, or NONE functions, which let you specify the dimensions of the result of
the Boolean expression.

Limiting Using a Boolean Expression

Selecting Data 6-7

Suppose that month, district, and product have the dimension status shown
below.

The current status of MONTH is:
JAN95 TO MAR95
The current status of DISTRICT is:
BOSTON
The current status of PRODUCT is:
ALL

Now you want products that have more than $90,000 worth of sales in at least one
of the months to be in status for the product dimension. By issuing the following
command, you can see which values in the current dimension status meet this
condition.

REPORT sales GT 90000

As shown below, the report displays YES in both the FOOTWEAR and CANOES rows.
Both of these products have sold more than $90,000 on at least one occasion during
January through March 1995.

DISTRICT: BOSTON
 ---------SALES GT 90000---------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
TENTS NO NO NO
CANOES NO NO YES
RACQUETS NO NO NO
SPORTSWEAR NO NO NO
FOOTWEAR YES NO YES

You might think that limiting the product dimension using only the simple
Boolean expression shown below would give you your desired result.

LIMIT product TO sales GT 90000

However, when the Boolean expression is evaluated, no looping is performed
through the sales variable to create and return an array of values for the product
dimension. Instead, only the first value in the dimension status list is used for each
dimension in sales other than the product dimension. In this case, JAN95 is used
for the value of the month dimension of the sales variable and BOSTON is used for
the value of the DISTRICT dimension.

Limiting Using a Boolean Expression

6-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

For JAN95 and BOSTON, the Boolean expression evaluates to TRUE only for the
FOOTWEAR product. Consequently, only FOOTWEAR is in status for the product
dimension.

As shown below, a report of sales in Boston only displays values for the FOOTWEAR
product that have sold more than $90,000 on at least one occasion during January
through March 1995.

REPORT sales

The current status of PRODUCT is:
FOOTWEAR
DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
FOOTWEAR 91,406.82 86,827.32 100,199.46

Limiting to Values That Match an Expression
The way to limit a dimension to all dimension values that match a Boolean
expression is to use the ANY function with the Boolean expression.

Example 6–1 Limiting Using the ANY function

The LIMIT command (shown below) illustrates how to use the ANY function to
limit the product dimension to all dimension values that have a value of more
than $90,000 in the sales variable (that is, CANOES and FOOTWEAR):

■ The first argument for the ANY function (that is, sales GT 90000) is the
Boolean expression you want to evaluate.

■ The second argument for the ANY function (that is, product) indicates the
dimensionality of the result of the Boolean expression.

In this example, when the Boolean function is evaluated, a test is performed for
TRUE values along the product dimension, and returns an array of values.

LIMIT product TO ANY(sales GT 90000, product)

The product dimension has both CANOES and FOOTWEAR in status. Both of these
products sold more than $90,000 on at least one occasion during January through
March 1995.

Limiting to the Top or Bottom Values

Selecting Data 6-9

As shown below, a report for sales in Boston displays both the CANOES and
FOOTWEAR products.

REPORT sales

The current status of PRODUCT is:
CANOES, FOOTWEAR
DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
CANOES 66,013.92 76,083.84 91,748.16
FOOTWEAR 91,406.82 86,827.32 100,199.46

Limiting to the Top or Bottom Values
You can set the dimension values that are currently in status to the top or bottom
performers based on a criterion represented as an expression. The simplified syntax
for using the LIMIT command in this way is shown below:

LIMIT dimension TO [BOTTOM|TOP] n BASEDON expression

You can also set the dimension values that are currently in status to the top or
bottom performers, by percentage, based on a criterion represented as an
expression. The simplified syntax for using the LIMIT command in this way is
shown below.

LIMIT dimension TO [BOTTOM|TOP] percent PERCENTOF expression

This construction sorts values based on their contribution, by percentage, to an
expression and then places the identified values in status.

It can happen that the last item in status, based on a PERCENTOF criterion, is one of
a number of dimension values having the same associated criterion value. In this
case, LIMIT includes all dimension values with that criterion value in the resulting
status, even when that causes the total of the criterion value to far exceed the
specified percentage.

Note: Do not use a criterion expression that changes its own
value.

Limiting to the Top or Bottom Values

6-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 6–2 Limiting to the Top or Bottom Values Based on Criterion

Suppose the status list is sorted in descending order according to the values of
sales, and only the top two performers are kept in status. Here the TOP and
BASEDON keywords are used to limit the status of a dimension, using the values of a
variable as a criterion.

LIMIT product TO ’SPORTSWEAR’
LIMIT month TO ’JUL96’
LIMIT district TO TOP 2 BASEDON sales

Suppose that you issue the following REPORT command.

REPORT DOWN district sales

The following report is produced, which shows the results of the LIMIT commands.

PRODUCT: SPORTSWEAR
 --SALES---
 --MONTH---
DISTRICT JUL96
-------------- ----------
DALLAS 220,416.81
ATLANTA 211,666.14

Example 6–3 Limiting to the Top or Bottom Values Based on Percentage

Suppose you want to sort products in descending order by the contribution of each
product to TOTAL(sales) and then add values to the status list, starting from the
top, until the cumulative total of sales by product reaches or exceeds 30 percent
of all sales. To limit the dimension in this way, you can use the following command.

LIMIT product TO TOP 30 PERCENTOF TOTAL(sales, product)

The following commands produce a report for January through March 2002 of
products in the Boston district that reached or exceeded 30 percent of all sales.

LIMIT month TO ’JAN02’ ’FEB02’ ’MAR02’
LIMIT district TO ’BOSTON’
LIMIT product TO TOP 30 PERCENTOF TOTAL(sales, product)
REPORT sales

Limiting to the Values of a Related Dimension

Selecting Data 6-11

This output of the report is shown below.

DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT JAN02 FEB02 MAR02
-------------- ---------- ---------- ----------
FOOTWEAR 91,406.82 86,827.32 100,199.46
CANOES 66,013.92 76,083.84 91,748.16

Limiting to the Values of a Related Dimension
You can use the LIMIT command to limit a dimension to the values of one or more
related dimensions. The simplified syntax for using the LIMIT command in this
way is shown below:

LIMIT dimension TO reldim [reldim-val]

The reldim argument is the name of a relation or a dimension that is related to the
dimension being limited. Using a relation name allows you to choose which relation
is used when there is more than one.

The reldim-val argument is a list of values of the related dimension, and not the
dimension being limited. If this argument is present in a LIMIT command, then
status is obtained by selecting the values of the dimension being limited, which are
related to related values. If reldim-val is omitted, then the current status of reldim
is used.

Example 6–4 Limiting Using a Related Dimension

The following command limits district to BOSTON and ATLANTA, which are in
the EAST region.

LIMIT district TO region ’EAST’

This command limits product to SPORTSWEAR and FOOTWEAR, which are in the
division that appears last in the list of DIVISION values.

LIMIT product TO division LAST 1

Limiting Based on the Position of a Value in a Dimension

6-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

How Limiting to a Related Dimension Determines Status
When you limit a dimension to a related dimension, the current status list is created
in a two-step process:

1. The values in the dimension current status list are arranged in the order of the
values of the related dimension.

2. If there is more than one value of the dimension for any value of the related
dimension, then the values in the dimension current status list are arranged in
the order of their default status list.

Suppressing the Sort When Limiting to a Related Dimension
The LIMIT.SORTREL option controls whether or not a sort is done when you limit
a dimension to a related dimension. You can suppress the sort that occurs when you
limit a dimension to a related dimension by setting LIMIT.SORTREL to no. This
can significantly improve performance when the dimension you are limiting is
large.

Limiting Based on the Position of a Value in a Dimension
Using the LIMIT command, you can set dimension status based on the position of
values in either:

■ The dimension you are limiting

■ An unrelated dimension

Limiting Using Value Position in its Dimension
You can use the LIMIT command with the FIRST, LAST, NTH, and POSLIST
keywords to set dimension status based on the position of a value within a
dimension.

The simplified syntax for using the LIMIT command in this way is shown below.

LIMIT dimension TO {FIRST n|LAST n|NTH n|POSLIST poslist-exp}

Note: When LIMIT.SORTREL is NO, printed output of a
dimension may not appear in logical order.

Limiting Based on a Relationship Within a Hierarchy

Selecting Data 6-13

The FIRST, LAST, and NTH keywords specify where the value is in the full set of
dimension values. The n argument following it specifies the number of values.

The POSLIST keyword indicates that the poslist-exp argument following it is a
text expression, each line of which is a numeric value that evaluates to a numeric
position of the dimension being limited.

Limiting Using Value Position in an Unrelated Dimension
You can use the LIMIT command with the NOCONVERT keyword to insert a value
into a dimension status list based on the numeric position of the values in the status
list of the unrelated dimension. This is particularly useful when the two dimensions
are in different analytic workspaces (for example, when there is a one-to-one
correspondence between the product dimension in two analytic workspaces).

The simplified syntax for using the LIMIT command in this way is shown below:

LIMIT dimension TO NOCONVERT unrelated-dimension

The unrelated-dimension argument specifies the name of a dimension not
related to the dimension being limited.

Limiting Based on a Relationship Within a Hierarchy
You can use a family tree to place dimension values in status. You can limit a
dimension as follows:

■ You can limit a dimension to the parents, children, ancestors, or descendants of
each value in a list of specified values or for each value in status.

■ You can also find the descendants based on a particular parent relationship.
This is useful with hierarchical dimensions that contain both a detail level and
levels that are aggregations of lower levels. To use the LIMIT command in this
way, you must ensure that the analytic workspace contains a relation that holds
the parent for each value of the dimension.

The simplified syntax for limiting a dimension based on a relationship within a
hierarchy is shown below.

LIMIT dimension TO {PARENTS|CHILDREN|ANCESTORS|DESCENDANTS|HIERARCHY} -
 USING parent-rel[valuelist]

The PARENTS keyword finds the parent of each value in valuelist or, when there
is no valuelist, it finds the parent for each value in status. It uses the
parent-rel to look up the parent.

Limiting Based on a Relationship Within a Hierarchy

6-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

The CHILDREN keyword finds the children of each value in valuelist or, when
there is no valuelist, finds the children for each value in status. It uses the
parent-rel to look up the children.

The ANCESTORS keyword finds the ancestors (that is, parents, grandparents, and so
on) of each value in valuelist or, when there is no valuelist, finds the
ancestors of each value in status.

The DESCENDANTS keyword finds the descendants (that is, children, grandchildren,
and so on) of each value in valuelist or, when there is no valuelist, finds
descendants for each value in status.

The HIERARCHY keyword is similar to DESCENDANTS and finds the descendants
(that is, children, grandchildren, and so on) based on the value of the parent-rel
argument.

The parent-rel argument is the name of a relation between the dimension and
itself. For each dimension value, the relation holds another value of the dimension
that is its parent dimension value (the one immediately above it in a given
hierarchy). This parent-relation can have more than one dimension.

The valuelist argument can be any inclusive list of values.

Differences Between HIERARCHY and DESCENDANTS Keywords
Both the HIERARCHY and DESCENDANTS keywords of the LIMIT command allow
you to set the status of a dimension based on its family tree; however, the different
keywords give you different results.

See Also:

■ "Defining Hierarchical Dimensions and Variables That Use Them" on
page 3-22 for more information about hierarchical dimensions.

■ "Defining Concat Dimensions and Variables That Use Them" on page
on page 3-25 for more information about concat dimensions and
hierarchies.

■ "Differences Between HIERARCHY and DESCENDANTS Keywords"
on page 6-14 for more information about using the HIERARCHY
keyword.

Limiting Based on a Relationship Within a Hierarchy

Selecting Data 6-15

One difference is the order of the values:

■ DESCENDANTS groups the values by level (all children, and then all
grandchildren).

■ HIERARCHY places each group of children next to its parent.

Additionally, if you use the HIERARCHY keyword, then you can include the
additional arguments described in the following table that let you further
manipulate the contents of the current status list.

Example 6–5 Skipping Generations

Suppose your application issues the following command.

LIMIT market TO HIERARCHY DEPTH 2 SKIP 1 USING market.market ’TOTUS’

In processing this command, the parent relation is searched (market.market) to
find the children and the grandchildren (DEPTH 2) of TOTUS and discards the first
generation (SKIP 1).

The resulting status follows.

TOTUS
BOSTON
ATLANTA
CHICAGO
DALLAS

IF you want to . . . THEN use the . . .

list children before their parents, INVERTED keyword.

skip n generations for each value in
valuelist, or, when there is no
valuelist skip n generations for each
value in status,

SKIP n phrase.

include n generations down from each value
of valuelist or, when there is no
valuelist, include n generations for each
value in status,

DEPTH n phrase.

run a command, represented as a text
expression, every time it constructs a group
of children,

RUN textexp phrase.

exclude the original values from the current
status list,

NOORIGIN keyword.

Limiting Based on a Relationship Within a Hierarchy

6-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

DENVER
SEATTLE

Note that TOTUS is included in status. With HIERARCHY, the original values are
included in status.

Example 6–6 Sorting a Group of Children

When you are using the HIERARCHY keyword with the LIMIT command, you can
use the RUN keyword to execute a command, specified as a text expression, every
time a group of children is constructed. This lets you further manipulate the values
that are being placed in status.

The following command not only limits the values of the market dimension to
descendants using the market.market self-relation but also, every time a group of
children is constructed, sorts the values in the market dimension in increasing
order based on unit sales.

LIMIT market TO HIERARCHY RUN ’SORT market A unit.m’ USING market.market

Example 6–7 Drilling Down on a Hierarchy Using a Relation

Suppose you want to drill down on districts from the region level of the market
dimension. This is a two step process.

The first step in the process is to limit the market dimension, which has embedded
totals at the district, region, and total U.S. level, to the region-level data. This is done
using the relation mlv.market, which is a relation between market and
marketlevel.

The following command produces the report shown below it, which shows the
values of mlv.market.

REPORT mlv.market

MARKET MLV.MARKET
-------------- ----------
TOTUS TOTUS
EAST REGION
BOSTON DISTRICT

Note: In this command, if you use KEEP or REMOVE instead of TO
in the LIMIT command, then the SORT command has no effect.

Limiting Based on a Relationship Within a Hierarchy

Selecting Data 6-17

ATLANTA DISTRICT
CENTRAL REGION
CHICAGO DISTRICT
DALLAS DISTRICT
WEST REGION
DENVER DISTRICT
SEATTLE DISTRICT

The following commands limit the values of market to the desired values and
display the values that are currently in status for the market dimension.

LIMIT market TO mlv.market ’REGION’
STATUS market

The current status of MARKET is:
EAST, CENTRAL, WEST

The second step in the process is to drill down on the district-level data from the
region level. You can use the self-relation market.market to perform the drill
down. For each value of the market dimension, this relation contains the name of
its parent.

DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

A report of market.market produces the following output.

MARKET MARKET.MARKET
-------------- -------------
TOTUS NA
EAST TOTUS
BOSTON CENTRAL
ATLANTA EAST
CENTRAL TOTUS
CHICAGO CENTRAL
DALLAS CENTRAL
WEST TOTUS
DENVER WEST
SEATTLE WEST

The following commands limit market to the children of the EAST, CENTRAL, and
WEST regions and drill down to the district-level data by using the CHILDREN
keyword with the LIMIT command.

LIMIT market TO mlv.market ’REGION’
LIMIT market tO CHILDREN USING market.market

Limiting Composites and Conjoint Dimensions

6-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

A report of market produces the following output and shows the values that are
now in status.

MARKET

BOSTON
ATLANTA
CHICAGO
DALLAS
DENVER
SEATTLE

Limiting Composites and Conjoint Dimensions
You cannot explicitly limit the values of a composite. Composites are not
dimensions and, therefore, do not have any independent status. The values of a
composite that are in status are determined by the values that are in status in the
base dimensions of the composite. In general, when OLAP DML functions and
commands deal with objects that are defined with composites, the default behavior
is to treat those objects as if no SPARSE keyword or named composite had been
used when the object was defined.

You can use the LIMIT command to set status for the dimensions of a variable that
is defined with a composite in the same way you would when the variable is not
defined with a composite.

Example 6–8 Limiting Dimensions Used by a Composite

Suppose your analytic workspace contains a variable named coupons that is
dimensioned by month and (using the prod_market composite) product and
market as shown in the following definition.

DEFINE coupons VARIABLE INTEGER <month prod_market <product market>>

See Also: "Defining Variables That Handle Sparse Data
Efficiently" on page 3-18 for more information about composites.

Ways of Limiting Conjoint Dimensions

Selecting Data 6-19

The following commands display the default status of all of the base dimensions of
the coupons variable.

STATUS coupons

The current status of MONTH is:
ALL
The current status of PRODUCT is:
ALL
The current status of MARKET is:
ALL

Later, when you want to access only the values of coupon that apply to sportswear,
you limit the base dimension product as shown below.

LIMIT product TO ’SPORTSWEAR’

Ways of Limiting Conjoint Dimensions
You can limit a conjoint dimension in either of the following ways:

■ Limit the base dimensions.

■ Limit the conjoint dimension itself.

Limiting Conjoint Dimensions Using Value Combinations
To limit a conjoint dimension to a list of values, you can use the following
constructions:

■ Specify the actual values, surrounding each combination with angle brackets.

LIMIT proddist TO <’TENTS’ ’BOSTON’> <’FOOTWEAR’ ’DENVER’>

■ Use a variable name for the values, surrounding the combination with angle
brackets.

prodname = ’CANOES’
distname = ’SEATTLE’
LIMIT proddist TO <prodname distname>

See Also: "Defining Variables That Handle Sparse Data
Efficiently" on page 3-18 for more information about conjoint
dimensions.

Limiting Concat Dimensions

6-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ Create a multiline list, in which each line is a combination surrounded by angle
brackets and separated by \n (the linefeed escape sequence).

namelist = mytext = ’<\’TENTS\’ \’BOSTON\’>\n <\’FOOTWEAR\’ \’DENVER\’>’
LIMIT proddist TO namelist

Limiting Conjoint Dimensions Using Base Dimension Values
Because there is an implicit relation between a conjoint dimension and its base
dimensions, you can limit the conjoint dimension by limiting the base dimensions.

For example, the following command limits a conjoint dimension named proddist
to all conjoint values having CANOES as one of the values of the base dimension
product.

LIMIT proddist TO product ’CANOES’

Limiting Concat Dimensions
The current status list of a concat dimension is separate from the current status lists
of its base dimensions. However, you limit a concat dimension by specifying values
of its base dimensions.

In Example 6–9, the base dimensions of the concat dimension reg.dist.cc are the
simple dimension region and the conjoint dimension proddist. The example
limits the concat dimension to the WEST region and proddist to the conjoint
values TENTS DENVER and RACQUETS DENVER and then reports the values of the
concat dimension.

Example 6–9 Limiting Base Dimensions of a Concat Dimension

LIMIT reg.dist.ccdim TO region’WEST’
LIMIT reg.proddist.ccdim ADD proddist <’TENTS’ ’DENVER’> -
<’RACQUETS’, ’DENVER’>

REPORT reg.proddist.ccdim

REG.PRODDIST.CCDIM

<REGION: WEST>
<PRODDIST: <TENTS, DENVER>>
<PRODDIST: <RACQUETS, DENVER>>

Working with Null Status

Selecting Data 6-21

Working with Null Status
You can set the current status list of a dimension to null (empty status) only when
you have explicitly specified that you want null status to be permitted. You can give
this permission in either of two ways:

■ Set the OKNULLSTATUS option to yes. This specification indicates that null
status should be allowed whenever it occurs except when the IFNONE
argument is present in a LIMIT command.

■ Use the NULL keyword in a LIMIT command to set the status of a particular
dimension or valueset to null. You can do this by specifying TO NULL or KEEP
NULL. This specification indicates that null status should be allowed for this
LIMIT command only.

If you have not used either of these two methods to give permission for null status
and you execute a LIMIT command that would result in null status, then the status
is not changed to null when the command is executed. Instead, the status remains
the same as it was before the command was issued.

You cannot use the IFNONE and NULL keywords in the same LIMIT command.

Managing Null Status in a Program
An IFNONE argument in a LIMIT command indicates that you do not want
program execution to take its normal course when a dimension status is set to null.
Therefore, when IFNONE is present, a branch is performed to the IFNONE label and
the status is not set to null, even if OKNULLSTATUS is YES. If the NULL keyword is
present together with IFNONE, then the inconsistency is signaled with an error.

Errors When Limiting Status to a Null Value
An error will not be signaled when you try to limit the status of a dimension or
valueset that has no values, unless you explicitly list values that do not exist. For

Tip: Using the IFNONE argument provides limited flexibility for
handling null status because it simply branches to a label. For more
flexibility, investigate the possibility of setting the OKNULLSTATUS
option to control whether or not execution will branch when status
is null, and the possibility of using a WHILE loop to test for null
status.

Working with Valuesets

6-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

example, if you have not added any values to a newly defined dimension WEEK,
then the following command does not cause an error.

LIMIT week TO FIRST 10

However, the following command does cause an error because PETE is not a value.

LIMIT week TO ’PETE’

Similarly, the following command causes an error because WEEK does not have a
value at position 20.

LIMIT week TO 20

Working with Valuesets
A valueset is a workspace object that contains a list of dimension values for a
particular dimension. You use a valueset to save a dimension status list for later use.
The values in a valueset can be saved across OLAP sessions. When you attach an
analytic workspace, each dimension has all of the values in the default status list.
You can then limit a dimension to the values stored in the valueset for that
dimension. When you first define a valueset, its value is null. After defining a
valueset, you use the LIMIT command to assign values from the dimension to the
valueset. You can use the LIMIT command with valuesets in many of the ways that
you use it with dimensions. For example, you can use the LIMIT command to
expand, reduce, and replace values in the list of values of a valueset.

Creating a Valueset
To create a valueset, take the following steps.

1. Define a valueset for the dimension values. Use the DEFINE command with the
VALUESET keyword.

2. Limit the dimension for which you want to create a valueset to the values you
want to save.

3. Limit the valueset you created in Step 1 to the dimension you limited in Step 2.

Example 6–10 Creating a Valueset

This example defines a valueset named lineset. It is dimensioned by line and,
therefore, it can be limited by the current values of the line dimension.

Working with Valuesets

Selecting Data 6-23

The following commands limit the line dimension to the first two values, then
show the current status of line.

LIMIT line TO FIRST 2
STATUS line

The current status of LINE is:
REVENUE, COGS

These commands define a valueset names lineset, set it to the current status list
of the line dimension, and show its values. The LD command attaches a
description to the object.

DEFINE lineset VALUESET line
LD Valueset for LINE dimension values
LIMIT lineset TO line
SHOW VALUES(lineset)

REVENUE
COGS

Limiting Using a Valueset
After you have defined a valueset, you can use it to limit a dimension with a single
LIMIT command.

For example, the following commands limit the line dimension to the values
stored in the lineset valueset and display the new status of line.

LIMIT line TO lineset
STATUS line

The current status of LINE is:
REVENUE, COGS

Example 6–11 Limiting Using a Valueset

The following commands limit district to the districts in which sportswear sales
exceeded $1,000,000 in 1996. The current status list for the district dimension is
saved in the valueset SPORTS.DISTRICT. Once you have created the valueset, you
can limit the district dimension to the same values with one LIMIT command.

DEFINE sports.district VALUESET district
LIMIT product TO ’SPORTSWEAR’
LIMIT month TO year ’YR96’

Working with Valuesets

6-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

LIMIT sports.district TO TOTAL(sales district) GT 1000000
LIMIT district TO sports.district

The STATUS command shows the new status of district.

STATUS district

The current status of DISTRICT is:
ATLANTA TO DENVER

Changing the Values of a Valueset
You can use the LIMIT command to change the values in a valueset. The simplified
syntax for using the LIMIT command in this way is shown below:

LIMIT valueset keyword selection

The valueset argument specifies the name of the valueset you want to change.

The keyword that you specify determines how the command affects the values that
are currently in the valueset. The following table outlines the use of the keywords.

The selection argument specifies the selection criteria that you want to be used
to determine what values to assign to the valueset. In general, you can use the same
arguments when you are using the LIMIT command to select values for a valueset
that you can use when you use the LIMIT command to limit a dimension.

IF you want to . . . THEN use the LIMIT command with . . .

replace the values that are currently in the
valueset with new values,

either the TO or COMPLEMENT keyword.

remove values from the current valueset, either the REMOVE or KEEP keyword.

expand the valueset, either the ADD or INSERT keyword.

sort the values in the valueset, the SORT keyword.

Working with Valuesets

Selecting Data 6-25

Identifying and Retrieving the Values in a Valueset
You can use the following commands and functions to identify and retrieve
dimension values that are in a valueset.

Retrieving the Values in a Valueset
Suppose an analytic workspace contains a valueset called monthset that has the
values JAN95, MAY95, and DEC95. You can use the VALUES function to list the
values in that valueset.

The following OLAP DML command produces the output shown below it.

SHOW VALUES(monthset)

JAN95
MAY95
DEC95

Retrieving the Dimension Positions of Values in a Valueset
Suppose that you want to retrieve the position of the values in the monthset
valueset, rather than retrieve the actual values themselves. To retrieve the position
of values, you use the VALUES function with the INTEGER keyword. When you use
this keyword, the position numbers are returned instead of the actual dimension
values that are included in a valueset. The position numbers that are returned do
not represent positions in the valueset; they represent positions in the dimension on
which the valueset is based.

Command or function Description

INSTAT function Checks whether a dimension value is in a valueset.

STATFIRST function Retrieves the first value in a valueset.

STATLAST function Retrieves the last value in a valueset.

STATUS command Sends to the current outfile the status of one or more values in a
valueset.

VALUES function Retrieves the values in a valueset. Depending on whether you
specify the INTEGER keyword, the function either returns a
multiline text value that contains one dimension value per line
or returns, as integers, the position numbers of the values in the
existing dimension, not in the valueset.

Working with Valuesets

6-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

The following OLAP DML command produces the output shown below it.

SHOW VALUES(monthset INTEGER)

61
65
72

The value JAN95 is shown as the sixty-first value in the month dimension, MAY95
as the sixty-fifth value, and DEC95 as the seventy-second value, although they are
the first, second, and third values in monthset.

Part II
 Applications Development

Part II contains information of particular interest to applications developers.

It contains the following chapters:

■ Chapter 7, "Developing Programs"

■ Chapter 8, "Working with Models"

■ Chapter 9, "Allocating Data"

Developing Programs 7-1

7
Developing Programs

This chapter provides information about writing, compiling, testing, and calling
programs that are written in the OLAP DML. It includes the following topics:

■ Introduction to OLAP DML Programs

■ Defining and Editing Programs

■ Using Variables in Programs

■ Passing Arguments

■ Writing User-Defined Functions

■ Controlling the Flow of Execution

■ Directing Output

■ Preserving the Session Environment

■ Handling Errors

■ Compiling Programs

■ Testing and Debugging Programs

Introduction to OLAP DML Programs

7-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Introduction to OLAP DML Programs
An OLAP DML program is written in the OLAP DML. It acts on data in the analytic
workspace and helps you accomplish some workspace management or analysis
task. You can write OLAP DML programs to perform tasks that you must do
repeatedly in the analytic workspace, or you can write them as part of an
application that you are developing.

There are two main types of OLAP DML programs: programs that do not return
values, and programs that return values. A program that returns a value is called a
user-defined function.

You can use an OLAP DML program that does not return a value as a standalone
program or as the main program or subprogram of a multiprogram application.
These programs behave like OLAP DML commands.

You can use a user-defined function in commands and expressions in the same way
that you use built-in OLAP DML functions.

In contrast to the form of a program, the content is related to the job it was created
to do, and it is the individual lines of a program that provide its content. Program
lines that accomplish specific purposes are discussed in other chapters in this guide.

Executing Programs
You can invoke a program that does not return a value by using the CALL
command. You enclose arguments in parentheses, and they are passed by value.

For example, suppose you create a simple program named addit to add two
integers. You can use the CALL command in the main program of your application
to invoke the program.

CALL addit (3, 4)

The syntax for using the CALL command to invoke a program is shown below.

CALL program-name [(arg1 [arg2 ...])]

The program-name argument is the name of the program to be called.

The arg1... arguments are optional and specify any arguments that are expected
by the called program. Specify the arguments so that they match the order in which
they are defined in the program.

Defining and Editing Programs

Developing Programs 7-3

Executing User-Defined Functions
A user-defined function is a program that returns a value. You invoke user-defined
functions in the same way as you use built-in functions. You merely use the
program’s name in an expression and enclose the program’s arguments, if any, in
parentheses.

For example:

■ You can use the program name as an expression in a command.

The following REPORT command uses the value that is returned by the
user-defined function isrecent that has a single argument, actual.

REPORT isrecent(actual)

■ You can use the = command to assign the return value of the function to a
variable.

The following command assigns the return value of the user-defined function
named tempsales to a temporary variable called mytempsales.

mytempsales = tempsales

Defining and Editing Programs
A program, like a dimension or a variable, is a workspace object. You define a
program using the DEFINE command. The following example defines a program
named hello.

DEFINE hello PROGRAM

Once you have defined a program object, you need to add the body of the program
to it.

OLAP Worksheet provides an editor that you can use to add content to the program
definition.

Important: Although you can also run user-defined functions
using the CALL command, you will not be able to access the return
value.

Using Variables in Programs

7-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Formatting Guidelines for Editing Programs
Use the following formatting guidelines as you add lines to your program:

■ Each line of code can have a maximum of 4000 bytes.

■ To continue a single command on the next line, place a hyphen (-) at the end of
the line to be broken. The hyphen is called a continuation character.

You cannot use a continuation character in the middle of a text literal.

■ To write more than one command on a single line, separate the commands with
semicolon (;).

■ Enclose literal text in single quotation marks (’). To include a single quotation
mark within literal text, precede it with a backslash (\).

■ Precede comments with double quotation marks ("). You can place a comment,
preceded by double quotation marks, either at the beginning of a line or at the
end of a line, after some commands.

The following program named hello displays the phrase “Hello World.”

DEFINE hello PROGRAM
PROGRAM
SHOW ’Hello World’
END

Using Variables in Programs
Variables that hold the data in your analytic workspaces are permanent variables.
These variables persist from one OLAP session to another. However, you might not
need to save variables that your programs use to hold processing information while

See Also: "Accessing a Workspace from OLAP Worksheet" on
page 1-6 for more information about using OLAP Worksheet.

See Also: "Escape Sequences" on page 3-6 for information about
escape sequences.

Using Variables in Programs

Developing Programs 7-5

they manipulate data. So that you do not clutter your analytic workspaces with
unnecessary variables, you can define temporary and local variables:

■ A temporary variable has a value only during the current session. When you
update and commit the analytic workspace, only the definitions of the variables
are saved. When you detach the analytic workspace, the data values are
discarded.

■ A local variable is a single-cell variable that exists only while the program in
which it is defined is running. Using local variables within a program is a useful
alternative to using temporary variables.

Local variables have no dimensions, so you cannot use them for storing
dimensioned data. Because they exist only for the duration of the program in
which they are defined, you cannot store information in a local variable in one
program and then use that variable in another program. If you must store
dimensioned data, or use information in more than one program, then define a
temporary variable instead.

Global Versus Modular Design Approaches
The purpose of most OLAP DML programs is to manipulate data. Depending on
your programming style and the requirements of your application, you might use
either of the following approaches:

■ Use permanent variables, to which all programs have access. This approach
requires less programming overhead (for example, fewer definitions), but it is
less modular. If you are not careful, then programs can interfere with one
another when they set the values of permanent variables.

■ Use program arguments, local variables, and return values from user-defined
functions. This approach forces you to write modular programs with clear input
and output responsibilities.

Most applications combine these approaches, using permanent variables and
user-defined functions when they are appropriate. In general, modular programs
are considered to be easier to read, debug, and maintain.

Defining Temporary Variables
You define temporary variables with the TEMP keyword in the DEFINE command,
as in the following example.

DEFINE total.sales DECIMAL TEMP

Using Variables in Programs

7-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Defining temporary variables for use in programs helps you avoid cluttering your
analytic workspace with temporary data, but it still adds objects to your analytic
workspace. For most simple applications, the addition of a few temporary objects is
not a problem. However, in complex applications that require many programs, the
number of temporary objects can sometimes get very large, and this can affect the
application’s performance.

Once defined, a temporary variable will exist for the remainder of a user’s session
unless it is deleted. Be sure to delete the temporary variable as part of the cleanup of
your program, or create it on the condition that it does not already exist, so that it
can be rerun during a session without causing an error.

Defining Local Variables
You must specify local variables at the beginning of your program, before any
executable commands. You specify a local variable with the VARIABLE command,
which has the following syntax.

VARIABLE name datatype

The name argument specifies the name of the variable. To minimize confusion or
problems, you should avoid using the same name for both an analytic workspace
variable and a local variable. When both an analytic workspace variable and a local
variable have the same name, then the local variable usually takes precedence.
However, in a few commands and functions that operate on workspace objects (for
example, the OBJ function), the defined variable takes precedence.

The datatype argument specifies the data type of the local variable. For more
information on data types, see "Data Types" on page 3-4.

The program named west.rpt, listed below, includes definitions for two local
variables named data and rpt.month.

DEFINE west.rpt PROGRAM
LD Produce report for Western Sales District
PROGRAM
VARIABLE data TEXT
VARIABLE rpt.month TEXT
LIMIT month TO LAST 3
 .
 .
 .

Passing Arguments

Developing Programs 7-7

Passing Arguments
The OLAP DML provides two ways for you to accept arguments in a program:

■ ARGUMENT command. You can use the ARGUMENT command to declare
arguments in a program. ARGUMENT command allows you to use both simple
and complex arguments (such as expressions). The ARGUMENT command also
makes it convenient to pass arguments from one program to another, or to
create your own user-defined functions.

■ ARG functions. You can use the ARG, ARGS, and ARGFR functions in any
program to retrieve arguments from a command. These functions are primarily
useful for simple text arguments.

Using the ARGUMENT Command
The ARGUMENT command lets you declare an argument of any data type,
dimension, or valueset. Any ARGUMENT commands must precede the first
executable line in the program. When you run the program, these declared
arguments are initialized with the values you provided as arguments to the
program. The program can then use these arguments in the same way it would use
local variables.

Example 7–1 Using the ARGUMENT Command

Suppose you are writing a program, called product.rpt. The product.rpt
program produces a report, and you want to supply an argument to the report
program that specifies the text that should appear for an NA value in the report. In
the product.rpt program, you can use the declared argument natext in an =
command to set the NASPELL option to the value provided as an argument.

ARGUMENT natext TEXT
NASPELL = natext

To specify Missing as the text for NA values, you can execute the following
command.

CALL product.rpt (’Missing’)

Passing Arguments

7-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

In this example, literal text enclosed in single quotes provides the value of the text
argument. However, any other type of text expression works equally well, as shown
in the next example.

DEFINE natemp VARIABLE TEXT TEMP
natemp = ’Missing’
CALL product.rpt (natemp)

Using Multiple Arguments
A program can declare as many arguments as needed. When the program is
executed with arguments specified, the arguments are matched positionally with
the declared arguments in the program.

When you run the program, you must separate arguments with spaces rather than
with commas or other punctuation. Punctuation is treated as part of the arguments.

Example 7–2 Passing Multiple Arguments

Suppose, in the product.rpt program, that you want to supply a second
argument that specifies the column width for the data columns in the report. In the
product.rpt program, you would add a second ARGUMENT command to declare
the integer argument to be used in setting the value of the COLWIDTH option.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
NASPELL = natext
COLWIDTH = widthamt

To specify eight-character columns, you could run the product.rpt program with
the following command.

CALL product.rpt (’Missing’ 8)

If the product.rpt program also requires the name of a product as a third
argument, then in the product.rpt program you would add a third ARGUMENT
command to handle the product argument, and you would set the status of the
product dimension using this argument.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
ARGUMENT rptprod PRODUCT
NASPELL = natext
COLWIDTH = widthamt
LIMIT product TO rptprod

Passing Arguments

Developing Programs 7-9

You can run the product.rpt program with the following command.

CALL product.rpt (’Missing’ 8 ’TENTS’)

In this example, the third argument is specified in uppercase letters with the
assumption that all the dimension values in the analytic workspace are in uppercase
letters.

Passing Arguments as Text with Ampersand Substitution
It is very common to pass a simple text argument to a program. However, there are
some situations in which you might want to pass a more complicated text
argument, such as an argument that is composed of more than one dimension value
or is composed of the text of an expression. In these cases, you want to substitute
the text you pass, exactly as you specify it, wherever the argument name appears.

To indicate that you want a text argument handled in this way, you precede the
argument name with an ampersand when you use it in the command lines of your
program. Specifying arguments in this way is called ampersand substitution.

When you use ampersand substitution to pass the names of workspace objects to a
program (rather than their values), the program has access to the objects themselves
because the names are known to the program. This is useful when the program
must manipulate the objects in several operations.

