
Oracle9i OLAP

Developer’s Guide to the OLAP API

Release 2 (9.2)

March 2002

Part No. A95297-01

Oracle9i OLAP Developer’s Guide to the OLAP API, Release 2 (9.2)

Part No. A95297-01

Copyright © 2000, 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

Audience ... xiv
Organization... xiv
Related Documentation ... xv
Conventions... xvii
Documentation Accessibility ... xxi

1 Introduction to the OLAP API

OLAP API Overview .. 1-2
Multidimensional Concepts And the OLAP API .. 1-2
What Type Of Data Can an Application Access Through the OLAP API? 1-3
What Can an Application Do with the OLAP API? .. 1-4
Context for OLAP API development... 1-4

Access to Data and Metadata Through the OLAP API.. 1-5
MDM Model in the OLAP API... 1-5
Access to Data Through the OLAP API .. 1-6
User Connection Requirements.. 1-7

OLAP API Client Software ... 1-7
Software Configurations.. 1-8
Requirements for Using the OLAP API Client Software.. 1-8
iii

Developing an OLAP API Application .. 1-8
Step 1: Decide on General Design Issues... 1-9
Step 2: Decide on Requirements for End-User Queries .. 1-9
Step 3: Design OLAP API Template Objects That Create End-User Queries 1-10
Step 4: Write and Test the Java Code for the Application .. 1-11
Step 5: Deploy the Application to users .. 1-12

Tasks That an OLAP API Application Performs .. 1-12
Task 1: Connect to the Data Store... 1-12
Task 2: Discover the Available Metadata .. 1-13
Task 3: Select and Calculate Data Through Queries.. 1-13
Task 4: Retrieve Query Results ... 1-14

2 Understanding OLAP API Metadata

Overview of the OLAP API Metadata .. 2-2
Data Preparation ... 2-2
Metadata Preparation... 2-2

OLAP Metadata Objects .. 2-2
Dimensions in the OLAP Metadata ... 2-3
Measures in the OLAP Metadata ... 2-3
Measure Folders in the OLAP Metadata... 2-4

Overview of MDM Metadata Objects in the OLAP API .. 2-5
Mapping of OLAP Metadata Objects to MDM objects ... 2-6
MdmSchema Class ... 2-6
MdmSource Class ... 2-7

MdmDimension Class ... 2-8
Description of an MdmDimension... 2-8
Information Held by an MdmDimensionDefinition ... 2-9
Information Held by an MdmDimensionMemberType ... 2-10

MdmLevel Class... . 2-10
Description of an MdmLevel .. 2-10
Elements of an MdmLevel... 2-11
iv

MdmHierarchy Class ... 2-12
Description of an MdmHierarchy .. 2-12
Elements of a Level MdmHierarchy.. 2-13

Level MdmHierarchy for Calendar Year ... 2-13
Level MdmHierarchy for Fiscal Year ... 2-15
Terminology: Nodes and leaves.. 2-16

Elements of a union MdmHierarchy ... 2-16
Distinct elements in the regions of a union MdmHierarchy... 2-16
Union MdmHierarchy for Time.. 2-17

MdmListDimension Class .. 2-18
Description of an MdmListDimension.. 2-18
Elements of an MdmListDimension .. 2-18

MdmMeasure Class.. 2-19
Description of an MdmMeasure... 2-19
Elements of an MdmMeasure... 2-20

MdmMeasure Elements Are Determined by MdmDimension Elements................... 2-20
MdmMeasure with two MdmDimension objects... 2-21

MdmAttribute Class... 2-23
Description of an MdmAttribute.. 2-23
Elements of an MdmAttribute.. 2-23

Data Type and Type of MDM Metadata Objects.. 2-24
Data Type of MDM Metadata Objects... 2-24
Getting the Data Type of an MdmSource ... 2-26
Type of MDM Metadata Objects .. 2-28
Getting the Type of an MdmSource... 2-29

3 Connecting to a Data Store

Overview of the Connection Process .. 3-2
Connection Steps .. 3-2
Prerequisites for Connecting... 3-2

Establishing a Connection .. 3-2
Step 1: Load the JDBC Driver ... 3-3
Step 2: Get a Connection from the DriverManager ... 3-3
Step 3: Create a TransactionProvider .. 3-4
Step 4: Create a DataProvider... 3-4
v

Getting an Existing Connection ... 3-4
Executing DML Commands Through the Connection .. 3-5
Closing a Connection ... 3-5

4 Discovering the Available Metadata

Overview of the Procedure for Discovering Metadata .. 4-2
MDM Metadata... 4-2
Purpose of Discovering the Metadata ... 4-2
Steps in Discovering the Metadata... 4-3
Discovering Metadata and Making Queries... 4-3

Creating an MdmMetadataProvider ... 4-3
Getting the Root MdmSchema ... 4-4

Function of the Root MdmSchema... 4-4
Calling the getRootSchema Method .. 4-6

Getting the Contents of the Root MdmSchema .. 4-6
Getting the MdmDimension Objects in an MdmSchema ... 4-6
Getting the Subschemas in an MdmSchema... 4-6
Getting the Contents of Subschemas ... 4-6
Getting the Measure MdmDimension and Its Contents ... 4-6

Getting the Characteristics of Metadata Objects .. 4-7
Getting the MdmDimension Objects for an MdmMeasure.. 4-7
Getting the Related Objects for an MdmDimension ... 4-7

Getting the Source for a Metadata Object.. 4-8
Sample Code for Discovering Metadata .. 4-9

Code for the SampleMetadataDiscoverer Program... 4-10
Output from the SampleMetadataDiscoverer Program.. 4-16

5 Introduction to Querying

Characteristics of Source Objects .. 5-2
Source Type ... 5-2
Source Structure: Inputs and Outputs ... 5-3
vi

Creating Source Objects .. 5-5
Getting Source Objects From Metadata Objects... 5-5

Creating a Source from MdmDimension, MdmHierarchy, or MdmLevel Objects 5-6
Creating a Source from MdmMeasure or MdmAttribute Objects 5-7

Creating New Source Objects Using Source Methods .. 5-7
Creating Simple Nondimensional Source Objects... 5-8
Creating Source Objects that Represent OLAP API Data Types ... 5-9

6 Making Queries Using Source Methods

Selecting Based on Source Value ... 6-2
Selecting Based on Output Values .. 6-3

Using the join Method to Change Inputs to Outputs.. 6-3
Effect of Input-Output Order on Source Structure.. 6-3

Changing Inputs to Outputs with timesDim as the First Output Created 6-4
Changing Inputs to Outputs with productsDim as the First Output Created............. 6-5

Selecting Based on Output Values and Source Values: Example.. 6-6
Selecting Values Based on Rank .. 6-6

Finding the Position of Values.. 6-6
Finding the Positions of Values When There are no Inputs or Outputs 6-8
Finding the Positions of Values When There Are Outputs and Inputs 6-8

Values Ranked in Ascending or Descending Order.. 6-9
Values Ranked in the Same or the Opposite Order as the Values of Another Source 6-9
Minimum Ranking ... 6-10
Maximum Ranking... 6-10
Average Ranking .. 6-11
Packed Ranking .. 6-11
Percentile Ranking.. 6-11
nTile Ranking .. 6-12

Selecting Values Based on Hierarchical Position ... 6-12
Creating a Primary Source that Represents a Default Hierarchy.. 6-13
Creating a Primary Source for the Parent-Child Relationship .. 6-14
Creating Source Objects for Other Relationships .. 6-14
Drilling Down a Hierarchy: Example.. 6-15

Creating a Source that is a Self-Relation.. 6-16
vii

Performing Numerical Analysis .. 6-18
Performing Numerical Operations .. 6-19

Subtracting the Same Value From all Values: Example... 6-20
Subtracting the Values of one NumberSource from Another: Example 6-21

Making Numerical Comparisons ... 6-22
Working with Standard Numerical Functions ... 6-23
Working with Aggregation Methods... 6-24

Calculating the Sum When a Source Has only Outputs: Example 6-25
Calculating the Sum When a Source Has an Output and an Input: Example............ 6-26

Creating Your own Numerical Functions... 6-27
Creating Your own Standard Function: Example... 6-27
Creating Your own Aggregation Function: Example... 6-29

Manipulating String Values.. 6-29

7 Using a TransactionProvider

About Creating a Query in a Transaction... 7-2
Types of Transaction Objects .. 7-3
Preparing and Committing a Transaction... 7-3
About Transaction and Template Objects... 7-5
Beginning a Child Transaction ... 7-5
About Rolling Back a Transaction.. 7-7
Getting and Setting the Current Transaction.. 7-8

Using TransactionProvider Objects... 7-8

8 Understanding Cursor Classes and Concepts

Overview of the OLAP API Cursor Objects .. 8-2
Sources For Which You Cannot Create a Cursor ... 8-3
Cursor Objects and Transaction Objects ... 8-4

Cursor Class ... 8-4
Structure of a Cursor .. 8-5
Specifying the Behavior of a Cursor .. 8-8
viii

CursorManagerSpecification Class ... 8-9
CursorSpecification Class.. 8-10
CursorInput Class... 8-11
CursorManager Class... 8-12
Updating the CursorManagerSpecification for a CursorManager...................................... 8-12
CursorManager Class Hierarchy.. 8-13
CursorManagerUpdateListener Class ... 8-15
CursorManagerUpdateEvent Class ... 8-15

About Cursor Positions and Extent ... 8-16
Positions of a ValueCursor.. 8-16
Positions of a CompoundCursor.. 8-17
About the Parent Starting and Ending Positions in a Cursor .. 8-22
What is the Extent of a Cursor? .. 8-25

About Fetch Sizes and Fetch Blocks.. 8-27
About Determining the Shape of a Fetch Block ... 8-29
About Sharing Fetch Blocks .. 8-29

9 Retrieving Query Results

Retrieving the Results of a Query ... 9-2
Getting Values from a Cursor... 9-3

Navigating a CompoundCursor for Different Displays of Data... 9-10
Specifying the Behavior of a Cursor ... 9-19
Calculating Extent and Starting and Ending Positions of a Value .. 9-21
Specifying Fetch Sizes and Fetch Blocks ... 9-24

10 Creating Dynamic Queries

About Template Objects .. 10-2
About Creating a Dynamic Source .. 10-2
About Translating User Interface Elements into OLAP API Objects.................................. 10-3

Overview of Template and Related Classes .. 10-3
What Is the Relationship Between the Classes That Produce a Dynamic Source? 10-4
Template Class .. 10-6
MetadataState Interface ... 10-6
SourceGenerator Interface... 10-6
DynamicDefinition Class... 10-7
ix

Designing and Implementing a Template ... 10-7
Implementing the Classes for a Template... 10-9
Implementing an Application That Uses Templates ... 10-14

A Setting Up the Development Environment

Overview .. A-2
Required Software .. A-2
Setting Up on Your Application Development Computer ... A-3

Installing the jar files .. A-3
Installing the OLAP API Javadoc ... A-3
Using a Sample Program ... A-3

Considerations for Deploying Your Application ... A-4

Index
x

Send Us Your Comments

Oracle9i OLAP Developer’s Guide to the OLAP API, Release 2 (9.2)

Part No. A95297-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: 781-238-9850 Attn: Oracle OLAP
■ Postal service:

Oracle Corporation
Oracle OLAP Documentation
10 Van de Graff Drive
Burlington, MA 01803
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

The Oracle9i OLAP Developer’s Guide to the OLAP API introduces Java programmers
to the Oracle OLAP API which is the Java application programming interface for
Oracle OLAP. Through Oracle OLAP, the OLAP API provides access to data stored
in an Oracle database. The OLAP API’s capabilities for querying, manipulating, and
presenting data are particularly suited to applications that perform Online
Analytical Processing.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xiii

Audience
Oracle9i OLAP Developer’s Guide to the OLAP API is intended for Java programmers
who are responsible for creating applications that perform analysis using Oracle
OLAP.

To use this document, you need be familiar with Java, relational database
management systems, data warehousing, and Oracle OLAP and Online Analytical
Processing (OLAP) concepts.

Organization
This document contains:

Chapter 1, "Introduction to the OLAP API"
Introduces the OLAP API to application developers who plan to use it in their Java
applications.

Chapter 2, "Understanding OLAP API Metadata"
Describes the metadata objects that the OLAP API provides, and explains how these
objects relate to the metadata objects that a database administrator specifies when
preparing the data using the OLAP Metadata APIs.

Chapter 3, "Connecting to a Data Store"
Explains the procedure for connecting to a data store through the OLAP API.

Chapter 4, "Discovering the Available Metadata"
Explains the procedure for discovering the metadata in a data store through the
OLAP API.

Chapter 5, "Introduction to Querying"
Introduces Source objects which are the OLAP API objects that are the
specifications for sets of data that you use when making queries.

Chapter 6, "Making Queries Using Source Methods"
Discusses how to make queries using Source methods.
xiv

Chapter 7, "Using a TransactionProvider"
Describes the Oracle OLAP API Transaction and TransactionProvider
interfaces and describes how you use implementations of those interfaces in an
application. You must create a TransactionProvider before you can create a
DataProvider, and you must use methods on the TransactionProvider to
prepare and commit a Transaction before you can create a Cursor for a derived
Source.

Chapter 8, "Understanding Cursor Classes and Concepts"
Describes the Oracle OLAP API Cursor class and its related classes, which you use
to retrieve and gain access to the results of a query. This chapter also describes the
Cursor concepts of position, fetch size, and extent.

Chapter 9, "Retrieving Query Results"
Describes how to retrieve the results of a query with an Oracle OLAP API Cursor,
how to gain access to those results, and how to customize the behavior of a Cursor
to fit your method of displaying the results.

Chapter 10, "Creating Dynamic Queries"
Describes the Oracle OLAP API Template class and its related classes, which you
use to create dynamic queries. This chapter also provides examples of
implementations of those classes.

Appendix A, "Setting Up the Development Environment"
Describes the steps you take to set up your development environment for creating
applications that use the OLAP API.

Related Documentation
For more information, see these Oracle resources:

■ Oracle 9i OLAP API Javadoc—Provides reference information for the Java
packages that are the Oracle OLAP API.

■ Oracle9i OLAP User’s Guide — Describes how to use Oracle OLAP. It introduces
the basic concepts underlying business analysis and multidimensional
querying, as well as the basic tools used for application development and
system administration.

■ Oracle9i OLAP Developer’s Guide to the OLAP DML — Explains how application
developers can perform complex data analysis tasks (such as forecasts, models,
xv

allocations, and some types of non-additive aggregation) by using the OLAP
DML.

■ Oracle9i JDBC Developer’s Guide and Reference—Provides task-oriented and
reference information about Oracle's Java Database Connectivity (JDBC)
product that provides the basis for accessing data from Java programs, as well
as Oracle-specific extensions to this Java standard.

■ Oracle9i Data Warehousing Guide — Discusses the database structures, concepts,
and issues involved in creating a data warehouse to support OLAP solutions.

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com
xvi

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface denotes book titles and
emphasis.

Oracle9i OLAP User’s Guide

Ensure that the recovery catalog and target
database do not reside on the same disk.

Bold Bold font denotes terms being defined for
the first time,

The methods of the Source class and its
subclasses return new Source objects
sometimes called derived Source objects.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

The return value from its
getHierarchyType method is
LEVEL_HIERARCHY.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
denotes Java program names, file names,
path names, and Internet addresses.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.
xvii

Conventions in Code Examples
Code examples illustrate Java, SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

Source unitCost = mdmUnitCost.getSource;

The following table describes typographic conventions used in Java code examples
and provides examples of their use.

MixedCase
monospace
(fixed-width)
font

Mixedcase monospace typeface is used
for names of classes and interfaces and for
multi-word names of variables, methods,
and packages. The names of classes and
interfaces begin with an upper-case letter.
In all multi-word names, the second and
succeeding words also begin with an
upper-case letter.

To obtain access to the metadata, an
application uses the getRootSchema
method in MdmMetadataProvider.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where
old_release refers to the release you
installed prior to upgrading.

Convention Meaning

{ } Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line comment, which can
span multiple lines/

... Horizontal ellipsis shows that statements or clauses irrelevant to the discussion
were left out.

Convention Meaning Example
xviii

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"
C:\>imp SYSTEM/ password FROMUSER=scott
TABLES=(emp, dept)
xix

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

ORACLE_HOME
and
ORACLE_BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install the latest Oracle9i release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\orann where nn is the latest
release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the
ORACLE_BASE\ORACLE_HOME\rdbms\admin
directory.

Convention Meaning Example
xx

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.
xxi

xxii

Introduction to the OLA
1

Introduction to the OLAP API

This chapter introduces the Oracle OLAP API to application developers who plan
to use it in their Java applications.

This chapter includes the following topics:

■ OLAP API Overview

■ Access to Data and Metadata Through the OLAP API

■ OLAP API Client Software

■ Developing an OLAP API Application

■ Tasks That an OLAP API Application Performs
P API 1-1

OLAP API Overview
OLAP API Overview
The OLAP API is a Java application programming interface (API) through which an
application can access data for online analytical processing (OLAP). It is the API
that is supplied with Oracle OLAP, an Oracle component.

The purpose of the OLAP API is to facilitate the development of OLAP
applications, which allow users to dynamically select, aggregate, calculate, and
perform other analytical tasks on data through a graphical user interface. Typically,
the user interface of an OLAP application displays data in multidimensional
formats, such as graphs and crosstabs.

In general, OLAP applications are developed within the context of business
intelligence and data warehousing systems, and the features of the OLAP API are
optimized for this type of application. With the OLAP API, a Java application can
access, manipulate, and display data in multidimensional terms. The OLAP API
also makes it possible to define a query in a step-by-step process that allows for
undoing individual query steps without recreating the entire query. Such multistep
queries are easy to modify and refine dynamically.

Multidimensional Concepts And the OLAP API
Data warehousing and OLAP applications are based on a multidimensional view of
data, and they work with queries that represent selections of data. The following
definitions introduce concepts that reflect the multidimensional view and are basic
to data warehousing, OLAP, and the OLAP API:

■ Dimension. A structure that categorizes data. Commonly used dimensions are
customer, product, and time. Typically, a dimension is associated with one or
more hierarchies. Several distinct dimensions, combined with measures, enable
end users to answer business questions. For example, a Time dimension that
categorizes data by month helps to answer the question, "Did we sell more
widgets in January or June?"

■ Measure. Data, usually numeric and additive, that can be examined and
analyzed. Typically, a given measure is categorized by one or more dimensions,
and it is described as “dimensioned by” them.

■ Hierarchy. A logical structure that uses ordered levels as a means of organizing
dimension elements in parent-child relationships. Typically, end users can
expand or collapse the hierarchy by drilling down or up on its levels.

■ Level. A position in a hierarchy. For example, a time dimension might have a
hierarchy that represents data at the day, month, quarter, and year levels.
1-2 Oracle9i OLAP Developer’s Guide to the OLAP API

OLAP API Overview
■ Attribute. A descriptive characteristic of the elements of a dimension that an
end user can specify to select data. For example, end users might choose
products using a Color attribute.

■ Query. A specification for a particular set of data, which is referred to as the
query’s result set. The specification may require selecting, aggregating,
calculating, or otherwise manipulating data. If such manipulation is required, it
is an intrinsic part of the query.

Two additional data warehouse and OLAP concepts, cube and edge, are not
intrinsic to the OLAP API, but are often incorporated into the design of applications
that use the OLAP API.

■ Cube. A logical organization of multidimensional data. Typically, the edges of a
cube contain dimension values, and the body of a cube contains measure
values. For example, sales data can be organized into a cube whose edges
contain values from the time, product, and customer dimensions and whose
body contains values from the sales measure.

■ Edge. One side of a cube. Each edge contains values from one or more
dimensions. Although there is no limit to the number of edges on a cube, data is
often organized for display purposes along three edges, which are referred to as
the row edge, column edge, and page edge.

For more information about all of these concepts, see the Oracle Data Warehousing
Guide.

What Type Of Data Can an Application Access Through the OLAP API?
The OLAP API, as part of Oracle OLAP, makes it possible for Java applications
(including applets) to access data that resides in an Oracle data warehouse. A data
warehouse is a relational database that is designed for query and analysis, rather
than transaction processing. Warehouse data often conforms to a star schema, which
represents a multidimensional data model. The star schema consists of one or more
fact tables and one or more dimension tables that are related through foreign keys.
Typically, a data warehouse is created from a transaction processing database by an
extraction transformation transport (ETT) tool, such as Oracle Warehouse Builder.

In order for the OLAP API to access the data in a given data warehouse, a database
administrator must first ensure that the data warehouse is configured according to
an organization that is supported by Oracle OLAP. The star schema is one such
organization, but not the only one. Once the data is organized in the warehouse, the
database administrator must use the OLAP Metadata APIs to create the required
metadata, which can be defined as “data about the data.” Finally, with the metadata
Introduction to the OLAP API 1-3

OLAP API Overview
in place, an application can access both the data and the metadata through the
OLAP API.

See the Oracle9i OLAP User’s Guide for information about supported data warehouse
configurations and about using the OLAP Metadata APIs.

The collection of warehouse data for which a database administrator has created
metadata using the OLAP metadata API is referred to as the data store to which the
OLAP API gives access. Of course, each user who accesses data through the OLAP
API might have security restrictions that limit the scope of the data that he or she
can access within the data store.

What Can an Application Do with the OLAP API?
Through the OLAP API, an application can do the following:

■ Establish a connection to a data store.

■ Explore the metadata to discover what data is available for viewing or analysis.

■ Create queries that manipulate the data according to the needs of application
users (for example, selecting, aggregating, and calculating data).

■ Retrieve query results that are structured for display in multidimensional
format.

■ Modify existing queries, rather than totally redefine them, as application users
refine their analyses.

Context for OLAP API development
The OLAP API is a Java API, so it has all the advantages of the Java environment. It
is platform independent, and it provides the benefits of an object-oriented API, such
as abstraction, encapsulation, polymorphism, and inheritance. These strengths are
built into the OLAP API, and because the client application is written in Java, its
code can also take advantage of them.

In order to work with the OLAP API, application developers should have
familiarity with Java, object-oriented programming, relational databases, data
warehousing, and multidimensional OLAP concepts.
1-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Access to Data and Metadata Through the OLAP API
Access to Data and Metadata Through the OLAP API
OLAP API metadata describes the data that is available to the OLAP API through a
given connection. The metadata records three things:

■ The fact that a given set of data exists. For example, a sales measure exists in the
data store.

■ The structure of that set of data. For example, the sales measure is dimensioned
by customer, product, and time.

■ The characteristics of that set of data. For example, the sales measure contains
numeric values, and it has a descriptive name that can be used in reports.

In contrast, the fact that 3542 dollars worth of boys outerwear was sold in Atlanta
during January 1999 is data, not metadata.

These examples distinguish between the metadata and the data for a measure called
Sales. The OLAP API makes a similar distinction between the metadata and the
data for dimensions. For example, the fact that a product dimension exists and that
it has text values as elements is metadata. In contrast, the fact that one of its
elements is “boys outerwear” is data.

MDM Model in the OLAP API
The OLAP API’s multidimensional metadata (MDM) model describes data in
multidimensional terms, which are familiar to OLAP and data warehousing
audiences. For example, it includes objects for measures, dimensions, hierarchies,
and attributes.

The following are some of the Java classes that are supplied by the OLAP API in its
implementation of the MDM model:

■ MdmMeasure

■ MdmDimension

■ MdmHierarchy

■ MdmLevel

■ MdmAttribute

■ MdmSchema

■ MdmMetadataProvider
Introduction to the OLAP API 1-5

Access to Data and Metadata Through the OLAP API
An MdmSchema is a container for MdmMeasure, MdmDimension, and other
MdmSchema objects. An MdmSchema corresponds to a measure folder in the OLAP
management feature of Oracle Enterprise Manager. Note that an MdmSchema does
not necessarily correspond to a relational schema.

An MdmMetadataProvider gives an application access to metadata objects that
were created by a database administrator using the OLAP management feature of
Oracle Enterprise Manager. To obtain access to the metadata, an application uses the
getRootSchema method in MdmMetadataProvider. This method returns the
top-level MdmSchema, which contains all the MdmMeasure and MdmDimension
objects that are accessible through this particular MdmMetadataProvider. The
MdmDimension and MdmMeasure objects might be organized in a hierarchical tree,
with subschemas nested under the top-level schema. Using the getMeasures,
getDimensions, and getSubSchemas methods on all the nested MdmSchema
objects, an application navigates through the metadata and discovers what data is
available. In addition, the application can use methods to obtain the related
MdmHierarchy, MdmLevel, and MdmAttribute objects.

Chapter 2, "Understanding OLAP API Metadata" provides detailed information
about the OLAP API metadata.

Access to Data Through the OLAP API
An MdmMeasure or MdmDimension represents data in the data store. For example,
an MdmMeasure called salesAmount might represent a set of numeric elements
whose values are dollar sales figures, and an MdmDimension called productDim
might represent a set of text elements whose values are product names. However,
an application cannot create a query on the data using an MdmMeasure or
MdmDimension. As metadata, MdmMeasure and MdmDimension objects provide
descriptive information about data, but they do not provide the ability to query on
that data. And an application must create a query in order to select, calculate, and
otherwise manipulate data for analysis.

In order to create a query on the data for an MdmMeasure or MdmDimension, an
application calls the getSource method on the MdmMeasure or MdmDimension.
This method creates a Source object that represents the data for the purpose of
querying. A Source is a specification for a query that defines a result set, and in
this case, the result set is the data for the MdmMeasure or MdmDimension.

In addition to representing the data for metadata objects, Source objects can
represent the data for any query that an application creates. For example, a Source
might specify a query for a selection of MdmDimension values (January, February,
March) or a calculation of the values of one MdmMeasure minus those of another
1-6 Oracle9i OLAP Developer’s Guide to the OLAP API

OLAP API Client Software
(salesAmount minus unitCost). An application can use the powerful methods
on Source and its subclasses to combine data in any way that the user requires.
And each new query is a new Source.

When an application prepares to display the data for a given Source, it creates a
Cursor for the Source. The application then uses this Cursor to request and
retrieve the data from the OLAP service. When an application makes a request for
data, it can specify the typical amount of data that it requires at a given time (for
example, enough to fill a 40-cell table on the screen). The OLAP service then
handles the issues related to efficient retrieval. The application does not need to
manage the timing, sizing, and caching of the data blocks that it retrieves through
the OLAP API.

Because the primary focus of most OLAP applications is making queries against the
data store, a significant proportion of their data manipulation code works with the
following classes, each of which has methods for selecting, calculating, and
otherwise manipulating data.

■ Source

■ BooleanSource

■ NumberSource

■ StringSource

One of the useful characteristic of Source objects is that they make no distinction
between dimensions and measures. All Source objects behave in the same way.

User Connection Requirements
In addition to ensuring that data and metadata have been prepared appropriately,
an application developer must ensure that application users can make a connection
to the data store through the OLAP API and that users have database privileges that
give them access to the data. For information about setting up for such connections,
see the Oracle9i OLAP User’s Guide.

OLAP API Client Software
The OLAP API client software is a set of Java packages containing classes that
implement the programming interface to Oracle OLAP. An application calls the
methods on these classes for discovering, querying, processing, and retrieving data.

When a Java application calls methods on OLAP API Java classes, it uses the OLAP
API client software to communicate with Oracle OLAP, which resides within an
Introduction to the OLAP API 1-7

Developing an OLAP API Application
Oracle database instance. The communication between the OLAP API client
software and Oracle OLAP is provided through Java Database Connectivity (JDBC),
which is a standard Java interface for connecting to relational databases. For more
information about JDBC, see the Oracle9i JDBC Developer’s Guide and Reference.

Software Configurations
An application that uses the OLAP API client software (that is, calls methods in
OLAP API classes) can reside on a single computer, or it can be divided into
separate parts on two different computers. For example, the end-user portion can be
separate from the portion that makes OLAP API calls. In this case, software on three
computers could be involved.

For information about possible configurations, see the Oracle9i OLAP User’s Guide.

Requirements for Using the OLAP API Client Software
To use the OLAP API classes as you develop your application, import them into
your Java code in the standard way. When you deliver your application to users,
include the OLAP API classes with the application. You must also ensure that users
can access JDBC.

In order to develop an OLAP API application, you must have the Java Development
Kit (JDK) from Sun Microsystems. Users must have a Java Runtime Environment
(JRE) whose version number is compatible with the JDK you used for development.

For information about Java version requirements and about setting up the OLAP
API client software, see Appendix A, "Setting Up the Development Environment".
For detailed information about the OLAP API classes and methods, see the OLAP
API Javadoc and subsequent chapters of this guide.

Developing an OLAP API Application
As an application developer, you perform the following steps to create an OLAP
API application:

1. Decide on general design issues.

2. Decide on requirements for end-user queries.

3. Design OLAP API Template objects that create end-user queries. This is an
optional step.

4. Write and test the Java code for the application.
1-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Developing an OLAP API Application
5. Deploy the application to users.

The rest of this topic presents a general description of each step.

Step 1: Decide on General Design Issues
Consider broad questions such as the following:

■ Will the application be a standalone application (two-tier architecture), or will it
be divided, with end-user code on a separate tier from the data manipulation
code (three-tier architecture)?

■ Will the application always access the same known metadata (for example,
describing employee data whose structure is constant), or must it discover what
metadata is available every time it makes a connection?

Step 2: Decide on Requirements for End-User Queries
Specify, in as much detail as possible, the nature of the queries that the end user will
be able to make. Because the OLAP API makes it possible to define queries in a
step-by-step process, it is also important to decide on the query modification
capabilities that the application will offer the user. Consider questions such as the
following:

■ By what criteria will the end user select data through the application’s dialog
boxes? For example, will the application present a list of dimensions? Can the
user drill up and down on the hierarchy of a dimension? Are there attributes of
dimensions that the user can specify for selecting data (for example, color or
size)? Can the user make selections based on data values (for example,
population over 20,000)?

■ As the user refines a query through a series of steps, can the user undo a step in
the process to return the query to an earlier state?

■ As the user refines a query, can the user specify the scope of an undo request?
For example, the undo request might apply only to the values of one field out of
many in the selection dialog box.

Planning the end-user queries is a crucial step in the application design process, so
you should complete it as thoroughly as possible. Ideally, you should create an
end-user query model that identifies all the conceptual query objects with which the
application user interface will deal. This strategy takes advantage of the strengths of
object-oriented design, and it allows for a clear correspondence between user
interface objects and OLAP API objects.
Introduction to the OLAP API 1-9

Developing an OLAP API Application
The following are examples of conceptual query objects for an application user
interface:

■ Dimension. This object has hierarchies on which the user can drill and attributes
from which the user can select.

■ Dimension selection. This object represents a selection of dimension elements.

■ Edge. This object represents one side of a cube and has related dimension
objects.

■ Cube. This multidimensional object has related edge objects. It also has a related
measure.

Each of these conceptual query objects can be represented by an OLAP API
Template object.

Step 3: Design OLAP API Template Objects That Create End-User Queries
An optional step in implementing an OLAP API application is designing Template
objects. This step is recommended because, the use of Template objects offers the
following benefits:

■ Dynamic queries. With a Template, you can create a modifiable query. That is,
when you have created one query and you want to execute another one that is
similar but not identical, you do not have to create an entirely new query. You
simply make a small change to the existing query. Thus, the query is dynamic,
rather than static.

■ Refinement and rollback of queries. With a Template, you can capture a series
of steps that a user has completed when specifying a query. Each step refines
the query further and is recorded as a new query state. If the user decides to
cancel one or more of the specification steps, you can rollback the query to an
earlier state.

■ Matching of code to user interface characteristics. When you design a
Template, you can make it correspond directly to the operations that a user
performs. For example, if your application includes a balance sheet, you can
create a balance sheet Template that incorporates all the appropriate
characteristics (such as a method of aggregation) and behaviors (such as
automatic totalling).
1-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Developing an OLAP API Application
For a more detailed example of how Template objects mirror the query-building
aspects of an application’s user interface, imagine an application that allows the
user to create a three-dimensioned cube of data through the following steps:

1. Choose a measure whose data will be in the cube.

2. Select the values for each dimension that will provide structure to the cube.

3. Specify the placement of the dimensions on the three edges of the cube.

As the application developer for this interface, you would design a Template
subclass for each of the following objects: dimension, dimension selection, edge,
and cube. As part of the design, you would specify methods on the Template
subclasses that allow you to combine objects as needed. For example, the edge
Template class might have an addDimension method, and the cube Template
class might have an addEdge method. Once you have implemented the dimension,
dimension selection, edge, and cube Template classes, you can use them again and
again in your application. They are basic building blocks in your application’s code
for querying and manipulating data.

In this stage of the application design process, you should make detailed
specifications for each Template in the application. For information about
designing Template objects, see Chapter 10, "Creating Dynamic Queries".

Step 4: Write and Test the Java Code for the Application
Up to this step, you have not written any Java code. You have considered questions
about the design of your application, and you have made detailed specifications for
the Template objects that your application will include. Now you must do the
following to implement the application:

1. Set up the OLAP API client software on your development computer, as
described in Appendix A, "Setting Up the Development Environment". If you
are designing a three-tiered application, the development computer (from the
OLAP API point of view) is the middle-tier computer.

2. Identify the data store that you will use for developing and testing the
application. Ensure that the data is structured as a star or snowflake schema in
an Oracle data warehouse, and ensure that the OLAP management feature in
Oracle Enterprise Manager has provided the metadata.

3. Write the Java classes for your application, importing the OLAP API classes as
needed. Among the Java classes that you write, include the Template classes
that you designed.

4. Test your application using the test data store.
Introduction to the OLAP API 1-11

Tasks That an OLAP API Application Performs
For information about coding an application that uses the OLAP API, see the
subsequent chapters of this guide and the OLAP API Javadoc. See "Tasks That an
OLAP API Application Performs" on page 1-12 for a description of the tasks that
an application typically performs.

Step 5: Deploy the Application to users
Keep the following in mind when you deploy your application:

■ Include the OLAP API Java classes along with the ones that you have
developed.

■ Ensure that the user’s computer (or the middle tier computer) has access to an
Oracle database instance that includes the OLAP option.

■ Ensure that the user has access to an appropriate Oracle data warehouse with
metadata prepared by the OLAP Metadata APIs.

■ Provide documentation for your application, giving installation instructions
and explaining the user interface that you have created.

Tasks That an OLAP API Application Performs
An application that uses the OLAP API typically performs the following tasks:

1. Connect to the data store

2. Discover the available metadata

3. Select and calculate data through queries

4. Retrieve query results

The rest of this topic briefly describes these tasks, and the rest of this guide provides
detailed information.

Task 1: Connect to the Data Store
An application connects to the data store by identifying some information about the
target Oracle database and specifying this information in a JDBC connection
method.

For more information about connecting, see Chapter 3, "Connecting to a Data Store".
1-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Tasks That an OLAP API Application Performs
Task 2: Discover the Available Metadata
Having established a connection, the application creates an
MdmMetadataProvider. This object gives access to all the metadata objects in the
data store.

To discover the available metadata, an application uses the getRootSchema
method on the MdmMetdataProvider to obtain the top-level measure folder for all
of its metadata objects. The application then gets the dimensions, measures, and
subfolders that are under the root. Once the application has all the dimensions and
measures, it can interrogate them to get their attributes, hierarchies, levels, and
other characteristics.

Having determined the metadata objects that it has to work with, the application
can present relevant lists of objects to the user for data selection and manipulation.

For a description of the metadata objects, see Chapter 2, "Understanding OLAP API
Metadata". For information about how an application can discover the available
metadata, see Chapter 4, "Discovering the Available Metadata".

Task 3: Select and Calculate Data Through Queries
The heart of any OLAP application lies in the construction of queries against the
data store. The application user interface provides ways for the user to select data
and specify what should be done with it. Then, the data manipulation code
translates these instructions into queries against the data store. The queries can be
as simple as a selection of dimension elements, or they can be complex, including
several aggregations and calculations on measure values.

The OLAP API object that specifies a query is a Source. Therefore, a significant
portion of any OLAP API application is devoted to dealing with Source objects.

You can manipulate Source objects directly, using methods such as select,
remove, and appendValues to create selections. In addition, you can use methods
such as plus, div, and total to calculate values. Source and its subclasses,
NumberSource, StringSource, and BooleanSource, have a rich assortment of
methods for manipulating data. The most powerful method in Source is join,
which gives you the ability to combine Source objects in almost any way
imaginable.

If you are implementing a simple user interface, you might use only the methods on
the Source classes to select and manipulate the data that users specify in the
interface. However, if you want to offer your users multistep selection procedures
and the ability to modify queries or undo individual steps in their selections, you
should use Template classes as described in the topic "Developing an OLAP API
Introduction to the OLAP API 1-13

Tasks That an OLAP API Application Performs
Application" on page 1-8. Within the code for each Template, you use the
methods on the Source classes, but the Template classes themselves allow you to
modify and refine even the most complex query. In addition, you can minimize
your work by writing general-purpose Template classes and reusing them in
various parts of your application.

For information about working with Source objects, see Chapter 5, "Introduction
to Querying". For information about working with Template objects, see
Chapter 10, "Creating Dynamic Queries".

Task 4: Retrieve Query Results
When users of an OLAP application are selecting, calculating, combining, and
generally manipulating data, they also want to see the results of their work. This
means that the application must retrieve the result sets of queries from the data
store and display the data in multidimensional form. To retrieve a result set for a
query through the OLAP API, the application creates a Cursor based on the
Source that specifies the query.

Because the OLAP API was designed to deal with a multidimensional view of data,
a Source can have a multidimensional result set. For example, a Source can
represent an MdmMeasure that is structured by three MdmDimension objects. The
Cursor for this Source has a structure that mirrors the Source itself; that is, the
Cursor organization is based on the same three MdmDimension objects.

To retrieve all the items of data through a Cursor, the application can loop through
the multidimensional Cursor structure. This design is well adapted to the
requirements of standard user interface objects for painting the computer screen. It
is especially well adapted to the display of data in multidimensional format.

For more information about using Cursor objects to retrieve data, see Chapter 8,
"Understanding Cursor Classes and Concepts".
1-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Understanding OLAP API Met
2

Understanding OLAP API Metadata

This chapter describes the metadata objects that the OLAP API provides, and
explains how these objects relate to the OLAP metadata objects that a database
administrator specifies using the OLAP Metadata APIs.

This chapter includes the following topics:

■ Overview of the OLAP API Metadata

■ OLAP Metadata Objects

■ Overview of MDM Metadata Objects in the OLAP API

■ MdmDimension Class

■ MdmLevel Class

■ MdmHierarchy Class

■ MdmListDimension Class

■ MdmMeasure Class

■ MdmAttribute Class

■ Data Type and Type of MDM Metadata Objects
adata 2-1

Overview of the OLAP API Metadata
Overview of the OLAP API Metadata
The OLAP API provides a Java application with access to a multidimensional view
of data in an Oracle database. The OLAP API design includes objects that are
consistent with that view and are familiar to data warehousing and OLAP
developers. For example, it has objects for measures, dimensions, hierarchies, levels,
and attributes. The OLAP API design incorporates an object-oriented model called
MDM (multidimensional metadata).

The data in an Oracle database must be prepared by a database administrator in
order to support the MDM model. Even though recent SQL enhancements have
introduced some multidimensional objects, such as dimension, there are other
objects and characteristics that must be added.

Data Preparation
A database administrator starts with a data warehouse that is organized according
to certain specifications. For example, it might conform to a star schema. The
requirements are described in the Oracle9i OLAP User’s Guide.

Metadata Preparation
Using the OLAP Metadata APIs, the administrator adds OLAP metadata to the data
warehouse. The OLAP metadata objects, which are created in this step, supply the
metadata required for Oracle OLAP to access the data. These OLAP metadata
objects map to MDM metadata objects in the OLAP API.

The topic "OLAP Metadata Objects" on page 2-2 briefly describes the OLAP
metadata objects that a database administrator prepares for use with Oracle OLAP.

