Oracle9i OLAP

Developer’s Guide to the OLAP API

Release 2 (9.2)

March 2002
Part No. A95297-01

ORACLE

Oracle9i OLAP Developer’s Guide to the OLAP API, Release 2 (9.2)
Part No. A95297-01
Copyright © 2000, 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

SeNd US YOUT COMMENTS ...t eeee e ee et s e en e Xi
P EIACEttt ettt Xiii
N 0 Lo |11 o7 Xiv
(O] o T- 1o 1= 11 o] o FRT OO TSR PTUR RSP Xiv
Related DOCUMENTALIONoiieiieiieiie ittt et ettt et e e e et e e s st e e s et b e s st e e s sabessssbasesabsassbbassseasssanes XV
(O00] 0 1VZ=T 0] 1 T o -3 XVii
Documentation ACCESSIDIIITYccooiiiiiiii e e e XXi

1 Introduction to the OLAP API

OLAP APT OVEIVIBW ...ttt sttt sttt b et be bt bt s b sb e sbe bt se e b e se e e eseanbabessesbesbeeas 1-2
Multidimensional Concepts And the OLAP API ... 1-2
What Type Of Data Can an Application Access Through the OLAP API?cccovvennee. 1-3
What Can an Application Do with the OLAP API? ... 1-4
Context for OLAP API deVelOPMENT.........cooiiiiiie ettt e 1-4

Access to Data and Metadata Through the OLAP APL........cccoooi i 1-5
MDM Model iNthe OLAP APl ..ottt ebe st see e 1-5
Access to Data Through the OLAP AP ...t 1-6
User Connection REQUITEMENTS........cccviiiiieierieiere ettt st ne e seeneseesnenes 1-7

OLAP AP CHENT SOTIWAIE ...ttt s bbb 1-7
SOftware CONFIQUIALIONS. ..ottt be b 1-8
Requirements for Using the OLAP API Client SOftWare...........ccocveevvvieieienereeieece e 1-8

Developing an OLAP APT APPHICAtIONcooiiiiiie e 1-8

Step 1: Decide on General DESIGN ISSUES........cccoviiiieriiiieiereieie e ere s 1-9
Step 2: Decide on Requirements for End-User QUEKIEScceeviriiiiiini i 1-9
Step 3: Design OLAP APl Template Objects That Create End-User Queries.................... 1-10
Step 4: Write and Test the Java Code for the Applicationcccccoovivveiieicvccccc, 1-11
Step 5: Deploy the APPlICation T0 USEISooiiiiiieiiee e 1-12
Tasks That an OLAP API Application PErformsSc.ccccoveieieiecie s 1-12
Task 1: ConNect t0 the DAta STOFE.........ccoeiiiiiieriie et 1-12
Task 2: Discover the Available Metadata...........ccoooiiiiiiiii e 1-13
Task 3: Select and Calculate Data Through QUETIES..........ccccvvevvrerereceeeee e 1-13
Task 4: Retrieve QUEIY RESUILScccoviieerciese ettt 1-14

Understanding OLAP API Metadata

Overview Of the OLAP API MEtadatacooooceiiiiiiiiine s 2-2
DAt PreParalionc.coiiuiiiieiiee ettt bbb et b et b et sbe b be e e e e ene 2-2
(\V/[=T 2=V - U W ad =T o T Lo d o o 1RSSR 2-2

(@I AN \VI =) -V Fo 7 W@] o [Tt S STS 2-2
Dimensions in the OLAP Metadatac.ccocveiiiiiiicce sttt 2-3
Measures in the OLAP Metadatal ... 2-3
Measure Folders in the OLAP Metadata...........ccovviriiriiiniiniece e 2-4

Overview of MDM Metadata Objects in the OLAP AP ... 2-5
Mapping of OLAP Metadata Objects to MDM ODJECLSccoveveiviveiiiinir e 2-6
MAMSCREME CIASSeviiiiiciec bbb bbbttt 2-6
MAMSOUICE ClASSvviuiicticiiie ettt et s ae s e e s e et e s e e s beeteestesrbesbeesbesbe e e e sreeneesrens 2-7

MAMDIMENSION CHASSovviiiiitiieiirere bbbttt bbb sttt s b s benes 2-8
Description of an MAMDIMENSION........ccccciiiiiireceeee e e sre e sreens 2-8
Information Held by an MdmDimensionDefinition ..., 2-9
Information Held by an MdmDimensionMemberTYPecovcveiviveivsiniie s 2-10

IMAMLEVED CHASS......ciiieciicti bbb bbbttt ettt e ens . 2-10
Description of an MAMLEVE ..ot e 2-10
Elements of @an MAMLEVEL..........coiiiiiiiiiiee e 2-11

3

MAMHIEIArCNY CIASSviitiiiiie bbb bbb bt e e et beanas 2-12

Description of an MAMHIErarchyccccoovviiiiii i 2-12
Elements of a Level MAMHIEIarchy ... 2-13
Level MdmHierarchy for Calendar Year ..ot 2-13

Level MdmHierarchy for FiSCal YEArccccvcvviiviiiii i 2-15
Terminology: NOdes and IEAVES.........c.ciiiiiiiiiie e e 2-16
Elements of a union MAmHIErarchycccccovoeviicciic e 2-16
Distinct elements in the regions of a union MdmHierarchy...........ccccocvirivinieiinennns 2-16

Union MdmHierarchy for TIME ... e 2-17
MAMLISIDIMENSION CIASS ...ttt ettt es 2-18
Description of an MdmLISTDIMENSION ..o 2-18
Elements of an MAMLISIDIMENSIONcuiiiiiiiiii e 2-18
IMAMMMEASUIE CLASS.....ciiiiitiiiiie ittt bbbt b et b e bbb n et 2-19
Description of an MAMMEASUIE........c..coeverieieieeeee ettt ee e neenens 2-19
Elements of an MAMIMEBASUIEcc.iiiiiieieeeece ettt 2-20
MdmMeasure Elements Are Determined by MdmDimension Elements................... 2-20
MdmMeasure with two MdmDimension OBJECtS..........cccvviiviieiiriiie e 2-21
MAMALIFIDULE CHASS......itiieiieeee ettt ettt b bbb bt e st ne e e sneenas 2-23
Description of an MAMALFBULE.........cccoi i 2-23
Elements of an MAMALIDULE ..o s 2-23
Data Type and Type of MDM Metadata ODJecCtS. ... 2-24
Data Type of MDM Metadata ODjJECES.........cccueviiieiiiicccese e 2-24
Getting the Data Type of an MAMSOUICEcccveiiiiiiccee e 2-26
Type of MDM Metadata ODJECTScoiiiiiie et 2-28
Getting the Type of an MAMSOUICE........cocveiiie e 2-29

Connecting to a Data Store

Overview Of the CONNECLION PrOCESSc.cviiiiiiiiirieiee et e 3-2
(070] a1 aT=To1 (ol g 1S (=] o 1SS 3-2
Prerequisites FOr CONNEBCTING.ccoiiiiiiieie e et sb et e 3-2

Establishing @ CONNECTIONcoooi it se e e neeresneere s 3-2
Step 1: Load the IDBC DIIVETcoceciceee sttt st e se e nnenaenesnaenens 3-3
Step 2: Get a Connection from the DriverManager ... nenienie e 3-3
Step 3: Create a TranSaCtiONPIOVIAELccccveieiceecse et 3-4
Step 4: Create @ DataPrOVIAErcc..coveiiecce e se e eene 3-4

Getting an EXiStiNG CONNECTIONo.iiiiiiiiic ittt st st enas 3-4
Executing DML Commands Through the CoONNECIONccccveveviiiv e 3-5
ClOSING @ CONNECTION ...ttt bbb et e e ke eb e s bt ebe et e besbe b e nbe e e ens 3-5

4 Discovering the Available Metadata

Overview of the Procedure for Discovering Metadata...........ccccooeeiiiiniiiiiic e 4-2
IMIDIM IMETAAATA ...ttt ettt sttt ettt bt 4-2
Purpose of Discovering the Metadataccccoovviviie e 4-2
Steps in Discovering the Metadatal..........ccoooeieiiiiiiie e 4-3
Discovering Metadata and Making QUETIESccccvvvririreriereseeeseeesiese e se s seeaeens 4-3

Creating an MdmMMetadataProVIAE!ccccviiiiiiiie i ere s 4-3

Getting the ROOt MAMSCNEMA.......c.ooiiiii e e 4-4
Function of the ROOt MAMSCREMA.........cciiiiiii e 4-4
Calling the getRootSchema MEethod ... 4-6

Getting the Contents of the ROOt MAMSChemMa...........ccooiiiiiiiiii e 4-6
Getting the MdmDimension Objects in an MdmSchema...........cococvevvieviie v, 4-6
Getting the Subschemas in an MAMSChEMA...........cccccveiiieieice s 4-6
Getting the Contents of SUDSChEMAS ...t 4-6
Getting the Measure MdmDimension and 1ts CONtENtS........cccceoviviieiivie v 4-6

Getting the Characteristics of Metadata ObJEcCtS.........cccccvveiiiiiicics e 4-7
Getting the MdmDimension Objects for an MdmMMeasure.............ccccoeeienene e e 4-7
Getting the Related Objects for an MdmMDIMENSIONccccveiviiiienirie e 4-7

Getting the Source for a Metadata ODjJECT..........cccvcciiiii i 4-8

Sample Code for Discovering Metadataccovieiiiiieiiee e 4-9
Code for the SampleMetadataDiSCOVErer Program.........cccveveieiieeeiesieseseseeseseesseeesesennes 4-10
Output from the SampleMetadataDiSCOVErer Program..........cccccocevvenveieivsveesiesesesesesnens 4-16

5 Introduction to Querying

Characteristics OF SOUICE ODJECTSccviiviiiiiicicise e 5-2
Lo LB ol Y o1 T TR U PP OO PP TPROP 5-2
Source Structure: INPULS anNd OULPULScceieieiiice e snens 5-3

vi

Creating SOUICE ODJECESoiiiiiee ettt ettt b e eb e be e et ebe b sbe e e eneene s 5-5

Getting Source Objects From Metadata ObJECTS.........ccccveivvveciieiie s 5-5
Creating a Source from MdmDimension, MdmHierarchy, or MdmLevel Objects..... 5-6
Creating a Source from MdmMeasure or MdmAttribute Objects.........cccoovviiiiienenne 5-7

Creating New Source Objects Using Source Methods.........ccccoevvevivivcinninne v 5-7

Creating Simple Nondimensional SOUrce ODJECTS...........ccoviviiiiiiieie e 5-8

Creating Source Objects that Represent OLAP API Data TYPEScccevevevrereneriereeesnneens 5-9

Making Queries Using Source Methods

Selecting Based 0N SOUICE ValUEcocviiiiiiiiree et st ene e snens 6-2
Selecting Based 0N OULPUL VAIUEScccoiiriiiiicie s s ene e sre s 6-3
Using the join Method to Change INputs t0 OULPULS.........cociiiiiiineiirere e 6-3
Effect of Input-Output Order 0N SOUICE StIUCTUIEcoveieriereecre e saeneas 6-3
Changing Inputs to Outputs with timesDim as the First Output Created 6-4
Changing Inputs to Outputs with productsDim as the First Output Created............. 6-5
Selecting Based on Output Values and Source Values: Example.........ccccoceeeiviviceniencinennnn, 6-6
Selecting Values Based 0N RaANK ...t st ene e sre e 6-6
Finding the POSition OF VAlUES..........coooiiii e e 6-6
Finding the Positions of Values When There are no Inputs or OQutputs..........c.cccoev.... 6-8
Finding the Positions of Values When There Are Outputs and Inputsccc.c..... 6-8

Values Ranked in Ascending or Descending OFder..........coccoiiireneieiiiieieesese e 6-9
Values Ranked in the Same or the Opposite Order as the Values of Another Source....... 6-9
MINTMUM RANKING ..ottt se e eaearestesaeete e saesteneesaeneanens 6-10
MAXTMUM RBNKING ...ttt sttt et e st e bt ebesbesaesbeneeseeneaneas 6-10
AVETAgE RANKING ...o.viieieie ettt e et ste st et e se e st et e e eseenseneerenneenens 6-11
Yo =T = =T] 41 o SRR 6-11
Percentile RANKING. ...t 6-11

L LT 2 =T] 1 o 6-12
Selecting Values Based on Hierarchical POSItIONccccoieieiiiicicc e 6-12
Creating a Primary Source that Represents a Default Hierarchyc.ccocooiiiiiiicnn. 6-13
Creating a Primary Source for the Parent-Child Relationshipcccccocevvviiiiiciiiinnnn, 6-14
Creating Source Objects for Other Relationshipsccccovveiiiveici s 6-14
Drilling Down a Hierarchy: EXamPle........cocooiiiiiiiieeeet e 6-15
Creating a Source that is a Self-Relation...........ccccoiv i 6-16

Vii

Performing NUMErical ANAIYSIScoiiiiiii e 6-18

Performing Numerical OPEratiONscccoviiveieieiiii s 6-19
Subtracting the Same Value From all Values: Example..........ccccooeieiiinininencieinen 6-20
Subtracting the Values of one NumberSource from Another: Example. 6-21

Making Numerical COMPATISONScceiviieiiiiiise s ee et sae e seeneens 6-22

Working with Standard Numerical FUNCLIONS ..o 6-23

Working with Aggregation Methods..........ccccveiiiiiiie s 6-24
Calculating the Sum When a Source Has only Outputs: Examplecccccccevvvviennn. 6-25
Calculating the Sum When a Source Has an Output and an Input: Example............ 6-26

Creating Your own NUmerical FUNCLIONScooiiieiiiccccie e 6-27
Creating Your own Standard Function: EXample........c.cccocvvivriinieninneniene e 6-27
Creating Your own Aggregation Function: Example..........cccccoiiiiiiniinine s 6-29

Manipulating StriNG ValUES..........ccovieieiie s st srenne e ens 6-29

7 Using a TransactionProvider

About Creating a Query in a TranNSACIONcccveiiiiiie e 7-2
Types Of Transaction ODJECESccv i 7-3
Preparing and Committing @ TranSaCION..........cccoiiiiiii i e 7-3
About Transaction and Template OBJECES........cccvviiiiiiieiirie s 7-5
Beginning @ Child TranSaCtioNccccveiiiiiiice et neens 7-5
About Rolling Back @ TranSACTIONcciiiiiiiie ettt et 7-7
Getting and Setting the Current TranSaCtioN..........cc.coievviiie e 7-8