Example 7–3 Passing Multiple Dimension Values

If you want to specify exactly two products for the product.rpt program
discussed earlier, then you could declare two dimension-value arguments to handle
them. But if you want to be able to specify any number of products using LIMIT
keywords, then you can use a single argument with ampersand substitution.

Important: You cannot compile and save any program line that
contains an ampersand. Instead, the line is evaluated at run time,
which can reduce the speed of your programs. Therefore, to
maximize performance, avoid using ampersand substitution when
another technique is available.

Passing Arguments

7-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

Suppose you use the following commands in your program.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
ARGUMENT rptprod TEXT
 .
 .
 .
LIMIT product TO &rptprod

You can run the program and specify that you want the first three products in the
report.

CALL product.rpt (’Missing’ 8 ’first 3’)

The single quotation marks are necessary to indicate that “first 3” should be taken
as a single argument, rather than two separate arguments separated by a space. The
ampersand causes LIMIT to interpret ’first 3’ as a keyword expression rather
than as a dimension value.

Example 7–4 Passing the Text of an Expression

Suppose you have a program named custom.rpt that includes a REPORT
command, but you want to be able to use the program to present the values of an
expression, such as sales - expense, as well as single variables.

custom.rpt ’sales - expense’

In the custom.rpt program, you could use the following commands to produce a
report of this expression.

ARGUMENT rptexp TEXT
REPORT &rptexp

Note: You must enclose the expression in single quotation marks.
Because the expression contains punctuation (the minus sign), the
quotation marks are necessary to indicate that the entire expression
is a single argument.

Writing User-Defined Functions

Developing Programs 7-11

Passing Object Names and Keywords
For the following types of arguments, you must always use an ampersand to make
the appropriate substitution:

■ Names of workspace objects, such as units or product

■ Command keywords, such as COMMA or NOCOMMA in the REPORT command, or
A or D in the SORT command

Example 7–5 Passing Workspace Object Names and Keywords

Suppose you design a program called sales.rpt that produces a report on a
variable that is specified as an argument and sorts the product dimension in the
order that is specified in another argument. You would run the sales.rpt
program by executing a command like the following one.

sales.rpt units d

In the sales.rpt program, you can use the following commands.

ARGUMENT varname TEXT
ARGUMENT sortkey TEXT
SORT product &sortkey &varname
REPORT &varname

After substituting the arguments, these commands are executed in the sales.rpt
program.

SORT product D units
REPORT units

Writing User-Defined Functions
When an OLAP DML program returns a value, it is called a user-defined function.
You can use it in commands and expressions.

A user-defined function contains a RETURN command followed by an expression.

RETURN expression

 The RETURN command returns a single value when the program terminates.

See Also: "Substitution Expressions" on page 4-30 for more
information about ampersand substitution.

Writing User-Defined Functions

7-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Data Type of a User-Defined Function
When you create a user-defined function, you define the program with a data type
or dimension name, using the following syntax of the DEFINE command.

DEFINE programname PROGRAM [datatype|dimension]

The datatype argument specifies the data type of the value to be returned by the
program when it is called as a function.

The dimension argument specifies the name of a dimension whose value the
program returns when it is called as a function. The return value will be a single
value of the dimension, not a position (integer). The dimension must be defined in
the same analytic workspace as the program. The value that is returned by the
program has the data type that is specified in the definition. If you specify a
dimension name, then the program returns a value of that dimension.

The return expression in the program should match the data type that is specified in
its definition. If the data type of the return value does not match the data type that
is specified in its definition, then the value is converted to the data type in the
definition.

If you do not specify a data type for the program, then the return value is converted
to the data type that is required by the caller.

Arguments in a User-Defined Function
User-defined functions can accept arguments. A user-defined function returns only
a single value. However, if you supply an argument to a user-defined function in a
context that loops over a dimension (for example, in a REPORT command), then the
function returns results with the same dimensions as its argument.

You must declare the arguments using the ARGUMENT command within the
program, and you must specify the arguments in parentheses following the name of
the program.

Example 7–6 User-Defined Function

Suppose your analytic workspace contains a variable called units.plan, which is
dimensioned by the product, district, and month dimensions. The variable

See Also: "Passing Arguments" on page 7-7 for more information
about using arguments with programs.

Writing User-Defined Functions

Developing Programs 7-13

holds integer data that indicates the number of product units that are expected to be
sold.

Suppose also that you define a program named units_goals_met. This program
is a user-defined function. It accepts three dimension-value arguments that specify a
given cell of the units.plan variable, and it accepts a fourth argument that
specifies the number of units that were actually sold for that cell. The program
returns a Boolean value to the calling program. It returns YES when the actual
figure comes up to within 10 percent of the planned figure; it returns NO when the
actual figure does not.

The definition of the units_goals_met program is listed below.

DEFINE units_goal_met PROGRAM BOOLEAN
LD Tests whether actual units met the planned estimate
"Program Initialization
ARGUMENT userprod TEXT
ARGUMENT userdist TEXT
ARGUMENT usermonth TEXT
ARGUMENT userunits integer
VARIABLE answer boolean
TRAP ON errorlabel
PUSH product district month
"Program Body
LIMIT product TO userprod
LIMIT district TO userdist
LIMIT month TO usermonth
IF (units.plan - userunits) / units.plan GT .10
 THEN answer = NO
 ELSE answer = YES
"Normal Exit
POP product district month
RETURN answer
"Abnormal Exit
errorlabel:
POP product district month
SIGNAL errorname errortext
END

To execute the units_goal_met program and store the return value in a variable
called success, you can use an assignment statement.

success = units_goal_met(’TENTS’ ’BOSTON’ ’JUN96’ 2000)

Controlling the Flow of Execution

7-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Controlling the Flow of Execution
Ordinarily, the lines of a program are executed sequentially, that is, in linear fashion.
However, a well-designed program controls the flow of execution by using
commands that redirect the path of execution when appropriate.

You can use the following control structures to modify the sequence of command
execution.

Guidelines for Constructing a Label
When you use control structures to branch to a particular location, you must
provide a label for the location in order to identify it clearly. When creating a label,
follow these guidelines:

■ The first character in the label must be a letter, period (.), or underscore (_).

■ The remaining characters in a label can be any combination of letters, numbers,
periods, or underscores.

Command or
Keyword Action Event that Triggers Action

IF command Executes alternative commands or
groups of commands.

A specified Boolean condition
is or is not met.

WHILE command Executes a group of commands
repeatedly.

As long as a specified Boolean
condition is met.

FOR command Executes a command or a group of
commands.

Once for each value of a
dimension.

GOTO command Branches to a specific labeled
location.

Issuing the command.

SWITCH command Branches to particular branch in a
multipath branch.

A specific criterion is met.

TRAP command Branches to a specific labeled
location.

An error occurs during
program execution.

IFNONE keyword in
a LIMIT, REPORT,
ROW, or HEADING
command

Branches to a specific labeled
location.

An attempt to set status
would result in no values or
null status.

RETURN command Branches out of a program or
returns to a calling program before
the final command in the program.

Issuing the command.

Controlling the Flow of Execution

Developing Programs 7-15

■ A label must be followed immediately by a colon (:).

■ Make sure that the first eight bytes in the label are unique. (Note that, in your
character set, a byte might or might not be equivalent to one character.) A label
can contain up to 3999 bytes (the maximum length of a text line minus 1 byte
for the colon that identifies a label). However, because only the first eight bytes
of a label name are used, you can experience problems with label names greater
than eight bytes when the first eight bytes are not unique.

Alternatives to the GOTO Command
While GOTO makes it easy to branch within a program, frequent use of it can
obscure the logic of your program, making it difficult to follow its flow. This is
particularly true when you have a complex program with several labels and GOTO
commands that skip over large portions of code.

To keep the logic of your programs clear, minimize your use of GOTO.

Sometimes a GOTO command is the best programming technique, but often there are
better alternatives. For example:

■ Instead of using GOTO commands in an IF command, you can often place your
alternative sets of commands between DO and DOEND commands within the IF
command itself.

■ If each set of commands is long or you want to use them in more than one place
in your program, then you might consider placing them in subprograms. Then,
you can use the IF command to choose between two different programs, or use
the SWITCH command to choose among many different programs.

Example 7–7 Using the FOR Command for Looping Over Dimension Values

The FOR command executes the commands in the loop for each value in the current
status of the dimension. You must limit the dimension to the desired values before
executing the FOR command. For example, you can produce a series of output lines
that show the price for each product.

LIMIT month TO FIRST 1
LIMIT product TO ALL
FOR product
SHOW JOINCHARS(’Price for ’ product ’: $’ price)

Each output line has the following format.

Price for TENTS: $165.50

Controlling the Flow of Execution

7-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

When your data is multidimensional, you can specify more than one dimension in a
FOR command to control the order of processing. For example, you can use the
following command to control the order in which dimension values of the units
data are processed.

FOR month district product
 units = ...

When this assignment statement is executed, the month dimension varies the
slowest, the district dimension varies the next slowest, and the product
dimension varies the fastest. Thus, a loop is performed over all products for the first
district before doing the next district, and over all districts for the first month before
doing the next month.

Within the FOR loop, each specified dimension is temporarily limited to a single
value while it executes the commands in the loop. You can therefore work with
specific combinations of dimension values within the loop.

Example 7–8 Using DO/DOEND in a FOR Loop

If actual figures for unit sales are stored in a variable called units and projected
figures for unit sales are stored in a variable called units.plan, then the code in
your loop can compare these figures for the same combination of dimension values.

LIMIT month TO FIRST 1
LIMIT product TO ALL
LIMIT district TO ALL
FOR district product
 DO
 IF (units.plan - units)/units.plan GT .1
 THEN SHOW JOINCHARS(-
 ’Unit sales for ’ product ’ in ’ -
 district ’ are not within 10% of plan.’)
 DOEND

These lines of code are processed as described below.

1. The data is limited to a specific month.

2. All the districts and products are placed in status, and the FOR loop is entered.

3. In the FOR loop, the actual figure is tested against the planned figure. If the unit
sales figure for TENTS in BOSTON is more than 10 percent below the planned
figure, then the following message is sent to the current outfile.

Unit sales for TENTS in BOSTON are not within 10% of plan.

Directing Output

Developing Programs 7-17

4. After processing all the products, the FOR loop is complete for the first district.

5. The loop is executed for the second district, and so on.

Example 7–9 Branching to Avoid Setting Null Status

Your program might try to set or refine the status of the product dimension to
include only the products for which unit sales are greater than 500. If no products
have unit sales of more than 500, then you can use the IFNONE keyword to specify
that execution branch to the novals label.

LIMIT product KEEP units GT 500 IFNONE novals

In the commands following the novals label, you can handle the special situation
in which no products have units sales greater than 500.

Example 7–10 Branching After Setting Null Status

As an alternative to branching to an IFNONE label, you can also handle null status
for a dimension with the OKNULLSTATUS option. If you set OKNULLSTATUS to YES,
then you will be allowed to set the status of a dimension to null. You can then check
for null status and execute appropriate commands with an IF command, or you can
handle null status as one of the cases in a SWITCH command.

OKNULLSTATUS = YES
LIMIT month TO sales GT salesnum
IF STATLEN(month) LT 1
 THEN GOTO showerr

Directing Output
To send output to a file, use the OUTFILE command followed by a directory alias
and a file name, and separatae the two with a slash (/). A file will be created with
the name you specify. Before you execute the OUTFILE command, you can use the

Note: While the FOR loop executes, each dimension that is
specified in a FOR command is limited temporarily to a single
value. If you specify district in the FOR loop, but not product,
then all the values of product are in status while the FOR loop
executes. The IF command then tests data for only the first value of
the product dimension.

Directing Output

7-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

CDA command to specify a current directory alias. In this case, you do not have to
specify a directory alias in the OUTFILE command because Oracle OLAP assumes
that you want the file to be created in your current directory alias.

Directory aliases are defined in the database and control access to directories.
Contact your Oracle DBA for the name of a directory alias to which your database
user name has read/write access. The file name that you specify must follow the
standard filename format for your operating system.

The OUTFILE command changes the routing for all subsequent output. Therefore, if
your program routes a report to a file, then you should reroute output to the default
outfile before leaving the program. If you want to send subsequent output to the
default outfile, then place the OUTFILE EOF command directly after your report
commands. To make sure the OUTFILE EOF command is executed when errors
cause abnormal termination of the program, also place the command in the
abnormal exit section.

If you are working in OLAP Worksheet, the default outfile is its response window.
The current destination is called the current outfile.

Example 7–11 Directing Output to a File

Suppose you have a program called year.end.sales, and you want to save the
report it creates in a file. Type the following commands to write a file of the report.
In this example, userfiles is a directory alias and yearend.txt is the name of
the file.

OUTFILE ’userfiles/yearend.txt’
year.end.sales
OUTFILE EOF

Now the file contains the year.end.sales report. You can add more reports to
the same file with the APPEND keyword for OUTFILE. Suppose you have another
program called year.end.expenses. Add its report to the file with the following
commands. Note that without APPEND, the OUTFILE command overwrites the
expense report.

OUTFILE APPEND ’userfiles/yearend.txt’
year.end.expenses
OUTFILE EOF

Preserving the Session Environment

Developing Programs 7-19

Capturing Error Messages
You can capture error messages by setting the ECHOPROMPT option to YES.

ECHOPROMPT = YES

When you set ECHOPROMPT to YES, input lines and error messages are echoed, as
well as output lines, to the current outfile. If you use the OUTFILE or DBGOUTFILE
command, you can capture the error messages in a file. For information about
DBGOUTFILE, see "Sending Output to a Debugging File" on page 7-31.

Whenever you change a setting, remember to save and restore its original value
with the PUSH and POP commands.

Preserving the Session Environment
One advantage to the modular design approach is that each program has a clearly
defined area of responsibility, and it does not affect the workings of other programs.
To make this possible, each program must act as a “good citizen” by saving global
settings before it changes them and restoring global settings before it finishes
execution.

There are two types of environment settings:

■ Session environment. The dimension status, option values, and output
destination that are in effect before a program is run make up the session
environment.

■ Program environment. The dimension status, option values, and output
destination that you use in a program make up the program environment.

Changing the Program Environment
To perform a task within a program, you often need to change the output
destination or some dimension and option values. For example, you might run a
monthly sales report that always shows the last six months of sales data. You might
want to show the data without decimal places, include the text “No Sales” where
the sales figure is zero, and send the report to a file. To set up this program
environment, you can use the following commands in your program.

LIMIT month TO LAST 6
DECIMALS = 0
ZSPELL = ’No Sales’
OUTFILE monsales.txt

Preserving the Session Environment

7-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

To avoid disrupting the session environment, the initialization section of a program
should save the values of the dimensions and options that will be set in the
program. In the normal and abnormal exit sections at the end of the program, you
can restore the saved environment, so that other programs do not need to be
concerned about whether any values have been changed. In addition, if you have
sent output to a file, then the exit sections should return the output destination to
the default outfile.

Ways to Save and Restore Environments
The following suggestions let you save the environment of a program or a session:

■ If you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable for use in the current program, then use the
PUSHLEVEL and PUSH commands. You can restore the current status values
using the POPLEVEL and POP commands.

■ If you want to save, access, or update the current status or value of a dimension,
a valueset, an option, a single-cell variable, or a single-cell relation for use in the
current session, then use a named context. Use the CONTEXT command to
define the context.

Contexts are the most sophisticated way to save object values for use during a
session. With contexts, you can access, update, and commit the saved object values.
In contrast, PUSH and POP simply allow you to save and restore values. Typically,
you use the PUSH and POP commands within a program to make changes that
apply only during the program’s execution.

Saving the Status of a Dimension or the Value of an Option
The PUSH command saves the current status of a dimension, the value of an option,
or the value of a single-cell variable. For example, to save the current value of the
DECIMALS option so you can set it to a different value for the duration of the
program, use the following command in the initialization section.

PUSH DECIMALS

You do not need to know the original value of the option to save it or to restore it
later. You can restore the saved value with the POP command.

POP DECIMALS

You must make sure the POP command is executed when errors cause abnormal
termination of the program as well as when the program ends normally. Therefore,

Preserving the Session Environment

Developing Programs 7-21

you should place the POP command in the normal and abnormal exit sections of the
program.

Saving Several Values at Once
You can save the status of one or more dimensions and the values of any number of
options and variables in a single PUSH command, and you can restore the values
with a single POP command, as shown in the following example.

PUSH month DECIMALS ZSPELL
 .
 .
 .
POP month DECIMALS ZSPELL

Using Level Markers
If you are saving the values of several dimensions and options, then the
PUSHLEVEL and POPLEVEL commands provide a convenient way to save and
restore the session environment.

You first use the PUSHLEVEL command to establish a level marker. Once the level
marker is established, you use the PUSH command to save the status of dimensions
and the values of options or single-cell variables.

If you place more than one PUSH command between the PUSHLEVEL and
POPLEVEL commands, then all the objects that are specified in those PUSH
commands are restored with a single POPLEVEL command.

By using PUSHLEVEL and POPLEVEL, you save some typing as you write your
program because you only need to type the list of objects once. You also reduce the
risk of omitting an object from the list or misspelling the name of an object.

Example 7–12 Creating Level Markers

For example, you can use the PUSHLEVEL command to establish a level marker
called firstlevel, and then use PUSH to save the current values.

PUSHLEVEL ’firstlevel’
PUSH month DECIMALS ZSPELL

The level marker can be any text that is enclosed in single quotation marks. It can
also be the name of a single-cell ID or TEXT variable, whose value becomes the
name of the level marker. In the exit sections of the program, you can then use the

Preserving the Session Environment

7-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

POPLEVEL command to restore all the values you saved since establishing the
firstlevel marker.

POPLEVEL ’firstlevel’

Example 7–13 Nesting PUSHLEVEL and POPLEVEL Commands

You can nest PUSHLEVEL and POPLEVEL commands to save certain groups of
values in one place in a program and other groups of values in another place in a
program. The next example shows two sets of nested PUSHLEVEL and POPLEVEL
commands.

PUSHLEVEL ’firstlevel’
PUSH PAGESIZE DECIMALS "Saves values in FIRSTLEVEL
 .
 .
 .
PUSHLEVEL ’secondlevel’
PUSH month product "Saves values in SECONDLEVEL
 .
 .
 .
POPLEVEL ’secondlevel’ "Restores values in SECONDLEVEL
 .
 .
 .
POPLEVEL ’firstlevel’ "Restores values in FIRSTLEVEL

Normally, you will not use more than one set of PUSHLEVEL and POPLEVEL
commands in a single program. However, the nesting feature comes into play
automatically when one program calls another program, and each program contains
a set of PUSHLEVEL and POPLEVEL commands.

Using CONTEXT to Save Several Values at Once
As an alternative to using PUSHLEVEL and POPLEVEL, you can use the CONTEXT
command. After you create a context, you can save the current status of dimensions
and the values of options, single-cell variables, valuesets, and single-cell relations in
the context. You can then restore some or all of the object values from the context.
The CONTEXT function returns information about objects in a context.

Handling Errors

Developing Programs 7-23

Handling Errors
A well-designed program handles errors gracefully and reports each error in an
informative way. The OLAP DML provides commands such as TRAP to help you
detect and report errors in your programs.

How An Error Is Signaled
When an error occurs anywhere in a program, the error is signaled. To signal the
error, the following actions are performed.

1. The name of the error is stored in the ERRORNAME option, and the text of the
error message is stored in the ERRORTEXT option.

2. If ECHOPROMPT is YES, then the error message is sent to the current outfile or to
the debugging file, when there is one.

3. If error trapping is off, then the execution of the program is halted. If error
trapping is on, then the error is trapped.

How An Error Is Trapped
To make sure the program works correctly, you should anticipate errors and set up a
system for handling them. You can use the TRAP command to turn on an
error-trapping mechanism in a program. If error trapping is on when an error is
signaled, then the execution of the program is not halted. Instead, error trapping
does the following:

1. Turns off the error-trapping mechanism to prevent endless looping in case
additional errors occur during the error-handling process

2. Branches to the label that is specified in the TRAP command

3. Executes the commands following the label

Handling Errors While Saving the Session Environment
To correctly handle errors that might occur while you are saving the session
environment, place your PUSHLEVEL command before the TRAP command and
your PUSH commands after the TRAP command.

PUSHLEVEL ’firstlevel’
TRAP ON error
PUSH . . .

Handling Errors

7-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

In the abnormal exit section of your program, place the error label (followed by a
colon) and the commands that restore the session environment and handle errors.
The abnormal exit section might look like this.

error:
POPLEVEL ’firstlevel’
OUTFILE EOF

These commands restore saved dimension status and option values and reroute
output to the default outfile.

Suppressing Error Messages
If you do not want to produce the error message that is normally provided for a
given error, then you can use the NOPRINT keyword with the TRAP command.

TRAP ON error NOPRINT

When you use the NOPRINT keyword with TRAP, control branches to the error
label, and an error message is not issued when an error occurs. The commands
following the error label are then executed.

When you suppress the error message, you might want to produce your own
message in the abnormal exit section. The SHOW command produces the text you
specify but does not signal an error.

TRAP ON error NOPRINT
 .
 .
 .
error:
 .
 .
 .
SHOW ’The report will not be produced.’

The program continues with the next command after producing the message.

Identifying the Error That Occurred
All errors have names. Whenever an error is signaled, the error name is stored in
the ERRORNAME option. If you want to perform one set of activities when one type
of error occurs, and a different set of activities if another type of error occurs, then
you can test the value of the ERRORNAME option. The ERRORTEXT option contains a
description of the error.

Handling Errors

Developing Programs 7-25

Creating Your Own Error Messages
All errors that occur when commands or command sequences do not conform to its
requirements are signaled automatically. In your program, you can establish
additional requirements for your own application. When a requirement is not met,
you can execute the SIGNAL command to signal an error.

You can give the error any name. When the SIGNAL command is executed, the error
name you specify is stored in the ERRORNAME option, just as an error name is
stored. If you specify your own error message in the SIGNAL command, then your
message is produced just as an error message is produced. When you are using a
TRAP command to trap errors, a SIGNAL command branches to the TRAP label after
the error message is produced.

Example 7–14 Signaling an Error

Suppose your program produces a report that can present from one to nine months
of data. You can signal an error when the program is called with an argument value
greater than nine. In this example, nummonths is the name of the argument that
must be no greater than nine.

select:
TRAP ON error
PUSH month
LIMIT month TO nummonths
IF STATLEN(month) GT 9
 THEN SIGNAL toomany -
 ’You can specify no more than 9 months.’
REPORT DOWN district W 6 units
finish:
POP month
RETURN
error:
POP month
IF ERRORNAME EQ ’TOOMANY’
 THEN SHOW ’No report produced’

If you want to produce a warning message without branching to an error label, then
you can use the SHOW command.

select:
LIMIT month TO nummonths
IF STATLEN(month) GT 9
 THEN DO
 SHOW ’You can select no more than 9 months.’

Handling Errors

7-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

 GOTO finish
 DOEND
REPORT DOWN district W 6 units
finish:
POP month
RETURN

Handling Errors in Nested Programs
When you write a program that runs another program, the second program is
nested within the first program. The second program might, in turn, run another
nested program.

The error-handling section in each program should restore the environment. It can
also handle any special error conditions that are particular to that program. For
example, if your program signals its own error, then you can include commands
that test for that error.

Any other errors that occur in a nested program should be passed up through the
chain of programs and handled in each program. To pass errors through a chain of
nested programs, you can use one of two methods, depending on when you want
the error message to be produced:

■ The error message is produced immediately, and the error condition is then
passed through the chain of programs.

■ The error is passed through the chain of programs first, and the error message is
produced at the end of the chain.

The SIGNAL command is used in both methods.

Example 7–15 Producing the Error Message Immediately

To produce the error message immediately, use a TRAP command in each nested
program, but do not use the NOPRINT keyword. When an error occurs, an error
message is produced immediately, and execution branches to the trap label.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute a SIGNAL command with the PRGERR
keyword.

SIGNAL PRGERR

When you use the PRGERR keyword with the SIGNAL command, no error message
is produced, and the name PRGERR is not stored in ERRORNAME. The SIGNAL
command signals an error condition that is passed up to the program from which

Handling Errors

Developing Programs 7-27

the current program was run. If the calling program contains a trap label, then
execution branches to that label.

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, you can pass the error condition up through the entire
chain. Each program has commands like these.

TRAP ON error
 .
 . "Body of program and normal exit commands
 .
RETURN
error:
 .
 . "Error-handling and exit commands
 .
SIGNAL PRGERR

Example 7–16 Producing the Error Message at the End of the Chain

To produce the error message at the end of a chain of nested programs, use a TRAP
command with the NOPRINT keyword. When an error occurs in a nested program,
execution branches to the trap label, but the error message is suppressed.

At the trap label, perform whatever error-handling commands you want and
restore the environment. Then execute the following SIGNAL command.

SIGNAL ERRORNAME ERRORTEXT

The ERRORNAME option contains the name of the original error, and the ERRORTEXT
option contains the error message for the original error. The SIGNAL command
shown above passes the original error name and error text to the calling program. If
the calling program contains a trap label, then execution branches to that label.

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, the original error message is produced at the end of the
chain. Each program has commands like these.

TRAP ON error NOPRINT
 .
 . "Body of program and normal exit commands
 .
RETURN

Compiling Programs

7-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

error:
 .
 . "Error-handling and exit commands
 .
SIGNAL ERRORNAME ERRORTEXT

Compiling Programs
You can explicitly compile a program by using the COMPILE command. If you do
not explicitly compile a program, then it is compiled when you run the program for
the first time.

When a program is compiled, it translates the program commands into efficient
processed code that executes much more rapidly than the original text of the
program. If errors are encountered in the program, then the compilation is not
completed, and the program is considered to be uncompiled.

After you compile a program, the compiled code is used each time you run the
program in the current session. When you update and commit your analytic
workspace after compiling a program, the compiled code is saved in your analytic
workspace and used to run the program in future sessions. Therefore, you should
be sure to update and commit after compiling a program. This is particularly critical
when the program is part of an application that is run by many users. Unless the
compiled version of the program is saved in the analytic workspace, the program is
recompiled individually in each user session.

Example 7–17 Using the COMPILE Command

The following is an example of a COMPILE command that compiles the myprog
program.

COMPILE myprog

Suppose you misspell the dimension month in a LIMIT command in the myprog
program.

LIMIT motnh TO LAST 6

When the COMPILE command encounters this command, it produces the following
message.

ERROR: (MXMSERR00) Analytic workspace object MOTNH does not exist.
In DEMO!MYPROG PROGRAM:
limit motnh to last 6

Testing and Debugging Programs

Developing Programs 7-29

You can edit the program to correct the error and then try to compile it again.

Finding Out If a Program Has Been Compiled
You can use the ISCOMPILED choice of the OBJ function to determine whether a
specific program in your analytic workspace has been compiled since the last time it
was modified. The function returns a Boolean value.

SHOW OBJ(ISCOMPILED ’myprogram’)

Programming Methods That Prevent Compilation
Program lines that include ampersand substitution will not be compiled. Any
syntax errors will not be caught until the program is run. A program whose other
lines compiled correctly is considered to be a compiled program.

When your program defines an object and then uses the object in the program, the
program will not compile. COMPILE treats the reference to the object as a
misspelling because the object does not yet exist in the analytic workspace.

Testing and Debugging Programs
Even when your program compiles cleanly, you must also test the program by
running it. Running a program helps you detect errors in commands with
ampersand substitution, errors in logic, and errors in any nested programs.

To test a program by running it, use a full set of test data that is typical of the data
that the program will process. To confirm that you test all the features of the
program, including error-handling mechanisms, run the program several times,
using different data and responses. Use test data that:

■ Falls within the expected range

■ Falls outside the expected range

■ Causes each section of a program to execute

See Also: "Passing Arguments as Text with Ampersand
Substitution" on page 7-9 for information about ampersand
substitution.

Testing and Debugging Programs

7-30 Oracle9i OLAP Developer’s Guide to the OLAP DML

Generating Diagnostic Messages
Each time you run the program, confirm that the program executes its commands in
the correct sequence and that the output is correct. As an aid in analyzing the
execution of your program, you can include SHOW commands in the program to
produce diagnostic or status messages. Then delete the SHOW commands after your
tests are complete.

When you detect or suspect an error in your program or a nested program, you can
track down the error by using the debugging techniques that are described in the
the rest of this section.

Identifying Bad Lines of Code
When you set the BADLINE option to YES, additional information will be produced,
along with any error message when a bad line of code is encountered. When the
error occurs, the error message, the name of the program, and the program line that
triggered the error are sent to the current outfile.

You can edit the specified program to correct the error and then run the original
program.

Example 7–18 Using the BADLINE Option

In a simple program called test, the variable myint1 is divided by zero.

DEFINE test PROGRAM
PROGRAM
VARIABLE myint1 INTEGER
VARIABLE myint2 INTEGER
myint1 = 0
myint2 = 250/myint1
END

If you run the program when the DIVIDEBYZERO option is set to NO, then an error
occurs because division by zero is not allowed. When BADLINE is set to YES, the
following messages are recorded in the current outfile.

ERROR: (MXXEQ01) A division by zero was attempted. Set DIVIDEBYZERO to
YES if you want NA to be returned as the result of division by zero.
In DEMO!TEST PROGRAM:
myint2 = 250/myint1

Testing and Debugging Programs

Developing Programs 7-31

Sending Output to a Debugging File
If your program contains an error in logic, then the program might execute without
producing an error message, but it will execute the wrong set of commands or
produce incorrect results. For example, suppose you write a Boolean expression
incorrectly in an IF command (for example, you use NE instead of EQ). The
program will execute the commands you specified, but it will do so under the
wrong conditions.

To find an error in program logic, you often need to see the order in which the
commands are being executed. One way you can do this is to create a debugging
file and then examine the file to diagnose any problems in your programs.

Creating a debugging file
To create a debugging file, you use the DBGOUTFILE command. The syntax of the
DBGOUTFILE command is shown below.

DBGOUTFILE {EOF|[APPEND] file-id [NOCACHE]}

The command has the following arguments:

■ The EOF keyword specifies that the current debugging file should be closed,
and that debugging output should no longer be sent to a file.

■ The APPEND keyword specifies that the output should be added to the end of an
existing disk file. If you omit this argument and a file exists with the specified
name, then the new output replaces the current contents of the file.

■ The file-id argument specifies the name of the file to receive the debugging
output.

■ The NOCACHE keyword causes the OLAP DML to write to the debugging file
each time it executes a line of code. Without this keyword, file I/O activity is
reduced by saving text and writing it periodically to the file.

For more information about the DBGOUTFILE command, see the entry for the
command in Oracle9i OLAP DML Reference help.

Specifying the contents of the debugging file
Using the DBGOUTFILE command merely creates a file for debugging. To specify
that you want each program line to be sent, as it executes, to the debugging file, set
the PRGTRACE option to YES.

If you want the debugging file to interweave the program lines with both the
program’s input and error messages, then set the ECHOPROMPT option to YES.

Testing and Debugging Programs

7-32 Oracle9i OLAP Developer’s Guide to the OLAP DML

For the syntax of the ECHOPROMPT and PRGTRACE options, see the entry for each
option in Oracle9i OLAP DML Reference help.

Example 7–19 Using a Debugging File

The following commands create a useful debugging file called debug.txt in the
current directory alias.

prgtrace = yes
echoprompt = yes
dbgoutfile ’debug.txt’

After executing these commands, you can run your program as usual. To close the
debugging file, execute this command.

dbgoutfile eof

In the following sample program, the first LIMIT command has a syntax error.

DEFINE ERROR_TRAP PROGRAM
PROGRAM
trap on traplabel
limit month to first badarg
limit product to first 3
limit district to first 3
report sales
traplabel:
signal errorname errortext
END

With PRGTRACE and ECHOPROMPT both set to YES and with DBGOUTFILE set to
send debugging output to a file called debug.txt, the following text is sent to the
debug.txt file when you execute the error_trap program.

(PRG= ERROR_TRAP)
(PRG= ERROR_TRAP) trap on traplabel
(PRG= ERROR_TRAP)
(PRG: ERROR_TRAP) limit month to first badarg
ERROR: BADARG does not exist in any attached database.
(PRG= ERROR_TRAP) traplabel:
(PRG= ERROR_TRAP) signal errorname errortext
ERROR: BADARG does not exist in any attached database.

Working with Models 8-1

8
Working with Models

This chapter describes how to use models to calculate data. It includes the following
topics:

■ Using Models to Calculate Data

■ Creating a Nested Hierarchy of Models

■ Basic Modeling Commands

■ Compiling a Model

■ Running a Model

■ Debugging a Model

■ Modeling for Multiple Scenarios

Using Models to Calculate Data

8-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Using Models to Calculate Data
A model is a set of interrelated equations that can assign results either to a variable
or to a dimension value. For example, in a financial model, you can assign values to
specific line items, such as gross.margin or net.income.

gross.margin = revenue - cogs

If an = command assigns data to a dimension value or refers to a dimension value
in its calculations, then it is called a dimension-based equation. A dimension-based
equation does not refer to the dimension itself, but only to the values of the
dimension. Therefore, if the model contains any dimension-based equations, then
you must specify the name of each of these dimensions in a DIMENSION command
at the beginning of the model.

If a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model. The solution variable is both
a source of data and the assignment target of model equations. It holds the input
data used in dimension-based equations, and the calculated results are stored in
designated values of the solution variable. For example, when you run a financial
model based on the line dimension, you might specify actual as the solution
variable.

Dimension-based equations provide flexibility in financial modeling. Since you do
not need to specify the modeling variable until you solve a model, you can run the
same model with the actual variable, the budget variable, or any other variable
that is dimensioned by line.

Example 8–1 Creating a Model

Suppose that you define a model, called income.calc, that will calculate line
items in the income statement.

define income.calc model
ld Calculate line items in income statement

After defining the model, you can use the MODEL command or the OLAP Worksheet
editor to specify the contents of the model. A model can contain DIMENSION
commands, = commands, and comments. All the DIMENSION commands must

Using Models to Calculate Data

Working with Models 8-3

come before the first equation. For the current example, you can specify the lines
shown in the following model.

DEFINE INCOME.CALC MODEL
LD Calculate line items in income statement
MODEL
DIMENSION line
net.income = opr.income - taxes
opr.income = gross.margin - (marketing + selling + r.d)
gross.margin = revenue - cogs
END

When you write the equations in a model, you can place them in any order. When
you compile the model, either with the COMPILE command or by running the
model, the order in which the model equations are solved is determined. If the
calculated results of one equation are used as input to another equation, then the
equations are solved in the order in which they are needed.

To run the income.calc model and use actual as the solution variable, you
execute the following command.

income.calc actual

If the solution variable has dimensions other than the dimensions on which model
equations are based, then a loop is performed automatically over the current status
list of each of these “extra” dimensions. For example, actual is dimensioned by
month and division, as well as by line. If division is limited to ALL, and
month is limited to OCT96 to DEC96, then the income.calc model is solved for
the three months in the status for each of the divisions.

How Dimension Values Are Treated in a Model
If a model contains an = command that assigns data to a dimension value, then the
dimension is limited temporarily to that value, performs the calculation, and then
restores the initial status of the dimension.

For example, a model might have the following commands.

DIMENSION line
gross.margin = revenue - cogs

Creating a Nested Hierarchy of Models

8-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

If you specify actual as the solution variable when you run the model, then the
following code is constructed and executed.

PUSH line
LIMIT line TO gross.margin
actual = actual(line revenue) - actual(line cogs)
POP line

This behind-the-scenes construction lets you perform complex calculations with
simple model equations. For example, line item data might be stored in the actual
variable, which is dimensioned by line. However, detail line item data might be
stored in a variable named detail.data, with a dimension named
detail.line.

If your analytic workspace contains a relation between line and detail.line,
which specifies the line item to which each detail item pertains, then you might
write model equations such as the following ones.

revenue = total(detail.data line)
expenses = total(detail.data line)

The relation between detail.line and line is used automatically to aggregate
the detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the line
dimension. For example, while the equation for the revenue item is calculated,
line is temporarily limited to revenue, and the TOTAL function returns the total
of detail items for the revenue value of line.

Creating a Nested Hierarchy of Models
The INCLUDE command allows you to include one model within another model. A
model can contain only one INCLUDE command. The INCLUDE command must
come before any equations in the model, and it can specify the name of just one
model to include. The model that contains the INCLUDE command is referred to as
the parent model. The included model is referred to as the base model.

You can nest models by placing an INCLUDE command in a base model. For
example, model m1 can include model m2, and model m2 can include model m3. The
nested models form a hierarchy. In this example, m1 is at the top of the hierarchy,
and m3 is at the root.

Basic Modeling Commands

Working with Models 8-5

Working with the INCLUDE Command
If a model contains an INCLUDE command, then it cannot contain any DIMENSION
commands. A parent model inherits its dimensions, if any, from the DIMENSION
commands in the root model of the included hierarchy. In the example just given,
models m1 and m2 both inherit their dimensions from the DIMENSION commands in
model m3.