OLAP Metadata Objects
Using the OLAP Metadata APIs, a database administrator adds OLAP metadata to
a data warehouse. The end result is the creation of one or more measure folders that
contain one or more measures. The measures have dimensions, and the dimensions
have hierarchies, levels, and attributes. Each of these OLAP metadata objects maps
directly to an MDM object in the OLAP API.

For detailed information about OLAP metadata and about using the OLAP
Metadata APIs, see the Oracle9i OLAP User’s Guide.

Note that the OLAP metadata includes a cube object, which does not map directly
to any MDM object. Database administrators reference cubes in the OLAP Metadata
2-2 Oracle9i OLAP Developer’s Guide to the OLAP API

OLAP Metadata Objects
APIs when they specify the dimensions of each measure. Once the dimensions are
specified, they are firmly associated with their measures in the metadata, so this
type of cube object is not needed in the MDM model.

The rest of this topic briefly describes the OLAP metadata objects that map directly
to MDM objects in the OLAP API.

Dimensions in the OLAP Metadata
The he following are some of the characteristics that a database administrator can
specify for dimensions:

■ General characteristics, such as the name of the dimension and the schema from
which its data is drawn.

■ Levels, which record the levels of the dimension. The database administrator
typically specifies one or more levels for each OLAP dimension.

■ Hierarchies, which specify the parent-child relationships between the levels.
The database administrator typically specifies at least one hierarchy for each
OLAP dimension. If there is only one level for the dimension, then no hierarchy
is specified and the dimension is a simple, non-hierarchical list.

■ Attributes, which record characteristics of the level elements for the dimension.
For example, an attribute might record the gender of each customer in the
customers dimension.

Typically, a database administrator specifies one or more columns in a database
table to serve as the basis for each OLAP level, hierarchy, and attribute.

A database administrator creates cubes after creating dimensions. A cube is a set of
dimensions that provide organizational structure for measures.

Measures in the OLAP Metadata
The OLAP Metadata APIs give a database administrator the ability to specify that a
given measure belongs to a given cube. Because a cube is a set of dimensions that
provide organizational structure for measures, specifying that a given measure
belongs to a given cube specifies the dimensions of that measure. This is essential
information for the OLAP API, where the dimensionality of a measure is one of its
most important features.
Understanding OLAP API Metadata 2-3

OLAP Metadata Objects
To identify the data for a measure, the database administrator typically specifies a
column in a fact table where the measure’s data resides. As an alternative, the
database administrator can specify a calculation or transformation that produces the
data.

Measure Folders in the OLAP Metadata
Once a database administrator has created measures (first creating dimensions and
cubes), the next step is to create one or more groups of measures called measure
folders. Typically, the measures in a given folder are related by subject matter. That
is, they all pertain to the same business area. For example, there might be three
separate folders for financials, sales, and human resources.

The measures in a given measure folder can belong to different cubes, and they can
be from more than one schema.

The database administrator must create at least one measure folder because the
scope of the data that an OLAP API application can access is defined in terms of
measure folders. That is, an OLAP API MdmMetadataProvider gives access only
to the measures that are contained in measure folders. Of course, each measure’s
dimensions are included, along with its hierarchies, levels, and attributes.

In this context, it is important to understand that measure folders can be nested.
This means that a given measure folder can have subfolders that have their own
measures, and even their own subfolders. Thus, a database administrator can
arrange measures in a hierarchy of folders, and an OLAP API
MdmMetadataProvider can give access to all of the measure folders and their
subfolders.
2-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of MDM Metadata Objects in the OLAP API
Overview of MDM Metadata Objects in the OLAP API
The OLAP API implementation of the MDM model is represented by classes in the
oracle.express.mdm package. Most of the classes in this package implement
metadata objects, such as dimensions and measures. The following diagram
introduces the subclasses of the MdmObject class.

Figure 2–1 MdmObject Class and Its Subclasses.

MdmObject

MdmSchema MdmSource

MdmDimensionedObjectMdmDimension

MdmListDimensionMdmHierarchicalDimension

MdmMeasureMdmAttribute

MdmHierarchy MdmLevel
Understanding OLAP API Metadata 2-5

Overview of MDM Metadata Objects in the OLAP API
Mapping of OLAP Metadata Objects to MDM objects
An application accesses metadata objects by creating an OLAP API
MdmMetadataProvider and using it to discover the available metadata objects in
the data store.

The metadata objects that a database administrator specifies using the OLAP
Metadata APIs map directly to MDM metadata objects that are accessible through
the MdmMetadataProvider. The following table presents the typical mapping.

This chapter describes the MDM metadata objects. For information about how an
application discovers the available MDM metadata objects in the data store, see
Chapter 4, "Discovering the Available Metadata".

MdmSchema and MdmSource are the two subclasses of MdmObject.

MdmSchema Class
An MdmSchema represents a set of data that is used for navigational purposes. An
MdmSchema is a container for MdmMeasure, MdmDimension, and other
MdmSchema objects. An MdmSchema is equivalent to a folder or directory that
contains associated items. It does not correspond to a relational schema in the
Oracle database. Instead, it corresponds to a measure folder, which can include data
from several relational schemas and which was created by a database administrator
using the OLAP Metadata APIs.

Data that is accessible through the OLAP API is arranged under a top-level
MdmSchema, which is referred to as the root MdmSchema. Under the root, there are
one or more subschemas. To begin navigating the metadata, an application calls the
getRootSchema method on the MdmMetadataProvider, as explained in
Chapter 2, "Understanding OLAP API Metadata".

OLAP Metadata Objects MDM Metadata Objects

Dimension MdmHierarchy or MdmListDimension

Hierarchy MdmHierarchy

Level MdmLevel

Measure MdmMeasure

Attribute MdmAttribute

Measure Folder MdmSchema
2-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of MDM Metadata Objects in the OLAP API
The root MdmSchema contains all the MdmDimension objects that are in the data
store. Most MdmDimension objects are contained in subschemas under the root
MdmSchema. However, a data store can contain a dimension that is not included in a
subschema. The root MdmSchema contains MdmDimension objects that are in
subschemas as well as MdmDimension objects that are not.

The root MdmSchema contains MdmMeasure objects only if they are not contained in
a subschema. Because most MdmMeasure objects belong to a subschema, the root
MdmSchema typically has no MdmMeasure objects.

An MdmSchema has methods for getting all the MdmMeasure, MdmDimension, and
MdmSchema objects that it contains. The root MdmSchema also has a method for
getting the measure MdmDimension, whose elements are all the MdmMeasure
objects in the data store regardless of whether they belong to a subschema.

MdmSource Class
An MdmSource represents a measure, dimension, or other set of data (such as an
attribute) that is used for analysis. This abstract class is the basis for some important
MDM metadata classes, such as MdmMeasure, MdmDimension, and
MdmAttribute.

MdmSource objects represent data, but they do not provide the ability to create
queries on that data. Their function is informational, recording the existence,
structure, and characteristics of the data. They do not give access to the data values.

In order to access the data values for a given MdmSource, an application calls the
getSource method on the MdmSource. This method returns a Source through
which an application can create queries on the data represented by the MdmSource.
The following line of code creates a Source from an MdmDimension called
mdmProductsDim.

Source productsDim = mdmProductsDim.getSource();
A Source that is the result of the getSource method on an MdmSource is called a
primary Source. An application creates new Source objects from this primary
Source as it selects, calculates, and otherwise manipulates the data. Each new
Source specifies a new query.

For more information about working with Source objects, see Chapter 5,
"Introduction to Querying".

The rest of this chapter describes the subclasses of MdmSource, along with other
classes, such as MdmDimensionDefinition and MdmDimensionMemberType,
that are closely related.
Understanding OLAP API Metadata 2-7

MdmDimension Class
MdmDimension Class
MdmDimension is a subclass of MdmSource.

Description of an MdmDimension
An MdmDimension represents a list of elements that can organize a set of data. For
example, if you have a set of sales figures for a given year and you organize them
by month, the list of months is a dimension of the sales data. The values of the
month dimension act as indexes for identifying each particular value in the set of
sales data.

In the OLAP API, the abstract MdmDimension class represents the general concept
of a list of elements that can organize data. MdmDimension has an abstract subclass
called MdmHierarchicalDimension, which represents a list that has hierarchical
characteristics.

The following concrete subclasses of MdmDimension represent the specific kinds of
MdmDimension objects that can be used in analysis.:

■ MdmLevel, which represents a list of elements that supply one level of a
hierarchical structure. Each element can have a parent and one or more
children. The parents and children of a given MdmLevel element are not within
the given MdmLevel. They are elements of different MdmLevel objects.

■ MdmHierarchy, which represents a list of elements arranged in a hierarchical
structure that has levels based on parent-child relationships. Each element can
have a parent and one or more children, and all of these elements are within the
MdmHierarchy.

Though the parent and child elements are within the MdmHierarchy, they
correspond to elements in MdmLevel objects. Therefore, loosely speaking, an
MdmHierarchy is composed of MdmLevel objects. Some MdmHierarchy
objects are simply composed of MdmLevel objects. Others are unions of one or
more subordinate MdmHierarchy objects, which in turn, are composed of
MdmLevel objects.

■ MdmListDimension, which represents a simple list of elements that play no
part in any hierarchical structure. The elements have no parents and no
children.

Both MdmLevel and MdmHierarchy are concrete subclasses of the abstract
MdmHierarchicalDimension class.
2-8 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmDimension Class
An MdmDimension can have one or more MdmAttribute objects. Each of these
objects maps the elements of the MdmDimension to values representing some
characteristic of the elements. To obtain the MdmAttribute objects for a given
MdmDimension, call its getAttributes method.

An MdmDimension has an MdmDimensionDefinition, which represents the
structure of the underlying data, and an MdmDimensionMemberType, which
represents the basic nature of the elements. These two objects hold important
information about the MdmDimension to which they belong. For a given
MdmDimension, you use its getDefinition and getMemberType methods to
obtain these related objects.

Information Held by an MdmDimensionDefinition
An MdmDimensionDefinition indicates the structure of the underlying data on
which the MdmDimension is based. The MdmDimensionDefinition class is
abstract. Therefore, instances are always one of the following subclasses:

■ MdmBaseDimensionDefinition, which indicates that the MdmDimension
has underlying data structured as a single list. For example, an MdmLevel is
often based on a single column in a relational table.

■ MdmUnionDimensionDefinition, which indicates that the MdmDimension
has underlying data structured as the union of two or more lists. For example,
an MdmHierarchy can be based on two or more columns in a relational table,
one column for each MdmLevel.

■ MdmAliasDimensionDefinition, which indicates that the MdmDimension
acts as a proxy (that is, an alias) for another MdmDimension.

An MdmDimension that has an MdmUnionDimensionDefinition has regions. A
region of a given MdmDimension is another MdmDimension that represents a
subset of the elements of the given MdmDimension. For example, an
MdmDimension for calendar year might have one region that represents quarters
and another region that represents months. To obtain the regions of an
MdmDimension, you call the getRegions method on its
MdmUnionDimensionDefinition.
Understanding OLAP API Metadata 2-9

MdmLevel Class
Information Held by an MdmDimensionMemberType
An MdmDimensionMemberType indicates the basic nature of the elements in the
MdmDimension. It holds a description for each element, and it often provides
methods for finding out other information about individual elements. The
MdmDimensionMemberType class is abstract. Therefore, instances are always one
of the following subclasses:

■ MdmTimeMemberType, which indicates that the MdmDimension elements
represent time periods. An MdmTimeMemberType has methods for finding out
the end date and time span for each element.

■ MdmMeasureMemberType, which indicates that the MdmDimension elements
are all the MdmMeasure objects in the data store. There is only one
MdmDimension with an MdmMeasureMemberType, and it is referred to as the
measure MdmDimension. You can obtain the measure MdmDimension by
calling the getMeasureDimension method on the root MdmSchema.

■ MdmStandardMemberType, which indicates that the MdmDimension elements
have no specific characteristics. Most MdmDimension objects have an
MdmStandardMemberType.

MdmLevel Class
MdmLevel is a subclass of MdmHierarchicalDimension, which is an abstract
subclass of MdmDimension.

Description of an MdmLevel
An MdmLevel is an MdmHierarchicalDimension whose parents and children
are elements from other MdmLevel objects. The elements from a given MdmLevel
correspond to a subset of the elements in an MdmHierarchy.

A given MdmLevel is based on a level that was specified by a database
administrator using the OLAP Metadata APIs. Typically, the database administrator
specified a column in a database table to provide the elements for the level.

Even though the elements of an MdmLevel have parent-child relationships, an
MdmLevel is represented as a simple list. The parent-child relationships among the
elements are recorded in the parent and ancestors attributes, which you can obtain
by calling the getParentRelation and getAncestorsRelation methods on
the MdmLevel. Sometimes the parent and ancestors attributes are referred to as
parent and ancestors relations.
2-10 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmLevel Class
Typically, an MdmLevel has an MdmBaseDimensionDefinition, because the
underlying data is structured as a single list.

Elements of an MdmLevel
The list of elements in an MdmLevel includes only the elements in that one level.
The values of the elements must be unique. However, uniqueness can be achieved
by a database administrator who defines the level using two relational columns. For
example, a level that represents cities can be defined in the relational database
based on both the city column and the state column. This makes it possible for the
value “Springfield” to appear for two different elements in the city level: one
appears for Springfield, Illinois and another appears for Springfield, Massachusetts.

The following table lists the elements for an MdmLevel called mdmQuarter, which
records the three-month quarters for a level MdmHierarchy called
mdmTimesDimCalHier. This MdmHierarchy covers four years, so the number of
elements in mdmQuarter is 16.

Elements of
mdmQuarter

1998-Q1

1998-Q2

1998-Q3

1998-Q4

1999-Q1

1999-Q2

1999-Q3

1999-Q4

2000-Q1

. . .

2001-Q4
Understanding OLAP API Metadata 2-11

MdmHierarchy Class
MdmHierarchy Class
MdmHierarchy is a subclass of MdmHierarchicalDimension, which is an
abstract subclass of MdmDimension.

Description of an MdmHierarchy
An MdmHierarchy is an MdmHierarchicalDimension that includes all the
elements of one or more hierarchical structures. That is, all the parents and children
are within the MdmHierarchy.

Even though the parent-child relationships exist in the MdmHierarchy, its elements
are represented as a simple list. The relationships among the elements are recorded
in the parent and ancestors attributes, which you can obtain by calling the
getParentRelation and getAncestorsRelation methods on the
MdmHierarchy. You can obtain the region for each element by calling the
getRegionAttribute method on the MdmDimensionDefinition of the
MdmHierarchy. Sometimes the parent, ancestors, and region attributes are referred
to as parent, ancestors, and region relations.

Typically, an MdmHierarchy is one of the following types:

■ Level MdmHierarchy, which represents a hierarchical structure whose regions
are MdmLevel objects. For example, a level MdmHierarchy for calendar year
might have as its regions MdmLevel objects for year, quarter, month and day.

A level MdmHierarchy has an MdmUnionDimensionDefinition, and its
regions are MdmLevel objects. The return value from its getHierarchyType
method is LEVEL_HIERARCHY. A level MdmHierarchy is based on a
hierarchy that was defined by a database administrator using the OLAP
Metadata APIs.

■ Union MdmHierarchy, which represents a dimension that has one or more
subordinate hierarchical structures. These structures are represented by one or
more level or value MdmHierarchy objects. An example, of an MdmHierarchy
with two structures is a union MdmHierarchy for time that has two regions,
one for the calendar year and another for the fiscal year. Each region is a level
MdmHierarchy.

A union MdmHierarchy has an MdmUnionDimensionDefinition and its
regions are MdmHierarchy objects. The return value from its
getHierarchyType method is UNION_HIERARCHY. A union
2-12 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmHierarchy Class
MdmHierarchy is based on a dimension that was defined as having one or
more hierarchies by a database administrator using the OLAP Metadata APIs.

■ Value MdmHierarchy, which represents a hierarchical structure whose
elements have parents and children but no levels and therefore no regions. For
example, a company’s employee reporting structure can be represented with
parent/child relationships but without levels.

A value MdmHierarchy has an MdmBaseDimensionDefinition. The return
value from its getHierarchyType method is VALUE_HIERARCHY. A value
MdmHierarchy is based on a dimension that was flagged as a value hierarchy
by a database administrator using the OLAP Metadata APIs.

When working with MdmHierarchy objects in the current release of the OLAP API,
keep the following points in mind.

■ Call the getAttributes method on a union MdmHierarchy, not on its
subordinate level or value MdmHierarchy objects or on MdmLevel objects.

■ Create queries on Source objects that are based on a level or value
MdmHierarchy, not on a union MdmHierarchy.

■ Call the getParentRelation and getAncestorsRelation methods on a
level or value MdmHierarchy, not on a union MdmHierarchy.

■ Call the getRegionAttribute method on the
MdmUnionDimensionDefinition of a level MdmHierarchy, not of a union
MdmHierarchy. This method returns the MdmAttribute that records the
MdmLevel to which each MdmHierarchy element belongs.

Elements of a Level MdmHierarchy
The elements of a level MdmHierarchy include all of the elements of all of its
regions. The values of the elements in a particular level MdmHierarchy must be
unique. The following examples present the elements of two level MdmHierarchy
objects, one for calendar year and the other for fiscal year.

Level MdmHierarchy for Calendar Year
The following table lists the values of the elements for a level MdmHierarchy
called mdmTimesDimCalHier, which includes the elements from four MdmLevel
objects: mdmYear, mdmQuarter, mdmMonth, and mdmDay. The number of elements
Understanding OLAP API Metadata 2-13

MdmHierarchy Class
is 1529: 4 year elements, 16 quarter elements, 48 month elements, and 1461 day
elements.

Elements of
mdmTimesDimCalHier

1998

1998-Q1

1998-01

01-JAN-98

02-JAN-98

03-JAN-98

. . .

01-FEB-98

02-FEB-98

03-FEB-98

. . .

1998-Q2

1998-04

01-APR-98

02-APR-98

03-APR-98

. . .

1999

1999-Q1

1999-01

01-JAN-99

02-JAN-99

03-JAN-99

. . .
2-14 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmHierarchy Class
Level MdmHierarchy for Fiscal Year
The following table lists the values of the elements for a level MdmHierarchy
called mdmTimesDimFisHier, which includes the elements from four MdmLevel
objects: mdmFisYear, mdmFisQuarter, mdmFisMonth, and mdmFisDay. The
number of elements is 1529: 4 fiscal year elements, 16 fiscal quarter elements, 48
fiscal month elements, and 1461 fiscal day elements.

In this example, the mdmFisDay MdmLevel is based on the same relational
database column on which the mdmDay MdmLevel is based (see the earlier example
for calendar year). Therefore, the values of the elements for these two MdmLevel
objects are identical. However, this does not mean that the elements themselves are
identical. The elements in mdmDay are distinct from the elements in mdmFisDay;
only the values of the two sets of elements are the same.

Elements of
timesDimFisHier

FIS-1998

FIS-1998-Q1

FIS-1998-01

01-JUL-98

02-JUL-98

03-JUL-98

. . .

01-AUG-98

02-AUG-98

03-AUG-98

. . .

FIS-1998-Q2

FIS-1998-04

01-OCT-98

02-OCT-98

03-OCT-98

. . .
Understanding OLAP API Metadata 2-15

MdmHierarchy Class
Terminology: Nodes and leaves
A level MdmHierarchy represents a tree structure with parent-child relationships.
Elements in the lowest MdmLevel are referred to as leaves, and the elements in the
MdmLevel objects above the lowest level are referred to as nodes. Nodes have
children; leaves do not.

Elements of a union MdmHierarchy
The elements of a union MdmHierarchy include all of the elements of all of its
regions. Another way to say this is that a union MdmHierarchy includes all of the
elements of all of the MdmLevel objects in all of its subordinate MdmHierarchy
objects. In hierarchical terms, the set of elements includes all of the leaves (the
elements at the lowest level) and all of the nodes (the elements at the levels above
the lowest one) for all the hierarchies.

Distinct elements in the regions of a union MdmHierarchy
The elements in the regions of a union MdmHierarchy are totally distinct. That is, a
given element does not appear in more than one region of a union MdmHierarchy.
This is the case even if the database administrator specified the same level in two
different hierarchies of a dimension. When this happens, Oracle OLAP creates two
different MdmLevel objects, one for each level MdmHierarchy.

Though the elements of a union MdmHierarchy are distinct, the values of the
elements are not required to be unique. Therefore in the example below, the leaf
elements of the two regions of the union MdmHierarchy have values that are
identical.

FIS-1999

FIS-1999-Q1

FIS-1999-01

01-JUL-99

02-JUL-99

03-JUL-99

. . .

Elements of
timesDimFisHier
2-16 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmHierarchy Class
Union MdmHierarchy for Time
Consider a union MdmHierarchy called mdmTimesDim, which has two regions.
The first region is the MdmHierarchy called mdmTimesDimCalHier, which has
1529 elements. The second region is the MdmHierarchy called
mdmTimesDimFisHier, which also has 1529 elements. The set of elements for
mdmTimesDim is the union of the elements from its two MdmHierarchy objects.
Because no element can appear in both MdmHierarchy objects, mdmTimesDim has
3058 elements. Note that a calendar year begins on January 1, while a fiscal year
begins on July 1.

The following table lists the values of the elements of the union MdmHierarchy
called mdmTimesDim. To distinguish the elements of mdmDay and mdmFisDay,
whose values are identical, the word “(fiscal)” appears next to the values for
mdmFisDay. The mdmDay and mdmFisDay objects were introduced earlier in the
examples for the elements of a level MdmHierarchy.

Elements of
mdmTimesDim

1998

1998-Q1

1998-01

01-JAN-98

. . .

1999

1999-Q1

1999-01

01-JAN-99

. . .

FIS-1998

FIS-1998-Q1

FIS-1998-01

01-JUL-98 (fiscal)

. . .
Understanding OLAP API Metadata 2-17

MdmListDimension Class
MdmListDimension Class
MdmListDimension is a subclass of MdmDimension.

Description of an MdmListDimension
An MdmListDimension is a simple list of elements that have no hierarchical
characteristics. That is, the notion of having a parent or a child is not relevant for the
elements of an MdmListDimension.

Elements of an MdmListDimension
A given MdmListDimension is based on a dimension that was specified as having
a single level and no hierarchy by a database administrator using the OLAP
Metadata APIs.

FIS-1999

FIS-1999-Q1

FIS-1999-01

01-JUL-99 (fiscal)

. . .

Elements of
mdmTimesDim
2-18 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmMeasure Class
The following table lists the values of the elements of an MdmListDimension
called mdmColor.

MdmMeasure Class
MdmMeasure is a subclass of MdmDimensionedObject, which is an abstract
subclass of MdmSource.

Description of an MdmMeasure
An MdmMeasure represents a set of data that is organized by one or more
MdmDimension objects. The structure of the data is similar to that of a
multidimensional array. Like the dimensions of an array, the MdmDimension
objects that organize an MdmMeasure provide the indexes for identifying individual
cells.

For example, suppose you have an MdmMeasure for sales data, and the data is
organized by product, time, customer, and channel (with channel representing the
marketing method, such as direct or indirect.). You can think of the data as
occupying a four-dimensional array with the product, time, customer and channel
dimensions providing the organizational structure. The values of these four
dimensions are indexes for identifying each particular cell in the array, which
contains a single sales value. You must specify a value for each dimension in order
to identify a value in the array. In relational terms, the MdmDimension objects
constitute a compound (that is, composite) primary key for the MdmMeasure.

The values of an MdmMeasure are usually numeric, but this is not necessary.

Elements of mdmColor

Black

Blue

Cyan

Green

Magenta

Red

Yellow

White
Understanding OLAP API Metadata 2-19

MdmMeasure Class
Elements of an MdmMeasure
A given MdmMeasure is based on an OLAP measure that was created by a database
administrator using the OLAP Metadata API. In most cases, the database
administrator specified a column in a fact table to act as the basis for the OLAP
measure (alternatively, the database administrator specified a mathematical
calculation or a data transformation). In many but not all cases, the database
administrator also specified at least one hierarchy for each of the measure’s OLAP
dimensions, as well as an aggregation method. Oracle OLAP uses all of this
information to identify the number of elements in the MdmMeasure and the value
of each element.

MdmMeasure Elements Are Determined by MdmDimension Elements
The set of elements that are in an MdmMeasure is determined by the structure of its
MdmDimension objects. That is, each element of an MdmMeasure is identified by a
unique combination of elements from its MdmDimension objects.

Typically, the MdmDimension objects of an MdmMeasure are union MdmHierarchy
objects. That is, they have at least one hierarchical structure. It is important to
remember that the elements of a union MdmHierarchy include all of the leaves and
all of the nodes for all of the level MdmHierarchy objects that represent its regions.
Because of this structure, the values of the elements of an MdmMeasure are of two
kinds:

■ Values from the fact table column (or fact-table calculation) on which the
MdmMeasure is based, as specified using the OLAP Metadata APIs. These
values belong to MdmMeasure elements that are identified by a combination of
leaf MdmHierarchy elements.

■ Aggregated values that Oracle OLAP has provided. These values belong to
MdmMeasure elements that are identified by at least one node element from an
MdmHierarchy.

As an example, imagine an MdmMeasure called mdmUnitCost that is dimensioned
by union MdmHierarchy objects called mdmTimesDim and mdmProductsDim.
Each MdmHierarchy has leaf elements (for example, 01-JAN-99 in mdmTimesDim),
and each MdmHierarchy has node elements (for example, 1999-Q1 in
mdmTimesDim). A unique combination of two elements, one from each
MdmHierarchy, identifies each mdmUnitCost element, and every possible
combination is used to specify the entire mdmUnitCost element set.

Some mdmUnitCost elements are identified by a combination of leaf elements (for
example, a particular product item and a particular month). Other mdmUnitCost
elements are identified by a combination of node elements (for example, a
2-20 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmMeasure Class
particular product group and a particular quarter). Still other mdmUnitCost
elements are identified by a mixture of leaf and node elements. The values of the
mdmUnitCost elements that are identified only by leaf elements come directly from
the column in the database fact table (or fact table calculation). They represent the
lowest level of data. However, for the elements that are identified by at least one
node element, Oracle OLAP provides the values. These higher-level values
represent aggregated, or rolled-up data.

Thus, the data represented by an MdmMeasure is a mixture of fact table data from
the data store and aggregated data that Oracle OLAP makes available for analytical
manipulation.

MdmMeasure with two MdmDimension objects
The table below lists values for some of the elements of the MdmMeasure called
mdmUnitCost, which is described above. This MdmMeasure has
mdmProductsDim and mdmTimesDim as its MdmDimension objects. Each of these
objects is a union MdmHierarchy with regions that are level MdmHierarchy
objects. For example, the level MdmHierarchy objects for mdmTimesDim are
mdmTimesDimCalHier and mdmTimesDimFisHier, and the level
MdmHierarchy for mdmProductsDim is mdmProductsDimHier.

Because there are so many elements in the MdmMeasure, the table shows only a few
of them. For example, for mdmTimesDim, you should imagine that the ellipses
(indicated by dots) cover additional days, months, quarters, and years in the
mdmTimesDimCalHier region, as well as the entire mdmTimesDimFisHier
region.

mdmProductsDimHier has three levels, which represent the product category
(such as Boys), the product subcategory (such as Outerwear - Boys), and the
individual product item (such as #23110). The table shows only one element from
each level, and the ellipses cover all the rest.

Almost all the elements shown in the table are aggregated. The ones that are not
aggregated are marked with an asterisk. These nonaggregated elements are the ones
Understanding OLAP API Metadata 2-21

MdmMeasure Class
that are identified by the lowest level elements of both mdmProductsDim and
mdmTimesDim.

Elements of
mdmProductsDim

Elements of
mdmTimesDim

Elements of
mdmUnitCost

Boys 1998 12,800,444.00

Boys 1998-Q1 4,563,150.00

Boys 1998-01 1,837,254.00

Boys 01-JAN-98 185,346.00

Boys 02-JAN-98 232,590.00

Boys 03-JAN-98 155,403.00

.

Outerwear -Boys 1998 6,473,065.00

Outerwear -Boys 1998-Q1 2,000,317.00

Outerwear -Boys 1998-01 637,482.00

Outerwear -Boys 01-JAN-98 27,009.00

Outerwear -Boys 02-JAN-98 20,346.00

Outerwear -Boys 03-JAN-98 12,498.00

.

23110 1998 847,362.00

23110 1998-Q1 200,635.00

23110 1998-01 60,735.00

23110 01-JAN-98 2,226.00 *

23110 02-JAN-98 1,709.00 *

23110 03-JAN-98 2,047.00 *

.
2-22 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmAttribute Class
MdmAttribute Class
MdmAttribute is a subclass of MdmDimensionedObject, which is an abstract
subclass of MdmSource.

Description of an MdmAttribute
An MdmAttribute represents a particular characteristic of the elements of an
MdmDimension. An MdmAttribute maps one element of the MdmDimension to a
particular value. A typical example is an MdmAttribute that records the gender of
each customer in an MdmDimension called mdmCustomersDim. In this case, the
elements of the MdmAttribute have the values “Female” and “Male”.

The values of an MdmAttribute might be String values (such as “Female”),
numeric values (such as 45), or objects (such as MdmLevel objects).

Like an MdmMeasure, an MdmAttribute has elements that are organized by its
MdmDimension. For example, the gender MdmAttribute has one element (with
“Female” or “Male” as its value) for each element of the MdmDimension called
mdmCustomersDim.

Typically, not all of the elements of an MdmDimension have meaningful mappings
to the values of a given MdmAttribute. For example, the gender MdmAttribute
applies only to the lowest level of mdmCustomersDim, because gender makes no
sense for higher levels such as cities or states. If an MdmAttribute does not apply
to some elements of an MdmDimension, then their MdmAttribute values are
null.

Some MdmAttribute objects provide a mapping that is one-to-many, rather than
one-to-one. Therefore, a given element in an MdmDimension might map to a whole
set of MdmAttribute elements. For example, the MdmAttribute that serves as the
ancestors attribute for an MdmHierarchy maps each MdmHierarchy element to its
set of ancestor MdmHierarchy elements.

Elements of an MdmAttribute
A given MdmAttribute is based on an attribute that was specified for a dimension
or a level by a database administrator using the OLAP Metadata APIs.

The following table lists the elements for an MdmAttribute called
mdmCustomersDimGender, which is based on the MdmDimension called
mdmCustomersDim. Note that the values of the MdmAttribute are null for the
Understanding OLAP API Metadata 2-23

Data Type and Type of MDM Metadata Objects
city, country, and region levels. There are meaningful values only for the customer
level, where each customer is represented by a number.

Data Type and Type of MDM Metadata Objects
All MdmSource objects have the following two basic characteristics:

■ Data type

■ Type

Data Type of MDM Metadata Objects
The concept of data type is a familiar one in computer languages and database
technology. It is common to categorize data into types such as integer, Boolean, and
string.

The OLAP API implements the concept of data type through the
FundamentalMetadataObject and FundamentalMetadataProvider classes.
Every data type recognized by the OLAP API is represented by a
FundamentalMetadataObject, and you obtain this object by calling a method
on a FundamentalMetadataProvider.

The following table lists the most familiar OLAP API data types. For each data type,
the table presents a description of the FundamentalMetadataObject that

Elements of
mdmCustomersDim

Elements of
mdmCustomersDimGender

.

Africa null

South Africa null

Cape Town null

5420 Female

11650 Female

17880 Male

24120 Female

67720 Male

73960 Male

.
2-24 Oracle9i OLAP Developer’s Guide to the OLAP API

Data Type and Type of MDM Metadata Objects
represents the data type and the name of the method in
FundamentalMetadataProvider that returns the object.

In addition to these familiar data types, the OLAP API includes two generalized
data types (which represent groups of the familiar data types) and two data types

OLAP API
Data Type

Description of the
FundamentalMetadataObject

Method in
FundamentalMetadataProvider

Boolean Represents the data type that
corresponds to the Java boolean
data type.

getBooleanDataType

Date Represents the data type that
corresponds to the Java Date class.

getDateDataType

Double Represents the data type that
corresponds to the Java double
data type.

getDoubleDataType

Float Represents the data type that
corresponds to the Java float data
type.

getFloatDataType

Integer Represents the data type that
corresponds to the Java int data
type.

getIntegerDataType

Short Represents the data type that
corresponds to the Java short data
type.

getShortDataType

String Represents the data type that
corresponds to the Java String
class.

getStringDataType
Understanding OLAP API Metadata 2-25

Data Type and Type of MDM Metadata Objects
that represent the absence of values. The following table lists these additional data
types.

When an MDM metadata object, such as an MdmMeasure, has a given data type,
this means that each one of its elements conforms to that data type. If the data type
is numeric, then the elements also conform to the generalized Number data type, as
well as to the specific data type (Double, Float, Integer, or Short). The elements of
any MDM metadata object conform to the Value data type, as well as to their more
specific data type, such as Integer or String.

If the elements of an object represent a mixture of several numeric and non-numeric
data types, then the data type is only Value. The object has no data type that is more
specific than that.

The MDM metadata objects for which data type is relevant are MdmSource objects,
such as MdmMeasure, MdmHierarchy, and MdmLevel. The typical data type of an
MdmMeasure is one of the numeric data types; the typical data type of an
MdmHierarchy or MdmLevel is String.

Getting the Data Type of an MdmSource
If you have obtained an MdmSource from the data store, and you want to find out
the data type of its elements, you call its getDataType method. This method
returns a FundamentalMetadataObject.

OLAP API
Data Type

Description of the
FundamentalMetadataObject

Method in
FundamentalMetadataProvider

Number Represents a general data type that
includes any or all of the following
OLAP API numeric data types:
Double, Float, Integer, and Short.

getNumberDataType

Value Represents a general data type that
includes any or all of the OLAP API
data types.

getValueDataType

Empty Represents missing data, for
example when an MdmSource has
no elements at all defined for it.

getEmptyDataType

Void Represents null data, for example
when an MdmSource has a single
element that has a null value.

getVoidDataType
2-26 Oracle9i OLAP Developer’s Guide to the OLAP API

Data Type and Type of MDM Metadata Objects
To find out which OLAP API data type is represented by the returned
FundamentalMetadataObject, you compare it to the
FundamentalMetadataObject for each OLAP API data type. That is, you
compare it to the return value of each of the data type methods in
FundamentalMetadataProvider.

The following sample method returns a constant that indicates the data type of the
MdmSource that is passed in as a parameter. Note that this code creates a
FundamentalMetadataProvider by calling a method on a DataProvider (dp).
Getting a DataProvider is described in Chapter 4, "Discovering the Available
Metadata". Also note that the constants referenced in this method are defined
elsewhere in the class to which the method belongs. The constants are not supplied
by the OLAP API.

Example 2–1 Getting the Data Type of an MdmSource

public int getDataType(MdmSource metaSource) {

 int theDataType = 0;
 FundamentalMetadataProvider fmp =
 dp.getFundamentalMetadataProvider();

 if (fmp.getBooleanDataType() == metaSource.getDataType())
 theDataType = BOOLEAN_TYPE;
 else if (fmp.getDateDataType() == metaSource.getDataType())
 theDataType = DATE_TYPE;
 else if (fmp.getDoubleDataType() == metaSource.getDataType())
 theDataType = DOUBLE_TYPE;
 else if (fmp.getFloatDataType() == metaSource.getDataType())
 theDataType = FLOAT_TYPE;
 else if (fmp.getIntegerDataType() == metaSource.getDataType())
 theDataType = INTEGER_TYPE;
 else if (fmp.getShortDataType() == metaSource.getDataType())
 theDataType = SHORT_TYPE;
 else if (fmp.getStringDataType() == metaSource.getDataType())
 theDataType = STRING_TYPE;
 else if (fmp.getNumberDataType() == metaSource.getDataType())
 theDataType = NUMBER_TYPE;
 else if (fmp.getValueDataType() == metaSource.getDataType())
 theDataType = VALUE_TYPE;

 return theDataType;
 }
Understanding OLAP API Metadata 2-27

Data Type and Type of MDM Metadata Objects
Type of MDM Metadata Objects
An MDM metadata object, such as an MdmSource, is a collection of elements. Its
type (as opposed to its data type) is another metadata object from which the given
metadata object draws its elements. In other words, the elements of a given
metadata object correspond to a subset of the elements in its type. There can be no
element in the metadata object that does not match an element of its type.

Consider the following example of a union MdmHierarchy called
mdmCustomersDim, which has the OLAP API data type of String.
mdmCustomersDim has a region (a level MdmHierarchy called
mdmCustomersDimGeogHier), which in turn has its own regions (MdmLevel
objects). In each case, the region represents a subset of elements. In the following
list, the regions are indented under the MdmHierarchy to which they belong.

mdmCustomersDim
 mdmCustomersDimGeogHier
 mdmGeogTotal
 mdmRegion
 mdmSubregion
 mdmCountry
 mdmState
 mdmCity
 mdmCustomer

Because of the hierarchical structure, mdmCountry (for example) draws its elements
from the elements of mdmCustomersDimGeogHier. That is, the set of elements for
mdmCountry corresponds to a subset of elements from
mdmCustomersDimGeogHier, and mdmCustomersDimGeogHier is the type of
mdmCountry.

Similarly, mdmCustomersDimGeogHier is a region of mdmCustomersDim.
Therefore, mdmCustomersDimGeogHier draws its elements from
mdmCustomersDim, which is its type.

However, mdmCustomersDim is not a region of any other object. It is the top of the
hierarchy. The pool of elements from which mdmCustomersDim draws its elements
is the entire set of possible String values. Therefore, the type of mdmCustomersDim
is the FundamentalMetadataObject that represents the OLAP API String data
type. In the case of mdmCustomersDim, the type and the data type are the same.
2-28 Oracle9i OLAP Developer’s Guide to the OLAP API

Data Type and Type of MDM Metadata Objects
The following list presents the types that are typical for the most common
MdmSource objects:

■ The type of an MdmLevel is the level MdmHierarchy to which it belongs.

■ The type of a level MdmHierarchy is the union MdmHierarchy to which it
belongs.

■ The type of a union MdmHierarchy is the FundamentalMetadataObject
that represents its OLAP API data type. Typically, this is the String data type.

■ The type of an MdmMeasure is the FundamentalMetadataObject that
represents its OLAP API data type. Typically, this is one of the OLAP API
numeric data types.

Getting the Type of an MdmSource
If you have obtained an MdmSource from the data store, and you want to find out
its type, you call its getType method. This method returns the object that is the
type of the MdmSource object.

For example, the following Java statement obtains the type of the MdmLevel called
mdmCountry.

Example 2–2 Getting the Type of an MdmSource

MetadataObject mdmCountryType = ((MdmSource) mdmCountry).getType();
Understanding OLAP API Metadata 2-29

Data Type and Type of MDM Metadata Objects
2-30 Oracle9i OLAP Developer’s Guide to the OLAP API

Connecting to a Data
3

Connecting to a Data Store

This chapter explains the procedure for connecting to a data store through the
OLAP API.

This chapter includes the following topics:

■ Overview of the Connection Process

■ Establishing a Connection

■ Getting an Existing Connection

■ Executing DML Commands Through the Connection

■ Closing a Connection
 Store 3-1

Overview of the Connection Process
Overview of the Connection Process
When an application accesses data through the OLAP API, it uses a connection
provided by the Oracle implementation of Java Database Connectivity (JDBC) from
Sun Microsystems. For information about using this JDBC implementation, see the
Oracle9i JDBC Developer’s Guide and Reference.

Connection Steps
The procedure for connecting involves loading an Oracle JDBC driver, getting a
connection through that driver, and creating two OLAP API objects that handle
transactions and data transfer.

These steps are described in the topic "Establishing a Connection" on page 3-2.

Prerequisites for Connecting
Before attempting to make an OLAP API connection to an Oracle database, ensure
that the following requirements are met:

■ The Oracle database instance is running and was installed with the OLAP
option.

■ Your Oracle database user ID has access to the relational schemas on which the
data store is based.

■ The Oracle client installation of the JDBC drivers is complete. For information
about installing JDBC drivers, see the Oracle9i JDBC Developer’s Guide and Reference.