Using TransactionProvider ODjJECTS.........ccooviiiiiiriie e 7-8

8 Understanding Cursor Classes and Concepts

Overview of the OLAP API CUrSOr ODJECEScviiiiciiieie st 8-2
Sources For Which You Cannot Create @ CUISOIccvccvieere et ens 8-3
Cursor Objects and Transaction ODJECEScccvvvrieiieiieriieie e e 8-4

L1 U110 O I L1 OSSOSO PRSP 8-4
N U U] =0 i W O U] To] PSSR 8-5
Specifying the Behavior 0F @ CUISOIccciviicccre e 8-8

viii

10

CursorManagerSpPecifiCation CIaSS ... e eae 8-9

CUrsOrSPECITICALION ClaSS......cciiiieiiieieeseee e sre e se e ereeneens 8-10
CUISOTTNPUL CIASS. ..ottt s b b b et s et e bttt s be b e e bt e ne e 8-11
CUISOIMANAGET ClASS. .. cuiiiiiiirieite ettt bbbt b e be b e b bt sbesbe e et seane e 8-12
Updating the CursorManagerSpecification for a CursorManager..........ccocoevevvereveresnnnnn. 8-12
CursorManager Class HIerarchy ..o 8-13
CursorManagerUpdateLiStener Classcooivveiiiiieniniere s 8-15
CursorManagerUpdateEVENt Classcccveiiveirieiiisise st 8-15
About Cursor POSItioNs and EXTENT ..ottt st 8-16
POSItIONS OF 8 VAIUBCUISOIcuiiitiicic ettt et sttt ebe e 8-16
Positions 0f @ COMPOUNACUISOTccvirieieieeeeesese s e sttt sae e e e enee s 8-17
About the Parent Starting and Ending Positions in @ CUrSOrcccccooveriiennesce e 8-22
What is the EXtENT OF @ CUISOI? ..ottt 8-25
About Fetch Sizes and FEtCh BIOCKS........coiiiiiiiiiiieeeee s 8-27
About Determining the Shape of a Fetch BIOCKcocoiiiiiiiiiie e, 8-29
About Sharing FELCH BIOCKScc.ciieiiicieiic sttt s 8-29

Retrieving Query Results

Retrieving the ReSUItS OF @ QUEIYcvoiiiei et re e 9-2

Getting Values from @ CUISOIccvieiiiiieee ittt se e e e sresre e e e nsenens 9-3
Navigating a CompoundCursor for Different Displays of Data............ccccocveiiiiiniienenne 9-10
Specifying the Behavior 0F @ CUISOIc.ccviiiiiie e 9-19
Calculating Extent and Starting and Ending Positions of a Value...........cccccococvvevevcicnnen, 9-21
Specifying Fetch Sizes and Fetch BIOCKScooiiiiiiiiiiic e 9-24

Creating Dynamic Queries

ADOUL TEMPIALE ODJECTS ..ottt b et ebe e sbeenea 10-2
About Creating @ DYNAMIC SOUICEcc.cveiiieiieiesese et sie e se s sresresse s seense e 10-2
About Translating User Interface Elements into OLAP API Objects........ccccooevvevvivecvnennnn, 10-3

Overview of Template and Related CIaSSes ... 10-3
What Is the Relationship Between the Classes That Produce a Dynamic Source?............ 10-4
LI 0] 01 LE=I O - TSR 10-6
MetadataState INTEITACEooiiiiiiee e ettt 10-6
SOUFCEGENEIALOr INTEITACEoii i e 10-6
DyNamicDefiNItioN CIass.........coiiiiiiiriiiiise et srenre e 10-7

Designing and Implementing a TEMPIALE ...t e 10-7
Implementing the Classes for a TEMPIAte.........cccceveeviiici e e 10-9
Implementing an Application That Uses Templates............ccooviiiiiininins e 10-14

A Setting Up the Development Environment

(@] a1 SO TS RPN A-2
L =To [T =T IS0 A= U= OSSP A-2
Setting Up on Your Application Development COMPULETcccccveovvviieienere s A-3
INSTAlliNG The Jar FIlES ..o e A-3
Installing the OLAP AP JAVAUOCc.coovieiiicise sttt A-3
O T aTo IR T: 1 g o1 [l =d oo | -V o SR A-3
Considerations for Deploying Your APPlication ... A-4
Index

Send Us Your Comments

Oracle9i/ OLAP Developer’s Guide to the OLAP API, Release 2 (9.2)
Part No. A95297-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: i nf odev_us@r acl e. com
FAX: 781-238-9850 Attn: Oracle OLAP
Postal service:

Oracle Corporation

Oracle OLAP Documentation

10 Van de Graff Drive

Burlington, MA 01803

US.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Xi

Xii

Preface

The Oracle9i OLAP Developer’s Guide to the OLAP API introduces Java programmers
to the Oracle OLAP API which is the Java application programming interface for
Oracle OLAP. Through Oracle OLAP, the OLAP API provides access to data stored
in an Oracle database. The OLAP API’s capabilities for querying, manipulating, and
presenting data are particularly suited to applications that perform Online
Analytical Processing.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

Xiii

Audience

Oracle9i OLAP Developer’s Guide to the OLAP API is intended for Java programmers
who are responsible for creating applications that perform analysis using Oracle
OLAP.

To use this document, you need be familiar with Java, relational database
management systems, data warehousing, and Oracle OLAP and Online Analytical
Processing (OLAP) concepts.

Organization

Xiv

This document contains:

Chapter 1, "Introduction to the OLAP API"

Introduces the OLAP API to application developers who plan to use it in their Java
applications.

Chapter 2, "Understanding OLAP API Metadata"

Describes the metadata objects that the OLAP API provides, and explains how these
objects relate to the metadata objects that a database administrator specifies when
preparing the data using the OLAP Metadata APIs.

Chapter 3, "Connecting to a Data Store"
Explains the procedure for connecting to a data store through the OLAP API.

Chapter 4, "Discovering the Available Metadata"

Explains the procedure for discovering the metadata in a data store through the
OLAP API.

Chapter 5, "Introduction to Querying"

Introduces Sour ce objects which are the OLAP API objects that are the
specifications for sets of data that you use when making queries.

Chapter 6, "Making Queries Using Source Methods"
Discusses how to make queries using Sour ce methods.

Chapter 7, "Using a TransactionProvider"

Describes the Oracle OLAP API Transact i on and Tr ansact i onPr ovi der
interfaces and describes how you use implementations of those interfaces in an
application. You must create a Tr ansact i onPr ovi der before you can create a
Dat aPr ovi der, and you must use methods on the Tr ansact i onPr ovi der to
prepare and commita Tr ansact i on before you can create a Cur sor for a derived
Sour ce.

Chapter 8, "Understanding Cursor Classes and Concepts”

Describes the Oracle OLAP API Cur sor class and its related classes, which you use
to retrieve and gain access to the results of a query. This chapter also describes the
Cur sor concepts of position, fetch size, and extent.

Chapter 9, "Retrieving Query Results"

Describes how to retrieve the results of a query with an Oracle OLAP API Cur sor,
how to gain access to those results, and how to customize the behavior of a Cur sor
to fit your method of displaying the results.

Chapter 10, "Creating Dynamic Queries"

Describes the Oracle OLAP API Tenpl at e class and its related classes, which you
use to create dynamic queries. This chapter also provides examples of
implementations of those classes.

Appendix A, "Setting Up the Development Environment"

Describes the steps you take to set up your development environment for creating
applications that use the OLAP API.

Related Documentation

For more information, see these Oracle resources:

= Oracle 9i OLAP API Javadoc—Provides reference information for the Java
packages that are the Oracle OLAP API.

= Oracle9i OLAP User’s Guide — Describes how to use Oracle OLAP. It introduces
the basic concepts underlying business analysis and multidimensional
querying, as well as the basic tools used for application development and
system administration.

« Oracle9i OLAP Developer’s Guide to the OLAP DML — Explains how application
developers can perform complex data analysis tasks (such as forecasts, models,

XV

XVi

allocations, and some types of non-additive aggregation) by using the OLAP
DML.

« Oracle9i JDBC Developer’s Guide and Reference—Provides task-oriented and
reference information about Oracle's Java Database Connectivity (JDBC)
product that provides the basis for accessing data from Java programs, as well
as Oracle-specific extensions to this Java standard.

« Oracle9i Data Warehousing Guide — Discusses the database structures, concepts,
and issues involved in creating a data warehouse to support OLAP solutions.

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. cond

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

ht t p: / / waw or acl ebookshop. cond

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. com adm n/ account / nenber shi p. ht m
If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. coni docs/ i ndex. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
« Conventions in Text

« Conventions in Code Examples

« Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface denotes book titles and Oracle9i OLAP User’s Guide
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
Bol d Bold font denotes terms being defined for The methods of the Sour ce class and its
the first time, subclasses return new Sour ce objects
sometimes called derived Sour ce objects.
UPPERCASE Uppercase monospace typeface indicates The return value from its
nonospace elements supplied by the system. Such get Hi er ar chy Type method is

(fi xed-wi dt h)
f ont

| ower case
nonospace

(fi xed-wi dt h)
f ont

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
denotes Java program names, file names,
path names, and Internet addresses.

LEVEL_HIERARCHY.

Back up the datafiles and control files in the
/ di sk1/ oracl e/ dbs directory.

XVii

Convention

Meaning Example

M xedCase
nonospace
(fixed-wi dth)
f ont

| over case
italic
nonospace
(fixed-wdth)
font

Mixedcase monospace typeface is used To obtain access to the metadata, an
for names of classes and interfaces and for application uses the get Root Schema

multi-word names of variables, methods, method in Mdnivet adat aPr ovi der.
and packages. The names of classes and

interfaces begin with an upper-case letter.
In all multi-word names, the second and
succeeding words also begin with an
upper-case letter.

Lowercase italic monospace font You can specify the par al | el _cl ause.

represents placeholders or variables. Run Uol d_r el ease. SQL where

ol d_r el ease refers to the release you
installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate Java, SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

Source unit Cost = ndnlni t Cost . get Source;

The following table describes typographic conventions used in Java code examples
and provides examples of their use.

Convention Meaning

{} Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends to the end of a line.
[* */ A slash-asterisk and an asterisk-slash delimit a multi-line comment, which can

span multiple lines/

Horizontal ellipsis shows that statements or clauses irrelevant to the discussion
were left out.

Xviii

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and

provides examples of their use.

Convention

Meaning

Example

Choose Start >

File and directory
names

C\>

Special characters

How to start a program.

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (]),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (*). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

c:\winnt"\"systenB2 is the same as
C \ WNNN SYSTEVB2

C \oracl e\ or adat a>

C\>exp scott/tiger TABLES=enp
QUERY='WHERE job="SALESMAN' and
sal<1600\"

C\Wimp SYSTEM/ passwor d FROMUSER=scott
TABLES=(emp, dept)

XiX

Convention

Meaning

Example

HOVE NAVE

ORACLE _HOVE
and
ORACLE BASE

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HQVE directory that by
default used one of the following names:

. C.\ orant for Windows NT
« C:\oraw n98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOVE directory. There is a
top level directory called ORACLE BASE
that by defaultis C: \ or acl e. If you
install the latest Oracle9i release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C: \ or acl e\ or ann where nn is the latest
release number. The Oracle home
directory is located directly under
ORACLE BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

C\> net start Q acl eHOME NAMETNSLI st ener

Go to the
ORACLE BASE\ ORACLE_HOVE\ r dbns\ admi n
directory.

XX

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: // waw or acl e. comi accessi bi | ity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

XXi

XXii

1

Introduction to the OLAP API

This chapter introduces the Oracle OLAP API to application developers who plan
to use it in their Java applications.

This chapter includes the following topics:

OLAP API Overview

Access to Data and Metadata Through the OLAP API
OLAP API Client Software

Developing an OLAP API Application

Tasks That an OLAP API Application Performs

Introduction to the OLAP API 1-1

OLAP AP| Overview

OLAP API Overview

The OLAP APl is a Java application programming interface (API) through which an
application can access data for online analytical processing (OLAP). It is the API
that is supplied with Oracle OLAP, an Oracle component.

The purpose of the OLAP API is to facilitate the development of OLAP
applications, which allow users to dynamically select, aggregate, calculate, and
perform other analytical tasks on data through a graphical user interface. Typically,
the user interface of an OLAP application displays data in multidimensional
formats, such as graphs and crosstabs.

In general, OLAP applications are developed within the context of business
intelligence and data warehousing systems, and the features of the OLAP API are
optimized for this type of application. With the OLAP API, a Java application can
access, manipulate, and display data in multidimensional terms. The OLAP API
also makes it possible to define a query in a step-by-step process that allows for
undoing individual query steps without recreating the entire query. Such multistep
queries are easy to modify and refine dynamically.

Multidimensional Concepts And the OLAP API

Data warehousing and OLAP applications are based on a multidimensional view of
data, and they work with queries that represent selections of data. The following
definitions introduce concepts that reflect the multidimensional view and are basic
to data warehousing, OLAP, and the OLAP API:

« Dimension. A structure that categorizes data. Commonly used dimensions are
customer, product, and time. Typically, a dimension is associated with one or
more hierarchies. Several distinct dimensions, combined with measures, enable
end users to answer business questions. For example, a Time dimension that
categorizes data by month helps to answer the question, "Did we sell more
widgets in January or June?"

« Measure. Data, usually numeric and additive, that can be examined and
analyzed. Typically, a given measure is categorized by one or more dimensions,
and it is described as “dimensioned by” them.

« Hierarchy. A logical structure that uses ordered levels as a means of organizing
dimension elements in parent-child relationships. Typically, end users can
expand or collapse the hierarchy by drilling down or up on its levels.

« Level. A position in a hierarchy. For example, a time dimension might have a
hierarchy that represents data at the day, month, quarter, and year levels.

1-2 Oracle9i OLAP Developer’s Guide to the OLAP API

OLAP API Overview

« Attribute. A descriptive characteristic of the elements of a dimension that an
end user can specify to select data. For example, end users might choose
products using a Color attribute.

= Query. A specification for a particular set of data, which is referred to as the
query’s result set. The specification may require selecting, aggregating,
calculating, or otherwise manipulating data. If such manipulation is required, it
is an intrinsic part of the query.

Two additional data warehouse and OLAP concepts, cube and edge, are not
intrinsic to the OLAP API, but are often incorporated into the design of applications
that use the OLAP API.