The INCLUDE command allows you to create modular models. If certain equations
are common to several models, then you can place these equations in a separate
model and include that model in other models as needed.

The INCLUDE command also facilitates what-if analyses. An experimental model
can draw equations from a base model and selectively replace them with new
equations. To support what-if analysis, you can use equations in a model to mask
previous equations. The previous equations can come from the same model or from
included models. A masked equation is not executed.

After you compile a model, either by running it or by using the COMPILE
command, you can run an OLAP DML program called MODEL.COMPRPT to
produce a report on the structure of the compiled model. If you run
MODEL.COMPRPT after compiling a model that contains a masked equation, then
you will find that the masked equation is not shown in the report.

Basic Modeling Commands
The following table lists the most common OLAP DML commands that you will use
when you define and run models.

Command Description

DEFINE Adds a new model to an analytic workspace.

MODEL Specifies completely new contents for a new or existing model.

DIMENSION Lists one or more dimensions that are referred to in dimension-based
equations in the model.

INCLUDE Specifies a base model to include in the parent model.

= Performs a calculation and assigns the result to a target. The target can be
a variable or it can be represented by a dimension value.

COMPILE Compiles a model without running it and saves the compiled code in the
workspace. If you run a new or revised model without first compiling it,
then the model is compiled automatically at that time.

Basic Modeling Commands

8-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Writing Equations in a Model
When you write the equations in a model, you should keep these points in mind:

■ Within a single dimension-based equation, all the dimension values must
belong to the same dimension.

■ You cannot use ampersand substitution in model equations.

Writing DIMENSION and INCLUDE Commands
When you write DIMENSION and INCLUDE commands, you should keep these
points in mind:

■ Any DIMENSION commands or INCLUDE command must come before the first
equation in a model.

■ In the DIMENSION commands, you must list the names of all the dimensions on
which model equations are based. In the following example, gross.margin,
revenue, and cogs are values of the line dimension, so line is specified in a
DIMENSION command.

DIMENSION line
gross.margin = revenue - cogs

■ DIMENSION commands must also list any dimension that is an argument to a
function that refers to a dimension value. In the following example, month
must be specified in a DIMENSION command.

DIMENSION line, month
revenue = LAG(revenue, 1, month) * 1.05

■ If a model contains an INCLUDE command, then it cannot contain any
DIMENSION commands. The included model (or the root model in a hierarchy)
must contain the DIMENSION commands needed by the parent model(s).

■ If a model equation assigns results to a dimension value, then code is
constructed that loops over the values of any of the other nontarget dimensions
listed in the DIMENSION commands. The nontarget dimension listed first in the
DIMENSION commands is treated as the slowest-varying dimension.

■ A model will execute most efficiently when you observe the following
guidelines for coordinating the dimensions in DIMENSION commands and the
dimensions of the solution variable:

Compiling a Model

Working with Models 8-7

■ List the target dimension of the model as the first dimension in the
DIMENSION commands and as the last dimension in the definition of the
solution variable.

■ In DIMENSION commands, list the nontarget dimensions in the reverse order
of their appearance in the definition of the solution variable. This means
that the nontarget dimensions will have the same order in the model and in
the solution variable in terms of fastest-varying and slowest-varying
dimension.

■ If the solution variable has dimensions that are not used or referred to in model
equations, then do not include them in DIMENSION commands.

■ If your analytic workspace contains a variable whose name is the same as a
dimension value, or if the same dimension value exists in two different
dimensions, then there could be ambiguities in your model equations. Since you
can use a variable and a dimension value in exactly the same way in a model
equation, a name might be the name of a variable, or it might be a value of any
dimension in your analytic workspace.

■ Your DIMENSION commands are used to determine whether each name
reference in an assignment statement (that is, the = command) is a variable or a
dimension value. "Compiling a Model" on page 8-7 explains how the name
references are resolved.

Compiling a Model
When you finish writing the commands in a model, you can use the COMPILE
command to compile the model. During compilation, COMPILE checks for format
errors, so you can use COMPILE to help debug your code before running a model. If
you do not use the COMPILE command before you run the model, then the model
will be compiled automatically before it is solved.

When you compile a model, either by using the COMPILE command or by running
the model, the model compiler examines each equation to determine whether the
assignment target and each data source is a variable or a dimension value.

To resolve each name reference, the following procedure is used.

1. The dimensions in the DIMENSION commands are searched, in the order they
are listed, to determine whether the name matches a dimension value of a listed
dimension. The search concludes as soon as a match is found.

2. If the name does not match a value of a listed dimension, then the variables in
the attached analytic workspaces are searched to find a match.

Compiling a Model

8-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

After resolving each name reference, the model compiler analyzes dependencies
between the equations in the model. A dependence exists when the expression on
the right-hand side of the equal sign in one equation refers to the assignment target
of another equation. If an = command indirectly depends on itself as the result of
the dependencies among equations, then a cyclic dependence exists between the
equations.

The model compiler structures the equations into blocks and orders the equations
within each block, and the blocks themselves, to reflect dependencies. The compiler
can produce three types of solution blocks: simple blocks, step blocks, and
simultaneous blocks.

Simple Blocks
Simple blocks include equations that are independent of each other and equations
that have dependencies on each other that are noncyclic.

If a block contains equations that solve for values A, B, and C, then a noncyclic
dependence can be illustrated as shown below where the arrows indicate that A
depends on B, and B depends on C.

Step Blocks
Step blocks include equations that have a cyclic dependence that is a one-way
dimensional dependence. A dimensional dependence occurs when the data for the
current dimension value depends on data from previous or later dimension values.
The dimensional dependence is one way when the data depends on previous values
only or later values only, but not both.

Dimensional dependence typically occurs over a time dimension. For example, it is
common for a line item value to depend on the value of the same line item or a
different line item in a previous time period. If a block contains equations that solve
for values A and B, then a one-way dimensional dependence can be illustrated as
shown in the figure below where arrows indicate that A depends on B, and B
depends on the value of A from a previous time period.

A B C

A B LAG(A)

Running a Model

Working with Models 8-9

Simultaneous Blocks
Simultaneous blocks include equations that have a cyclic dependence that is other
than one-way dimensional. The cyclic dependence may be two-way dimensional, or
it may involve no dimensional qualifiers at all.

An example of a cyclic dependence that is two-way dimensional can be illustrated
as shown below where the arrows indicate that A depends on the value of B from a
future period, while B depends on the value of A from a previous period.

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as shown below where the arrows indicate that A
depends on B and B depends on A.

Running a Model
When you run a model, you should keep these points in mind:

■ Before you run a model, the input data must be available in the solution
variable. For example, before running the income.calc model (shown earlier
in this chapter) with actual as the solution variable, you must have current
data in the revenue, cogs, marketing, selling, r.d, and taxes line items
of actual.

■ Before running a model that contains a block of simultaneous equations, you
might want to check or modify the values of some OLAP DML options that
control the solution of simultaneous blocks. Simultaneous equations are
discussed in the section entitled "Solving Simultaneous Equations" on
page 8-10.

■ If your model contains any dimension-based equations, then you must provide
a numeric solution variable that serves both as a source of data and as the
assignment target for equation results. The solution variable is usually
dimensioned by all the dimensions on which model equations are based, and it
can have “extra” dimensions as well.

■ When you run a model, a loop is performed automatically over the values in
the current status list of each of the extra dimensions of the solution variable.

 A LEAD(B) LAG(A)

A B A

Running a Model

8-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ If a model equation bases its calculations on data from previous time periods
(for example, if you use a LAG function), then the solution variable must contain
data for these previous periods. If it does not, or if the first value of the time
dimension is in the status, then the results of the calculation will be NA.

Using Data from Past and Future Time Periods
Several OLAP DML functions make it easy for you to use data from past or future
time periods. For example, the LAG function returns data from a specified previous
time period, and the LEAD function returns data from a specified future period. The
Oracle9i OLAP DML Reference help lists some built-in functions that are useful in
analyzing financial data.

When you run a model that uses past or future data in its calculations, you must
make sure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement (that is, the = command)
that bases an estimate of the revenue line item for the current month on the
revenue line item for the previous month.

DIMENSION line month
.
.
.
revenue = LAG(revenue, 1, month) * 1.05

If the month dimension is limited to apr96 to jun96 when you run the model,
then you must be sure that the solution variable contains revenue data for mar96.

If your model contains a LEAD function, then your solution variable must contain
the necessary future data. For example, if you want to calculate data for the months
of April through June of 1996, and if the model retrieves data from one month in the
future, then the solution variable must contain data for July 1996 when you run the
model.

Solving Simultaneous Equations
An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation, and compares the new value to the
value from the previous iteration. If the comparison falls within a specified
tolerance, then the equation is considered to have converged to a solution. If the
comparison exceeds a specified limit, then the equation is considered to have
diverged.

Debugging a Model

Working with Models 8-11

If all the equations in the block converge, then the block is considered solved. If any
equation diverges or fails to converge within a specified number of iterations, then
the solution of the block (and the model) fails and an error occurs.

You can use OLAP DML options to exercise control over the solution of
simultaneous equations. For example, you can specify the solution method to use,
the factors to use in testing for convergence and divergence, the maximum number
of iterations to perform, and the action to take when the = command diverges or
fails to converge.

Debugging a Model
The OLAP DML provides an assortment of tools that will help you debug your
models. These tools are listed in the following table.

Tool Purpose

MODTRACE An option that controls whether each line of a model is sent to
the current outfile while you run the model. When MODTRACE is
set to YES, the model lines are shown, and you can observe the
order in which the equations are solved.

DBGOUTFILE A command that creates a debugging file to which the MODTRACE
output is sent. For information about this command see "Sending
Output to a Debugging File" on page 7-31.

MODEL.COMPRPT A program that produces a report on the structure of a compiled
model. The report shows how model equations are grouped into
blocks.

MODEL.DEPRPT A program that produces a report on the dependencies in model
equations. The report lists the assignment target and data sources
for each equation and specifies any dimensions of the
dependencies in the equation.

MODEL.XEQRPT A program that produces a report on the solution status of a
model. If the model contains simultaneous equations, then the
report specifies the values of the options that control
simultaneous solutions.

INFO A function that lets you obtain specific information about a
model that you have compiled or executed.

Modeling for Multiple Scenarios

8-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Modeling for Multiple Scenarios
Instead of calculating a single set of figures for a month and division, you might
want to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget
figures based on different sets of input figures. For example, you might want to
calculate profit based on “optimistic,” “pessimistic,” and “best-guess” figures.

Building a Scenario Model
To build a scenario model, follow these steps.

1. Define a scenario dimension.

2. Define a solution variable dimensioned by the scenario dimension.

3. Enter input data into the solution variable.

4. Write a model to calculate results based on the input data.

Suppose, for example, you want to calculate profit figures based on optimistic,
pessimistic, and best-guess revenue figures for each division. The steps for building
this scenario model are explained in the following example.

Example 8–2 Building a Scenario Model

You can call the scenario dimension scenario and give it values that represent the
scenarios you want to calculate.

These commands give scenario the values optimistic, pessimistic and
bestguess.

DEFINE scenario DIMENSION TEXT
LD Names of scenarios
MAINTAIN scenario ADD optimistic pessimistic bestguess

These commands create a variable named plan dimensioned by three other
dimensions (month, line, and division) in addition to the scenario
dimension.

DEFINE plan DECIMAL <month line division scenario>
LD Scenarios for financials

For this example, you need to enter input data, such as revenue and cost of goods
sold, into the plan variable.

Modeling for Multiple Scenarios

Working with Models 8-13

For the best-guess data, you can use the data in the budget variable. Limit the
line dimension to the input line items, and then copy the budget data into the
plan variable.

LIMIT scenario TO ’BESTGUESS’
LIMIT line TO ’REVENUE’ ’COGS’ ’MARKETING’ ’SELLING’ ’R.D’
plan = budget

You might want to base the optimistic and pessimistic data on the best-guess data.
For example, optimistic data might be 15 percent higher than best-guess data, and
pessimistic data might be 12 percent less than best-guess data. With line still
limited to the input line items, execute the following commands.

plan(scenario ’OPTIMISTIC’) = 1.15 * plan(scenario ’BESTGUESS’)
plan(scenario ’PESSIMISTIC’) = .88 * plan(scenario ’BESTGUESS’)

The final step in building a scenario model is to write a model that calculates results
based on input data. The model might contain calculations very similar to those in
the budget.calc model shown earlier in this chapter.

You can use the same equations for each scenario or you can use different equations.
For example, you might want to calculate the cost of goods sold and use a different
constant factor in the calculation for each scenario. To use a different constant factor
for each scenario, you can define a variable dimensioned by scenario and place
the appropriate values in the variable. If the name of your variable is cogsval,
then your model might include the following equation for calculating the cogs line
item.

cogs = cogsval * revenue

By using variables dimensioned by scenario, you can introduce a great deal of
flexibility into your scenario model.

Similarly, you might want to use a different constant factor for each division. You
can define a variable dimensioned by division to hold the values for each
division. For example, if labor costs vary from division to division, then you might
dimension cogsval by division as well as by scenario.

When you run your model, you specify plan as the solution variable. For example,
if your model is called scenario.calc, then you solve the model with this
command.

scenario.calc plan

Modeling for Multiple Scenarios

8-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

A loop is performed automatically over the current status list of each of the
dimensions of plan. Therefore, if the scenario dimension is limited to ALL when
you run the scenario.calc model, then the model is solved for all three
scenarios: optimistic, pessimistic, and bestguess.

Allocating Data 9-1

9
Allocating Data

This chapter describes how to use the ALLOCATE command to allocate data from a
source to a target variable. This chapter includes the following topics:

■ Introduction to Allocation

■ Preparing for an Allocation

■ Creating an Aggregation Map for Allocation

■ Using the Allocation Operators and Arguments

Introduction to Allocation

9-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Introduction to Allocation
The Oracle OLAP ALLOCATE command distributes data from a source object to the
cells of a target. The target is a variable that is dimensioned by one or more
hierarchical dimensions. The source data is specified by dimension values at a
higher level in a hierarchical dimension than the values that specify the target cells.

ALLOCATE uses an aggregation map to specify the dimensions and the values of the
hierarchies to use in the allocation, the method of operation to use for a dimension,
and other aspects of the allocation.

Some of the allocation operations are based on existing data. The object containing
that data is the basis object for the allocation. In those operations, ALLOCATE
distributes the data from the source based on the values of the basis object.

Forecasting and budgeting systems often use allocation in operations such as the
automatic distribution of a bonus pool with the amounts based on the current salary
and performance ratings of the employee.

An allocation is the opposite of an aggregation that you perform with the
AGGREGATE command. In an aggregation, the data at lower levels of a hierarchy is
combined into data at higher levels. In an allocation, data at a higher level in the
hierarchy is distributed to lower levels.

The ALLOCATE command has operations that are the inverse of the operations of
the AGGREGATE command. Figure 9–1 shows an aggregation up a simple hierarchy.
In a SUM operation, the aggregation adds the detail level values 2, 3, and 4 to derive
the value 9 at the aggregate level.

Figure 9–1 Aggregation in a Simple Hierarchy

As an example of an allocation, you could take the aggregate value 9, double it to
18, and allocate the results to the detail level with the previous values of the detail
level cells as the basis of the allocation. In Figure 9–2 the hierarchy on the left shows

9

2 3 4

Introduction to Allocation

Allocating Data 9-3

the result of an EVEN allocation operation, in which the source value is distributed
evenly. Each detail level cell receives a value of 6. The hierarchy on the right shows
a PROPORTIONAL allocation operation, in which the source value is distributed
proportionately. The values allocated to the detail level are 4, 6 and 8.

Figure 9–2 Allocation in a Simple Hierarchy

The allocation operation methods range from simple allocations, such as copying
the source data to the cells of the target variable, to very complex allocations, such
as a proportional distribution of data from a source that is a formula, with the
amount distributed being based on another formula, with multiple variables as
targets, and with an aggregation map that specifies different methods of allocation
for different dimensions.

The Oracle OLAP allocation system is very flexible and has many features,
including the following:

■ The source, basis, and target objects can be the same variable or they can be
different objects.

■ The source and basis objects can be formulas, so you can perform computations
on existing data and use the result as the source or basis of the allocation.

■ You can specify the method of operation of the allocation for a dimension. The
operations range from simple to very complex. The operations of the allocation
system are the inverse of the aggregation operations.

■ You can specify whether the allocated value is added to or replaces the existing
value of the target cell.

■ You can specify an amount to add to or multiply by the allocated value before
the result is assigned to the target cell.

18

6 6 6

18

4 6 8

Introduction to Allocation

9-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ You can lock individual values in a dimension hierarchy so that the data of the
target cells for those dimension values is not changed by the allocation. If you
lock a dimension value, then the allocation system normalizes the source data,
which subtracts the locked data from the source before the allocation. You can
choose to not normalize the source data.

■ You can specify minimum, maximum, floor, or ceiling values for certain
operations.

■ You can copy the allocated data to a second variable so that you can have a
record of individual allocations to a cell that is the target of multiple allocations.

■ You can specify ways of handling allocations when the basis has a null value.

■ You can use the same aggregation map in different ALLOCATE commands to use
the same set of dimension hierarchy values, operations, and arguments with
different source, basis, or target objects.

Along with the ALLOCATE command, the OLAP DML contains other commands
that support allocation. Table 9–1 lists those commands.

The remainder of this chapter describes the objects that you use to allocate data and
the types of allocation operations, and provides examples of various allocations.

Table 9–1

Command Description

AGGMAPINFO command Returns information about the contents of an aggregation map
object, such as the type of the aggregation map, which
indicates whether it contains commands for aggregation or
allocation.

ALLOCATE command Allocates data from a source object to a target variable.

ALLOCERRLOGFORMAT
command

Determines the contents and the formatting for the error log
that you specify with the ERRORLOG argument to the
ALLOCATE command.

ALLOCERRLOGHEADER
command

Determines the column headings for the error log.

ALLOCMAP command Adds contents to an aggmap object that specify the path of the
allocation down a dimension hierarchy, the method of
operation, and other aspects of the allocation. Marks the object
as an ALLOCMAP type aggregation map.

POUTFILEUNIT option Identifies a location that receives information on the progress
of an ALLOCATE command.

Creating an Aggregation Map for Allocation

Allocating Data 9-5

Preparing for an Allocation
To prepare for allocating data, you decide on the data to allocate, the data on which
to base the allocation, and the variable cells to which you want to assign the
allocated data. You determine or create objects that contain or produce the data.

The target must be a variable that is dimensioned by one or more hierarchical
dimensions. The source is a variable or a formula and the basis is a formula, a
relation, or a variable. The source, basis, and target can all be the same variable.

You also decide whether to use a target log object to keep a copy of the allocation
and whether to specify a file to log errors. For a target log, you use a variable and
for the error log you specify a fileunit.

You create an aggregation map to use for the allocation. The contents of the
aggregation map specify the dimensions and the values of the dimension
hierarchies to use in the allocation, the method of operation, and other aspects of
the allocation.

You specify the values of the dimension hierarchies to use in the allocation with a
relation object. If you do not already have a relation that specifies the child-parent
relations from the hierarchy that you want to use in the allocation, then you create a
self-relation, which is a relation on the dimension dimensioned by the same
dimension. The child-parent relationships that you assign to the relation specify the
path of the allocation.

Creating an Aggregation Map for Allocation
An aggregation map for allocation contains commands that specify relations that
define the path of an allocation through a dimension hierarchy, the method of the
allocation operation, and other aspects of the allocation. To create an aggregation
map you define an aggmap object with the DEFINE command or specify an existing
aggregation map with the CONSIDER command. You then use the ALLOCMAP
command to add commands to the aggregation map and to mark it as an
ALLOCMAP type aggregation map.

You can add the following commands to an ALLOCMAP aggregation map:

■ One or more RELATION commands

■ A CHILDLOCK command

■ A DEADLOCK command

■ A DIMENSION command

Creating an Aggregation Map for Allocation

9-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ An ERRORLOG command

■ An ERRORMASK command

■ A SOURCEVAL command

A RELATION command specifies a self-relation that identifies the child-parent
relationships of a dimension hierarchy that you want to use in the allocation. You
use a separate RELATION command for each dimension that you want to
participate in the allocation. The order of the RELATION commands in the
aggregation map determines the order of the allocation.

With a RELATION command you specify an operator that determines the method of
the allocation for the hierarchy. The RELATION command also has arguments with
which you can specify other aspects of an allocation. For example, you can use the
ARGS MIN minval argument to specify a value that the allocation assigns to the
target cell if the allocated value is below a minimum value. You can use the ARGS
ADD argument to specify that the allocation adds the allocated data to the current
data of the target cell before assigning the result to the cell instead of replacing the
current data with the allocated data.

The CHILDLOCK command tells the ALLOCATE command whether to determine if
RELATION commands in the aggregation map specify locks on both a parent and a
child element of a dimension hierarchy.

The DEADLOCK command tells the ALLOCATE command whether to continue an
allocation if it encounters a deadlock, which occurs when the allocation cannot
distribute a value because the targeted cell is locked or, for some operations, has a
basis value of NA.

The DIMENSION command specifies a single value to set as the status of a
dimension that is not shared by the target variable and the source or the basis
objects.

The ERRORLOG command specifies how many errors to allow in the error log
specified by the ALLOCATE command and whether to continue the allocation if the
maximum number of errors has occurred.

The ERRORMASK command specifies which error conditions to exclude from the
error log.

The SOURCEVAL command specifies whether ALLOCATE changes the source data
value after the allocation. You use SOURCEVAL only if the source is a variable. With
SOURCEVAL you can specify that the value of the source after the allocation is zero
or NA or the current value, which is the value that the cell had before the allocation.

Using the Allocation Operators and Arguments

Allocating Data 9-7

In a recursive allocation, ALLOCATE applies the value specified by SOURCEVAL to
any cell used as a source in the allocation.

Using the Allocation Operators and Arguments
With the OPERATOR argument to a RELATION command in an aggregation map for
allocation, you must specify a method of operation for the allocation. The methods
of operation fall into the following categories:

■ Copy operators

■ Even distribution operators

■ Proportional distribution operator

The copy operators are COPY, HCOPY, MIN, MAX, FIRST, LAST, HFIRST, and HLAST.
The even distribution operators are EVEN and HEVEN, and the proportional
distribution operator is PROPORTIONAL.

The H versions of the operators are hierarchical operators that allocate data based
on the hierarchical relationships specified in the relation object. The nonhierarchical
operators, such as COPY and EVEN, do not assign a value to a target cell if the basis
value for that cell is NA.

The hierarchical operators do not use basis values. Instead, they allocate data to all
of the values in the dimension hierarchy specified by the relation even if the existing
value of the target cell is NA. You must use the hierarchical operators carefully
because they assign values to cells that have an NA basis and can therefore cause a
huge increase in the detail level data.

With a RELATION command, you can also use the ARGS keyword to specify
arguments that affect the allocation. With the arguments you can specify the
following:

■ A minimum or maximum value for the allocation to assign to the target cells.

■ A floor or ceiling value so that if the allocated value is below the floor or above
the ceiling value, then ALLOCATE assigns NA to the target cell.

■ Whether to add the allocated value to the existing value or to replace the
existing value with the allocated value.

■ Locks on the cells of the target variable that are specified by the dimension
values in a valueset object. The PROTECT argument protects the existing values
of the cells and prevents them from being targets of the allocation. You can also
specify whether the locked cell can be a source in the allocation. For example, if

Using the Allocation Operators and Arguments

9-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

the valueset specifies a dimension value that is at an intermediate level in the
dimension hierarchy and you use the WRITE keyword, then ALLOCATE uses the
locked value as the source that it allocates down the hierarchy. If you use the
READWRITE keyword, then ALLOCATE does not continue the allocation down
that branch of the hierarchy. You can also specify whether to normalize the
source value, which subtracts the locked value from the source before the
allocation.

■ A weighting object that specifies a value that ALLOCATE adds to or multiplies
by the allocated value before assigning the resulting value to the target cell. You
can also specify whether to fill an NA value before applying the weighting
factor.

Using the HEVEN and MAX Operators and the ADD Argument
The HEVEN operator allocates source data evenly to the target cells without
considering a basis value. The MAX operator allocates the source value to the target
cell that corresponds to the highest basis value. Example 9–1 demonstrates the use
of these operators and of the ADD argument in a multidimensional allocation. The
allocation path is directly from higher to lower values in the dimension hierarchies,
with no allocation to intermediate hierarchy values.

The fcstunits variable is dimensioned by the hierarchical dimensions time,
geog, and product. The dimensions are limited to one product, a few cities and
regions, and the year 2002 and four months of 2002.

The cells of fcstunits that are dimensioned by the lower hierarchical dimension
values, which are the cities and the months, have values assigned to them. Those
values are forecasts of the number of product units to ship to those cities in those
months. In the cells dimensioned by the higher hierarchical dimension values,
which are the YEAR02 and the region values, are additional product units to
allocate to the cities and months.

A report of the fcstunits variable produces the following.

PRODUCT: SHORTS - BOYS
 -----------------FCSTUNITS-----------------
 -------------------TIME--------------------
GEOG YEAR02 JUN02 JUL02 AUG02
-------------- ---------- ---------- ---------- ----------
EAST 755 NA NA NA
WEST 515 NA NA NA
CENTRAL 625 NA NA NA
BOSTON NA 5,760 5,690 4,750
ATLANTA NA 7,600 8,520 7,300

Using the Allocation Operators and Arguments

Allocating Data 9-9

CHICAGO NA 4,660 4,840 5,120
DALLAS NA 8,380 9,380 8,150
DENVER NA 5,400 6,080 5,170
SEATTLE NA 7,210 7,490 7,310

The geogcityreg relation relates the city values to the regions. The
timemonthyear relation relates the month values to the year. Reports of the
relations produce the following.

GEOG GEOGCITYREG
--------- -----------
EAST NA
WEST NA
CENTRAL NA
BOSTON EAST
ATLANTA EAST
CHICAGO CENTRAL
DALLAS CENTRAL
DENVER WEST
SEATTLE WEST

TIME TIMEMONTHYEAR
------ -------------
YEAR02 NA
JUN02 YEAR02
JUL02 YEAR02
AUG02 YEAR02

The first RELATION command in the xunitsalloc aggregation map specifies that
the first allocation occurs down the geog dimension hierarchy specified by the
geogcityreg relation. The allocation evenly divides the values from the cells
dimensioned by YEAR02 and the region values and assigns the results to the
children of the regions. The REMOPERATOR LAST keywords assign any remainder
from the division to the last cell.

The values allocated to the regions in the first allocation do not appear in the report
of the variable after the ALLOCATE command completes because the SOURCEVAL
command in xunitsalloc specifies that ALLOCATE assign a zero value to cells
that contained source values for the allocation. The region data allocated to the
cities for YEAR02 is BOSTON 377, ATLANTA 378, CHICAGO 312, DALLAS 313,
DENVER 257, and SEATTLE 258.

The second RELATION command in xunitsalloc specifies that a second
allocation occur down the time dimension hierarchy specified by the
timemonthyear relation. The source values of the allocation are the values of the

Using the Allocation Operators and Arguments

9-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

cells dimensioned by YEAR02 and a city value. The allocation assigns each source
value to the month that has the highest value for that city.

The ALLOCATE command in the example specifies only the fcstunits variable.
Therefore, that variable is the source, the basis, and the target of the allocation. The
command also specifies that the allocation use the xunitsalloc aggregation map.

Example 9–1 A Multidimensional Allocation Using the HEVEN and MAX Operators

LIMIT product TO ’SHORTS - BOYS’
LIMIT geog TO ’EAST’ ’WEST’ ’CENTRAL’ -
 ’BOSTON’ ’ATLANTA’ ’CHICAGO’ ’DALLAS’ ’DENVER’ ’SEATTLE’
LIMIT time TO ’YEAR02’ ’JUN02’ TO ’AUG02’
DEFINE xunitsalloc AGGMAP
ALLOCMAP JOINLINES(-
 ’RELATION geogstcity OPERATOR HEVEN REMOPERATOR LAST’ -
 ’RELATION timemonthyear OPERATOR MAX ARGS ADD’ -
 ’SOURCEVAL ZERO’)
ALLOCATE fcstunits USING xunitsalloc
REPORT fcstunits

The REPORT of the fcstunits variable after the allocation produces the following.

PRODUCT: SHORTS - BOYS
 -----------------FCSTUNITS-----------------
 -------------------TIME--------------------
GEOG YEAR02 JUN02 JUL02 AUG02
-------------- ---------- ---------- ---------- ----------
EAST 0 NA NA NA
WEST 0 NA NA NA
CENTRAL 0 NA NA NA
BOSTON 0 6,137 5,690 4,750
ATLANTA 0 7,600 8,898 7,300
CHICAGO 0 4,660 4,840 5,432
DALLAS 0 8,380 9,693 8,150
DENVER 0 5,400 6,337 5,170
SEATTLE 0 7,210 7,748 7,310

Using the COPY Operator and the PROTECT Argument
Example 9–2 demonstrates the recursive copying of source data that is specified by
a parent in a dimension hierarchy. The data is allocated to children of the parent and
then that allocated data is the source of the allocation to the children of those
children. It also demonstrates a second allocation in which different source data is
copied to only one child and to its children.

Using the Allocation Operators and Arguments

Allocating Data 9-11

The unitcost variable is dimensioned by time and prodid. The prodid
dimension is a NUMBER dimension that has product identification numbers as
values. The first LIMIT command sets the status of the prodid dimension to one
value. The next LIMIT command sets the status of the time dimension to the year
2002, the first two quarters of 2002, and the first six months of 2002.

The YEAR02 cell of unitcost for the product is assigned the source value. A report
of unitcost produces the following.

 -UNITCOST-
 --PRODID--
TIME 45285
-------------- ----------
YEAR02 34.25
Q1.02 NA
Q2.02 NA
JAN02 NA
FEB02 NA
MAR02 NA
APR02 NA
MAY02 NA
JUN02 NA

Example 9–2 defines the costalloc aggregation map and adds contents to it with
the ALLOCMAP command. The RELATION command specifies the timeparent
relation as the path for the allocation and the HCOPY operator as the method. The
timeparent relation relates the children in the time dimension hierarchy to their
parents.

The ALLOCATE command uses the unitcost variable as the source and the target
of the allocation. Because the method is HCOPY, the allocation does not use a basis
object.

A report of unitcost after the first allocation produces the following.

 -UNITCOST-
 --PRODID--
TIME 45285
-------------- ----------
YEAR02 34.25
Q1.02 34.25
Q2.02 34.25
JAN02 34.25
FEB02 34.25
MAR02 34.25
APR02 34.25

Using the Allocation Operators and Arguments

9-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

MAY02 34.25
JUN02 34.25

The example then changes the source value for YEAR02. It defines a valueset and
limits the value of it to Q1.02.

The second ALLOCMAP command changes the contents of the aggregation map. The
RELATION command specifies the same relation and COPY operation but it also
specifies the PROTECT argument. The SOURCEVAL command specifies that the cells
that contained source data are assigned a value of zero after the data is allocated.

The second allocation copies the value from the YEAR02 cell, but it locks the Q1.02
child and its children so that only the Q2.02 child and its children receive the
allocated value.

A report of unitcost after the second allocation produces the following.

 -UNITCOST-
 --PRODID--
TIME 45285
-------------- ----------
YEAR02 0.00
Q1.02 34.25
Q2.02 35.00
JAN02 34.25
FEB02 34.25
MAR02 34.25
APR02 35.00
MAY02 35.00
JUN02 35.00

Example 9–2 Using the COPY Operator with the PROTECT Argument

LIMIT prodid TO 45285
LIMIT time TO ’YEAR02’ ’Q1.02’ ’Q2.02’ ’JAN02’ TO ’JUN02’

unitcost(time ’YEAR02’ prodid 45285) = 34.25

DEFINE costalloc AGGMAP
ALLOCMAP ’RELATION timeparent OPERATOR HCOPY’
ALLOCATE unitcost USING costalloc

unitcost(time ’YEAR02’ prodid 45285) = 35.00

DEFINE lvset VALUESET time
LIMIT lvset TO ’Q1.02’

Using the Allocation Operators and Arguments

Allocating Data 9-13

CONSIDER costalloc
ALLOCMAP JOINLINES(-
 'RELATION timeparent OPERATOR COPY ARGS PROTECT NONORMALIZE lvset’ -
 'SOURCEVAL ZERO')
ALLOCATE unitcost USING costalloc

Using the HFIRST and HLAST Operators
Use the HFIRST and HLAST operators when you want to allocate data to the first or
last child of a parent without considering a basis value. Example 9–3 assigns cash
balance forward and cash forward data from the actual variable to the budget
variable and then allocates the data from the budget cell specified by a parent
time value to one specified by a child time value.

The actual and budget variables are dimensioned by the time, line, and
product dimensions. The timeparent relation relates values of children in the
time dimension to their parents.

The first LIMIT commands set the status of the time and line dimensions and
limit the product dimension to one value. A report of the actual variable with
that dimension status produces the following.

PRODUCT: DRESSES - WOMEN
 -----------------------ACTUAL-------------------------
 -------------------------TIME-------------------------
LINE Q4.01 JAN02 FEB02 MAR02 Q1.02
--------- ---------- ---------- ---------- ---------- ----------
CASH B/F 1,000.00 NA NA NA NA
CASH MVT 500.00 NA NA NA NA
CASH C/F 1,500.00 NA NA NA NA

The source data for the allocation is assigned from the cash forward line of the
actual variable to the cash balance forward line of the budget variable. The next
LIMIT command limits the line dimension to CASH B/F to restrict the allocation
to that value. Example 9–3 then defines an aggregation map and adds contents to it
with the ALLOCMAP command. The contents are a single RELATION command that
specifies the HFIRST operator. The ALLOCATE command allocates the data from the
Q1.02 parent to its first child, JAN02.

Forecasting a fifty per cent increase in the cash forward amount by the end of the
quarter, the example multiplies by 1.5 the value from the Q4.01 cash forward line
of the actual variable and assigns the result to the Q1.02 cash forward line of the

Using the Allocation Operators and Arguments

9-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

budget variable. The CONSIDER and ALLOCMAP commands change the contents of
the aggregation map so that the RELATION command specifies the HLAST operator.

The line dimension is limited to cash forward and then the ALLOCATE command
allocates the data from the Q1.02 parent to its last child, MAR02. Finally, the last
LIMIT command resets the status of the line dimension. A report of the budget
variable after the allocation produces the following.

PRODUCT: DRESSES - WOMEN
 ------------------------BUDGET------------------------
 -------------------------TIME-------------------------
LINE Q4.01 JAN02 FEB02 MAR02 Q1.02
--------- ---------- ---------- ---------- ---------- ----------
CASH B/F NA 1,500.00 NA NA 1,500.00
CASH MVT NA NA NA NA NA
CASH C/F NA NA NA 2,250.00 2,250.00

Example 9–3 Allocating Data to the First and Last Children of a Parent

LIMIT time TO ’Q4.01’ ’JAN02’ TO ’MAR02’ ’Q1.02’
LIMIT line TO ’CASH B/F’ ’CASH MVT’ ’CASH C/F’
LIMIT product TO ’DRESSES - WOMEN’

" Assign the value of actual Q4.01 CASH C/F to budget Q1.02 CASH B/F
budget(time ’Q1.02’ line ’CASH B/F’) = actual(time ’Q4.01’ line ’CASH C/F’)

LIMIT line TO ’CASH B/F’

DEFINE qtomalloc AGGMAP
ALLOCMAP ’RELATION timeparent OPERATOR HFIRST’

" Allocate the Q1.02 value to the first month of the quarter
ALLOCATE budget USING qtomalloc

" Forecast a 50% increase in cash forward by the end of the quarter
budget(time ’Q1.02’ line ’CASH C/F’) = actual(time ’Q4.01’ line ’CASH C/F’) * 1.5

CONSIDER qtomalloc
ALLOCMAP ’RELATION timeparent OPERATOR HLAST’

LIMIT line TO ’CASH C/F’

" Allocate the Q1.02 value to the last month of the quarter
ALLOCATE budget USING qtomalloc

LIMIT line TO ’CASH B/F’ ’CASH MVT’ ’CASH C/F’

Using the Allocation Operators and Arguments

Allocating Data 9-15

Using the PROPORTIONAL Operator
The PROPORTIONAL operator allocates source data proportionately to the target
cells based on the values of the basis object. Example 9–4 demonstrates two
proportional allocations of data recursively down the time dimension hierarchy.

The actual and budget variables are dimensioned by the time, line, and
product dimensions. The timeparent relation relates values of children in the
time dimension to their parents.

The first allocation allocates a forecasted revenue value from YEAR02 to the
quarters and then to the months of that year. The allocation is based on the revenue
from the same time periods for the previous year. Actual values for the first quarter
of 2002 are then assigned to the cells of the budget variables. The second allocation
locks the budget cells for the first quarter and its children, normalizes the source
value by subtracting the locked quarter value from the source, and then allocates
the remaining value to the other quarters and their children.