■ The OLAP API jar files are on the application development computer and are
accessible to the application code. For information about setting up the OLAP
API jar files, see Appendix A, "Setting Up the Development Environment"

Establishing a Connection
To make a connection, perform the following steps:

1. Load the JDBC driver that you will use.

2. Get a Connection from the DriverManager.

3. Create a TransactionProvider.

4. Create a DataProvider.

These steps are explained in more detail in the rest of this topic.
3-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Establishing a Connection
Note that the TransactionProvider and DataProvider objects that you create
in these steps are the ones that you use throughout your work with the data store.
For example, when you create certain Source objects, you use methods on this
DataProvider object.

Step 1: Load the JDBC Driver
The following line of code loads a JDBC driver and registers it with the JDBC
DriverManager.

Example 3–1 Loading the JDBC Driver for a Connection

Class.forName("oracle.jdbc.driver.OracleDriver");

After the driver is loaded, you can use the DriverManager object to make a
connection. For more information about loading Oracle’s JDBC drivers, see the
Oracle9i JDBC Developer’s Guide and Reference.

Step 2: Get a Connection from the DriverManager
The following code gets a JDBC Connection object from the DriverManager.

Example 3–2 Getting a JDBC Connection

String url = "jdbc:oracle:thin:@lab1:1521:orcl";
String user = "hepburn";
String password = "tracey";
oracle.jdbc.OracleConnection conn = (oracle.jdbc.OracleConnection)
 java.sql.DriverManager.getConnection(url, user, password);

This example connects user hepburn with password tracey to a database with
SID (system identifier) orcl. The connection is made through TCP/IP listener port
1521 of host lab1. The connection uses the Oracle JDBC thin driver.

There are many ways to specify your connection characteristics using the
getConnection method. See the Oracle9i JDBC Developer’s Guide and Reference for
details.

After you have the Connection object, you can create the required OLAP API
objects, TransactionProvider and DataProvider.
Connecting to a Data Store 3-3

Getting an Existing Connection
Step 3: Create a TransactionProvider
TransactionProvider is an OLAP API interface. Therefore, in your code, you
use an instance of the concrete class called ExpressTransactionProvider. The
following line of code creates a TransactionProvider.

Example 3–3 Creating a TransactionProvider

ExpressTransactionProvider tp = new ExpressTransactionProvider();

A TransactionProvider is required for creating a DataProvider.

Step 4: Create a DataProvider
DataProvider is an OLAP API abstract class. Therefore, in your code, you use an
instance of the concrete subclass called ExpressDataProvider. The following
lines of code create and initialize a DataProvider.

Example 3–4 Creating a DataProvider

ExpressDataProvider dp = new ExpressDataProvider(conn, tp);
dp.initialize();

A DataProvider is required for creating a MetadataProvider, which is
described in Chapter 4, "Discovering the Available Metadata"

Getting an Existing Connection
If you need access to the JDBC Connection object after the connection has been
established, you can call the getConnection method on your DataProvider.
The following line of code calls the getConnection method on a DataProvider
called dp.

Example 3–5 Getting an Existing Connection

oracle.jdbc.OracleConnection currentConn = dp.getConnection();
3-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Closing a Connection
Executing DML Commands Through the Connection
Some applications depend on the run-time execution of Oracle OLAP data
manipulation language (DML) commands or programs. DML commands and
programs execute in an analytic workspace outside the context of MDM metadata,
which is intrinsic to the OLAP API. Therefore, such commands and programs do
not operate on MDM objects, such as MdmMeasure and MdmDimension. Instead,
they operate on DML objects, such as variable and dimension. The MDM and DML
contexts are related but distinct.

To execute DML commands or programs in an analytic workspace, create an OLAP
API SLPExecutor object, specifying the JDBC Connection object that you want
to use. Note that the data manipulation language is sometimes referred to as a
stored procedure language (SPL).

The following lines of code create and initialize an SPLExecutor object on a JDBC
Connection object called conn.

Example 3–6 Executing DML Commands

SPLExecutor dmlExec = new SPLExecutor(conn);
dmlExec.initialize();

To specify an analytic workspace in which you want to execute DML commands,
attach the workspace using the DML command called AW. For example, the
following command executes the AW command for attaching a workspace named
mysales.

string returnVal = dmlExec.execute(’aw attach mysales’);

For information about using the DML, see the Oracle9i OLAP Developer’s Guide to the
OLAP DML and the Oracle9i OLAP DML Reference help. For more information
about using an SPLExecutor, see the OLAP API Javadoc.

Closing a Connection
When you have completed your work with the data store, use the close method
on the JDBC Connection object. In the following sample code, the Connection
object is called conn.

Example 3–7 Closing a Connection

conn.close();
Connecting to a Data Store 3-5

Closing a Connection
If you are finished using the OLAP API, but you want to continue working in your
JDBC connection to the database, use the close method on your DataProvider
to release the OLAP API resources. In the following example code, the
DataProvider is called dp.

dp.close();
3-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Discovering the Available Met
4

Discovering the Available Metadata

This chapter explains the procedure for discovering the metadata in a data store
through the OLAP API.

This chapter includes the following topics:

■ Overview of the Procedure for Discovering Metadata

■ Creating an MdmMetadataProvider

■ Getting the Root MdmSchema

■ Getting the Contents of the Root MdmSchema

■ Getting the Characteristics of Metadata Objects

■ Getting the Source for a Metadata Object

■ Sample Code for Discovering Metadata
adata 4-1

Overview of the Procedure for Discovering Metadata
Overview of the Procedure for Discovering Metadata
The OLAP API provides access to a collection of Oracle data for which a database
administrator has created OLAP metadata using the OLAP Metadata APIs. This
collection of data is the data store for the application.

Potentially, the data store includes all of the measure folders that were created by
the database administrator using the OLAP Metadata APIs. However, the scope of
the data store that is visible when a given application is running depends on the
database privileges that apply to the user ID through which the connection was
made. A user sees all of the measure folders (as MdmSchema objects) that the
database administrator created, but the user sees the measures and dimensions that
are contained in those measure folders only if he or she has access rights to the
relational tables on which the measures and dimensions are based.

MDM Metadata
When the database administrator created the metadata, the OLAP Metadata APIs
created measures, dimensions, and other OLAP metadata objects. In the OLAP API,
these objects are accessed as multidimensional metadata (MDM) objects, as
described in Chapter 2, "Understanding OLAP API Metadata". The mapping
between the OLAP metadata objects and the MDM objects is automatically
performed by Oracle OLAP.

Purpose of Discovering the Metadata
The metadata objects in the data store help your application to make sense of the
data. They provide a way for you to find out what data is available, how it is
structured, and what its characteristics are.

Therefore, after connecting, your first step is to find out what metadata is available.
Armed with this knowledge, you can present choices to the end user about what
data should be selected or calculated and how it should be displayed.
4-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating an MdmMetadataProvider
Steps in Discovering the Metadata
Before investigating the metadata, your application must make a connection to
Oracle OLAP, as described in Chapter 3, "Connecting to a Data Store". Then, your
application performs the following steps:

1. Create an MdmMetadataProvider

2. Get the root MdmSchema from the MdmMetadataProvider

3. Get the contents of the root MdmSchema, which include MdmMeasure,
MdmDimension, MdmMeasureDimension, and MdmSchema objects. In
addition, get the contents of any subschemas.

4. Get the characteristics of each MdmMeasure and MdmDimension. For example,
for each MdmMeasure get its MdmDimension objects, and for each
MdmDimension find out whether it is a union MdmHierarchy, a level
MdmHierarchy, an MdmLevel, or an MdmListDimension.

The next four topics in this chapter describe these steps in detail.

Discovering Metadata and Making Queries
After you discover the metadata, you typically go on to create queries for selecting,
calculating, and otherwise manipulating the data. In order to work with data in
these ways, you must get the Source objects that Oracle OLAP has created to
represent the data for querying. These Source objects are referred to as primary
Source objects.

This chapter focuses on the initial step of discovering the available metadata, but it
also briefly mentions the step of getting a primary Source from a metadata object.
Subsequent chapters of this guide explain how you work with primary Source
objects and create queries based on them.

Creating an MdmMetadataProvider
An MdmMetadataProvider gives access to the metadata in a data store. It maps
OLAP metadata objects, such as measures, dimensions, and measure folders, to the
corresponding MDM objects, such as MdmMeasure, MdmDimension, and
MdmSchema.

Before you can create an MdmMetadataProvider, you must create a
DataProvider as described in Chapter 3, "Connecting to a Data Store".
Discovering the Available Metadata 4-3

Getting the Root MdmSchema
The following code creates an MdmMetadataProvider using a DataProvider
called dp.

Example 4–1 Creating an MdmMetadataProvider

MdmMetadataProvider mp = null;
mp = (MdmMetadataProvider) dp.getDefaultMetadataProvider();

Getting the Root MdmSchema
Getting the root MdmSchema is the first step in exploring the metadata in your data
store.

Function of the Root MdmSchema
The metadata objects that are accessible through a given MdmMetadataProvider
are organized in a tree-like structure, with the root MdmSchema at the top. Under
the root MdmSchema are MdmDimension objects and one or more MdmSchema
objects, which are referred to as subschemas. In addition, if there are any
MdmMeasure objects that do not belong to a subschema, they are included under
the root.

Subschemas have their own MdmMeasure and MdmDimension objects. Optionally,
they can have their own subschemas as well.

The root MdmSchema contains all the MdmDimension objects that are in the
subschemas. Therefore, a given MdmDimension typically appears twice in the tree.
It appears once under the root MdmSchema and again under the subschema. If an
MdmDimension does not belong to a subschema, it is listed only under the root.

The starting point for discovering the available metadata objects is the root
MdmSchema, which is the top of the tree. The following diagram illustrates an
MdmSchema that has two subschemas and four MdmDimension objects.
4-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Getting the Root MdmSchema
Figure 4–1 Root MdmSchema and Subschemas

Using the OLAP Metadata APIs, a database administrator arranges dimensions and
measures under one or more top-level measure folders. When Oracle OLAP maps
the measure folders to MdmSchema objects, it always creates the root MdmSchema
above the MdmSchema objects for the top-level measure folders. Therefore, even if
the database administrator creates only one measure folder, its corresponding
MdmSchema will be a subschema under the root.

For more information about MDM metadata objects and how they map to OLAP
metadata objects, see Chapter 2, "Understanding OLAP API Metadata".

Root MdmSchema

MdmDimension1

MdmDimension2

MdmDimension3

MdmSchema1

MdmMeasure2

MdmDimension1

MdmDimension2

MdmSchema2

MdmMeasure3

MdmDimension3

MdmDimension4

MdmDimension4

MdmMeasure1
Discovering the Available Metadata 4-5

Getting the Contents of the Root MdmSchema
Calling the getRootSchema Method
The following code gets the root MdmSchema for an MdmMetadataProvider
called mp.

Example 4–2 Getting the Root MdmSchema

MdmSchema root = mp.getRootSchema();

Getting the Contents of the Root MdmSchema
The root MdmSchema contains MdmDimension objects, MdmSchema objects, and
possibly MdmMeasure objects. In addition, the root MdmSchema has a measure
MdmDimension that lists all the MdmMeasure objects.

Getting the MdmDimension Objects in an MdmSchema
The following code gets a List of MdmDimension objects that are in the
MdmSchema called schema.

Example 4–3 Getting MdmDimension Objects

List dims = schema.getDimensions();

Getting the Subschemas in an MdmSchema
The following code gets a List of MdmSchema objects that are in the MdmSchema
called schema.

Example 4–4 Getting Subschemas

List subSchemas = schema.getSubSchemas();

Getting the Contents of Subschemas
For each MdmSchema that is under the root MdmSchema, you can call the
getMeasures, getDimensions, and getSubSchemas methods. The procedures
are the same as those for getting the contents of the root MdmSchema.

Getting the Measure MdmDimension and Its Contents
The following code gets the measure MdmDimension that is in the root
MdmSchema. Use this method only on the root MdmSchema. It makes no sense to use
4-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Getting the Characteristics of Metadata Objects
it on subschemas, because only the root MdmSchema has a measure
MdmDimension.

Example 4–5 Getting the MdmMeasureDimension and Its Contents

MdmMeasureDimension mdmMeasureDim = root.getMeasureDimension();

The following code prints the names of the MdmMeasure objects that are elements
of the measure MdmDimension.

MdmMeasureMemberType mdMemberType =
 (MdmMeasureMemberType) mdmMeasureDim.getMemberType();
List mdList = mdMemberType.getMeasures();
Iterator mdIter = mdList.iterator();
 while (mdIter.hasNext())
 System.out.println("************Contains Measure: " +
 ((MdmMeasure) mdIter.next()).getName());

Getting the Characteristics of Metadata Objects
Having discovered the list of MdmMeasure and MdmDimension objects, the next
step in metadata discovery involves finding out the characteristics of those objects.

Getting the MdmDimension Objects for an MdmMeasure
A primary characteristic of an MdmMeasure is that it has related MdmDimension
objects. The following code gets a List of MdmDimension objects for an
MdmMeasure called sales.

List dimsOfSales = mdmSalesAmount.getDimensions();

The getMeasureInfo method in the sample code provided later in this chapter
shows one way to iterate through the MdmDimension objects belonging to a given
MdmMeasure.

Getting the Related Objects for an MdmDimension
An MdmDimension has related MdmDimensionDefinition and
MdmDimensionMemberType objects, which you can obtain by calling its
getDefinition and getMemberType methods. If it is an MdmHierarchy, it also
has regions, which you can obtain by calling the getRegions method on its
MdmUnionDimensionDefinition.
Discovering the Available Metadata 4-7

Getting the Source for a Metadata Object
The following is an example of how you can get the level MdmHierarchy objects
for a union MdmHierarchy. The following code prints the names of the level
MdmHierarchy objects.

MdmUnionDimensionDefinition unionDef =
 (MdmUnionDimensionDefinition) mdmDimObj.getDefinition();
List hierarchies = unionDef.getRegions();
for (Iterator iterator = hierarchies.iterator();
 iterator.hasNext();)
 {
 MdmHierarchy hier = (MdmHierarchy) iterator.next();
 System.out.println("Hierarchy: " + hier.getName());
 }

The getDimInfo method in the sample code provided later in this chapter shows
one way to get the following metadata objects for a given MdmDimension:

■ Its MdmDimensionMemberType

■ Its MdmAttribute objects

■ Its concrete class and hierarchy type

■ Its parent, ancestors, and region attributes

■ Its MdmDimensionDefinition

■ Its regions. That is, if it is a union MdmHierarchy, the code obtains its
component MdmHierarchy objects. If it is a level MdmHierarchy, the code
obtains its component MdmLevel objects

■ Its default level MdmHierarchy, if it is a union MdmHierarchy.

Methods are also available for obtaining other MdmDimension characteristics. See
the OLAP API Javadoc for descriptions of all the methods on the MDM classes.

Getting the Source for a Metadata Object
A metadata object represents a set of data, but it does not provide the ability to
create queries on that data. Its function is informational, recording the existence,
structure, and characteristics of the data. It does not give access to the data values.

In order to access the data values for a given metadata object, an application gets
the Source object that represents its data. A Source that represents the data for a
metadata object is called a primary Source.
4-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
To get the primary Source for a metadata object, an application calls the
getSource method on that metadata object. For example, if an application needs
to display the sales figures for 1999, it must first use the getSource method on the
MdmMeasure called mdmSalesAmount.

Example 4–6 Getting a Primary Source for a Metadata Object

Source salesAmount = mdmSalesAmount.getSource();

An application can call the getSource method on any object that is an instance of
a concrete subclass of MdmSource. The following is a list of the concrete subclasses:

■ MdmHierarchy

■ MdmLevel

■ MdmListDimension

■ MdmAttribute

■ MdmMeasure

For more information about getting and working with primary Source objects, see
Chapter 5, "Introduction to Querying"

Sample Code for Discovering Metadata
The sample code that follows is a simple Java program called
SampleMetadataDiscoverer. The program discovers the metadata objects that
are under the root MdmSchema of any data store. The program’s output lists the
names and related objects for the MdmMeasure and MdmDimension objects in the
root MdmSchema and its subschemas.

After presenting the program code, this topic presents the output of the program
when it is run against a data store that consists of the Sales History relational
schema, which is provided with the Oracle installation. In the OLAP metadata, the
Sales History schema is represented as the SH_CAT measure folder. Through an
OLAP API connection, the SH_CAT measure folder maps to an MdmSchema that is
also called SH_CAT.

The SampleMetadataDiscoverer program includes one piece of code that is
specific to the SH_CAT MdmSchema. This code gets the primary Source for an
MdmDimension for which the return value of the getName method is
PRODUCTS_DIM.
Discovering the Available Metadata 4-9

Sample Code for Discovering Metadata
In most cases, an application will not search for a metadata object using its internal
name (such as PRODUCTS_DIM), and it will not use the System.out.println
method to produce output. However, this sample code uses these techniques
because they offer the advantage of simplicity.

Code for the SampleMetadataDiscoverer Program
To establish a connection, this program calls a hypothetical method called
connectOnLab1 on a hypothetical class called MyConnection. To close the
connection, the program calls a method called
MyConnection.closeConnection. The code for these methods is not shown
here, but the procedure for connecting is described in Chapter 3, "Connecting to a
Data Store".

Example 4–7 Discovering the Available Metadata

package mytestpackage;
import com.sun.java.util.collections.ArrayList;
import com.sun.java.util.collections.List;
import com.sun.java.util.collections.Iterator;

import oracle.express.mdm.*;
import oracle.olapi.metadata.MetadataObject;

import oracle.olapi.data.source.Source;
import oracle.express.olapi.data.full.ExpressDataProvider;

public class SampleMetadataDiscoverer {

 static final int TERSE = 0;
 static final int VERBOSE = 1;

 public SampleMetadataDiscoverer(){
 }

 public static void main(String[] args) {

 // Connect through JDBC to a database on Lab1
 // and get a DataProvider (see Chapter 3)
 ExpressDataProvider dp = MyConnection.connectOnLab1();
4-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
 // Create an MdmMetadataProvider
 MdmMetadataProvider mp = null;
 mp = (MdmMetadataProvider) dp.getDefaultMetadataProvider();

 // Get metadata info about the root MdmSchema and its subschemas
 MdmSchema root = null;
 try {
 root = mp.getRootSchema();
 System.out.println("***Root MdmSchema: " + root.getName());
 MdmDimension measureDim = root.getMeasureDimension();
 System.out.println("******Measure MdmDimension: " +
 measureDim.getName());
 getSchemaInfo(root, TERSE);
 } catch (Exception e) {
 System.out.println("***Exception encountered : " + e.toString());
 }

 // Make a Source object out of the PRODUCTS_DIM MdmDimension
 System.out.println("***Making a Source object for PRODUCTS_DIM");

 MdmDimension mdmProductDim = null;
 try {
 List rootDims = root.getDimensions();
 Iterator rootDimIter = rootDims.iterator();
 while (mdmProductDim == null && rootDimIter.hasNext()) {
 MdmDimension aDim = (MdmDimension) rootDimIter.next();
 if (aDim.getName().equals("PRODUCTS_DIM"))
 mdmProductDim = aDim;
 }
 Source product = mdmProductDim.getSource();
 System.out.println("******Made the Source");
 } catch (Exception e) {
 System.out.println("******Exception encountered : " + e.toString());
 }

 // Close the connection
 MyConnection.closeConnection(conn);
 }
Discovering the Available Metadata 4-11

Sample Code for Discovering Metadata
// ***

 // Method for getting info about an MdmSchema
 public static void getSchemaInfo(MdmSchema schema, int outputStyle) {

 System.out.println("***Schema: " + schema.getName());
 // Get the MdmSchema’s dimension info
 MdmDimension oneDim = null;
 try {
 List dims = schema.getDimensions();
 Iterator dimIter = dims.iterator();
 System.out.println(" ");
 System.out.println("**");
 System.out.println(" ");
 while (dimIter.hasNext()) {
 oneDim = (MdmDimension) dimIter.next();
 getDimInfo(oneDim, outputStyle);
 System.out.println(" ");
 System.out.println("**");
 System.out.println(" ");
 }
 } catch (Exception e) {
 System.out.println("******Exception encountered : " + e.toString());
 }

 // Get the MdmSchema’s measure info
 MdmMeasure oneMeasure = null;
 try {
 List measures = schema.getMeasures();
 Iterator measIter = measures.iterator();
 while (measIter.hasNext()) {
 oneMeasure = (MdmMeasure) measIter.next();
 getMeasureInfo(oneMeasure, outputStyle);
 System.out.println(" ");
 System.out.println(" ");
 }
 } catch (Exception e) {
 System.out.println("******Exception encountered : " + e.toString());
 }

 // Get the MdmSchema’s subschema info
 MdmSchema oneSchema = null;
 try {
 List subSchemas = schema.getSubSchemas();
 Iterator subSchemaIter = subSchemas.iterator();
4-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
 while (subSchemaIter.hasNext()) {
 oneSchema = (MdmSchema) subSchemaIter.next();
 getSchemaInfo(oneSchema, VERBOSE);
 }
 } catch (Exception e) {
 System.out.println("***Exception encountered : " + e.toString());
 }
 }

// ***

 // Method for getting info about an MdmDimension
 public static void getDimInfo(MdmDimension dim, int outputStyle) {

 System.out.println("******MdmDimension Name: " + dim.getName());
 System.out.println("*********Description: " + dim.getDescription());

 if (outputStyle == VERBOSE) {

 // Get MdmDimensionMemberType for the MdmDimension
 try {
 MdmDimensionMemberType dimMemberType = dim.getMemberType();
 if (dimMemberType instanceof MdmStandardMemberType)
 System.out.println("*********Member Type: MdmStandardMemberType");
 if (dimMemberType instanceof MdmTimeMemberType)
 System.out.println("*********Member Type: MdmTimeMemberType");
 if (dimMemberType instanceof MdmMeasureMemberType)
 System.out.println("*********Member Type: MdmMeasureMemberType");
 } catch (Exception e) {
 System.out.println("***Exception encountered : " + e.toString());
 }

 // Get attributes of the MdmDimension
 try {
 List attributes = dim.getAttributes();
 Iterator attrIter = attributes.iterator();
 while (attrIter.hasNext())
 System.out.println("*********Attribute: " +
 ((MdmAttribute) attrIter.next()).getName());
 } catch (Exception e) {
 System.out.println("***Exception encountered : " + e.toString());
 }
Discovering the Available Metadata 4-13

Sample Code for Discovering Metadata
 // Get concrete class and hierarchy type of the MdmDimension
 String kindOfDim = null;
 try {
 if (dim instanceof MdmListDimension) {
 kindOfDim = "ListDim";
 System.out.println("*********" + dim.getName() +
 " is an MdmListDimension");
 }
 else if (dim instanceof MdmHierarchy)
 switch(((MdmHierarchy) dim).getHierarchyType()) {
 case (MdmHierarchy.UNION_HIERARCHY):
 kindOfDim = "UnionHier";
 System.out.println("*********" + dim.getName() +
 " is a union MdmHierarchy");
 break;
 case (MdmHierarchy.LEVEL_HIERARCHY):
 kindOfDim = "LevelHier";
 System.out.println("*********" + dim.getName() +
 " is a level MdmHierarchy");
 break;
 case (MdmHierarchy.VALUE_HIERARCHY):
 kindOfDim = "ValueHier";
 System.out.println("*********" + dim.getName() +
 " is a value MdmHierarchy");
 break;
 }
 else {
 kindOfDim = "Level";
 System.out.println("*********" + dim.getName() + " is an MdmLevel");
 }
 } catch (Exception e) {
 System.out.println("***Exception encountered : " + e.toString());
 }

 // For level MdmHierarchy, get parent, ancestors, and region attributes
 if (kindOfDim.equals("LevelHier"))
 {
 System.out.println("*********Parent attribute: " +
 ((MdmHierarchicalDimension) dim).getParentRelation().getName());
 System.out.println("*********Ancestors attribute: " +
 ((MdmHierarchicalDimension) dim).getAncestorsRelation().getName());
 System.out.println("*********Region attribute: " +
 ((MdmUnionDimensionDefinition) dim.getDefinition())
 .getRegionAttribute().getName());
 }
4-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
 // Get the MdmDimensionDefinition for the MdmDimension
 MdmDimensionDefinition dimDef = dim.getDefinition();
 // For union or level MdmHierarchy, list the regions and default hierarchy
 if ((kindOfDim.equals("UnionHier")) || (kindOfDim.equals("LevelHier")))
 {
 try {
 System.out.println(" ");
 System.out.println("*********The following are the regions of " +
 dim.getName());
 List regions = ((MdmUnionDimensionDefinition)dimDef).getRegions();
 Iterator regIter = regions.iterator();
 while (regIter.hasNext()) {
 MdmDimension oneRegion = (MdmDimension) regIter.next();
 System.out.println("************" + oneRegion.getName());
 if (oneRegion.hasMdmTag(MdmMetadataProvider.DEFAULT_HIERARCHY_TAG))
 System.out.println("***************(The " + oneRegion.getName() +
 " region is the default MdmHierarchy)");
 }
 } catch (Exception e) {
 System.out.println("***Exception encountered : " + e.toString());
 }
 }

 // For union or level MdmHierarchy, get region info
 if ((kindOfDim.equals("UnionHier")) || (kindOfDim.equals("LevelHier")))
 {
 try {
 System.out.println(" ");
 System.out.println("*********Information about the regions of " +
 dim.getName() + ":");
 List regions = ((MdmUnionDimensionDefinition)dimDef).getRegions();
 Iterator regIter = regions.iterator();
 while (regIter.hasNext()) {
 MdmDimension oneRegion = (MdmDimension) regIter.next();
 getDimInfo(oneRegion, VERBOSE);
 }
 } catch (Exception e) {
 System.out.println("***Exception encountered : " + e.toString());
 }
 }
 }
 System.out.println(" ");
 }
Discovering the Available Metadata 4-15

Sample Code for Discovering Metadata
// ***

 // Method for getting info about an MdmMeasure
 public static void getMeasureInfo(MdmMeasure measure, int outputStyle) {
 System.out.println("******Measure: " + measure.getName());
 if (outputStyle == VERBOSE) {

 // Get the dimensions of the MdmMeasure
 try {
 List mDims = measure.getDimensions();
 Iterator mDimIter = mDims.iterator();
 while (mDimIter.hasNext())
 System.out.println("*********Dimension of the Measure: " +
 ((MdmDimension) mDimIter.next()).getName());
 } catch (Exception e) {
 System.out.println("******Exception encountered : " + e.toString());
 }
 }
 }
}

Output from the SampleMetadataDiscoverer Program
The output from the sample program consists of text lines produced by Java
statements such as the following one.

System.out.println("***Root MdmSchema: " + root.getName());

The code uses the getName method because its return value is brief. An alternative
would be to use the getDescription method, but the output would be more
verbose.

When the program is run on the Sales History schema, the output includes the
following items:

■ The name of the root MdmSchema, which is ROOT.

■ The name of the measure MdmDimension for the root MdmSchema. The name is
MEASUREDIMENSION.

■ The names and descriptions of the MdmDimension objects in the root
MdmSchema.
4-16 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
■ Names, descriptions, and additional information about the MdmDimension and
MdmMeasure objects in the SH_CAT MdmSchema.

Because the SH_CAT MdmSchema is the only subschema under the root
MdmSchema, its MdmDimension objects are identical to those in the root.

■ Two lines that indicate that the code got the primary Source for the
MdmDimension that has the name PRODUCTS_DIM.

Here is the output. In order to conserve space, some blank lines have been omitted.

***Root MdmSchema: ROOT
******Measure MdmDimension: MEASUREDIMENSION
***Schema: ROOT

**
******MdmDimension Name: CHANNELS_DIM
*********Description: Channel Values

**
******MdmDimension Name: CUSTOMERS_DIM
*********Description: Customer Dimension Values

**
******MdmDimension Name: PRODUCTS_DIM
*********Description: Product Dimension Values

**
******MdmDimension Name: PROMOTIONS_DIM
*********Description: Promotion Values

**
******MdmDimension Name: TIMES_DIM
*********Description: Time Dimension Values

**

***Subschema: SH_CAT
***Schema: SH_CAT

**

******MdmDimension Name: CHANNELS_DIM
*********Description: Channel Values
*********Member Type: MdmStandardMemberType
*********Attribute: Long Description
Discovering the Available Metadata 4-17

Sample Code for Discovering Metadata
*********Attribute: Short Description
*********CHANNELS_DIM is a union MdmHierarchy

*********The following are the regions of CHANNELS_DIM
************CHANNEL_ROLLUP
***************(The CHANNEL_ROLLUP region is the default MdmHierarchy)

*********Information about the regions of CHANNELS_DIM:
******MdmDimension Name: CHANNEL_ROLLUP
*********Description: Standard Channels
*********Member Type: MdmStandardMemberType
*********CHANNEL_ROLLUP is a level MdmHierarchy
*********Parent attribute: PARENTRELATION
*********Ancestors attribute: ANCESTORSRELATION
*********Region attribute: LEVELRELATION

*********The following are the regions of CHANNEL_ROLLUP
************CHANNEL_TOTAL
************CHANNEL_CLASS
************CHANNEL

*********Information about the regions of CHANNEL_ROLLUP:
******MdmDimension Name: CHANNEL_TOTAL
*********Description: Channel Total for the standard hierarchy
*********Member Type: MdmStandardMemberType
*********CHANNEL_TOTAL is an MdmLevel

******MdmDimension Name: CHANNEL_CLASS
*********Description: Channel Class level of the standard hierarchy
*********Member Type: MdmStandardMemberType
*********CHANNEL_CLASS is an MdmLevel

******MdmDimension Name: CHANNEL
*********Description: Channel level of the standard hierarchy
*********Member Type: MdmStandardMemberType
*********CHANNEL is an MdmLevel

**

******MdmDimension Name: CUSTOMERS_DIM
*********Description: Customer Dimension Values
*********Member Type: MdmStandardMemberType
*********Attribute: Long Description
*********Attribute: Short Description
*********Attribute: First Name
4-18 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
*********Attribute: Last Name
*********Attribute: Gender
*********Attribute: Marital Status
*********Attribute: Year of Birth
*********Attribute: Income Level
*********Attribute: Credit Limit
*********Attribute: Street Address
*********Attribute: Postal Code
*********Attribute: Phone Number
*********Attribute: E-mail
*********CUSTOMERS_DIM is a union MdmHierarchy

*********The following are the regions of CUSTOMERS_DIM
************GEOG_ROLLUP
***************(The GEOG_ROLLUP region is the default MdmHierarchy)
************CUST_ROLLUP

*********Information about the regions of CUSTOMERS_DIM:
******MdmDimension Name: GEOG_ROLLUP
*********Description: Standard
*********Member Type: MdmStandardMemberType
*********GEOG_ROLLUP is a level MdmHierarchy
*********Parent attribute: PARENTRELATION
*********Ancestors attribute: ANCESTORSRELATION
*********Region attribute: LEVELRELATION

*********The following are the regions of GEOG_ROLLUP
************GEOG_TOTAL
************REGION
************SUBREGION
************COUNTRY
************STATE
************CITY
************CUSTOMER

*********Information about the regions of GEOG_ROLLUP:
******MdmDimension Name: GEOG_TOTAL
*********Description: Geography Total for the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********GEOG_TOTAL is an MdmLevel

******MdmDimension Name: REGION
*********Description: Region level of the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********REGION is an MdmLevel
Discovering the Available Metadata 4-19

Sample Code for Discovering Metadata

******MdmDimension Name: SUBREGION
*********Description: Subregion level of the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********SUBREGION is an MdmLevel

******MdmDimension Name: COUNTRY
*********Description: Country level of the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********COUNTRY is an MdmLevel

******MdmDimension Name: STATE
*********Description: State level of the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********STATE is an MdmLevel

******MdmDimension Name: CITY
*********Description: City level of the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********CITY is an MdmLevel

******MdmDimension Name: CUSTOMER
*********Description: Customer level of standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********CUSTOMER is an MdmLevel

******MdmDimension Name: CUST_ROLLUP
*********Description: Standard
*********Member Type: MdmStandardMemberType
*********CUST_ROLLUP is a level MdmHierarchy
*********Parent attribute: PARENTRELATION
*********Ancestors attribute: ANCESTORSRELATION
*********Region attribute: LEVELRELATION

*********The following are the regions of CUST_ROLLUP
************CUST_TOTAL
************STATE
************CITY
************CUSTOMER

4-20 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
*********Information about the regions of CUST_ROLLUP:
******MdmDimension Name: CUST_TOTAL
*********Description: Customer Total for the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********CUST_TOTAL is an MdmLevel

******MdmDimension Name: STATE
*********Description: State level of the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********STATE is an MdmLevel

******MdmDimension Name: CITY
*********Description: City level of the standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********CITY is an MdmLevel

******MdmDimension Name: CUSTOMER
*********Description: Customer level of standard CUSTOMER hierarchy
*********Member Type: MdmStandardMemberType
*********CUSTOMER is an MdmLevel

**

******MdmDimension Name: PRODUCTS_DIM
*********Description: Product Dimension Values
*********Member Type: MdmStandardMemberType
*********Attribute: Long Description
*********Attribute: Short Description
*********PRODUCTS_DIM is a union MdmHierarchy

*********The following are the regions of PRODUCTS_DIM
************PROD_ROLLUP
***************(The PROD_ROLLUP region is the default MdmHierarchy)

*********Information about the regions of PRODUCTS_DIM:
******MdmDimension Name: PROD_ROLLUP
*********Description: Standard
*********Member Type: MdmStandardMemberType
*********PROD_ROLLUP is a level MdmHierarchy
*********Parent attribute: PARENTRELATION
*********Ancestors attribute: ANCESTORSRELATION
*********Region attribute: LEVELRELATION
Discovering the Available Metadata 4-21

Sample Code for Discovering Metadata

*********The following are the regions of PROD_ROLLUP
************PROD_TOTAL
************CATEGORY
************SUBCATEGORY
************PRODUCT

*********Information about the regions of PROD_ROLLUP:
******MdmDimension Name: PROD_TOTAL
*********Description: Product Total for the standard PRODUCT hierarchy
*********Member Type: MdmStandardMemberType
*********PROD_TOTAL is an MdmLevel

******MdmDimension Name: CATEGORY
*********Description: Category level of standard PRODUCT hierarchy
*********Member Type: MdmStandardMemberType
*********CATEGORY is an MdmLevel

******MdmDimension Name: SUBCATEGORY
*********Description: Sub-category level of standard PRODUCT hierarchy
*********Member Type: MdmStandardMemberType
*********SUBCATEGORY is an MdmLevel

******MdmDimension Name: PRODUCT
*********Description: Product level of standard PRODUCT hierarchy
*********Member Type: MdmStandardMemberType
*********PRODUCT is an MdmLevel

**

******MdmDimension Name: PROMOTIONS_DIM
*********Description: Promotion Values
*********Member Type: MdmStandardMemberType
*********Attribute: Long Description
*********Attribute: Short Description
*********PROMOTIONS_DIM is a union MdmHierarchy

*********The following are the regions of PROMOTIONS_DIM
************PROMO_ROLLUP
***************(The PROMO_ROLLUP region is the default MdmHierarchy)

4-22 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
*********Information about the regions of PROMOTIONS_DIM:
******MdmDimension Name: PROMO_ROLLUP
*********Description: Standard Promotions
*********Member Type: MdmStandardMemberType
*********PROMO_ROLLUP is a level MdmHierarchy
*********Parent attribute: PARENTRELATION
*********Ancestors attribute: ANCESTORSRELATION
*********Region attribute: LEVELRELATION

*********The following are the regions of PROMO_ROLLUP
************PROMO_TOTAL
************CATEGORY
************SUBCATEGORY
************PROMO

*********Information about the regions of PROMO_ROLLUP:
******MdmDimension Name: PROMO_TOTAL
*********Description: Promotions Total for the standard PROMOTION hierarchy
*********Member Type: MdmStandardMemberType
*********PROMO_TOTAL is an MdmLevel

******MdmDimension Name: CATEGORY
*********Description: Category level of the standard PROMOTION hierarchy
*********Member Type: MdmStandardMemberType
*********CATEGORY is an MdmLevel

******MdmDimension Name: SUBCATEGORY
*********Description: Sub-category level of the standard PROMOTION hierarchy
*********Member Type: MdmStandardMemberType
*********SUBCATEGORY is an MdmLevel

******MdmDimension Name: PROMO
*********Description: Promotion level of the standard PROMOTION hierarchy
*********Member Type: MdmStandardMemberType
*********PROMO is an MdmLevel

Discovering the Available Metadata 4-23

Sample Code for Discovering Metadata
**

******MdmDimension Name: TIMES_DIM
*********Description: Time Dimension Values
*********Member Type: MdmStandardMemberType
*********Attribute: Long Description
*********Attribute: Short Description
*********Attribute: Period Number
*********Attribute: Period Number of Days
*********Attribute: Period End Date
*********TIMES_DIM is a union MdmHierarchy

*********The following are the regions of TIMES_DIM
************CAL_ROLLUP
***************(The CAL_ROLLUP region is the default MdmHierarchy)
************FIS_ROLLUP

*********Information about the regions of TIMES_DIM:
******MdmDimension Name: CAL_ROLLUP
*********Description: Calendar
*********Member Type: MdmStandardMemberType
*********CAL_ROLLUP is a level MdmHierarchy
*********Parent attribute: PARENTRELATION
*********Ancestors attribute: ANCESTORSRELATION
*********Region attribute: LEVELRELATION

*********The following are the regions of CAL_ROLLUP
************YEAR
************QUARTER
************MONTH
************DAY

*********Information about the regions of CAL_ROLLUP:
******MdmDimension Name: YEAR
*********Description: Year level of the Calendar hierarchy
*********Member Type: MdmStandardMemberType
*********YEAR is an MdmLevel

******MdmDimension Name: QUARTER
*********Description: Quarter level of the Calendar hierarchy
*********Member Type: MdmStandardMemberType
*********QUARTER is an MdmLevel

4-24 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata
******MdmDimension Name: MONTH
*********Description: Month level of the Calendar hierarchy
*********Member Type: MdmStandardMemberType
*********MONTH is an MdmLevel

******MdmDimension Name: DAY
*********Description: Day level of the Calendar hierarchy
*********Member Type: MdmStandardMemberType
*********DAY is an MdmLevel

******MdmDimension Name: FIS_ROLLUP
*********Description: Fiscal
*********Member Type: MdmStandardMemberType
*********FIS_ROLLUP is a level MdmHierarchy
*********Parent attribute: PARENTRELATION
*********Ancestors attribute: ANCESTORSRELATION
*********Region attribute: LEVELRELATION

*********The following are the regions of FIS_ROLLUP
************FIS_YEAR
************FIS_QUARTER
************FIS_MONTH
************FIS_WEEK
************DAY

*********Information about the regions of FIS_ROLLUP:
******MdmDimension Name: FIS_YEAR
*********Description: Year level of the Fiscal hierarchy
*********Member Type: MdmStandardMemberType
*********FIS_YEAR is an MdmLevel

******MdmDimension Name: FIS_QUARTER
*********Description: Quarter level of the Fiscal hierarchy
*********Member Type: MdmStandardMemberType
*********FIS_QUARTER is an MdmLevel

******MdmDimension Name: FIS_MONTH
*********Description: Month level of the Fiscal hierarchy
*********Member Type: MdmStandardMemberType
*********FIS_MONTH is an MdmLevel

Discovering the Available Metadata 4-25

Sample Code for Discovering Metadata
******MdmDimension Name: FIS_WEEK
*********Description: Week level of the Fiscal hierarchy
*********Member Type: MdmStandardMemberType
*********FIS_WEEK is an MdmLevel

******MdmDimension Name: DAY
*********Description: Day level of the Calendar hierarchy
*********Member Type: MdmStandardMemberType
*********DAY is an MdmLevel

**

******Measure: SALES_QUANTITY
*********Dimension of the Measure: CHANNELS_DIM
*********Dimension of the Measure: CUSTOMERS_DIM
*********Dimension of the Measure: PRODUCTS_DIM
*********Dimension of the Measure: PROMOTIONS_DIM
*********Dimension of the Measure: TIMES_DIM

******Measure: SALES_AMOUNT
*********Dimension of the Measure: CHANNELS_DIM
*********Dimension of the Measure: CUSTOMERS_DIM
*********Dimension of the Measure: PRODUCTS_DIM
*********Dimension of the Measure: PROMOTIONS_DIM
*********Dimension of the Measure: TIMES_DIM

******Measure: UNIT_PRICE
*********Dimension of the Measure: PRODUCTS_DIM
*********Dimension of the Measure: TIMES_DIM

******Measure: UNIT_COST
*********Dimension of the Measure: PRODUCTS_DIM
*********Dimension of the Measure: TIMES_DIM

***Making a Source object for PRODUCTS_DIM
******Made the Source
4-26 Oracle9i OLAP Developer’s Guide to the OLAP API

Introduction to Que
5

Introduction to Querying

This chapter introduces Source objects which are specifications for sets of data that
represent the result of queries. Chapter 6, "Making Queries Using Source Methods"
provides task-oriented discussions of using Source methods to make queries.
Using Template objects to make queries is discussed in Chapter 10, "Creating
Dynamic Queries".