« Cube. A logical organization of multidimensional data. Typically, the edges of a
cube contain dimension values, and the body of a cube contains measure
values. For example, sales data can be organized into a cube whose edges
contain values from the time, product, and customer dimensions and whose
body contains values from the sales measure.

« Edge. One side of a cube. Each edge contains values from one or more
dimensions. Although there is no limit to the number of edges on a cube, data is
often organized for display purposes along three edges, which are referred to as
the row edge, column edge, and page edge.

For more information about all of these concepts, see the Oracle Data Warehousing
Guide.

What Type Of Data Can an Application Access Through the OLAP API?

The OLAP API, as part of Oracle OLAP, makes it possible for Java applications
(including applets) to access data that resides in an Oracle data warehouse. A data
warehouse is a relational database that is designed for query and analysis, rather
than transaction processing. Warehouse data often conforms to a star schema, which
represents a multidimensional data model. The star schema consists of one or more
fact tables and one or more dimension tables that are related through foreign keys.
Typically, a data warehouse is created from a transaction processing database by an
extraction transformation transport (ETT) tool, such as Oracle Warehouse Builder.

In order for the OLAP API to access the data in a given data warehouse, a database
administrator must first ensure that the data warehouse is configured according to
an organization that is supported by Oracle OLAP. The star schema is one such
organization, but not the only one. Once the data is organized in the warehouse, the
database administrator must use the OLAP Metadata APIs to create the required
metadata, which can be defined as “data about the data.” Finally, with the metadata

Introduction to the OLAP APl 1-3

OLAP AP| Overview

in place, an application can access both the data and the metadata through the
OLAP API.

See the Oracle9i OLAP User’s Guide for information about supported data warehouse
configurations and about using the OLAP Metadata APIs.

The collection of warehouse data for which a database administrator has created
metadata using the OLAP metadata API is referred to as the data store to which the
OLAP API gives access. Of course, each user who accesses data through the OLAP
API might have security restrictions that limit the scope of the data that he or she
can access within the data store.

What Can an Application Do with the OLAP API?
Through the OLAP API, an application can do the following:

« Establish a connection to a data store.
« Explore the metadata to discover what data is available for viewing or analysis.

= Create queries that manipulate the data according to the needs of application
users (for example, selecting, aggregating, and calculating data).

= Retrieve query results that are structured for display in multidimensional
format.

« Modify existing queries, rather than totally redefine them, as application users
refine their analyses.

Context for OLAP API development

The OLAP API is aJava API, so it has all the advantages of the Java environment. It
is platform independent, and it provides the benefits of an object-oriented API, such
as abstraction, encapsulation, polymorphism, and inheritance. These strengths are
built into the OLAP API, and because the client application is written in Java, its
code can also take advantage of them.

In order to work with the OLAP API, application developers should have
familiarity with Java, object-oriented programming, relational databases, data
warehousing, and multidimensional OLAP concepts.

1-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Access to Data and Metadata Through the OLAP API

Access to Data and Metadata Through the OLAP API

OLAP API metadata describes the data that is available to the OLAP API through a
given connection. The metadata records three things:

« The fact that a given set of data exists. For example, a sales measure exists in the
data store.

= The structure of that set of data. For example, the sales measure is dimensioned
by customer, product, and time.

= The characteristics of that set of data. For example, the sales measure contains
numeric values, and it has a descriptive name that can be used in reports.

In contrast, the fact that 3542 dollars worth of boys outerwear was sold in Atlanta
during January 1999 is data, not metadata.

These examples distinguish between the metadata and the data for a measure called
Sales. The OLAP API makes a similar distinction between the metadata and the
data for dimensions. For example, the fact that a product dimension exists and that
it has text values as elements is metadata. In contrast, the fact that one of its
elements is “boys outerwear” is data.

MDM Model in the OLAP API

The OLAP API’s multidimensional metadata (MDM) model describes data in
multidimensional terms, which are familiar to OLAP and data warehousing
audiences. For example, it includes objects for measures, dimensions, hierarchies,
and attributes.

The following are some of the Java classes that are supplied by the OLAP API in its
implementation of the MDM model:

« MnVeasure
« MInDi nensi on
« MnHi erarchy

« Mnlievel
« MnmAttribute
« MinSchemn

« MniVet adat aPr ovi der

Introduction to the OLAP APl 1-5

Access to Data and Metadata Through the OLAP API

An MinSchema is a container for Mimveasur e, MUInDi mensi on, and other
MinSchema objects. An MinSchenma corresponds to a measure folder in the OLAP
management feature of Oracle Enterprise Manager. Note that an MinSchena does
not necessarily correspond to a relational schema.

An Mim\vet adat aPr ovi der gives an application access to metadata objects that
were created by a database administrator using the OLAP management feature of
Oracle Enterprise Manager. To obtain access to the metadata, an application uses the
get Root Scherma method in MdmVet adat aPr ovi der. This method returns the
top-level MinScherma, which contains all the Mdmveasur e and MInDi nensi on
objects that are accessible through this particular Minivet adat aPr ovi der. The
MdnDi nmensi on and Mdmvieasur e objects might be organized in a hierarchical tree,
with subschemas nested under the top-level schema. Using the get Measur es,

get Di nensi ons, and get SubSchenmas methods on all the nested MinSchenma
objects, an application navigates through the metadata and discovers what data is
available. In addition, the application can use methods to obtain the related

MdmHi er ar chy, MidnlLevel ,and MdmAt t r i but e objects.

Chapter 2, "Understanding OLAP APl Metadata" provides detailed information
about the OLAP API metadata.

Access to Data Through the OLAP API

An Mimveasur e or MiMDi nensi on represents data in the data store. For example,
an Mdm\veasur e called sal esAnobunt might represent a set of numeric elements
whose values are dollar sales figures, and an MinDi mensi on called pr oduct Di m
might represent a set of text elements whose values are product names. However,
an application cannot create a query on the data using an Miniveasur e or

MdmDi nensi on. As metadata, MinmVeasur e and MiInDi mensi on objects provide
descriptive information about data, but they do not provide the ability to query on
that data. And an application must create a query in order to select, calculate, and
otherwise manipulate data for analysis.

In order to create a query on the data for an Minveasur e or MdnDi mensi on, an
application calls the get Sour ce method on the MinMVeasur e or MUnDi nensi on.
This method creates a Sour ce object that represents the data for the purpose of
querying. A Sour ce is a specification for a query that defines a result set, and in
this case, the result set is the data for the MimVieasur e or MinDi nensi on.

In addition to representing the data for metadata objects, Sour ce objects can
represent the data for any query that an application creates. For example, a Sour ce
might specify a query for a selection of MUDi nensi on values (January, February,
March) or a calculation of the values of one MiniVeasur e minus those of another

1-6 Oracle9i OLAP Developer’s Guide to the OLAP API

OLAP API Client Software

(sal esAnpbunt minus uni t Cost). An application can use the powerful methods
on Sour ce and its subclasses to combine data in any way that the user requires.
And each new query is a new Sour ce.

When an application prepares to display the data for a given Sour ce, it creates a
Cur sor for the Sour ce. The application then uses this Cur sor to request and
retrieve the data from the OLAP service. When an application makes a request for
data, it can specify the typical amount of data that it requires at a given time (for
example, enough to fill a 40-cell table on the screen). The OLAP service then
handles the issues related to efficient retrieval. The application does not need to
manage the timing, sizing, and caching of the data blocks that it retrieves through
the OLAP APIL.

Because the primary focus of most OLAP applications is making queries against the
data store, a significant proportion of their data manipulation code works with the
following classes, each of which has methods for selecting, calculating, and
otherwise manipulating data.

« Source

« Bool eanSour ce
« Nunber Source
« StringSource

One of the useful characteristic of Sour ce objects is that they make no distinction
between dimensions and measures. All Sour ce objects behave in the same way.

User Connection Requirements

In addition to ensuring that data and metadata have been prepared appropriately,
an application developer must ensure that application users can make a connection
to the data store through the OLAP API and that users have database privileges that
give them access to the data. For information about setting up for such connections,
see the Oracle9i OLAP User’s Guide.

OLAP API Client Software

The OLAP API client software is a set of Java packages containing classes that
implement the programming interface to Oracle OLAP. An application calls the
methods on these classes for discovering, querying, processing, and retrieving data.

When a Java application calls methods on OLAP API Java classes, it uses the OLAP
API client software to communicate with Oracle OLAP, which resides within an

Introduction to the OLAP API 1-7

Developing an OLAP API Application

Oracle database instance. The communication between the OLAP API client
software and Oracle OLAP is provided through Java Database Connectivity (JDBC),
which is a standard Java interface for connecting to relational databases. For more
information about JDBC, see the Oracle9i JDBC Developer’s Guide and Reference.

Software Configurations

An application that uses the OLAP API client software (that is, calls methods in
OLAP API classes) can reside on a single computer, or it can be divided into
separate parts on two different computers. For example, the end-user portion can be
separate from the portion that makes OLAP API calls. In this case, software on three
computers could be involved.

For information about possible configurations, see the Oracle9i OLAP User’s Guide.

Requirements for Using the OLAP API Client Software

To use the OLAP API classes as you develop your application, import them into
your Java code in the standard way. When you deliver your application to users,
include the OLAP API classes with the application. You must also ensure that users
can access JDBC.

In order to develop an OLAP API application, you must have the Java Development
Kit (JDK) from Sun Microsystems. Users must have a Java Runtime Environment
(JRE) whose version number is compatible with the JDK you used for development.

For information about Java version requirements and about setting up the OLAP
API client software, see Appendix A, "Setting Up the Development Environment".
For detailed information about the OLAP API classes and methods, see the OLAP
API Javadoc and subsequent chapters of this guide.

Developing an OLAP API Application

As an application developer, you perform the following steps to create an OLAP
API application:

1. Decide on general design issues.
2. Decide on requirements for end-user queries.

3. Design OLAP API Tenpl at e objects that create end-user queries. This is an
optional step.

4. Write and test the Java code for the application.

1-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Developing an OLAP API Application

5. Deploy the application to users.

The rest of this topic presents a general description of each step.

Step 1: Decide on General Design Issues
Consider broad questions such as the following:

= Will the application be a standalone application (two-tier architecture), or will it
be divided, with end-user code on a separate tier from the data manipulation
code (three-tier architecture)?

= Will the application always access the same known metadata (for example,
describing employee data whose structure is constant), or must it discover what
metadata is available every time it makes a connection?

Step 2: Decide on Requirements for End-User Queries

Specify, in as much detail as possible, the nature of the queries that the end user will
be able to make. Because the OLAP API makes it possible to define queries in a
step-by-step process, it is also important to decide on the query modification
capabilities that the application will offer the user. Consider questions such as the
following:

= By what criteria will the end user select data through the application’s dialog
boxes? For example, will the application present a list of dimensions? Can the
user drill up and down on the hierarchy of a dimension? Are there attributes of
dimensions that the user can specify for selecting data (for example, color or
size)? Can the user make selections based on data values (for example,
population over 20,000)?

« Asthe user refines a query through a series of steps, can the user undo a step in
the process to return the query to an earlier state?

= Asthe user refines a query, can the user specify the scope of an undo request?
For example, the undo request might apply only to the values of one field out of
many in the selection dialog box.

Planning the end-user queries is a crucial step in the application design process, so
you should complete it as thoroughly as possible. Ideally, you should create an
end-user query model that identifies all the conceptual query objects with which the
application user interface will deal. This strategy takes advantage of the strengths of
object-oriented design, and it allows for a clear correspondence between user
interface objects and OLAP API objects.

Introduction to the OLAP APl 1-9

Developing an OLAP API Application

The following are examples of conceptual query objects for an application user
interface:

Dimension. This object has hierarchies on which the user can drill and attributes
from which the user can select.

Dimension selection. This object represents a selection of dimension elements.

Edge. This object represents one side of a cube and has related dimension
objects.

Cube. This multidimensional object has related edge objects. It also has a related
measure.

Each of these conceptual query objects can be represented by an OLAP API
Tenpl at e object.

Step 3: Design OLAP API Template Objects That Create End-User Queries

An optional step in implementing an OLAP API application is designing Tenpl at e
objects. This step is recommended because, the use of Tenpl at e objects offers the
following benefits:

Dynamic queries. With a Tenpl at e, you can create a modifiable query. That is,
when you have created one query and you want to execute another one that is
similar but not identical, you do not have to create an entirely new query. You
simply make a small change to the existing query. Thus, the query is dynamic,
rather than static.

Refinement and rollback of queries. With a Tenpl at e, you can capture a series
of steps that a user has completed when specifying a query. Each step refines
the query further and is recorded as a new query state. If the user decides to
cancel one or more of the specification steps, you can rollback the query to an
earlier state.

Matching of code to user interface characteristics. When you design a

Tenpl at e, you can make it correspond directly to the operations that a user
performs. For example, if your application includes a balance sheet, you can
create a balance sheet Tenpl at e that incorporates all the appropriate
characteristics (such as a method of aggregation) and behaviors (such as
automatic totalling).

1-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Developing an OLAP API Application

For a more detailed example of how Tenpl at e objects mirror the query-building
aspects of an application’s user interface, imagine an application that allows the
user to create a three-dimensioned cube of data through the following steps:

1. Choose a measure whose data will be in the cube.
2. Select the values for each dimension that will provide structure to the cube.
3. Specify the placement of the dimensions on the three edges of the cube.

As the application developer for this interface, you would design a Tenpl at e
subclass for each of the following objects: dimension, dimension selection, edge,
and cube. As part of the design, you would specify methods on the Tenpl at e
subclasses that allow you to combine objects as needed. For example, the edge
Tenpl at e class might have an addDi mensi on method, and the cube Tenpl at e
class might have an addEdge method. Once you have implemented the dimension,
dimension selection, edge, and cube Tenpl at e classes, you can use them again and
again in your application. They are basic building blocks in your application’s code
for querying and manipulating data.

In this stage of the application design process, you should make detailed
specifications for each Tenpl at e in the application. For information about
designing Tenpl at e objects, see Chapter 10, "Creating Dynamic Queries".

Step 4: Write and Test the Java Code for the Application

Up to this step, you have not written any Java code. You have considered questions
about the design of your application, and you have made detailed specifications for
the Tenpl at e objects that your application will include. Now you must do the
following to implement the application:

1. Setup the OLAP API client software on your development computer, as
described in Appendix A, "Setting Up the Development Environment". If you
are designing a three-tiered application, the development computer (from the
OLAP API point of view) is the middle-tier computer.