The first LIMIT commands set the status of each of the line and product
dimensions to one value and limit the product dimension to the year, quarter, and
month values for 2002.

The budget variable for 2002 has values that were copied from the actual
variable for 2001. The example does not include that operation. The forecasted total
revenue value for the product for the year 2002 is assigned to the budget variable.
That value is calculated to be ten per cent larger than the actual value for 2001.

The first REPORT of the budget variable produces the following.

PRODUCT: OUTERWEAR - MEN
 --BUDGET--
 ---LINE---
TIME REVENUE
-------------- ----------
YEAR02 1,100,000
Q1.02 275,000
Q2.02 225,000
Q3.02 200,000
Q4.02 300,000
JAN02 100,000
FEB02 90,000
MAR02 85,000
APR02 82,000
MAY02 70,000
JUN02 73,000
JUL02 64,000

Using the Allocation Operators and Arguments

9-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

AUG02 69,000
SEP02 67,000
OCT02 85,000
NOV02 105,000
DEC02 110,000

Example 9–4 then defines an aggregation map and adds contents to it with the
ALLOCMAP command. The contents are a single RELATION command that specifies
the PROPORTIONAL operator. The ALLOCATE command allocates the data from the
YEAR02 parent down the hierarchy specified by the timeparent relation.

The REPORT of the budget variable after the first allocation produces the following.

PRODUCT: OUTERWEAR - MEN
 --BUDGET--
 ---LINE---
TIME REVENUE
-------------- ----------
YEAR02 1,100,000
Q1.02 302,500
Q2.02 247,500
Q3.02 220,000
Q4.02 330,000
JAN02 110,000
FEB02 99,000
MAR02 93,500
APR02 90,200
MAY02 77,000
JUN02 80,300
JUL02 70,400
AUG02 75,900
SEP02 73,700
OCT02 93,500
NOV02 115,500
DEC02 121,000

The actual data for the first quarter of 2002 is assigned to the actual variable and
then copied to the budget variable. The timelockvs valueset is defined and
limited to the single value Q1.02.

A variable for a fileunit value is defined and is assigned the value returned by the
FILEOPEN function. The CONSIDER and ALLOCMAP commands change the contents
of the aggregation map so that the RELATION command includes the PROTECT
argument.

Using the Allocation Operators and Arguments

Allocating Data 9-17

The second ALLOCATE command allocates the data from the YEAR02 parent down
the hierarchy specified by the timeparent relation but this allocation first
subtracts the locked value for Q1.02 from the source value before distributing the
remaining value. The command also sends error or informational messages to the
allocerrlog file, which is specified by the errlogfunit fileunit.

The contents of the allocerrlog file are the following.

Dim Source Basis
TIME BUDGET BUDGET Description
-------- -------- -------- -----------
 YEAR02 850000 1100000 Renormalizing data (6)

The source value for the allocation after normalization is 850,000 instead of the
original value of 1,100,000. The REPORT of the budget variable after the second
allocation, with the Q1.02 value protected, produces the following.

PRODUCT: OUTERWEAR - MEN
 --BUDGET--
 ---LINE---
TIME REVENUE
-------------- ----------
YEAR02 1,100,000
Q1.02 250,000
Q2.02 263,793
Q3.02 234,483
Q4.02 351,724
JAN02 90,000
FEB02 82,000
MAR02 78,000
APR02 96,138
MAY02 82,069
JUN02 85,586
JUL02 75,034
AUG02 80,897
SEP02 78,552
OCT02 99,655
NOV02 123,103
DEC02 128,966

Example 9–4 Using the PROPORTIONAL Operator with the PROTECT Argument

LIMIT line TO ’REVENUE’
LIMIT product TO ’OUTERWEAR - MEN’
LIMIT time TO ’YEAR02’ TO ’DEC02’

Using the Allocation Operators and Arguments

9-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

" Specify no decimal places
DECIMALS = 0

budget(time ’YEAR02’) = actual(time ’YEAR01’) * 1.1

REPORT DOWN time budget

DEFINE budgalloc AGGMAP
ALLOCMAP ’RELATION timeparent OPERATOR PROPORTIONAL’
ALLOCATE budget USING budgalloc

REPORT DOWN time budget

" Assign actual values for first quarter of 2002.
actual(time ’Q1.02’ line ’REVENUE’ product ’OUTERWEAR - MEN’) = 250000
actual(time ’JAN02’ line ’REVENUE’ product ’OUTERWEAR - MEN’) = 90000
actual(time ’FEB02’ line ’REVENUE’ product ’OUTERWEAR - MEN’) = 82000
actual(time ’MAR02’ line ’REVENUE’ product ’OUTERWEAR - MEN’) = 78000

LIMIT time TO ’Q1.02’ ’JAN02’ ’FEB02’ ’MAR02’

" Copy the actual values to the budget variable
budget = actual

LIMIT time TO ’Q4.01’ ’JAN02’ ’FEB02’ ’MAR02’ ’Q1.02’

DEFINE timelockvs valueset time
LIMIT timelockvs TO ’Q1.02’

DEFINE errlogfunit VARIABLE INTEGER
errlogfunit = FILEOPEN(’allocerrlog’ WRITE)

CONSIDER budgalloc
ALLOCMAP ’RELATION timeparent OPERATOR PROPORTIONAL ARGS PROTECT timelockvs’
ALLOCATE budget USING budgalloc ERRORLOG errlogfunit

REPORT DOWN time budget

Part III
 Analytic Workspace Management

Part III provides information about acquiring and generating data for an analytic
workspace

It contains the following chapters:

■ Chapter 10, "Working with Relational Tables"

■ Chapter 11, "Reading Data from Files"

■ Chapter 12, "Aggregating Data"

Working with Relational Tables 10-1

10
Working with Relational Tables

In this chapter, you will learn how to write OLAP DML programs that use the
OLAP DML SQL command. With these programs, you can update relational tables
and copy data between relational tables and analytic workspace objects.

This chapter includes the following topics:

■ Issuing SQL Statements Through the OLAP DML

■ Creating an Analytic Workspace from Relational Tables

■ Example: Creating an Analytic Workspace from Sales History Tables

■ Writing Data from Analytic Workspace Objects into Relational Tables

■ Using Stored Procedures and Triggers

■ Checking for Errors

Issuing SQL Statements Through the OLAP DML

10-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Issuing SQL Statements Through the OLAP DML
SQL consists of statements that retrieve, delete, insert, change, and manipulate data
stored in relational tables. You can embed SQL statements in OLAP DML programs
using the OLAP DML SQL command show below.

SQL sql_statement

When formatting an SQL statement that is an argument to the OLAP DML SQL
command, wherever you would normally use double quotes (") in a SQL statement,
use a single quote (’). In the OLAP DML, a double quote (") indicates the
beginning of a comment.

Supported SQL Statements
You can use almost any SQL statement that is supported by Oracle in the OLAP
DML SQL command. You can use the INSERT command to copy data from analytic
workspace objects into relational tables. You can use FETCH to copy data from
relational tables into analytic workspace objects.

The following Oracle SQL extensions are also supported:

■ The FOR UPDATE clause in the SELECT statement is supported in a cursor
declaration so that you can update or delete data associated with the cursor.

■ The WHERE CURRENT OF cursor clause is supported in UPDATE and
DELETE statements for interactive modifications to a table.

Support is also provided for stored procedures and triggers. Using stored
procedures is discussed in "Using Stored Procedures and Triggers" on page 10-32.

Unsupported SQL Statements
Ordinarily, you use the SQL command in an OLAP DML program, but you can also
execute some SQL commands interactively in the OLAP Worksheet. When using
SQL interactively, you would typically execute a SELECT command to produce a
relational table of data. However, when using SQL within the OLAP DML, you
must define a cursor which contains the SELECT statement as described in
"Declaring a Cursor" on page 10-5.

Also, if you code COMMIT or ROLLBACK as arguments to the OLAP DML SQL
command, the commands are ignored. You cannot rollback using the OLAP DML.
To commit your changes, issue the OLAP DML COMMIT command.

Creating an Analytic Workspace from Relational Tables

Working with Relational Tables 10-3

Creating an Analytic Workspace from Relational Tables
When relational tables have been defined to the OLAP catalog using CWM1
metadata, you can use a tool provided with Oracle OLAP to design and populate an
analytic workspace for the tables. For more information on creating an analytic
workspace from relational tables in this manner, see Oracle9i OLAP User’s Guide.

In other cases, you can design and populate an analytic workspace by taking the
following steps:

1. Design the analytic workspace as described in "Process: Designing and Defining
an Analytic Workspace to Hold Relational Data" on page 10-3.

a. Define the analytic workspace using OLAP AW CREATE command.

b. Define the analytic workspace objects using the OLAP DEFINE command.

2. Define, write, and execute OLAP DML programs to populate the analytic
workspace objects with relational data as described in "Process: Writing
Programs that Populate Analytic Workspaces with Relational Data" on
page 10-4.

3. Aggregate the fact data up any hierarchies as described in Chapter 12,
"Aggregating Data".

Process: Designing and Defining an Analytic Workspace to Hold Relational Data
One way that you can map a relational database to an analytic workspace is to take
the following steps:

1. Identify the table columns that contain the fact data that you want to analyze.
When the relational database is a data warehouse, these columns will be
columns of a measure tables.

2. Identify the primary keys to the tables identified in step 1 and determine if any
of these keys participate in any hierarchies. When the relational database is
fully normalized, you can do this by following the foreign keys of the table.
When the relational database contains summarized data, you can do this by,
first, determining if the primary key columns are "children" of other columns,
and then, following the "parent" columns up until you determine the complete
hierarchy.

Creating an Analytic Workspace from Relational Tables

10-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

3. When there are hierarchies, decide if your applications need aggregated
(summarized) fact data for each level of the hierarchy.

4. When your applications do not need aggregated data for any of the levels, then
define a non-hierarchical dimension that you can use to hold the values of the
primary key column as described in "Defining Dimensions" on page 3-8.

5. When your applications need aggregated fact data for some or all of the levels,
then define the following analytic workspace objects to represent the hierarchy:

a. An analytic workspace dimensions to hold the values of the levels for
which you want aggregated data. You can define a hierarchical dimension
as described in "Defining Hierarchical Dimensions and Variables That Use
Them" on page 3-22; or you can define a concat dimension as described in
"Defining Concat Dimensions and Variables That Use Them" on page 3-25.

b. A self-relation for the hierarchy. This relation is dimensioned by the
dimension described in step 5a. The values of this self-relation are the
parents of each value in the hierarchy. For an example of a self-relation, see
"Example: Self-relation" on page 3-15.

6. Define the variables for facts you identified in step 1 and for dimension
attributes that you want to use in your analysis. Typically, these variables are
dimensioned by the dimensions that you identified in steps 4 and 5. However, if
any of these variables are sparsely populated, then you can define a composite
for the dimensions, and dimension the variables by that composite.

For an example, of an analytic workspace designed following this process, see
"Designing and Defining an Analytic Workspace for Sales History Data" on
page 10-15.

Process: Writing Programs that Populate Analytic Workspaces with Relational Data
To populate the analytic workspace structures with data from relational tables, you
write and execute one or more OLAP SQL programs that perform the following
actions:

1. Define a SQL cursor and associate it with a SELECT statement or procedure as
described in "Declaring a Cursor" on page 10-5.

2. Open the SQL cursor defined in step 1 as described in "Opening a Cursor" on
page 10-8.

3. Retrieve and process data specified by the cursor opened in step 2 using wither
the OLAP DML SQL IMPORT or SQL FETCH command as described in

Creating an Analytic Workspace from Relational Tables

Working with Relational Tables 10-5

"Importing and Fetching Relational Table Data into Analytic Workspace
Objects" on page 10-8.

Note: You must declare and open a cursor from within a single OLAP DML
program. You can fetch the data and close the cursor either in the same program
or a different program.

4. Close the SQL cursor opened in step 2 as described in "Closing a Cursor" on
page 10-13.

5. Cancel all SQL cursor definitions and free the memory resources of SQL cursors
as described in "Cleaning up the SQL Cursors" on page 10-14.

Once the analytic workspace objects are populated, you can make these changes
permanent using the OLAP DML UPDATE and COMMIT commands.

The rest of the topics in this section describe these steps in more detail. For
examples of programs that populate an analytic workspace with data from
relational tables, see "Populating Analytic Workspace Objects with Sales History
Data" on page 10-19.

Declaring a Cursor
In an OLAP DML program, you cannot issue a SELECT statement interactively.
Instead, you must define a cursor which contains the SELECT statement. In the
context of a query, a cursor can be thought of as simply a row marker in a relational
table of data resulting from a query. Instead of receiving the results of a query all at
once, your program receives the results row by row using the cursor.

A DECLARE CURSOR statement associates a cursor by name with the results of a
data query. As an argument to the OLAP DML SQL command, the DECLARE
CURSOR statement has the following syntax.

SQL DECLARE cursor-name CURSOR FOR select-statement

Tip: You should write down SELECT statements that you think
will retrieve the data you want to fetch. When possible, use an
interactive interface such as SQL*Plus, SQL Worksheet, or OLAP
Worksheet to test these SQL statements and make sure that they
produce the results you expect. Afterward, you can modify these
SELECT statements for use in your OLAP DML programs.

Creating an Analytic Workspace from Relational Tables

10-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example: Declaring a Cursor
In Example 10–1, "Declaring a Cursor", the cursor declaration selects rows from a
relational table named costs in the sample Sales History (sh) schema. The costs
table has several columns, including a column for product identification codes
(prod_id) and a column for unit_price. The unit_price column is used in a
WHERE clause to limit the returned rows to only those products in which the unit
price is greater than $20.00.

Example 10–1 Declaring a Cursor

SQL DECLARE highprice CURSOR FOR -
 SELECT prod_id FROM costs -
 WHERE unit_price > 20

Using Variables in the WHERE Clause of the SELECT Statement
When you are declaring a cursor to be used by the OLAP DML SQL IMPORT
command, you can only use literal values in the WHERE clause of a SELECT
statement. However, when you are declaring a cursor to be used by the OLAP DML
SQL FETCH command, you can use the values of input host variables instead of
providing literal values in the WHERE clause of a SELECT statement.

Input host variables are values supplied by Oracle OLAP as parameters to a SQL
command. They specify the data to be selected or provide values for data that is
being modified. If you specify a dimension or a dimensioned variable, the first
value in status is used; no implicit looping occurs, although you can use a FOR
command to loop through all of the values. An input host variable can be any
expression with an appropriate data type. When you use input host variables in a
WHERE clause to match the data in a relational table, any required conversions
between data types is performed wherever conversion is possible. The value of an
input host variable is taken when a cursor is opened, not when it is declared.

An input host variable can be any expression preceded by a colon (for example,
:myvar). However, if you specify a multidimensional expression, such as a variable
or dimension, then the first value in status is used. Table 10–1 gives examples of
expressions that can be used as input host variables. Example 10–2, "Using Input
Host Variables" shows a program fragment that modifies the SQL command shown
previously. Instead of using an explicit value in the WHERE clause, it uses the value
of a local variable named set_price.

Creating an Analytic Workspace from Relational Tables

Working with Relational Tables 10-7

Example 10–2 Using Input Host Variables

VARIABLE set_price SHORT
set_price = 20
SQL DECLARE highprice CURSOR FOR -
 SELECT prod_id FROM costs -
 WHERE unit_price > :set_price

Using Conjunctions in a WHERE Clause
Because both the OLAP DML and SQL include AND and OR as part of their language
syntax, you must use parentheses when using one of these conjunctions with an
input host variable. Otherwise, the command might be ambiguous and produce
unexpected results. Place the parentheses around the input host variable preceding
AND and OR.

If a host variable expression begins with a parenthesis, then the matching right
parenthesis is interpreted as the end of the host variable expression. If you plan to
add more text to the expression after a matching right parenthesis, then you must
enclose the entire expression with an extra set of parentheses.

The fragment of the program shown in Example 10–3 uses the values of two
arguments to limit the range of values selected for the prod_id column of the
relational table named products.

Table 10–1 Examples of Expressions That Can Be Used as Input Host Variables

Type of Expression Example

Variable (database or local) :set_price

Dimension :prod

Qualified data reference :units(prod ’P8’, geog ’G12’, time ’T36’)

Program argument :newval

Text expression :joinchars(’first_name’ ’last_name’)

Arithmetic expression :intpart(6.3049) + 1

User-defined function :getgeog

Creating an Analytic Workspace from Relational Tables

10-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 10–3 Using Conjunctions in a WHERE Clause
prod1 = 415
prod1 = 49990
 ...
SQL DECLARE twoprods CURSOR FOR -
 SELECT prod_id FROM products -
 WHERE prod_id EQ :(prod1) -
 AND :prod2

Opening a Cursor
After the SQL DECLARE CURSOR command has associated a cursor with a selection
of data, you use the SQL OPEN statement to get ready to retrieve the data. These
commands for a particular cursor must appear in the same OLAP DML program
and can not contain ampersand substitution.

The following is the syntax of the SQL command with an OPEN statement as an
argument.

SQL OPEN cursor-name

The SQL OPEN command:

■ Evaluates the input host variables (if any) used in the definition of the specified
cursor.

■ Determines the active set of the cursor (that is, the rows that satisfy the SELECT
statement).

■ Leaves the cursor in the open state for use by SQL FETCH or SQL IMPORT. The
cursor is positioned before the first row of the result set

The active set of a cursor is determined when it is opened, and it is not updated
later. Therefore, changing the value of an input host variable after opening its cursor
does not affect the active set of a cursor.

Importing and Fetching Relational Table Data into Analytic Workspace Objects
After you open a cursor, you can use a SQL IMPORT or a SQL FETCH command
statement to copy data from relational tables into analytic workspace objects. Before
you use these SQL commands, ensure that you have access rights to the tables that
you want to use.

SQL IMPORT or a SQL FETCH both copy data from relational tables into analytic
workspace objects. Although SQL FETCH offers the most functionality, SQL IMPORT

Creating an Analytic Workspace from Relational Tables

Working with Relational Tables 10-9

offers improved performance when copying large amounts of data from relational
tables into analytic workspace objects.

■ SQL FETCH retrieves and processes data specified by a SQL cursor and assigns
the retrieved data to OLAP objects. When you use a FETCH statement to
retrieve data from relational tables, you must include it in a loop or use the
LOOP argument to retrieve all of the rows of the active set of a cursor. Also, if
you include a THEN clause, SQL FETCH may perform processing on the
retrieved data. The following is the syntax of the SQL command using a FETCH
statement as an argument.

SQL FETCH cursor [LOOP [loopcount]] INTO :targets... -
[THEN action-statements...]

■ SQL IMPORT advances the cursor position to each subsequent row of the active
set of a cursor and delivers the selected fields into analytic workspace objects.
The following is the syntax of the OLAP DML SQL command using an IMPORT
statement as an argument.

SQL IMPORT cursor INTO :targets...

In the syntax for SQL IMPORT and SQL FETCH, targets represents output host
variables. An output host variable is an analytic workspace object that will be used
to store the data retrieved from the relational tables. The order of the output host
variables must match the order of the columns in the DECLARE CURSOR statement,
and a colon must precede each output host variable name. The variable or
dimension receiving the data must be defined already. It must also have a
compatible data type.

For both IMPORT and FETCH, output host variables can be one or more of the
following:

[MATCH] dimension|surrogate
APPEND dimension
ASSIGN surrogate
variable|qualified data reference|relation|composite

When an output host variable is a dimension, retrieved values are handled based on
the keyword that you specify before the host variable name. You can specify either
the MATCH keyword (the default) or the APPEND keyword.

■ With the MATCH keyword, only values that are the same as existing values of the
dimension are fetched, and an error is signalled when a new value is
encountered. You use it when fetching data into a variable whose dimensions

Creating an Analytic Workspace from Relational Tables

10-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

are already maintained; the dimensions are included in the fetch only to align
the data.

■ With the APPEND keyword, all values that do not match are added to the end of
the list of dimension values. Also, for FETCH, values can be appended to an
output host variable based on position using the following syntax for target:

APPEND [position] dimension

Table 10–2 provides examples of expressions that can be used as output host
variables.

Whenever you fetch data into a dimensioned workspace variable, you must include
the dimension values in the fetch. While you can add new dimension values at the
same time, you do not need to add them when they already exist in your analytic
workspace; instead, you use the dimension values in the fetch to align the data. In
either case, be sure to fetch the dimension values before you fetch the values of the
variable. Otherwise, the fetch will not loop through the dimension value.

Null values in a relational table are equivalent to NAs. In OLAP DML variables, null
values do not pose a problem; they appear as NAs. However, you cannot have a
dimension value of NA. Therefore, any rows that have a value of null are discarded
in a column being fetched into a dimension.

Table 10–2 Examples of Expressions That Can Be Used as Output Host Variables

Type of Expression Example

Variable (database or local) :sales_quantity_sold

Dimension or surrogate :prodid

Qualified data reference :sales_quantity_sold(prod_id 415 cust_id 18670 time_id
’1998-01-04’ channel_id ’S’ promo_id 9999)

Important: When data is written into a dimension, it temporarily
limits the status of the dimension to the value being matched or
appended. This means that when the IMPORT statement or the
FETCH statement also includes output host variables that are
dimensioned by the specified dimension, the temporary status is
observed when values are assigned to those variables.

Creating an Analytic Workspace from Relational Tables

Working with Relational Tables 10-11

Example: Copying Relational Table Data into Analytic Workspace Objects
Sometimes you want to copy data from relational tables into the analytic workspace
to perform a quick analysis. For example, the sample Sales History database
includes the sales table (described in Example 10–4 on page 10-12) whose keys
are prod_id, cust_id, time_id, channel_id, and promo_id and that contains
two facts (quantity_sold and amount_sold).

Assume that you want to forecast the quantity sold for product 415 for the year 2002
using the forecasting commands available in the OLAP DML. In order to perform
this analysis using the OLAP DML, the data must be in an analytic workspace. To
copy the data into the analytic workspace, you must define the analytic workspace
objects to hold the data, write an OLAP DML program to copy the data from the
relational table to the analytic workspace objects, and, then, execute that program.

The simplest way to map the sales table to analytic workspace objects is to define
one analytic workspace dimension for each of the key columns (aw_prod_id,
aw_cust_id, aw_time_id, aw_channel_id, and aw_promo_id) and to define
analytic workspace variables (dimensioned by those dimensions) to hold the data
from the other columns (aw_quantity_sold and aw_amount_sold). However,
in this case, the variables will be quite sparse along the time dimension. To avoid
this sparsity, you can define a composite that represents all of the key dimensions
and define the analytic workspace variables using this composite as shown in
Example 10–5, "Analytic Workspace Definitions for Sales Data" on page 10-12.

Example 10–6, "import_sales_for_prod415 Program" on page 10-12) illustrates
using SQL IMPORT to copy the data from the relational table into the analytic
workspace objects. The fetch_sales_for_prod415 program (shown in
Example 10–7, "fetch_sales_for_prod415 Program" on page 10-13) illustrates using
SQL FETCH to copy the data from the relational table into the analytic workspace
objects. Both of these programs assume that values for aw_prod_id, aw_cust_id,
aw_time_id, aw_channel_id, and aw_promo_id have not previously been
copied into the analytic workspace. When you have defined a composite, Oracle
OLAP automatically populates the composite as it populates the other analytic
workspace objects.

Creating an Analytic Workspace from Relational Tables

10-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 10–4 Description of the sales Table

 PROD_ID NOT NULL NUMBER(6)
 CUST_ID NOT NULL NUMBER
 TIME_ID NOT NULL DATE
 CHANNEL_ID NOT NULL CHAR(1)
 PROMO_ID NOT NULL NUMBER(6)
 QUANTITY_SOLD NOT NULL NUMBER(3)
 AMOUNT_SOLD NOT NULL NUMBER(10,2)

Example 10–5 Analytic Workspace Definitions for Sales Data

DEFINE aw_prod_id DIMENSION NUMBER (6)
DEFINE aw_cust_id DIMENSION NUMBER (6)
DEFINE aw_date DIMENSION TEXT
DEFINE aw_channel_id DIMENSION TEXT
DEFINE aw_promo_id DIMENSION NUMBER (6)
DEFINE aw_sales_dims COMPOSITE <aw_prod_id aw_cust_id aw_date -
 aw_channel_id aw_promo_id>
DEFINE aw_sales_quantity_sold VARIABLE NUMBER (3) <aw_sales_dims <aw_prod_id -
 aw_cust_id aw_date aw_channel_id paw_romo_id>>
DEFINE aw_sales_amount_sold VARIABLE NUMBER (10,2) <aw_sales_dims <aw_prod_id -
 aw_cust_id aw_date aw_channel_id aw_promo_id>>

Example 10–6 import_sales_for_prod415 Program

ALLSTAT
NLS_DATE_FORMAT = ’<YYYY><MM><DD>’
DATEFORMAT = ’<YYYY>-<MM>-<DD>’
" Declare a cursor named GRABDATA
SQL DECLARE grabdata CURSOR FOR SELECT prod_id, cust_id, time_id, -
 channel_id, promo_id, quantity_sold, amount_sold FROM sh.sales -
 WHERE prod_id = 415
" Import new values into the analytic workspace objects
SQL IMPORT grabdata INTO :APPEND aw_prod_id -
 :APPEND aw_cust_id -
 :APPEND aw_date -
 :APPEND aw_channel_id -
 :APPEND aw_promo_id -
 :aw_sales_quantity_sold -
 :aw_sales_amount_sold
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

Creating an Analytic Workspace from Relational Tables

Working with Relational Tables 10-13

Example 10–7 fetch_sales_for_prod415 Program

ALLSTAT
NLS_DATE_FORMAT = ’<YYYY><MM><DD>’
DATEFORMAT = ’<YYYY>-<MM>-<DD>’
" Declare a cursor named GRABDATA
SQL DECLARE grabdata CURSOR FOR SELECT prod_id, cust_id, time_id, -
 channel_id, promo_id, quantity_sold, amount_sold FROM sh.sales -
 WHERE prod_id = 415
" Open the cursor
SQL OPEN grabdata
" Fetch new values into the analytic workspace objects
SQL FETCH grabdata LOOP INTO :APPEND aw_prod_id -
 :APPEND aw_cust_id -
 :APPEND aw_date -
 :APPEND aw_channel_id -
 :APPEND aw_promo_id -
 :aw_sales_quantity_sold -
 :aw_sales_amount_sold
" Close the cursor
SQL CLOSE grabdata
" Cleanup from SQL query
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

Closing a Cursor
After you have used a cursor to retrieve all the data in its active set, you close the
cursor. If you want to use the cursor again to retrieve data starting from the first
row of its active set, then you can use the OPEN statement without having to declare
the cursor again. The CLOSE statement does not cancel a cursor declaration; it only
renders the active set undefined.

The following is the syntax of the CLOSE statement when it is used as an argument
in the OLAP DML SQL command.

SQL CLOSE cursor-name

Example: Creating an Analytic Workspace from Sales History Tables

10-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

Cleaning up the SQL Cursors
Once you are completely done making OLAP DML SQL calls, you should cancel all
the SQL cursor declarations and free the memory resources for all SQL cursors. You
perform these actions by using CLEANUP as the argument to the OLAP DML SQL
command:

SQL CLEANUP

After you have cancelled all SQL cursors in this manner, you cannot use them again
unless you issue new SQL DECLARE CURSOR and SQL OPEN commands.

Example: Creating an Analytic Workspace from Sales History Tables
The sample Sales History database, which is fully described in Oracle9i Sample
Schemas, has six dimension tables and two fact tables:

■ countries, a dimension table that has a primary key of country_id.

■ customers, a dimension table that has a primary key of customer_id and a
foreign key of country_id.

■ promotions, a dimension table that has a primary key of promo_id.

■ products, a dimension table that has a primary key of product_id.

■ channels, a dimension table that has a primary key of channel_id.

■ times, a dimension table that has a primary key of time_id.

■ sales, a fact table that has customer_id, promo_id, product_id,
channel_id, and time_id as keys.

■ costs, a fact table that has which has product_id and time_id as keys.

Assume that you want to analyze all of the fact data in the sample Sales History
database. In order to do this you need to design and define an analytic workspace
as described in "Designing and Defining an Analytic Workspace for Sales History
Data" on page 10-15. Then you need to write OLAP DML programs to copy the
necessary relational data into the analytic workspace as described in "Populating
Analytic Workspace Objects with Sales History Data" on page 10-15.

Example: Creating an Analytic Workspace from Sales History Tables

Working with Relational Tables 10-15

Designing and Defining an Analytic Workspace for Sales History Data
The analytic workspace for Sales History was designed and defined following the
process described in "Process: Designing and Defining an Analytic Workspace to
Hold Relational Data" on page 10-3. The actual steps are outlined below:

1. An analytic workspace named awsh was created using the following OLAP
DML command.

AW CREATE awsh

2. The fact data was identified. In the sales table, the quantity_sold and the
amount_sold columns were identified as containing facts for analysis. While,
in the costs table, the unit_cost and unit_price columns contain fact
data of interest.

3. The primary keys to the sales and costs tables were identified. The primary
keys of sales are prod_id, cust_id, time_id, channel_id, and
promo_id. The primary keys of costs are prod_id and time_id.

4. Looking at the primary keys, the following hierarchies in the Sales History
database were identified:

■ Products — This hierarchy has four levels (prod_id, prod_subcategory,
prod_category, and products_all) that map to columns in the products
tables. The lowest level of the hierarchy is prod_id and the highest level is
products_all.

■ Channels — This hierarchy has three levels (channel_id,
channel_class, and channels_all) that map to columns in the
channels tables. The lowest level of the hierarchy is channel_id and the
highest level is channels_all.

■ Promotions — This hierarchy has four levels (promo_id,
promo_subcategory, promo_category, and promos_all) that map to
columns in the promotions tables. The lowest level of the hierarchy is
promo_id and the highest level is promos_all.

■ Customers — This hierarchy has seven levels that map to columns in two
different relational tables. Four of these levels (country_id, region,
subreagion, and world) map to columns in the countries table and
three levels (cust_id, state_province, and city) map to columns in
the customers table. The lowest level of the hierarchy is cust_id and the
highest level is world.

Example: Creating an Analytic Workspace from Sales History Tables

10-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ Time hierarchies— Two time hierarchies were identified: Calendar and
Fiscal.

Calendar Time— This hierarchy has five levels (time_id, cal_week_num,
cal_month_num, cal_quarter_num, and cal_year) that map to
columns in the times table.

Fiscal Time — This hierarchy has five levels (time_id, fis_week_num,
fis_month_num, fis_quarter_num, and fis_year) that map to
columns in the times table.

Also, a one-to-many relationship between prod_id and supplier_id was
identified.

5. Our application needs to aggregate (summarize) fact data for each level of the
Products, Customers, Channels, and Promotions hierarchies. For the time
hierarchies, our application only needs hierarchies with two levels — the lowest
level of the hierarchy (time_id) and year (cal_year and fis_year).

6. The following analytic workspace objects were defined to represent the
hierarchies:

■ For Products, Customers, Channels, and Promotions hierarchies, a
dimension was defined for each level of the hierarchy, a concat dimension
was defined for each hierarchy, and a child-parent self-relation was defined
for each concat dimension. These definitions are shown in examples
Example 10–8 on page 10-17 through Example 10–11 on page 10-18.

■ For the time hierarchies, two hierarchies were defined. A dimension
containing the names of the two hierarchies was created. Base dimensions
were defined for time_id, fis_year, and cal_year and a concat
dimension was defined that specified all of these dimensions as base
dimensions. Since there are two time hierarchies the child-parent
self-relation created for the Times hierarchy is dimensioned by both the
concat dimension and the hierarchies (by name). These definitions are
shown in Example 10–12, "Analytic Workspace Definitions for the Times
Hierarchies" on page 10-18

■ For the facts (quantity_sold, amount_sold, the unit_cost and
unit_price), analytic workspace variables were defined. All of these
variables would be sparsely populated if they were dimensioned by the
concat dimensions, so one composite was defined for each variable. The
variables are dimensioned by those composites. The definitions for the
variables for the fact data is shown in Example 10–13, "Analytic Workspace

Example: Creating an Analytic Workspace from Sales History Tables

Working with Relational Tables 10-17

Definitions for Variables for Facts" on page 10-18 include definitions for
these composites.

Our applications had no need of other data. However, Example 10–14, "Definitions
for Variables for Promotions Dimension Attributes" on page 10-19 show definitions
of analytic workspace variables to which promotions attributes could be mapped.
For an example of how to define relational views of the awsh analytic workspace
see the example of using the OLAP_TABLE function in Oracle9i OLAP User’s Guide.

Example 10–8 Analytic Workspace Definitions for the Products Hierarchy

DEFINE aw_prod_id DIMENSION NUMBER (6)
DEFINE aw_prod_subcategory DIMENSION TEXT
DEFINE aw_prod_category DIMENSION TEXT
DEFINE aw_products_all DIMENSION TEXT
DEFINE aw_products DIMENSION CONCAT (aw_products_all -
 aw_prod_category -
 aw_prod_subcategory -
 aw_prod_id)
DEFINE aw_products.parents RELATION aw_products <aw_products>
DEFINE aw_supplier_id DIMENSION TEXT
DEFINE aw_prod_id.aw_supplier_id RELATION aw_supplier_id <aw_prod_id>

Example 10–9 Analytic Workspace Definitions for the Channels Hierarchy

DEFINE aw_channel_id DIMENSION TEXT
DEFINE aw_channel_class DIMENSION TEXT
DEFINE aw_channels_all DIMENSION TEXT
DEFINE aw_channels DIMENSION CONCAT(aw_channels_all -
 aw_channel_class -
 aw_channel_id)
DEFINE aw_channels.parents RELATION aw_channels <aw_channels>

Example 10–10 Analytic Workspace Definitions for the Promotions Hierarchy

DEFINE aw_promo_id DIMENSION NUMBER(6)
DEFINE aw_promo_subcategory DIMENSION TEXT
DEFINE aw_promo_category DIMENSION TEXT
DEFINE aw_promos_all DIMENSION TEXT
DEFINE aw_promos DIMENSION CONCAT(aw_promos_all -
 aw_promo_category -
 aw_promo_subcategory -
 aw_promo_id)
DEFINE aw_promos.parents RELATION aw_promos <aw_promos>

Example: Creating an Analytic Workspace from Sales History Tables

10-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 10–11 Analytic Workspace Definitions for the Customers Hierarchy

DEFINE aw_cust_id DIMENSION NUMBER (8)
DEFINE aw_city DIMENSION TEXT
DEFINE aw_state_province DIMENSION TEXT
DEFINE aw_country_id DIMENSION TEXT
DEFINE aw_subregion DIMENSION TEXT
DEFINE aw_region DIMENSION TEXT
DEFINE aw_world DIMENSION TEXT
DEFINE aw_customers DIMENSION CONCAT(aw_world -
 aw_region -
 aw_subregion -
 aw_country_id -
 aw_state_province -
 aw_city -
 aw_cust_id)
DEFINE aw_customers.parents RELATION aw_customers <aw_customers>

Example 10–12 Analytic Workspace Definitions for the Times Hierarchies

DEFINE aw_time_id DIMENSION TEXT
DEFINE aw_cal_year DIMENSION NUMBER(4)
DEFINE aw_fis_year DIMENSION NUMBER(4)
DEFINE aw_times DIMENSION CONCAT (aw_cal_year -
 aw_fis_year -
 aw_time_id)
DEFINE aw_times_hiernames DIMENSION TEXT
DEFINE aw_times.parents RELATION aw_times <aw_times aw_times_hiernames>

Example 10–13 Analytic Workspace Definitions for Variables for Facts

DEFINE aw_costsdims COMPOSITE <aw_products aw_times>
DEFINE aw_unit_cost VARIABLE NUMBER (10,2) <aw_costsdims -
 <aw_products aw_times>>
DEFINE aw_unit_price VARIABLE NUMBER (10,2) <aw_costsdims -
 <aw_products aw_times>>

DEFINE aw_salesdims COMPOSITE <aw_products aw_customers aw_times -
 aw_channels aw_promos>
DEFINE aw_quantity_sold VARIABLE NUMBER(3) <aw_salesdims -
 <aw_products aw_customers aw_times aw_channels aw_promos>>
DEFINE aw_amount_sold VARIABLE NUMBER(10,2) <aw_salesdims -
 <aw_products aw_customers aw_times aw_channels aw_promos>>

Example: Creating an Analytic Workspace from Sales History Tables

Working with Relational Tables 10-19

Example 10–14 Definitions for Variables for Promotions Dimension Attributes

DEFINE aw_promo_name VARIABLE TEXT <aw_promo_id>
DEFINE aw_promo_cost VARIABLE NUMBER(10,2) <aw_promo_id>
DEFINE aw_promo_begin_date VARIABLE DATE <aw_promo_id>
DEFINE aw_promo_end_date VARIABLE DATE <aw_promo_id>

Populating Analytic Workspace Objects with Sales History Data
In this example there are a number of OLAP DML programs that copy the data
from the relational Sales History database into the objects in the analytic workspace
named awsh:

■ The following programs copy data from the relational tables into analytic
workspace dimensions and variables:

■ Example 10–15, "get_products_hier Program" on page 10-20 copies the data
from the dimension tables into the base dimensions of the aw_products
concat dimension using SQL FETCH commands with the APPEND keyword.
As the base dimensions of aw_products are populated, Oracle OLAP
automatically populates aw_products, itself. As the THEN clause of the
SQL FETCH command executes, Oracle OLAP fetches data into the
child-parent self-relation for aw_products. This program also populates
the aw_supplier_id dimension and its relation.