This chapter includes the following topics:

■ Characteristics of Source Objects

■ Creating Source Objects
rying 5-1

Characteristics of Source Objects
Characteristics of Source Objects
The OLAP API data model is unique. It is not exactly like the relational model or
multidimensional model. In the OLAP API, specifications for sets of data that
represent the result of queries are represented by instances of the Source class or
its subclasses outlined in Table 5–1. Each Source has a paired
SourceDefinition that defines the operations that created the query.

Source objects are immutable. You cannot change a Source object once it has been
created. When you want to present a Source object as changeable to your users,
use a Source object defined by a Template object. Template objects have state
and can be modified at any time. Using Template objects to make queries is
discussed in Chapter 10, "Creating Dynamic Queries".

Source objects are only specifications for a data set; they do not themselves
actually have data. Even so, it helps to think of them as the result set they define.
From this perspective, a Source knows its type and structure (inputs and outputs).

Source Type
All Source objects have type. In the OLAP API, the type of a Source is another
Source from which the Source obtains its values. You can retrieve the type of a
Source using the getType method.

The OLAP API provides a FundamentalMetadataObject to represent each of
the fundamental Java data type, the Java String object, and the Java Date object.
These objects are known as the OLAP API data types. The OLAP API data types of
Source objects and their relationship to each other are shown in Table 5–2. You can
create a Source object that represents an OLAP API data type by following the
process outlined in "Creating Source Objects that Represent OLAP API Data Types"
on page 5-9. You can retrieve the OLAP API type of a Source using the
getDataType method.

Table 5–1 Subclasses of the Source Class

Subclass Java Type of Values OLAP API Data Type

BooleanSource boolean values Boolean

DateSource Java Date objects Date

NumberSource double, float, int, or short
values, or some combination of
these numerical values

Double, Float, Integer, Short, or
Number

StringSource Java String objects String
5-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Characteristics of Source Objects
The operation that creates a new Source often determines the type of that Source.
For example, assume that you have a Source object named customer whose
values are the unique numerical identifier for each customer. The OLAP API type of
customer is Integer. Assume, additionally, that you use the select method on
customer to create another Source object named customerSelection. The
OLAP API type of customerSelection is customer.

Source Structure: Inputs and Outputs
All Source objects (except for an empty Source) have values. In some cases, the
values of a Source are unique data items that are meaningful unto themselves. If
you are familiar with relational concepts, you can conceptualize this type of
Source as a table with a single column -- the column that contains the values of the
Source. If you are more familiar with multidimensional concepts, you can
conceptualize this type of Source as a dimension.

In other cases, the values of a Source are not unique data items and, thus, are not
meaningful unto themselves. Instead the values of the Source are meaningful only
in relationship to the values of another Source. In this case, the structure of the
Source is determined by other Source objects called inputs and outputs. Whether

Table 5–2 OLAP API Data Types of Source Objects

OLAP API Data Type Descriptions

Value A Source object with any OLAP API data type.

 Boolean A Source object whose values have the Java boolean data
type.

Date A Source object whose values are Java Date objects.

Number A Source object with any of OLAP API numerical data type.

Double A Source object whose values have the Java double data type.

 Float A Source object whose values have the Java float data type.

Integer A Source object whose values have the Java int data type.

 Short A Source object whose values have the Java short data type.

 String A Source object whose values are Java String objects.

Empty A Source object that does not have any values defined for it.

Null A Source object that has a single null value.
Introduction to Querying 5-3

Characteristics of Source Objects
one of these other Source objects is an input or an output is determined by
whether or not values have been specified for it:

■ Outputs. When values have been specified, the other Source object is called an
output. The values of a Source are identified by the set of its output values.
You can retrieve the outputs of a Source using the getOutputs method.

■ Inputs. When values have not been specified, the other Source object is called
an input. A Source that has inputs is an indeterminable result set. If you are
familiar with relational concepts, you think of an input as a column that acts as
a key to the values of a Source, but that is in the GROUP BY list of a SQL
statement. If you are more familiar with multidimensional concepts, you can
conceptualize an input that is a dimension of a Source, but that is not in its
dimension list. You can retrieve the inputs of a Source using the getInputs
method.

The inputs and outputs of a Source determine how the Source is processed by
Oracle OLAP. For example, when a Cursor is opened on a Source, Oracle OLAP
loops over its outputs in order to produce the data, but it (arbitrarily) qualifies away
any of its inputs. In order to retrieve one or more values of a Source with inputs,
you must specify the values for its inputs that will uniquely identify the desired
values of the Source. The order in which you specify values for the inputs
determines the structure and processing of a Source. The input that you specify
values for first becomes the slowest-varying output. For more information on
specifying values for inputs, see "Selecting Based on Output Values" on page 6-3
and "Effect of Input-Output Order on Source Structure" on page 6-6.

Additionally, when a Source has both inputs and outputs, the values of the
Source are identified by the set of its output value and each set of possible output
values typically identifies a number of values (that is, a subset of data). Some
Source methods work on these subsets of data. For example, Oracle OLAP loops
over the outputs of a Source when it processes any methods that select values
based on their positions (the first value of each subset has a position of 1) or any
aggregation methods like average and total. For an in-depth discussions of the
positional and aggregation methods, see "Finding the Position of Values" on
page 6-6 and "Working with Aggregation Methods" on page 6-24,
5-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating Source Objects
Creating Source Objects
Making queries using the OLAP API is a process that involves creating a number of
different Source objects. This process is outlined below:

1. Create Source objects that correspond to metadata objects as described in
"Getting Source Objects From Metadata Objects" on page 5-2. These Source
objects, sometimes called primary Source objects, have a structure that is
similar to the metadata objects from which they are created.

2. Begin your querying by calling methods on the primary Source objects. The
methods of the Source class and its subclasses return new Source objects
sometimes called derived Source objects. Continue your analysis by deriving
additional Source objects until you have the results you want to retrieve the
data into your program. Derived Source object and the methods that create
them are introduced in "Creating New Source Objects Using Source Methods"
on page 5-7 and documented in detail in the OLAP API Javadoc. Task-oriented
discussions of how to use Source methods to make selections and perform
typical analytic operations are provided in Chapter 6, "Making Queries Using
Source Methods".

As part of the query process, you might also create simple nondimensional
Source object to use as operands when making selections and calculations and
Source objects that represent OLAP API data types. How to create these types
of Source objects is discussed in more detail in"Creating Simple
Nondimensional Source Objects" and "Creating Source Objects that Represent
OLAP API Data Types" on page 5-9.

3. When you want to retrieve the data set represented by a Source object, create a
Cursor for it as described in Chapter 9, "Retrieving Query Results".

Getting Source Objects From Metadata Objects
To get a Source object from a metadata object, take the following steps:

1. Create the metadata data object for which you want to create a corresponding
Source object as described in Chapter 2.

2. Use the getSource method to create a Source object from the metadata
object.
Introduction to Querying 5-5

Creating Source Objects
Creating a Source from MdmDimension, MdmHierarchy, or MdmLevel Objects
A Source that you create by using the calling the getSource method on a
MdmDimension, an MdmHierarchy, or an MdmLevel does not have any inputs or
outputs. It is a specification for a simple list of values.

In "Level MdmHierarchy for Calendar Year" on page 2-13, we created an
MdmHierarchy named mdmTimesDimCalHier. To create a Source named
timesDimCalHier from mdmTimesDimCalHier, you use code shown in
Example 5–1.

Example 5–1 Getting a Source for an MdmHierarchy

Source timesDimCalHier = mdmTimesDimCalHier.getSource;

The Source named timesDimCalHier consists of a simple non-indexed list of
1529 values: 4 values for year, 16 values for quarters, 48 values for months, and 1461
values for days.

timesDimCalHier values

1998

1998-Q1

1998-01

01-JAN-98

02-JAN-98

03-JAN-98

...

1998-Q2

1998-04

01-APR-98

. . .

1999

...
5-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating Source Objects
Creating a Source from MdmMeasure or MdmAttribute Objects
A Source that you create by calling the getSource method on a MdmMeasure or
an MdmAttribute is a specification for a data set that has one or more inputs. Each
of these inputs is a primary Source that was created from a MdmDimension. Thus,
the specification for a set of data represented by a Source that you create from an
MdmMeasure or an MdmAttribute is incomplete. Consequently, you cannot create
a Cursor on these Source objects to retrieve their values into the application. To
retrieve the values of a Source created from a MdmMeasure or an MdmAttribute,
you must derive a new Source from it by specifying values for the values of the
Source objects that act as its dimensions as described in "Selecting Based on
Output Values" on page 6-3.

In "MdmMeasure with two MdmDimension objects" on page 2-21, we created an
MdmMeasure named mdmUnitCost. To create a Source named unitCost from
mdmUnitCost, you use code shown in Example 5–2.

Example 5–2 Getting a Source for an MdmMeasure

Source unitCost = mdmUnitCost.getSource;

Since mdmUnitCost has mdmProductsDim and mdmTimesDim as its
MdmDimension objects, unitCost has two inputs (productsDim and
timesDim). In order to retrieve one or more values of unitCost, you must specify
the values for its inputs (productsDim and for timesDim) that will uniquely
identify the values of unitCost. For information on specifying values for inputs,
see "Selecting Based on Output Values" on page 6-3.

Creating New Source Objects Using Source Methods
Most OLAP queries derive new Source objects from existing Source objects using
the methods in the Source class.

Table 5–1 outlines the most important Source methods in the OLAP API.
Introduction to Querying 5-7

Creating Source Objects
The OLAP API provides various other methods that you can use instead of the
methods listed in Table 5–3, " The Major Source Methods". These methods include
variations on the join method, as well as methods such as appendValue, at,
cumulativeInterval, first, ge, interval, selectValues, and
sortAscending. All of these methods are documented in the OLAP API Javadoc.
For task-oriented discussions on using these methods to analyze your data, see
Chapter 6, "Making Queries Using Source Methods".

Creating Simple Nondimensional Source Objects
You create simple nondimensional Source objects which are not based on metadata
objects or other Source objects that you can use as operands by using the
createConstantSource, createListSource, and createRangeSource
methods on the DataProvider class. These Source objects are sometimes referred
to as constant, list, and range Source objects.

Assume that you have an object named myDataProvider that represents the
DataProvider used by your application and that, for computational purposes,

Table 5–3 The Major Source Methods

Method Description

join The single most important Source creation method in the OLAP
API. The join method creates a new Source by combining the
values of the base Source and another Source (called the
joined Source) and filtering this set of data using a third
Source (called the comparison Source) in the specified manner.
Using an optional parameter, you can also use the join method
to add the joined Source as n output to the new Source.

alias Creates a new Source object that is the same as the base Source object,
but that has the base Source as its type.

distinct Creates a new Source object that is the same as the base Source object,
but that has all duplicate rows (tuples) removed.

position Creates a new Source object with the same structure as the base
Source and whose values are the position of the values of the base
Source.

value Creates a new Source object that has the values of the base Source
and that has the base Source as an input.
5-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating Source Objects
you want a Source with a single value of 4. To create this Source you issue the
code shown in Example 5–3

Example 5–3 Creating a Constant Source

NumberSource myConstantFour = myDataProvider.createConstantSource(4);

Creating Source Objects that Represent OLAP API Data Types
You can retrieve the objects that represent the OLAP API data types using methods
on the FundamentalMetadataProvider. Each of these methods returns a
FundamentalMetadataObject. The OLAP API data types and the methods you
use to retrieve them are shown in Table 5–4.

Table 5–4 Methods that Retrieve Objects that Represent OLAP API Data Types

OLAP API Data Type Method that Retrieves This Data Type

Value getValueDataType

Boolean getBooleanDataType

Date getDateDataType

Number getNumberDataType

Double getDoubleDataType

Float getFloatDataType

Int getIntegerDataType

Short getShortDataType

String getStringDataType

Empty getEmptyDataType

To retrieve an empty Source, use the
DataProvider.getEmptySource method.

Null getVoidDataType

To retrieve a null Source, use the
DataProvider.getVoidSource method.
Introduction to Querying 5-9

Creating Source Objects
To create a Source object that represents an OLAP API data type, take the
following steps:

1. Get the FundamentalMetadataProvider by using the
getFundamentalMetadataProvider method on the DataProvider class.

2. Create the FundamentalMetadataObject object that represents the OLAP
API data type by using the appropriate method on the
FundamentalMetadataProvider class.

3. Create a Source from the objects returned in Step 1 by using the
FundamentalMetadataObject.getSource method.

Example 5–4 creates a Source object called olapBooleanDataType that
represents the OLAP API Boolean data type. You can use olapBooleanDataType
to check to see if the OLAP API data type of any other Source is Boolean.

Example 5–4 Creating a Source for the OLAP API Boolean Data Type

FundamentalMetadataObject myFundamentalMetadataProvider =
myDataProvider.getFundamentalMetadataProvider();

FundamentalMetadataObject olapBooleanFundObj =
myFundamentalMetadataProvider.getBooleanType();

Source olapBooleanDataType = olapBooleanFundObj.getSource();
5-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Making Queries Using Source Me
6

Making Queries Using Source Methods

Many queries are made by calling a Source method on a Source object to create
new Source objects. Source methods are introduced in "Creating New Source
Objects Using Source Methods" on page 5-7 and documented in detail in the OLAP
API Javadoc. This chapter discusses how to make queries using these methods.

This chapter includes the following topics:

■ Selecting Based on Source Value

■ Selecting Based on Output Values

■ Selecting Values Based on Rank

■ Selecting Values Based on Hierarchical Position

■ Creating a Source that is a Self-Relation

■ Performing Numerical Analysis

■ Manipulating String Values
thods 6-1

Selecting Based on Source Value
Selecting Based on Source Value
You can create a new Source from an existing Source by selecting only certain
values of the base Source. Typically, you use one of the following methods to select
based on the values of the base values:

Source.select(BooleanSource), Source.selectValue(Source)
Source.selectValues(Source)
Source.selectValues(Source[])
BooleanSource.selectValue(boolean)
BooleanSource.selectValues(boolean[])
NumberSource.selectValue(double)
NumberSource.selectValue(int)
NumberSource.selectValue(float)
NumberSource.selectValue(short)
NumberSource.selectValues(double[])
NumberSource.selectValues(float[])
NumberSource.selectValues(int[])
NumberSource.selectValues(short[])
StringSource.selectValue(String)
StringSource.selectValues(String[])

You can also select values using the join method using the syntax shown below.

Source Source::join (Source joined,
Source comparison,
Source.COMPARISON_RULE_SELECT,
boolean visible);

Assume that you have a primary Source objects named timesDim that you
created from an MdmDimension object named mdmTimesDim and whose values are
the calendar values. To select only the those values for 1996, you can issue the code
shown in Example 6–1

Example 6–1 Selecting Based on Source Values

Source timesSel = timesDim.selectValue("1996");
6-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Based on Output Values
Selecting Based on Output Values
If you want to create a Cursor on a Source object, it cannot have any inputs. Since
any Source created from an MdmMeasure or an MdmAttribute has inputs, the
need to specify values for inputs is so universal that the OLAP API has a special
join method to support it

Specifying values for the inputs of a Source is called changing inputs to outputs. In
this sense, moving a Source from the list of inputs returned by the getInputs
method to the list of outputs returned by getOutputs is similar to moving a
column out of the GROUP BY list in SQL.

Using the join Method to Change Inputs to Outputs
To specify values for the input of a Source, thereby changing an input to an
output, use the following join method where the original Source is the Source
object that has the input that you want to become an output and the joined Source
is the input you want to change.

Source newSource = base.join (Source joined);

This is a shortcut for the following join method.

Source newSource = base.join (joined, emptySource, Source.COMPARISON_RULE_REMOVE, true);

Note that the comparison Source is the empty Source that has no values.
Consequently, even though the COMPARISON_RULE_REMOVE constant is specified,
no values are removed as a result of the comparison. Also, because the visible
flag is set to true, the joined Source becomes an output of the new Source.

Additionally, since many of the methods of Source class and its subclasses are
methods that implicitly call the join method, some of these methods also change
inputs to outputs.

Effect of Input-Output Order on Source Structure
The structure of a Source is determined by the order in which you turn the inputs
of the Source into outputs. For a Source that has outputs, the first output that was
created is the fastest-varying output; the last output that was created is the
slowest-varying output.

When you string two join methods together in a single statement, the first join
(reading left to right) is processed first. Consequently, when creating a single
statement containing several join methods, make sure that the input that you want
Making Queries Using Source Methods 6-3

Selecting Based on Output Values
to be the fastest-varying of the new Source is the joined Source in the first join
in the statement.

Assume that you have a primary Source named unitCost that you created from
a MdmMeasure object named mdmUnitCost. The Source named unitCost has
inputs of timesDim and productsDim, and no outputs.The timesDim and
productsDim Source objects do not have any inputs or outputs. The order in
which you turn the inputs of unitCost into outputs determines the structure of a
Source on which you can create a Cursor. Example 6–2 shows the results when
you join first to timesDim. Example 6–3 shows the results when you join first to
productsDim.

Changing Inputs to Outputs with timesDim as the First Output Created
Assume also that you issue the code shown in Example 6–2 to turn the inputs of the
primary Source named unitCost into outputs.

Example 6–2 Changing Inputs to Outputs with timesDim as the First Output Created

Source newSource = unitCost.join(timesDim).join(productsDim);

This code strings two join methods together. Because
unitCost.join(timesDim) is processed first, the output values for timesDim
are the first output values specified. You can also say that timesDim is the first
output defined for the new Source. After the first join is processed, the set of data
represented by the resulting unnamed Source has the structure depicted below.

After the second join is processed, the set of data represented by newSource
consists of the names and the values of both of its outputs (that is, timesDim and
productsDim). Since timesDim was the first output for which values were

timesDim (output1) values of unitCost

1998 4,000

500

31-DEC-01 9

500
6-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Based on Output Values
specified, it is the fastest-varying output and the new Source has the structure
depicted below.

Changing Inputs to Outputs with productsDim as the First Output Created
Assume that you issue the code in Example 6–3 to turn the inputs of unitCost into
outputs.

Example 6–3 Changing Inputs to Outputs with productsDim as the First Output
Created

Source newSource = unitCost.join(productsDim).join(timesDim);

This code shown in Example 6–3 strings two join methods together. Because
unitCost.join(productsDim) is processed first, productsDim is the first
output defined for the new Source. Consequently, productsDim is the
fastest-varying output and the new Source has the structure depicted below.

productsDim (output2) timesDim (output1) values of unitCost

Boys 1998 4,000

Boys 31-DEC-01 10

49780 1998 500

49780 31-DEC-01 9

timesDim (output2) productsDim (output1) values of unitCost

1998 Boys 4,000

1998 49780 500

31-DEC-01 Boys 10

31-DEC-01 48780 9
Making Queries Using Source Methods 6-5

Selecting Values Based on Rank
Selecting Based on Output Values and Source Values: Example
Assume that you have three primary Source objects named productsDim,
promotionsDim, channelsDim, and timesDim, that you got from
MdmDimension objects and that you have a primary Source object named sales
that you got from an MdmMeasure object. The productsDim, promotionsDim,
channelsDim, and timesDim objects do not have any outputs. The sales object
has productsDim, promotionsDim, channelsDim, and timesDim as inputs.

To create a new Source named bigSeller whose values are all of the products
that sold more than $10,000,000 in 1996, you can issue the code shown in
Example 6–4.

Example 6–4 Selecting Based on Output Values and Source Values

Source promotionSel = promotionsDim.selectValue("Promo total");
Source channelSel = channelsDim.selectValue("Channel total");
Source timeSel = timesDim.selectValue("1996");
Source bigSellers = productsDim.select(sales.gt(10000000)).
 join(promotionSel).join(timeSel).join(channelSel);

Selecting Values Based on Rank
When a Source is sorted according to some attribute (or attributes), then the
position of the values of the Source represents a kind of ranking — the so-called
unique ranking. There are many other types of rankings that are not unique and
that are called variant rankings.

Finding the Position of Values
You can also use the methods described in Table 6–1 to find values based on their
position in a Source or to find the position of values with the specified value or
values. In the OLAP API, position is a one-based value. As described in "Finding
the Positions of Values When There are no Inputs or Outputs" on page 6-8, when a
Source has no inputs, position works against the entire set of Source values and
only one value has a position of one. As described in "Finding the Positions of
Values When There Are Outputs and Inputs" on page 6-8, when a Source has
6-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Rank
inputs, position works against the subsets of Source values identified by each
unique set of output values and the first value in each subset has a position of one.

Table 6–1 Methods for Finding Values Based on Position

Method Description

position() Creates a new Source with the type of Integer, the
base Source as an input, and with values that are
the one-based position of the values of the base
Source. If the base Source is sorted according to
some attribute (or attributes), then the position
represents a kind of ranking - the so called unique
ranking

at(pos) Creates a new Source that has the same structure as the
base Source but that only has the value that is at the
specified position of the base Source. There are two
versions of this method. One version allows you specify
the position using a Source object; in the other, you
specify position using an int value.

first() Creates a new Source that has the same structure as the
base Source but that only has the value that is at
position 1 of the base Source.

last() Creates a new Source that has the same structure as the
base Source but that only has the value that is at the last
position of the base Source.

positionOfValue(value) Creates a new Source that has the same structure as the
base Source but that whose values are the positions of
the specified value of the base Source. There are two
versions of this method. One version allows you specify
the value using a Source; in the other, you specify value
using a String.

positionOfValues(values) Creates a new Source that has the same structure as the
base Source but whose values are the positions of the
specified values of the base Source. There are two
versions of this method. One version allows you specify
the value using a Source; in the other, you specify value
using an array of String objects.
Making Queries Using Source Methods 6-7

Selecting Values Based on Rank
Finding the Positions of Values When There are no Inputs or Outputs
Assume that there is a Source named products (shown below) that has no inputs
or outputs and whose values are the unique identifiers of products.

To create a new Source named productsPosition hose values are the positions
of the values of products, issue the code shown in Example 6–5.

Example 6–5 Finding the Position of Values When There are no Inputs or Outputs

Source productsPosition = products.position();

A tabular representation of productsPosition showing the position of the
values in products is shown below. Note that the position() method is one
based.

Finding the Positions of Values When There Are Outputs and Inputs
Assume that there is a Source named unitsSoldByCountry (shown below) that
has an output of products, an input of countries, and whose values are the total
number of units for each product sold for each country.

values of products

395

49780

values of products position of values

395 1

49780 2

products (output) values of unitsSoldByCountry

395 500

800

49780 10000

50
6-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Rank
To create a new Source named positionUnitsSoldByCountry whose values
are the positions of the values of unitsSoldByCountry, issue the code in
Example 6–6.

Example 6–6 Finding the Position of Values When there are Outputs and Inputs

Source positionUnitsSoldByCountry = unitsSoldByCountry.position();

A tabular representation of positionUnitsSoldbyCountry showing the
position of values on unitsSoldByCountry is shown below.

Values Ranked in Ascending or Descending Order
One of the simplest kinds of ranking is to sort the values of a Source in ascending
or descending order.

Example 6–7 creates a new Source named sortedTuples whose values are the
same as the Source named base in sorted ascending order. Example 6–8 ranks the
values of the Source named base in descending order.

Example 6–7 Ranking Values in Ascending Order

Source sortedTuples = base.sortAscending();

Example 6–8 Ranking Values in Descending Order

Source sortedTuples = base.sortDescending();

Values Ranked in the Same or the Opposite Order as the Values of Another Source
You can rank the values of a Source by sorting them in the same or the opposite
order of the values of another Source.

products (output)
values of
positionUnitsSoldbyCountry

395 1

2

49780 1

2

Making Queries Using Source Methods 6-9

Selecting Values Based on Rank
Example 6–9 creates a new ranks the values of a Source named base in the same
order as the Source named sortValue. Example 6–10 the values of a Source
named base in the opposite order as the Source named sortValue.

Example 6–9 Ranking Values in the Same Order as Another Source

Source sortedTuples = base.sortAscending(Source sortValue);

Example 6–10 Ranking Values in the Opposite Order as the Values of Another Source

Source sortedTuples = base.sortDescending(Source sortValue);

Minimum Ranking
Minimum ranking differs from unique ranking (position) in the way it deals with
ties (values in the Source that share the same value for the attribute). All ties are
given the same rank, which is the minimum possible.

Example 6–11 ranks values in different ways where the Source (named base)
whose values you want to rank has two inputs named input1 and input2.

Example 6–11 Minimum Ranking

Source sortedTuples = base.join(input1).sortDescending(input2);
Source equivalentRankedTuples =
 sortedTuples.join(input2, input2);
NumberSource minRank = sortedTuples.
 positionOfValues(equivalentRankedTuples).minimum();

Maximum Ranking
Maximum ranking differs from unique ranking (position) in the way it deals with
ties (values in the Source that share the same value for the attribute). All ties are
given the same rank, which is the maximum possible rank.

Example 6–12 ranks values in different ways where the Source (named base)
whose values you want to rank has two inputs named input1 and input2.

Example 6–12 Maximum Ranking

Source sortedTuples = base.join(input1).sortDescending(input2);
Source equivalentRankedTuples =
 sortedTuples.join(input2, input2);
NumberSource maxRank = sortedTuples.positionOfValues
 (equivalentRankedTuples).maximum();
6-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Rank
Average Ranking
Average ranking differs from unique ranking in the way it deals with ties (values in
the Source that share the same value for the attribute). All ties are given the same
rank, which is equal to the average unique rank for the tied values.

Example 6–13 code ranks values in different ways where the Source (named base)
whose values you want to rank has two inputs named input1 and input2.

Example 6–13 Average Ranking

Source sortedTuples = base.join(input1).sortDescending(input2;
Source equivalentRankedTuples =
 sortedTuples.join(input2, input2);
NumberSource averageRank = sortedTuples.positionOfValues
 (equivalentRankedTuples).average();

Packed Ranking
Packed ranking, also called dense ranking, is distinguished from minimum ranking by the
fact that the ranks are packed into consecutive integers.

Example 6–14 ranks values in different ways where the Source (named base)
whose values you want to rank has two inputs named input1 and input2.

Example 6–14 Packed Ranking

Source tuples = base.join(output1);
Source firstEquivalentTuple = tuples.join(input2, input2.first();
Source packedRank = firstEquivalentTuple.join(tuples).
 sortDescending(input2).positionOfValues(base.value().
 join(time.value());

Percentile Ranking
Assume that you want to use the following formula to calculate the percentile of an
attribute A for a Source S with N values.

Percentile(x) = number of values
(for which the A differs from A(x))
that come before x in the ordering * 100 / N

The percentile, then, is equivalent to the minimum rank -1 * 100 / N.
Making Queries Using Source Methods 6-11

Selecting Values Based on Hierarchical Position
Example 6–15 ranks values in different ways where the Source (named base)
whose values you want to rank has two inputs named input1 and input2.

Example 6–15 Percentile Ranking

Source sortedTuples = base.join(input1).sortDescending(input2);
Source equivalentRankedTuples =
 sortedTuples.join(input2, input2);
NumberSource minRank = sortedTuples.

positionOfValues(equivalentRankedTuples).minimum();
NumberSource percentile = minRank.minus(1).times(100).

div(sortedTuples.count());

nTile Ranking
nTile ranking for a given n is defined by dividing the ordered Source of size count
into n buckets, where the bucket with rank k is of size. The ntile rank is equivalent
to the formula ceiling*((uniqueRank*n)/count).

Example 6–16 code ranks values in different ways where the Source (named base)
whose values you want to rank has two inputs named input1 and input2.

Example 6–16 nTile Ranking

NumberSource n = ...;
Source sortedTuples = base.join(input1).sortDescending(input2);
NumberSource uniqueRank = sortedTuple.

positionOfValues(base.value().join(input1.value());
NumberSource ntile = uniqueRank.times(n).

div(sortedTuples.count()).ceiling();

Selecting Values Based on Hierarchical Position
In order to select values based on their hierarchical position you need to navigate
the hierarchy. To navigate within a hierarchy you need to create two primary Source
objects: a primary Source that corresponds to the hierarchy, and a primary Source
that represents the parent-child relationships within this hierarchy.
6-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Hierarchical Position
Creating a Primary Source that Represents a Default Hierarchy
To create a Source that represents a default hierarchy, you take the following steps:

1. Retrieve the default hierarchy of the MdmDimension by taking the following
steps:

a. Check to see if the MdmDimension is a union dimension by checking to see
if it has an MdmUnionDimensionDefinition.

b. If the MdmDimension has an MdmUnionDimensionDefinition, then
check to see if it has a regions that are MdmHierarchy objects.

c. If the MdmDimension has regions that are MdmHierarchy objects, select
the MdmHierarchy that is its default hierarchy.

2. Make the default hierarchy a Source object, by calling the getSource method
on it.

The getMyDefaultHierarchy retrieves the default hierarchy of an
MdmDimension is shown below. This method calls the getMyRegions method
that retrieves the regions of an MdmDimension which, in turn, calls the
getMyMdmUnionDimensionDefinition method that checks to see if the
MdmDimension is a union dimension.

Example 6–17 Retrieving a Default Hierarchy

// method that gets all of the Regions of an MdmDimension
private MdmHierarchy getMyDefaultHierarchy(MdmDimension mdmDim) {
 List hierarchies = getMyRegions(mdmDim);
 if (hierarchies == null)
 return null;
 for (Iterator iterator = hierarchies.iterator(); iterator.hasNext();) {
 MdmHierarchy hier = (MdmHierarchy) iterator.next();
 if (hier.hasMdmTag(MdmMetadataProvider.DEFAULT_HIERARCHY_TAG))
 return hier;
 }
 return null;
 }

Making Queries Using Source Methods 6-13

Selecting Values Based on Hierarchical Position
// method that gets all of the Regions of an MdmDimension
private List getMyRegions(MdmDimension mdmDimension) {
 MdmUnionDimensionDefinition unionDimDef =
 getMyMdmUnionDimensionDefinition (mdmDimension);
 if (unionDimDef != null)
 return unionDimDef.getMyRegions();
 return null;
 }

// method that checks to see if MdmDimension is a UnionDimension
private MdmUnionDimensionDefinition getMyMdmUnionDimensionDefinition(
MdmDimension
 mdmDimension) {
 MdmDimensionDefinition dimDef = mdmDimension.getDefinition();
 if((dimDef == null) || (!(dimDef instanceof MdmUnionDimensionDefinition)))
 return null;
 return (MdmUnionDimensionDefinition) dimDef;
 return null;
 }

Creating a Primary Source for the Parent-Child Relationship
If an MdmHierarchy is a level hierarchy, it’s values are in parent-child relationship
to each other. To create a Source object that represents the parent-child
relationships within a hierarchy, you take the following steps:

1. Create an MdmAttribute that represents the parent-child relationships by
using the getParentRelation method on the MdmHierarchy.

2. Create a Source from the MdmAttribute created in step 1 by using the
getSource method.

Creating Source Objects for Other Relationships
A feature of the OLAP API representation of a relation, such as a parent-child
relation, is that it is directional. A Source object that represents a parent-child
relation maps the children to the parent, but not the parents to the children. By
contrast, in SQL a table that represent the relationship is non-directional. The basic
reason is that the OLAP API, unlike SQL, uses the structure of Source objects to
automatically determine how they join. Since in the OLAP API relations are
directional, if you want a relation to be in the opposite direction, you need to invert
it.
6-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Hierarchical Position
Assume that there is a Source named parentChild on a hierarchy named
levelHierarchy. To create Source objects that represent other relationships, you
join these two Source objects in different ways. In other words, as shown in
Example 6–18, Example 6–19, and Example 6–20, you can create new Source
objects that represent the children, siblings, and grandparents in the hierarchy by
using the join method on the Source that represents the parentChild relation. You
can also drill down a hierarchy as shown in "Drilling Down a Hierarchy: Example"
on page 6-15.

Example 6–18 Selecting the Children

Source childParent = levelHierarchy.join(parentChild,
 levelHierarchy.value());

Example 6–19 Selecting Siblings

Source siblingParent = levelHierarchy.join(parentChild, parent);

Example 6–20 Selecting Grandparents

Source grandParent = parentChild.join(levelHierarchy, parentChild);

Drilling Down a Hierarchy: Example
Assume that there is an MdmDimension object for which you have created a
Source named productsDim. Assume also that this MdmDimension object has a
default hierarchy for which you have created an MdMHierarchy called
prodStdHierObj and a Source called prodHeir. Example 6–21 drills down the
"Trousers - Women" division of the hierarchy.

Example 6–21 Drilling Down a Hierarchy

// Get the parent relation from the hierarchy
MdmAttribute prodHierParentObj = prodStdHierObj.getParentRelation();
StringSource prodHierParent = prodHierParentObj.getSource();
// Select children of Trousers - Women
// - Reverse the parent relation to get a children relation
Source prodHierChildren = prodHier.join(prodHierParent, prodHier.value());
// - Note the join is hidden because we only want the children of
// - Trousers - Women, and not Trousers - Women itself
Source trousersChildren = prodHierChildren.join(prodHier,
 context.getDataProvider().createConstantSource("Trousers - Women"), false);
Making Queries Using Source Methods 6-15

Creating a Source that is a Self-Relation
// Select Shirts - Boys, Trousers - Women, and Shorts - Men
Source prodHierSel = prodHier.selectValues(new String[]
 {"Shirts - Boys","Trousers - Women","Shorts - Men"});
// Insert the children of Trousers - Women after Trousers - Women
// (which is 2nd value)
Source drilledProdHierSel = prodHierSel.appendValues(trousersChildren);
// This selection has the effect of sorting the result in hierarchical order.
Source result = prodHier.selectValues(drilledProdHierSel);

Creating a Source that is a Self-Relation
Suppose we want to do a region-to-region comparison in some way. Specifically,
suppose we want to create a data view in which the regions appear on both the
rows and the columns. In the OLAP API you use the alias() and the value()
methods to do this. The alias() method creates a new Source that mirrors
exactly the original Source in terms of its data, its inputs, and its outputs. The only
difference is that the original Source becomes the type of the alias Source. The
value() method creates a new Source that has the original Source as both its
type and as an input.

Assume that there would naturally be an input-output match between input A of
the original Source (called base) and some output B of the joined Source in the
join shown below.

Source result = base.join(joined, comparison);

To avoid this input-output match, and hence keep A as an input of the result, use
the code shown in Example 6–22.

Assume that we have a Source named region that does not have any inputs or
outputs and whose values are the names of geographical regions. Assume also that
we want to create a data view in which the regions appear on both the rows and the
columns. For each cell in this table we want to show the percentage difference
between the areas (in square miles) of the regions. In other words, we want to create
6-16 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating a Source that is a Self-Relation
a Source named regionComparison that has two inputs -- both of them the
Source named regions. Example 6–23 shows how you do this.

Example 6–22 Procedure for Creating a Self-Relation

//Create an alias Source named B2 for a Source named B;
Source B2 = B.alias();
//Create a variant of the original called base2
//We know that input A will match to B
Source base2 = base.join(B, B2.value());
//Now join base2 and joined
//We know that input B2 will not match to B in joined
Source preResult = base2.join(joined, comparison);
//Finally, join to the B2 and regain the input A
Source result = preResult.join(B2, A.value());

Example 6–23 Creating a Source that is a Self-Relation

//Create an alias for region that is for the row
Source rowRegion = region.alias();

//Create an alias for region that is for the column
Source columnRegion = region.alias();

//Create rowRegionArea which has an input of rowRegion,
// an output of area,
// and values whose values are the same as those of region
Source rowRegionArea = area.join(rowRegion.value());

//Create columnRegionArea which has an input of columnRegion,
// an output of area,
// and values whose values are the same as those of region
Source columnRegionArea = area.join(columnRegion.value());

//Compute the values of the cells
Source areaComparison = rowRegionArea.div(columnRegionArea).times(100);

//Create a new Source with outputs rather than inputs
Source regionComparison = areaComparison.join(rowRegion.join(columnRegion));

The first two lines of code create two new Source objects that are aliases for the
Source named region. These Source objects are called rowRegion and
columnRegion.
Making Queries Using Source Methods 6-17

Performing Numerical Analysis
The next two lines of code create Source objects, named rowRegionArea and
columnRegionArea, that represent the areas of rowRegion and columnRegion
respectively. To create rowRegionArea, we join area which has the input of
region to rowRegion.value() which has an input of rowRegion and the same
values as region. The rowRegionArea Source has an input of rowRegion, an
output of area, and values whose values are the same as those of region. To
create columnRegionArea, we join area which has the input of region to
columnRegion.value() which has an input of columnRegion and the same
values as region. The Source named columnRegionArea has an input of
columnRegion, an output of area, and values that are the same as those of
region. These join calls have the effect of replacing the region input with
rowRegion or columnRegion, which, since they both have the names as regions
as data, makes no real difference to the value of area.

The next line of code performs the needed computation. Because rowRegionArea
has rowRegion as an input and columnRegionArea has columnRegion as an
area, the new Source named areaComparison has two inputs, rowRegion and
columnRegion, both of whose values are the names of regions. What we have
done is to effectively create a Source object that has duplicate inputs.

The final step of changing inputs to outputs is easy. We merely join
areaComparison to its inputs (rowRegion and columnRegion).

Performing Numerical Analysis
The NumberSource class and its subclasses define methods that are
numeric-specific versions of various Source methods that you can use to append,
insert, select, and remove numeric values. The NumberSource class and its
subclasses also have methods that you can use to perform simple numerical
operations such as subtraction and division, make numerical comparisons, perform
standard numerical functions such as finding the absolute value of numbers, and
aggregate values by summing values. You can also create your own functions to
perform numerical analysis that is unique to your program.
6-18 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis
Performing Numerical Operations
Using the OLAP API you perform basic numeric operations using NumberSource
methods such as minus. There are separate versions of each of these methods that
you can use to specify a literal double, float, int, or short value. There is also a
version of each of these method that takes a NumberSource as an argument.

The OLAP API methods that you use to perform basic numeric operations include
those outlined in Table 6–2.

Table 6–2 OLAP API Methods that Perform Basic Numeric Operations

Method Description

div(rhs) Creates a new NumberSource that has the same structure as the base
NumberSource but whose values are the values of the base
NumberSource divided by the specified value.

intpart() Creates a new NumberSource that has the same structure as the base
NumberSource but whose values are the integer portion of the values of
the base NumberSource.

minus(rhs) Creates a new NumberSource that has the same structure as the base
NumberSource but whose values are the values of the base
NumberSource minus the specified value.

negate() Creates a new NumberSource that has the same structure as the base
NumberSource but whose values are the values of the base
NumberSource negated.

plus(rhs) Creates a new NumberSource that has the same structure as the base
NumberSource but whose values are the values of the base
NumberSource plus the specified value.

rem(rhs) Creates a new NumberSource that has the same structure as the base
NumberSource but whose values are the remainders of the values of the
base NumberSource when they are divided by the specified value.

times (rhs) Creates a new NumberSource that has the same structure as the base
NumberSource but whose values are the values of the base
NumberSource multiplied by the specified value.
Making Queries Using Source Methods 6-19

Performing Numerical Analysis
Subtracting the Same Value From all Values: Example
Assume, as shown below. that there is a NumberSource named unit_Cost that
has outputs of productsDim and timesDim and a type of Integer.