2. ldentify the data store that you will use for developing and testing the
application. Ensure that the data is structured as a star or snowflake schema in
an Oracle data warehouse, and ensure that the OLAP management feature in
Oracle Enterprise Manager has provided the metadata.

3. Write the Java classes for your application, importing the OLAP API classes as
needed. Among the Java classes that you write, include the Tenpl at e classes
that you designed.

4. Test your application using the test data store.

Introduction to the OLAP APl 1-11

Tasks That an OLAP API Application Performs

For information about coding an application that uses the OLAP API, see the
subsequent chapters of this guide and the OLAP API Javadoc. See "Tasks That an
OLAP API Application Performs” on page 1-12 for a description of the tasks that
an application typically performs.

Step 5: Deploy the Application to users

Keep the following in mind when you deploy your application:

« Include the OLAP API Java classes along with the ones that you have
developed.

« Ensure that the user’s computer (or the middle tier computer) has access to an
Oracle database instance that includes the OLAP option.

« Ensure that the user has access to an appropriate Oracle data warehouse with
metadata prepared by the OLAP Metadata APIs.

« Provide documentation for your application, giving installation instructions
and explaining the user interface that you have created.

Tasks That an OLAP API Application Performs
An application that uses the OLAP API typically performs the following tasks:
1. Connect to the data store
2. Discover the available metadata
3. Select and calculate data through queries
4. Retrieve query results

The rest of this topic briefly describes these tasks, and the rest of this guide provides
detailed information.

Task 1: Connect to the Data Store

An application connects to the data store by identifying some information about the
target Oracle database and specifying this information in a JDBC connection
method.

For more information about connecting, see Chapter 3, "Connecting to a Data Store".

1-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Tasks That an OLAP API Application Performs

Task 2: Discover the Available Metadata

Having established a connection, the application creates an
Mdmvet adat aPr ovi der. This object gives access to all the metadata objects in the
data store.

To discover the available metadata, an application uses the get Root Schena
method on the MdnmVet dat aPr ovi der to obtain the top-level measure folder for all
of its metadata objects. The application then gets the dimensions, measures, and
subfolders that are under the root. Once the application has all the dimensions and
measures, it can interrogate them to get their attributes, hierarchies, levels, and
other characteristics.

Having determined the metadata objects that it has to work with, the application
can present relevant lists of objects to the user for data selection and manipulation.

For a description of the metadata objects, see Chapter 2, "Understanding OLAP API
Metadata". For information about how an application can discover the available
metadata, see Chapter 4, "Discovering the Available Metadata".

Task 3: Select and Calculate Data Through Queries

The heart of any OLAP application lies in the construction of queries against the
data store. The application user interface provides ways for the user to select data
and specify what should be done with it. Then, the data manipulation code
translates these instructions into queries against the data store. The queries can be
as simple as a selection of dimension elements, or they can be complex, including
several aggregations and calculations on measure values.

The OLAP API object that specifies a query is a Sour ce. Therefore, a significant
portion of any OLAP API application is devoted to dealing with Sour ce objects.

You can manipulate Sour ce objects directly, using methods such as sel ect ,

r enove, and appendVal ues to create selections. In addition, you can use methods
such as pl us, di v,and t ot al to calculate values. Sour ce and its subclasses,
Number Sour ce, St ri ngSour ce, and Bool eanSour ce, have a rich assortment of
methods for manipulating data. The most powerful method in Sour ce isj oi n,
which gives you the ability to combine Sour ce objects in almost any way
imaginable.

If you are implementing a simple user interface, you might use only the methods on
the Sour ce classes to select and manipulate the data that users specify in the
interface. However, if you want to offer your users multistep selection procedures
and the ability to modify queries or undo individual steps in their selections, you
should use Tenpl at e classes as described in the topic "Developing an OLAP API

Introduction to the OLAP APl 1-13

Tasks That an OLAP API Application Performs

Application" on page 1-8. Within the code for each Tenpl at e, you use the
methods on the Sour ce classes, but the Tenpl at e classes themselves allow you to
modify and refine even the most complex query. In addition, you can minimize
your work by writing general-purpose Tenpl at e classes and reusing them in
various parts of your application.

For information about working with Sour ce objects, see Chapter 5, "Introduction
to Querying". For information about working with Tenpl at e objects, see
Chapter 10, "Creating Dynamic Queries".

Task 4: Retrieve Query Results

When users of an OLAP application are selecting, calculating, combining, and
generally manipulating data, they also want to see the results of their work. This
means that the application must retrieve the result sets of queries from the data
store and display the data in multidimensional form. To retrieve a result set for a
query through the OLAP API, the application creates a Cur sor based on the
Sour ce that specifies the query.

Because the OLAP API was designed to deal with a multidimensional view of data,
a Sour ce can have a multidimensional result set. For example, a Sour ce can
represent an Mimveasur e that is structured by three MinDi mensi on objects. The
Cur sor for this Sour ce has a structure that mirrors the Sour ce itself; that is, the
Cur sor organization is based on the same three MUnDi mensi on objects.

To retrieve all the items of data through a Cur sor, the application can loop through
the multidimensional Cur sor structure. This design is well adapted to the
requirements of standard user interface objects for painting the computer screen. It
is especially well adapted to the display of data in multidimensional format.

For more information about using Cur sor objects to retrieve data, see Chapter 8,
"Understanding Cursor Classes and Concepts".

1-14 Oracle9i OLAP Developer’s Guide to the OLAP API

2

Understanding OLAP API Metadata

This chapter describes the metadata objects that the OLAP API provides, and
explains how these objects relate to the OLAP metadata objects that a database
administrator specifies using the OLAP Metadata APIs.

This chapter includes the following topics:

= Overview of the OLAP API Metadata

« OLAP Metadata Objects

« Overview of MDM Metadata Objects in the OLAP API
= MdmDimension Class

= MdmLevel Class

« MdmHierarchy Class

= MdmListDimension Class

= MdmMeasure Class

= MdmAttribute Class

« Data Type and Type of MDM Metadata Objects

Understanding OLAP API Metadata 2-1

Overview of the OLAP API Metadata

Overview of the OLAP API Metadata

The OLAP API provides a Java application with access to a multidimensional view
of data in an Oracle database. The OLAP API design includes objects that are
consistent with that view and are familiar to data warehousing and OLAP
developers. For example, it has objects for measures, dimensions, hierarchies, levels,
and attributes. The OLAP API design incorporates an object-oriented model called
MDM (multidimensional metadata).

The data in an Oracle database must be prepared by a database administrator in
order to support the MDM model. Even though recent SQL enhancements have
introduced some multidimensional objects, such as dimension, there are other
objects and characteristics that must be added.

Data Preparation

A database administrator starts with a data warehouse that is organized according
to certain specifications. For example, it might conform to a star schema. The
requirements are described in the Oracle9i OLAP User’s Guide.

Metadata Preparation

Using the OLAP Metadata APIs, the administrator adds OLAP metadata to the data
warehouse. The OLAP metadata objects, which are created in this step, supply the
metadata required for Oracle OLAP to access the data. These OLAP metadata
objects map to MDM metadata objects in the OLAP API.

The topic "OLAP Metadata Objects" on page 2-2 briefly describes the OLAP
metadata objects that a database administrator prepares for use with Oracle OLAP.

OLAP Metadata Objects

Using the OLAP Metadata APls, a database administrator adds OLAP metadata to
a data warehouse. The end result is the creation of one or more measure folders that
contain one or more measures. The measures have dimensions, and the dimensions
have hierarchies, levels, and attributes. Each of these OLAP metadata objects maps
directly to an MDM object in the OLAP API.

For detailed information about OLAP metadata and about using the OLAP
Metadata APIls, see the Oracle9i OLAP User’s Guide.

Note that the OLAP metadata includes a cube object, which does not map directly
to any MDM object. Database administrators reference cubes in the OLAP Metadata

2-2 Oracle9i OLAP Developer’s Guide to the OLAP API

OLAP Metadata Objects

APIs when they specify the dimensions of each measure. Once the dimensions are
specified, they are firmly associated with their measures in the metadata, so this
type of cube object is not needed in the MDM model.

The rest of this topic briefly describes the OLAP metadata objects that map directly
to MDM obijects in the OLAP API.

Dimensions in the OLAP Metadata

The he following are some of the characteristics that a database administrator can
specify for dimensions:

= General characteristics, such as the name of the dimension and the schema from
which its data is drawn.

= Levels, which record the levels of the dimension. The database administrator
typically specifies one or more levels for each OLAP dimension.

= Hierarchies, which specify the parent-child relationships between the levels.
The database administrator typically specifies at least one hierarchy for each
OLAP dimension. If there is only one level for the dimension, then no hierarchy
is specified and the dimension is a simple, non-hierarchical list.

= Attributes, which record characteristics of the level elements for the dimension.
For example, an attribute might record the gender of each customer in the
customers dimension.

Typically, a database administrator specifies one or more columns in a database
table to serve as the basis for each OLAP level, hierarchy, and attribute.

A database administrator creates cubes after creating dimensions. A cube is a set of
dimensions that provide organizational structure for measures.

Measures in the OLAP Metadata

The OLAP Metadata APIs give a database administrator the ability to specify that a
given measure belongs to a given cube. Because a cube is a set of dimensions that
provide organizational structure for measures, specifying that a given measure
belongs to a given cube specifies the dimensions of that measure. This is essential
information for the OLAP API, where the dimensionality of a measure is one of its
most important features.

Understanding OLAP API Metadata 2-3

OLAP Metadata Objects

To identify the data for a measure, the database administrator typically specifies a
column in a fact table where the measure’s data resides. As an alternative, the
database administrator can specify a calculation or transformation that produces the
data.

Measure Folders in the OLAP Metadata

Once a database administrator has created measures (first creating dimensions and
cubes), the next step is to create one or more groups of measures called measure
folders. Typically, the measures in a given folder are related by subject matter. That
is, they all pertain to the same business area. For example, there might be three
separate folders for financials, sales, and human resources.

The measures in a given measure folder can belong to different cubes, and they can
be from more than one schema.

The database administrator must create at least one measure folder because the
scope of the data that an OLAP API application can access is defined in terms of
measure folders. That is, an OLAP APl MinmVet adat aPr ovi der gives access only
to the measures that are contained in measure folders. Of course, each measure’s
dimensions are included, along with its hierarchies, levels, and attributes.

In this context, it is important to understand that measure folders can be nested.
This means that a given measure folder can have subfolders that have their own
measures, and even their own subfolders. Thus, a database administrator can
arrange measures in a hierarchy of folders, and an OLAP API

Mimvet adat aPr ovi der can give access to all of the measure folders and their
subfolders.

2-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of MDM Metadata Objects in the OLAP API

Overview of MDM Metadata Objects in the OLAP API

The OLAP API implementation of the MDM model is represented by classes in the
or acl e. expr ess. ndimpackage. Most of the classes in this package implement
metadata objects, such as dimensions and measures. The following diagram
introduces the subclasses of the Mintbj ect class.

Figure 2-1 MdmObject Class and Its Subclasses.

MdmObject
I I
MdmSchema MdmSource
I I
MdmDimension MdmDimensionedObject
I I
MdmAttribute MdmMeasure
I I
MdmHierarchicalDimension MdmListDimension
I I
MdmHierarchy MdmLevel

Understanding OLAP API Metadata 2-5

Overview of MDM Metadata Objects in the OLAP API

Mapping of OLAP Metadata Objects to MDM objects

An application accesses metadata objects by creating an OLAP API
Mdmvet adat aPr ovi der and using it to discover the available metadata objects in
the data store.

The metadata objects that a database administrator specifies using the OLAP
Metadata APIs map directly to MDM metadata objects that are accessible through
the MdmVet adat aPr ovi der. The following table presents the typical mapping.

OLAP Metadata Objects MDM Metadata Objects
Dimension MinmHi er ar chy or Minii st Di nensi on
Hierarchy MinHi er ar chy
Level Minievel
Measure Mdmveasur e
Attribute MImAt tri bute
Measure Folder MinSchema

This chapter describes the MDM metadata objects. For information about how an
application discovers the available MDM metadata objects in the data store, see
Chapter 4, "Discovering the Available Metadata".

MinmScherma and MinSour ce are the two subclasses of MinThj ect .

MdmSchema Class

An MinSchermma represents a set of data that is used for navigational purposes. An
MinSchenma is a container for Mimveasur e, MdnDi nensi on, and other
MinmSchema objects. An MinSchena is equivalent to a folder or directory that
contains associated items. It does not correspond to a relational schema in the
Oracle database. Instead, it corresponds to a measure folder, which can include data
from several relational schemas and which was created by a database administrator
using the OLAP Metadata APIs.

Data that is accessible through the OLAP API is arranged under a top-level
MinSchema, which is referred to as the root MinSchena. Under the root, there are
one or more subschemas. To begin navigating the metadata, an application calls the
get Root Scherma method on the MiniVet adat aPr ovi der, as explained in
Chapter 2, "Understanding OLAP APl Metadata".

2-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of MDM Metadata Objects in the OLAP API

The root MinScherra contains all the MinDi mensi on objects that are in the data
store. Most MInDi nensi on objects are contained in subschemas under the root
MinSchema. However, a data store can contain a dimension that is not included in a
subschema. The root MinSchema contains MdDi nensi on objects that are in
subschemas as well as MUdnDi mensi on objects that are not.

The root MinSchema contains Miniveasur e objects only if they are not contained in
a subschema. Because most MimVeasur e objects belong to a subschema, the root
MinSchema typically has no MinmVeasur e objects.

An MinScherma has methods for getting all the Mdmveasur e, MdmDi nensi on, and
MimSchema objects that it contains. The root MinSchema also has a method for
getting the measure MInDi nensi on, whose elements are all the MiniVeasur e
objects in the data store regardless of whether they belong to a subschema.

MdmSource Class

An MinSour ce represents a measure, dimension, or other set of data (such as an
attribute) that is used for analysis. This abstract class is the basis for some important
MDM metadata classes, such as Mimveasur e, MdnDi mensi on, and

MImAtt ri but e.

MdnSour ce objects represent data, but they do not provide the ability to create
queries on that data. Their function is informational, recording the existence,
structure, and characteristics of the data. They do not give access to the data values.