■ Example 10–16, "get_channels_hier Program" on page 10-21,
Example 10–17, "get_promos_hier Program" on page 10-22, Example 10–18,
"get_customers_hier Program" on page 10-22, and Example 10–19,
"get_times_hiers Program" on page 10-24 copy the data from the dimension
tables into analytic workspace dimensions and relations that are used to
represent hierarchical dimensions. Because these dimensions are empty
before these programs execute, the SQL FETCH command uses the APPEND
keyword. As the base dimensions are populated, Oracle OLAP
automatically populates the concat dimension that represents the hierarchy.
As the THEN clause of the SQL FETCH command executes, Oracle OLAP
fetches data into the child-parent self-relation for concat dimension that
represents the hierarchy.

■ The following programs copy the facts from the relational tables into analytic
workspace variables. These examples assume that the base dimension for these
variables are already populated. Consequently, the SQL FETCH commands in
these programs use the MATCH keyword. Also, because the composite that the
variables are dimensioned by is constructed of concat dimensions, the SQL
FETCH commands uses a QDR to specify dimension values for the variable.

Example: Creating an Analytic Workspace from Sales History Tables

10-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

■ Example 10–20, "get_costs Program" on page 10-25 copies the facts from
the costs table into analytic workspace variables.

■ Example 10–21, "get_sales Program" on page 10-26 copies the facts from the
sales table into analytic workspace variables.

■ Example 10–23, "get_promos_attr Program" on page 10-27 copies attribute data
from the Promotions dimension table into analytic workspace variables. This
program assumes that the base dimensions are already populated and uses a
SQL IMPORT command with the MATCH keyword.

Example 10–15 get_products_hier Program

ALLSTAT
" Fetch values into the products hierarchy
SQL DECLARE grabprods CURSOR FOR SELECT prod_total, -
 prod_category, -
 prod_subcategory, -
 prod_id -
 FROM sh.products
SQL OPEN grabprods
SQL FETCH grabprods LOOP INTO :APPEND aw_products_all -
 :APPEND aw_prod_category -
 :APPEND aw_prod_subcategory -
 :APPEND aw_prod_id

SQL CLOSE grabprods
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT
" Fetch values into supplier_id
SQL DECLARE grabsupid CURSOR FOR SELECT supplier_id -
 FROM sh.products
SQL OPEN grabsupid
SQL FETCH grabsupid LOOP INTO :APPEND aw_supplier_id
SQL CLOSE grabsupid
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

Example: Creating an Analytic Workspace from Sales History Tables

Working with Relational Tables 10-21

" Populate self-relation for concat dimension
" and relation between aw_prod_id and aw_supplier_id
SQL DECLARE makerels CURSOR FOR SELECT prod_total, -
 prod_category, -
 prod_subcategory, -
 prod_id, -
 supplier_id -
 FROM sh.products
SQL OPEN makerels
SQL FETCH makerels LOOP INTO :MATCH aw_products_all -
 :MATCH aw_prod_category -
 :MATCH aw_prod_subcategory -
 :MATCH aw_prod_id -
 :MATCH aw_supplier_id -
 THEN aw_products.parents(aw_products aw_prod_id) -
 = aw_products(aw_prod_subcategory aw_prod_subcategory) -
 aw_products.parents(aw_products aw_prod_subcategory) -
 = aw_products(aw_prod_category aw_prod_category) -
 aw_products.parents(aw_products aw_prod_category) -
 = aw_products(aw_products_all aw_products_all) -
 aw_prod_id.aw_supplier_id = aw_supplier_id
SQL CLOSE makerels
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

Example 10–16 get_channels_hier Program

ALLSTAT
" Fetch values for the Channels hierarchy
" and populate self-relation for the hierarchy
SQL DECLARE grabchanneldata CURSOR FOR SELECT channel_total, -
 channel_class, -
 channel_id -
 FROM sh.channels
SQL OPEN grabchanneldata
" Fetch values into analytic workspace objects for the the channels hierararchy
SQL FETCH grabchanneldata LOOP INTO :APPEND aw_channels_all -
 :APPEND aw_channel_class -
 :APPEND aw_channel_id -
 THEN aw_channels.parents(aw_channels aw_channel_id) -
 = aw_channels(aw_channel_class aw_channel_class) -
 aw_channels.parents(aw_channels aw_channel_class) -
 = aw_channels(aw_channels_all aw_channels_all)

Example: Creating an Analytic Workspace from Sales History Tables

10-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

SQL CLOSE grabchanneldata
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

Example 10–17 get_promos_hier Program

ALLSTAT
" Fetch values for the Promos hierarchy
" and populate self-relation for the hierarchy
SQL DECLARE grabpromodata CURSOR FOR SELECT promo_total, -
 promo_category, -
 promo_subcategory, -
 promo_id -
 FROM sh.promotions
SQL OPEN grabpromodata
SQL FETCH grabpromodata LOOP INTO :APPEND aw_promos_all -
 :APPEND aw_promo_category -
 :APPEND aw_promo_subcategory -
 :APPEND aw_promo_id -
 THEN aw_promos.parents(aw_promos aw_promo_id) -
 = aw_promos(aw_promo_subcategory aw_promo_subcategory) -
 aw_promos.parents(aw_promos aw_promo_subcategory) -
 = aw_promos(aw_promo_category aw_promo_category) -
 aw_promos.parents(aw_promos aw_promo_category) -
 = aw_promos(aw_promos_all aw_promos_all)
SQL CLOSE grabpromodata
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

Example 10–18 get_customers_hier Program

ALLSTAT
" Fetch values for the Customers hierarchy from the countries table
" and populate the self-relation for the hierarchy with these values
SQL DECLARE grabcountrydata CURSOR FOR SELECT country_total, -
 country_region, -
 country_subregion, -
 country_id -
 FROM sh.countries

Example: Creating an Analytic Workspace from Sales History Tables

Working with Relational Tables 10-23

SQL OPEN grabcountrydata
SQL FETCH grabcountrydata LOOP INTO :APPEND aw_world -
 :APPEND aw_region -
 :APPEND aw_subregion -
 :APPEND aw_country_id -
 THEN aw_customers.parents(aw_customers aw_country_id) = -
 aw_customers(aw_subregion aw_subregion) -
 aw_customers.parents(aw_customers aw_subregion) = -
 aw_customers(aw_region aw_region) -
 aw_customers.parents(aw_customers aw_region) = -
 aw_customers(aw_world aw_world)
SQL CLOSE grabcountrydata
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT
" Fetch values for the Customers hierarchy from the customers table
" and populate the self-relation for the hierarchy with these values
SQL DECLARE grabcustdata CURSOR FOR SELECT country_id, -
 cust_state_province, -
 cust_city, -
 cust_id -
 FROM sh.customers
SQL OPEN grabcustdata
SQL FETCH grabcustdata LOOP INTO :MATCH aw_country_id -
 :APPEND aw_state_province -
 :APPEND aw_city -
 :APPEND aw_cust_id -
 THEN aw_customers.parents(aw_customers aw_cust_id) = -
 aw_customers(aw_city aw_city) -
 aw_customers.parents(aw_customers aw_city) = -
 aw_customers(aw_state_province aw_state_province) -
 aw_customers.parents(aw_customers aw_state_province) = -
 aw_customers(aw_country_id aw_country_id)
SQL CLOSE grabcustdata
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

Example: Creating an Analytic Workspace from Sales History Tables

10-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 10–19 get_times_hiers Program

NLS_DATE_FORMAT = ’<YYYY><MM><DD>’
DATEFORMAT = ’<YYYY>-<MM>-<DD>’
" Populate the hierachy name dimension with names of hierarchies
MAINTAIN aw_times_hiernames ADD ’Calendar’ ’Fiscal’
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

" Fetch values for the CalTimes and FisTimes hierarchies
" and populate self-relation time
SQL DECLARE grabcalyear CURSOR FOR SELECT calendar_year -
 FROM sh.times
SQL OPEN grabcalyear
SQL FETCH grabcalyear LOOP INTO :APPEND aw_cal_year
SQL CLOSE grabcalyear
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT
SQL DECLARE grabfisyear CURSOR FOR SELECT fiscal_year -
 FROM sh.times
SQL OPEN grabfisyear
SQL FETCH grabfisyear LOOP INTO :APPEND aw_fis_year
SQL CLOSE grabfisyear
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT
SQL DECLARE grabtimeid CURSOR FOR SELECT time_id -
 FROM sh.times
SQL OPEN grabtimeid
SQL FETCH grabtimeid LOOP INTO :APPEND aw_time_id
SQL CLOSE grabtimeid
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT
ALLSTAT
LIMIT aw_times_hiernames TO ’Calendar’
SQL DECLARE makecalhier CURSOR FOR SELECT calendar_year, -
 time_id -
 FROM sh.times
SQL OPEN makecalhier

Example: Creating an Analytic Workspace from Sales History Tables

Working with Relational Tables 10-25

SQL FETCH makecalhier LOOP INTO :MATCH aw_cal_year -
 :MATCH aw_time_id -
 THEN aw_times.parents(aw_times aw_time_id) -
 = aw_times(aw_cal_year aw_cal_year)
SQL CLOSE makecalhier
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
ALLSTAT
UPDATE
COMMIT
LIMIT aw_times_hiernames TO ’Fiscal’
SQL DECLARE makefishier CURSOR FOR SELECT fiscal_year, -
 time_id -
 FROM sh.times
SQL OPEN makefishier
SQL FETCH makefishier LOOP INTO :MATCH aw_fis_year -
 :MATCH aw_time_id -
 THEN aw_times.parents(aw_times aw_time_id) -
 = aw_times(aw_fis_year aw_fis_year)
SQL CLOSE makefishier
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
ALLSTAT
UPDATE
COMMIT

Example 10–20 get_costs Program

ALLSTAT
NLS_DATE_FORMAT = ’<YYYY><MM><DD>’
DATEFORMAT = ’<YYYY>-<MM>-<DD>’
" Declare a cursor named grabcosts
SQL DECLARE grabcosts CURSOR FOR SELECT prod_id, -
 time_id, -
 unit_cost, -
 unit_price -
 FROM sh.costs
" Open the cursor
SQL OPEN grabcosts

Example: Creating an Analytic Workspace from Sales History Tables

10-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

" Import the data
SQL FETCH grabcosts LOOP INTO :MATCH aw_prod_id -
 :MATCH aw_time_id -
 :aw_unit_cost (aw_products aw_prod_id -
 aw_times aw_time_id) -
 :aw_unit_price (aw_products aw_prod_id -
 aw_times aw_time_id)
" Close the cursor
SQL CLOSE grabcosts
" Cleanup from SQL query
SQL CLEANUP
" Update and make changes permanent
UPDATE
COMMIT

Example 10–21 get_sales Program

ALLSTAT
NLS_DATE_FORMAT = ’<YYYY><MM><DD>’
DATEFORMAT = ’<YYYY>-<MM>-<DD>’
" Declare a cursor named grabsales
SQL DECLARE grabsales CURSOR FOR SELECT prod_id, -
 cust_id, -
 time_id, -
 channel_id, -
 promo_id, -
 quantity_sold, -
 amount_sold -
 FROM sh.sales

Example: Creating an Analytic Workspace from Sales History Tables

Working with Relational Tables 10-27

" Open the cursor
SQL OPEN grabsales
" Import values into analytic workspace objects
SQL FETCH grabsales LOOP INTO :MATCH aw_prod_id -
 :MATCH aw_cust_id -
 :MATCH aw_time_id -
 :MATCH aw_channel_id -
 :MATCH aw_promo_id -
 :aw_quantity_sold (aw_products aw_prod_id -
 aw_customers aw_cust_id -
 aw_times aw_time_id -
 aw_channels aw_channel_id -
 aw_promos aw_promo_id) -
 :aw_amount_sold (aw_products aw_prod_id -
 aw_customers aw_cust_id -
 aw_times aw_time_id -
 aw_channels aw_channel_id -
 aw_promos aw_promo_id)
" Close the cursor
SQL CLOSE grabsales
" Cleanup from SQL query
SQL CLEANUP
" Update and make changes permanent
UPDATE
COMMIT

Example 10–22 Definitions for Variables for Promotions Dimension Attributes

DEFINE aw_promo_name VARIABLE TEXT <aw_promo_id>
DEFINE aw_promo_cost VARIABLE NUMBER(10,2) <aw_promo_id>
DEFINE aw_promo_begin_date VARIABLE DATE <aw_promo_id>
DEFINE paw_romo_end_date VARIABLE DATE <aw_promo_id>

Example 10–23 get_promos_attr Program

ALLSTAT
" Declare a cursor named grabpromoattr
SQL DECLARE grabpromoattr CURSOR FOR SELECT promo_id, -
 promo_name, -
 promo_cost, -
 promo_begin_date, -
 promo_end_date -
 FROM sh.promotions
" Open the cursor
SQL OPEN grabpromoattr

Writing Data from Analytic Workspace Objects into Relational Tables

10-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

" Import new values into the analytic workspace objects
SQL IMPORT grabpromoattr INTO :MATCH aw_promo_id -
 :aw_promo_name -
 :aw_promo_cost -
 :aw_promo_begin_date -
 :aw_promo_end_date
" Close the cursor
SQL CLOSE grabpromoattr
" Cleanup from SQL query
SQL CLEANUP
" Update and make changes permanent
UPDATE
COMMIT

Writing Data from Analytic Workspace Objects into Relational Tables
To copy data from analytic workspace object you can simply use the SQL INSERT
or UPDATE statements as arguments to the OLAP DML SQL command. In this case,
you code the OLAP DML SQL in a loop and you use the analytic workspace
variables as input host variables in your SQL statements. However, you can
improve performance by doing a direct insert using the PREPARE and EXECUTE
statements as arguments to the OLAP DML command.

Tip: You can access data in an analytic workspace in a
SQL SELECT statement without copying data from the analytic
workspace into relational tables by defining a view of the analytic
workspace data. For more information on defining relational views
of analytic workspace data, see Oracle9i OLAP User’s Guide.

Writing Data from Analytic Workspace Objects into Relational Tables

Working with Relational Tables 10-29

Using SQL PREPARE and SQL EXECUTE
The syntax of the PREPARE and EXECUTE statements is shown below.

SQL PREPARE statement-name FROM sql-statement [insert-options]
SQL EXECUTE statement-name

The arguments for these statements are described below:

■ statement-name is the name that you assign to the executable code
produced from sql-statement. You can redefine statement-name just by
issuing another SQL PREPARE command.

■ sql-statement is the SQL statement that you want to precompile for more
efficient execution. It cannot contain ampersand (&) substitution or variables
that are undefined when the program is compiled.

■ insert-options are DIRECT, NOLOG, and PARTITION that apply when
sql-statement is an INSERT statement. When you prepare an INSERT
statement and do not specify any values for the insert options, Oracle OLAP
specifies NO for the DIRECT and NOLOG insert options and does not specify a
value for the PARTITION option. Thus, by default, a prepared INSERT is a
normal insert, redo information is recorded in the redo log files, and other
sessions cannot insert data into the table into which your program is inserting
values. You can improve performance of your INSERT, by changing the values
of these options. You can specify that you want a direct insert, that you do not
want the redo information recorded in the redo log files, and the partition or
subpartition that you want locked (that is, the partition or subpartition into
which you do not want another session to be able to insert data).

Performing a Direct Insert
Direct-path insert enhances performance during insert operations and is similar to
the functionality of Oracle’s direct-path loader utility, SQL*Loader. To specify a
direct-path insert, specify DIRECT=YES as the first insert option in the OLAP DML
SQL PREPARE INSERT command.

Inserting Workspace Data into Relational Tables: Example
Suppose that you have been using the OLAP DML to plan the introduction of a new
product line, and now you want to add information about the product ids and the
product names for these new products to the Sales History database. You can copy
this information from your analytic workspace into the products table using an

Writing Data from Analytic Workspace Objects into Relational Tables

10-30 Oracle9i OLAP Developer’s Guide to the OLAP DML

OLAP DML program. The definitions for the analytic workspace objects that
contain the data are shown in Example 10–24.

The program fragment in Example 10–25 shows how you would use a FOR loop so
that all product values currently in status are copied to a table named Products.
Example 10–25 will run much more efficiently when the INSERT statement is
compiled with the PREPARE statement. Example 10–26 shows the PREPARE
statement being used to compile the INSERT statement with a name of
write_products, which is then run by an EXECUTE statement within the FOR
loop.

Example 10–24 Analytic Workspace definitions for add_newprods program

DEFINE aw_prod_id DIMENSION NUMBER (10,0)
DEFINE aw_product_name DIMENSION TEXT

The program fragment in Example 10–25 shows how you would use a FOR loop so
that all product values currently in status are copied to the relational table named
products. Example 10–25 will run much more efficiently when the INSERT
statement is compiled with the PREPARE statement. Example 10–26 shows the
PREPARE statement being used to compile the INSERT statement with a name of
write_products, which is then run by an EXECUTE statement within the FOR
loop. Example 10–27 shows the PREPARE statement being used to compile the
INSERT statement for direct insert (DIRECT=YES).

Example 10–25 Inefficient FOR Loop

FOR prod
 DO
 SQL INSERT INTO products -
 VALUES(:aw_prod_id, :aw_product_name)
 IF SQLCODE NE 0
 THEN BREAK
 DOEND

Writing Data from Analytic Workspace Objects into Relational Tables

Working with Relational Tables 10-31

Example 10–26 Improving Efficiency Using Precompiled Code

SQL PREPARE write_products FROM -
 INSERT INTO products -
 VALUES(:aw_prod_id, :aw_product_name)
 .
 .
 .
FOR prod
 DO
 SQL EXECUTE write_products
 IF SQLCODE NE 0
 THEN BREAK
 DOEND

Example 10–27 Improving Efficiency Using a Direct Insert

SQL PREPARE write_products FROM -
 INSERT INTO products -
 VALUES(:aw_prod_id, :aw_product_name)
 DIRECT=YES
 .
 .
 .
FOR prod
 DO
 SQL EXECUTE write_products
 IF SQLCODE NE 0
 THEN BREAK
 DOEND

Conditionally Updating a Relational Table
You can also use the values of an analytic workspace variable to update the values
in a relational table. Using a FOR loop, your OLAP DML program steps through the
specified dimension value by value and uses a WHERE clause to point to the
corresponding row in the relational table.

Using Stored Procedures and Triggers

10-32 Oracle9i OLAP Developer’s Guide to the OLAP DML

The program fragment in Example 10–28 updates only those rows in the products
table where the values in the prod_id column match the aw_prod_id dimension
values currently in status.

Example 10–28 Conditionally Updating a Relational Table

FOR prod
 DO
 SQL UPDATE products -
 SET product_name = :aw_newproduct_name -
 WHERE prod_id = :aw_prod_id
 IF SQLCODE NE 0
 THEN BREAK
 DOEND

Using Stored Procedures and Triggers
Support is provided for stored procedures and triggers. They cannot contain
SELECT statements. an analytic workspace stored procedure cannot contain output
variables or transactions, nor can it call another procedure. You can create a stored
procedure or trigger in an OLAP DML program. Example 10–29 shows the OLAP
DML syntax for creating a procedure named new_products.

OLAP DML syntax differs slightly from the standard SQL syntax. A tilde (~) is
required instead of a semicolon as a terminator, and two colons (::) are required
instead of one in an assignment statement.

Example 10–29 Creating a Stored Procedure Named new_products

SQL CREATE PROCEDURE new_products -
 (aw_id CHAR, aw_name CHAR, aw_cost NUMBER) IS -
 price number~ -
 BEGIN -
 aw_price ::= aw_cost * 2.5~ -
 INSERT INTO products -
 VALUES(aw_id, aw_name, aw_price)~ -
 END~

Using Stored Procedures and Triggers

Working with Relational Tables 10-33

Executing a stored procedure
You use a PROCEDURE statement to run a stored procedure, using the following
syntax.

SQL PROCEDURE procedure-name (arg1, arg2, arg3, . . .)

The arguments can be literal text or input host variables. When you use input host
variables, be sure to use a colon before the variable name. Also be sure to use the
same number of arguments with appropriate data types for the parameters defined
in the procedure. You can use literal arguments when executing a stored procedure
as shown in Example 10–30 which uses the new_products procedure to insert a
single row in the products table, or you can specify analytic workspace objects as
arguments as shown in Example 10–31 which runs the same procedure but inserts
data stored in analytic workspace dimensions and variables into the products
table. The add-prods program in Example 10–31, "Using Workspace Objects as
Parameters for a Stored Procedure" illustrates using a FOR loop to loop over all of
the values in status. To call add_prods, you issue a command like the following to
set the status of prod to include only the values you wish to update.

CALL add_prods(’last 5’)

Example 10–30 Providing Literal Values to a Stored Procedure

SQL PROCEDURE new_products -
 (’P81’, ’8mm Camcorder’)

Example 10–31 Using Workspace Objects as Parameters for a Stored Procedure

DEFINE add_prods PROGRAM
LD Add new products using stored procedure new_products
PROGRAM
ARG newprods TEXT
PUSH aw_prod
LIMIT aw_prod TO &newprods

" Loop over aw_prod to insert the data
FOR aw_prod
 DO
 SQL PROCEDURE new_products(:aw_prod_id, :paw_rod_name)
 DOEND
POP aw_prod
END

Checking for Errors

10-34 Oracle9i OLAP Developer’s Guide to the OLAP DML

Checking for Errors
Although the OLAP DML will signal some SQL errors, it does not automatically
signal an error when there is an error in a SQL statement. Instead, the OLAP DML
provides support to help you handle errors that are returned.

In your programs, you will need to provide the logic for handling SQL errors. The
OLAP DML provides two options, SQLCODE and SQLERRM, whose values reflect the
SQLCODE and SQLERRM values set in the database.

SQLCODE Option
SQLCODE contains an integer error code number. Your programs should test the
value of SQLCODE after every SQL command to make sure that the command
executed successfully. You can also test the value of SQLCODE to determine whether
you need to break out of a loop. SQLCODE typically has one of the values shown in
Table 10–3.
:

SQLERRM Option
The SQLERRM option contains the error message associated with the current error
code. It identifies the condition that caused an error to occur. You can control
whether or not this message is sent automatically to the current outfile. When you
are debugging a program, you will probably want all SQL error messages sent to
the current outfile so that you can see them immediately. However, when your
application is in use, you will want to suppress the error messages and handle the
error condition in a way more suited to your application.

Table 10–3 Values of SQLCODE

Code Meaning

0 (zero) The last SQL operation was successful.

100 All requested rows have been fetched.

-1 An error has occurred.

Any value that is not 0 or not 100 An error has occurred.

Checking for Errors

Working with Relational Tables 10-35

SQLMESSAGES Option
The SQLMESSAGES option controls whether SQL messages are sent to the current
outfile, which is usually the screen. To send SQL messages to the current outfile,
issue the following command.

SQLMESSAGES = yes

Checking for Errors

10-36 Oracle9i OLAP Developer’s Guide to the OLAP DML

Reading Data from Files 11-1

11
Reading Data from Files

This chapter describes how to read data from external files. It includes the following
topics:

■ Introducing Data-Reading Programs

■ Reading Files

■ Specifying File Names in the OLAP DML

■ Reading Data from Files

■ Reading and Maintaining Dimension Values

■ Processing Input Data

■ Processing Records Individually

■ Processing Several Values for One Variable

Introducing Data-Reading Programs

11-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

Introducing Data-Reading Programs
There is a group of commands, often referred to as data-reading commands, that
you can use in programs to read data from external files in various formats: binary,
packed decimal, or text.

While some of the data-reading commands can be used individually, it is best to
place them in a program that is often referred to as a data-reading program. In this
way you can minimize mistakes in typing and test your commands on smaller sets
of data. A program also allows you to perform operations in which several
commands are used together to loop over many records in a file.

The data-reading commands are described below.

Function or Command Description

FILEERROR function Returns information about the first error that occurred when
you are processing a record from an input file with the
data-reading commands FILEREAD and FILEVIEW.

FILENEXT function Makes a record available for processing by the FILEVIEW
command. It returns YES when it is able to read a record and
NO when it reaches the end of the file.

FILEREAD command Reads records from an input file, processes the data, and stores
the data in workspace dimensions, composites, relations, and
variables, according to descriptions of the fields in the input
record.

FILEVIEW command Works in conjunction with the FILENEXT function to read one
record at a time of an input file, process the data, and store the
data in workspace dimensions and variables according to the
descriptions of the fields.

RECNO function Reports the current record number of a file opened for reading.

Reading Files

Reading Data from Files 11-3

You use the data-reading commands with file I/O commands, such as the
commands described below.

Reading Files
While reading from a file, you can format the data from each field individually, and
use DML functions to process the information before assigning it to a workspace
object. Reading a file generally involves the following steps.

1. Open the file you want to read.

2. Read data from the file one record or line at a time.

3. Process the data and assign it to one or more workspace objects.

4. Close the file.

The FILEREAD and FILEVIEW commands have the same attributes and can do the
same processing on your data. However, they differ in important ways:

■ The FILEREAD command loops automatically over all records in the file and
processes them automatically. Use FILEREAD when all records in the file are the same.

■ The FILEVIEW command processes one record at a time. Use FILEVIEW when
there is more than one type of record in the file.

Function or Command Description

FILECLOSE command Closes an open file.

FILEGET function Returns text from a file that has been opened for reading.

FILEOPEN function Opens a file, assigns it a fileunit number (an arbitrary
integer), and returns that number.

FILEPUT command Writes data that is specified in a text expression to a file that is
opened in WRITE or APPEND mode.

FILEQUERY function Returns information about one or more files.

FILESET command Sets the paging attributes of a specified fileunit.

Specifying File Names in the OLAP DML

11-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Creating a Program to Read Data
The following table shows, for each method, the commands you need to open and
close the input file, to read the file, and to handle errors that might occur.

Specifying File Names in the OLAP DML
The FILEOPEN function opens a file and returns an integer that uniquely identifies
that file. This file identifier is known as a fileunit. Once you have opened a file and
obtained a fileunit, all subsequent calls to data-reading commands and file I/O
commands for that file reference the fileunit instead of the file name.

A file identifier is a character string that specifies a file stored on disk. The file
identifier includes the directory alias and the file name; these two components are
separated by a forward slash (/). You can use the CDA command to specify a current

Program Section FILEREAD FILEVIEW

Initialization VARIABLE funit INTEGER
TRAP ON error

VARIABLE funit INTEGER
TRAP ON error

Body funit = FILEOPEN(-
 ’alias/datafile’ READ)
FILEREAD funit
 .
 .
 .
FILECLOSE funit

funit = FILEOPEN(-
 ’alias/datafile’ READ)
WHILE FILENEXT(funit)
 DO
 FILEVIEW funit . . .
 DOEND
FILECLOSE funit

Normal Exit RETURN RETURN

Abnormal Exit error:
IF funit NE na
 THEN FILECLOSE funit

error:
IF funit NE na
 THEN FILECLOSE funit

Note: The error handling in the abnormal exit section of the
programs closes the file only when the file is open. The FILEOPEN
function signals an error when for any reason the system cannot
open the file. The program tries to close the file after the ERROR
label only when FUNIT holds a valid file unit number. You can add
additional commands to the error handling section as well. These
sections of the program are the same for both methods.

Reading Data from Files

Reading Data from Files 11-5

directory alias. In this case, you do not have to specify a directory alias in a file
identifier, because Oracle OLAP assumes that the file is in your current directory
alias. Contact your Oracle DBA for access rights to a directory alias where you can
read and write files.

When specifying file identifiers in OLAP DML commands, it is good practice to
always enclose them in single quotation marks. This will prevent parsing errors in
cases where file name components are also workspace object names or reserved
words.

Reading Data from Files
Data-reading programs read data from a file, record-by-record, and assign that data
to variables, relations, dimensions, and composites in your analytic workspace.
When the records in the file contain dimension values, you can limit dimensions to
these values with the FILEREAD command before assigning the data to a variable
dimensioned by them.

Example 11–1 Using FILEREAD in a Data-Reading Program

Suppose you want to update unit sales data for the product dimension in an
analytic workspace. The new sales information is stored in a file called units.dat,
which has the layout shown in the following figure.

The FILEREAD command that reads the sample units.dat file is shown below.

FILEREAD funit -
 COLUMN 1 WIDTH 8 district -
 COLUMN 9 WIDTH 8 product -
 COLUMN 17 WIDTH 6 units

 1 1 1 1 1 1 1 1 1 1 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

DISTRICT PRODUCT Unit Sales

Columns Description
 1 - 8 District Names
 9 - 16 Product Names
17 - 22 Unit Sales data

Reading Data from Files

11-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

This command is processed in these steps:

1. The field is read beginning in column 1, and district dimension is limited to
the value read. When the value read is not a dimension value of district, an
error occurs.

2. The second field is read, and the product dimension is limited.

3. The third field is read, and the value is assigned to the units variable in the
cell corresponding to the district and product read in Steps 1 and 2.

The full program, with commands to open and close the file, is shown next.

DEFINE readit1 PROGRAM
LD Read a data file
VARIABLE funit INTEGER
TRAP ON error
funit = FILEOPEN(’olapfiles/units.dat’ READ)
FILEREAD funit -
 COLUMN 1 WIDTH 8 district -
 COLUMN 9 WIDTH 8 product -
 COLUMN 17 WIDTH 6 units
FILECLOSE funit
RETURN
error:
IF funit NE na
 THEN FILECLOSE funit
END

Reading Structured PRN Files
You can also use the data-reading commands to read structured PRN files, which
are produced by many PC software products. In a PRN file, quoted text or a series
of numbers demarcated by spaces or commas constitutes a field of the record.
Instead of specifying the column in which a field starts, you can use the
STRUCTURED keyword to specify that you are reading a structured file. You can also
use one or more FIELD keywords to indicate the number of the field you want to
read.

Example 11–2 Reading a Structured PRN File

Suppose you want to read sales data from the structured PRN file illustrated below.

 010195 "TENTS" "BOSTON" 307 50808.96
 010195 "TENTS" "ATLANTA" 279 46174.92
 010195 "TENTS" "CHICAGO" 189 31279.78

Reading and Maintaining Dimension Values

Reading Data from Files 11-7

 010195 "TENTS" "DALLAS" 308 50974.46
 010195 "TENTS" "DENVER" 215 35582.82
 010195 "TENTS" "SEATTLE" 276 45678.41
 010195 "CANOES" "BOSTON" 352 70489.44
 010195 "CANOES" "ATLANTA" 281 56271.40
 010195 "CANOES" "CHICAGO" 243 48661.74
 010195 "CANOES" "DALLAS" 176 35244.72
 010195 "CANOES" "DENVER" 222 44456.41
 010195 "CANOES" "SEATTLE" 335 67085.12

The file has product values in the second field, district values in the third field,
and sales data in the fifth field.

You can limit the month dimension to the desired month, and then use the
following command to read the sales data from the first six records in the file.

FILEREAD unit STOPAFTER 6 STRUCTURED FIELD 2 product -
 district FIELD 5 sales

Reading and Maintaining Dimension Values
The records in a data file often contain dimension values, which are used to identify
the cell in which the data values should be stored. When all of the dimension values
in the file already exist in your analytic workspace, you can use the default attribute
MATCH in the dimension field description. MATCH accepts only dimension values
that already are in the analytic workspace.

When FILEREAD finds an unrecognized value, the command signals an error that
warns you about the bad data. Your data-reading program can handle the error by
skipping the data and continuing processing, or by halting the processing and
letting you check the validity of the data file.

Example 11–3 Reading Records Only for Existing Dimension Values

The following example shows a data file that contains 6-character values for the
dimension productid, names for each product, and the number of units sold.

 1234AA00CHOCOLATE CHIP COOKIES 123
 1099BB00OATMEAL COOKIES 145
 2344CC00SUGAR COOKIES 223
 3222DD00BROWNIES 432
 5553EE00GINGER SNAP COOKIES 233

Reading and Maintaining Dimension Values

11-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

The following workspace objects are used by the example program.

DEFINE productid DIMENSION ID
DEFINE productname VARIABLE TEXT <productid>
DEFINE units.sold VARIABLE INTEGER <month productid>

The dr.prog program reads the file. The values of productid with the associated
product name are already part of the analytic workspace, so the program uses the
productid values only to set status and assign the units data to the right cells of the
units.sold variable.

The MATCH attribute is left out of the field description because it is the default.
When the program finds a value for productid that is not in the analytic workspace,
it branches to the trap label. If the user interrupts the program (that is, the error
name is attn) or the data file cannot be opened, then the program ends. Otherwise,
the program resets the error trap and branches back to FILEREAD to continue with
the next record.

The example program, named dr.prog, has the following definition.

DEFINE dr.prog PROGRAM
LD Reads a file with existing dimension values
PROGRAM
VARIABLE funit INTEGER
TRAP ON error
PUSHLEVEL ’save’
PUSH month productid
LIMIT month TO FIRST 1
funit = FILEOPEN(’olapfiles/dr.dat’ READ)
next:
FILEREAD funit -
 COLUMN 1 WIDTH 6 productid -
 COLUMN 39 WIDTH 3 units.sold
FILECLOSE funit
POPLEVEL ’save’
RETURN
error:
"Skip current record and continue processing
IF funit NE na and ERRORNAME NE ’ATTN’
 THEN DO
 TRAP ON error
 GOTO next
 DOEND

Reading and Maintaining Dimension Values

Reading Data from Files 11-9

"Close the file
IF funit NE na
 THEN FILECLOSE funit
POPLEVEL ’save’
END

Adding New Dimension Values from a Data File
When your data file contains a mixture of existing and new dimension values, you
can add the new values and all the associated data to the analytic workspace by
using the APPEND attribute in the field description.

Example 11–4 Adding New Dimension Values from a Data File

The first FILEREAD command in the dr.prog2 program uses APPEND to add any
new productid values to the analytic workspace. The second FILEREAD command
includes a field to read the product name so the new data will be complete.

The dimension maintenance performed by APPEND might be done in the same
FILEREAD command that reads the data, but that would cause inefficient handling
of the data. The data is handled more efficiently when the dimension maintenance
and data reading are performed in two separate passes over the file.

The error processing in this version is shorter because there is no need to skip
nonexistent product values and branch back. If there is an error, then the program
closes the file, restores any pushed values, and terminates.

The program, named dr.prog2, has the following definition.

DEFINE dr.prog2 PROGRAM
LD Reads a file with new dimension values
PROGRAM
VARIABLE funit INTEGER
TRAP ON error
PUSHLEVEL ’save’
PUSH month productid
LIMIT month TO FIRST 1
funit = FILEOPEN(’olapfiles/dr.dat’ READ)
FILEREAD funit COLUMN 1 APPEND WIDTH 6 productid
FILECLOSE funit
funit = FILEOPEN(’olapfiles/dr.dat’ READ)
FILEREAD funit -
 COLUMN 1 WIDTH 6 productid -
 COLUMN 9 WIDTH 30 productname -
 COLUMN 39 WIDTH 3 units.sold

Reading and Maintaining Dimension Values

11-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

FILECLOSE funit
POPLEVEL ’save’
RETURN
error:
IF funit NE na
 THEN FILECLOSE funit
POPLEVEL ’save’
END

Reading Dimension Values by Position
If the target dimension has a data type of TEXT, NTEXT, or ID and the input field in
the file contains dimension position numbers (rather than dimension values), then
you must specify a conversion type of INTEGER in the field description. The
conversion type specifies how input data should be converted to values of the target
dimension.

Suppose the target dimension is month, then you can use the following command
to read input values that represent positions within the default status of month.

FILEREAD unit COLUMN 1 WIDTH 8 INTEGER month

When the input field contains position numbers, you cannot use the APPEND
keyword to add new values to a target dimension.

The Use of Composites
Composites are automatically maintained. The way in which you define and use
composites can dramatically improve or hinder performance. The more you know
about analytic workspace design, especially in regard to the applications that will
be used with an analytic workspace, the more effective your use of composites will
be.

Reading and Maintaining Conjoint Dimensions
When you have conjoint dimensions in your analytic workspace, you can set the
status of those dimensions while reading a file with the FILEREAD command.
Typically, the records in the data file will have a separate field for each base
dimension of your conjoint dimension. For example, a file might have a market
name in the first field, a product name in the second, and then one or more fields
containing sales data.