Now assume that you want to subtract 10% of the sales from each value of
unit_Cost to find the adjusted income for each product as shown in which
creates a new Source named percentAjustment.

Example 6–24 Subtracting the Same Value from all Values

NumberSource percentAdjustment = unit_Cost.minus(unit_Cost.times(.10));

The new NumberSource, named percentAdjustment, has the following
structure and values.

productsDim timesDim unit_Cost

Boys 1998 4000

Boys 31-DEC-01 10

49780 1998 500

49780 31-DEC-01 9

productsDim timesDim percentAdjustment

Boys 1998 3600

Boys 31-DEC-01 9

49780 1998 450

49780

49780 31-DEC-01 8
6-20 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis
Subtracting the Values of one NumberSource from Another: Example
Assume that you have the NumberSource named unitCost described in the
previous example and that you also have the NumberSource named
unitManufacturingCost shown below.

Now assume that you want to calculate the non-manufacturing for each product. To
do this you need to subtract the manufacturing costs from the unit costs. To do this
you use the following code which creates a new Source named
nonManufacturingCost by performing the operation on unit_Cost.

Example 6–25 Subtracting the Values of one NumberSource from Another

NumberSource nonManufacturingCost = unitCost.minus(unitManufacturingCost);

nonManufacturingCost has the structure and values shown below.

For a more complete explanation of these methods, see OLAP API Javadoc.

productsDim timesDim unit_Cost values

Boys 1998 600

Boys 31-DEC-01 3

49780 1998 250

49780 31-DEC-01 2

productsDim timesDim values

Boys 1998 3400

Boys 31-DEC-01 7

49780 1998 250

49780 31-DEC-01 7
Making Queries Using Source Methods 6-21

Performing Numerical Analysis
Making Numerical Comparisons
The NumberSource class has a number of methods make numerical comparisons.
These methods compare each value in a NumberSource to a specified value. These
methods return a BooleanSource that has the same structure as the original
NumberSource and that has an value that is true when the comparison for a given
value of the original NumberSource is true, or false when the comparison is false.
There are separate versions of each of these methods that you can use to specify a
literal double, float, int, or short value.

The numerical comparison methods provided with the OLAP API include those
listed in Table 6–3. For a more complete explanation of these methods, see the
OLAP API Javadoc.

Table 6–3 Numerical Comparison Methods

Method Description

eq Creates a new BooleanSource, with the same outputs and inputs as the base
NumberSource, and with a value of true for each value of the
NumberSource that is equal to the specified value and a value of false for
each value of the NumberSource that is not.

ge Creates a new BooleanSource, with the same outputs and inputs as the base
NumberSource, and with a value of true for each value of the
NumberSource that is greater than or equal to the specified value and a value
of false for each value of the NumberSource that is not.

gt Creates a new BooleanSource, with the same outputs and inputs as the base
NumberSource, and with a value of true for each value of the
NumberSource that is larger than the specified value and a value of false for
each value of the NumberSource that is not.

le Creates a new BooleanSource, with the same outputs and inputs as the base
NumberSource, and with a value of true for each value of the
NumberSource that is lesser than or equal to the specified value and a value of
false for each value of the NumberSource that is not.

lt Creates a new BooleanSource, with the same outputs and inputs as the base
NumberSource, and with a value of true for each value of the
NumberSource that is less than the specified value and a value of false for
each value of the NumberSource that is not.

ne Creates a new BooleanSource, with the same outputs and inputs as the base
NumberSource, and with a value of true for each value of the
NumberSource that is not equal to the specified value and a value of false
for each value of the NumberSource that is equal.
6-22 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis
Working with Standard Numerical Functions
The OLAP API has many methods that represent standard numerical functions.
These methods include those listed in Table 6–4. You can also write your own
functions as described in "Creating Your own Numerical Functions" on page 6-27.

When you use these functions with a NumberSource, they return a new
NumberSource that has the same structure as the original NumberSource and
whose values are the values of the original NumberSource modified according to
the function. For example, the abs() method returns a new NumberSource each
of whose values has the absolute value of the corresponding value in the original
NumberSource.

Table 6–4 Methods that Represent Standard Numerical Functions

Method Description

abs() Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are the absolute value of
each value of the base NumberSource.

arccos() Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are the angle value (in
radians) of the value (interpreted as a cosine) of each value of the
NumberSource.

arcsin() Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are the angle value (in
radians) of the value (interpreted as a sine) of each value of the
NumberSource.

arctan() Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are the angle value (in
radians) of the value (interpreted as a tangent) of each value of the
NumberSource.

cos() Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are the cosine of the value
(interpreted as an angle value in radians) of each value of the
NumberSource.

cosh() Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are the hyperbolic cosine of
the value (interpreted as an angle value in radians) of each value of
the NumberSource

log() Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are the natural logarithm of
each value of the NumberSource.
Making Queries Using Source Methods 6-23

Performing Numerical Analysis
Working with Aggregation Methods
Standard numerical methods like stdev() work on each value in a
NumberSource. An aggregation method is a method like total() that uses the
values in a series of Source values to perform its calculations. The way that Oracle
OLAP processes an aggregation function varies depending on whether or not the
base NumberSource has inputs:

■ When the base NumberSource does not have any inputs, an aggregation function
creates a new NumberSource, without any outputs or inputs, with a single value that is
calculated using all of the values in the base NumberSource. (See "Calculating the Sum
When a Source Has only Outputs: Example" on page 6-25 for an example.)

■ When the base NumberSource has inputs, each set of output values identifies a
subset of values (tuples). In this case, an aggregation method works on each
subset of data. The aggregation function creates a new NumberSource, without the
same outputs as the base NumberSource, with one value for each set of output values.
These values are calculated using all of values in the base NumberSource identified by
that set of output values. (See "Calculating the Sum When a Source Has only Outputs:
Example" on page 6-25 for an example.)

pow(rhs) Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are each value of the
NumberSource raised to the specified value.

round(multiple) Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are each value of the
NumberSource rounded to the nearest multiple of the specified
value.

sin() Creates a new NumberSource, with the same outputs and inputs as
the base NumberSource, whose values are the sine of the value
(interpreted as an angle) of each value of the NumberSource.

Table 6–4 (Cont.) Methods that Represent Standard Numerical Functions

Method Description
6-24 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis
The numerical aggregation methods provided by the OLAP API include the
methods in Table 6–5. You can also write your own aggregation functions as
described in "Creating Your own Numerical Functions" on page 6-27.

There are two different versions of each of the numerical aggregation methods. One
version excludes all null values when making its calculations. The other version
allows you to specify whether or not you want null values included in the
calculation.

For more information on how OLAP API methods determine the position of an
value and therefore how they determine what values to use when calculating the
values of aggregation methods, see Finding the Position of Values on page 6-6.

Calculating the Sum When a Source Has only Outputs: Example
Assume that you have the Source named unitsSoldByCountry that has two
outputs (products and countries) and whose values are the total number of
units for each product sold for each country.

Table 6–5 Aggregation Methods

Method Description When the NumberSource Does Not Have Inputs

average Creates a new NumberSource, without any outputs or inputs, whose
value is the average of the values of a NumberSource.

maximum Creates a new NumberSource, without any outputs or inputs, whose
value is the largest value of a NumberSource.

minimum Creates a new NumberSource, without any output or inputs, whose value
is the smallest value of a NumberSource.

total Creates a new NumberSource, without any outputs or inputs, whose
value is the sum of the values of a NumberSource.

products (output2) countries (output1) values of unitsSoldByCountry

395 Australia 1300

395 United States 800

49780 Australia 10050

49780 United States 50
Making Queries Using Source Methods 6-25

Performing Numerical Analysis
Now assume that you want to total these values. Since both products and
countries are outputs, when you issue the code shown below, the new
NumberSource calculates the total number of units sold for all products in all
countries.

Example 6–26 Calculating the Sum of Values When a Source has only Outputs

NumberSource totalUnitsSold = unitsSoldyByCountry.total();

The new NumberSource called totalUnitsSold has only a single value that is
the total of the values of unitsSoldByCountry.

Calculating the Sum When a Source Has an Output and an Input: Example
Assume that you have the Source named unitsSoldByCountry that has an
output of countries and an input of products and whose values are the total
number of units for each product sold for each country.

Now assume that you total these values. Since product is input, when you issue
the code shown below, the new NumberSource calculates the total number of units

value of totalUnitsSold

11350

countries (output) values of unitsSoldByCountry

Australia 1300

10050

United States 50

800
6-26 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis
sold for all products in each country;. It does not calculate the total for all products
in all countries.

Example 6–27 Calculating the Sum of Values When a Source has Outputs and Inputs

NumberSource totalUnitsSoldByCountry = unitsSoldByCountry.total();

The new NumberSource called totalUnitsSoldByCountry has an output of
countries and values shown below.

Creating Your own Numerical Functions
The alias method can be used to create parameters. Example 6–28, "Creating a
Standard Function" shows how to create a new function using the alias method.
You can only create cell or row calculation functions in this way. To create client
aggregation or position-based functions you use the extract method.

Creating Your own Standard Function: Example
Example 6–28 creates a function that takes a number and multiplies it by 1.05. The
function has one parameter, called param, which is created by calling the alias
method on the fundamental Source representing the Number OLAP API data type
which is the set of all numbers. (Note how the value method is used to make the
parameter an input of the function.) The function created in Example 6–28 is
effectively the same as the built-in functions provided by the OLAP API. It can be
used by joining the function to the parameter and the required parameter
expression.

Assume you want to create a product selection defined to be the set of all products
for which the unitsSold measure is greater than the value specified by a
parameter. The parameter must be specified before data can be fetched from this
Source. You can create this parameter as shown in Example 6–29. To set the value
of the parameter to 100, you use the code shown in Example 6–30. You can then

countries (output) values of unitsSoldByCountry

Australia 11350

United States 850
Making Queries Using Source Methods 6-27

Performing Numerical Analysis
apply the function created in Example 6–28 to a Source named sales as shown in
Example 6–31.

Example 6–28 Creating a Standard Function

//Get the Source that represents the number data type
NumberSource number =(NumberSource)dataProvider
 .getFundamentalDefinitionProvider()
 .getNumberDataType()
 .getSource();
//Create a parameter
NumberSource param = (NumberSource)number.alias();
//Create a function
NumberSource function = ((NumberSource)param.value()).times(1.05);

Example 6–29 Creating a Parameterized Selection

//Get the Source that represents the number data type
NumberSource number = dataProvider
 .getFundamentalDefinitionProvider()
 .getNumberDataType()
 .getSource();
//Create a parameter
NumberSource param = (NumberSource)number.alias();
//Create a parameterized selection
Source products = ...;
NumberSource unitsSold = ...;
Source productSelection = products.select(unitsSold.gt(param.value()));

Example 6–30 Setting the Value of the Parameter

Source unitsSoldGT100 = productSelection.join(param, 100);

Example 6–31 Using a Standard Function You Created

//Use the function
NumberSource sales = ...;
NumberSource fsales = function.join(param, sales);
6-28 Oracle9i OLAP Developer’s Guide to the OLAP API

Manipulating String Values
Creating Your own Aggregation Function: Example
Assume that you want to create a weighted average function. To do so, you write
the code shown in Example 6–32, "Creating a Weighted Average Function". As with
the example of a standard function Example 6–28, "Creating a Standard Function",
this code first creates a parameter named param for the function to use. However,
since this is an aggregation function, the code uses the extract() method with
param when it calculates the final result.

To use the weighted average function created in Example 6–32, you issue the code
shown in Example 6–33.

Example 6–32 Creating a Weighted Average Function

//Define an aggregation function
NumberSource weight = ...;
//Create a parameter
NumberSource param = (NumberSource) number.alias();
//Create a function
NumberSource weightedAverage = param.extract().times(weight).average();

Example 6–33 Using the Weighted Average Function Created in Example 6–32

//Use the aggregation function
NumberSource sales = ...;
NumberSource paramSales = dp.createConstantSource(param.selectValues(sales));
Source weightedSales = weightedAverage.join(paramSales);

Manipulating String Values
The StringSource class defines methods that are string-specific versions of
various Source methods that you can use to append, insert, select, and remove
values whose values are Java String objects.

The StringSource class also has methods listed in Table 6–6 that you can use to
manipulate the values of the StringSource objects. The OLAP API also provides
the methods listed in Table 6–7 that you can use to manipulate substrings within the
values of a StringSource.
Making Queries Using Source Methods 6-29

Manipulating String Values
Table 6–6 Methods for Manipulating the values of StringSource Objects

Method Description

length() Creates a new NumberSource with the same structure as the
base StringSource and whose values are the length of each
value of the StringSource.

textFill(width) Creates a new StringSource, with the same structure as the
base StringSource, whose values are each value of the base
StringSource reformatted o the specified width by adding
blank spaces.

toLowercase() Creates a new StringSource, with the same structure as the
base StringSource, whose values are the values of the base
StringSource with all alphabetic characters in lowercase.

toUppercase() Creates a new StringSource, with the same structure as the
base StringSource, whose values are the values of the base
StringSource with all alphabetic characters in uppercase.

trim() Creates a new StringSource, with the same structure as the
base StringSource, whose values are the values of the base
StringSource with the leading and trailing blank spaces
removed.

trimLeading() Creates a new StringSource, with the same structure as the
base StringSource, whose values are the values of the base
StringSource with the leading blank spaces removed.

trimTrailing Creates a new StringSource, with the same structure as the
base StringSource, whose values are the values of the base
StringSource with the trailing blank spaces removed.
6-30 Oracle9i OLAP Developer’s Guide to the OLAP API

Manipulating String Values
There are two different versions of each of these methods. In one version you
specify the values using Source objects, in the other you specify the values using
literal values.

Table 6–7 Methods for Manipulating Substrings of StringSource Objects

Method Description

indexOf (substring, fromIndex) Creates a new StringSource, with the same
structure as the base StringSource, whose
values are the specified substrings in the values
of the base StringSource that begin after the
specified character position.

remove (index, length) Creates a new StringSource, with the same
structure as the base StringSource, whose
values a re the values of the base StringSource
with the characters between the specified
character positions removed.

replace (oldString, newString) Creates a new StringSource, with the same
structure as the base StringSource, whose
values are the values of the base StringSource
with the specified substring, and replaced with a
different substring.

substring (index, length) Creates a new StringSource, with the same
structure as the base StringSource, whose
values are the specified substrings in the values
of the base StringSource.
Making Queries Using Source Methods 6-31

Manipulating String Values
6-32 Oracle9i OLAP Developer’s Guide to the OLAP API

Using a TransactionPro
7

Using a TransactionProvider

This chapter describes the Oracle OLAP API Transaction and
TransactionProvider interfaces and describes how you use implementations of
those interfaces in an application. You must create a TransactionProvider
before you can create a DataProvider, and you must use methods on the
TransactionProvider to prepare and commit a Transaction before you can
create a Cursor for a derived Source.

This chapter includes the following topics:

■ About Creating a Query in a Transaction

■ Using TransactionProvider Objects
vider 7-1

About Creating a Query in a Transaction
About Creating a Query in a Transaction
The Oracle OLAP API is transactional. Each step in creating a query occurs in the
context of a Transaction. One of the first actions of an OLAP API application is to
create a TransactionProvider. The TransactionProvider provides
Transaction objects to the application.

The TransactionProvider ensures the following:

■ A Transaction is isolated from other Transaction objects. Operations
performed in a Transaction are not visible in, and do not affect, other
Transaction objects.

■ If an operation in a Transaction fails, its effects are undone (the
Transaction is rolled back).

■ The effects of a completed Transaction persist.

When you create a derived Source by calling a method on another Source, that
Source is created in the context of the current Transaction. The Source is active
in the Transaction in which you create it or in a child Transaction of that
Transaction.

You get or set the current Transaction, or begin a child Transaction, by calling
methods on a TransactionProvider. In a child Transaction you can change
the state of a Template that you created in the parent Transaction. By
displaying the data specified by the Source produced by the Template in the
parent Transaction and also displaying the data specified by the Source
produced by the Template in the child Transaction, you can provide the end
user of your application with the means of performing what-if analysis.
7-2 Oracle9i OLAP Developer’s Guide to the OLAP API

About Creating a Query in a Transaction
Types of Transaction Objects
The OLAP API has the following two types of Transaction objects:

■ A read Transaction. Initially, the current Transaction is a read
Transaction. A read Transaction is required for creating a Cursor to fetch
data from Oracle OLAP. For more information on Cursor objects, see
Chapter 9.

■ A write Transaction. A write Transaction is required for creating a
derived Source or for changing the state of a Template. For more information
on creating a derived Source, see Chapter 5. For information on Template
objects, see Chapter 10.

In the initial read Transaction, if you create a derived Source or if you change
the state of a Template object, then a child write Transaction is automatically
generated. That child Transaction becomes the current Transaction.

If you then create another derived Source or change the Template state again,
that operation occurs in the same write Transaction. You can create any number
of derived Source objects, or make any number of Template state changes, in that
same write Transaction. You can use those Source objects, or the Source
produced by the Template, to define a complex query.

Before you can create a Cursor to fetch the result set specified by a derived
Source, you must move the Source from the child write Transaction into the
parent read Transaction. To do so, you prepare and commit the Transaction.

Preparing and Committing a Transaction
To move a Source that you created in a child Transaction into the parent read
Transaction, call the prepareCurrentTransaction and
commitCurrentTransaction methods on the TransactionProvider. When
you commit a child write Transaction, a Source you created in the child
Transaction moves into the parent read Transaction. The child Transaction
disappears and the parent Transaction becomes the current Transaction. The
Source is active in the current read Transaction and you can therefore create a
Cursor for it.
Using a TransactionProvider 7-3

About Creating a Query in a Transaction
The following figure illustrates the process of moving a Source created in a child
write Transaction into its parent read Transaction.

Figure 7–1 Committing a Write Transaction into Its Parent Read Transaction

// Get MdmDimension objects. // Sources from t2 now exist in t1.
// Get MdmMeasure objects. // Transaction t2 diappears.
// Get primary Sources from // Create a Cursor for unitCostForSelections.
// those metadata objects. // Display the result set.

t 1 = The initial Transaction
 is a read Transaction.

// Create derived Sources from the primary Sources

StringSource prodSel, timeSel;
NumberSource unitCostForSelections;

prodSel = products.selectValues(new String [] {"P1", "P2", "P3"});
timeSel = times.selectValues(new String[] {"T1", "T2", "T3", "T4"});

unitCostForSelections = unitCost.join(timeSel).join(prodSel);

transactionProvider.prepareCurrentTransaction();
transactionProvider.commitCurrentTransaction();

t2 = A write Transaction is now
 the current Transaction.

Creating a derived
Source begins the child
write Transaction, t2.

t 1 = After committing t2, this read Transaction
 is again the current Transaction.

Committing the child Transaction
makes the new Sources visible
in the parent Transaction.
7-4 Oracle9i OLAP Developer’s Guide to the OLAP API

About Creating a Query in a Transaction
About Transaction and Template Objects
Getting and setting the current Transaction, beginning a child Transaction,
and rolling back a Transaction are operations that you use to allow an end user
to make different selections starting from a given state of a dynamic query. This
creating of alternatives based on an initial state is known as what-if analysis.

To present the end user with alternatives based on the same initial query, you do the
following:

1. Create a Template in a parent Transaction and set the initial state for the
Template.

2. Get the Source produced by the Template, create a Cursor to retrieve the
result set, get the values from the Cursor, and then display the results to the
end user.

3. Begin a child Transaction and modify the state of the Template.

4. Get the Source produced by the Template in the child Transaction, create
a Cursor, get the values, and display them.

 You can then replace the first Template state with the second one or discard the
second one and retain the first.

Beginning a Child Transaction
To begin a child read Transaction, call the beginSubtransaction method on
the TransactionProvider you are using. If you then change the state of a
Template, a child write Transaction begins automatically. The write
Transaction is a child of the child read Transaction.

To get the data specified by the Source produced by the Template, you prepare
and commit the write Transaction into its parent read Transaction. You can
then create a Cursor to fetch the data. The changed state of the Template is not
visible in the original parent. The changed state does not become visible in the
parent until you prepare and commit the child read Transaction into the parent
read Transaction.

The following figure illustrates beginning a child read Transaction, creating
Source objects in a write Transaction,and committing the write Transaction
into its parent read Transaction. The figure then shows committing the child
read Transaction into its parent read Transaction. In the figure, tp is the
TransactionProvider.
Using a TransactionProvider 7-5

About Creating a Query in a Transaction
Figure 7–2 Committing a Child Read Transaction into Its Parent Transaction

// Create a TopBottomTemplate, tp.beginSubtransaction() ; // begins t3
// topNBottom.
 // After committing t3, the Source
// After committing t2, get the Source // produced by topNBottom is generated
// produced by topNBottom. // using the state defined in t4.
// Create a Cursor for the
// for the Source. Display the values.

t1 = The initial read
 Transaction.

// Change the state of topNBottom
topNBottom.setTopBottomType(TOP);
topNBottom.setN(10);
// Prepare and commit the current Transaction.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction();

t2 = The current Transaction
 is now a write Transaction.

Changing the state of topNBottom
automatically begins t2.

t1 = After committing t2 and again after
 committing t3, t1 is the current Transaction.

The state of topNBottom
defined in t2 is now
active in t1.

Beginning a child Transaction creates t3.

// Change the state of topNBottom
topNBottom.setTopBottomType(BOTTOM);
topNBottom.setN(15);
// Prepare and commit the current Transaction.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction();

// The state of topNBottom // After submitting t4, t3 is the current Transaction.
// is the one defined in t2. // The state of topNBottom is the one defined in t4.
 // Get the Source produced by topNBottom. Create
 // a Cursor for the Source and display the values.
 // Prepare and commit t3.
 tp.prepareCurrentTransaction();
 tp.commitCurrentTransaction();

The state changes
are now active in t3
and t4 disappears.

Changing the state of
topNBottom begins t4.

t3 = The current Transaction is a read Transaction.

t4 = The current Transaction
 is a write Transaction.

The state changes
from t3 are now
active in t1 and t3
disappears.
7-6 Oracle9i OLAP Developer’s Guide to the OLAP API

About Creating a Query in a Transaction
After beginning a child read Transaction, you can begin a child read
Transaction of that child, or a grandchild of the initial parent Transaction. For
an example of creating child and grandchild Transaction objects, see
Example 7–2.

About Rolling Back a Transaction
You roll back, or undo, a Transaction by calling the
rollbackCurrentTransaction method on the TransactionProvider you
are using. Rolling back a Transaction discards any changes that you made
during that Transaction and makes the Transaction disappear.

Before rolling back a Transaction, you must close any CursorManager objects
you created in that Transaction. After rolling back a Transaction, any Source
objects that you created or Template state changes that you made in the
Transaction are no longer valid. Any Cursor objects you created for those
Source objects are also invalid.

Once you roll back a Transaction, you cannot prepare and commit that
Transaction. Likewise, once you commit a Transaction, you cannot roll it
back.

Example 7–1 Rolling Back a Transaction

The following example creates a TopBottomTemplate and sets its state. The
example begins a child Transaction that sets a different state for the
TopBottomTemplate and then rolls back the child Transaction. The
TransactionProvider is tp.

// The current Transaction is a read Transaction, t1.
// Create a TopBottomTemplate using product as the base
// and dp as the DataProvider.
TopBottomTemplate topNBottom = new TopBottomTemplate(product, dp);

// Changing the state of a Template requires a write Transaction, so a
// write child Transaction, t2, is automatically started.
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);
topNBottom.setN(10);
topNBottom.setCriterion(singleSelections.getSource());

// Prepare and commit the Transaction t2.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction(); //t2 disappears
Using a TransactionProvider 7-7

Using TransactionProvider Objects
// The current Transaction is now t1.
// Create a Cursor and display the results (operations not shown).

// Start a child Transaction, t3. It is a read Transaction.
tp.beginSubtransaction(); // t3 is the current Transaction

// Change the state of topNBottom. Changing the state requires a
// write Transaction so Transaction t4 starts automatically,
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);
topNBottom.setN(15);

// Prepare and commit the Transaction.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction(); // t4 disappears

// Create a Cursor and display the results. // t3 is the current Transaction
// Close the CursorManager for the Cursor created in t3.
// Undo t3, which discards the state of topNBottom that was set in t4.
tp.rollbackCurrentTransaction() // t3 disappears

// Transaction t1 is now the current Transaction and the state of
// topNBottom is the one defined in t2.

Getting and Setting the Current Transaction
You get the current Transaction by calling the getCurrentTransaction
method on the TransactionProvider you are using, as in the following
example.

Transaction t1 = getCurrentTransaction();
To make a previously saved Transaction the current Transaction, you call the
setCurrentTransaction method on the TransactionProvider, as in the
following example.

setCurrentTransaction(t1);

Using TransactionProvider Objects
In the Oracle OLAP API, the TransactionProvider interface is implemented by
the ExpressTransactionProvider concrete class. Before you create a
DataProvider, you must create a new instance of an
ExpressTransactionProvider. You then pass that TransactionProvider to
the DataProvider constructor. The TransactionProvider provides
Transaction objects to your application.
7-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Using TransactionProvider Objects
As described in “Preparing and Committing a Transaction” on page 7-3, you use the
prepareCurrentTransaction and commitCurrentTransaction methods to
make a derived Source that you created in a child write Transaction visible in
the parent read Transaction. You can then create a Cursor for that Source.

If you are using Template objects in your application, you might also use the other
methods on TransactionProvider to do the following:

■ Begin a child Transaction.

■ Get the current Transaction so you can save it.

■ Set the current Transaction to a previously saved one.

■ Rollback, or undo, the current Transaction, which discards any changes
made in the Transaction. Once a Transaction has been rolled back, it is
invalid and cannot be committed. Once a Transaction has been committed, it
cannot be rolled back. If you created a Cursor for a Source in a
Transaction, you must close the CursorManager before rolling back the
Transaction.

To demonstrate how to use Transaction objects to modify dynamic queries,
Example 7–2 builds on the TopBottomTest application defined in Chapter 10. To
help track the Transaction objects, the example saves the different
Transaction objects with calls to the getCurrentTransaction method.

Replace the last five lines of the code from the TopBottomTest class with the code
from Example 7–2.

Example 7–2 Using Child Transaction Objects

// The parent Transaction is the current Transaction at this point.
// Save the parent read Transaction as parentT1.
Transaction parentT1 = tp.getCurrentTransaction();

// Begin a child Transaction of parentT1.
tp.beginSubtransaction(); // This is a read Transaction.

// Save the child read Transaction as childT2.
Transaction childT2 = tp.getCurrentTransaction();

// Change the state of the TopBottomTemplate. This starts a
// write Transaction, a child of the read Transaction childT2.
topNBottom.setN(15);
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);
Using a TransactionProvider 7-9

Using TransactionProvider Objects
// Save the child write Transaction as writeT3.
Transaction writeT3 = tp.getCurrentTransaction();

// Prepare and commit the write Transaction writeT3.
try{

context.getTransactionProvider().prepareCurrentTransaction();
}
catch(NotCommittableException e){
System.out.println("Caught exception " + e + ".");
}
context.getTransactionProvider().commitCurrentTransaction();

// The commit moves the changes made in writeT3 into its parent,
// the read Transaction childT2. The writeT3 Transaction
// disappears. The current Transaction is now childT2
// again but the state of the TopBottomTemplate has changed.

// Create a Cursor and display the results of the changes to the
// TopBottomTemplate that are visible in childT2.
createCursor(topNBottom.getSource());

// Begin a grandchild Transaction of the initial parent.
tp.beginSubtransaction(); // This is a read Transaction.

// Save the grandchild read Transaction as grandchildT4.
Transaction grandchildT4 = tp.getCurrentTransaction();

// Change the state of the TopBottomTemplate. This starts another
// write Transaction, a child of grandchildT4.
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);

// Save the write Transaction as writeT5.
Transaction writeT5 = tp.getCurrentTransaction();

// Prepare and commit writeT5.
try{

context.getTransactionProvider().prepareCurrentTransaction();
}
catch(NotCommittableException e){

System.out.println("Caught exception " + e + ".");
}
context.getTransactionProvider().commitCurrentTransaction();
7-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Using TransactionProvider Objects
// Transaction grandchildT4 is now the current Transaction and the
// changes made to the TopBottomTemplate state are visible.

// Create a Cursor and display the results visible in grandchildT4.
createCursor(topNBottom.getSource());

// Commit the grandchild into the child.
try{

context.getTransactionProvider().prepareCurrentTransaction();
}
catch(NotCommittableException e){

System.out.println("Caught exception " + e + ".");
}
context.getTransactionProvider().commitCurrentTransaction();

// Transaction childT2 is now the current Transaction.
// Instead of preparing and committing the grandchild Transaction,
// you could rollback the Transaction, as in the following
// method call:
// rollbackCurrentTransaction();
// If you roll back the grandchild Transaction, then the changes
// you made to the TopBottomTemplate state in the grandchild
// are discarded and childT2 is the current Transaction.

// Commit the child into the parent.
try{

context.getTransactionProvider().prepareCurrentTransaction();
}
catch(NotCommittableException e){

System.out.println("Caught exception " + e + ".");
}
context.getTransactionProvider().commitCurrentTransaction();

// Transaction parentT1 is now the current Transaction. Again,
// you could roll back the childT2 Transaction instead of
// preparing and committing it. If you did so, then the changes
// you made in childT2 are discarded. The current Transaction
// would be parentT1, which would have the original state of
// the TopBottomTemplate, without any of the changes made in
// the grandchild or the child transactions.

} // end of main() method
} // end of TopBottomTest class
Using a TransactionProvider 7-11

Using TransactionProvider Objects
7-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Understanding Cursor Classes and Con
8

Understanding Cursor Classes and

Concepts

This chapter describes the Oracle OLAP API Cursor class and its related classes,
which you use to retrieve and gain access to the results of a query. This chapter also
describes the Cursor concepts of position, fetch size, and extent. For examples of
creating and using a Cursor and its related objects, see Chapter 9.

This chapter includes the following topics:

■ Overview of the OLAP API Cursor Objects

■ About Cursor Positions and Extent

■ About Fetch Sizes and Fetch Blocks
cepts 8-1

Overview of the OLAP API Cursor Objects
Overview of the OLAP API Cursor Objects
A Cursor retrieves the result set defined by a Source. Creating a Cursor for a
Source requires at least two intermediate steps. After creating a Source that
defines the data that you want to retrieve from the data store, you create a Cursor
for that Source by doing the following:

1. Creating a CursorManagerSpecification by passing the Source to the
createCursorManagerSpecification method on the DataProvider that
you are using. The CursorManagerSpecification has
CursorSpecification objects in a structure that mirrors the structure of the
Source.

2. Creating a CursorManager by calling the createCursorManager method
on the DataProvider and passing it the CursorManagerSpecification.
The CursorManager creates Cursor objects. It also manages the local data
cache for its Cursor objects and is aware of changes to the Source for a
dynamic query. If the Source for the CursorManagerSpecification has
inputs, then you must also pass to the createCursorManager method an
array of Source objects for those inputs.

3. Creating a Cursor by calling the createCursor method on the
CursorManager. The structure of the Cursor mirrors the structures of the
CursorManagerSpecification and the Source. The
CursorSpecification objects of a CursorManagerSpecification
specify the behavior of their corresponding Cursor objects. If the Source for
the CursorManagerSpecification has inputs, then you must also pass to
the createCursor method an array of CursorInput objects that specify
values for the input Source objects.

For an example of creating a Cursor, see Chapter 9.

This architecture provides great flexibility in fetching data from a result set and in
selecting data to display. You can do the following:

■ Create more than one CursorManagerSpecification object for the same
Source. You can specify different behavior on the CursorSpecification
components of the various CursorManagerSpecification objects in order
to retrieve and display different sets of values from the same result set. You
might want to do this when displaying the data from a Source in different
formats, such as in a table and a crosstab.

■ Receive notification that the Source produced by the Template has changed.
If you add a CursorManagerUpdateListener to the CursorManager for a
Source, then the CursorManager notifies the
8-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of the OLAP API Cursor Objects
CursorManagerUpdateListener when the Source for a dynamic query has
changed and you that therefore need to update the
CursorManagerSpecification for the CursorManager.

■ Update the CursorManagerSpecification for a CursorManager. If you
are using Template objects to produce a dynamic query and the state of a
Template changes, then the Source produced by the Template changes. If
you have created a Cursor for the Source produced by the Template, then
you need to replace the CursorManagerSpecification for the
CursorManager with an updated CursorManagerSpecification for the
changed Source. You can then create a new Cursor from the
CursorManager.

■ Create different of Cursor objects from the same CursorManager and set
different fetch sizes on those Cursor objects. You might do this when you want
to display the same data as a table and as a graph.

Sources For Which You Cannot Create a Cursor
Some Source objects do not specify data that a Cursor can retrieve from the data
store. The following are Source objects for which you cannot create a Cursor.

■ A Source that specifies an operation that is not computationally possible. An
example is a Source that specifies an infinite recursion.

■ A Source that defines an infinite result set. An example is the fundamental
Source that represents the set of all String objects.

■ A Source that has no elements or includes another Source that has no
elements. Examples are a Source returned by the getEmptySource method
on DataProvider and another Source derived from the empty Source.
Another example is a derived Source that results from selecting a value from a
primary Source that you got from an MdmDimension and the selected value
does not exist in the dimension.
Understanding Cursor Classes and Concepts 8-3

Cursor Class
Cursor Objects and Transaction Objects
When you create a derived Source or change the state of a Template, you create
the Source in the context of the current Transaction. The Source is active in the
Transaction in which you create it or in a child Transaction of that
Transaction. A Source must be active in the current Transaction for you to
be able to create a Cursor for it.

Creating a derived Source occurs in a write Transaction. Creating a Cursor
occurs in a read Transaction. After creating a derived Source, and before you
can create a Cursor for that Source, you must change the write Transaction
into a read Transaction by calling the prepareCurrentTransaction and
commitCurrentTransaction methods on the TransactionProvider your
application is using. For information on Transaction and
TransactionProvider objects, see Chapter 7.

Cursor Class
In the oracle.olapi.data.cursor package, the Oracle OLAP API defines the
interfaces described in the following table.

Figure 8–1shows the class hierarchy of the Cursor classes. The CompoundCursor
and ValueCursor interfaces extend the Cursor interface.

Interface Description

Cursor An abstract superclass that encapsulates the notion of a
current position.

ValueCursor A Cursor that has a value at the current position. A
ValueCursor has no child Cursor objects.

CompoundCursor Cursor that has child Cursor objects, which are a child
ValueCursor for the values of its Source and an output
child Cursor for each output of the Source.
8-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Cursor Class
Figure 8–1 Cursor Hierarchy

Structure of a Cursor
The structure of a Cursor mirrors the structure of its Source. If the Source does
not have any outputs, the Cursor for that Source is a ValueCursor. If the
Source has one or more outputs, the Cursor for that Source is a
CompoundCursor. A CompoundCursor has as children a base ValueCursor,
which has the values of the base of the Source of the CompoundCursor, and one
or more output Cursor objects.

The output of a Source is another Source. An output Source can itself have
outputs. The child Cursor for an output of a Source is a ValueCursor if the
output Source does not have any outputs and a CompoundCursor if it does.

<<interface>>
CompoundCursor

getOutputs() : List
getValueCursor() : ValueCursor

getCurrentBoolean() : boolean
getCurrentDate() : Date
getCurrentDouble() : double
getCurrentFloat() : float
getCurrentInteger() : int
getCurrentShort() : short
getCurrentSource() : SourceIdentifier
getCurrentString() : String
getCurrentValue() : Object
hasCurrentValue() : boolean

<<interface>>
ValueCursor

<<interface>>
Cursor

getExtent() : long
getFetchSize() : int
getParentEnd() : long
getParentStart() : long
getPosition() : long
getSource() : SourceIdentifier
next() : boolean
setFetchSize(int fetchSize) : void
setPosition(long position) : void

FETCH_SIZE_NOT_SPECIFIED
Understanding Cursor Classes and Concepts 8-5

Cursor Class
For example, suppose you have created a derived Source called productSel that
represents a selection of product identification values from a primary Source that
represents values from a dimension of products. You have selected 815, 1050, and
2055 as the values for productSel. If you create a Cursor for productSel, then
that Cursor is a ValueCursor because productSel has no outputs.

You have also created a derived Source called timeSel that represents a selection
of day values from a primary Source that represents a dimension of time values.
The values of timeSel are 1-JAN-00, 1-APR-00, 1-JUL-00, and 1-OCT-00.

You have an MdmMeasure that represents values for the price of product units. The
MdmMeasure has as inputs the MdmDimension objects representing products and
times. You get a Source called unitPrice from the measure. The Source has
products and times as inputs.

You join productSel and timeSel to unitPrice to create a Source,
unitPriceByDay, which has productSel and timeSel as outputs, as in the
following:

unitPriceByDay = unitPrice.join(productSel).join(timeSel);

The result set defined by unitPriceByDay is unit price values organized by the
outputs. Since timeSel is joined to the result of
unitPrice.join(productSel), timeSel is the slower varying output, which
means that the result set specifies the set of selected products for each selected time
value. For each time value the result set has three product values so the product
values vary faster than the time values. The values of the base ValueCursor of
unitPriceByDay are the fastest varying of all, because there is one price value for
each product for each day.

You then create a Cursor, queryCursor, for unitPriceByDay. Since
unitPriceByDay has outputs, queryCursor is a CompoundCursor. The base
ValueCursor of queryCursor has values from unitPrice, which is the base
Source of the operation that created unitPriceByDay. The outputs for
queryCursor are a ValueCursor that has values from productSel and a
ValueCursor that has values from timeSel.
8-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Cursor Class
Figure 8–2 illustrates the structure of queryCursor. The base ValueCursor and
the two output ValueCursor objects are the children of queryCursor, which is
the parent CompoundCursor.

Figure 8–2 Structure of the queryCursor CompoundCursor

The following table displays the values from queryCursor in a table. The left
column has time values, the middle column has product values, and the right
column has the unit price of the specified product on the specified day.

For examples of getting the values from a ValueCursor, see Chapter 9.

Day Product Price of Unit

01-JAN-00 815 58

01-JAN-00 1050 24

01-JAN-00 2055 24

01-APR-00 815 59

01-APR-00 1050 24

01-APR-00 2055 25

01-JUL-00 815 59

01-JUL-00 1050 25

01-JUL-00 2055 25

01-OCT-00 815 61

01-OCT-00 1050 25

01-OCT-00 2055 26

queryCursor
CompoundCursor

ValueCursor for
unitPrice

Base
ValueCursor

ValueCursor for
productSel

Output 2

ValueCursor for
timeSel

Output 1
Understanding Cursor Classes and Concepts 8-7

Cursor Class
Specifying the Behavior of a Cursor
The CursorSpecification objects of a CursorManagerSpecification
specify some aspects of the behavior of their corresponding Cursor objects. You
must specify the behavior on a CursorSpecification before creating the
corresponding Cursor. To specify the behavior, use the following
CursorSpecification methods:

■ setDefaultFetchSize

■ setExtentCalculationSpecified

■ setParentEndCalculationSpecified

■ setParentStartCalculationSpecified

■ specifyDefaultFetchSizeOnChildren
(for a CompoundCursorSpecification only)

A CursorSpecification also has methods that you can use to discover if the
behavior is specified. Those methods are the following:

■ isExtentCalculationSpecified

■ isParentEndCalculationSpecified

■ isParentStartCalculationSpecified

If you have used the CursorSpecification methods to set the default fetch size,
or to calculate the extent or the starting or ending positions of a value in its parent,
you can successfully use the following Cursor methods:

■ getExtent

■ getFetchSize

■ getParentEnd

■ getParentStart

■ setFetchSize

For examples of specifying Cursor behavior, see Chapter 9. For information on
fetch sizes, see "About Fetch Sizes and Fetch Blocks" on page 8-27. For information
on the extent of a Cursor, see"What is the Extent of a Cursor?" on page 8-25. For
information on the starting and ending positions in a parent Cursor of the current
value of a Cursor, see "About the Parent Starting and Ending Positions in a Cursor"
on page 8-22.
8-8 Oracle9i OLAP Developer’s Guide to the OLAP API

CursorManagerSpecification Class
CursorManagerSpecification Class
A CursorManagerSpecification for a Source has one or more
CursorSpecification objects. The structure of those objects reflects the
structure of the Source. For example, a Source that has outputs has a top-level, or
root, CursorSpecification for the Source, a child CursorSpecification for
the values of the Source, and a child CursorSpecification for each output of
the Source.