In order to access the data values for a given MinSour ce, an application calls the
get Sour ce method on the MinSour ce. This method returns a Sour ce through
which an application can create queries on the data represented by the MinSour ce.
The following line of code creates a Sour ce from an MdnDi nmensi on called

nmdPr oduct sDi m

Source productsDi m = ndnProduct sDi m get Sour ce();

A Sour ce that is the result of the get Sour ce method on an MinSour ce is called a
primary Sour ce. An application creates new Sour ce objects from this primary
Sour ce as it selects, calculates, and otherwise manipulates the data. Each new
Sour ce specifies a new query.

For more information about working with Sour ce objects, see Chapter 5,
"Introduction to Querying".

The rest of this chapter describes the subclasses of MinSour ce, along with other
classes, such as MdnDi mensi onDef i ni ti on and MInDi nensi onMenber Type,
that are closely related.

Understanding OLAP API Metadata 2-7

MdmDimension Class

MdmDimension Class

MidnDi mensi on is a subclass of MdnSour ce.

Description of an MdmDimension

An MdnDi mensi on represents a list of elements that can organize a set of data. For
example, if you have a set of sales figures for a given year and you organize them
by month, the list of months is a dimension of the sales data. The values of the
month dimension act as indexes for identifying each particular value in the set of
sales data.

In the OLAP API, the abstract MUnDi mensi on class represents the general concept

of a list of elements that can organize data. MinDi nensi on has an abstract subclass
called MdrHi er ar chi cal Di nensi on, which represents a list that has hierarchical
characteristics.

The following concrete subclasses of MUnDi nensi on represent the specific kinds of
MdnDi nensi on objects that can be used in analysis.:

« MinLevel , which represents a list of elements that supply one level of a
hierarchical structure. Each element can have a parent and one or more
children. The parents and children of a given MiniLevel element are not within
the given Minlevel . They are elements of different MinlLevel objects.

« MinHi er ar chy, which represents a list of elements arranged in a hierarchical
structure that has levels based on parent-child relationships. Each element can
have a parent and one or more children, and all of these elements are within the
MdnHi er ar chy.

Though the parent and child elements are within the MdnHi er ar chy, they
correspond to elements in MdnLevel objects. Therefore, loosely speaking, an
MdHi er ar chy is composed of Minievel objects. Some MirHi er ar chy
objects are simply composed of MiniLevel objects. Others are unions of one or
more subordinate MinHi er ar chy objects, which in turn, are composed of
Mdnmievel obijects.

« MinLi st Di nensi on, which represents a simple list of elements that play no
part in any hierarchical structure. The elements have no parents and no
children.

Both MdrmLevel and MinHi er ar chy are concrete subclasses of the abstract
MinHi er ar chi cal Di nensi on class.

2-8 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmbDimension Class

An MiInDi mensi on can have one or more MimAt t ri but e objects. Each of these
objects maps the elements of the MinDi mensi on to values representing some
characteristic of the elements. To obtain the MdmAt t r i but e objects for a given
MdmDi nensi on, call its get At t ri but es method.

An MiInDi mensi on has an MdnDi mensi onDef i ni ti on, which represents the
structure of the underlying data, and an MinDi mensi onMenber Type, which
represents the basic nature of the elements. These two objects hold important
information about the MdnDi mensi on to which they belong. For a given

MdmDi nensi on, you use its get Def i ni ti on and get Menber Type methods to
obtain these related objects.

Information Held by an MdmDimensionDefinition

An MiInDi mensi onDef i ni ti on indicates the structure of the underlying data on
which the MdnDi mensi on is based. The MinDi nensi onDef i ni ti on class is
abstract. Therefore, instances are always one of the following subclasses:

« MinBaseDi nensi onDefi ni ti on, which indicates that the MUnDi mensi on
has underlying data structured as a single list. For example, an Minievel is
often based on a single column in a relational table.

« MnmUni onDi mensi onDef i ni ti on, which indicates that the MdnDi nensi on
has underlying data structured as the union of two or more lists. For example,
an MidrHi er ar chy can be based on two or more columns in a relational table,
one column for each Minievel .

« MImAl i asDi mensi onDef i ni ti on, which indicates that the MUnDi nensi on
acts as a proxy (that is, an alias) for another MUnDi nensi on.

An MInDi mensi on that has an MdmUni onDi nensi onDef i ni ti on has regions. A
region of a given MinDi mensi on is another MUnDi nensi on that represents a
subset of the elements of the given MinDi mensi on. For example, an

MdmDi nensi on for calendar year might have one region that represents quarters
and another region that represents months. To obtain the regions of an

MdmDi nensi on, you call the get Regi ons method on its

Midrmni onDi mensi onDefi ni ti on.

Understanding OLAP API Metadata 2-9

MdmLevel Class

Information Held by an MdmDimensionMemberType

An MinDi mensi onMenber Type indicates the basic nature of the elements in the
MdnDi nensi on. It holds a description for each element, and it often provides
methods for finding out other information about individual elements. The

MdnDi nensi onMenber Type class is abstract. Therefore, instances are always one
of the following subclasses:

« MInili nreMenber Type, which indicates that the MInDi mensi on elements
represent time periods. An MInTi neMenber Type has methods for finding out
the end date and time span for each element.

« MimMveasur eMenber Type, which indicates that the MinDi mensi on elements
are all the MimVeasur e objects in the data store. There is only one
MdnDi nensi on with an Mdnmveasur eMenber Type, and it is referred to as the
measure MdnDi nensi on. You can obtain the measure MdnDi nensi on by
calling the get Measur eDi nensi on method on the root MinSchena.

« Mintt andar dMenber Type, which indicates that the MdnDi mensi on elements
have no specific characteristics. Most MinDi nensi on objects have an
Mdntt andar dMenber Type.

MdmLevel Class

MinmiLevel is asubclass of MdnHi er ar chi cal Di nensi on, which is an abstract
subclass of MUnDi nensi on.

Description of an MdmLevel

An MinmLevel isan MinHi er ar chi cal Di mensi on whose parents and children
are elements from other Mdmi_evel objects. The elements from a given Minievel
correspond to a subset of the elements in an MdHi er ar chy.

A given MinmLevel is based on a level that was specified by a database
administrator using the OLAP Metadata APIs. Typically, the database administrator
specified a column in a database table to provide the elements for the level.

Even though the elements of an MinmLevel have parent-child relationships, an
Mimievel is represented as a simple list. The parent-child relationships among the
elements are recorded in the parent and ancestors attributes, which you can obtain
by calling the get Par ent Rel at i on and get Ancest or sRel at i on methods on
the MiniLevel . Sometimes the parent and ancestors attributes are referred to as
parent and ancestors relations.

2-10 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmLevel Class

Typically, an MinlLevel has an MinBaseDi nensi onDefi ni ti on, because the
underlying data is structured as a single list.

Elements of an MdmLevel

The list of elements in an MinLevel includes only the elements in that one level.
The values of the elements must be unique. However, uniqueness can be achieved
by a database administrator who defines the level using two relational columns. For
example, a level that represents cities can be defined in the relational database
based on both the city column and the state column. This makes it possible for the
value “Springfield” to appear for two different elements in the city level: one
appears for Springfield, Illinois and another appears for Springfield, Massachusetts.

The following table lists the elements for an Min_evel called mdmQuart er, which
records the three-month quarters for a level MidrHi er ar chy called

mdnTi mesDi nCal Hi er. This MdnHi er ar chy covers four years, so the number of
elements in rdmQuar t er is 16.

Elements of
mdnQuarter

1998-Q1
1998-Q2
1998-Q3
1998-Q4
1999-Q1
1999-Q2
1999-Q3
1999-Q4
2000-Q1

2001-Q4

Understanding OLAP API Metadata 2-11

MdmHierarchy Class

MdmHierarchy Class

MdnHi er ar chy is a subclass of MdnHi er ar chi cal Di nensi on, which is an
abstract subclass of MdnDi nensi on.

Description of an MdmHierarchy

An MdrmHi er ar chy isan MidnHi er ar chi cal Di nensi on that includes all the
elements of one or more hierarchical structures. That is, all the parents and children
are within the MinHi er ar chy.

Even though the parent-child relationships exist in the MinHi er ar chy, its elements
are represented as a simple list. The relationships among the elements are recorded

in the parent and ancestors attributes, which you can obtain by calling the

get Par ent Rel ati on and get Ancest or sRel ati on methods on the

MdHi er ar chy. You can obtain the region for each element by calling the

get Regi onAt tri but e method on the MdnDi nensi onDefi ni ti on of the

MdmHi er ar chy. Sometimes the parent, ancestors, and region attributes are referred
to as parent, ancestors, and region relations.

Typically, an MinHi er ar chy is one of the following types:

« Level MinHi er ar chy, which represents a hierarchical structure whose regions
are MdnlLevel objects. For example, a level MinHi er ar chy for calendar year
might have as its regions MdnLevel objects for year, quarter, month and day.

A level MidnHi er ar chy has an Mdnni onDi nensi onDef i ni ti on, and its
regions are MiniLevel objects. The return value from its get Hi er ar chy Type
method is LEVEL_HIERARCHY. A level MinHi er ar chy is based on a
hierarchy that was defined by a database administrator using the OLAP
Metadata APIs.

« Union MdnHi er ar chy, which represents a dimension that has one or more
subordinate hierarchical structures. These structures are represented by one or
more level or value MinHi er ar chy objects. An example, of an MdnHi er ar chy
with two structures is a union MdnHi er ar chy for time that has two regions,
one for the calendar year and another for the fiscal year. Each region is a level
MdnHi er ar chy.

A union MdnHi er ar chy has an Minni onDi nensi onDefi ni ti on andits
regions are MdnHi er ar chy objects. The return value from its
get Hi er ar chyType method is UNION_HIERARCHY. A union

2-12 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmHierarchy Class

MdmHi er ar chy is based on a dimension that was defined as having one or
more hierarchies by a database administrator using the OLAP Metadata APIs.

« Value MiHi er ar chy, which represents a hierarchical structure whose
elements have parents and children but no levels and therefore no regions. For
example, a company’s employee reporting structure can be represented with
parent/child relationships but without levels.

A value MinHi er ar chy has an MinBaseDi nmensi onDef i ni ti on. The return
value from its get Hi er ar chy Type method is VALUE_HIERARCHY. A value
MdmHi er ar chy is based on a dimension that was flagged as a value hierarchy
by a database administrator using the OLAP Metadata APIs.

When working with MdnHi er ar chy objects in the current release of the OLAP API,
keep the following points in mind.

« Calltheget Attri but es method on a union MinHi er ar chy, not on its
subordinate level or value MirHi er ar chy objects or on MinLevel objects.

= Create queries on Sour ce objects that are based on a level or value
MdmHi er ar chy, not on a union MinHi er ar chy.

« Callthe get Par ent Rel ati on and get Ancest or sRel at i on methods on a
level or value MinHi er ar chy, not on a union MdHi er ar chy.

« Call the get Regi onAt t ri but e method on the
MdmUni onDi mensi onDef i ni ti on of alevel MdnHi er ar chy, not of a union
MdmHi er ar chy. This method returns the MdmAt t r i but e that records the
Mimievel towhich each MinHi er ar chy element belongs.

Elements of a Level MdmHierarchy

The elements of a level MidrHi er ar chy include all of the elements of all of its
regions. The values of the elements in a particular level MinHi er ar chy must be
unique. The following examples present the elements of two level MinHi er ar chy
objects, one for calendar year and the other for fiscal year.

Level MdmHierarchy for Calendar Year

The following table lists the values of the elements for a level MinHi er ar chy
called mdniTi mesDi mCal Hi er, which includes the elements from four MinLevel
objects: ndmyear, ndmQuar t er, ndnivont h, and ndnDay. The number of elements

Understanding OLAP API Metadata 2-13

MdmHierarchy Class

is 1529: 4 year elements, 16 quarter elements, 48 month elements, and 1461 day
elements.

Elements of
mdnili mesDi nCal H er

1998
1998-Q1
1998-01
01-JAN-98
02-JAN-98
03-JAN-98

01-FEB-98
02-FEB-98
03-FEB-98

1998-Q2
1998-04

01-APR-98
02-APR-98
03-APR-98

1999
1999-Q1
1999-01
01-JAN-99
02-JAN-99
03-JAN-99

2-14 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmHierarchy Class

Level MdmHierarchy for Fiscal Year

The following table lists the values of the elements for a level MinHi er ar chy
called mdnili mesDi nFi sHi er, which includes the elements from four MinLevel
objects: mdnFi sYear, mdnFi sQuar t er, mdni shont h, and mdnFi sDay. The
number of elements is 1529: 4 fiscal year elements, 16 fiscal quarter elements, 48
fiscal month elements, and 1461 fiscal day elements.

In this example, the mdnFi sDay MinLevel is based on the same relational
database column on which the ndnDay Mim_evel is based (see the earlier example
for calendar year). Therefore, the values of the elements for these two Min_evel
objects are identical. However, this does not mean that the elements themselves are
identical. The elements in ndnDay are distinct from the elements in ndnFi sDay;
only the values of the two sets of elements are the same.

Elements of
tinmesDi nFi sHi er

F1S-1998

F1S-1998-Q1
FI1S-1998-01
01-JUL-98
02-JUL-98
03-JUL-98

01-AUG-98
02-AUG-98
03-AUG-98

F1S-1998-Q2
F1S-1998-04

01-OCT-98
02-OCT-98
03-OCT-98

Understanding OLAP API Metadata 2-15

MdmHierarchy Class

Elements of
tinmesD nFi sHi er

FIS-1999
FIS-1999-Q1
FIS-1999-01
01-JUL-99
02-JUL-99

03-JUL-99

Terminology: Nodes and leaves

A level MdnHi er ar chy represents a tree structure with parent-child relationships.
Elements in the lowest Mdmi_evel are referred to as leaves, and the elements in the
Mimievel objects above the lowest level are referred to as nodes. Nodes have
children; leaves do not.

Elements of a union MdmHierarchy

The elements of a union MinHi er ar chy include all of the elements of all of its
regions. Another way to say this is that a union MinHi er ar chy includes all of the
elements of all of the MinmLevel objects in all of its subordinate MdnHi er ar chy
objects. In hierarchical terms, the set of elements includes all of the leaves (the
elements at the lowest level) and all of the nodes (the elements at the levels above
the lowest one) for all the hierarchies.

Distinct elements in the regions of a union MdmHierarchy

The elements in the regions of a union MinHi er ar chy are totally distinct. That is, a
given element does not appear in more than one region of a union MinHi er ar chy.
This is the case even if the database administrator specified the same level in two
different hierarchies of a dimension. When this happens, Oracle OLAP creates two
different Min_evel objects, one for each level MinHi er ar chy.