Reading and Maintaining Dimension Values

Reading Data from Files 11-11

Example 11–5 Reading and Maintaining Conjoint Dimensions

To read the sales data into a variable dimensioned by a conjoint dimension, for
example markprod, you can use a FILEREAD command as follows.

FILEREAD funit markprod -
 = <W 8 market W 8 product> W 10 sales

This command will read a value of the market dimension from the first 8-character
field of the record and a value of the product dimension from the next 8-character
field.

The command will then use the results to set the status of markprod, which is a
conjoint dimension defined as follows.

DEFINE markprod DIMENSION <market product>

The command then reads the last field and assigns the value to the variable sales,
which is dimensioned by markprod.

By including the APPEND keyword in the field description, you can add new values
to market, product, and markprod, when the FILEREAD command encounters values
in the file that do not match existing dimension values.

FILEREAD funit APPEND markprod -
 = <W 8 APPEND market W 8 APPEND product> W 10 sales

Translating Coded Dimension Values
The fields containing dimension information in your data file might have values
that are not identical to the dimension values in your analytic workspace. The file
values might be abbreviated or otherwise encoded. The way you translate a coded
dimension value varies depending on whether the code is merely an abbreviation
(for example, “P” for product) or if the code is more complicated.

When the file contains an abbreviated code, you can sometimes complete the value
by using the RSET or LSET attribute to add text to the right or left of the value in
the file.

For example, products in the file might be identified by all-numeric product
numbers, while in your analytic workspace, the values of the product dimension
might be these same product numbers preceded by the letter P. In this case, you can
use the LSET attribute to add the letter P to the values in the file.

FILEREAD funit COLUMN 1 WIDTH 6 LSET ’P’ product

Reading and Maintaining Dimension Values

11-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

The letter P is added when the value is read from the file; it is not added when the
modified value is matched with or assigned to the product dimension.

To correctly read values that have less straightforward codes, you can set up
another dimension containing the coded values found in the data file, along with a
relation to the real dimension. FILEREAD can then use the relation to determine the
actual dimension value. Or you can use any OLAP DML function to alter or
manipulate the coded value to make it match a value in your analytic workspace.

When reading coded data that must be manipulated in some way before being
stored in the target, use an assignment statement (shown below) in the field
description.

target = expression

The expression argument specifies the processing or calculation to be performed.
If you want to include the value just read from the file as part of the expression,
then use the VALUE keyword.

Both of the following field descriptions function identically.

COLUMN n WIDTH n target

target = COLUMN n WIDTH n VALUE

Example 11–6 Translating Codes into Dimension Values

This example illustrates the use of an expression for translating codes into
dimension values.

The following example shows the data file, which has 3-character codes for months,
and 2-character codes for districts and products.

 SEP BO CH 113945 115
 OCT BO CH 118934 115
 SEP BO CO 92013 119
 OCT BO CO 95820 119
 SEP BO WI 83201 110
 OCT BO WI 82986 110
 SEP DA CH 111792 115
 OCT DA CH 136031 114
 SEP DA CO 91641 121
 OCT DA CO 96347 120
 SEP DA WI 89734 109
 OCT DA WI 88264 109

Reading and Maintaining Dimension Values

Reading Data from Files 11-13

The following OLAP DML objects are used by the example program.

DEFINE distcode DIMENSION ID
DEFINE district.dcode RELATION district <distcode>
DEFINE prodcode DIMENSION ID
DEFINE Product.pcode RELATION product <prodcode>

The example program, named dr.prog3, has the following definition.

DEFINE dr.prog3 PROGRAM
LD Translates coded values into valid dimension values
PROGRAM
VARIABLE funit INT
funit = FILEOPEN(’olapfiles/dr3.dat’ READ)
FILEREAD funit -
 COLUMN 1 WIDTH 3 APPEND RSET ’96’ month
FILECLOSE funit
funit = FILEOPEN(’olapfiles/dr3.dat’ READ)
FILEREAD funit -
 COLUMN 1 WIDTH 3 RSET ’96’ month -
 COLUMN 5 WIDTH 2 district = district.dcode -
 (distcode VALUE) -
 COLUMN 8 WIDTH 2 product = product.pcode -
 (prodcode VALUE) -
 COLUMN 11 WIDTH 6 STRIP units -
 COLUMN 18 WIDTH 3 SCALE 2 price
FILECLOSE funit
END

The program translates the 2-character codes for districts and products into values
of a district dimension and a product dimension. The program also appends a
2-digit year to the months.

In the first FILEREAD command, the APPEND keyword is used so that new months
are added to the MONTH dimension.

FILEREAD fileunit COLUMN 1 WIDTH 3 APPEND RSET ’96’ month

For the district and product fields, the program reads the value from the data file
and finds the corresponding dimension value using the relations district.dcode
and product.pcode.

COLUMN 5 WIDTH 2 district = district.dcode distcode VALUE)
COLUMN 8 WIDTH 2 product = product.pcode (prodcode VALUE)

Processing Input Data

11-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

The program uses a QDR with the keyword VALUE representing the code read from
the data file. For the districts, the distcode VALUE QDR modifies the relation
district.dcode, which holds district names. It specifies the district that
corresponds to the value of distcode just read from the data file. The QDR for
product works the same way.

The program assumes the product and district dimension values are already in
the analytic workspace, along with the distcode and prodcode dimensions and
the relations connecting them to district and product. Once the coded values
have been processed, the resulting values of district and product are used to
limit the dimension status so that the data is put in the right cells of the units and
price variables.

Finally, you can see in the data file that the price data, which starts in column 18,
does not have a decimal point. The SCALE attribute on the last line of the FILEREAD
command puts two decimal places in each price value.

Processing Input Data
Assignment statements created with the = command have a wide application in the
data-reading commands. With the = command you can process any value read from
a file in a variety of ways. Instead of just assigning the values as read to a variable
or relation, you can modify those values to make them more suitable to your
application.

The expression you use can be as simple or complex as you need. You can even
perform conditional processing on the values read, based on other data already
stored in your analytic workspace or previously read from the file.

For an example of using FILEREAD commands using an assignment statement in a
field description, see "Reading and Maintaining Dimension Values" on page 11-7.

Example 11–7 Modifying Values Read from a File

The following command reads sales data and assigns it to the variable sales,
replacing whatever value is already stored in that variable.

FILEREAD funit W 8 district W 8 product W 10 sales

Using an expression, however, you can add the new data to the value currently
stored in the variable.

FILEREAD funit W 8 district W 8 product sales -
 = sales + W 10 VALUE

Processing Records Individually

Reading Data from Files 11-15

The data just read from the file is represented in the expression by the keyword
VALUE.

Suppose you have two different types of records in a file, you can read different
fields for each type of record.

FILEREAD funit W 1 rectype W 8 district W 8 -
 APPEND product -
 prodname = -
 IF rectype EQ ’A’ THEN COL 25 W 16 VALUE -
 ELSE COL 42 W 16 VALUE

Specifying a Conversion Type for Data
In general, you do not need to specify a data type when you read input values into
a workspace variable. By default, input values are converted to the data type of the
target variable.

However, when the target variable has a data type of DATE, you can use either the
default conversion type of DATE or an alternative conversion type of RAW DATE.

You might also want to specify a conversion type when you use an expression to
process input values before storing them in a target variable.

Processing Records Individually
Your data files do not always have the same type of data in every record. You might
find that you need different field descriptions and different target objects for each
record, or you might have two or more distinct types of records mixed together in a
single file. You might even have to decide what to do with the data in a record
based on the contents of one or more of its fields.

The FILENEXT function and the FILEVIEW command allow you to retrieve one
record at a time from a file and look at its data one or more times. FILENEXT is a
Boolean function, which reads a record from the data file. It returns YES when it
finds a record and NO when it reaches the end of the file. The record read by
FILENEXT is then available to process with the FILEVIEW command.

Typically, FILENEXT is used as the condition of a WHILE command, so that the
data-reading program continues reading until it reaches the end of the file and finds
no more records. Within the WHILE loop, the FILEVIEW command is used one or
more times to process data from any field in the current record. Often the operation
of a FILEVIEW command depends on the data processed by a previous command in
the WHILE loop.

Processing Records Individually

11-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 11–8 Reading Different Data from the Same Record

In the data shown in the following example, the second field of each record contains
the name of the target variable for the data in the last field.

CEREALS DOL VS100 US JUN96 5000000
CEREALS LBS VS100 US JUN96 4800000
CEREALS CASE VS100 US JUN96 180000
CEREALS DOL VS100 BOS JUN96 62500
CEREALS LBS VS100 BOS JUN96 62830
CEREALS CASES VS100 BOS JUN96 2750
CEREALS DOL VS100 CHI JUN96 75290
CEREALS LBS VS100 CHI JUN96 73000
CEREALS CASES VS100 CHI JUN96 2700
CEREALS DOL VS100 LASF JUN96 143070
CEREALS LBS VS100 LASF JUN96 150500
CEREALS CASES VS100 LASF JUN96 NA

The following OLAP DML objects are used by the example program.

DEFINE dol VARIABLE DECIMAL <month item market>
DEFINE lbs VARIABLE INTEGER <month item market>
DEFINE cases VARIABLE INTEGER <month item market>

The dr.prog4 program tests records against criterion before getting values. In the
program, the first FILEVIEW command gets the name of the variable and stores it in
a local variable named varname. The second FILEVIEW command gets the value
and assigns it to the object specified in varname.

The example program, named dr.prog4, contains the following code.

VARIABLE funit INTEGER
VARIABLE varname TEXT
funit = FILEOPEN(’olapfiles/dr4.dat’ READ)
WHILE FILENEXT(funit)
 DO
 FILEVIEW funit COLUMN 13 WIDTH 12 varname
 FILEVIEW funit COLUMN 25 WIDTH 12 item -
 COLUMN 37 WIDTH 6 market -
 COLUMN 43 WIDTH 5 month -
 COLUMN 48 WIDTH 10 &varname
 DOEND
FILECLOSE funit

Processing Several Values for One Variable

Reading Data from Files 11-17

Reading Different Records
You might want to process only some of the records in a file, based on some
criterion in the record itself. You can use one FILEVIEW command to check a field
for an appropriate value and, if it is found, then you can process the rest of the
record with a second FILEVIEW command.

When the record does not meet the criterion for processing, you can save it in
another file using the FILEPUT command. FILEPUT with the FROM keyword writes
the last record read by FILENEXT directly to the designated output file. You can also
use a FILEPUT command in the error section of your program to keep track of any
records that could not be processed because of errors.

Before you use FILEPUT in your data-reading program, you must open a second
file in write mode. At the end of the program, you must close it.

Processing Several Values for One Variable
Sometimes several contiguous fields in a file contain data values that you want to
assign to the same variable. Each field corresponds to a different value of one of the
dimensions of the target variable.

For repeating fields, you can use an ACROSS phrase in the field description to read
the successive fields and place the values in the appropriate cells of the target
variable. The ACROSS phrase extracts data for each dimension value in the current
status or until it reaches the end of the record. You can limit the ACROSS dimension
before the FILEREAD (or FILEVIEW) command, or you can limit it temporarily in the
ACROSS phrase.

When the data file contains the information you need to limit the ACROSS
dimension, you can extract the dimension values using a temporary variable, limit
the dimension, and then read the rest of the file.

Processing Several Values for One Variable

11-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 11–9 Assigning Multiple Fields to the Same Variable

Successive fields might hold sales data for successive months, as shown in the
layout of unitsale.dat in the following figure.

In the unitsale.dat file, columns 9 through 80 contain twelve 6-character fields.
Each field contains sales data for one month of 1996.

The full data-reading program, with commands to open and close the file, is shown
next.

DEFINE dr.prog5 PROGRAM
LD Read a data file
VARIABLE funit INTEGER
TRAP ON error
funit = FILEOPEN(’olapfiles/unitsale.dat’ READ)
FILEREAD funit -
 COLUMN 1 WIDTH 8 product -
 ACROSS month jan96 TO dec96: WIDTH 6 units
FILECLOSE funit
RETURN
error:
IF funit NE na
 THEN FILECLOSE funit
END

The ACROSS phrase reads each of these fields into separate cells in the units
variable.

ACROSS month jan96 TO dec96: WIDTH 6 units

 1 1 1 1 1 1 1 1 1 1 2 2 2 . . . 7 7 7 7 7 7 8
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 . . . 4 5 6 7 8 9 0

PRODUCT JAN96 DEC96FEB96 . . .

Unit Sales Data

Columns Description
 1 - 8 Product Names
 9 - 14 Unit sales for January 1996
 15 - 20 Unit sales for February 1996
 . .
 . .
 . .
 75 - 80 Unit sales for December 1996

Processing Several Values for One Variable

Reading Data from Files 11-19

The FILEREAD command reads the sample unitsale.dat file.

FILEREAD funit -
 COLUMN 1 WIDTH 8 product -
 ACROSS month jan96 TO dec96: WIDTH 6 units

This command first reads the field beginning in column 1 and limits the product
dimension to the value read. (When the value read is not a dimension value of
product, an error occurs.) The command then reads the next 12 fields and assigns
the values read to the units variable for each month of 1996.

Example 11–10 Using Input Data to Limit the ACROSS Dimension

As shown in following example, the first record of the data file contains values of
month as labels for each column of data.

 JAN96 FEB96 MAR96 APR96
TENT 50,808.96 34,641.59 45,742.21 61,436.19
CANOES 70,489.44 82,237.68 97,622.28 134,265.60
RACQUETS 56,337.84 60,421.50 62,921.70 74,005.92
SPORTSWEAR 57,079.10 63,121.50 67,005.90 72,077.20
FOOTWEAR 95,986.32 101,115.36 103,679.88 115,220.22

The following workspace objects are used by the example program.

DEFINE enum DIMENSION INTEGER
DEFINE monthname VARIABLE ID <enum> TEMPORARY
DEFINE salesdata VARIABLE DECIMAL <month product>

The example program, named dr.prog6, has the following definition.

DEFINE dr.prog6 PROGRAM
PROGRAM
VARIABLE funit INTEGER
TRAP ON cleanup
PUSHLEVEL ’save’
PUSH month product
funit = FILEOPEN(’olapfiles/dr6.dat’ READ)
IF FILENEXT(funit)
 THEN FILEVIEW funit COLUMN 16 ACROSS enum: -
 W 11 monthname
LIMIT month TO CHARLIST(monthname)
FILEREAD funit W 15 product COLUMN 16 ACROSS month: -
 W 11 salesdata

Processing Several Values for One Variable

11-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

cleanup:
FILECLOSE funit
POPLEVEL ’save’
END

The program does not know how many months the file contains. The program uses
a temporary variable dimensioned by an INTEGER dimension to read the month
names from the file. The INTEGER dimension enum must have at least as many
values as the largest data file has months.

FILENEXT reads only the first record. The CHARLIST function creates a list of the
month names, which is used to limit the month dimension.

Finally, the FILEREAD command processes the rest of the record using month as the
ACROSS dimension. All the sales data is assigned to the correct months without the
user having to specify them.

Aggregating Data 12-1

12
Aggregating Data

This chapter describes how to use the aggregation features of the OLAP DML. This
chapter includes the following topics:

■ About Aggregating Detail Data

■ Preliminary Steps Prior to Aggregation

■ Creating an Aggregation Map

■ About the RELATION Command

■ Aggregating Non-Hierarchical Data

■ How to Generate Precalculated Data

■ How to Calculate Data at Runtime

■ Creating Custom Aggregates

■ Balancing Precalculated and Runtime Aggregation

■ Performing Partial Aggregations

■ Combining AGGREGATE with Forecasts and Programs

About Aggregating Detail Data

12-2 Oracle9i OLAP Developer’s Guide to the OLAP DML

About Aggregating Detail Data
Business analysis applications typically use hierarchical dimensions for their data.
In Oracle OLAP, all members of a hierarchy, regardless of their level, are stored in a
single dimension. A self-relation and a parent relation identify the parent-child
relationships among the members. Other, nonhierarchical dimension (such as a line
item dimension) may require a model to calculate the values.

Data at the detail level is typically acquired from another source (such as a
transactional database or flat files), but the aggregate data must be calculated. These
calculations can be done in two distinct ways:

■ As a data maintenance procedure. The DBA acquires detail data, calculates the
aggregate values, and stores them in the analytic workspace for all users to
share. This type of aggregate data is sometimes call precomputed or stored
aggregates. It supports the fastest querying time, but increases the size of the
analytic workspace and therefore the size of the relational database. The
amount of precomputed data may also be limited by the amount of time
available for the data task (often called a batch window).

■ At run-time when needed. The cells for the aggregate values are NA (that is,
they are empty) until a query requests the aggregate values. The aggregates are
then computed in response to the query. The results can be stored in a
temporary cache for use throughout the session. If the session has write access
to the analytic worksheet, the results can also be stored permanently. This type
of aggregate data is referred to as on-the-fly or run-time aggregates. It slows
querying time since the data must be calculated instead of just retrieved, but it
does not require permanent storage for aggregate values.

Oracle OLAP supports both types of aggregation, and provides a mechanism for
precomputing some values and calculating others at run-time within a single data
variable.

Functionality Available with AGGREGATE
The OLAP DML supports a variety of aggregation methods including first, last,
average, weighted average, and sum. In a multidimensional variable, the
aggregation method can vary by dimension.

See Also: "Defining Hierarchical Dimensions and Variables That
Use Them" on page 3-22 for more information about hierarchical
dimensions.

About Aggregating Detail Data

Aggregating Data 12-3

When variables are dimensioned with detailed, multilevel hierarchies, the number
of cells of aggregate data can be many times greater than the number of cells of
detail data. In contrast, users typically query some levels of data heavily and other
levels very infrequently. They tend to focus on top-level aggregates and only
occasionally drill to middle-level aggregates, although the middle-level aggregates
comprise the largest proportion of aggregate data.

For this reason, the OLAP DML provides an aggregation method that allows some
of the data to be aggregated and stored, while other data is aggregated at runtime.
The DBA can choose whatever method seems appropriate: by level, individual
member, member attribute, time range, data value, or other criteria. A technique
called “skip level” aggregation pre-aggregates every other level in a dimension
hierarchy. It is described in "Calculating Data Using the Skip-Level Approach" on
page 12-25.

Table 12–1 lists commands that support aggregation in the OLAP DML.

Table 12–1 Commands That Support Aggregation

Command Description

AGGREGATE command Calculates data for permanent storage in the analytic
workspace.

AGGREGATE function Calculates data on-the-fly in response to a query.

AGGMAP command Adds contents to an aggmap object that identify which
aggregates are calculated by the AGGREGATE command and
which ones are calculated by the AGGREGATE function. It
also identifies whether the run-time aggregates are cached
for use throughout the session. This decision has
implications for whether run-time changes to the detail
values are reflected in the aggregate values.

AGGMAPINFO command Returns information about the contents of an aggregation
map object, such as whether it contains commands for
aggregation or allocation.

CLEAR command Clears data values in the aggregate cache.

MULTIPATHHIER option Controls whether detail data can be aggregated over
multiple paths.

POUTFILEUNIT option Identifies a location that receives information on the
progress of an AGGREGATE command.

SESSCACHE option Controls whether an aggregate cache persists throughout a
session.

VARCACHE option Controls how on-the-fly aggregates are stored.

Preliminary Steps Prior to Aggregation

12-4 Oracle9i OLAP Developer’s Guide to the OLAP DML

Process Overview: Aggregation
These are the basic steps you need to follow to generate and manage aggregate
data:

1. Perform the initial analysis of your data, as described in "Preliminary Steps
Prior to Aggregation" on page 12-4, to make sure that it is set up properly.

2. Create an aggregation map that identifies which data will be precalculated and
which data will be calculated as needed. Identify variables that are
dimensioned identically, because they can share an aggregation map.

3. Set the POUTFILEUNIT option so that you can monitor the progress of the
aggregation.

4. Use the AGGREGATE command with the aggregation map to precalculate the
data and store it in the database.

5. If the aggregation map specifies run-time calculations, then:

a. Compile the aggregation map.

b. Add a property to the variable that will trigger the AGGREGATE function in
response to a runtime request for data.

These steps are described in detail in this chapter.

Preliminary Steps Prior to Aggregation
There are several pre-aggregation steps that you should perform to achieve the best
performance:

■ Get the names of self-relations or the names of parent and hierarchy relations
defined within the DML.

■ Check all composite dimensions to make sure that they have BTREE indexes.

Identifying the Parent and Level Relations
All aggregation maps require the identity of the parent relation for each dimension
that is being aggregated. The parent relation is a self-relation that defines the
hierarchy by identifying the parent of each dimension value.

If some of the data will be aggregated at runtime, then you may want to use a level
relation to distinguish levels that will be omitted from the pre-calculation. The level
relation identifies the level of the hierarchy for each dimension value. This relation
is needed to identify which levels are precalculated and which ones are calculated

Preliminary Steps Prior to Aggregation

Aggregating Data 12-5

at run-time. Skip-level aggregation is a recommended technique, described in
"Balancing Precalculated and Runtime Aggregation" on page 12-24, which uses
level relations.

Example 12–1 describes the parent and level relations.

You may be able to use the OBJ function to find out information about a workspace
object. For example, the following command may display the name of the level
dimension for the geography dimension:

REPORT OBJ(PROPERTY ’leveldim’ ’geography’)

If the OBJ function does not yield results, then you must look at the contents of the
variables in your analytic worksheet to see if these relations exist, and if not, then
create them.

Example 12–1 Identifying the Parent and Level Relations

The following are the object definitions for three dimensions and two relations.
These objects provide the information that the aggregation map needs to aggregate
data dimensioned by geography.

DEFINE GEOGRAPHY DIMENSION TEXT WIDTH 12
LD Geography dimension values

DEFINE GEOGRAPHY.HIERARCHIES DIMENSION TEXT
LD Hierarchy dimension for Geography

DEFINE GEOGRAPHY.LEVELDIM DIMENSION TEXT
LD List of hierarchy levels for GEOGRAPHY

DEFINE GEOGRAPHY.PARENTREL RELATION GEOGRAPHY <GEOGRAPHY GEOGRAPHY.HIERARCHIES>
LD Parent-child relation for Geography

DEFINE GEOGRAPHY.LEVELREL RELATION GEOGRAPHY.LEVELDIM <GEOGRAPHY GEOGRAPHY.HIERARCHIES>
LD Level of each member in each Geography hierarchy

The geography dimension contains values at all levels of the hierarchy, such as
WORLD, AMERICAS, CANADA, TORONTO, MONTREAL, NEWYORK, CHICAGO, SEATTLE,
MEXICO, and so forth.

Note: This information may or may not be available through the
PROPERTY keyword, depending upon the method originally used
to create these relations.

Creating an Aggregation Map

12-6 Oracle9i OLAP Developer’s Guide to the OLAP DML

The geography.hierarchies dimension identifies the names of the hierarchies.
For example, geography might have two hierarchies, STANDARD and
CONSOLIDATED.

The geography.leveldim dimension identifies the names of the levels, such as
CITY, STATE, COUNTRY, REGION, WORLD.

The geography.parentrel relation is a self-relation. For each hierarchy and each
dimension value, it identifies the parent value. For example, in the STANDARD
hierarchy, the parent of KYOTO is JAPAN, and the parent of JAPAN is ASIA.

The geography.levelrel relation identifies the level for each dimension value
in each hierarchy. For example, in the STANDARD hierarchy, KYOTO is at the CITY
level, JAPAN is at the COUNTRY level, and ASIA is at the REGION level.

Verifying That All Composites Use BTREE Indexes
You will achieve the best performance results with AGGREGATE when all of the
variable’s composites use the BTREE index algorithm. You can use the DESCRIBE
command to find out if a composite uses BTREE or HASH. If a composite uses HASH,
it will be displayed in the composite definition. If a composite uses BTREE, no index
algorithm will be displayed in the composite definition, because BTREE is the
default algorithm for composites.

The following object definition for the market.prod composite shows that it uses
a HASH index:

DEFINE MARKET.PROD COMPOSITE <MARKET PRODUCT> HASH

To change to a BTREE index, use the CHGDFN command:

CHGDFN market.prod BTREE

The composite definition looks like this with a BTREE index:

DEFINE MARKET.PROD COMPOSITE <MARKET PRODUCT>

Creating an Aggregation Map
An aggregation map is a workspace object. You first define the object and then add
its contents, similar to creating a model or program. The contents of an aggregation
map are commands that specify the data that should be aggregated for each
dimension in the variable definition. It also identifies which data should be
pre-calculated and which data should be calculated on the fly. Therefore, both the
AGGREGATE command and the AGGREGATE function require an aggregation map

Creating an Aggregation Map

Aggregating Data 12-7

To create an aggregation map, you must:

1. Define an aggmap object.

2. Add contents to the aggmap object.

How to Define an Aggmap Object
You can define an aggregation map with the DEFINE AGGMAP command. The
syntax of the DEFINE AGGMAP command is as follows:

DEFINE name AGGMAP

Where:

name is the name of the aggregation map.

How to Add Contents to an Aggmap Object
After you have defined an aggmap object, you must add contents to it. You can use
the following ways to edit an aggregation map. See the examples that follow this list
for details.

■ Use the AGGMAP command to enter or replace the contents of the aggregation
map.

■ Use the EDIT AGGMAP command in OLAP Worksheet.

■ Create a text file with the contents of the aggregation map, then use the INFILE
command to read it into your workspace.

Example 12–2 Using the AGGMAP Command

The following program uses the JOINLINES function with the AGGMAP command
to add RELATION commands to an aggmap object.

DEFINE AGGTEST PROGRAM
LD Create an aggregation map
PROGRAM
IF NOT EXISTS(’test.agg’)
 THEN DEFINE test.agg AGGMAP
 ELSE CONSIDER test.agg

Creating an Aggregation Map

12-8 Oracle9i OLAP Developer’s Guide to the OLAP DML

AGGMAP JOINLINES(-
 ’RELATION geography.parentrel’ -
 ’RELATION product.parentrel’ -
 ’RELATION channel.parentrel’ -
 ’RELATION time.parentrel’ -
 ’END’)
END

Example 12–3 Using the EDIT AGGMAP command in OLAP Worksheet

To use the EDIT command in OLAP Worksheet to edit an aggmap object, take these
steps:

1. Issue this DML command, where myaggmap is the name of an existing aggmap
object.

EDIT AGGMAP myaggmap

The AGGMAP edit window will appear.

2. Enter the body of the aggregation map, or make whatever changes you wish to
an existing aggregation map.

3. To save your changes, choose Save from the File menu.

4. To close the edit window, choose Quit from the File menu.

Example 12–4 Using the INFILE Command to Execute Commands in a Text File

You can create a text file that contains the contents of the aggregation map. You can
use this text file to create or modify the aggregation map.

Suppose that you have defined an aggmap object named gpct.aggmap. You can
create a file with these contents:

CONSIDER gpct.aggmap
AGGMAP
RELATION geography.parentrel
RELATION product.parentrel
RELATION channel.parentrel
RELATION time.parentrel
END

If the file is named aggmap.inf in the userfiles directory alias, then you can
use the following INFILE command to execute these commands in your session:

INFILE ’userfiles/aggmap.inf’

Creating an Aggregation Map

Aggregating Data 12-9

Contents of an Aggregation Map
An aggregation map contains the following commands:

■ AGGMAP command indicates the beginning of an aggregation map. Depending
upon how you add contents to an aggmap object, you may not need to include
this command explicitly.

■ RELATION command identifies a parent relation or self-relation (which acts as a
hierarchy) of a dimension, which will be used to aggregate data. It can also
identify the type of aggregation and the selection of data to be aggregated. By
default, all of the data is summed. All aggregation maps contain one or more
RELATION commands.

■ MODEL command executes a predefined MODEL object. Models can be used to
aggregate data over non-hierarchical dimensions, which do not have a parent
relation.

■ CACHE command describes how or if the AGGREGATE function stores any data
that is calculated on the fly. This decision controls how quickly all of a data of a
variable will reflect run-time changes that users make to the variable data.

■ AGGINDEX command describes whether or not Oracle OLAP should create
indexes (composite tuples) that are needed by the MODEL command and by
commands that use the ACROSS phrase. This is an issue only when the variable
has a composite dimension.

■ END command indicates the end of an aggregation map. Depending upon how
you add contents to an aggmap object, you may not need to include this
command explicitly.

Example 12–5 Simple Aggregation Map

The following is a simple aggregation map in which the data across all dimensions
is precalculated using the SUM operator. Note that the body of the aggregation map
begins with an AGGMAP command and ends with an END command. The RELATION

Note: Both the CACHE and AGGINDEX commands have default
settings. If these default settings are appropriate for your
application, then you can omit these commands from your
aggregation map. Be sure to read the topics in the Oracle9i OLAP
DML Reference help for each of these commands to determine
whether or not you need to use them.

Creating an Aggregation Map

12-10 Oracle9i OLAP Developer’s Guide to the OLAP DML

commands are listed in the order the dimensions appear in the aggmap object
definition.

DEFINE GPCT.AGGMAP AGGMAP
LD Aggregation map for sales, units, quota, costs
AGGMAP
RELATION geography.parentrel
RELATION product.parentrel
RELATION geography.parentrel
RELATION time.parentrel
END

How to Compile an Aggregation Map
After you have created the aggregation map, you should compile and save it. This
step is important for aggregation performed at run-time using the AGGREGATE
function. Unless the compiled version of the aggregation map has been saved, the
aggregation map will be recompiled by each session that uses it.

If you use the FUNCDATA argument to the AGGREGATE command, then the
aggregation map is automatically compiled. For example, these commands will
precalculate aggregate data and save a compiled copy of the aggregation map for
runtime aggregation.

AGGREGATE sales USING gpct.aggmap FUNCDATA
UPDATE
COMMIT

Alternatively, you can compile the aggregation map explicitly with the COMPILE
command. Explicitly compiling an aggregation map is also useful for finding syntax
errors in the aggregation map before attempting to use it to generate data.

The following commands create and save the compiled version of the sales.agg
aggregation map.

COMPILE gpct.aggmap
UPDATE
COMMIT

Important: If some of the data will be calculated on the fly, then
you must compile and save the aggregation map after executing the
AGGREGATE command.

Creating an Aggregation Map

Aggregating Data 12-11

Compiling an aggregation map can take a significant amount of time. If you fail to
compile the aggregation map, the AGGREGATE function will automatically compile
it in order to get the information that is needed to perform calculation on the fly. If
this happens, query performance will suffer. Every time a user queries the
workspace for the first time, the AGGREGATE function must compile the aggregation
map before it can calculate the data. If 100 users query the same workspace, the
aggregation map will be compiled 100 times. If you precompile the aggregation
map and save it in the analytic workspace, then it is a task that is done once as part
of the build process. If you leave the compilation to be done as a result of user
queries, then it is a task that will be repeated for every user.

Aggregating Multiple Variables with a Single Command
You can use one AGGREGATE command to aggregate data for more than one
variable, as long as the following conditions are true:

■ All of the variables have identical dimensionality, which means that every
variable definition has the same dimensions in the same order.

■ You can use the same aggregation map for all of the variables. This means you
will be pre-calculating the same levels of data for every variable. Therefore, you
must be sure that your users tend to query the same levels of data for each
variable.

Example 12–6 Variables That Can Be Aggregated with One Command

Suppose your workspace contains the following named composite and variable
definitions:

DEFINE PROD.GEOG.CHAN COMPOSITE <PRODUCT GEOGRAPHY CHANNEL>

DEFINE SALES DECIMAL <TIME PROD.GEOG.CHAN <PRODUCT GEOGRAPHY CHANNEL>>
DEFINE UNITS INTEGER <TIME PROD.GEOG.CHAN <PRODUCT GEOGRAPHY CHANNEL>>
DEFINE PROJECTED_SALES DECIMAL <TIME PROD.GEOG.CHAN <PRODUCT GEOGRAPHY CHANNEL>>

Because these variables have identical dimensionality, you can use one AGGREGATE
command to aggregate the data for all three variables.

Suppose you have defined an aggregation map named sales.agg. You would use
the following command to aggregate data for all three variables:

AGGREGATE sales units projected_sales USING sales.agg

About the RELATION Command

12-12 Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 12–7 Variables That Cannot Be Aggregated with One Command

Suppose your workspace contains the following definitions for a named composite
and three variables:

DEFINE PROD.GEOG.CHAN COMPOSITE <PRODUCT, GEOGRAPHY, CHANNEL>

DEFINE SALES DECIMAL <TIME PROD.GEOG.CHAN <PRODUCT, GEOGRAPHY, CHANNEL>>
DEFINE UNITS INTEGER <TIME SPARSE <PRODUCT, GEOGRAPHY, CHANNEL>>
DEFINE PROJECTED_SALES DECIMAL <TIME SPARSE <PRODUCT, GEOGRAPHY>>

The following comparisons explain how the dimensionality is different for each
variable:

■ The sales variable uses a named composite, prod.geog.chan, whose base
dimensions are product, geography, and channel.

■ The units variable uses an unnamed composite, whose base dimensions are
product, geography, and channel. Even though the unnamed composite
has the same dimensions in the same order as the named composite, Oracle
OLAP considers the named composite and the unnamed composite to be two
different workspace objects. Therefore, sales and units do not have the same
dimensionality.

■ The project_sales variable also has an unnamed composite, whose base
dimensions are product and geography. However, it is not identical to the
unnamed composite that the units variable uses, because it does not include
the channel dimension.

Because the dimensionality for each variable is different, you will have to define a
different aggregation map to aggregate data for each variable. Therefore, you will
have to use a different AGGREGATE command for each variable.

About the RELATION Command
The RELATION command has the following basic syntax:

RELATION parent-rel [PRECOMPUTE (limit-phrase)] [OPERATOR opvar]

An aggregation map should have one RELATION command for each hierarchical
dimension in the definition of the variable. To promote the best possible
performance, list the RELATION commands in the same order as they appear in the
variable definition. This order indicates the way the data is stored, from fastest
varying dimension to slowest varying dimension as described in "How Variable
Data Is Stored" on page 3-17. When aggregating the data, it is much more efficient

About the RELATION Command

Aggregating Data 12-13

to aggregate the fastest varying dimension first and the slowest varying dimension
last.

For example, if the sales variable is dimensioned by time and the
prod.geog.chan composite like this:

<time prod.geog.chan <product, geography, channel>>

Then the first RELATION command should be for time, the second for product,
the third for geography, and the fourth for channel.

Example 12–8 Aggregating with SUM or MAX

The following examples use the letter dimension, the letter.letter parent
relation, and the units variable.

LETTER LETTER.LETTER UNITS
-------------- ------------- -------------
a NA NA
aa a NA
ab a NA
aab aa NA
aba ab NA
abb ab NA
aaaa aa 1
aaba aab 2
abaa aba 1
abbb abb 1
abba abb 1

About the RELATION Command

12-14 Oracle9i OLAP Developer’s Guide to the OLAP DML

The following illustration shows the relations defined by letter.letter.

Figure 12–1 Parent-Child Relationships in the LETTER Dimension

LETTER.AGGMAP uses SUM to calculate the value of aa.

DEFINE LETTER.AGGMAP AGGMAP
AGGMAP
RELATION letter.letter PRECOMPUTE (’aa’)
END

When the data is aggregated, aa has a value of 3:

aa = (aab + aaaa) = (aaba + aaaa) = (2 + 1) = 3

Note that although aab is the parent of aaba and the child of aa, its value is not
stored as the result of this calculation.

Specifying an Aggregation Method
The aggregation method for each dimension is specified in the RELATION
command. The default aggregation method is SUM, which adds the values of the

A

AB

ABB

ABBAABAAAABA

AAB

AA

AAAA

Parent-Child Relations in
LETTER Dimension

ABA

ABBB

About the RELATION Command

Aggregating Data 12-15

child cells and stores the total in the parent cell. However, there are other
aggregation methods that you can use:

Sum (SUM)
Scaled Sum (SSUM)
Weighted Sum (WSUM)
Average (AVERAGE)
Hierarchical Average (HAVERAGE)
Weighted Average (WAVERAGE)
Hierarchical Weighted Average (HWAVERAGE)
Maximum (MAX)
Minimum (MIN)
First (FIRST)
Hierarchical First (HFIRST)
Last (LAST)
Hierarchical Last (HLAST)
And (AND)
Or (OR)

These aggregation methods are arguments to the RELATION command. For
descriptions of these methods, refer to the RELATION command entry in Oracle9i
OLAP DML Reference help. Do not confuse the RELATION aggregation methods
with the DML aggregation functions.

Example 12–9 Specifying the Aggregation Method

The OPERATOR keyword in the following RELATION command changes the method
of aggregation from the default SUM to MAX.

RELATION letter.letter PRECOMPUTE (’aa’) OPERATOR MAX

When the data is aggregated with the modified aggregation map, aa has a value of
2, because 2 is the largest value contributing to aa, as shown in Figure 12–1,
"Parent-Child Relationships in the LETTER Dimension".