A Source that does not have any outputs has only one set of values. A
CursorManagerSpecification for that Source therefore has only one
CursorSpecification. That CursorSpecification is the root
CursorSpecification of the CursorManagerSpecification.

You can create a CursorManagerSpecification for a multidimensional Source
that has one or more inputs. If you do so, then you need to supply a Source for
each input when you create a CursorManager for the
CursorManagerSpecification. You must also supply a CursorInput for each
input Source when you create a Cursor from the CursorManager. You might
create a CursorManagerSpecification for a Source with inputs if you want to
use a CursorManager to create a series of Cursor objects with each Cursor
retrieving data specified by a different set of single values for the input Source
objects.

The structure of a Cursor reflects the structure of its
CursorManagerSpecification. A Cursor can be a single ValueCursor, for a
Source with no outputs, or a CompoundCursor with child Cursor objects, for a
Source with outputs. Each Cursor corresponds to a CursorSpecification in
the CursorManagerSpecification. You use CursorSpecification methods
to specify aspects of the behavior of the corresponding Cursor.

If your application uses Template objects, and a change occurs in the state of a
Template so that the structure of the Source produced by the Template changes,
then any CursorManagerSpecification objects that the application created for
the Source expire. If a CursorManagerSpecification expires, you must create
a new CursorManagerSpecification. You can then either use the new
CursorManagerSpecification to replace the old
CursorManagerSpecification of a CursorManager or use it to create a new
CursorManager. You can discover if a CursorManagerSpecification has
expired by calling the isExpired method on the
CursorManagerSpecification.
Understanding Cursor Classes and Concepts 8-9

CursorManagerSpecification Class
CursorSpecification Class
A CursorSpecification specifies certain aspects of the behavior of the Cursor
that corresponds to it. You do not create a CursorSpecification directly. You
pass a Source to the createCursorManagerSpecification method of a
DataProvider and the CursorManagerSpecification returned has a root
CursorSpecification for that Source. If the Source has outputs, the
CursorManagerSpecification also has a child CursorSpecification for
the values of the Source and one for each output of the Source.

With CursorSpecification methods, you can do the following:

■ Get the Source that corresponds to the CursorSpecification.

■ Get or set the default fetch size for the corresponding Cursor.

■ On a CompoundCursorSpecification, specify that the default fetch size is
set on the children of the corresponding Cursor.

■ Specify that Oracle OLAP should calculate the extent of a Cursor.

■ Determine if calculating the extent is specified.

■ Specify that Oracle OLAP should calculate the starting or ending position of the
current value of the corresponding Cursor in its parent Cursor. If you know
the starting and ending positions of a value in the parent, then you can
determine how many faster varying elements the parent Cursor has for that
value.

■ Determine if calculating the starting or ending position of the current value of
the corresponding Cursor in its parent is specified.

■ Accept a CursorSpecificationVisitor.

For more information, see "About Cursor Positions and Extent" on page 8-16 and
"About Fetch Sizes and Fetch Blocks" on page 8-27.
8-10 Oracle9i OLAP Developer’s Guide to the OLAP API

CursorManagerSpecification Class
In the oracle.olapi.data.source package, the Oracle OLAP API defines the
classes described in the following table.

A Cursor has the same structure as its CursorManagerSpecification. For
every ValueCursorSpecification or CompoundCursorSpecification of a
CursorManagerSpecification, a Cursor has a corresponding ValueCursor
or CompoundCursor. To be able to get certain information or behavior from a
Cursor, your application must specify that it wants that information or behavior by
calling methods on the corresponding CursorSpecification before it creates the
Cursor.

CursorInput Class
A CursorInput provides a value for a Source that you include in the array of
Source objects that is the inputSources argument to the
createCursorManager method on a DataProvider. If you create a
CursorManagerSpecification for a Source that has one or more inputs, then
you must provide an inputSources argument when you create a
CursorManager for that CursorManagerSpecification. You include a
Source in the inputSources array for each input of the Source that you pass to
the createCursorManagerSpecification method.

When you create a CursorInput object, you can specify either a single value or a
ValueCursor. If you specify a ValueCursor, you can call the synchronize
method on the CursorInput to make the value of the CursorInput be the
current value of the ValueCursor.

Class Description

CursorSpecification An abstract superclass that implements
methods inherited by its subclasses.

ValueCursorSpecification A CursorSpecification for a Source
that has values and no outputs.

CompoundCursorSpecification A CursorSpecification for a Source
that has one or more outputs. A
CompoundCursorSpecification has
component child CursorSpecification
objects.
Understanding Cursor Classes and Concepts 8-11

CursorManagerSpecification Class
CursorManager Class
A CursorManager manages the buffering of data for the Cursor objects it creates.
To create a CursorManager, call the createCursorManager method on a
DataProvider and pass it a CursorManagerSpecification. If the Source for
the CursorManagerSpecification has one or more inputs, then also pass an
array of Source objects to the createCursorManager method. Include in the
array a Source for each input.

You can create more than one Cursor from the same CursorManager, which is
useful for displaying data from a result set in different formats such as a table or a
graph. All of the Cursor objects created by a CursorManager have the same
specifications, such as the default fetch sizes and the levels at which fetch sizes are
set. Because the Cursor objects have the same specifications, they can share the
data managed by the CursorManager.

A CursorManager has methods for creating a Cursor, for discovering whether
the CursorManagerSpecification for the CursorManager needs updating,
and for adding or removing a CursorManagerUpdateListener. The
SpecifiedCursorManager interface adds methods for updating the
CursorManagerSpecification, for discovering if the
SpecifiedCursorManager is open, and for closing it. The
createCursorManager method on DataProvider returns an implementation of
the SpecifiedCursorManager interface.

When your application no longer needs a SpecifiedCursorManager, it should
close it to free resources in the application and in Oracle OLAP. To close the
SpecifiedCursorManager, call its close method.

Updating the CursorManagerSpecification for a CursorManager
If your application is using OLAP API Template objects and the state of a
Template changes in a way that alters the structure of the Source produced by
the Template, then any CursorManagerSpecification objects for the Source
are no longer valid. You need to create new CursorManagerSpecification
objects for the changed Source.

After creating a new CursorManagerSpecification, you can create a new
CursorManager for the Source. You do not, however, need to create a new
CursorManager. You can call the updateSpecification method on the existing
CursorManager to replace the previous CursorManagerSpecification with
the new CursorManagerSpecification. You can then create a new Cursor
from the CursorManager.
8-12 Oracle9i OLAP Developer’s Guide to the OLAP API

CursorManagerSpecification Class
To determine if the CursorManagerSpecification for a CursorManager
needs updating, call the isSpecificationUpdateNeeded method on the
CursorManager. You can also use a CursorManagerUpdateListener to listen
for events generated by changes in a Source. For more information, see
"CursorManagerUpdateListener Class" on page 8-15.

CursorManager Class Hierarchy
The following table lists most of the CursorManager interfaces and classes.

Interface or Class Description

CursorManager An interface that has defines methods
for all CursorManager objects.

AbstractCursorManager A CursorManager that implements
methods for adding and removing
CursorManagerUpdateListener
objects. For more information, see
"CursorManagerUpdateListener Class"
on page 8-15.

SpecifiedCursorManager An interface that defines additional
methods for a CursorManager.

ExpressSpecifiedCursorManager A class that implements the
SpecifiedCursorManager interface
and extends
AbstractCursorManager. In the
Oracle OLAP API, the
createCursorManager method on
DataProvider returns an instance of
this class.
Understanding Cursor Classes and Concepts 8-13

CursorManagerSpecification Class
Figure 8–3 shows the relationships of the CursorManager classes described in the
preceding table. A solid line and a closed arrowhead indicate that a class extends
the class to which the arrow points. A dotted line and an open arrowhead indicate
that the class implements the interface to which the arrow points.

Figure 8–3 CursorManager Hierarchy

AbstractCursorManager

addCursorManagerUpdateListener(CursorManagerUpdateListener l) : void
createCursor() : Cursor
removeCursorManagerUpdateListener(CursorManagerUpdateListener l) : void

<<interface>>
CursorManager

addCursorManagerUpdateListener(CursorManagerUpdateListener l) : void
createCursor() : Cursor
createCursor(CursorInput[] cursorInputs) : Cursor
isSpecificationUpdateNeeded() : boolean
removeCursorManagerUpdateListener(CursorManagerUpdateListener l) : void

<<interface>>
SpecifiedCursorManager

close() : void
getInputSources() : Source[]
isOpen() : boolean
setInputSources(Source[] newInputSources) : void
updateSpecification(CursorManagerSpecification cursorManagerSpecification) : void

ExpressSpecifiedCursorManager

close() : void
createCursor() : Cursor
createCursor(CursorInput[] cursorInputs) : Cursor
getInputSources() : Source[]
isOpen() : boolean
setInputSources(Source[] newInputSources) : void
isSpecificationUpdateNeeded() : boolean
updateSpecification(CursorManagerSpecification cursorManagerSpecification) : void
8-14 Oracle9i OLAP Developer’s Guide to the OLAP API

CursorManagerSpecification Class
CursorManagerUpdateListener Class
CursorManagerUpdateListener is an interface that has methods that receive
CursorManagerUpdateEvent objects. Oracle OLAP generates a
CursorManagerUpdateEvent object in response to a change that occurs in a
Source that is produced by a Template or when a CursorManager updates its
CursorManagerSpecification. Your application can use a
CursorManagerUpdateListener to listen for events that indicate it might need
to create new Cursor objects from the CursorManager or to update its display of
data from a Cursor.

To use a CursorManagerUpdateListener, implement the interface, create an
instance of the class, and then add the CursorManagerUpdateListener to the
CursorManager for a Source. When a change to the Source occurs, the
CursorManager calls the appropriate method on the
CursorManagerUpdateListener and passes it a
CursorManagerUpdateEvent. Your application can then perform the tasks
needed to generate new Cursor objects and update the display of values from the
result set that the Source defines.

You can implement more than one version of the
CursorManagerUpdateListener interface. You can add instances of them to the
same CursorManager.

CursorManagerUpdateEvent Class
Oracle OLAP generates a CursorManagerUpdateEvent object in response to a
change that occurs in a Source that is produced by a Template or when a
CursorManager updates its CursorManagerSpecification.

You do not directly create instances of this class. Oracle OLAP generates
CursorManagerUpdateEvent objects and passes them to the appropriate
methods of any CursorManagerUpdateListener objects you have added to a
CursorManager. The CursorManagerUpdateEvent has a field that indicates the
type of event that occurred. A CursorManagerUpdateEvent has methods you
can use to get information about it.
Understanding Cursor Classes and Concepts 8-15

About Cursor Positions and Extent
About Cursor Positions and Extent
A Cursor has one or more positions. The current position of a Cursor is the
position that is currently active in the Cursor. To move the current position of a
Cursor call the setPosition or next methods on the Cursor.

Oracle OLAP does not validate the position that you set on the Cursor until you
attempt an operation on the Cursor, such as calling the getCurrentValue
method. If you set the current position to a negative value or to a value that is
greater than the number of positions in the Cursor and then attempt a Cursor
operation, the Cursor throws a PositionOutOfBoundsException.

The extent of a Cursor is described in "What is the Extent of a Cursor?" on
page 8-25.

Positions of a ValueCursor
The current position of a ValueCursor specifies a value, which you can retrieve.
For example, productSel, a derived Source described in "Structure of a Cursor"
on page 8-5, is a selection of three products from a primary Source that specifies a
dimension of products and their hierarchical groupings. The ValueCursor for
productSel has three elements. The following example gets the position of each
element of the ValueCursor, and displays the value at that position. The output
object is a PrintWriter.

// productSelValCursor is the ValueCursor for productSel
do {
output.print(productSelValCursor.getPosition + " : ");
output.println(productSelValCursor.getCurrentValue);

}
while(productSelValCursor.next());

The preceding example displays the following:

1 : 815
2 : 1050
3 : 2055
8-16 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent
The following example sets the current position of productSelValCursor to 2
and retrieves the value at that position.

productSelValCursor.setPosition(2);
output.println(productSelValCursor.getCurrentValue);

The preceding example displays the following:

1050

For more examples of getting the current value of a ValueCursor, see Chapter 9.

Positions of a CompoundCursor
A CompoundCursor has one position for each set of the elements of its descendent
ValueCursor objects. The current position of the CompoundCursor specifies one
of those sets.

For example, unitPriceByDay, the Source described in "Structure of a Cursor"
on page 8-5, has values from a measure, unitPrice. The values are the prices of
product units at different times. The outputs of unitPriceByDay are Source
objects that represent selections of four day values from a time dimension and three
product values from a product dimension.

The result set for unitPriceByDay has one measure value for each tuple (each set
of output values), so the total number of values is twelve (one value for each of the
three products for each of the four days). Therefore, the queryCursor
CompoundCursor created for unitPriceByDay has twelve positions.

Each position of queryCursor specifies one set of positions of its outputs and its
base ValueCursor. For example, position 1 of queryCursor defines the following
set of positions for its outputs and its base ValueCursor:

■ Position 1 of output 1 (the ValueCursor for timeSel)

■ Position 1 of output 2 (the ValueCursor for productSel)

■ Position 1 of the base ValueCursor for queryCursor (This position has the
value from the unitPrice measure that is specified by the values of the
outputs.)
Understanding Cursor Classes and Concepts 8-17

About Cursor Positions and Extent
Figure 8–4 illustrates the positions of queryCursor CompoundCursor, its base
ValueCursor, and its outputs.

Figure 8–4 Cursor Positions in queryCursor

The ValueCursor for queryCursor has only one position because only one value
of unitPrice is specified by any one set of values of the outputs. For a query like
unitPriceByDay, the ValueCursor of its Cursor has only one value, and
therefore only one position, at a time for any one position of the root
CompoundCursor.

Output 1 = 1, Output 2 = 1, VC=1
Output 1 = 1, Output 2 = 2, VC=1
Output 1 = 1, Output 2 = 3, VC=1
Output 1 = 2, Output 2 = 1, VC=1
Output 1 = 2, Output 2 = 2, VC=1
Output 1 = 2, Output 2 = 3, VC=1
Output 1 = 3, Output 2 = 1, VC=1
Output 1 = 3, Output 2 = 2, VC=1
Output 1 = 3, Output 2 = 3, VC=1
Output 1 = 4, Output 2 = 1, VC=1
Output 1 = 4, Output 2 = 2, VC=1
Output 1 = 4, Output 2 = 3, VC=1

01-JAN-00
01-APR-00
01-JUL-00
01-OCT-00

815
1050
2055

n

Base ValueCursor
with specified values

from unitPrice

Output 1
ValueCursor for

timeSel

Output 2
ValueCursor for

productSel

Positions
1
2
3
4

Positions
1
2
3

Positions
1

queryCursor
CompoundCursor

Positions
1
2
3
4
5
6
7
8
9

10
11
12
8-18 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent
The following table illustrates one possible display of the data from queryCursor.
It is a crosstab view with four columns and five rows. In the left column are the day
values. In the top row are the product values. In each of the intersecting cells of the
crosstab is the price of the product on the day.

A CompoundCursor coordinates the positions of its ValueCursor objects relative
to each other. The current position of the CompoundCursor specifies the current
positions of its descendent ValueCursor objects. Example 8–1 sets the position of
queryCursor and then gets the current values and the positions of the child
Cursor objects.

Example 8–1 Setting the CompoundCursor Position and Getting the Current Values

CompoundCursor rootCursor = (CompoundCursor) queryCursor;
ValueCursor baseValueCursor = rootCursor.getValueCursor();
List outputs = rootCursor.getOutputs();
ValueCursor output1 = (ValueCursor) outputs.get(0);
ValueCursor output2 = (ValueCursor) outputs.get(1);
int pos = 5;
root.setPosition(pos);
System.out.println("CompoundCursor position set to " + pos + ".");
System.out.println("CC position = " + rootCursor.getPosition() + ".");
System.out.println("Output 1 position = " + output1.getPosition() +

", value = " + output1.getCurrentValue());
System.out.println("Output 2 position = " + output2.getPosition() +

", value = " + output2.getCurrentValue());
System.out.println("VC position = " + baseValueCursor.getPosition() +

", value = " + baseValueCursor.getCurrentValue());

815 1050 2055

01-JAN-00

59

58

01-APR-00

01-JUL-00 25

24

61 26

59 2524

25

25

24

01-OCT-00

Day

Product
Understanding Cursor Classes and Concepts 8-19

About Cursor Positions and Extent
Example 8–1 displays the following:

CompoundCursor position set to 5.
CC position = 5.
Output 1 position = 2, value = 01-APR-00
Output 2 position = 2, value = 1050
VC position = 1, value = 24

The positions of queryCursor are symmetric in that the result set for
unitPriceByDay always has three product values for each time value. The
ValueCursor for productSel, therefore, always has three positions for each
value of the timeSel ValueCursor. The timeSel output ValueCursor is
slower varying than the productSel ValueCursor.

In an asymmetric case, however, the number of positions in a ValueCursor is not
always the same relative to its slower varying output. For example, if the price of
units for product 2055 on October 1, 2000 were null because that product was no
longer being purchased by that date, and if null values were suppressed in the
query, then queryCursor would only have eleven positions. The ValueCursor
for productSel would only have two positions when the position of the
ValueCursor for timeSel was 4.

Example 8–2 produces an asymmetric result set by using a revision of the query
from "Structure of a Cursor" on page 8-5. The result set of the revised query
specifies products by price on a day. The base values of productByPriceOnDay
are the values from productSel as specified by the values of unitPrice and
timeSel.

Because productByPriceOnDay is a derived Source, this example prepares and
commits the current Transaction. The TransactionProvider in the example
is tp. For information on Transaction objects, see Chapter 7.

The example creates a Cursor for productByPriceOnDay, loops through the
positions of the CompoundCursor, gets the position and current value of each child
ValueCursor object, and displays the positions and values.
8-20 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent
Example 8–2 Positions in an Asymmetric Query

// Create the query
productByPriceOnDay = productSel.join(unitPrice).join(timeSel);

//Prepare and commit the current Transaction.
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create the Cursor. The DataProvider is dp.
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(productByPriceOnDay);
CursorManager cursorManager = dp.createCursorManager(cursorMngrSpec);
Cursor queryCursor2 = cursorManager.createCursor();

// Get the ValueCursor and the outputs
CompoundCursor rootCursor = (CompoundCursor) queryCursor2;
ValueCursor baseValueCursor = rootCursor.getValueCursor();
List outputs = rootCursor.getOutputs();
ValueCursor output1 = (ValueCursor) outputs.get(0);
ValueCursor output2 = (ValueCursor) outputs.get(1);

// Get the positions and values and display them.
System.out.println(" CC \t\tOutput 1 \tOutput 2 \tVC");
System.out.println("position \tposition:value " +

"\tposition:value \tposition:value");
do {
System.out.println(" " + root.getPosition() +

"\t\t " + output1.getPosition() +
" : " + output1.getCurrentValue() +
"\t " + output2.getPosition() +
" : " + output2.getCurrentValue() +
"\t " + baseValueCursor.getPosition() +
" : " + baseValueCursor.getCurrentValue());

}
while(queryCursor2.next();
Understanding Cursor Classes and Concepts 8-21

About Cursor Positions and Extent
Example 8–2 displays the following:

CC Output 1 Output 2 VC
position position:value position:value position:value

1 1 : 01-JAN-00 1 : 58 1 : 815
2 1 : 01-JAN-00 2 : 24 1 : 1050
3 1 : 01-JAN-00 2 : 24 2 : 2055
4 2 : 01-APR-00 1 : 59 1 : 815
5 2 : 01-APR-00 2 : 24 1 : 1050
6 2 : 01-APR-00 3 : 25 1 : 2055
7 3 : 01-JUL-00 1 : 59 1 : 815
8 3 : 01-JUL-00 2 : 25 1 : 1050
9 3 : 01-JUL-00 2 : 25 2 : 2055
10 4 : 01-OCT-00 1 : 61 1 : 815
11 4 : 01-OCT-00 2 : 25 1 : 1050
12 4 : 01-OCT-00 3 : 26 1 : 2055

The ValueCursor with unitPrice values (output 2) has only two positions for
01-JAN-00 and 01-JUL-00 because it has only two different values for those days.
The prices of two of the products are the same on those two days: 24 for products
1050 and 2055 on January 1, 2000 and 25 for those same two products on July 1,
2000. The base ValueCursor for queryCursor2 has two positions when the
timeSel value is 01-JAN-00 or 01-JUL-00 because each of the unitPrice values
for those days is not unique.

About the Parent Starting and Ending Positions in a Cursor
To effectively manage the display of the data that you get from a
CompoundCursor, you sometimes need to know how many faster varying values
exist for the current slower varying value. For example, suppose that you are
displaying in a crosstab one row of values from an edge of a cube, then you might
want to know how many columns to draw in the display for the row.

To determine how many faster varying values exist for the current value of a child
Cursor, you find the starting and ending positions of that current value in the
parent Cursor. Subtract the starting position from the ending position and then
add 1, as in the following.

long span = (cursor.getParentEnd() - cursor.getParentStart()) + 1;

The result is the span of the current value of the child Cursor in its parent Cursor,
which tells you how many values of the fastest varying child Cursor exist for the
current value. Calculating the starting and ending positions is costly in time and
8-22 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent
computing resources, so you should only specify that you want those calculations
performed when your application needs the information.

An Oracle OLAP API Cursor enables your application to have only the data that it
is currently displaying actually present on the client computer. For information on
specifying the amount of data for a Cursor, see "About Fetch Sizes and Fetch
Blocks" on page 8-27.

From the data on the client computer, however, you cannot determine at what
position of its parent Cursor the current value of a child Cursor begins or ends. To
get that information, you use the getParentStart and getParentEnd methods
of a Cursor.

For example, suppose your application has a Source named cube that represents a
cube that has an asymmetric edge. The cube has four outputs. The cube Source
defines products with sales amounts greater than $5,000 purchased by customers in
certain cities during the first three months of the calendar year 2000. The products
were sold through the direct sales channel (S) during a television promotion (TV).

You create a Cursor for that Source and call it cubeCursor. The
CompoundCursor cubeCursor has the following child Cursor objects:

■ output 1, a ValueCursor for the promotion values

■ output 2, a ValueCursor for the channel values

■ output 3, a ValueCursor for the time values

■ output 4, a ValueCursor for the customer values

■ The base ValueCursor, which has values that are the products with sales
amounts over $5,000.
Understanding Cursor Classes and Concepts 8-23

About Cursor Positions and Extent
Figure 8–5 illustrates the parent, cubeCursor, with the values of its child Cursor
objects layered horizontally. The slowest varying output, with the promotion
values, is at the top and the fastest varying child, with the product values, is at the
bottom. The only portion of the edge that you are currently displaying in the user
interface is the block between positions 7 and 9 of cubeCursor, which is shown
within the bold border. The positions, 1 through 10, of cubeCursor appear above
the top row.

Figure 8–5 Values of ValueCursor Children of cubeCursor

The current value of the output ValueCursor for the time Source is 2000-02. You
cannot determine from the data within the block that the starting and ending
positions of the current value, 2000-02, in the parent, cubeCursor, are 4 and 7,
respectively.

The cubeCursor from the previous figure is shown again in Figure 8–6, this time
with the range of the positions of the parent, cubeCursor, for each of the values of
the child Cursor objects. By subtracting the smaller value from the larger value
and adding one, you can compute the span of each value. For example, the span of
the time value 2000-02 is (7 - 4 + 1) = 4.

London

Bonn London Paris LondonBonnLondonBonn

2000-01 2000-032000-02

1050 1050 935 10502055 1050 935 3690815 1555

TV

S

1 62 103 4 5 7 8 9
8-24 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent
Figure 8–6 The Range of Positions of the Child Cursor Objects of cubeCursor

To specify that you want Oracle OLAP to calculate the starting and ending positions
of a value of a child Cursor in its parent Cursor, call the
setParentStartCalculationSpecified and
setParentEndCalculationSpecified methods on the
CursorSpecification corresponding to the Cursor. You can determine
whether calculating the starting or ending positions is specified by calling the
isParentStartCalculationSpecified or
isParentEndCalculationSpecified methods on the
CursorSpecification. For an example of specifying these calculations, see
Chapter 9.

What is the Extent of a Cursor?
The extent of a Cursor is the total number of elements it contains relative to any
slower varying outputs. Figure 8–7 illustrates the number of positions of each child
Cursor of cubeCursor relative to the value of its slower varying output. The child
Cursor objects are layered horizontally with the slowest varying output at the top.

The total number of elements in cubeCursor is 10 so the extent of cubeCursor is
therefore 10. That number is above the top row of the figure. The top row is the
ValueCursor for the promotion value and the next row down is the
ValueCursor for the channel value. The extent of each of those ValueCursor
objects is 1 because they each have only one value.

The third row down represents the time values. Its extent is 3, since there are 3
months values. The next row down is the ValueCursor for the customers by city.
The extent of its elements depends on the value of the slower varying output, which
is time. The extent of the customers ValueCursor for the first month is 2, for the
second month it is 3, and for the third month it is 2.

4 to 5 6 to 6 7 to 7 8 to 83 to 31 to 2 9 to 10

1 to 3 4 to 7 8 to 10

1 to 1 4 to 4 6 to 6 9 to 92 to 2 7 to 7 8 to 8 10 to 103 to 3 5 to 5

1 62 103 4 5 7 8 9

1-10

1-10
Understanding Cursor Classes and Concepts 8-25

About Cursor Positions and Extent
The bottom row is the base ValueCursor for the cubeCursor CompoundCursor.
Its values are products. The extent of the elements of the products ValueCursor
depends on the values of the customers ValueCursor and the time ValueCursor.
For example, since two products values are specified by the first set of month and
city values (1050 and 2055 for Bonn in 2000-01), the extent of the products
ValueCursor for that set is 2. For the second set of values for customers and times
(2000-10, London), the extent of the products ValueCursor is 1, and so on.

Figure 8–7 The Number of Elements of the Child Cursor Objects of cubeCursor

The extent is information that you can use, for example, to display the correct
number of columns or correctly-sized scroll bars. The extent, however, can be
expensive to calculate. For example, a Source that represents a cube might have
four outputs. Each output might have hundreds of values. If all null values and zero
values of the measure for the sets of outputs are eliminated from the result set, then
to calculate the extent of the CompoundCursor for the Source, Oracle OLAP must
traverse the entire result space before it creates the CompoundCursor. If you do not
specify that you wants the extent calculated, then Oracle OLAP only needs to
traverse the sets of elements defined by the outputs of the cube as specified by the
fetch size of the Cursor and as needed by your application.

To specify that you want Oracle OLAP to calculate the extent for a Cursor, call the
setExtentCalculationSpecified method on the CursorSpecification
corresponding to the Cursor. You can determine whether calculating the extent is
specified by calling the isExtentCalculationSpecified method on the
CursorSpecification. For an example of specifying the calculation of the extent
of a Cursor, see Chapter 9.

1 2 3 121 2

 1 2 3

1 1 1 12 1 1 21 2

10

1

1

8-26 Oracle9i OLAP Developer’s Guide to the OLAP API

About Fetch Sizes and Fetch Blocks
About Fetch Sizes and Fetch Blocks
An OLAP API Cursor represents the entire result set for a Source. The Cursor is
a virtual Cursor, however, because it retrieves only a portion of the result set at a
time from Oracle OLAP. A CursorManager manages a virtual Cursor and
retrieves results from Oracle OLAP as your application needs it. By managing the
virtual Cursor, the CursorManager relieves your application of a substantial
burden.

The amount of data that a Cursor retrieves in a single fetch operation is
determined by the fetch size specified for the Cursor. For a CompoundCursor, the
amount of data fetched in a single operation is the product of the fetch sizes of all of
its descendent ValueCursor objects. The total set of values retrieved in a single
fetch is the fetch block for the Cursor. You specify fetch sizes in order to limit the
amount of data your application needs to cache on the local computer and to
maximize the efficiency of the fetch by customizing it to meet the needs of your
method of displaying of the data.

When you create a CursorManagerSpecification for a Source, as the first
step in creating a Cursor, Oracle OLAP specifies a default fetch size on the root
CursorSpecification of the CursorManagerSpecification. By calling
methods on the CursorSpecification objects of the
CursorManagerSpecification, you can specify a default fetch size or specify
setting the fetch size at other levels of a CompoundCursor.

If the fetch size is specified on a CursorSpecification, then you can get or set
the fetch size for the corresponding Cursor by calling the getFetchSize or
setFetchSize method on that Cursor. For a CompoundCursor, you can set
different fetch sizes for child Cursor objects at different levels in the outputs.

A Cursor has a local fetch size if the size of the fetch block is specified for that
Cursor. Not all of the Cursor objects in a CompoundCursor can have local fetch
sizes. The structure of a CompoundCursor is like a tree, with the hierarchy of
Cursor objects starting at the topmost (root) Cursor and going down through all
the child Cursor objects. Any path through the hierarchy, starting from the root
and going down to a leaf ValueCursor, can contain one, and only one, Cursor
with a local fetch size. Specifying the fetch size on a parent Cursor affects all of the
child Cursor objects of that parent. This means that a fetch block can contain no
more than the number of elements of each child Cursor specified by the fetch size.
Understanding Cursor Classes and Concepts 8-27

About Fetch Sizes and Fetch Blocks
Figure 8–8 shows an example of a path through the hierarchy of a Cursor tree in
which the Cursor objects with local fetch sizes are shaded.

Figure 8–8 A Local Fetch Size Path Through a Cursor Hierarchy

�����
�
�
������

 Any path from the root to
 one of the leaves contains
 exactly one Cursor with a
 local fetch size.

Cursor without local fetch size

Cursor with local fetch size�

root

leaf
8-28 Oracle9i OLAP Developer’s Guide to the OLAP API

About Fetch Sizes and Fetch Blocks
About Determining the Shape of a Fetch Block
In a CompoundCursor, the levels at which you set the fetch sizes determine the
shape of the fetch block of the CompoundCursor. The optimal fetch block for a
CompoundCursor depends on the way you intend to navigate the Cursor and
display the data. After determining how to display the data, you should do the
following:

■ Specify a fetch block that is large enough to contain all the data required for the
portion of the result set that you are displaying in the user interface. For
example, if you display the data in a table and the size of the window means
that 25 rows are visible at a time, then the fetch block should contain at least 25
rows. If it is any smaller than this, the Cursor needs to make multiple trips to
Oracle OLAP to fill the display.

■ Specify fetch sizes on the Cursor objects that you use to loop through the result
set. For example, for a table view, set fetch sizes on the root Cursor and for a
crosstab view, set fetch sizes on the child Cursor objects.

■ Keep the product of all of the fetch sizes relatively small because the product
determines the total number of cells in the fetch block. If the product of all the
fetch sizes is too large, then you lose the advantages of the virtual Cursor.

For examples of specifying fetch sizes and fetch blocks for different displays, see
Chapter 9.

About Sharing Fetch Blocks
You can create two or more Cursor objects from the same CursorManager and
use both Cursor objects simultaneously. The Cursor objects can share the data
managed by the CursorManager, rather than having separate data caches, because
the shape of the fetch blocks is the same for both Cursor objects. The shape of the
fetch blocks is determined by the levels of the CursorManagerSpecification
on which the fetch size is specified.

An example is an application that displays the results of a query to the user as both
a table and a graph. The application creates a CursorManagerSpecification
for a Source and then creates a CursorManager for the
CursorManagerSpecification. The application creates two separate Cursor
objects from the same CursorManager, one for a table view and one for a graph
view. The two views share the same query and display the same data, just in
Understanding Cursor Classes and Concepts 8-29

About Fetch Sizes and Fetch Blocks
different formats. Figure 8–9 illustrates the relationship between the Source, the
Cursor objects, and the views.

Figure 8–9 A Source and Two Cursors for Different Views of Its Values

Table View Bar Graph View

�
�
��
�
��
�
��
�
�

1000's

tableCursor : Cursor

graphView : ViewtableView : View

graphCursor : Cursor

querySource : Source

queryCMS : CursorManagerSpecification

queryCM : CursorManager
8-30 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving Query R
9

Retrieving Query Results

This chapter describes how to retrieve the results of a query with an Oracle OLAP
API Cursor and how to gain access to those results. This chapter also describes
how to customize the behavior of a Cursor to fit your method of displaying the
results. For information on the class hierarchies of Cursor and its related classes,
and for information on the Cursor concepts of position, fetch size, and extent, see
Chapter 8.

This chapter includes the following topics:

■ Retrieving the Results of a Query

■ Navigating a CompoundCursor for Different Displays of Data

■ Specifying the Behavior of a Cursor

■ Calculating Extent and Starting and Ending Positions of a Value

■ Specifying Fetch Sizes and Fetch Blocks
esults 9-1

Retrieving the Results of a Query
Retrieving the Results of a Query
A query is an OLAP API Source that specifies the data that you want to retrieve
from Oracle OLAP and any calculations you want Oracle OLAP to perform on that
data. A Cursor is the object that retrieves, or fetches, the result set specified by a
Source. Creating a Cursor for a Source involves the following steps:

1. Get a primary Source from an MdmObject or create a derived Source
through operations on a DataProvider or a Source. For information on
getting or creating Source objects, see Chapter 5.

2. If the Source is a derived Source, prepare and commit the Transaction in
which you created the Source. To prepare and commit the Transaction, call
the prepareCurrentTransaction and commitCurrentTransaction
methods on your TransactionProvider. For more information on preparing
and committing a Transaction, see Chapter 7. If the Source is a primary
Source, then you do not need to prepare and commit the Transaction.

3. Create a CursorManagerSpecification by calling the
createCursorManagerSpecification method on your DataProvider
and passing that method the Source.

4. Create a SpecifiedCursorManager by calling the createCursorManager
method on your DataProvider and passing that method the
CursorManagerSpecification. If the Source for the
CursorManagerSpecification has one or more inputs, then you must also
pass an array of Source objects that provides a Source for each input.

5. Create a Cursor by calling the createCursor method on the
CursorManager. If you created the CursorManager with an array of input
Source objects, then you must also pass an array of CursorInput objects that
provides a value for each input Source.

Example 9–1 creates a Cursor for the derived Source named querySource. The
example uses a TransactionProvider named tp and a DataProvider named
dp. The example creates a CursorManagerSpecification named
cursorMngrSpec, a SpecifiedCursorManager named cursorMngr, and a
Cursor named queryCursor.

Finally, the example closes the SpecifiedCursorManager. When you have
finished using the Cursor, you should close the SpecifiedCursorManager to
9-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving the Results of a Query
free resources.

Example 9–1 Creating a Cursor

try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 System.out.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(querySource);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor queryCursor = cursorMngr.createCursor();

// ... Use the Cursor in some way, such as to display its values.

cursorMngr.close();

Getting Values from a Cursor
The Cursor interface encapsulates the notion of a current position and has methods
for moving the current position. The ValueCursor and CompoundCursor
interfaces extend the Cursor interface. The Oracle OLAP API has implementations
of the ValueCursor and CompoundCursor interfaces. Calling the
createCursor method on a CursorManager returns either a ValueCursor or a
CompoundCursor implementation, depending on the Source for which you are
creating the Cursor.

A ValueCursor is returned for a Source that has a single set of values. A
ValueCursor has a value at its current position, and it has methods for getting the
value at the current position.

A CompoundCursor is created for a Source that has more than one set of values,
which is a Source that has one or more outputs. Each set of values of the Source
is represented by a child ValueCursor of the CompoundCursor. A
CompoundCursor has methods for getting its child Cursor objects.

The structure of the Source determines the structure of the Cursor. A Source can
have nested outputs, which occurs when one or more of the outputs of the Source
is itself a Source with outputs. If a Source has a nested output, then the
Retrieving Query Results 9-3

Retrieving the Results of a Query
CompoundCursor for that Source has a child CompoundCursor for that nested
output.

The CompoundCursor coordinates the positions of its child Cursor objects. The
current position of the CompoundCursor specifies one set of positions of its child
Cursor objects.

For an example of a Source that has only one level of output values, see
Example 9–4. For an example of a Source that has nested output values, see
Example 9–5.

An example of a Source that represents a single set of values is one returned by the
getSource method on an MdmDimension, such as an MdmDimension that
represents a hierarchical list of product values. Creating a Cursor for that Source
returns a ValueCursor. Calling the getCurrentValue method returns the
product value at the current position of that ValueCursor.

Example 9–2 gets the Source from mdmProductHier, which is an MdmDimension
that represents product values, and creates a Cursor for that Source. The example
sets the current position to the fifth element of the ValueCursor and gets the
product value from the Cursor. The example then closes the CursorManager. In
the example, dp is the DataProvider.

Example 9–2 Getting a Single Value from a ValueCursor

Source productSource = mdmProductHier.getSource();
// Because productSource is a primary Source, you do not need to
// prepare and commit the current Transaction.
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(productSource);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor productCursor = cursorMngr.createCursor();
// Cast the Cursor to a ValueCursor.
ValueCursor productValues = (ValueCursor) productCursor;
// Set the position to the fifth element of the ValueCursor.
productValues.setPosition(5);
9-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving the Results of a Query
// Product values are strings. Get the String value at the current
// position.
String value = productValues.getCurrentString();

// Do something with the value, such as display it...

// Close the SpecifiedCursorManager.
cursorMngr.close();

Example 9–3 uses the same Cursor as Example 9–2. Example 9–3 uses a
do...while loop and the next method of the ValueCursor to move through the
positions of the ValueCursor. The next method begins at a valid position and
returns true when an additional position exists in the Cursor. It also advances the
current position to that next position.

The example sets the position to the first position of the ValueCursor. The
example loops through the positions and uses the getCurrentValue method to
get the value at the current position.

Example 9–3 Getting All of the Values from a ValueCursor

// productValues is the ValueCursor for productSource
productValues.setPosition(1);
do {

System.out.println(productValues.getCurrentValue);
}
while(productValues.next());

The values of the result set represented by a CompoundCursor are in the child
ValueCursor objects of the CompoundCursor. To get those values, you must get
the child ValueCursor objects from the CompoundCursor.

An example of a CompoundCursor is one that is returned by calling the
createCursor method on a CursorManager for a Source that represents the
values of a measure as specified by selected values from the dimensions of the
measure.

Example 9–4 uses a Source, named salesAmount, that results from calling the
getSource method on an MdmMeasure that represents monetary amounts for
sales. The dimensions of the measure are MdmDimension objects representing
products, customers, times, channels, and promotions. This example uses Source
objects that represent selected values from those dimensions. The names of those
Source objects are prodSel, custSel, timeSel, chanSel, and promoSel. The
Retrieving Query Results 9-5

Retrieving the Results of a Query
creation of the Source objects representing the measure and the dimension
selections is not shown.

Example 9–4 joins the dimension selections to the measure, which results in a
Source named salesForSelections. It creates a Cursor, named
salesForSelCursor, for salesForSelections, casts the Cursor to a
CompoundCursor, named salesCompndCrsr, and gets the base ValueCursor
and the outputs from the CompoundCursor. Each output is a ValueCursor, in
this case. The outputs are returned in a List. The order of the outputs in the List
is the inverse of the order in which the dimensions were joined to the measure. In
the example, dp is the DataProvider and tp is the TransactionProvider.