Though the elements of a union MirHi er ar chy are distinct, the values of the
elements are not required to be unique. Therefore in the example below, the leaf
elements of the two regions of the union MinHi er ar chy have values that are
identical.

2-16 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmHierarchy Class

Union MdmHierarchy for Time

Consider a union MinHi er ar chy called ndmTi nesDi m which has two regions.
The first region is the MdnHi er ar chy called mdnili mesDi mCal Hi er, which has
1529 elements. The second region is the MdrHi er ar chy called

mdnili mesDi nFi sHi er, which also has 1529 elements. The set of elements for
mdnTi mesDi mis the union of the elements from its two MidmHi er ar chy objects.
Because no element can appear in both MinHi er ar chy objects, ndmTi mesDi mhas
3058 elements. Note that a calendar year begins on January 1, while a fiscal year
begins on July 1.

The following table lists the values of the elements of the union MinHi er ar chy
called mdmTi mesDi m To distinguish the elements of ndnDay and mdnFi sDay,
whose values are identical, the word “(fiscal)” appears next to the values for
mdnti sDay. The ndnDay and ndnfi sDay objects were introduced earlier in the
examples for the elements of a level MidrHi er ar chy.

Elements of
mdmTi nesDi m

1998

1998-Q1
1998-01
01-JAN-98

1999

1999-Q1
1999-01
01-JAN-99

FIS-1998
FIS-1998-Q1
F1S-1998-01
01-JUL-98 (fiscal)

Understanding OLAP API Metadata 2-17

MdmListDimension Class

Elements of
mdmli nesDi m

FI1S-1999
FIS-1999-Q1
FIS-1999-01
01-JUL-99 (fiscal)

MdmListDimension Class

MdnLi st Di nensi on is a subclass of MdnDi nensi on.

Description of an MdmListDimension

An MirLi st Di mensi on is a simple list of elements that have no hierarchical
characteristics. That is, the notion of having a parent or a child is not relevant for the
elements of an MidnLi st Di nensi on.

Elements of an MdmListDimension

A given MinLi st Di nensi on is based on a dimension that was specified as having
a single level and no hierarchy by a database administrator using the OLAP
Metadata APIs.

2-18 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmMeasure Class

The following table lists the values of the elements of an MinLi st Di nensi on
called mdnCol or.

Elements of ndnmCol or

Black

Blue

Cyan

Green

Magenta
Red

Yellow

White

MdmMeasure Class

MdmVeasur e is a subclass of MUnDi nensi onedQbj ect , which is an abstract
subclass of MinSour ce.

Description of an MdmMeasure

An Mdm\veasur e represents a set of data that is organized by one or more
MdmDimension objects. The structure of the data is similar to that of a
multidimensional array. Like the dimensions of an array, the MUnDi nensi on
objects that organize an Mim\veasur e provide the indexes for identifying individual
cells.

For example, suppose you have an Mim\veasur e for sales data, and the data is
organized by product, time, customer, and channel (with channel representing the
marketing method, such as direct or indirect.). You can think of the data as
occupying a four-dimensional array with the product, time, customer and channel
dimensions providing the organizational structure. The values of these four
dimensions are indexes for identifying each particular cell in the array, which
contains a single sales value. You must specify a value for each dimension in order
to identify a value in the array. In relational terms, the MUdnDi mensi on objects
constitute a compound (that is, composite) primary key for the MidnmVeasur e.

The values of an MinmVeasur e are usually numeric, but this is not necessary.

Understanding OLAP API Metadata 2-19

MdmMeasure Class

Elements of an MdmMeasure

A given MdmMeasur e is based on an OLAP measure that was created by a database
administrator using the OLAP Metadata API. In most cases, the database
administrator specified a column in a fact table to act as the basis for the OLAP
measure (alternatively, the database administrator specified a mathematical
calculation or a data transformation). In many but not all cases, the database
administrator also specified at least one hierarchy for each of the measure’s OLAP
dimensions, as well as an aggregation method. Oracle OLAP uses all of this
information to identify the number of elements in the MiniVeasur e and the value
of each element.

MdmMeasure Elements Are Determined by MdmDimension Elements

The set of elements that are in an Mdmveasur e is determined by the structure of its
MdnDi nensi on objects. That is, each element of an Mdmveasur e is identified by a
unique combination of elements from its MinDi mensi on objects.

Typically, the MdnDi nensi on objects of an MinmMVeasur e are union MinHi er ar chy
objects. That is, they have at least one hierarchical structure. It is important to
remember that the elements of a union MinHi er ar chy include all of the leaves and
all of the nodes for all of the level MdnHi er ar chy objects that represent its regions.
Because of this structure, the values of the elements of an Minmveasur e are of two
kinds:

« Values from the fact table column (or fact-table calculation) on which the
MdmVeasur e is based, as specified using the OLAP Metadata APIs. These
values belong to MiniVeasur e elements that are identified by a combination of
leaf MdnHi er ar chy elements.

« Aggregated values that Oracle OLAP has provided. These values belong to
Midmveasur e elements that are identified by at least one node element from an
MdmHi er ar chy.

As an example, imagine an MiniVeasur e called ndnlni t Cost that is dimensioned
by union MidnHi er ar chy objects called mdnili mesDi mand ndnPr oduct sDi m
Each MidnHi er ar chy has leaf elements (for example, 01-JAN-99 in ndnili mesDi n),
and each MdnHi er ar chy has node elements (for example, 1999-Q1 in

nmdnli mesDi n). A unique combination of two elements, one from each

MdmHi er ar chy, identifies each ndmuni t Cost element, and every possible
combination is used to specify the entire ndnini t Cost element set.

Some ndmni t Cost elements are identified by a combination of leaf elements (for
example, a particular product item and a particular month). Other ndnini t Cost
elements are identified by a combination of node elements (for example, a

2-20 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmMeasure Class

particular product group and a particular quarter). Still other mdmni t Cost
elements are identified by a mixture of leaf and node elements. The values of the
mdnini t Cost elements that are identified only by leaf elements come directly from
the column in the database fact table (or fact table calculation). They represent the
lowest level of data. However, for the elements that are identified by at least one
node element, Oracle OLAP provides the values. These higher-level values
represent aggregated, or rolled-up data.

Thus, the data represented by an MdmVeasur e is a mixture of fact table data from
the data store and aggregated data that Oracle OLAP makes available for analytical
manipulation.

MdmMeasure with two MdmDimension objects

The table below lists values for some of the elements of the MimVeasur e called
ndmuni t Cost , which is described above. This MidnmVeasur e has

nmdnPr oduct sDi mand ndniTi mesDi mas its MdmDi nensi on objects. Each of these
objects is a union MidnHi er ar chy with regions that are level MidnHi er ar chy
objects. For example, the level MdnHi er ar chy objects for ndniTi nesDi mare
ndnTi mesDi mCal Hi er and mdnii mesDi nFi sHi er, and the level

MdnHi er ar chy for mdnPr oduct sDi mis ndnPr oduct sDi mHi er.

Because there are so many elements in the Mdmveasur e, the table shows only a few
of them. For example, for ndmTi nesDi m you should imagine that the ellipses
(indicated by dots) cover additional days, months, quarters, and years in the

nmdnli mesDi nCal Hi er region, as well as the entire ndniTi mesDi nFi sHi er
region.

nmdnPr oduct sDi nHi er has three levels, which represent the product category
(such as Boys), the product subcategory (such as Outerwear - Boys), and the
individual product item (such as #23110). The table shows only one element from
each level, and the ellipses cover all the rest.

Almost all the elements shown in the table are aggregated. The ones that are not
aggregated are marked with an asterisk. These nonaggregated elements are the ones

Understanding OLAP API Metadata 2-21

MdmMeasure Class

that are identified by the lowest level elements of both ndnPr oduct sDi mand

mdnli mesDi m
Elements of Elements of Elements of
ndnPr oduct sDi m ndnii mesDi m nmdnni t Cost
Boys 1998 12,800,444.00
Boys 1998-Q1 4,563,150.00
Boys 1998-01 1,837,254.00
Boys 01-JAN-98 185,346.00
Boys 02-JAN-98 232,590.00
Boys 03-JAN-98 155,403.00
Outerwear -Boys 1998 6,473,065.00
Outerwear -Boys 1998-Q1 2,000,317.00
Outerwear -Boys 1998-01 637,482.00
Outerwear -Boys 01-JAN-98 27,009.00
Outerwear -Boys 02-JAN-98 20,346.00
Outerwear -Boys 03-JAN-98 12,498.00
23110 1998 847,362.00
23110 1998-Q1 200,635.00
23110 1998-01 60,735.00
23110 01-JAN-98 2,226.00 *
23110 02-JAN-98 1,709.00 *
23110 03-JAN-98 2,047.00 *

2-22 Oracle9i OLAP Developer’s Guide to the OLAP API

MdmaAttribute Class

MdmAttribute Class

MdmAt t ri but e is a subclass of MUMDi nensi onedObj ect , which is an abstract
subclass of MinSour ce.

Description of an MdmAttribute

An MdmAt t ri but e represents a particular characteristic of the elements of an
MdnDi nensi on. An MdmAt t r i but e maps one element of the MdnDi mensi on toa
particular value. A typical example is an MdmAt t r i but e that records the gender of
each customer in an MidnDi nensi on called ndmCust oner sDi m In this case, the
elements of the MdmAt t r i but e have the values “Female” and “Male”.

The values of an MUMAt t ri but e might be St ri ng values (such as “Female”),
numeric values (such as 45), or objects (such as MinLevel objects).

Like an MimVeasur e, an MdmAt t r i but e has elements that are organized by its
MdnDi nmensi on. For example, the gender MdmAt t r i but e has one element (with
“Female” or “Male” as its value) for each element of the MdnDi nensi on called
ndmCust oner sDi m

Typically, not all of the elements of an MinDi mensi on have meaningful mappings
to the values of a given MdmAt t r i but e. For example, the gender MdmAt t ri but e
applies only to the lowest level of ndnCust oner sDi m because gender makes no
sense for higher levels such as cities or states. If an MdmAt t r i but e does not apply
to some elements of an MInDi mensi on, then their MdmAt t r i but e values are

nul | .

Some MdmAt t r i but e objects provide a mapping that is one-to-many, rather than
one-to-one. Therefore, a given element in an MdnDi nensi on might map to a whole
set of MUmAL t r i but e elements. For example, the MdmAt t r i but e that serves as the
ancestors attribute for an MinHi er ar chy maps each MinHi er ar chy element to its
set of ancestor MinHi er ar chy elements.

Elements of an MdmAttribute

A given MUmAt t ri but e is based on an attribute that was specified for a dimension
or a level by a database administrator using the OLAP Metadata APIs.

The following table lists the elements for an MimAt t r i but e called
ndnCust oner sDi mGender, which is based on the MinDi nensi on called
ndnCust omrer sDi m Note that the values of the MdmAt t ri but e are nul | for the

Understanding OLAP API Metadata 2-23

Data Type and Type of MDM Metadata Objects

city, country, and region levels. There are meaningful values only for the customer
level, where each customer is represented by a number.

Elements of Elements of
ndnCust oner sDi m nmdnCust oner sDi nGender
Africa nul |
South Africa nul |
Cape Town nul |
5420 Female
11650 Female
17880 Male
24120 Female
67720 Male
73960 Male

Data Type and Type of MDM Metadata Objects
All MdnSour ce objects have the following two basic characteristics:

« Datatype
« Type

Data Type of MDM Metadata Objects

The concept of data type is a familiar one in computer languages and database
technology. It is common to categorize data into types such as integer, Boolean, and
string.

The OLAP API implements the concept of data type through the

Fundanent al Met adat aObj ect and Fundanent al Met adat aPr ovi der classes.
Every data type recognized by the OLAP API is represented by a

Fundanent al Met adat aCObj ect , and you obtain this object by calling a method
on a Fundanent al Met adat aPr ovi der.

The following table lists the most familiar OLAP API data types. For each data type,
the table presents a description of the Fundanent al Met adat aObj ect that

2-24 Oracle9i OLAP Developer’s Guide to the OLAP API

Data Type and Type of MDM Metadata Objects

represents the data type and the name of the method in
Fundanent al Met adat aPr ovi der that returns the object.

OLAP API Description of the Method in
Data Type | Fundanent al Met adat aChj ect Fundanent al Met adat aPr ovi der

Boolean Represents the data type that get Bool eanDat aType
corresponds to the Java bool ean
data type.

Date Represents the data type that get Dat eDat aType
corresponds to the Java Dat e class.

Double Represents the data type that get Doubl eDat aType
corresponds to the Java doubl e
data type.

Float Represents the data type that get Fl oat Dat aType
corresponds to the Java f | oat data

type.

Integer Represents the data type that get | nt eger Dat aType
corresponds to the Java i nt data

type.

Short Represents the data type that get Shor t Dat aType
corresponds to the Java short data

type.
String Represents the data type that get Stri ngDat aType

corresponds to the Java Stri ng
class.

In addition to these familiar data types, the OLAP API includes two generalized
data types (which represent groups of the familiar data types) and two data types

Understanding OLAP API Metadata 2-25

Data Type and Type of MDM Metadata Objects

that represent the absence of values. The following table lists these additional data
types.

OLAP API Description of the Method in
Data Type | Fundanent al Met adat aChj ect Fundanent al Met adat aPr ovi der

Number Represents a general data type that | get Nunber Dat aType
includes any or all of the following
OLAP API numeric data types:
Double, Float, Integer, and Short.

Value Represents a general data type that | get Val ueDat aType
includes any or all of the OLAP API
data types.

Empty Represents missing data, for get Enpt yDat aType

example when an MinSour ce has
no elements at all defined for it.

Void Represents nul | data, for example | get Voi dDat aType
when an MinSour ce has a single
element that has anul | value.

When an MDM metadata object, such as an Mdmveasur e, has a given data type,
this means that each one of its elements conforms to that data type. If the data type
is numeric, then the elements also conform to the generalized Number data type, as
well as to the specific data type (Double, Float, Integer, or Short). The elements of
any MDM metadata object conform to the Value data type, as well as to their more
specific data type, such as Integer or String.

If the elements of an object represent a mixture of several numeric and non-numeric
data types, then the data type is only Value. The object has no data type that is more
specific than that.