Example 12–10 Using a Weighted Variable

Several aggregation methods use weighted variables: WSUM, WAVERAGE, and
HWAVERAGE. You must first define a weighted variable, then specify it in the
RELATION command using the ARGS WEIGHTBY argument.

About the RELATION Command

12-16 Oracle9i OLAP Developer’s Guide to the OLAP DML

The following aggregation map uses the weights defined in variable
letter.weights to calculate the value of aa.

DEFINE LETTER.AGGMAP AGGMAP
AGGMAP
RELATION letter.letter PRECOMPUTE (’aa’) OPERATOR WSUM -
 ARGS WEIGHTBY letter.weights
END

The output from this REPORT command shows the aggregation.

report down letter letter.weights units

LETTER LETTER.LETTER LETTER.WEIGHTS UNITS
-------------- --------------- --------------- ---------------
a NA NA NA
aa a NA 7
ab a NA NA
aab aa NA NA
aba ab NA NA
abb ab NA NA
aaaa aa 5 1
aaba aab NA 2
abaa aba NA 1
abbb abb NA 1
abba abb NA 1

The value of aa in the units variable is calculated in this way:

aa = ((5 * aaaa) + aab) = ((5*aaaa) + aaba) = (5*1) + 2 = 7

Selecting Data For Aggregation
The PRECOMPUTE clause limits the data that is aggregated by the AGGREGATE
command. In its simplest form, the PRECOMPUTE clause is like a LIMIT dimension
TO command. Notice that the default limit is on the dimension, which is not
explicitly named in the RELATION command.

For example, this LIMIT command selects the AUDIODIV, VIDEODIV, and ACCDIV
values of the product dimension:

limit product to ’audiodiv’ ’videodiv’ ’accdiv’

About the RELATION Command

Aggregating Data 12-17

The equivalent RELATION command looks like this:

RELATION product.parentrel PRECOMPUTE (’AUDIODIV’ ’VIDEODIV’ ’ACCDIV’)

Since these values are all at the same level of the product STANDARD hierarchy (L2),
this LIMIT command yields the same results:

limit product to product.levelrel ’L2’

This is the equivalent RELATION command:

RELATION product.parentrel PRECOMPUTE (product.levelrel ’L2’)

The TO clause may not always produce the results you want. To use the other
selection clauses (such as KEEP, REMOVE, and COMPLEMENT), you must explicitly
call the LIMIT function.

RELATION product.parentrel PRECOMPUTE (limit(product complement ’TOTALPROD’))

Example 12–11 Aggregation Map with PRECOMPUTE Clauses

This aggregation map uses PRECOMPUTE clauses to limit the data that is aggregated
by the AGGREGATE command.

DEFINE GPCT.AGGMAP AGGMAP
LD Aggregation map for sales, units, quota, costs
AGGMAP
RELATION geography.parentrel PRECOMPUTE (geography.levelrel ’L3’)
RELATION product.parentrel PRECOMPUTE (limit(product complement ’TOTALPROD’))
RELATION channel.parentrel
RELATION time.parentrel PRECOMPUTE (time ne ’2001’)
END

Caching Runtime Aggregates
The CACHE command in an aggregation map determines whether data that is
calculated on the fly is available for the duration of a session. By default, the data
must be recalculated each time it is queried. The user will experience faster
querying time if the data is cached and simply retrieved for subsequent queries,
however, maintaining a cache can have unwanted side-effects.

If users alter the data during their sessions (such as when running forecasts and
what-if analysis), then data that was aggregated previously will not reflect the
changes in the data. Having the data out of synchronization in this way means that
users will view inaccurate data. Do not maintain a cache if users alter the data
during their sessions.

Aggregating Non-Hierarchical Data

12-18 Oracle9i OLAP Developer’s Guide to the OLAP DML

If users have write access to the analytic workspace, then the runtime calculations
will be saved along with other changes if a user issues UPDATE and COMMIT
commands. This defeats the purpose of runtime aggregation, which is to save
storage space.

If users can save their analytic workspaces, then create a cache using a CACHE
SESSION command. If they cannot save their workspaces, then you can use either
CACHE SESSION or CACHE STORE.

The effectiveness of a cache is tracked in the V$AW_CALC dynamic performance
view. See the Oracle9i OLAP User’s Guide for information about querying this view.

Aggregating Non-Hierarchical Data
Some dimensions, such as line items, do not have a hierarchical structure. Instead,
individual line items are calculated, sometimes with complex formulas, from one or
more other line items or workspace objects. Models are needed to solve the data
over this type of a dimension.

To execute a model, you include a MODEL command within the aggmap. It has the
following basic syntax:

MODEL modelname [PRECOMPUTE ALL|NA]

Where:

modelname is the name of an existing MODEL object that calculates values for one or
more dimensions of the aggregation map.

PRECOMPUTE ALL indicates that the AGGREGATE command will execute the model
as a data maintenance step. Any RELATION or MODEL commands that precede it in
the aggregation map must also be specified as PRECOMPUTE ALL. However, any
RELATION or MODEL commands that follow it in the aggregation map can either be
specified as PRECOMPUTE ALL or PRECOMPUTE NA.

PRECOMPUTE NA indicates that the AGGREGATE function will execute the model at
runtime. The following conditions must be met for runtime execution:

■ All RELATION commands in the aggmap must appear before the MODEL
command specified as PRECOMPUTE NA.

■ Any additional MODEL commands that follow it must also be specified as
PRECOMPUTE NA.

■ The model cannot solve simultaneous equations or time series (such as LEAD
and LAG functions).

Aggregating Non-Hierarchical Data

Aggregating Data 12-19

■ The model cannot reference an object that invokes the AGGREGATE function. For
example, the model can contain an equation such as TAX=PROFIT*RATE where
RATE is a variable or formula. However, RATE cannot require runtime
aggregation.

Example 12–12 Solving a Model in an Aggregation

This example uses the budget variable:

DEFINE BUDGET VARIABLE DECIMAL <LINE TIME>
LD Budgeted $ Financial

The time dimension has two hierarchies (STANDARD and YTD) and a parent
relation named time.parentrel as follows:

 -----TIME.PARENTREL------
 ----TIME.HIERARCHIES-----
TIME STANDARD YTD
-------------- ------------ ------------
LAST.YTD NA NA
CURRENT.YTD NA NA
JAN01 Q1.01 LAST.YTD
FEB01 Q1.01 LAST.YTD
MAR01 Q1.01 LAST.YTD
APR01 Q2.01 LAST.YTD
MAY01 Q2.01 LAST.YTD
JUN01 Q2.01 LAST.YTD
JUL01 Q3.01 LAST.YTD
AUG01 Q3.01 LAST.YTD
SEP01 Q3.01 LAST.YTD
OCT01 Q4.01 LAST.YTD
NOV01 Q4.01 LAST.YTD
DEC01 Q4.01 LAST.YTD
JAN02 Q1.02 CURRENT.YTD
FEB02 Q1.02 CURRENT.YTD
MAR02 Q1.02 CURRENT.YTD
APR02 Q2.02 CURRENT.YTD
MAY02 Q2.02 CURRENT.YTD
Q1.01 2001 NA
Q2.01 2001 NA
Q3.01 2001 NA
Q4.01 2001 NA
Q1.02 2002 NA

See Also: Chapter 8, "Working with Models"

How to Generate Precalculated Data

12-20 Oracle9i OLAP Developer’s Guide to the OLAP DML

Q2.02 2002 NA
2001 NA NA
2002 NA NA

The relationships among line items are defined in the following model.

DEFINE INCOME.BUDGET MODEL
MODEL
dimension line time
opr.income = gross.margin - marketing
gross.margin = revenue - cogs
revenue = lag(revenue, 12, time) * 1.02
cogs = lag(cogs, 1, time) * 1.01
marketing = lag(opr.income, 1, time) * 0.20
END

The following aggregation map pre-aggregates all of the data. Note that all of the
data must be pre-aggregated because the model includes both LAG functions and a
simultaneous equation.

DEFINE BUDGET.AGGMAP1 AGGMAP
AGGMAP
MODEL income.budget
RELATION time.parentrel
END

How to Generate Precalculated Data
Typically, you will general precalculated aggregates in a batch window as part of
maintaining the data in your database. If you wish, you can use Job Manager to
schedule batch jobs in Oracle Enterprise Manager, as described in the Oracle9i OLAP
User’s Guide.

The AGGREGATE command aggregates the data for one or more variables according
to the specifications provided in the aggregation map. The basic syntax of the
AGGREGATE command is:

AGGREGATE variables USING aggmap

Where:

variables is the name of one or more variables.

aggmap is the name of the aggregation map.

How to Generate Precalculated Data

Aggregating Data 12-21

Example 12–13 Precalculating Data in a Batch Job

Your batch job should include commands like the following:

ALLSTAT
POUTFILEUNIT=FILEOPEN(’userfiles/progress.txt’ WRITE)
AGGREGATE sales units USING gpct.aggmap
UPDATE
COMMIT
FILECLOSE POUTFILEUNIT

Effects of Dimension Status
The RELATION command only aggregates those source data values (that is, those
values that are loaded into the analytic workspace and used as the basis of
aggregation) that are in status. The parent values are calculated regardless of
whether they are in status or not. For example, if only JAN01, FEB01, and MAR01
are in status for the time dimension, then Q1.01 will be calculated (but no other
quarters), and 2001 will be calculated (but no other years) using only Q1.01 as
input since the other quarters are NA.

This can be useful when you want to aggregate just the new data in your analytic
workspace. However, you must exercise some care, as described in "Performing
Partial Aggregations" on page 12-27.

Monitoring Progress
You can monitor the progress of an aggregation by setting the POUTFILEUNIT
option. You can use the OUTFILEUNIT option or the OUTFILE function to set the
value of POUTFILEUNIT.

This command sets POUTFILEUNIT to the file unit number of the current outfile,
which is usually the screen:

POUTFILEUNIT=OUTFILEUNIT

This command opens a file named progress.txt in the userfiles directory
alias, and sets POUTFILEUNIT to the file unit number of progress.txt:

POUTFILEUNIT=FILEOPEN(’userfiles/progress.txt’ WRITE)

When the aggregation is complete, you must close the file with a FILECLOSE
command.

How to Calculate Data at Runtime

12-22 Oracle9i OLAP Developer’s Guide to the OLAP DML

How to Calculate Data at Runtime
The AGGREGATE function calculates the complement of the data specified in the
PRECOMPUTE clause of the RELATION command. It returns those values that are
currently in status.

For example, if you are using an aggregation map that contains this RELATION
command:

RELATION letter.letter PRECOMPUTE (’aa’)

Then the AGGREGATE function calculates all aggregations except aa, as shown here.

REPORT AGGREGATE(units USING letter.aggmap)

 AGGREGATE(UNITS
LETTER USING LETTER.AGGMAP)
-------------- --------------------
a 3
aa NA
ab 3
aab 2
aba 1
abb 2
aaaa 1
aaba 2
abaa 1
abbb 1
abba 1

Setting Up Calculation on the Fly
If you want to calculate some data on the fly, you need to perform the following
steps:

1. Decide which data should be pre-calculated and which data should be
calculated on the fly.

2. Define an aggregation map that contains the PRECOMPUTE keyword in one or
more RELATION or MODEL commands. It may also contain a CACHE command if
the default value is not appropriate.

3. Use the AGGREGATE command with the aggregation map to pre-calculate the
data that will be stored on disk.

Creating Custom Aggregates

Aggregating Data 12-23

4. Compile the aggregation map after executing the AGGREGATE command, as
explained in "How to Compile an Aggregation Map" on page 12-10.

5. Add the $NATRIGGER property to the variables that use the aggregation map,
so that NAs in queried data will cause the AGGREGATE function to execute.

Adding the $NATRIGGER Property to a Variable
Instead of specifying the AGGREGATE function in every command that you want to
return aggregate data, you can add a property to the variable so that the
AGGREGATE function is executed automatically.

An $NATRIGGER property on a variable indicates that NA values in the queried
data will cause a particular action to take place. To trigger an aggregation, a call to
the AGGREGATE function is the value assigned to the $NATRIGGER property.

The following commands add the $NATRIGGER property to the sales variable, so
that unsolved data will be aggregated using the sales.aggmap aggregation map:

CONSIDER sales
PROPERTY ’$NATRIGGER’ ’AGGREGATE(sales USING sales.aggmap)’

Creating Custom Aggregates
Most aggregates are defined with a parent relation that identifies the parent-child
relationships within the dimension. However, users may wish to create their own
aggregates at runtime, perhaps for forecasting or what-if analysis, or just because
they want to view the data in an unforeseen way. This is the process by which a
custom aggregate is created:

1. Create a dimension value for the custom aggregate. The following command
adds ‘bb’ to the letter dimension:

maintain letter add ’bb’

2. Create a MODEL object that contains an AGGREGATION function, which
associates child dimension values with the new dimension value. The following
model identifies bb as the parent of aab and aba. Note that the parent
dimension value (in this case, bb) cannot already be defined as a parent in the
parent relation (letter.letter).

DEFINE LETTER.MODEL MODEL
MODEL
DIMENSION letter
bb=AGGREGATION(’aab’ ’aba’)

Balancing Precalculated and Runtime Aggregation

12-24 Oracle9i OLAP Developer’s Guide to the OLAP DML

3. Execute an AGGMAP ADD command to append the model to an existing AGGMAP
object.

AGGMAP ADD letter.model TO letter.aggmap

The aggregation map from Example 12–8 now looks like this:

DEFINE LETTER.AGGMAP AGGMAP
AGGMAP
RELATION letter.letter PRECOMPUTE (’aa’)
END
AGGMAP ADD letter.model

4. The model is executed only by the AGGREGATE function like the one shown
here; the AGGREGATE command ignores it.

REPORT AGGREGATE(units USING letter.aggmap)

5. If you wish to remove the model from the aggregation map during a session,
use the AGGMAP REMOVE command.

Balancing Precalculated and Runtime Aggregation
Using AGGREGATE, all of the following strategies are possible. You can:

■ Pre-aggregate all of the data. This means that all of the data for the variable will
be aggregated and stored in the database. This is likely to result in relatively
slow build performance and extremely fast user query performance.

■ Calculate all of the data on the fly, that is, at run-time. In this case, you eliminate
aggregation from the build process, which means that build performance will
be very fast; it will be reduced to the time that it takes to load data into the
workspace. However, user query performance will suffer greatly.

■ Pre-aggregate some of the data and calculate the remainder on the fly.

Good performance is a matter of trade-offs. Therefore, one of the most effective
steps you can take to achieve overall good performance is to balance the amount of
the data that you aggregate and store in an analytic workspace with the amount of
data that you specify for calculation on the fly.

Important: The AGGMAP ADD command is automatically removed
from an aggmap object at the end of a session.

Balancing Precalculated and Runtime Aggregation

Aggregating Data 12-25

A typical strategy is skip-level aggregation: that is, select one or two of a variable’s
dimensions and pre-aggregate every other level in those dimension’s hierarchies. If
you know which levels are queried most often by users, you should pre-calculate
those levels of data.

Example 12–14 Calculating Data Using the Skip-Level Approach

Suppose you want to aggregate sales data. The sales variable is dimensioned by
geography, product, channel, and time.

First, consider the hierarchy for each dimension. How many levels does each
hierarchy have? What levels of data do users typically query? If you are designing a
new workspace, what levels of data do your users plan to query?

Suppose you learn the following information about how users tend to query sales
data for the time hierarchy:

The following information shows how your users tend to query sales data for the
geography hierarchy:

Time Level Names
Descriptive Level

Name
Examples of

Dimension Values
Do users query this

level often?

L1 Year YEAR99, YEAR00 yes

L2 Quarter Q3.99, Q3.99,
Q1.00

yes

L3 Month JAN99, DEC00 yes

Geography Level
Names

Descriptive Level
Name

Examples of
Dimension Values

Do users query this
level often?

L1 World WORLD yes

L2 Continent EUROPE, AMERICAS no

L3 Country HUNGARY, SPAIN yes

L4 City BUDAPEST, MADRID yes

Balancing Precalculated and Runtime Aggregation

12-26 Oracle9i OLAP Developer’s Guide to the OLAP DML

The following information shows how your users tend to query sales data for the
product dimension hierarchy:

Using this information about how users query data, you should use the following
strategy for aggregation:

■ Fully aggregate time and product because all levels are queried frequently.

■ For the geography dimension, aggregate data for L1 (World) and L3 (Country)
because they are queried frequently. However, L2 is queried less often and so
can be calculated on the fly.

The lowest level of data was loaded into the analytic workspace. The aggregate data
is calculated from this source data.

Therefore, the contents of the aggregation map might look like the following:

RELATION time.parentrel
RELATION geography.parentrel PRECOMPUTE (geog.leveldim ’L3’ ’L1’)
RELATION product.parentrel

Selecting Dimensions for Runtime Calculation
Use a skip-level approach for only one or two dimensions. You should use the
skip-level approach for half or fewer of the dimensions in a variable definition. For
example, if there are three dimensions, then you can use the skip-level approach for
one dimension; if there are four or more dimensions, then you can use the skip-level
approach for two dimensions.

The dimensions that are the best candidates for skip-level aggregation are the
dimensions whose hierarchies have many levels.

If possible, choose a dimension that is either fastest- or intermediate-varying in the
variable dimension. Performance of calculation on the fly will always be best for
dimensions in this position.

Product Level
Names

Descriptive Level
Name

Examples of
Dimension Values

Do users query this
level often?

L1 All Products TOTALPROD yes

L2 Division AUDIODIV,
VIDEODIV

yes

L3 Category TV, VCR yes

L4 Product TUNER, CDPLAYER yes

Performing Partial Aggregations

Aggregating Data 12-27

Selecting Levels for Runtime Calculation
Skip every other level in a dimension hierarchy, and avoid skipping more than two
levels that are adjacent to each other. For example, if a hierarchy has seven levels,
you might skip L2, L4, and L6. That means you would precalculate L1, L3, and L5.
(The detail-level data is at L7.) Take into consideration how frequently a level is
queried, as demonstrated in Example 12–14. Users will experience the best
performance if you pre-aggregate the data most frequently queried, and aggregate
on the fly the data that is requested occasionally.

Do not skip adjacent levels. For example, if you skipped L2, L3, L4, and L5, then a
query for L2 data would require AGGREGATE to calculate L5, then aggregate that
data up to L4, then up to L3, and finally to L2. Alternatively, if you skip L2, L4, and
L6, then a query for L2 data requires AGGREGATE to aggregate data only from L3.

The one exception to this rule is when each level has very few children per parent.
When this is true for every adjacent level that you want to skip, then you can skip
two or more adjacent levels.

Performing Partial Aggregations
Maintenance of an analytic workspace must usually be done within a restrictive
batch window. For this reason, many DBAs perform partial aggregations rather
than full aggregations each time they refresh the data. When all of the data is
pre-aggregated, this does not present a problem. However, when partial
aggregations are performed on data that uses both pre-aggregation and runtime
aggregation, then steps must be taken to ensure that the results are correct. Errors in
the data occur when the status list generated by the PRECOMPUTE keyword is
outdated.

The PRECOMPUTE clause produces a status list that:

■ Tells the AGGREGATE command which data should be pre-calculated, and

■ Tells the AGGREGATE function what the AGGREGATE command has done

If you never use the AGGREGATE command with the AGGREGATE function, you do
not need the information.

Performing Partial Aggregations

12-28 Oracle9i OLAP Developer’s Guide to the OLAP DML

Aggregation Changes That Cause Problems
You should read this information to address the following circumstances:

■ Incremental data loading: You have already built your analytic workspace and
are now loading new data on a regular basis. You make a change to at least one
PRECOMPUTE clause in a RELATION command in an aggregation map.

■ Using data-dependent PRECOMPUTE clauses: When you use the PRECOMPUTE
keyword in an aggregation map, that PRECOMPUTE clause can be
data-dependent instead of simply identifying dimension values or levels.

■ Changing a hierarchy: If you make a change to a dimension’s hierarchy after
you have already aggregated data, then you will need to aggregate all of the
data again. There is a procedure you can use, in some cases, to reduce the time
it takes to re-aggregate the data in your analytic workspace.

Incremental Data Loading
Incremental data loading refers to the process of loading new input data into an
existing analytic workspace and then aggregating that data. This usually happens
on a regular basis, whether it is on a monthly, weekly, or even daily basis.

For example, suppose you design a new analytic workspace. It contains two
variables: sales and units. Suppose that when you build the analytic workspace
for the first time, you have input data for one year for both variables. Because
sales and units contain exactly the same dimensions in exactly the same order in
their definitions, you define one aggregation map that will be shared by both
sales and units. You load that input data into the analytic workspace, then use
the AGGREGATE command to roll up that input data.

You know that you will be getting new input data for sales and units on the first
day of every month. For example, suppose it is March 1. On this day, you expect to
receive the sales data and units data for the previous month of February. Your
responsibility is to load the February data into the existing analytic workspace and
aggregate that input data. This is an incremental data load. The next incremental
data load will take place on April 1, and so on.

Typically, when you aggregate this new data, you will use a LIMIT command to
ensure that only the new input data will be aggregated. For example, to aggregate
only the new input data that you have loaded for February, you might use the
following commands:

LIMIT month TO ’FEB99’
AGGREGATE sales units USING salesunits.aggmap

Performing Partial Aggregations

Aggregating Data 12-29

This is acceptable as long as you do not change any of the PRECOMPUTE clauses in
the aggregation map. If you do, then you must pre-aggregate all of the data.

Problem: PRECOMPUTE Status List Is Inaccurate
If you change a PRECOMPUTE clause, then the status list will change. This means
that although the data that is produced by the AGGREGATE command after you
change the PRECOMPUTE clause will be correct, Oracle OLAP may not be able to
return the data that is requested by a user using the AGGREGATE function. The
status list might indicate that a value has already been calculated when in fact it has
not.

Solution: Regenerate the PRECOMPUTE Status List
If you make any changes to any PRECOMPUTE clause in one or more RELATION
commands in an aggregation map, then you must pre-aggregate all of the data.
Otherwise, the AGGREGATE function will use a PRECOMPUTE status list that is out of
synchronization with the data, and thus may not generate all of the required values.

Use the following procedure to be sure the data will be aggregated correctly:

1. Make sure that you have finished making any changes that you want to make
to the PRECOMPUTE clauses in your aggregation map.

2. Load the incremental input data.

3. Set the current status of all dimensions to ALL. (You can use one ALLSTAT
command, or a LIMIT TO ALL command for every dimension in the
aggregation map.)

4. Execute the AGGREGATE command.

5. Recompile the aggregation map. (Alternatively, you can use the FUNCDATA
keyword when you execute the AGGREGATE command in Step 4.)

Using a Data-Dependent PRECOMPUTE Clause
The clause that follows the PRECOMPUTE keyword is like a LIMIT command. You
have the flexibility to specify the limit expression using the values of the data. For
example, you can specify the five areas with the lowest sales figures in a time
period. The RELATION command might look like this:

RELATION geography.parentrel PRECOMPUTE (BOTTOM 5 BASEDON sales)

Performing Partial Aggregations

12-30 Oracle9i OLAP Developer’s Guide to the OLAP DML

Problem: Values of the Limit Clause Vary With Each Data Update
Data-dependent limit expressions can vary in their results. In other words, the
“bottom five” areas in the analytic workspace that you build in February will not
necessarily be the same “bottom five” areas after performing an incremental data
load in March. Furthermore, the “bottom five” areas in your March will not
necessarily be the same “bottom five” areas after the April incremental data load.

In this situation, the PRECOMPUTE status list is out of synchronization, and the
AGGREGATE function may not calculate a needed value because the status list
indicates that it was precomputed.

Solution: Maintain a Valueset
Instead of using a data-dependent PRECOMPUTE clause, you can either:

■ List specific values, or

■ Create a valueset that stores specific values

As you load and aggregate incremental data over the course of time, the status list
that is generated by the PRECOMPUTE keyword remains constant when you use one
of these methods. However, the five stores in the limit expression or valueset
remains the same, regardless of whether or not they still represent the stores with
the lowest sales figures.

To keep the limit phrase current, take the following steps:

1. Recompute the limit expression each time you load new data.

2. Change the valueset when the results of your computation are different.

3. Perform a full aggregation of the affected variables.

4. Recompile the aggregation map that is used by the AGGREGATE function.

Refer to "Incremental Data Loading" on page 12-28 for the general guidelines you
should follow.

If you have changed the input data or your hierarchies, then replace any data that
has been aggregated with NA values. These are the steps that you might take: Limit
the dimensions to the input data, create a new variable, copy the data from the
original variable to the new variable, delete the original variable, and rename the
new variable to the name of the original variable.

Performing Partial Aggregations

Aggregating Data 12-31

Example 12–15 Listing the Dimension Values

Instead of using data-dependent PRECOMPUTE clauses, use specific dimension
values in the PRECOMPUTE clause. After loading the data, issue a data-dependent
LIMIT command to identify the dimension values. Then list those values in the
PRECOMPUTE clause. For example,

LIMIT time TO ’2001’
LIMIT channel TO ’TOTALCHANNEL’
LIMIT product TO ’TOTALPROD’
LIMIT geography TO BOTTOM 5 BASED ON sales

STATUS geography
The current status of GEOGRAPHY is:
BOGOTA, BORDEAUX, EDINBURGH, KYOTO, BRUSSELS

You would then change the PRECOMPUTE clause to list these areas:

RELATION geography.parentrel PRECOMPUTE (’BOGOTA’ ’BORDEAUX’ ’EDINBURGH’ -
’KYOTO’ ’BRUSSELS’)

If you want to use data-dependent PRECOMPUTE clauses, create and use a valueset
with the PRECOMPUTE clause.

Example 12–16 Using a Valueset

A valueset can be used to store a list of values. For example, the following
commands create a valueset for the geography dimension. After performing an
incremental update, you would need to update the valueset, but you would not
need to edit the aggregation map.

The following commands create a valueset for geography:

DEFINE lowsales.geog VALUESET geography
LIMIT time TO ’2001’
LIMIT channel TO ’TOTALCHANNEL’
LIMIT product TO ’TOTALPROD’
LIMIT lowsales.geog TO BOTTOM 5 BASED ON sales

Performing Partial Aggregations

12-32 Oracle9i OLAP Developer’s Guide to the OLAP DML

The VALUES function returns the status list of the valueset:

SHOW VALUES(lowsales.geog)

BOGOTA
BORDEAUX
EDINBURGH
BRUSSELS
KYOTO

This RELATION command uses the valueset:

RELATION geography.parentrel PRECOMPUTE (lowsales.geog)

Changing a Hierarchy
Once you have defined a hierarchy and you have aggregated data, if you move one
or more dimension values to a different parent in the hierarchy, then you have
changed the hierarchy.

For example, suppose your geography hierarchy has input data for stores. The
store data rolls up into cities. The cities roll up into regions, and so on.

You define your dimensions and variables. You define the hierarchies for your
dimensions. You load data and roll it up. Several months later, after you have
loaded and rolled up incremental data, one of the stores changes location. For
example, STORE22 closes its location in Hull, Massachusetts and then reopens at a
new location in Waltham, Massachusetts. Therefore, STORE22 now is part of the
WEST BOSTON region instead of SOUTH BOSTON region.

STORE3STORE2STORE1 STORE22 STORE23 STORE24

WALTHAM HULL

WEST
BOSTON

SOUTH
BOSTON

Performing Partial Aggregations

Aggregating Data 12-33

Therefore, you must move the STORE22 dimension value so that its data will roll
up to different dimension values in the higher levels of the hierarchy. For example,
you must move STORE22 from the HULL path to the WALTHAM path.

When you move one or more dimension values so that their data rolls up in a
different path in the hierarchy, you have changed the hierarchy.

Problem: Previously Aggregated Data is Incorrect
Suppose that you receive the most recent month’s worth of data for STORE22. You
load that data and aggregate it.

Today you find out that last month the store moved to a new city, as well as a new
region. This means that you have already aggregated the STORE22 data into HULL,
when the STORE22 data now should be aggregated into WALTHAM.

The problem is that you not only need to change the hierarchy, but you need to
correct the data so that the STORE22 data aggregates into WALTHAM instead of
HULL.

Solution: Re-Aggregate Changed Branches
When you change a hierarchy, you can re-aggregate the data in the analytic
workspace (after you have changed the hierarchy) in one of two ways:

■ Perform a full aggregation. This is the best alternative if you make significant
changes to a hierarchy.

■ Perform a partial aggregation for the dimension value that has moved, as well
as a previous sibling of that dimension value. This method is acceptable for
very small changes to the hierarchy.

STORE3STORE2STORE1 STORE22 STORE23 STORE24

WALTHAM HULL

WEST
BOSTON

SOUTH
BOSTON

Combining AGGREGATE with Forecasts and Programs

12-34 Oracle9i OLAP Developer’s Guide to the OLAP DML

The advantage of a partial aggregation is that it takes a shorter period of time to
complete than a full aggregation. However, the advantage of performing a full
rollup is that you know the results will be correct.

Therefore, if you move one or two dimension values in your hierarchy, and you
have a small window of time to roll up the analytic workspace, you can perform a
partial aggregation; otherwise, perform a full aggregation.

How to Aggregate Branches of a Hierarchy
Follow these steps to aggregate the data for the former parents and the current
parents of the dimension value that moved in the hierarchy.

1. Identify the dimension value (or group of dimension values) that has moved in
the hierarchy. For example, STORE22 is the dimension value whose data now
aggregates to WALTHAM instead of HULL.

2. Identify a previous sibling of the dimension value that has moved. (If more than
one dimension has moved, you must identify a sibling for each one.) For
example, STORE22 was previously grouped with STORE23 and STORE24;
either one qualifies as a previous sibling of STORE22.

3. Limit the current status of the dimension to the dimension value that has
moved and its previous sibling. For example, use the following command to
limit the geography dimension to STORE22 and STORE23.

LIMIT time TO ’STORE22’ ’STORE23’

4. Aggregate the variable’s data. For example, use the following command to
aggregate the sales variable.

AGGREGATE sales USING sales.agg

By identifying the dimension value that has moved, you can recalculate its new
ancestors (such as WALTHAM). By identifying a previous sibling of the dimension
value that has moved, you can recalculated its previous ancestors (such as HULL).

Combining AGGREGATE with Forecasts and Programs
You will need to use multiple aggregation maps for a single variable when you use
alternative ways to pre-aggregate data (in addition to the AGGREGATE command)
over one or more dimensions. These alternative ways to aggregate data can include:

■ A forecast

■ An OLAP DML program

Combining AGGREGATE with Forecasts and Programs

Aggregating Data 12-35

For example, suppose the sales variable is dimensioned by geography, product,
channel, and time. You If you aggregate some of a variable’s data with AGGREGATE,
and you aggregate other data for that same variable with a forecast or DML
program, then you need to take extra steps to make sure all of the aggregated data
will be correct.

When to Use Multiple Aggregation Maps
Ideally, you will use the same aggregation map with both the command and the
function to aggregate data for the same variable or group of variables. However, it
may be necessary to use two or more aggregation map with the command and a
different aggregation map with the function to assure that the results will be correct.

Problem: Different Aggregation Maps Generate Different Status Lists
The reason for using multiple aggregation maps is that each one performs a
different task, and thus produces a different status list.

If the AGGREGATE command and the AGGREGATE function use the same
aggregation map, then there is no problem; they will be using the same status list,
because only one status list exists.

The problem occurs when you use more than one aggregation map with the
AGGREGATE command for the same variable (or group of variables). Each one
produces a different status list, and none of them alone may correctly identify the
current status for the AGGREGATE function.

Important: You should not use the AGGREGATE function with
multiple aggregation maps unless you feel comfortable answering
the following question:

When the aggregation map is compiled for use by the AGGREGATE
function, does the status that results from each PRECOMPUTE clause
accurately define the nodes within that dimension at which data
has been pre-computed?

If you cannot answer “yes” to this question with confidence, you
should not use the AGGREGATE function with multiple aggregation
maps.

Combining AGGREGATE with Forecasts and Programs

12-36 Oracle9i OLAP Developer’s Guide to the OLAP DML

Solution: Create a Separate AGGMAP for the AGGREGATE Function
If you use more than one aggregation map to pre-calculate data, then you must:

1. Create another aggregation map for the AGGREGATE function, which will be
used for user queries.

2. Make sure that the contents of the aggregation map for user queries combines
the contents of the aggregation maps that you use to pre-calculate data. Refer to
Example 12–17, "Using Multiple Aggregation Maps" for an example of how to
do this.

Example 12–17 Using Multiple Aggregation Maps

If you use a forecast, you must make sure that all of the input data that is required
by that forecast has been pre-calculated. Otherwise, the forecast will use incorrect or
nonexistent data.