Example 9–4 Getting ValueCursor Objects from a CompoundCursor

Source salesForSelections = salesAmount.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel)
 .join(promoSel);
// Prepare and commit the current Transaction
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create a Cursor for salesForSelections
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(salesForSelections);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor salesForSelCursor = cursorMngr.createCursor();

// Cast salesForSelCursor to a CompoundCursor
CompoundCursor salesCompndCrsr = (CompoundCursor) salesValues;

// Get the base ValueCursor
ValueCursor specifiedSalesVals = salesCompndCrsr.getValueCursor();
9-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving the Results of a Query
// Get the outputs
List outputs = salesCompndCrsr.getOutputs();
ValueCursor promoSelVals = (ValueCursor) outputs.get(0);
ValueCursor chanSelVals = (ValueCursor) outputs.get(1);
ValueCursor timeSelVals = (ValueCursor) outputs.get(2);
ValueCursor custSelVals = (ValueCursor) outputs.get(3);
ValueCursor prodSelVals = (ValueCursor) outputs.get(4);

// You can now get the values from the ValueCursor objects.
// When you have finished using the Cursor objects, close the
// SpecifiedCursorManager.
cursorMngr.close()

Example 9–5 uses the same sales amount measure as Example 9–4, but it joins the
dimension selections to the measure differently. Example 9–5 joins two of the
dimension selections together. It then joins the result to the Source that results
from joining the single dimension selections to the measure. The resulting Source,
salesForSelections, represents a query has nested outputs, which means it has
more than one level of outputs.

The CompoundCursor that this example creates for salesForSelections
therefore also has nested outputs. The CompoundCursor has a child base
ValueCursor and as its outputs has three child ValueCursor objects and one
child CompoundCursor.

Example 9–5 joins the selection of promotion dimension values, promoSel, to the
selection of channel dimension values, chanSel. The result is chanByPromoSel, a
Source that has channel values as its base values and promotion values as the
values of its output. The example joins to salesAmount the selections of product,
customer, and time values, and then joins chanByPromoSel. The resulting query is
represented by salesForSelections.

The example prepares and commits the current Transaction and creates a
Cursor, named salesForSelCursor, for salesForSelections.

The example casts the Cursor to a CompoundCursor, named salesCompndCrsr,
and gets the base ValueCursor and the outputs from it. In the example, dp is the
DataProvider and tp is the TransactionProvider.
Retrieving Query Results 9-7

Retrieving the Results of a Query
Example 9–5 Getting Values from a CompoundCursor with Nested Outputs

// ...in someMethod...
Source chanByPromoSel = chanSel.join(promoSel);
Source salesForSelections = salesAmount.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanByPromoSel);

// Prepare and commit the current Transaction
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create a Cursor for salesForSelections
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(salesForSelections);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor salesForSelCursor = cursorMngr.createCursor();

// Send the Cursor to a method that does different operations
// depending on whether the Cursor is a CompoundCursor or a
// ValueCursor.
printCursor(salesForSelCursor);
cursorMngr.close();
// ...the remaining code of someMethod...
9-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving the Results of a Query
// The printCursor method has a do...while loop that moves through the positions
// of the Cursor passed to it. At each position, the method prints the number of
// the iteration through the loop and then a colon and a space. The output
// object is a PrintWriter. The method calls the private _printTuple method and
// then prints a new line. A "tuple" is the set of output ValueCursor values
// specified by one position of the parent CompoundCursor. The method prints one
// line for each position of the parent CompoundCursor.
public void printCursor(Cursor rootCursor) {
 int i = 1;
 do {
 output.print(i++ + ": ");
 _printTuple(rootCursor);
 output.print("\n");
 output.flush();
 }
 while(rootCursor.next());
}

// If the Cursor passed to the _printTuple method is a ValueCursor,
// the method prints the value at the current position of the ValueCursor.
// If the Cursor passed in is a CompoundCursor, the method gets the
// outputs of the CompoundCursor and iterates through the outputs,
// recursively calling itself for each output. The method then gets the
// base ValueCursor of the CompoundCursor and calls itself again.
private void _printTuple(Cursor cursor) {
 if(cursor instanceof CompoundCursor) {
 CompoundCursor compoundCursor = (CompoundCursor)cursor;
 // Put an open parenthesis before the value of each output
 output.print("(");
 Iterator iterOutputs = compoundCursor.getOutputs().iterator();
 Cursor output = (Cursor)iterOutputs.next();
 _printTuple(output);
 while(iterOutputs.hasNext()) {
 // Put a comma after the value of each output
 output.print(",");
 _printTuple((Cursor)iterOutputs.next());
 }
 // Put a comma after the value of the last output
 output.print(",");
 // Get the base ValueCursor
 _printTuple(compoundCursor.getValueCursor());

Retrieving Query Results 9-9

Navigating a CompoundCursor for Different Displays of Data
 // Put a close parenthesis after the base value to indicate
 // the end of the tuple.
 output.print(")");
 }
 else if(cursor instanceof ValueCursor) {
 ValueCursor valueCursor = (ValueCursor) cursor;
 if (valueCursor.hasCurrentValue())
 print(valueCursor.getCurrentValue());
 else // If this position has a null value
 print("NA");
 }
}

Navigating a CompoundCursor for Different Displays of Data
With methods on a CompoundCursor you can easily move through, or navigate, its
structure and get the values from its ValueCursor descendents. Data from a
multidimensional OLAP query is often displayed in a crosstab format, or as a table
or a graph.

To display the data for multiple rows and columns, you loop through the positions
at different levels of the CompoundCursor depending on the needs of your display.
For some displays, such as a table, you loop through the positions of the parent
CompoundCursor. For other displays, such as a crosstab, you loop through the
positions of the child Cursor objects.

To display the results of a query in a table view, in which each row contains a value
from each output ValueCursor and from the base ValueCursor, you determine
the position of the top-level, or root, CompoundCursor and then iterate through its
positions. Example 9–6 displays only a portion of the result set at one time. It
creates a Cursor for a Source that represents a query that is based on a measure
that has unit cost values. The dimensions of the measure are the product and time
dimensions. The creation of the primary Source objects and the derived selections
of the dimensions is not shown.

The example joins the Source objects representing the dimension value selections
to the Source representing the measure. It prepares and commits the current
Transaction and then creates a Cursor. It casts the Cursor to a
CompoundCursor. The example sets the position of the CompoundCursor, iterates
through twelve positions of the CompoundCursor, and prints out the values
specified at those positions. The TransactionProvider is tp and the
DataProvider is dp. The output object is a PrintWriter.
9-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Navigating a CompoundCursor for Different Displays of Data
Example 9–6 Navigating for a Table View

Source unitPriceByDay = unitPrice.join(productSel)
 .join(timeSel);
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create a Cursor for unitPriceByDay
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(unitPriceByDay);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor unitPriceByDayCursor = cursorMngr.createCursor();

// Cast the Cursor to a CompoundCursor
CompoundCursor rootCursor = (CompoundCursor) unitPriceByDayCursor;

// Determine a starting position and the number of rows to display
int start = 7;
int numRows = 12;

// Iterate through the specified positions of the root CompoundCursor.
// Assume that the Cursor contains at least (start + numRows) positions.
for(int pos = start; pos < start + numRows; pos++) {
 // Set the position of the root CompoundCursor

rootCursor.setPosition(pos);
 // Print the values of the output ValueCursors

output.print(rootCursor.getOutputs().get(0).getCurrentValue() + "\t");
output.print(rootCursor.getOutputs().get(1).getCurrentValue() + "\t");

 // Print the value of the base ValueCursor and a new line
output.print(rootCursor.getValueCursor().getCurrentValue() + "\n");

 output.flush();
};
cursorMngr.close();

If the time selection for the query has eight values, such as the first day of each
calendar quarter for the years 1999 and 2000, and the product selection has three
values, then the result set of the unitPriceByDay query has twenty-four
Retrieving Query Results 9-11

Navigating a CompoundCursor for Different Displays of Data
positions. Example 9–6 displays something like the following table, which has the
values specified by positions 7 through 18 of the CompoundCursor.

01-JUL-99 815 57
01-JUL-99 1050 23
01-JUL-99 2055 22
01-OCT-99 815 56
01-OCT-99 1050 24
01-OCT-99 2055 21
01-JAN-00 815 58
01-JAN-00 1050 24
01-JAN-00 2055 24
01-APR-00 815 59
01-APR-00 1050 24
01-APR-00 2055 25

Example 9–7 uses the same query as Example 9–6. In a crosstab view, the first row is
column headings, which are the values from timeSel in this example. The output
for timeSel is the faster varying output because the timeSel dimension selection
was joined to the measure first. The remaining rows begin with a row heading. The
row headings are values from the slower varying output, which is productSel.
The remaining positions of the rows, under the column headings, contain the
unitPrice values specified by the set of the dimension values.

To display the results of a query in a crosstab view, you specify the positions of the
children of the top-level CompoundCursor and then iterate through their positions.
Example 9–7 gets the values but does not include code for putting the values in the
appropriate cells of the crosstab display.

Example 9–7 Navigating for a Crosstab View without Pages

Source unitPriceByDay = unitPrice.join(productSel)
 .join(timeSel);
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();
9-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Navigating a CompoundCursor for Different Displays of Data
// Create a Cursor for unitPriceByDay
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(unitPriceByDay);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor unitPriceByDayCursor = cursorMngr.createCursor();

// Cast the Cursor to a CompoundCursor
CompoundCursor rootCursor = (CompoundCursor) unitPriceByDayCursor;

// Determine a starting position and the number of rows to display.
// colStart is the position in columnCursor at which the current
// display starts and rowStart is the position in rowCursor at
// which the current display starts.
int colStart = 1;
int rowStart = 1;
String productValue;
String timeValue;
double price;
int numProducts = 3;
int numDays = 12;

// Get the outputs and the ValueCursor
CompoundCursor rootCursor = (CompoundCursor) unitPriceByDayCursor;
List outputs = rootCursor.getOutputs();
// The first output has the values of timeSel, the slower varying output
ValueCursor rowCursor = (ValueCursor) outputs.get(0);
// The second output has the faster varying values of productSel
ValueCursor columnCursor = (ValueCursor) outputs.get(1);
ValueCursor unitPriceValues = rootCursor.getValueCursor();// Prices

// Loop through positions of the faster varying output Cursor
for(int pPos = colStart; pPos < colStart + numProducts; pPos++) {
columnCursor.setPosition(pPos);

 // Loop through positions of the slower varying output Cursor
for(int tPos = rowStart; tPos < rowStart + numDays; tPos++) {
rowCursor.setPosition(tPos);

 // Get the values. Sending the values to the appropriate
 // display mechanism is not shown.

productValue = columnCursor.getCurrentString();
timeValue = rowCursor.getCurrentString();
price = unitPriceValues.getCurrentDouble();

 }
}
cursorMngr.close();
Retrieving Query Results 9-13

Navigating a CompoundCursor for Different Displays of Data
Figure 9–1 is crosstab view of the values from the result set specified by the
unitPriceByDay query.

Figure 9–1 Crosstab View of the Result Set Specified by unitPriceByDay

Example 9–8 creates a Source that is based on a sales amount measure. The
dimensions of the measure are the customer, product, time, channel, and promotion
dimensions. The Source objects for the dimensions represent selections of the
dimension values. The creation of those Source objects is not shown.

The query that results from joining the dimension selections to the measure Source
represents total sales amount values as specified by the values of its outputs.

The example creates a Cursor for the query and then sends the Cursor to the
printAsCrosstab method, which prints the values from the Cursor in a
crosstab. That method calls other methods that print page, column, and row values.

The fastest varying output of the Cursor is the selection of customers, which has
three values that specify all of the customers from France, the UK, and the USA. The
customer values are the column headings of the crosstab. The next fastest varying
output is the selection of products, which has four values that specify types of
products. The page dimensions are selections of two time values, which are the first
and second calendar quarters of the year 2000, one channel value, which is the
direct channel, and one promotion value, which is all promotions.

The TransactionProvider is tp and the DataProvider is dp. The output
object is a PrintWriter.

815 1050 2055

01-JAN-99

57

56

01-APR-99

01-JUL-99 22

22

56 21

57 2122

23

24

21

01-OCT-99

01-JAN-00

59

58

01-APR-00

01-JUL-00 25

24

61 26

59 2524

25

25

24

01-OCT-00
9-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Navigating a CompoundCursor for Different Displays of Data
Example 9–8 Navigating for a Crosstab View with Pages

// ...in someMethod...
Source salesAmountsForSelections = salesAmount.join(customerSel)
 .join(productSel);
 .join(timeSel);
 .join(channelSel);
 .join(promotionSel);
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create a Cursor for salesAmountsForSelections
CursorManagerSpecification cursorMngrSpec =

 dp.createCursorManagerSpecification(salesAmountsForSelections);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor salesForSelCursor = cursorMngr.createCursor();

// Send the Cursor to the printAsCrosstab method
printAsCrosstab(salesForSelCursor);

cursorMngr.close();
// ...the remainder of the code of someMethod...

// This method expects a CompoundCursor.
private void printAsCrosstab(Cursor cursor) {
 // Cast the Cursor to a CompoundCursor
 CompoundCursor rootCursor = (CompoundCursor) cursor;
 List outputs = rootCursor.getOutputs();
 int nOutputs = outputs.size();

 // Set the initial positions of all outputs
 Iterator outputIter = outputs.iterator();
 while (outputIter.hasNext())
 ((Cursor) outputIter.next()).setPosition(1);

Retrieving Query Results 9-15

Navigating a CompoundCursor for Different Displays of Data
 // The last output is fastest-varying; it represents columns.
 // The next to last output represents rows.
 // All other outputs are on the page.
 Cursor colCursor = (Cursor) outputs.get(nOutputs - 1);
 Cursor rowCursor = (Cursor) outputs.get(nOutputs - 2);
 ArrayList pageCursors = new ArrayList();
 for (int i = 0 ; i < nOutputs - 2 ; i++) {
 pageCursors.add(outputs.get(i));
 }

 // Get the base ValueCursor, which has the data values
 ValueCursor dataCursor = rootCursor.getValueCursor();

 // Print the pages of the crosstab
 printPages(pageCursors, 0, rowCursor, colCursor, dataCursor);
}

// Prints the pages of a crosstab
private void printPages(List pageCursors, int pageIndex, Cursor rowCursor,
 Cursor colCursor, ValueCursor dataCursor) {
 // Get a Cursor for this page
 Cursor pageCursor = (Cursor) pageCursors.get(pageIndex);

 // Loop over the values of this page dimension
 do {
 // If this is the fastest-varying page dimension, print a page
 if (pageIndex == pageCursors.size() - 1) {
 // Print the values of the page dimensions
 printPageHeadings(pageCursors);

 // Print the column headings
 printColumnHeadings(colCursor);

 // Print the rows
 printRows(rowCursor, colCursor, dataCursor);
9-16 Oracle9i OLAP Developer’s Guide to the OLAP API

Navigating a CompoundCursor for Different Displays of Data
 // Print a couple of blank lines to delimit pages
 output.println();
 output.println();
 }

 // If this is not the fastest-varying page, recurse to the
 // next fastest varying dimension.
 else {
 printPages(pageCursors, pageIndex + 1, rowCursor, colCursor,
 dataCursor);
 }
 } while (pageCursor.next());

 // Reset this page dimension Cursor to its first element.
 pageCursor.setPosition(1);
}

// Prints the values of the page dimensions on each page
private void printPageHeadings(List pageCursors) {
 // Print the values of the page dimensions
 Iterator pageIter = pageCursors.iterator();
 while (pageIter.hasNext())
 output.println(((ValueCursor) pageIter.next()).getCurrentValue());
 output.println();
}

// Prints the column headings on each page
private void printColumnHeadings(Cursor colCursor) {
 do {
 output.print("\t");
 output.print(((ValueCursor) colCursor).getCurrentValue());
 } while (colCursor.next());
 output.println();
 colCursor.setPosition(1);
}

// Prints the rows of each page
private void printRows(Cursor rowCursor, Cursor colCursor,
 ValueCursor dataCursor) {
Retrieving Query Results 9-17

Navigating a CompoundCursor for Different Displays of Data
 // Loop over rows
 do {
 // Print row dimension value
 output.print(((ValueCursor) rowCursor).getCurrentValue());
 output.print("\t");
 // Loop over columns
 do {
 // Print data value
 output.print(dataCursor.getCurrentValue());
 output.print("\t");
 } while (colCursor.next());
 output.println();

 // Reset the column Cursor to its first element
 colCursor.setPosition(1);
 } while (rowCursor.next());

 // Reset the row Cursor to its first element
 rowCursor.setPosition(1);
}

The crosstab output of Example 9–8 looks like the following.

Promotion total
Direct
2000-Q1

 FR UK US
Outerwear - Men 750563.50 938014.00 12773925.50
Outerwear - Women 984461.00 1388755.50 15421979.00
Outerwear - Boys 693382.00 799452.00 9183052.00
Outerwear - Girls 926520.50 977291.50 11854203.00

Promotion total
Direct
2000-Q2

 FR UK US
Outerwear - Men 683521.00 711945.00 9947221.50
Outerwear - Women 840024.50 893587.50 12484221.00
Outerwear - Boys 600382.50 755031.00 8791240.00
Outerwear - Girls 901558.00 909421.50 9975927.00
9-18 Oracle9i OLAP Developer’s Guide to the OLAP API

Specifying the Behavior of a Cursor
Specifying the Behavior of a Cursor
You can specify the following aspects of the behavior of a Cursor.

■ The fetch size of a Cursor, which is the number of elements of the result set that
the Cursor retrieves during one fetch operation.

■ The shape of the fetch block of a Cursor. The fetch block is the set of elements of
each descendent ValueCursor that the parent CompoundCursor retrieves.
The shape of the fetch block is the levels of the CompoundCursor at which you
set the fetch sizes.

■ Whether Oracle OLAP calculates the extent of the Cursor. The extent is the
total number of positions of the Cursor. If the Cursor is a child Cursor of a
CompoundCursor, its extent is relative to any slower varying outputs.

■ Whether Oracle OLAP calculates the positions in the parent Cursor at which
the value of a child Cursor starts or ends.

To specify the behavior of Cursor, you use methods on the
CursorSpecification for that Cursor. To get the CursorSpecification for
a Cursor, you use methods on the CursorManagerSpecification that you
create for a Source.

For more information on the relationships of Source, Cursor,
CursorSpecification, and CursorManagerSpecification objects or the
concepts of fetch size, extent, or Cursor positions, see Chapter 8.

Example 9–9 creates a Source, creates a CursorManagerSpecification for the
Source, and then gets the CursorSpecification objects from a
CursorManagerSpecification. The root CursorSpecification is the
CursorSpecification for the top-level CompoundCursor.

Note: Specifying the calculation of the extent or the starting or
ending position in a parent Cursor of the current value of a child
Cursor can be a very expensive operation. The calculation can
require considerable time and computing resources. You should
only specify these calculations when your application needs them.
Retrieving Query Results 9-19

Specifying the Behavior of a Cursor
Example 9–9 Getting CursorSpecification Objects from a
CursorManagerSpecification

Source salesAmountsForSelections = salesAmount.join(customerSel)
 .join(productSel);
 .join(timeSel);
 .join(channelSel);
 .join(promotionSel);
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create a Cursor for salesAmountsForSelections
CursorManagerSpecification cursorMngrSpec =

 dp.createCursorManagerSpecification(salesAmountsForSelections);

// Get the root CursorSpecification of the CursorManagerSpecification.
CompoundCursorSpecification rootCursorSpec =
(CompoundCursorSpecification) cursorMngrSpec.getRootCursorSpecification();

// Get the CursorSpecification for the base values
ValueCursorSpecification baseValueSpec =
 rootCursorSpec.getValueCursorSpecification();

// Get the CursorSpecification objects for the outputs
List outputSpecs = rootCursorSpec.getOutputs();
ValueCursorSpecification promoSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(0);
ValueCursorSpecification chanSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(1);
ValueCursorSpecification timeSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(2);
ValueCursorSpecification prodSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(3);
ValueCursorSpecification custSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(4);

Once you have the CursorSpecification objects, you can use their methods to
specify the behavior of the Cursor objects that correspond to them.
9-20 Oracle9i OLAP Developer’s Guide to the OLAP API

Calculating Extent and Starting and Ending Positions of a Value
Calculating Extent and Starting and Ending Positions of a Value
To manage the display of the result set retrieved by a CompoundCursor, you
sometimes need to know the extent of its child Cursor components. You might also
want to know the position at which the current value of a child Cursor starts in its
parent CompoundCursor. You might want to know the span of the current value of
a child Cursor. The span is the number of positions of the parent Cursor that the
current value of the child Cursor occupies. You can calculate the span by
subtracting the starting position of the value from its ending position and
subtracting 1.

Before you can get the extent of a Cursor or get the starting or ending positions of
a value in its parent Cursor, you must specify that you want Oracle OLAP to
calculate the extent or those positions. To specify the performance of those
calculations, you use methods on the CursorSpecification for the Cursor.

Example 9–10 specifies calculating the extent of a Cursor. The example uses the
CursorManagerSpecification from Example 9–9.

Example 9–10 Specifying the Calculation of the Extent of a Cursor

CompoundCursorSpecification rootCursorSpec =
(CompoundCursorSpecification) cursorMngrSpec.getRootCursorSpecification();
rootCursorSpec.setExtentCalculationSpecified(true);

You can use methods on a CursorSpecification to determine whether the
CursorSpecification specifies the calculation of the extent of a Cursor as in
the following example.

boolean isSet = rootCursorSpec.isExtentCalculationSpecified();

Example 9–11 specifies calculating the starting and ending positions of the current
value of a child Cursor in its parent Cursor. The example uses the
CursorManagerSpecification from Example 9–9.
Retrieving Query Results 9-21

Calculating Extent and Starting and Ending Positions of a Value
Example 9–11 Specifying the Calculation of Starting and Ending Positions in a Parent

CompoundCursorSpecification rootCursorSpec =
(CompoundCursorSpecification) cursorMngrSpec.getRootCursorSpecification();

// Get the List of CursorSpecification objects for the outputs.
// Iterate through the list, specifying the calculation of the extent
// for each output CursorSpecification.
Iterator iterOutputSpecs = rootCursorSpec.getOutputs().iterator();
ValueCursorSpecification valCursorSpec = (ValueCursorSpecification)
 iterOutputSpecs.next();
while(iterOutputSpecs.hasNext()) {
 valCursorSpec.setParentStartCalculationSpecified(true);
 valCursorSpec.setParentEndCalculationSpecified(true);
 valCursorSpec = (ValueCursorSpecification) iterOutputSpecs.next();
}

You can use methods on a CursorSpecification to determine whether the
CursorSpecification specifies the calculation of the starting or ending
positions of the current value of a child Cursor in its parent Cursor, as in the
following example.

boolean isSet;
Iterator iterOutputSpecs = rootCursorSpec.getOutputs().iterator();
ValueCursorSpecification valCursorSpec = (ValueCursorSpecification)
 iterOutputSpecs.next();
while(iterOutputSpecs.hasNext()) {
 isSet = valCursorSpec.isParentStartCalculationSpecified();
 isSet = valCursorSpec.isParentEndCalculationSpecified();
 valCursorSpec = (ValueCursorSpecification) iterOutputSpecs.next();
}

Example 9–12 determines the span of the positions in a parent CompoundCursor of
the current value of a child Cursor for two of the outputs of the
CompoundCursor. The example uses the salesAmountsForSelections
Source from Example 9–8.

The example gets the starting and ending positions of the current values of the time
and product selections and then calculates the span of those values in the parent
Cursor. The parent is the root CompoundCursor. The TransactionProvider is
tp, the DataProvider is dp, and output is a PrintWriter.
9-22 Oracle9i OLAP Developer’s Guide to the OLAP API

Calculating Extent and Starting and Ending Positions of a Value
Example 9–12 Calculating the Span of the Positions in the Parent of a Value

Source salesAmountsForSelections = salesAmount.join(customerSel)
 .join(productSel);
 .join(timeSel);
 .join(channelSel);
 .join(promotionSel);
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create a CursorManagerSpecification for salesAmountsForSelections
CursorManagerSpecification cursorMngrSpec =

 dp.createCursorManagerSpecification(salesAmountsForSelections);

 // Get the root CursorSpecification from the CursorManagerSpecification.
CompoundCursorSpecification rootCursorSpec =
(CompoundCursorSpecification) cursorMngrSpec.getRootCursorSpecification();
// Get the CursorSpecification objects for the outputs
List outputSpecs = rootCursorSpec.getOutputs();
ValueCursorSpecification timeSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(2); \\ output for time
ValueCursorSpecification prodSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(3) \\ output for product

// Specify the calculation of the starting and ending positions
timeSelValCSpec.setParentStartCalculationSpecified(true);
timeSelValCSpec.setParentEndCalculationSpecified(true);
prodSelValCSpec.setParentStartCalculationSpecified(true);
prodSelValCSpec.setParentEndCalculationSpecified(true);

// Create the CursorManager and the Cursor
SpecifiedCursorManager cursorMngr = dp.createCursorManager(cursorMngrSpec);
CompoundCursor cursor = (CompoundCursor) cursorMngr.createCursor();
Retrieving Query Results 9-23

Specifying Fetch Sizes and Fetch Blocks
// Get the child Cursor objects
ValueCursor baseValCursor = cursor.getValueCursor();
List outputs = cursor.getOutputs();
ValueCursor promoSelVals = (ValueCursor) outputs.get(0);
ValueCursor chanSelVals = (ValueCursor) outputs.get(1);
ValueCursor timeSelVals = (ValueCursor) outputs.get(2);
ValueCursor custSelVals = (ValueCursor) outputs.get(3);
ValueCursor prodSelVals = (ValueCursor) outputs.get(4);

// Set the position of the root CompoundCursor
cursor.setPosition(15);
/*
 * Get the values at the current position and determine the span
 * of the values of the time and product outputs.
 */
output.print(promoSelVals.getCurrentValue() + ", ");
output.print(chanSelVals.getCurrentValue() + ", ");
output.print(timeSelVals.getCurrentValue() + ", ");
output.print(custSelVals.getCurrentValue() + ", ");
output.print(prodSelVals.getCurrentValue() + ", ");
output.println(baseValCursor.getCurrentValue());

// Determine the span of the values of the two fastest varying outputs
int span;
span = (prodSelVals.getParentEnd() - prodSelVals.getParentStart()) -1);
output.println("The span of " + prodSelVals.getCurrentValue() +
" at the current position is " + span + ".")
span = (timeSelVals.getParentEnd() - timeSelVals.getParentStart()) -1);
output.println("The span of " + timeSelVals.getCurrentValue() +
" at the current position is " + span + ".")
cursorMngr.close();

This example produces the following output.

Promotion total, Direct, 2000-Q1, Outerwear - Men, US, 9947221.50
The span of Outerwear - Men at the current position is 3.
The span of 2000-Q2 at the current position is 12.

Specifying Fetch Sizes and Fetch Blocks
The number of elements of a Cursor that Oracle OLAP sends to the client
application during one fetch operation depends on the fetch size specified for that
Cursor. For a CompoundCursor, you can set the fetch size on the
CompoundCursor itself or at one or more levels of its descendent Cursor
9-24 Oracle9i OLAP Developer’s Guide to the OLAP API

Specifying Fetch Sizes and Fetch Blocks
components. Setting the fetch size on a CompoundCursor specifies that fetch size
for its child Cursor components.

The set of elements the Cursor retrieves in a single fetch is the fetch block. The
shape of the fetch block is determined by the set of Cursor components on which
you set the fetch sizes. For more information on fetch sizes and fetch blocks, see
Chapter 8.

You specify the shape of the fetch block and the specific fetch sizes according to the
needs of your display of the data. To display the results of a query in a table view,
you specify the fetch size on the top-level CompoundCursor.

To display the results in a crosstab view, you specify the fetch sizes on the children
of the top-level CompoundCursor. For a crosstab that displays the results of a
query that has nested levels of outputs, you might specify fetch sizes at different
levels of the children of the component CompoundCursor objects.

You use methods on a CursorSpecification to set the default fetch size for its
Cursor. For a CompoundCursorSpecification, you can specify setting the
fetch sizes on its children and thereby determine the shape of the fetch block.

If a default fetch size is set on a CursorSpecification, you can use the
setFetchSize method on the Cursor for that CursorSpecification to
change the fetch size of the Cursor. By default, the root CursorSpecification
of a CursorManagerSpecification has the fetch size set to 100.

Example 9–13 creates a Source that represents the sales amount measure values as
specified by selections of values from the dimensions of the measure. The product
and customer selections each have ten values, the time selection has four values,
and the promotion and channel selections each have one value. Assuming that a
sales amount exists for each set of dimension values, the result set of the query has
300 elements (10*10*3*1*1).

To match a display of the elements that contains only twenty rows, the example sets
a fetch size of twenty elements on the top-level CompoundCursor. Because the
default fetch size is automatically set on the root CursorSpecification, which
in this example is the CompoundCursorSpecification for the top-level
CompoundCursor, the example just uses the setFetchSize method on the
CompoundCursor to change the fetch size. The fetch block is the set of output and
base values specified by twenty positions of the top-level CompoundCursor. The
TransactionProvider is tp and the DataProvider is dp.
Retrieving Query Results 9-25

Specifying Fetch Sizes and Fetch Blocks
Example 9–13 Specifying the Fetch Size and Fetch Block for a Table View

Source salesAmountsForSelections = salesAmount.join(customerSel)
 .join(productSel);
 .join(timeSel);
 .join(channelSel);
 .join(promotionSel);
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create a Cursor for salesAmountsForSelections
CursorManagerSpecification cursorMngrSpec =

 dp.createCursorManagerSpecification(salesAmountsForSelections);
SpecifiedCursorManager cursorMngr = dp.createCursorManager(cursorMngrSpec);
Cursor cursor = cursorMngr.createCursor();

// Set the fetch size of the top-level CompoundCursor to 20
cursor.setFetchSize(20);

Example 9–14 modifies the example in Example 9–7. In Example 9–14, the number
of times that the for loops are repeated depends upon the extent of the Cursor. As
the conditional statement of the for loops, instead of specifying the number of
positions that the Cursor has, this example gets the extent of the Cursor and uses
the extent as the condition. The optimal fetch block for the crosstab display is a fetch
block that contains, for each position of the CompoundCursor, the extent of the
child Cursor elements at that position.

This example creates a CursorManagerSpecification and gets the root
CursorSpecification. It casts the root CursorSpecification as a
CompoundCursorSpecification. The example specifies setting the default fetch
sizes on the children of the root CompoundCursorSpecification and it specifies
the calculation of its extent.

The example sets the fetch size on each output ValueCursor equal to the extent of
the ValueCursor. It then gets the displayable portion of the crosstab by looping
through the positions of the child ValueCursor objects.
9-26 Oracle9i OLAP Developer’s Guide to the OLAP API

Specifying Fetch Sizes and Fetch Blocks
Example 9–14 Using Extents To Specify the Fetch Sizes for a Crosstab View

Source unitPriceByDay = unitPrice.join(productSel)
 .join(timeSel);
try{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e){
 output.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

// Create a CursorManagerSpecification for unitPriceByDay
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(unitPriceByDay);

// Get the root CursorSpecification and cast it to a
// CompoundCursorSpecification
CompoundCursorSpecification rootSpec =
(CompoundCursorSpecification) cursorMngrSpec.getRootCursorSpecification();

// Specify setting the fetch size on the child Cursor objects
// and calculating the extent of the positions in the Cursor
rootSpec.specifyDefaultFetchSizeOnChildren();
rootSpec.setExtentCalculationSpecified(true);

// Create the CursorManager and the Cursor
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor unitPriceByDayCursor = cursorMngr.createCursor();

// Cast the Cursor to a CompoundCursor
CompoundCursor rootCursor = (CompoundCursor) unitPriceByDayCursor;

// Determine a starting position and the number of rows to display.
// The position in columnCursor at which the current display starts
// is colStart and rowStart is the position in rowCursor at which
// the current display starts.
int colStart = 1;
int rowStart = 1;
String productValue;
String timeValue;
double price;
Retrieving Query Results 9-27

Specifying Fetch Sizes and Fetch Blocks
// The number of values from the ValueCursor objects for products and
// days are now initialized as 1 because the ValueCursor objects have
// at least one element.
int numProducts = 1;
int numDays = 1;

// Get the ValueCursor and the outputs
CompoundCursor rootCursor = (CompoundCursor) unitPriceByDayCursor;
List outputs = rootCursor.getOutputs();
// The first output has the values of timeSel, the slower varying output
ValueCursor rowCursor = (ValueCursor) outputs.get(0);
// The second output has the faster varying values of productSel
ValueCursor columnCursor = (ValueCursor) outputs.get(1);
ValueCursor unitPriceValues = rootCursor.getValueCursor();// Prices

// Loop through the positions of the faster varying output Cursor
for(int pPos = colStart; pPos < colStart + numProducts; pPos++) {
columnCursor.setPosition(pPos);

 // Get the extents of the output ValueCursor objects
numProducts = columnCursor.getExtent();
numDays = rowCursor.getExtent();

 // Set the fetch sizes
columnCursor.setFetchSize(numProducts);
rowCursor.setFetchSize(numMonths);

 // Loop through the positions of the slower varying output Cursor
for(int tPos = rowStart; tPos < rowStart + numDays; tPos++) {
rowCursor.setPosition(tPos);

 // Get the values. Sending the values to the appropriate
 // display mechanism is not shown.

productValue = columnCursor.getCurrentString();
timeValue = rowCursor.getCurrentString();
price = unitPriceValues.getCurrentDouble();

 }
}

9-28 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating Dynamic Que
10

 Creating Dynamic Queries

This chapter describes the Oracle OLAP API Template class and its related classes,
which you use to create dynamic queries. This chapter also provides examples of
implementations of those classes.

This chapter includes the following topics:

■ About Template Objects

■ Overview of Template and Related Classes

■ Designing and Implementing a Template
ries 10-1

About Template Objects
About Template Objects
The Template class is the basis of a very powerful feature of the Oracle OLAP API.
You use Template objects to create modifiable Source objects. With those Source
objects, you can create dynamic queries that can change in response to end-user
selections. Template objects also offer a convenient way for you to translate
user-interface elements into OLAP API operations and objects.

These features are briefly described below. The rest of this chapter describes the
Template class and the other classes you use to create dynamic Source objects.
For information on the Transaction objects that you use to make changes to the
dynamic Source and to either save or discard those changes, see Chapter 7.

About Creating a Dynamic Source
The main feature of a Template is its ability to produce a dynamic Source. That
ability is based on two of the other objects that a Template uses: instances of the
DynamicDefinition and MetadataState classes.

When a Source is created, a SourceDefinition is automatically created. The
SourceDefinition has information about how the Source was created. Once
created, the Source and its SourceDefinition are paired immutably. The
getSource method of a SourceDefinition gets its paired Source.

DynamicDefinition is a subclass of SourceDefinition. A Template creates a
DynamicDefinition, which acts as a proxy for the SourceDefinition of the
Source produced by the Template. This means that instead of always getting the
same immutably paired Source, the getSource method on the
DynamicDefinition gets whatever Source is currently produced by the
Template. The instance of the DynamicDefinition does not change even
though the Source that it gets is different.

The Source that a Template produces can change because the values, including
other Source objects, that the Template uses to create the Source can change. A
Template stores those values in a MetadataState. A Template provides
methods to get the current state of the MetadataState, to get or set a value, and to
set the state. You use those methods to change the data values the MetadataState
stores.

You use a DynamicDefinition to get the Source produced by a Template. If
your application changes the state of the values that the Template uses to create
the Source, for example, in response to end-user selections, then the application
uses the same DynamicDefinition to get the Source again, even though the
new Source defines a result set different than the previous Source.
10-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of Template and Related Classes
The Source produced by a Template can be the result of a series of Source
operations that create other Source objects, such as a series of selections, sorts,
calculations, and joins. You put the code for those operations in the
generateSource method of a SourceGenerator for the Template. That
method returns the Source produced by the Template. The operations use the
data stored in the MetadataState.

You might build an extremely complex query that involves the interactions of
dynamic Source objects produced by many different Template objects. The end
result of the query building is a Source that defines the entire complex query. If
you change the state of any one of the Template objects that you used to create the
final Source, then the final Source represents a result set different than that of the
previous Source. You can thereby modify the final query without having to
reproduce all of the operations involved in defining the query.

About Translating User Interface Elements into OLAP API Objects
You design Template objects to represent elements of the user interface of an
application. Your Template objects turn the selections that the end user makes into
OLAP API query-building operations that produce a Source. You then create a
Cursor to fetch the result set defined by the Source from Oracle OLAP. You get
the values from the Cursor and display them to the end user. When an end user
makes changes to the selections, you change the state of the Template. You then
get the Source produced by the Template, create a new Cursor, get the new
values, and display them.

Overview of Template and Related Classes
In the OLAP API, several classes work together to produce a dynamic Source. In
designing a Template, you must implement or extend the following:

■ The Template abstract class

■ The MetadataState interface

■ The SourceGenerator interface

Instances of those three classes, plus instances of other classes that Oracle OLAP
creates, work together to produce the Source that the Template defines. The
Creating Dynamic Queries 10-3

Overview of Template and Related Classes
classes that Oracle OLAP provides, which you create by calling factory methods, are
the following:

■ DataProvider

■ DynamicDefinition

What Is the Relationship Between the Classes That Produce a Dynamic Source?
The classes that produce a dynamic Source work together as follows:

■ A Template has methods that create a DynamicDefinition and that get and
set the current state of a MetadataState. An extension to the Template
abstract class adds methods that get and set the values of fields on the
MetadataState.

■ The MetadataState implementation has fields for storing the data to use in
generating the Source for the Template. When you create a new Template,
you pass the MetadataState to the constructor of the Template. When you
call the getSource method on the DynamicDefinition, the
MetadataState is passed to the generateSource method on the
SourceGenerator.

■ The DataProvider is used in creating a Template and by the
SourceGenerator in creating new Source objects.

■ The SourceGenerator implementation has a generateSource method that
uses the current state of the data in the MetadataState to produce a Source
for the Template. You pass in the SourceGenerator to the
createDynamicDefinition method on the Template to create a
DynamicDefinition.

■ The DynamicDefinition has a getSource method that gets the Source
produced by the SourceGenerator. The DynamicDefinition serves as a
proxy for the immutably paired SourceDefinition of that Source.

Figure 10–1 illustrates the relationship of the classes described in the preceding list.
The arrows on the right indicate that the DataProvider and MetadataState
objects are passed to the Template constructor and that the SourceGenerator is
passed to the createDynamicDefinition method on the Template. The arrows
on the left indicate that a DynamicDefinition is returned by the
createDynamicDefinition method and that the same Source is returned by
the generateSource method on the SourceGenerator and the getSource
method on the DynamicDefinition.
10-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of Template and Related Classes
Figure 10–1 The Relationship of the Classes That Produce a Dynamic Source

<<interface>>
SourceGenerator

generateSource(MetadataState state) : Source

DynamicDefinition

acceptVisitor(DataDescriptionDefinitionVisitor visitor, Object context) : Object
getCurrent() : SourceDefinition
getDataDescriptor() : DataDescriptor
getSource() : Source
getSourceGenerator() : SourceGenerator
getTemplate() : Template

Template(MetadataState initialState, DataProvider dataProvider)

Template

createDynamicDefinition(SourceGenerator sourceGenerator) :
 DynamicDefinition
getCurrentState() : MetadataState
setCurrentState(MetadataState state) : void

SourceGenerator passed to
createDynamicDefinition.

Source

//Methods not shown

The generateSource method
produces the Source returned
by the getSource method on
DynamicDefinition.

<<interface>>
MetadataState

clone() : Object

DataProvider and
initial MetadataState
passed to Template
constructor.

DataProvider

//Methods not shown

Template creates a
DynamicDefinition based
on the SourceGenerator
passed in.