The MDM metadata objects for which data type is relevant are MinSour ce objects,
such as Mdm\veasur e, MirHi er ar chy, and Minlevel . The typical data type of an
MimVeasur e is one of the numeric data types; the typical data type of an

MdmHi er ar chy or MdmLevel is String.

Getting the Data Type of an MdmSource

If you have obtained an MinSour ce from the data store, and you want to find out
the data type of its elements, you call its get Dat aType method. This method
returns a Fundament al Met adat aCbj ect .

2-26 Oracle9i OLAP Developer’s Guide to the OLAP API

Data Type and Type of MDM Metadata Objects

To find out which OLAP API data type is represented by the returned
Fundanent al Met adat aObj ect , you compare it to the

Fundanent al Met adat aObj ect for each OLAP API data type. That is, you
compare it to the return value of each of the data type methods in
Fundanent al Met adat aPr ovi der.

The following sample method returns a constant that indicates the data type of the
MinmSour ce that is passed in as a parameter. Note that this code creates a
Fundanent al Met adat aPr ovi der by calling a method on a Dat aPr ovi der (dp).
Getting a Dat aPr ovi der is described in Chapter 4, "Discovering the Available
Metadata". Also note that the constants referenced in this method are defined
elsewhere in the class to which the method belongs. The constants are not supplied
by the OLAP API.

Example 2-1 Getting the Data Type of an MdmSource
public int getDataType(MnSource metaSource) {

int theDataType = 0;
Fundament al Met adat aProvi der fnp =
dp. get Fundanent al Met adat aPr ovi der () ;

i f (fnp.getBool eanDataType() == netaSour ce. get Dat aType())
t heDat aType = BOOLEAN_TYPE;

el se if (fnp.getDateDataType() == netaSource. get DataType())
t heDat aType = DATE_TYPE;

el se if (fnp.getDoubl eDataType() == metaSour ce. get Dat aType())
t heDat aType = DOUBLE_TYPE;

el se if (fnp.getFloatDataType() == metaSource. get Dat aType())
t heDat aType = FLOAT_TYPE;

else if (fnp.getlntegerDataType() == netaSource. get Dat aType())
t heDat aType = | NTEGER_TYPE;

el se if (fnp.getShortDataType() == metaSource. get Dat aType())
t heDat aType = SHORT_TYPE;

else if (fnp.getStringDataType() == netaSource. get DataType())
t heDat aType = STRI NG_TYPE;

el se if (fnp.get NunberDataType() == netaSour ce. get Dat aType())
t heDat aType = NUMBER_TYPE;

el se if (fnp.getVal ueDat aType() == metaSource. get Dat aType())
t heDat aType = VALUE_TYPE;

return theDataType;
}

Understanding OLAP API Metadata 2-27

Data Type and Type of MDM Metadata Objects

Type of MDM Metadata Objects

An MDM metadata object, such as an MinSour ce, is a collection of elements. Its
type (as opposed to its data type) is another metadata object from which the given
metadata object draws its elements. In other words, the elements of a given
metadata object correspond to a subset of the elements in its type. There can be no
element in the metadata object that does not match an element of its type.

Consider the following example of a union MinHi er ar chy called

nmdnCust omer sDi m which has the OLAP API data type of String.

nmdnCust omer sDi mhas a region (a level MdnHi er ar chy called

nmdnCust onmer sDi nGeogH er), which in turn has its own regions (MinlLevel
objects). In each case, the region represents a subset of elements. In the following
list, the regions are indented under the MinHi er ar chy to which they belong.

midnmCust omer sDi m
mdrCust oner sDi mGeogHi er

mdnGeogTot al
mdnRegi on
mdnSubr egi on
mdnCount ry
mintt at e
mdnQi ty
mdnCust oner

Because of the hierarchical structure, ndnCount r y (for example) draws its elements
from the elements of ndnCust omer sDi nGeogHi er. That is, the set of elements for
nmdnCount ry corresponds to a subset of elements from

nmdnCust omer sDi nGeogH er, and mdnCust oner sDi mGeogHi er is the type of
nmdnCount ry.

Similarly, mdnCust onmer sDi mGeogHi er is a region of mdnCust orer sDi m
Therefore, mdnCust oner sDi mGeogHi er draws its elements from
nmdnCust omer sDi m which is its type.

However, ndnCust oner sDi mis not a region of any other object. It is the top of the
hierarchy. The pool of elements from which ndmCust oner sDi mdraws its elements
is the entire set of possible String values. Therefore, the type of ndnCust oner sDi m
is the Fundanent al Met adat aCbj ect that represents the OLAP API String data
type. In the case of ndnCust oner sDi m the type and the data type are the same.

2-28 Oracle9i OLAP Developer’s Guide to the OLAP API

Data Type and Type of MDM Metadata Objects

The following list presents the types that are typical for the most common
MdnSour ce objects:

« Thetype of an MinLevel is the level MinHi er ar chy to which it belongs.

« Thetype of alevel MdnHi er ar chy is the union MidrHi er ar chy to which it
belongs.

« Thetype of aunion MidmHi er ar chy is the Fundanent al Met adat aCbj ect
that represents its OLAP API data type. Typically, this is the String data type.

« The type of an Mim\Veasur e is the Fundanment al Met adat aCbj ect that
represents its OLAP API data type. Typically, this is one of the OLAP API
numeric data types.

Getting the Type of an MdmSource

If you have obtained an MinSour ce from the data store, and you want to find out
its type, you call its get Type method. This method returns the object that is the
type of the MinSour ce object.

For example, the following Java statement obtains the type of the Mini_evel called
mdnCount ry.

Example 2-2 Getting the Type of an MdmSource
Met adat aChj ect mdnCount ryType = ((MinSource) ndnCountry). get Type();

Understanding OLAP API Metadata 2-29

Data Type and Type of MDM Metadata Objects

2-30 Oracle9i OLAP Developer’s Guide to the OLAP API

3

Connecting to a Data Store

This chapter explains the procedure for connecting to a data store through the
OLAP API.

This chapter includes the following topics:

Overview of the Connection Process

Establishing a Connection

Getting an Existing Connection

Executing DML Commands Through the Connection

Closing a Connection

Connecting to a Data Store 3-1

Overview of the Connection Process

Overview of the Connection Process

When an application accesses data through the OLAP API, it uses a connection
provided by the Oracle implementation of Java Database Connectivity (JDBC) from
Sun Microsystems. For information about using this JDBC implementation, see the
Oracle9i JDBC Developer’s Guide and Reference.

Connection Steps

The procedure for connecting involves loading an Oracle JDBC driver, getting a
connection through that driver, and creating two OLAP API objects that handle
transactions and data transfer.

These steps are described in the topic "Establishing a Connection" on page 3-2.

Prerequisites for Connecting

Before attempting to make an OLAP API connection to an Oracle database, ensure
that the following requirements are met:

« The Oracle database instance is running and was installed with the OLAP
option.

= Your Oracle database user ID has access to the relational schemas on which the
data store is based.

= The Oracle client installation of the JDBC drivers is complete. For information
about installing JDBC drivers, see the Oracle9i JIDBC Developer’s Guide and Reference.

« The OLAP API jar files are on the application development computer and are
accessible to the application code. For information about setting up the OLAP
API jar files, see Appendix A, "Setting Up the Development Environment"

Establishing a Connection
To make a connection, perform the following steps:
1. Load the JDBC driver that you will use.
2. GetaConnecti on from the Dri ver Manager.
3. CreateaTransacti onProvi der.
4. Create aDat aProvi der.

These steps are explained in more detail in the rest of this topic.

3-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Establishing a Connection

Note that the Tr ansact i onPr ovi der and Dat aPr ovi der objects that you create
in these steps are the ones that you use throughout your work with the data store.
For example, when you create certain Sour ce objects, you use methods on this

Dat aPr ovi der object.

Step 1: Load the JDBC Driver

The following line of code loads a JDBC driver and registers it with the JDBC
Dri ver Manager.

Example 3-1 Loading the JDBC Driver for a Connection
O ass. forNane("oracle.jdbc.driver.OracleDriver");

After the driver is loaded, you can use the Dr i ver Manager object to make a
connection. For more information about loading Oracle’s JDBC drivers, see the
Oracle9i JDBC Developer’s Guide and Reference.

Step 2: Get a Connection from the DriverManager
The following code gets a JDBC Connect i on object from the Dri ver Manager.

Example 3-2 Getting a JDBC Connection

String url = "jdbc:oracle:thin: @abl:1521: orcl";

String user = "hepburn”;

String password = "tracey";

oracl e.jdbc. Oracl eConnection conn = (oracle.jdbc. Oracl eConnecti on)
java.sql . DriverManager. get Connection(url, user, password);

This example connects user hepbur n with password t r acey to a database with
SID (system identifier) or cl . The connection is made through TCP/IP listener port
1521 of host | abl. The connection uses the Oracle JDBC thin driver.

There are many ways to specify your connection characteristics using the
get Connect i on method. See the Oracle9i JDBC Developer’s Guide and Reference for
details.

After you have the Connect i on object, you can create the required OLAP API
objects, Tr ansact i onProvi der and Dat aPr ovi der.

Connecting to a Data Store 3-3

Getting an Existing Connection

Step 3: Create a TransactionProvider

Transacti onProvi der is an OLAP API interface. Therefore, in your code, you
use an instance of the concrete class called Expr essTr ansact i onProvi der. The
following line of code creates a Tr ansact i onPr ovi der.

Example 3-3 Creating a TransactionProvider
ExpressTransactionProvi der tp = new ExpressTransactionProvider();

A Transacti onProvi der is required for creating a Dat aPr ovi der.

Step 4: Create a DataProvider

Dat aPr ovi der is an OLAP API abstract class. Therefore, in your code, you use an
instance of the concrete subclass called Expr essDat aPr ovi der . The following
lines of code create and initialize a Dat aPr ovi der.

Example 3-4 Creating a DataProvider
ExpressDat aProvi der dp = new ExpressDat aProvi der(conn, tp);
dp.initialize();

A Dat aPr ovi der is required for creating a Met adat aPr ovi der, which is
described in Chapter 4, "Discovering the Available Metadata"

Getting an Existing Connection

If you need access to the JDBC Connect i on object after the connection has been
established, you can call the get Connect i on method on your Dat aPr ovi der.
The following line of code calls the get Connect i on method on a Dat aPr ovi der
called dp.

Example 3-5 Getting an Existing Connection
oracl e.jdbc. Oracl eConnection current Conn = dp. get Connection();

3-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Closing a Connection

Executing DML Commands Through the Connection

Some applications depend on the run-time execution of Oracle OLAP data
manipulation language (DML) commands or programs. DML commands and
programs execute in an analytic workspace outside the context of MDM metadata,
which is intrinsic to the OLAP API. Therefore, such commands and programs do
not operate on MDM objects, such as MinVeasur e and MInDi mensi on. Instead,
they operate on DML objects, such as variable and dimension. The MDM and DML
contexts are related but distinct.

To execute DML commands or programs in an analytic workspace, create an OLAP
API SLPExecut or object, specifying the JDBC Connect i on object that you want
to use. Note that the data manipulation language is sometimes referred to as a
stored procedure language (SPL).

The following lines of code create and initialize an SPLExecut or object on a JDBC
Connect i on object called conn.

Example 3-6 Executing DML Commands

SPLExecut or dnl Exec = new SPLExecut or (conn);
dml Exec.initialize();

To specify an analytic workspace in which you want to execute DML commands,
attach the workspace using the DML command called AWFor example, the
following command executes the AWcommand for attaching a workspace named
nmysal es.

string returnVal = dmlExec.execute('aw attach mysales’);
For information about using the DML, see the Oracle9i OLAP Developer’s Guide to the

OLAP DML and the Oracle9i OLAP DML Reference help. For more information
about using an SPLExecut or, see the OLAP API Javadoc.

Closing a Connection

When you have completed your work with the data store, use the cl ose method
on the JDBC Connect i on object. In the following sample code, the Connecti on
object is called conn.

Example 3-7 Closing a Connection
conn. cl ose();

Connecting to a Data Store 3-5

Closing a Connection

If you are finished using the OLAP API, but you want to continue working in your
JDBC connection to the database, use the cl ose method on your Dat aPr ovi der
to release the OLAP API resources. In the following example code, the

Dat aPr ovi der is called dp.

dp. cl ose();

3-6 Oracle9i OLAP Developer’s Guide to the OLAP API

A4

Discovering the Available Metadata

This chapter explains the procedure for discovering the metadata in a data store
through the OLAP API.

This chapter includes the following topics:

« Overview of the Procedure for Discovering Metadata
« Creating an MdmMetadataProvider

« Getting the Root MdmSchema

« Getting the Contents of the Root MdmSchema

« Getting the Characteristics of Metadata Objects

« Getting the Source for a Metadata Object

« Sample Code for Discovering Metadata

Discovering the Available Metadata 4-1

Overview of the Procedure for Discovering Metadata

Overview of the Procedure for Discovering Metadata

The OLAP API provides access to a collection of Oracle data for which a database
administrator has created OLAP metadata using the OLAP Metadata APIs. This
collection of data is the data store for the application.

Potentially, the data store includes all of the measure folders that were created by
the database administrator using the OLAP Metadata APIs. However, the scope of
the data store that is visible when a given application is running depends on the
database privileges that apply to the user ID through which the connection was
made. A user sees all of the measure folders (as MinScherma objects) that the
database administrator created, but the user sees the measures and dimensions that
are contained in those measure folders only if he or she has access rights to the
relational tables on which the measures and dimensions are based.

MDM Metadata

When the database administrator created the metadata, the OLAP Metadata APIs
created measures, dimensions, and other OLAP metadata objects. In the OLAP API,
these objects are accessed as multidimensional metadata (MDM) objects, as
described in Chapter 2, "Understanding OLAP API Metadata". The mapping
between the OLAP metadata objects and the MDM objects is automatically
performed by Oracle OLAP.

Purpose of Discovering the Metadata

The metadata objects in the data store help your application to make sense of the
data. They provide a way for you to find out what data is available, how it is
structured, and what its characteristics are.

Therefore, after connecting, your first step is to find out what metadata is available.
Armed with this knowledge, you can present choices to the end user about what
data should be selected or calculated and how it should be displayed.

4-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating an MdmMetadataProvider

Steps in Discovering the Metadata

Before investigating the metadata, your application must make a connection to
Oracle OLAP, as described in Chapter 3, "Connecting to a Data Store". Then, your
application performs the following steps:

1. Create an MiniVet adat aPr ovi der
2. Get the root MinSchena from the Mdmvet adat aPr ovi der

3. Get the contents of the root MinSchema, which include Mdm\Veasur e,
MdnDi nensi on, Mdmveasur eDi nensi on, and MinSchena objects. In
addition, get the contents of any subschemas.