For example, suppose your forecast requires that all line items are aggregated.
Using a budget variable that is dimensioned by time, line, and division, a
typical approach would be to perform a complete aggregation of the line
dimension, forecast the time dimension, and then aggregate the remaining
dimension, division. Define the first aggregation map, named forecast.agg1,
which aggregates the data needed by the forecast. It contains the following
command:

RELATION line.parentrel

Define the second aggregation map, named forecast.agg2, which aggregates the
data generated using the first aggregation map and the forecast. It contains the
following command:

RELATION division.parentrel PRECOMPUTE (’L3’)

Define the third aggregation map, named forecast.agg3, which contains the
contents of the first two aggregation maps:

RELATION line.parentrel
RELATION division.parentrel PRECOMPUTE (’L3’)

If your forecast is in a program named fore.prg, then you would use these
commands to aggregate the data:

AGGREGATE budget USING forecast.agg1 "Aggregate over LINE
CALL fore.prg "Forecast over TIME
AGGREGATE budget USING forecast.agg2 "Aggregate over DIVISION

Combining AGGREGATE with Forecasts and Programs

Aggregating Data 12-37

"Compile the limit map for LINE and DIVISION
COMPILE forecast.agg3

"Use the combined aggregation map for the AGGREGATE function
CONSIDER budget
PROPERTY ’NATRIGGER’ ’AGGREGATE(budget USING forecast.agg3)’

Combining AGGREGATE with Forecasts and Programs

12-38 Oracle9i OLAP Developer’s Guide to the OLAP DML

Index-1

Index
Symbols
% wildcard, 4-28
& operator, 4-30, 4-31
= command

ACROSS keyword, 5-12
example of, 5-12, 5-13
introduced, 4-3, 5-3, 5-10
saving calculations, 5-12
with composites, 5-12
with dimensions, 5-14
with models, 8-5
with QDR, 4-8, 5-14
with relations, 5-14
with variables, 5-11, 5-12
with variables using composites, 5-12, 5-13

= operator, See = command
_ wildcard, 4-28

A
ABS function, 4-24, 4-25
ACROSS phrase

used when reading files, 11-17
AGGINDEX command

definition, 12-9
purpose of, 12-9

AGGMAP command, 3-27, 12-7
aggmap object, See aggregation map
AGGMAPINFO command, 9-4
AGGREGATE command

introduced, 12-4
multiple variables, 12-11

AGGREGATE function
adding as a property to the variable, 12-23
introduced, 12-4

aggregating data
best practice, 12-24
for multiple variables, 12-11
list of commands, 12-3
methods, 12-14
on-the-fly, 12-2
overview, 12-2
precomputing, 12-2
process, 12-4

aggregation functions, NA values in, 4-33
aggregation map

commands for allocation, 9-5
compiling, 12-10
creating aggmap object, 12-7
for allocation, 9-5
how to define, 12-7
performance tip, 12-12
RELATION command, 9-6, 12-12

alias
analytic workspace, 2-8
directory, 11-4

ALLOCATE command, 9-2, 9-4
allocating data

introduction to, 9-2
list of related commands, 9-4
preparing for, 9-5

ALLOCERRLOGFORMAT command, 9-4
ALLOCERRLOGHEADER command, 9-4
ALLOCMAP command, 3-27, 9-4, 9-5
ampersand (&) operator, 4-30, 4-31

Index-2

ampersand substitution
avoiding, 4-31
defined, 4-30
effect performance, 7-9
example of, 4-31
prevents compiling, 7-29
program arguments and, 7-9
QDR with, 4-10
restrictions, 8-6
using to pass arguments, 7-9
when required, 7-9

analytic workspaces
access from Java, 1-10
access from OLAP Worksheet, 1-6
access from SQL, 1-9
acquiring description of, 2-15
active workspace, 2-2
alias, 2-8
attached read-only or read/write, 2-4
attached workspace, 2-2
attaching, 2-3
committing changes, 2-9
controlling access to, 2-12
copying data into relational

tables, 10-28 to 10-32
creating, 2-3
current workspace, 2-2
deleting, 2-5
detaching, 2-5
exporting, 2-14
importing, 2-14
introduction to, 1-2
list of attached, 2-2
minimizing growth of, 2-10
multiple, 2-6
name, 2-7
objects, acquiring information about, 2-15, 2-16,

2-17
objects, defining, 3-2
objects, defining in a program, 7-29
permission programs, 2-12, 2-13
populating, 5-1
populating from relational tables, 10-3 to 10-20
reorganizing, 2-10
retrieving name of, 2-2

saving changes to, 2-8
security, 2-12
sharing across sessions, 2-4
updating, 2-9
waiting for access, 2-5

AND operator, 4-21, 4-22
ARG function, 7-7
ARGFR function, 7-7
ARGS function, 7-7
ARGUMENT command

placement of, 7-7
use of, 7-7
using multiple, 7-8

arguments
in programs, 7-7
in user-defined functions, 7-12
passing as text, 7-9
using ampersand substitution with, 7-9

arithmetic expressions. See arithmetic operators,
numeric expressions

arithmetic operators, 4-16
assignment operator. See = command
assignment statement. See = command
AUTOGO programs, 2-11
AW command, 2-5

ATTACH keyword, 2-3
CREATE keyword, 2-3
DETACH keyword, 2-5
LIST keyword, 2-2
NAME keyword, 2-2
WAIT keyword, 2-5

AW function, 2-15
AWDESCRIBE program, 2-15

B
backslash (escape sequence), 3-6
backspace (escape sequence), 3-6
BADLINE option, 7-30
base model, 8-4
batch window for aggregation, 12-2
Boolean

constants, 3-7, 4-21
data type, 3-7, 4-21

Index-3

Boolean expressions
creating, 4-22
defined, 4-21
example of, 4-23
involving NA values, 4-24
operators, 4-21
values, 4-21
with more than one dimension, 6-6

Boolean operators
evaluation order, 4-21
table of, 4-21

branching in programs, 7-17
BTREE indexes in aggregation, 12-4, 12-6

C
CACHE command

definition, 12-9
purpose of, 12-9

calculation on-the-fly
a typical strategy, 12-25
requirements for, 12-22

calculations
controlling errors during, 4-19
in models, 8-6

CALL command, 7-2
carriage return (escape sequence), 3-6
CDA command, 2-14, 7-17, 11-4
cells, empty, 3-18
characters

representing as decimals, 3-6
representing as hexadecimals, 3-6
representing as Unicode, 3-6

CHGDFN command
aggregation, 12-6
for variables, 3-28

CHILDLOCK command, 9-6
CLEANUP statement (SQL), 10-14
CLOSE statement (SQL), 10-13, 10-14
comments in programs, 7-4
COMMIT command, 2-9
comparison operators, 4-21
COMPILE command

example of, 7-28
in models, 8-5, 8-7

introduction to, 7-28
composites

assigning names to unnamed, 3-20
defined, 3-18
defining single-dimension, 3-22
in expressions, 4-13
limiting base dimensions, 6-18
limiting dimensions used by, 4-14, 6-18
maintaining, 5-9
named, 3-18
naming, 3-20
renaming, 3-20
single-dimension, 3-22
unnamed, 3-18, 3-21
unnaming, 3-20
using commands with, 4-14

concat dimensions, 3-8
defined, 3-25
defining variables for, 3-26
example of, 3-26
limiting, 6-20
maintaining, 5-10
self-relations for, 3-26

conditional expressions, 4-29, 4-30
conditional operators

defined, 4-29
example of, 4-30

conjoint dimensions
deleting values from, 5-8
limiting, 6-19
maintaining, 5-9
maintaining when reading files, 11-10
merging values into, 5-6

CONSIDER command, 3-27
CONTEXT

command, 7-22
function, 7-22

control structures in programs, 7-14
controlled sparsity, 3-18
CONVERT function, 4-3
COPY operator for allocation, 9-10
current analytic workspace, defined, 2-2
current outfile, 7-18
current status, 6-2

Index-4

cursors (SQL)
closing, 10-13, 10-14
declaring, 10-5
opening, 10-8

D
data aggregation

best practice, 12-24
creating the aggregation map, 12-7
for multiple variables, 12-11

data types
converting, 4-3, 4-17
date, 3-7
numeric, 3-4
of expressions, 4-2
of numeric expressions, 4-15, 4-17
of user-defined function, 7-12
text, 3-5

data values
accessing variable, 4-13
converting when reading files, 11-10
numeric, 4-15
saving calculations, 5-12

DATE data type, 3-7
dates

comparing with times, 4-27
in arithmetic expressions, 4-18
in text expressions, 4-20
reading from files, 11-15

DATETIME data type, 3-7, 4-20
DBGOUTFILE command, 7-31, 8-11
DEADLOCK command, 9-6
debugging programs, 7-29
DECIMAL data type, 3-4, 4-25
decimal data types, comparing, 4-25
DECIMALOVERFLOW option, 4-20
DECIMALS option, 4-24, 4-25
DECLARE CURSOR statement (SQL), 10-5
default outfile, 7-18
DEFINE command, 3-2

AGGMAP, 12-7
COMPOSITE keyword, 3-18, 3-19
DIMENSION keyword, 3-22, 3-25

MODEL keyword, 8-5
PROGRAM keyword, 7-3
RELATION keyword, 3-13
SPARSE keyword, 3-18
SURROGATE keyword, 3-11
VALUESET keyword, 6-22
VARIABLE keyword, 3-18

definitions
changing, 3-27
displaying, 2-15, 2-16
distinct from data, 3-2

DELETE keyword, 2-5
DESCRIBE command, 2-16
DIMENSION command, 8-5, 8-6, 9-6
dimension order in models, 8-6
dimension status, 6-2

effect of MAINTAIN command on, 5-4
effect on expressions, 4-6
examining, 6-25
if dimension is empty, 6-21
if valueset is empty, 6-21
null, 6-21
of concat dimension, 6-20
of conjoint dimension, 6-19
of dimensions used by composites, 4-14, 6-18
restoring, 6-4, 6-22, 7-20
retrieving current values, 6-25
retrieving default values, 6-25
saving, 6-22
saving current status, 6-4, 7-20
setting to a list of values, 6-4
setting to a literal value, 6-5
setting to null, 6-21
setting using position in dimension, 6-12, 6-13
when reading files, 11-20

dimension surrogates
defining, 3-11
differences from dimensions, 3-12
in expressions, 4-12

dimension values
comparing, 4-26
translating when reading files, 11-11

dimension-based equations, 8-2

Index-5

dimensions
adding values to, 5-5
assigning values to, 5-14
comparing values, 4-26
concat, 3-8, 3-25
defined, 3-8
defining, 3-22, 3-23, 3-25
defining in a program, 7-29
deleting values from, 5-7
examining values in status, 6-25
hierarchical, 3-22, 3-23
how data is stored, 3-10
in expressions, 4-12
level of detail, 3-9
limiting to a percentage of values, 6-9
limiting to Boolean expressions, 6-5
limiting to bottom performers, 6-10
limiting to related dimension, 6-11
limiting to single value, 4-6
limiting to top performers, 6-10
limiting when reading files, 11-20
limiting, based on position, 6-12, 6-13
limiting, using a valueset, 6-23
limiting, using hierarchical relationship, 6-13,

6-16
looping over values of, 7-15, 7-16
maintaining when reading files, 11-7
merging values into, 5-5
numeric value of text dimension, 4-18
of expression, 4-5, 4-6
of relations, 3-13
position of values in valueset, 6-25
QDR with, 4-6, 4-10
relations between, 3-15
repositioning values in, 5-8, 5-9
restoring previous values, 7-20
retrieving default status list, 6-25
retrieving list of objects related to, 2-16
running programs when limiting, 6-16
saving current values, 7-20
sorting values in, 5-8
storage of, 3-10
surrogate for, 3-11
types of, 3-8
ways to define, 3-22, 3-25

direct allocation, 9-8, 9-13
directory alias, 2-14, 7-17, 11-4
DIVIDEBYZERO option, 4-19
DML

and SQL, 1-3
and the OLAP API, 1-3
definition, 1-2
using, 1-3

double quotes (escape sequence), 3-6

E
ECHOPROMPT option, 7-19, 7-31
EIF file, 2-14
embedded totals dimension, 3-24, 3-26
empty cells, 3-18
EQ command, 3-28
EQ operator, 4-21, 4-22
equations

cyclic dependence (in models), 8-9
dimension-based, 8-2
in models, 8-6
simple blocks, 8-8
step blocks, 8-8

error log, 9-5, 9-17
error messages

creating your own, 7-25
deferring, 7-23
routing to a file, 7-19, 9-17
suppressing, 7-24
system, 7-24

error names, 7-24
ERRORLOG command, 9-6
ERRORMASK command, 9-6
ERRORNAME option, 7-23, 7-24
errors

controlling during calculations, 4-19
handling, 7-23
handling in nested programs, 7-26, 7-27
identifying, 7-24
names of, 7-24
signaling, 7-25, 7-26, 7-27
when comparing numeric data, 4-24, 4-25

ERRORTEXT option, 7-23
escape sequences, 3-6

Index-6

EVEN operator for allocation, 9-2
EXECUTE statement (SQL), 10-28
EXPORT command, 2-14
expressions

ampersand substitution, 4-30, 4-31
Boolean, 4-21, 4-29, 4-30, 6-5, 6-6
changing the default behavior, 5-12
conditional, 4-29, 4-30
data type of, 4-2
dates in, 4-18
defined, 4-2
dimension surrogates in, 4-12
dimensions in, 4-12
dimensions of, 4-5, 4-6
evaluating, default behavior, 5-12
formulas in, 4-12
functions in, 4-12
mixing numeric data types, 4-17
numeric, 4-15
objects in, 4-12
relations in, 4-12, 4-15
substitution, 4-30, 4-31
text, 4-20
using composites in, 4-13
using text dimension in numeric

expression, 4-18
valuesets in, 4-12
variables in, 4-12

F
fastest-varying dimension, 3-17
FETCH statement (SQL), 10-9
file identifier, 11-4
file names, 11-4
FILENEXT function, 11-15
FILEOPEN function, 11-4
FILEREAD command, 5-3
files

appending output, 7-18
fileunit, 11-4
maintaining dimensions from, 11-7, 11-10
modifying data from, 11-14
names and identifiers, 11-4
reading, 11-1

reading coded dimension values, 11-12
reading in programs, 11-5
reading individual records, 11-15
reading structured PRN, 11-6
reading with FILENEXT function, 11-15
saving output in, 7-17, 7-18
scaling input data from, 11-13

fileunit, 11-4
FILEVIEW command, 11-15
financial analysis, scenario modeling, 8-12
floating point numbers, comparing, 4-25
floating-point format

limitations when calculating, 4-18
use of, 4-18

FOR command
example of, 7-16
looping over dimension values, 7-15, 7-16

forecasting data, 5-15
form feed (escape sequence), 3-6
formulas in expressions, 4-12
functions

defined, 4-15
in expressions, 4-12
numeric, 5-16
user-defined, 7-3, 7-11, 7-12
writing, 7-11

G
GE operator, 4-21, 4-22
globalization, 2-6
GT operator, 4-21, 4-22

H
HASH indexes in aggregation, 12-6
HEVEN operator for allocation, 9-8
HFIRST operator for allocation, 9-13
hierarchical dimensions

defined, 3-22
defining variables for, 3-24
drilling down, 6-16
example of, 3-23, 3-24
limiting based on relationship within, 6-13, 6-16
self-relations for, 3-24

Index-7

HLAST operator for allocation, 9-13
horizontal tab (escape sequence), 3-6
host variables (SQL)

input, 10-6
output, 10-9

I
ID data type, 3-5
IFNONE keyword, 7-17
implicit relations, 3-13
IMPORT command, 2-14, 5-3
IMPORT statement (SQL), 10-9
IN operator, 4-21, 4-22
INCLUDE command, 8-4, 8-5, 8-6
INFO function

determining dimensionality with, 4-5
DIMENSION keyword, 4-6
with models, 8-11

input host variables (SQL), 10-6
INSTAT function, 6-3, 6-25
INTEGER data type, 3-4

L
labels

in programs, 7-24
with IFNONE, 7-17

LAG function, 4-18, 8-10
LD command, 3-28
LE operator, 4-21, 4-22
LEAD function, 4-18, 8-10
level relation, defined, 12-4
LIKE operator, 4-21, 4-22, 4-28
LIMIT command

DESCENDANT keyword, 6-14
examples of, 6-5, 6-9, 6-10, 6-11, 6-16, 6-23
HIERARCHY keyword, 6-13, 6-14
NOCONVERT keyword, 6-13
NULL keyword, 6-21
overview, 6-4
POSLIST keyword, 6-12
relation dimension, 6-11
RUN keyword, 6-16
with Boolean expression, 6-5, 6-6

with concat dimension, 6-20
with conjoint dimension, 6-19
with variables with composite, 4-14, 6-18

linefeed (escape sequence), 3-6
LISTNAMES program, 2-16
literals

numeric, 3-4
text, 4-20

local variables, 7-5
localization, 2-6
locking values in an allocation, 9-12, 9-15
logical operators, 4-21
LONGINTEGER data type, 3-4
LT operator, 4-21, 4-22

M
MAINTAIN command

adding values using, 5-5
deleting values using, 5-7, 5-8
effect on dimension status, 5-4
introduced, 5-3
merging values using, 5-5, 5-6
overview of, 5-3
repositioning values using, 5-8
when objects are updated, 5-4
with composites, 5-9
with concat dimensions, 5-10
with conjoint dimensions, 5-9

MAX operator for allocation, 9-8
MODEL command, 3-28, 8-5
MODEL.COMPRPT program, 8-11
MODEL.DEPRPT program, 8-11
models

base, 8-4
basic commands, 8-5
compiling, 8-3, 8-7
creating, 8-2
creating a nested hierarchy, 8-4
debugging, 8-11
defined, 8-2
editing, 8-2
parent, 8-4
running, 8-3, 8-9
scenario, 8-12

Index-8

solution variables, 8-2
types of solution blocks, 8-8

MODEL.XEQRPT program, 8-11
MODTRACE option, 8-11
multidimensional data model, 3-16
multiple analytic workspaces, 2-6

N
NA values, 3-18

comparing, 4-24
controlling how treated, 4-32
defined, 4-32
in aggregation functions, 4-33
in an allocation, 9-6, 9-7
in arithmetic operations, 4-34
in Boolean expression, 4-24
substituting another value for, 4-34
times when relevant, 4-32

NAFILL function, 4-32, 4-34
NAME dimension, 2-16
named composites, defined, 3-18
NASKIP option, 4-32, 4-33
NASKIP2 option, 4-32, 4-34
NASPELL option, 7-7
NE operator, 4-21, 4-22
NLS options, 2-6
NOL_SORT option, 4-27
NOPRINT keyword (TRAP), 7-24, 7-27
NOSPELL option, 3-7
NOT operator, 4-21, 4-22
NTEXT data type, 3-5
NUMBER data type, 3-5
NUMBER dimension, surrogate for, 3-11
numeric data types

automatic conversion of, 4-17
comparing, 4-24, 4-25
list of, 3-4
mixing, 4-17

numeric expressions
data type of the result, 4-15, 4-17
dates in, 4-18
defined, 4-15
evaluating, 4-16
mixing data types in, 4-17

NA values in, 4-34

O
OBJ function

PROPERTY keyword, 12-5
workspace object information, 2-17

objects
assigning values to, 4-3, 5-10
changing definition of, 3-27
definitions, 3-2
displaying definitions of, 2-16
in expressions, 4-12
list of, 3-3
maintaining, 5-4
retrieving information about, 2-17
retrieving list of, 2-16
updating, 5-4

OKNULLSTATUS option, 6-21, 7-17
OLAP Worksheet, 1-6
OPEN statement (SQL), 10-8
operators

arithmetic, 4-16
Boolean, 4-21
comparison, 4-21
conditional, 4-29, 4-30
for allocation, 9-7
logical, 4-21
substitution, 4-30, 4-31

options
restoring previous values, 7-20
saving current values, 7-20

OR operator, 4-21, 4-22
OUTFILE command, 7-17, 7-18
OUTFILEUNIT option, 12-21
output

host variables, 10-9
saving in a file, 7-17, 7-18

P
parent model, defined, 8-4
parent relation, defined, 12-4
PARSE command, 4-5, 4-6
pattern matching, 4-28

Index-9

permission programs, 2-12
PERMIT command, 2-13, 3-28
PERMIT_READ program, 2-12, 2-13
PERMIT_WRITE program, 2-12, 2-13
POP command, 7-20, 7-21
POPLEVEL command

nesting, 7-22
using, 7-21

populating analytic workspaces, 5-1
POUTFILEUNIT option, 9-4, 12-4, 12-21
PREPARE statement (SQL), 10-28
PRGERR keyword (SIGNAL), 7-26
PRGTRACE option, 7-31
PRN files, reading, 11-6
PROGRAM command, 3-28
programs

analytic workspace permission, 2-13
arguments, 7-7
AUTOGO, 2-11
automatic running of, 2-11, 6-16
branching in, 7-17
branching labels, 7-14
comment lines in, 7-4
compiling, 7-9, 7-28
control structures, 7-14
debugging, 7-29
declaring arguments in, 7-7, 7-8
defined, 7-2
defining, 7-3
designing, 7-5, 7-14
errors in, 7-23
executing, 7-2
LISTNAMES, 2-16
permission, 2-12
PERMIT_READ, 2-12, 2-13
PERMIT_WRITE, 2-12, 2-13
preserving environment, 7-19
restoring previous values, 7-20
running, 7-29
sample, 7-12
saving compiled code, 7-28
saving current values, 7-20
testing by running, 7-29
variables in, 7-4, 7-5

PROPERTY command, 3-28
PROPORTIONAL operator for allocation, 9-15
protecting values in an allocation, 9-12, 9-15
PUSH command, 7-21

placement, 7-23
using, 7-20

PUSHLEVEL command
nesting, 7-22
placement, 7-23

Q
QON, 2-6
QUAL function, 4-10
qualified data references

ampersand substitution, 4-10
creating, 4-6
defined, 4-6
qualifying a relation, 4-9
replacing dimension of variable, 4-7, 4-8
using with = command, 4-8, 5-14
using with relation, 4-9
with dimensions, 4-6
with relations, 4-9
with variables, 4-7, 4-8

qualified object names, 2-6
quotation marks (escape sequence), 3-6

R
random sparsity, 3-18
RAW DATE attribute

when reading files, 11-15
records, reading, 11-15
recursive allocation, 9-10, 9-15
RELATION command, 12-7

arguments for allocation, 9-7
for allocation, 9-6
operators for allocation, 9-7
syntax for aggregation, 12-12

relational data, 10-1
See also SQL
copying into analytic workspace, 10-3 to 10-20
inserting from analytic

workspace, 10-28 to 10-32

Index-10

updating from analytic
workspace, 10-28 to 10-32

relations
assigning values to, 5-14
between two dimensions, 3-15
comparing to text literals, 4-29
defined, 3-13
defining, 3-15
dimensionality of, 3-13
example of, 3-15, 3-24, 3-26
how data is stored, 3-14
implicit, 3-13
in aggregation, 12-4
in allocation, 9-5, 9-6, 9-9
in expressions, 4-12, 4-15
limiting to single value, 4-9
QDR with, 4-9
replacing dimension of, 4-9
self, 3-15, 3-24, 3-26
used when reading files, 11-13

REMOPERATOR in an allocation, 9-9
REPORT command

for viewing objects, 2-17
with sparse data, 4-14

RETURN command, 7-11
ROLLBACK, effect on changes, 2-10
ROOTOFNEGATIVE option, 4-20
ROUND function, 4-24, 4-25
run-time aggregation, 12-2

S
scenario model, defined, 8-12
scenarios for financial modeling, 8-12
sessions

preserving environment, 7-19
restoring environment, 7-20
sharing analytic workspaces across, 2-4

SHORTDECIMAL data type, 4-25
SHORTINTEGER data type, 3-4
SIGNAL command, 7-25
simple blocks (in models), 8-8
simultaneous equations in models, 8-10
single quotes (escape sequence), 3-6
slowest-varying dimension, 3-17

solution variables
defined, 8-2
example of, 8-12

source object for allocation, 9-5
SOURCEVAL command, 9-6
sparse data, 3-18

controlled sparsity, 3-18
defined, 3-18, 4-32
eliminating, 3-18 to 3-21
random sparsity, 3-18
setting dimension status, 6-18

SQL, 10-1
See also relational data
error handling, 10-34
OLAP DML command, introduced, 5-3
precompiling code, 10-28
stored procedures, 10-32
triggers, 10-32

SQL statements
issuing through OLAP DML, 10-2 to 10-33

STATFIRST function, 6-3, 6-25
STATLAST function, 6-3, 6-25
status. See dimension status
step blocks (in models), 8-8
storage

of dimensions, 3-10
of relations, 3-14
of variables, 3-17

stored procedures, 7-2
structured files, reading, 11-6
substitution expressions, 4-30, 4-31
substitution operator, 4-30, 4-31
surrogates. See dimension surrogates
SYSINFO function, 2-13

T
tab (escape sequence), 3-6
temporary variables, 7-5, 11-20
text

comparing values, 4-27, 4-28
comparing values to a pattern, 4-28
data types, 3-5
NLS_SORT option in comparisons, 4-27
passing arguments as, 7-9

Index-11

TEXT data type, 3-5
text expressions

dates in, 4-20
defined, 4-20

text literals
comparing to relations, 4-29
defined, 4-20

TRAP command, 7-23, 7-26, 7-27

U
unnamed composites, 3-18, 3-21

defining, 3-21
example of, 3-21
naming, 3-20

UPDATE command, 2-9
user-defined functions, 7-11

arguments in, 7-12
data type of, 7-12
defined, 7-2
executing, 7-3

V
VALUE keyword

used in reading files, 11-12
used when reading files, 11-14

values
assigning to dimensions, 5-14
assigning to objects, 5-10
assigning to relations, 5-14
assigning to variables, 5-12
assigning to variables with composites, 5-12,

5-13
assigning, using a QDR, 5-14
in current status list, 6-25
in default status list, 6-25
NA, 3-18
restoring previous, 7-20
saving current, 7-20

VALUES function, 6-3, 6-25
valuesets

creating, 6-22
defined, 6-22
defining, 6-22

in expressions, 4-12
limiting using, 6-23
listing dimension positions in, 6-25

VARIABLE command, 7-6
variables

accessing, 4-13
aggregating data for multiple, 12-11
assigning values to, 5-11, 5-12, 5-13, 5-14
controlling sparsity in, 3-18
defined, 3-16
defining in a program, 7-29
defining with composite, 3-18 to 3-21
defining with unnamed composite, 3-21
dimensioned, 3-17
how data is stored, 3-17
in expressions, 4-12
limiting to single value, 4-7, 4-8
local, 7-5
NA values in, 3-18
persistence of, 7-4, 7-5
QDR with, 4-7, 4-8
replacing dimension of, 4-7, 4-8
sparse data in, 4-14
storage of, 3-17
temporary, 7-5
undimensioned, 3-17
with embedded totals, 3-24, 3-26
with NA values, 3-18
with single-dimension composite, 3-22

W
WHERE clauses (SQL), 10-7
wildcards, 4-28

Y
YESSPELL option, 3-7

Z
zero, dividing by, 4-19

Index-12

	Send Us Your Comments
	Preface
	What’s New in the OLAP DML?
	Part I� Introduction
	1 Basic Concepts
	What Is the OLAP DML?
	Analytic Workspaces
	SQL and the OLAP DML
	The OLAP API and the OLAP DML

	Using the OLAP DML
	How to Use the OLAP DML to Analyze Data
	Creating an Analytic Workspace
	Loading Data Into Analytic Workspaces
	Temporary vs. Persistent Analytic Workspaces
	Sharing Data In Analytic Workspaces

	Accessing a Workspace from OLAP Worksheet
	Procedures: How to Open OLAP Worksheet
	Establishing a Connection
	Executing Commands
	Editing an OLAP DML Program
	Closing the Connection

	Accessing a Workspace from SQL-Based Applications
	Using SQL SELECT Statements
	Using Embedded OLAP DML Commands

	Accessing a Workspace from a Java Application
	Using OLAP Metadata
	Using Embedded OLAP DML Commands

	2 Defining and Working with Analytic�Workspaces
	Using the OLAP DML to Work with Analytic Workspaces
	Current Analytic Workspace
	How to Create An Analytic Workspace
	How to Attach an Analytic Workspace
	Specifying the Analytic Workspace Attachment Mode
	Sharing Analytic Workspaces
	How to Detach an Analytic Workspace
	How to Delete an Analytic Workspace
	Workspace Localization Settings

	Attaching Multiple Analytic Workspaces
	Qualified Object Names
	Multiple AUTOGO and Permission Programs

	Using Names and Aliases for Analytic Workspaces
	Workspace Names
	Workspace Aliases

	Saving Analytic Workspace Changes
	UPDATE Command
	COMMIT Command
	Effect of the ROLLBACK Command
	Minimizing Analytic Workspace Growth

	Executing Programs Automatically
	Program Names
	AUTOGO Program Example

	Adding Security to an Analytic Workspace
	Permission Programs
	Creating and Designing Permission Programs

	Importing and Exporting Workspace Objects
	Obtaining Analytic Workspace Information
	Obtaining General Information About an Analytic Workspace
	Viewing Objects in an Analytic Workspace
	Obtaining Information About Objects

	3 Defining Data Objects
	Overview: Defining Workspace Objects
	Workspace Objects That You Can Define

	Data Types
	Numeric Data Types
	Examples of Literal Numeric Values

	Text Data Types
	Escape Sequences
	Examples of Literal Text Values

	Boolean Data Type
	Date Data Types

	Defining Dimensions
	Determining What Dimensions to Define
	How Data For Simple Flat Dimensions Is Stored

	Defining Dimension Surrogates
	Differences Between Dimensions and Dimension Surrogates

	Defining Relations
	How Relations Are Dimensioned
	How Relation Data Is Stored
	Example: Relation Between Two Dimensions
	Example: Self-relation

	Defining Variables
	Types of Variables
	How Variable Data Is Stored

	Defining Variables That Handle Sparse Data Efficiently
	Definition: Composite
	Why You Should Use Named Composites
	How to Use Composites
	Naming, Renaming, and Unnaming Composites
	Adding Data to a Variable That Uses a Composite
	Defining a Variable with a Single-Dimension Composite

	Defining Hierarchical Dimensions and Variables That Use Them
	Defining a Variable with a Hierarchical Dimension
	Example: Variable with a Hierarchical Dimension

	Defining Concat Dimensions and Variables That Use Them
	Example: Variable with a Concat Dimension

	Changing the Definition of an Object

	4 Working with Expressions
	Introducing Expressions
	Data Types of Expressions
	How the Data Type of an Expression is Determined
	Changing the Data Type of an Expression

	Operators
	Saving an Expression

	Dimensionality of Expressions
	Determining the Dimensions of an Expression
	How Dimension Status Affects the Results of Expressions

	Specifying a Single Value for the Dimension of an Expression
	Qualifying a Variable
	Replacing a Dimension in a Variable
	Qualifying a Relation
	Qualifying a Dimension
	Using Ampersand Substitution with QDRs
	Using the QUAL Function to Specify a QDR

	Using Workspace Objects in Expressions
	Using Dimensions or Dimension Surrogates in Expressions
	Using Composites in Expressions
	Using Variables in Expressions
	Using Variables Defined with Composites in Expressions
	Default Behavior of Commands That Loop Over Variables

	Using Relations In Expressions
	Using Functions in Expressions

	Numeric Expressions
	Arithmetic Operators
	Mixing Numeric Data Types
	Automatic Conversion of Numeric Data Types
	Using Dimensions in Arithmetic Expressions
	Using Dates in Arithmetic Expressions
	Limitations of Floating Point Calculations
	Controlling Errors During Calculations

	Text Expressions
	Working with Dates in Text Expressions
	Working with NTEXT Data

	Boolean Expressions
	Creating Boolean Expressions
	Comparing NA Values in Boolean Expressions
	Controlling Errors When Comparing Numeric Data
	Controlling Errors Due to Numerical Precision
	Controlling Errors When Comparing Floating Point Numbers
	Controlling Errors When Comparing Different Numeric Data Types

	Comparing Dimension Values
	Comparing Dates
	Comparing Text Data
	Comparing a Text Value to a Text Pattern
	Comparing Text Literals to Relations

	Conditional Expressions
	Substitution Expressions
	Working with NA Values
	Controlling how NA values are treated
	Working with the NATRIGGER Property
	Using NASKIP
	Using NASKIP2
	Using NAFILL

	5 Populating Workspace Data Objects
	Overview: Populating an Analytic Workspace
	Maintaining Dimensions and Composites
	How Maintaining a Dimension Affects Dimension Status
	Avoiding Deferred Maintenance
	Adding Values to Dimensions
	Updating Relations When Merging New Values
	Deleting Values from Dimensions
	Deleting Values from Conjoint Dimensions
	Changing the Position of Dimension Values
	Storing Dimension Values in Sorted Order
	Maintaining Composites and Conjoint Dimensions
	Maintaining Composites
	Maintaining Conjoint Dimensions

	Maintaining Concat Dimensions

	Assigning Values to Data Objects
	Using Objects in Assignment Statements
	How Values Are Assigned to Variables with Composites
	Assigning Values to Relations
	Assigning Values to Dimensions
	Assigning Values to Specific Cells of a Data Object

	Calculating and Analyzing Data

	6 Selecting Data
	Introducing Dimension Status
	Changing the Current Status List
	Changing the Default Status List
	Identifying and Retrieving Status Lists
	Saving and Restoring Dimension Status

	Limiting to a Simple List of Values
	Limiting Using a Boolean Expression
	How LIMIT Handles Boolean Multidimensional Expressions
	Limiting to Values That Match an Expression

	Limiting to the Top or Bottom Values
	Limiting to the Values of a Related Dimension
	How Limiting to a Related Dimension Determines Status
	Suppressing the Sort When Limiting to a Related Dimension

	Limiting Based on the Position of a Value in a Dimension
	Limiting Using Value Position in its Dimension
	Limiting Using Value Position in an Unrelated Dimension

	Limiting Based on a Relationship Within a Hierarchy
	Differences Between HIERARCHY and DESCENDANTS Keywords

	Limiting Composites and Conjoint Dimensions
	Ways of Limiting Conjoint Dimensions
	Limiting Conjoint Dimensions Using Value Combinations
	Limiting Conjoint Dimensions Using Base Dimension Values

	Limiting Concat Dimensions
	Working with Null Status
	Managing Null Status in a Program
	Errors When Limiting Status to a Null Value

	Working with Valuesets
	Creating a Valueset
	Limiting Using a Valueset
	Changing the Values of a Valueset
	Identifying and Retrieving the Values in a Valueset
	Retrieving the Values in a Valueset
	Retrieving the Dimension Positions of Values in a Valueset

	Part II� Applications Development
	7 Developing Programs
	Introduction to OLAP DML Programs
	Executing Programs
	Executing User-Defined Functions

	Defining and Editing Programs
	Formatting Guidelines for Editing Programs

	Using Variables in Programs
	Global Versus Modular Design Approaches
	Defining Temporary Variables
	Defining Local Variables

	Passing Arguments
	Using the ARGUMENT Command
	Using Multiple Arguments
	Passing Arguments as Text with Ampersand Substitution
	Passing Object Names and Keywords

	Writing User-Defined Functions
	Data Type of a User-Defined Function
	Arguments in a User-Defined Function

	Controlling the Flow of Execution
	Guidelines for Constructing a Label
	Alternatives to the GOTO Command

	Directing Output
	Capturing Error Messages

	Preserving the Session Environment
	Changing the Program Environment
	Ways to Save and Restore Environments
	Saving the Status of a Dimension or the Value of an Option
	Saving Several Values at Once

	Using Level Markers
	Using CONTEXT to Save Several Values at Once

	Handling Errors
	How An Error Is Signaled
	How An Error Is Trapped
	Handling Errors While Saving the Session Environment
	Suppressing Error Messages
	Identifying the Error That Occurred
	Creating Your Own Error Messages
	Handling Errors in Nested Programs

	Compiling Programs
	Finding Out If a Program Has Been Compiled
	Programming Methods That Prevent Compilation

	Testing and Debugging Programs
	Generating Diagnostic Messages
	Identifying Bad Lines of Code
	Sending Output to a Debugging File
	Creating a debugging file
	Specifying the contents of the debugging file

	8 Working with Models
	Using Models to Calculate Data
	How Dimension Values Are Treated in a Model

	Creating a Nested Hierarchy of Models
	Working with the INCLUDE Command

	Basic Modeling Commands
	Writing Equations in a Model
	Writing DIMENSION and INCLUDE Commands

	Compiling a Model
	Simple Blocks
	Step Blocks
	Simultaneous Blocks

	Running a Model
	Using Data from Past and Future Time Periods
	Solving Simultaneous Equations

	Debugging a Model
	Modeling for Multiple Scenarios
	Building a Scenario Model

	9 Allocating Data
	Introduction to Allocation
	Preparing for an Allocation
	Creating an Aggregation Map for Allocation
	Using the Allocation Operators and Arguments
	Using the HEVEN and MAX Operators and the ADD Argument
	Using the COPY Operator and the PROTECT Argument
	Using the HFIRST and HLAST Operators
	Using the PROPORTIONAL Operator

	Part III� Analytic Workspace Management
	10 Working with Relational Tables
	Issuing SQL Statements Through the OLAP DML
	Supported SQL Statements
	Unsupported SQL Statements

	Creating an Analytic Workspace from Relational Tables
	Process: Designing and Defining an Analytic Workspace to Hold Relational Data
	Process: Writing Programs that Populate Analytic Workspaces with Relational Data
	Declaring a Cursor
	Example: Declaring a Cursor
	Using Variables in the WHERE Clause of the SELECT Statement
	Using Conjunctions in a WHERE Clause

	Opening a Cursor
	Importing and Fetching Relational Table Data into Analytic Workspace Objects
	Example: Copying Relational Table Data into Analytic Workspace Objects

	Closing a Cursor
	Cleaning up the SQL Cursors

	Example: Creating an Analytic Workspace from Sales History Tables
	Designing and Defining an Analytic Workspace for Sales History Data
	Populating Analytic Workspace Objects with Sales History Data

	Writing Data from Analytic Workspace Objects into Relational Tables
	Using SQL PREPARE and SQL EXECUTE
	Performing a Direct Insert
	Inserting Workspace Data into Relational Tables: Example
	Conditionally Updating a Relational Table

	Using Stored Procedures and Triggers
	Executing a stored procedure

	Checking for Errors
	SQLCODE Option
	SQLERRM Option
	SQLMESSAGES Option

	11 Reading Data from Files
	Introducing Data-Reading Programs
	Reading Files
	Creating a Program to Read Data

	Specifying File Names in the OLAP DML
	Reading Data from Files
	Reading Structured PRN Files

	Reading and Maintaining Dimension Values
	Adding New Dimension Values from a Data File
	Reading Dimension Values by Position
	The Use of Composites
	Reading and Maintaining Conjoint Dimensions
	Translating Coded Dimension Values

	Processing Input Data
	Specifying a Conversion Type for Data

	Processing Records Individually
	Reading Different Records

	Processing Several Values for One Variable

	12 Aggregating Data
	About Aggregating Detail Data
	Functionality Available with AGGREGATE
	Process Overview: Aggregation

	Preliminary Steps Prior to Aggregation
	Identifying the Parent and Level Relations
	Verifying That All Composites Use BTREE Indexes

	Creating an Aggregation Map
	How to Define an Aggmap Object
	How to Add Contents to an Aggmap Object
	Contents of an Aggregation Map
	How to Compile an Aggregation Map
	Aggregating Multiple Variables with a Single Command

	About the RELATION Command
	Specifying an Aggregation Method
	Selecting Data For Aggregation
	Caching Runtime Aggregates

	Aggregating Non-Hierarchical Data
	How to Generate Precalculated Data
	Effects of Dimension Status
	Monitoring Progress

	How to Calculate Data at Runtime
	Setting Up Calculation on the Fly
	Adding the $NATRIGGER Property to a Variable

	Creating Custom Aggregates
	Balancing Precalculated and Runtime Aggregation
	Selecting Dimensions for Runtime Calculation
	Selecting Levels for Runtime Calculation

	Performing Partial Aggregations
	Aggregation Changes That Cause Problems
	Incremental Data Loading
	Problem: PRECOMPUTE Status List Is Inaccurate
	Solution: Regenerate the PRECOMPUTE Status List

	Using a Data-Dependent PRECOMPUTE Clause
	Problem: Values of the Limit Clause Vary With Each Data Update
	Solution: Maintain a Valueset

	Changing a Hierarchy
	Problem: Previously Aggregated Data is Incorrect
	Solution: Re-Aggregate Changed Branches
	How to Aggregate Branches of a Hierarchy

	Combining AGGREGATE with Forecasts and Programs
	When to Use Multiple Aggregation Maps
	Problem: Different Aggregation Maps Generate Different Status Lists
	Solution: Create a Separate AGGMAP for the AGGREGATE Function

	Index