The generateSource
method uses the
MetadataState from
the Template.
Creating Dynamic Queries 10-5

Overview of Template and Related Classes
Template Class
You use a Template to produce a modifiable Source. A Template has methods
for creating a DynamicDefinition and for getting and setting the current state of
the Template. In extending the Template class, you add methods that provide
access to the fields on the MetadataState for the Template. The Template
creates a DynamicDefinition that you use to get the Source produced by the
SourceGenerator for the Template.

For an example of a Template implementation, see Example 10–1 on page 10-9.

MetadataState Interface
An implementation of the MetadataState interface stores the current state of the
values for a Template. A MetadataState must include a clone method that
creates a copy of the current state.

When instantiating a new Template, you pass a MetadataState to the
Template constructor. The Template has methods for getting and setting the
values stored by the MetadataState. The generateSource method on the
SourceGenerator for the Template uses the MetadataState when the method
produces a Source for the Template.

For an example of a MetadataState implementation, see Example 10–2 on
page 10-12.

SourceGenerator Interface
An implementation of SourceGenerator must include a generateSource
method, which produces a Source for a Template. A SourceGenerator must
produce only one type of Source, such as a BooleanSource, a NumberSource,
or a StringSource. In producing the Source, the generateSource method
uses the current state of the data represented by the MetadataState for the
Template.

To get the Source produced by the generateSource method, you create a
DynamicDefinition by passing the SourceGenerator to the
createDynamicDefinition method on the Template. You then get the Source
by calling the getSource method on the DynamicDefinition.

A Template can create more than one DynamicDefinition, each with a
differently implemented SourceGenerator. The generateSource methods on
the different SourceGenerator objects use the same data, as defined by the
10-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template
current state of the MetadataState for the Template, to produce Source objects
that define different queries.

For an example of a SourceGenerator implementation, see Example 10–3 on
page 10-13.

DynamicDefinition Class
DynamicDefinition is a subclass of SourceDefinition. You create a
DynamicDefinition by calling the createDynamicDefinition method on a
Template and passing it a SourceGenerator. You get the Source produced by
the SourceGenerator by calling the getSource method on the
DynamicDefinition.

A DynamicDefinition created by a Template is a proxy for the
SourceDefinition of the Source produced by the SourceGenerator. The
SourceDefinition is immutably paired to its Source. If the state of the
Template changes, then the Source produced by the SourceGenerator is
different. Because the DynamicDefinition is a proxy, you use the same
DynamicDefinition to get the new Source even though that Source has a
different SourceDefinition.

The getCurrent method of a DynamicDefinition returns the
SourceDefinition immutably paired to the Source that the generateSource
method currently returns. For an example of the use of a DynamicDefinition,
see Example 10–4 on page 10-15.

Designing and Implementing a Template
The design of a Template reflects the query-building elements of the user interface
of an application. For example, suppose you want to develop an application that
allows the end user to create a query that requests a number of values from the top
or bottom of a list of values. The values are from one dimension of a measure. The
other dimensions of the measure are limited to single values.
Creating Dynamic Queries 10-7

Designing and Implementing a Template
The user interface of your application has a dialog box that allows the end user to
do the following:

■ Select a radio button that specifies whether the data values should be from the
top or bottom of the range of values.

■ Select a measure from a drop-down list of measures.

■ Select a number from a field. The number specifies the number of data values to
display.

■ Select one of the dimensions of the measure as the base of the data values to
display. For example, if the user selects the product dimension, then the query
specifies some number of products from the top or bottom of the list of
products. The list is determined by the measure and the selected values of the
other dimensions.

■ Click a button to bring up a Single Selections dialog box through which the end
user selects the single values for the other dimensions of the selected measure.
After selecting the values of the dimensions, the end user clicks an OK button
on the second dialog box and returns to the first dialog box.

■ Click an OK button to generate the query. The results of the query appear.

To generate a Source that represents the query that the end user creates in the first
dialog box, you design a Template called TopBottomTemplate. You also design
a second Template, called SingleSelectionTemplate, to create a Source that
represents the end user’s selections of single values for the dimensions other than
the base dimension. The designs of your Template objects reflect the user interface
elements of the dialog boxes.

In designing the TopBottomTemplate and its MetadataState and
SourceGenerator, you do the following:

■ Create a class called TopBottomTemplate that extends Template. To the
class, you add methods that get the current state of the Template, set the
values specified by the user, and then set the current state of the Template.

■ Create a class called TopBottomTemplateState that implements
MetadataState. You provide fields on the class to store values for the
SourceGenerator to use in generating the Source produced by the
Template. The values are set by methods of the TopBottomTemplate.

■ Create a class called TopBottomTemplateGenerator that implements
SourceGenerator. In the generateSource method of the class, you provide
the operations that create the Source specified by the end user’s selections.
10-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template
Using your application, an end user selects sales amount as the measure and
products as the base dimension in the first dialog box. From the Single Selections
dialog box, the end user selects customers from San Francisco, the first quarter of
2000, the direct channel, and billboard promotions as the single values for each of
the remaining dimensions.

The query that the end user has created requests the ten products that have the
highest total sales amount values of those sold through the direct sales channel to
customers from San Francisco during the first calendar quarter of the year 2000
while a billboard promotion was occurring.

For examples of implementations of the TopBottomTemplate,
TopBottomTemplateState, and TopBottomTemplateGenerator objects, and
an example of an application that uses them, see Example 10–1, Example 10–2,
Example 10–3, and Example 10–4.

Implementing the Classes for a Template
Example 10–1 is an implementation of the TopBottomTemplate class.

Example 10–1 Implementing a Template

package myTestPackage;

import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.DynamicDefinition;
import oracle.olapi.data.source.Source;
import oracle.olapi.data.source.Template;
import oracle.olapi.transaction.metadataStateManager.MetadataState;

/**
* Creates a TopBottomTemplateState, a TopBottomTemplateGenerator,
* and a DynamicDefinition. Gets the current state of the
* TopBottomTemplateState and the values it stores. Sets the data values
 * stored by the TopBottomTemplateState and sets the changed state as
 * the current state.
*/
public class TopBottomTemplate extends Template {
public static final int TOP_BOTTOM_TYPE_TOP = 0;
public static final int TOP_BOTTOM_TYPE_BOTTOM = 1;

// Variable to store the DynamicDefinition.
private DynamicDefinition _definition;
Creating Dynamic Queries 10-9

Designing and Implementing a Template
/**
* Creates a TopBottomTemplate with default type and number values
* and a specified base dimension.
*/
public TopBottomTemplate(Source base, DataProvider dataProvider) {
super(new TopBottomTemplateState(base, TOP_BOTTOM_TYPE_TOP, 0),

dataProvider);
// Create the DynamicDefinition for this Template. Create the
// TopBottomTemplateGenerator that the DynamicDefinition uses.
_definition =
createDynamicDefinition(new TopBottomTemplateGenerator(dataProvider));

}

/**
* Gets the Source produced by the TopBottomTemplateGenerator
* from the DynamicDefinition.
*/
public final Source getSource() {
return _definition.getSource();

}

/**
* Gets the Source that is the base of the values in the result set.
* Returns null if the state has no base.
*/
public Source getBase() {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
return state.base;

}

/**
 * Sets a Source as the base.

*/
public void setBase(Source base) {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
state.base = base;
setCurrentState(state);

}

10-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template
/**
* Gets the Source that specifies the measure and the single
* selections from the dimensions other than the base.
*/
public Source getCriterion() {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
return state.criterion;

}

/**
* Specifies a Source that defines the measure and the single values
* selected from the dimensions other than the base.
* The SingleSelectionTemplate produces such a Source.
*/
public void setCriterion(Source criterion) {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
state.criterion = criterion;
setCurrentState(state);

}

/**
* Gets the type, which is either TOP_BOTTOM_TYPE_TOP or
* TOP_BOTTOM_TYPE_BOTTOM.
*/
public int getTopBottomType() {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
return state.topBottomType;

}

/**
* Sets the type.
*/
public void setTopBottomType(int topBottomType) {
if ((topBottomType < TOP_BOTTOM_TYPE_TOP) ||

(topBottomType > TOP_BOTTOM_TYPE_BOTTOM))
throw new IllegalArgumentException("InvalidTopBottomType");

TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
state.topBottomType = topBottomType;
setCurrentState(state);

}

Creating Dynamic Queries 10-11

Designing and Implementing a Template
/**
* Gets the number of values selected.
*/
public float getN() {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
return state.N;

}

/**
* Sets the number of values to select.
*/
public void setN(float N) {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
state.N = N;
setCurrentState(state);

}
}

Example 10–2 is an implementation of the TopBottomTemplateState class
described earlier.

Example 10–2 Implementing a MetadataState

package myTestPackage;

import oracle.olapi.data.source.Source;
import oracle.olapi.transaction.metadataStateManager.MetadataState;

/**
* Stores data that can be changed by its TopBottomTemplate.
* The data is used by a TopBottomTemplateGenerator in producing
* a Source for the TopBottomTemplate.
*/
public final class TopBottomTemplateState

 implements Cloneable, MetadataState {
public int topBottomType;
public float N;
public Source criterion;
public Source base;
10-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template
/**
* Creates a TopBottomTemplateState.
*/
public TopBottomTemplateState(Source base, int topBottomType, float N) {
this.base = base;
this.topBottomType = topBottomType;
this.N = N;

}

/**
* Creates a copy of this TopBottomTemplateState.
*/
public final Object clone() {
try {

return super.clone();
}
catch(CloneNotSupportedException e) {

return null;
}

}
}

Example 10–3 is an implementation of the TopBottomTemplateGenerator class
described earlier.

Example 10–3 Implementing a SourceGenerator

package myTestPackage;

import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.Source;
import oracle.olapi.data.source.SourceGenerator;
import java.lang.Math;

/**
* Produces a Source for a TopBottomTemplate based on the data
* values of a TopBottomTemplateState.
*/
public final class TopBottomTemplateGenerator

implements SourceGenerator {
// Store the DataProvider.
private DataProvider _dataProvider;
Creating Dynamic Queries 10-13

Designing and Implementing a Template
/**
* Creates a TopBottomTemplateGenerator.
*/
public TopBottomTemplateGenerator(DataProvider dataProvider) {
_dataProvider = dataProvider;

}

/**
* Generates a Source for a TopBottomTemplate using the current
* state of the data values stored by the TopBottomTemplateState.
*/
public Source generateSource(MetadataState state) {
TopBottomTemplateState castState = (TopBottomTemplateState)state;
if (castState.criterion == null)

throw new NullPointerException("CriterionParameterMissing");
Source sortedBase = null;
if (castState.topBottomType == TOP_BOTTOM_TYPE_TOP)

sortedBase = castState.base.sortDescending(castState.criterion);
else

sortedBase = castState.base.sortAscending(castState.criterion);
return sortedBase.interval(1, Math.round(castState.N));

}
}

Implementing an Application That Uses Templates
After you have stored the selections made by the end user in the MetadataState
for the Template, use the getSource method on the DynamicDefinition to get
the Source created by the Template. This section provides an example of an
application that uses the TopBottomTemplate described in Example 10–1. For
brevity, the code does not contain much exception handling.

 The Context class used in the example has methods that do the following:

■ Connects to Oracle OLAP.

■ Opens a database.

■ Gets metadata objects for the measure and the dimensions selected by the end
user.

■ Gets primary Source objects from the metadata objects.
10-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template
The example does the following:

■ Gets primary Source objects from the Context.

■ Creates a SingleSelectionTemplate for selecting single values from some
of the dimensions of the measure.

■ Creates a TopBottomTemplate and stores selections made by the end user.

■ Gets the Source produced by the TopBottomTemplate.

■ Creates a Cursor for that Source.

■ Gets the values from the Cursor and displays them.

Example 10–4 does not include the code for interacting with the end user or for
implementing the SingleSelectionTemplate or the MetadataState and
SourceGenerator objects for the SingleSelectionTemplate. The example
class has a method for creating a Cursor and a method for printing the values of
the Cursor. All other operations occur in the main method. The Context object
supplies the connection to the database, the DataProvider and the
TransactionProvider, and primary Source objects.

Example 10–4 Getting the Source Produced by the Template

package myTestPackage;

import oracle.olapi.data.source.Source;
import oracle.olapi.data.source.StringSource;
import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.CursorManagerSpecification;
import oracle.olapi.data.cursor.CursorManager;
import oracle.olapi.data.source.SpecifiedCursorManager;
import oracle.olapi.data.cursor.Cursor;
import oracle.olapi.data.cursor.ValueCursor;
import oracle.olapi.transaction.NotCommittableException;
import myTestPackage.Context;
import myTestPackage.TopBottomTemplate;
import myTestPackage.SingleSelectionTemplate;
Creating Dynamic Queries 10-15

Designing and Implementing a Template
/**
* Creates a query that specifies a number of values from the top or
* bottom of a list of values from one of the dimensions of a measure.
* The list is determined by the measure and by single values from
* the other dimensions of the measure. Displays the results of the
* query.
*/
public class TopBottomTest {
/**
* Prints the values of the Cursor.
*/
public static void printCursor(Cursor cursor) {

 // Because the result is a single set of values with no outputs,
// cast the Cursor to a ValueCursor and print out the values.
ValueCursor valueCursor = (ValueCursor) cursor;
int i = 1;
do {

System.out.println(i + ". " + valueCursor.getCurrentValue());
i++;

} while(valueCursor.next());
}

/**
* Creates a Cursor.
*/
public static void createCursor(Source choice, DataProvider dp) {
CursorManagerSpecification cursorMngrSpec =

 dp.createCursorManagerSpecification(choice);
SpecifiedCursorManager cursorManager =

 dp.createCursorManager(cursorMngrSpec);
Cursor cursor = cursorManager.createCursor();
// Print the values of the Cursor.
printCursor(cursor);
// Close the CursorManager.
cursorManager.close();

}

10-16 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template
public static void main(String[] args) {

 // Create a Context object and from it get the DataProvider and
 // the primary Source objects for the measure and the dimensions.
 Context context = new Context();
 DataProvider dp = context.getDataProvider();
 Source[] sources = context.getPrimarySourcesByName(
 new String[]{"SALES_AMOUNT", "PRODUCTS_DIM", "CUSTOMERS_DIM",
 "CHANNELS_DIM", "TIMES_DIM", "PROMOTIONS_DIM"});
 Source salesAmount = sources[0];
 StringSource product = (StringSource)sources[1];
 StringSource customer = (StringSource)sources[2];
 StringSource channel = (StringSource)sources[3];
 StringSource time = (StringSource)sources[4];
 StringSource promo = (StringSource)sources[5];

// Create a SingleSelectionTemplate to produce a Source that
// specifies a single value for each of the dimensions other
// than the base for the selected measure.
SingleSelectionTemplate singleSelections =

 new SingleSelectionTemplate(salesAmount, dp);
singleSelections.addSelection((StringSource) customer,

 "San Francisco");
singleSelections.addSelection((StringSource) time, "2000-Q1");

 // S is the direct sales channel
singleSelections.addSelection((StringSource) channel, "S");

 singleSelections.addSelection((StringSource) promo, "billboard");

// Create a TopBottomTemplate and set the parameters selected by
// the end user, including a dimension as the base and the
// Source produced by the SingleSelectionTemplate as the
// criterion.
TopBottomTemplate topNBottom = new TopBottomTemplate(product, dp);
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);
topNBottom.setN(15);
topNBottom.setCriterion(singleSelections.getSource());
Creating Dynamic Queries 10-17

Designing and Implementing a Template
// With methods on the TransactionProvider, prepare and commit
// the transaction.
try{

context.getTransactionProvider().prepareCurrentTransaction();
}
catch(NotCommittableException e){

System.out.println("Cannot prepare current Transaction. " +
 "Caught exception " + e + ".");

}
context.getTransactionProvider().commitCurrentTransaction();

// Get the Source produced by the TopBottomTemplate,
// create a Cursor for it and display the results.
createCursor(topNBottom.getSource(), dp);

}
}

10-18 Oracle9i OLAP Developer’s Guide to the OLAP API

Setting Up the Development Environ
A

Setting Up the Development Environment

This appendix describes the development environment for creating applications
that use the OLAP API.

This appendix includes the following topics:

■ Overview

■ Required Software

■ Setting Up on Your Application Development Computer

■ Considerations for Deploying Your Application
ment A-1

Overview
Overview
The Oracle installation, with the OLAP option, provides all of the Oracle OLAP
software that is required in the database and on its host computer. In addition, the
Client installation provides jar files that are needed on the application
development computer for creating an OLAP API client application.

As an application developer, you must complete the Client installation with the
Administrator option, which copies these jar files to the computer on which you
will write your Java application. In addition, you must ensure that supporting JDBC
and Java files are available on the development computer.

Required Software
The application development computer must have the following files:

■ OLAP API jar files, which represent the OLAP API client software. The Oracle
Client installation with the Administrator option provides these files, along
with the OLAP API Javadoc.

■ Oracle JDBC (Java Database Connectivity) jar files, which provide
communications between the application and the Oracle database. The Oracle
Client installation with the Administrator option provides JDBC. For additional
information about using the Oracle implementation of JDBC, see the Oracle
Technology Web site at

http://otn.oracle.com/

You must use Oracle’s implementation, not a product from another vender.

■ The Java Development Kit (JDK) version 1.2. The Oracle installation does not
provide the JDK. For information about obtaining and using it, see the Sun
Microsystems Java Web site at

http://java.sun.com

If you are using Oracle JDeveloper as your development environment, JDBC and
the JDK are already installed on your computer. However, ensure that you are using
the correct version of the JDK in JDeveloper.
A-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Setting Up on Your Application Development Computer
Setting Up on Your Application Development Computer

Installing the jar files
To make the jar files accessible in your development environment, take the
following steps:

1. On your application development computer, start the Oracle Client Software
CD for your platform.

2. Select the Administrator installation type, and complete the installation as
directed.

3. Find the OLAP API jar files on your computer where the installation
procedure copied them. Look in the olap/olapi/lib subdirectory of the
Oracle home directory.

4. Make the OLAP API jar files accessible to the Java integrated development
environment (IDE) that you are using. An example of an IDE is Oracle
JDeveloper.

5. Edit your Java CLASSPATH environment variable to include the paths of the
files on your computer.

6. In the IDE, make any specifications that are required to make the files accessible
for importing classes into your programs.

Installing the OLAP API Javadoc
If you want to access the OLAP API Javadoc on your application development
computer, locate the jar files that contain them on your computer where the
installation procedure copied them. Look in the olap/olapi/doc subdirectory of
the Oracle home directory. Consult the readme.txt file in that directory for
instructions on how to install the files and access them in your Web browser.

Using a Sample Program
If you want to examine or run a sample Java program that uses the OLAP API, you
can obtain it from the Oracle MetaLink (iSupport) Web site. To get the program, list
the patches for the Oracle OLAP product in the Oracle Server product family on the
Solaris or Windows NT platform. Search for a patch named "OLAP API Sample
Program," and download the file.
Setting Up the Development Environment A-3

Considerations for Deploying Your Application
Considerations for Deploying Your Application
When you deploy your application, ensure that the following are installed on each
computer that will run the OLAP API:

■ The OLAP API jar files

■ Oracle JDBC

■ A Java Runtime Environment (JRE)

For JDBC and the JRE, ensure that the installed version is compatible with the
version that you used when you developed your application.
A-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Index

A
aggregation functions, creating, 6-29
aggregation methods

explanation of, 6-24
list of, 6-25
using, 6-25, 6-26

alias method
description, 5-7
example, 6-16

ancestors attributes
example of getting, 4-8
for MdmHierarchy objects, 2-12
for MdmLevel objects, 2-10

application
deployment, 1-12
development steps, 1-8
tasks performed by, 1-12

asymmetric result set, Cursor positions in an, 8-20
attributes

ancestors, 2-10, 2-12
definition, 1-3
in OLAP metadata, 2-3
MdmAttribute objects, 2-23
parent, 2-10, 2-12
region, 2-12
Source objects for, 5-7

B
Boolean OLAP API data type, 2-25, 5-9, 5-10

C
CompoundCursor objects

getting children of, example, 9-5
navigating for a crosstab view, example, 9-12,

9-14
navigating for a table view, example, 9-10
positions of, 8-17

Connection objects
example of closing, 3-5
example of creating, 3-2
example of getting an existing one, 3-4

connections
closing, 3-5
getting existing ones, 3-4
prerequisites, 3-2
steps for establishing, 3-2

constant Source objects
definition, 5-5
example, 5-8

crosstab view
navigating Cursor for, example, 9-12, 9-14

current position in a Cursor, definition, 8-16
Cursor class

architecture, advantages of, 8-2
hierarchy, 8-4
Index-1

Cursor objects
created in the current Transaction, 8-4
creating, example, 9-2
current position, definition, 8-16
extent calculation, example, 9-21
extent definition, 8-25
faster and slower varying components, 8-6
fetch block definition, 8-27
fetch size definition, 8-27
getting children of, example, 9-5
getting the values of, examples, 9-3
parent starting and ending position, 8-22
position, 8-16
Source objects for which you cannot create, 8-3
span, definition, 8-22
specifying fetch size for a crosstab view,

example, 9-26
specifying fetch size for a table view,

example, 9-25
specifying the behavior of, 8-8, 9-19
starting and ending positions of a value, example

of calculating, 9-21
structure, 8-5

CursorInput class, 8-9, 8-11
CursorManager class, 8-12

hierarchy, 8-13
CursorManager objects

closing before rolling back a Transaction, 7-9
creating, example, 9-2
updating the CursorManagerSpecification, 8-12

CursorManagerSpecification class, 8-9
creating object, example, 9-2

CursorManagerUpdateEvent class, 8-15
CursorManagerUpdateListener class, 8-15
CursorSpecification class, 8-10
CursorSpecification objects

getting from a CursorManagerSpecification,
example, 9-19

D
data store

definition, 1-4
exploring, 4-2
scope of, 4-2

data type
of MDM metadata objects, 2-24
of MdmSource objects, 2-26

data warehouse, 1-3
DataProvider objects

creating, 3-4
needed to create MdmMetadataProvider, 4-3

Date OLAP API data type, 2-25, 5-9, 5-10
default hierarchy

example of getting, 4-8
retrieving, 6-13

derived Source objects
definition, 5-5
description, 5-8
introduced, 5-8

dimensions
definition, 1-2
in OLAP metadata, 2-3
MdmDimension objects, 2-8
Source objects for, 5-6

distinct method
description, 5-7

documentation, A-3
Double OLAP API data type, 2-25, 5-9, 5-10
drilling down a hierarchy, 6-15
DriverManager objects, 3-3
dynamic queries, 10-2
DynamicDefinition class, 10-7

E
elements

of a level MdmHierarchy, 2-13
of a union MdmHierarchy, 2-16
of an MdmAttribute, 2-23
of an MdmLevel, 2-11
of an MdmListDimension, 2-18
of an MdmMeasure, 2-20
ranking, 6-10 to 6-12
selecting by value, 6-2
sorting, 6-10 to 6-12

Empty OLAP API data type, 2-26, 5-9
ExpressTransactionProvider class, 7-8
Index-2

extent of a Cursor
definition, 8-25
example of calculating, 9-21
use of, 8-26

extract method, description, 5-7

F
faster varying Cursor components, 8-6
fetch block of a Cursor

definition, 8-27
determining shape of, 8-29
sharing, 8-29

fetch size of a Cursor
definition, 8-27
example of specifying, 9-25, 9-26
reasons for specifying, 8-27
specifying, 8-27

Float OLAP API data type, 2-25, 5-9, 5-10
fundamental Source objects

creating, 5-10
definition, 5-5

FundamentalMetadataObject class, 2-24
FundamentalMetadataProvider class, 2-24

G
getSource method

for creating primary Source objects, 5-5 to 5-7
for getting Source produced by a Template,

example, 10-14
in DynamicDefinition class, 10-2, 10-7
in MdmSource class, 2-7
simple example, 4-9

H
hierarchies

creating Source objects for, 6-13
definition, 1-2
drilling down, 6-15
in OLAP metadata, 2-3
MdmHierarchy objects, 2-12
node and leaf terminology, 2-16
retrieving default, 4-8, 6-13

I
input-output order

determining, 6-4, 6-5
effect on Source structure, 6-4, 6-5

inputs
changing to outputs, 6-3 to 6-5

installation for application development, A-2
Integer OLAP API data type, 2-25, 5-9, 5-10

J
Java Development Kit, version required, A-2
Javadoc, A-3
JDBC

Connection objects, 3-3
DriverManager objects, 3-3
installing, A-2
loading drivers, 3-3

join method
changing inputs to outputs, 6-3
example, 6-4 to 6-5, 6-6, 6-16

L
leaf in a hierarchy, 2-16
level MdmHierarchy, 2-12
levels

definition, 1-2
in OLAP metadata, 2-3
MdmLevel objects, 2-10

list Source objects, 5-5

M
MDM. See multidimensional metadata model
MdmAttribute objects

creating Source objects for, 5-7
description, 2-23
elements, 2-23
example of getting, 4-8
Index-3

MdmDimension objects
description, 2-8
example of getting related objects, 4-7
introduction, 1-6
regions, 2-9
related MdmAttribute objects, 2-9
related MdmDimensionDefinition objects, 2-9
related MdmDimensionMemberType

objects, 2-10
MdmDimensionDefinition objects

description, 2-9
example of getting, 4-8

MdmDimensionMemberType objects
description, 2-10
example of getting, 4-8

MdmHierarchy objects
creating Source objects for, 6-13
description, 2-12
elements of a level MdmHierarchy, 2-13
elements of a union MdmHierarchy, 2-16
level type description, 2-12
union type description, 2-12
value type description, 2-12

MdmLevel objects
description, 2-10
elements, 2-11

MdmListDimension objects
description, 2-18
elements, 2-18

MdmMeasure objects
description, 2-19
elements, 2-20
example of getting their dimensions, 4-7
introduction, 1-6
kinds of values, 2-20

MdmMetadataProvider objects
creating, 4-4
description, 4-3
introduction, 1-6

MdmObject class, 2-5

MdmSchema objects
description, 2-6
getting contents of, 4-6
getting the root, 4-6
introduction, 1-6
root, 2-6, 4-4

MdmSource objects, 2-7
measure folders

in OLAP metadata, 2-4
mapped to MdmSchema objects, 2-6

measure MdmDimension objects, 4-6
measures

definition, 1-2
in OLAP metadata, 2-3
MdmMeasure objects, 2-19
Source objects for, 5-7

metadata
definition, 1-3
discovering, 4-2
distinguished from data, 1-5
mapping OLAP metadata to MDM

metadata, 2-6
preparation for OLAP API, 1-3, 2-2
sample code for discovering, 4-9 to 4-26

MetadataState class, 10-6
example of implementation, 10-12

multidimensional metadata model (MDM)
description, 2-2
introduction, 1-5

N
nested outputs

getting values from a Cursor with, example, 9-8
of a Source, definition, 9-3

node in a hierarchy, 2-16
Null OLAP API data type, 5-9
Number OLAP API data type, 2-26, 5-9, 5-10
numeric comparisons

performing, 6-22
numeric functions

creating, 6-27
numeric methods

using, 6-23 to 6-29
Index-4

numeric operations
example, 6-20, 6-21
list of methods for, 6-19, 6-22
performing, 6-19 to 6-21

O
OLAP API

definition, 1-2
installing for application development, A-2
software components, 1-7

OLAP API data types
for MDM metadata objects, 2-24
objects that represent, 5-9, 5-10

OLAP Metadata API, 2-2
OLAP metadata objects, 2-2
outputs

changing from inputs, 6-3 to 6-5
getting from a CompoundCursor, example, 9-5
getting from a CompoundCursorSpecification,

example, 9-19
getting nested, example, 9-8
in a CompoundCursor, 8-5, 8-23, 8-25

positions of, 8-17

P
parameterized selections

creating, 6-27
parameters

creating, 6-27
parent attributes

example of getting, 4-8
for MdmHierarchy objects, 2-12
for MdmLevel objects, 2-10

parent-child relationships
creating Source objects for, 6-14
in hierarchies, 2-3, 2-8, 2-10, 2-12, 2-16

position
parent starting and ending, 8-22

position method
description, 5-7
example, 6-8

positions
CompoundCursor, 8-17

Cursor, 8-16
of elements, 6-9
ValueCursor, 8-16

primary Source objects
definition, 5-5
for parent-child relationship, 6-14
from MdmHierarchy objects, 6-13
from MdmSource objects, 2-7
getting, 5-5 to 5-7
result of getSource method, 4-9
structure, 5-6, 5-7

primitive methods, 5-7, 5-8

Q
queries

dynamic, 10-2
Source objects that are not, 8-3
steps in retrieving results of, 9-2

R
range Source objects, 5-5
ranking elements, 6-10 to 6-12
read Transaction object, 7-3
region attributes

example of getting, 4-8
for MdmHierarchy objects, 2-12

regions
example of getting, 4-8
of an MdmDimension, 2-9

relationships
Source objects for, 6-14

root MdmSchema
description, 2-6
function of, 4-4
obtaining, 4-6

S
Sales History schema

accessing through sample program, A-3
list of metadata objects in, 4-16
metadata discovery program, 4-9

sample program, A-3
Index-5

selecting elements
based on element values, 6-2 to 6-6
based on hierarchical position, 6-12 to 6-15
based on rank, 6-6 to 6-12

selectValue method
example, 6-6

self-relation
Source object for, 6-16

Short OLAP API data type, 2-25, 5-9, 5-10
slower varying Cursor components, 8-6, 8-20
software provided, A-2
sorting elements, 6-10 to 6-12
Source class

convenience methods, 5-8
primitive methods, 5-7, 5-8
shortcut methods, 5-8

Source methods
alias, 5-7
distinct, 5-7
extract, 5-7
position, 5-7
string, 6-29 to 6-31
value, 5-7

Source objects
active in a Transaction object, 7-2, 8-4
constant, 5-5
derived, 5-5
for attributes, 5-7
for measures, 5-7
for relationships, 6-14
for self-relation, 6-16
fundamental, 5-5
getting, 5-5 to 5-7
getting a modifiable Source from a

DynamicDefinition, 10-7
list, 5-5
modifiable, 10-2
primary, 5-5
range, 5-5
structure, 5-6, 5-7

SourceGenerator class, 10-6
example of implementation, 10-13

span of a value in a Cursor
definition, 8-22, 9-21

SpecifiedCursorManager objects
closing, 8-12
returned by the createCursorManager

method, 8-12
string methods, 6-29 to 6-31
String OLAP API data type, 2-25, 5-9, 5-10
subschemas

description, 4-4
getting contents, 4-6

T
table view

navigating Cursor for, example, 9-10
Template class, 10-6

designing, 10-7
example of implementation, 10-9

Template objects
benefits of using, 1-10
classes used to create, 10-3
for creating modifiable Source objects, 10-2
introductory example, 1-11
relationship of classes producing a dynamic

Source, 10-4
Transaction objects used in, 7-5

Transaction objects
child read and write, 7-3
committing, 7-3
creating a Cursor in the current, 8-4
current, 7-2
example of using child, 7-9
getting the current, 7-8
preparing, 7-3
read, 7-3
rolling back, 7-7
setting the current, 7-8
using in Template classes, 7-5
write, 7-3

TransactionProvider interface, 7-8
TransactionProvider objects

creating, 3-4
needed to create MdmMetadataProvider, 4-3

tuple
definition, 8-17
in a Cursor, example, 9-9
Index-6

type of an MDM object
defined, 2-28
obtaining, 2-29

U
union MdmHierarchy, 2-12

V
value MdmHierarchy, 2-12
value method, 5-7
Value OLAP API data type, 2-26, 5-9, 5-10
ValueCursor objects

getting from a parent CompoundCursor,
example, 9-5

getting values from, example, 9-4, 9-5
position, 8-16

virtual Cursor
definition, 8-27

Void OLAP API data type, 2-26

W
write Transaction object, 7-3
Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	1 Introduction to the OLAP API
	OLAP API Overview
	Multidimensional Concepts And the OLAP API
	What Type Of Data Can an Application Access Through the OLAP API?
	What Can an Application Do with the OLAP API?
	Context for OLAP API development

	Access to Data and Metadata Through the OLAP API
	MDM Model in the OLAP API
	Access to Data Through the OLAP API
	User Connection Requirements

	OLAP API Client Software
	Software Configurations
	Requirements for Using the OLAP API Client Software

	Developing an OLAP API Application
	Step 1: Decide on General Design Issues
	Step 2: Decide on Requirements for End-User Queries
	Step 3: Design OLAP API Template Objects That Create End-User Queries
	Step 4: Write and Test the Java Code for the Application
	Step 5: Deploy the Application to users

	Tasks That an OLAP API Application Performs
	Task 1: Connect to the Data Store
	Task 2: Discover the Available Metadata
	Task 3: Select and Calculate Data Through Queries
	Task 4: Retrieve Query Results

	2 Understanding OLAP API Metadata
	Overview of the OLAP API Metadata
	Data Preparation
	Metadata Preparation

	OLAP Metadata Objects
	Dimensions in the OLAP Metadata
	Measures in the OLAP Metadata
	Measure Folders in the OLAP Metadata

	Overview of MDM Metadata Objects in the OLAP API
	Mapping of OLAP Metadata Objects to MDM objects
	MdmSchema Class
	MdmSource Class

	MdmDimension Class
	Description of an MdmDimension
	Information Held by an MdmDimensionDefinition
	Information Held by an MdmDimensionMemberType

	MdmLevel Class
	Description of an MdmLevel
	Elements of an MdmLevel

	MdmHierarchy Class
	Description of an MdmHierarchy
	Elements of a Level MdmHierarchy
	Level MdmHierarchy for Calendar Year
	Level MdmHierarchy for Fiscal Year
	Terminology: Nodes and leaves

	Elements of a union MdmHierarchy
	Distinct elements in the regions of a union MdmHierarchy
	Union MdmHierarchy for Time

	MdmListDimension Class
	Description of an MdmListDimension
	Elements of an MdmListDimension

	MdmMeasure Class
	Description of an MdmMeasure
	Elements of an MdmMeasure
	MdmMeasure Elements Are Determined by MdmDimension Elements
	MdmMeasure with two MdmDimension objects

	MdmAttribute Class
	Description of an MdmAttribute
	Elements of an MdmAttribute

	Data Type and Type of MDM Metadata Objects
	Data Type of MDM Metadata Objects
	Getting the Data Type of an MdmSource
	Type of MDM Metadata Objects
	Getting the Type of an MdmSource

	3 Connecting to a Data Store
	Overview of the Connection Process
	Connection Steps
	Prerequisites for Connecting

	Establishing a Connection
	Step 1: Load the JDBC Driver
	Step 2: Get a Connection from the DriverManager
	Step 3: Create a TransactionProvider
	Step 4: Create a DataProvider

	Getting an Existing Connection
	Executing DML Commands Through the Connection
	Closing a Connection

	4 Discovering the Available Metadata
	Overview of the Procedure for Discovering Metadata
	MDM Metadata
	Purpose of Discovering the Metadata
	Steps in Discovering the Metadata
	Discovering Metadata and Making Queries

	Creating an MdmMetadataProvider
	Getting the Root MdmSchema
	Function of the Root MdmSchema
	Calling the getRootSchema Method

	Getting the Contents of the Root MdmSchema
	Getting the MdmDimension Objects in an MdmSchema
	Getting the Subschemas in an MdmSchema
	Getting the Contents of Subschemas
	Getting the Measure MdmDimension and Its Contents

	Getting the Characteristics of Metadata Objects
	Getting the MdmDimension Objects for an MdmMeasure
	Getting the Related Objects for an MdmDimension

	Getting the Source for a Metadata Object
	Sample Code for Discovering Metadata
	Code for the SampleMetadataDiscoverer Program
	Output from the SampleMetadataDiscoverer Program

	5 Introduction to Querying
	Characteristics of Source Objects
	Source Type
	Source Structure: Inputs and Outputs

	Creating Source Objects
	Getting Source Objects From Metadata Objects
	Creating a Source from MdmDimension, MdmHierarchy, or MdmLevel Objects
	Creating a Source from MdmMeasure or MdmAttribute Objects

	Creating New Source Objects Using Source Methods
	Creating Simple Nondimensional Source Objects
	Creating Source Objects that Represent OLAP API Data Types

	6 Making Queries Using Source Methods
	Selecting Based on Source Value
	Selecting Based on Output Values
	Using the join Method to Change Inputs to Outputs
	Effect of Input-Output Order on Source Structure
	Changing Inputs to Outputs with timesDim as the First Output Created
	Changing Inputs to Outputs with productsDim as the First Output Created

	Selecting Based on Output Values and Source Values: Example

	Selecting Values Based on Rank
	Finding the Position of Values
	Finding the Positions of Values When There are no Inputs or Outputs
	Finding the Positions of Values When There Are Outputs and Inputs

	Values Ranked in Ascending or Descending Order
	Values Ranked in the Same or the Opposite Order as the Values of Another Source
	Minimum Ranking
	Maximum Ranking
	Average Ranking
	Packed Ranking
	Percentile Ranking
	nTile Ranking

	Selecting Values Based on Hierarchical Position
	Creating a Primary Source that Represents a Default Hierarchy
	Creating a Primary Source for the Parent-Child Relationship
	Creating Source Objects for Other Relationships
	Drilling Down a Hierarchy: Example

	Creating a Source that is a Self-Relation
	Performing Numerical Analysis
	Performing Numerical Operations
	Subtracting the Same Value From all Values: Example
	Subtracting the Values of one NumberSource from Another: Example

	Making Numerical Comparisons
	Working with Standard Numerical Functions
	Working with Aggregation Methods
	Calculating the Sum When a Source Has only Outputs: Example
	Calculating the Sum When a Source Has an Output and an Input: Example

	Creating Your own Numerical Functions
	Creating Your own Standard Function: Example
	Creating Your own Aggregation Function: Example

	Manipulating String Values

	7 Using a TransactionProvider
	About Creating a Query in a Transaction
	Types of Transaction Objects
	Preparing and Committing a Transaction
	About Transaction and Template Objects
	Beginning a Child Transaction
	About Rolling Back a Transaction
	Getting and Setting the Current Transaction

	Using TransactionProvider Objects

	8 Understanding Cursor Classes and Concepts
	Overview of the OLAP API Cursor Objects
	Sources For Which You Cannot Create a Cursor
	Cursor Objects and Transaction Objects

	Cursor Class
	Structure of a Cursor
	Specifying the Behavior of a Cursor

	CursorManagerSpecification Class
	CursorSpecification Class
	CursorInput Class
	CursorManager Class
	Updating the CursorManagerSpecification for a CursorManager
	CursorManager Class Hierarchy
	CursorManagerUpdateListener Class
	CursorManagerUpdateEvent Class

	About Cursor Positions and Extent
	Positions of a ValueCursor
	Positions of a CompoundCursor
	About the Parent Starting and Ending Positions in a Cursor
	What is the Extent of a Cursor?

	About Fetch Sizes and Fetch Blocks
	About Determining the Shape of a Fetch Block
	About Sharing Fetch Blocks

	9 Retrieving Query Results
	Retrieving the Results of a Query
	Getting Values from a Cursor

	Navigating a CompoundCursor for Different Displays of Data
	Specifying the Behavior of a Cursor
	Calculating Extent and Starting and Ending Positions of a Value
	Specifying Fetch Sizes and Fetch Blocks

	10 Creating Dynamic Queries
	About Template Objects
	About Creating a Dynamic Source
	About Translating User Interface Elements into OLAP API Objects

	Overview of Template and Related Classes
	What Is the Relationship Between the Classes That Produce a Dynamic Source?
	Template Class
	MetadataState Interface
	SourceGenerator Interface
	DynamicDefinition Class

	Designing and Implementing a Template
	Implementing the Classes for a Template
	Implementing an Application That Uses Templates

	A Setting Up the Development Environment
	Overview
	Required Software
	Setting Up on Your Application Development Computer
	Installing the jar files
	Installing the OLAP API Javadoc
	Using a Sample Program

	Considerations for Deploying Your Application

	Index