4. Get the characteristics of each Mdmveasur e and MInDi nensi on. For example,
for each Mdm\veasur e get its MUnDi nensi on objects, and for each
MdnDi nensi on find out whether it is a union MdnHi er ar chy, a level
MdmHi er ar chy, an MdrLevel , or an Minli st Di nensi on.

The next four topics in this chapter describe these steps in detail.

Discovering Metadata and Making Queries

After you discover the metadata, you typically go on to create queries for selecting,
calculating, and otherwise manipulating the data. In order to work with data in
these ways, you must get the Sour ce objects that Oracle OLAP has created to
represent the data for querying. These Sour ce objects are referred to as primary
Sour ce objects.

This chapter focuses on the initial step of discovering the available metadata, but it
also briefly mentions the step of getting a primary Sour ce from a metadata object.
Subsequent chapters of this guide explain how you work with primary Sour ce
objects and create queries based on them.

Creating an MdmMetadataProvider

An Mim\vet adat aPr ovi der gives access to the metadata in a data store. It maps
OLAP metadata objects, such as measures, dimensions, and measure folders, to the
corresponding MDM objects, such as Mimveasur e, MdnDi nensi on, and
MinSchena.

Before you can create an MimVet adat aPr ovi der, you must create a
Dat aPr ovi der as described in Chapter 3, "Connecting to a Data Store".

Discovering the Available Metadata 4-3

Getting the Root MdmSchema

The following code creates an Mimvet adat aPr ovi der using a Dat aPr ovi der
called dp.

Example 4-1 Creating an MdmMetadataProvider

Mim\vet adat aProvider np = nul |;
mp = (Minmvet adat aProvi der) dp. get Def aul t Met adat aPr ovi der () ;

Getting the Root MdmSchema

Getting the root MinSchena is the first step in exploring the metadata in your data
store.

Function of the Root MdmSchema

The metadata objects that are accessible through a given Midmvet adat aPr ovi der
are organized in a tree-like structure, with the root MinSchena at the top. Under
the root MdnScherma are MdnDi nensi on objects and one or more MinScherma
objects, which are referred to as subschemas. In addition, if there are any
MdmVeasur e objects that do not belong to a subschema, they are included under
the root.

Subschemas have their own MiniVeasur e and MInDi nensi on objects. Optionally,
they can have their own subschemas as well.

The root MinSchema contains all the MdnDi nensi on objects that are in the
subschemas. Therefore, a given MdnDi nensi on typically appears twice in the tree.
It appears once under the root MdnSchenma and again under the subschema. If an
MdnDi nensi on does not belong to a subschema, it is listed only under the root.

The starting point for discovering the available metadata objects is the root
MdnScherma, which is the top of the tree. The following diagram illustrates an
MdnSchema that has two subschemas and four MUnDi nensi on objects.

4-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Getting the Root MdmSchema

Figure 4-1 Root MdmSchema and Subschemas

Root MdmSchema

— MdmDimensionl
— MdmDimension2
— MdmDimension3

— MdmDimension4

— MdmSchemal
MdmMeasurel
MdmMeasure2
MdmDimension1
MdmDimension2

— MdmSchema2
MdmMeasure3
MdmDimension3

MdmDimension4

Using the OLAP Metadata APIs, a database administrator arranges dimensions and
measures under one or more top-level measure folders. When Oracle OLAP maps
the measure folders to MinSchemma objects, it always creates the root MinSchena
above the MinSchema objects for the top-level measure folders. Therefore, even if
the database administrator creates only one measure folder, its corresponding
Minschema will be a subschema under the root.

For more information about MDM metadata objects and how they map to OLAP
metadata objects, see Chapter 2, "Understanding OLAP APl Metadata".

Discovering the Available Metadata 4-5

Getting the Contents of the Root MdmSchema

Calling the getRootSchema Method

The following code gets the root MinSchena for an Minivet adat aPr ovi der
called mp.

Example 4-2 Getting the Root MdmSchema
MinSchema root = np. get Root Schena() ;

Getting the Contents of the Root MdmSchema

The root MinSchera contains MdnDi mensi on objects, MinSchena objects, and
possibly MimVeasur e objects. In addition, the root MinmSchema has a measure
MdmDi nensi on that lists all the MiniVeasur e objects.

Getting the MdmDimension Objects in an MdmSchema

The following code gets a Li st of MinDi mensi on objects that are in the
Minchenma called schenma.

Example 4-3 Getting MdmDimension Objects
Li st dinms = schema. get Di nensions();

Getting the Subschemas in an MdmSchema

The following code gets a Li st of MinmSchema objects that are in the MinScherma
called schenm.

Example 4-4 Getting Subschemas
Li st subSchemas = schena. get SubSchenas();

Getting the Contents of Subschemas

For each MinSchemma that is under the root MinSchens, you can call the
get Measur es, get Di nensi ons, and get SubSchemas methods. The procedures
are the same as those for getting the contents of the root MinSchena.

Getting the Measure MdmDimension and Its Contents

The following code gets the measure MinDi nmensi on that is in the root
Mdnchema. Use this method only on the root MinSchena. It makes no sense to use

4-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Getting the Characteristics of Metadata Objects

it on subschemas, because only the root MinSchena has a measure
MinDi nensi on.

Example 4-5 Getting the MdmMeasureDimension and Its Contents
Mimveasur eDi nensi on ndnmMeasur eDi m = root . get Measur eDi nensi on() ;

The following code prints the names of the MimVeasur e objects that are elements
of the measure MdnDi nensi on.

Mimveasur eMenber Type mdMenber Type =
(MimMeasur eMenber Type) nmdmiveasur eDi m get Menber Type() ;
Li st ndList = nmdMenber Type. get Measures();
Iterator ndlter = mdList.iterator();
while (ndlter. hasNext())
Systemout. println("*****x*xx*x%xCont ai ns Measure: " +
((Mdmveasure) ndlter.next()).getNane());

Getting the Characteristics of Metadata Objects

Having discovered the list of MimMVeasur e and MInDi nensi on objects, the next
step in metadata discovery involves finding out the characteristics of those objects.

Getting the MdmDimension Objects for an MdmMeasure

A primary characteristic of an Mdmveasur e is that it has related MdnDi mensi on
objects. The following code gets a Li st of MdnDi mensi on objects for an
Mimveasur e called sales.

Li st di nsCf Sal es = ndnBal esAmount . get Di mensi ons() ;

The get Measur el nf o method in the sample code provided later in this chapter
shows one way to iterate through the MdmDi nensi on objects belonging to a given
MimMVeasur e.

Getting the Related Objects for an MdmDimension

An MInDi mensi on has related MdnDi nensi onDef i ni ti on and

MdmDi nensi onMenber Type objects, which you can obtain by calling its

get Defi ni ti on and get Menber Type methods. If it is an MdmHi er ar chy, it also
has regions, which you can obtain by calling the get Regi ons method on its
Midmni onDi mensi onDefi ni ti on.

Discovering the Available Metadata 4-7

Getting the Source for a Metadata Object

The following is an example of how you can get the level MdnHi er ar chy objects
for a union MinHi er ar chy. The following code prints the names of the level
MdmHi er ar chy objects.

Mirmni onDi mensi onDef i ni tion uni onDef =
(MdnUni onDi nensi onDef i ni tion) minDi mObj . getDefinition();
Li st hierarchies = unionDef. get Regi ons();
for (lterator iterator = hierarchies.iterator();
iterator.hasNext();)

{
MinHi erarchy hier = (MinH erarchy) iterator.next();

Systemout.printin("H erarchy: " + hier.getName());
}

The get Di M nf 0 method in the sample code provided later in this chapter shows
one way to get the following metadata objects for a given MinDi nmensi on:

« Its MdnDi mensi onMenber Type

« ItsMimAttri but e objects

« Its concrete class and hierarchy type

« Its parent, ancestors, and region attributes
« Its MdnDi mensi onDefinition

« Itsregions. Thatis, if it is a union MdnHi er ar chy, the code obtains its
component MinHi er ar chy objects. If it is a level MdnHi er ar chy, the code
obtains its component MdrmLevel objects

« Its default level MdnHi er ar chy, if itis a union MdrHi er ar chy.

Methods are also available for obtaining other MdnDi nensi on characteristics. See
the OLAP API Javadoc for descriptions of all the methods on the MDM classes.

Getting the Source for a Metadata Object

A metadata object represents a set of data, but it does not provide the ability to
create queries on that data. Its function is informational, recording the existence,
structure, and characteristics of the data. It does not give access to the data values.

In order to access the data values for a given metadata object, an application gets
the Sour ce object that represents its data. A Sour ce that represents the data for a
metadata object is called a primary Sour ce.

4-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

To get the primary Sour ce for a metadata object, an application calls the

get Sour ce method on that metadata object. For example, if an application needs
to display the sales figures for 1999, it must first use the get Sour ce method on the
MimMveasur e called ndnSal esAnount .

Example 4-6 Getting a Primary Source for a Metadata Object
Sour ce sal esAnount = ndnSal esAnount . get Sour ce();

An application can call the get Sour ce method on any object that is an instance of
a concrete subclass of MinSour ce. The following is a list of the concrete subclasses:

« MinHi erarchy

« MnLevel

« MnLi st Di nrensi on
« MmAttribute

« Mmveasure

For more information about getting and working with primary Sour ce objects, see
Chapter 5, "Introduction to Querying"

Sample Code for Discovering Metadata

The sample code that follows is a simple Java program called

Sanpl eMet adat abDi scover er. The program discovers the metadata objects that
are under the root MinSchenma of any data store. The program’s output lists the
names and related objects for the MinmVeasur e and MinDi nensi on objects in the
root MdmSchena and its subschemas.

After presenting the program code, this topic presents the output of the program
when it is run against a data store that consists of the Sales History relational
schema, which is provided with the Oracle installation. In the OLAP metadata, the
Sales History schema is represented as the SH_CAT measure folder. Through an
OLAP API connection, the SH_CAT measure folder maps to an MinSchena that is
also called SH_CAT.

The Sanpl eMet adat aDi scover er program includes one piece of code that is
specific to the SH_CAT MinSchema. This code gets the primary Sour ce for an
MdmDi nensi on for which the return value of the get Name method is
PRODUCTS_DIM.

Discovering the Available Metadata 4-9

Sample Code for Discovering Metadata

In most cases, an application will not search for a metadata object using its internal
name (such as PRODUCTS_DIM), and it will not use the System out . println
method to produce output. However, this sample code uses these techniques
because they offer the advantage of simplicity.

Code for the SampleMetadataDiscoverer Program

To establish a connection, this program calls a hypothetical method called
connect OnLabl on a hypothetical class called MyConnect i on. To close the
connection, the program calls a method called

MyConnect i on. cl oseConnect i on. The code for these methods is not shown
here, but the procedure for connecting is described in Chapter 3, "Connecting to a
Data Store".

Example 4-7 Discovering the Available Metadata

package nytestpackage;

import comsun.java.util.collections.ArraylList;
inport comsun.java.util.collections.List;
inport comsun.java.util.collections.lterator;

i mport oracl e. express. ndm *;
i nport oracl e. ol api . met adat a. Met adat athj ect ;

i mport oracl e. ol api . dat a. sour ce. Sour ce;
inport oracl e. express. ol api. data. ful | . ExpressDat aProvi der;

public class Sanpl eMet adat aDi scoverer {

static final int TERSE = 0;
static final int VERBCSE = 1,

public Sanpl eMet adat aDi scoverer () {
}

public static void main(String[] args) {
/'l Connect through JDBC to a database on Labl

I and get a DataProvider (see Chapter 3)
ExpressDat aProvi der dp = MyConnecti on. connect OnLabl();

4-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

/] Create an Mim\et adat aProvi der
Mimvet adat aProvi der np = nul | ;
mp = (Mim\et adat aPr ovi der) dp. get Def aul t Met adat aPr ovi der () ;

/1 Get netadata info about the root MinSchema and its subschemas
MinSchera root = null;
try {
root = np.get Root Schema();
Systemout. println("***Root MinSchema: " + root.getName());
MinDi mensi on measureDi m = root . get Measur eDi nensi on();
Systemout . println("******Measure MInDi nension: " +
measur eDi m get Nane());
get Schemal nfo(root, TERSE);
} catch (Exception e) {
Systemout. println("***Exception encountered : " + e.toString());

}

/1 Make a Source object out of the PRODUCTS_DI M MinDi nensi on
Systemout. println("***Maki ng a Source object for PRODUCTS DIM);

MinDi mensi on ndnProduct Dim = nul | ;
try {
Li st rootDims = root.getDi mensions();
Iterator rootDimter = rootDins.iterator();
while (mdnProductDim== null && rootDinter.hasNext()) {
MinDi mensi on abDi m = (MdnDi nension) rootDimter. next();
if (aDi mgetNane().equal s("PRODUCTS_DIM))
mdnProductDm = aDim
}
Sour ce product = munProduct Di m get Sour ce();
Systemout. println("******NMade the Source");
} catch (Exception e) {
Systemout. println("******Exception encountered : " + e.toString());

}

Il O ose the connection
MyConnect i on. cl oseConnecti on(conn);

Discovering the Available Metadata 4-11

Sample Code for Discovering Metadata

// LERE SR SR SRS S SRR EEEEE SRR EEEEERE R R EEEEEEEREEREEEEEEEEEEEEEES

/1 Method for getting info about an MinSchema
public static void getSchemal nf o(MinSchema schema, int outputStyle) {

Systemout. println("***Schema: " + schena. get Nane());
/1 Get the MinSchema’s dinension info
MinDi mensi on oneDim = nul | ;
try {
Li st dins = schema. get Di mensi ons();
Iterator dimter = dims.iterator();

Systemout.println(" ");
Syst em OUt . pl’l ntl n("**");
Systemout.println(" ");

while (dinmter.hasNext()) {
oneDi m = (MInDi nension) dimter.next();
getDi mi nfo(oneDim output Style);

Systemout.printin(" ");
SyStemOUt.pl'int|n("**")'
Systemout.printin(" ");
}
} catch (Exception e) {
Systemout. println("******Exception encountered : " + e.toString());

}

/1 Get the MinSchenma’s neasure info
Mim\Veasur e oneMeasure = nul | ;
try {
Li st measures = schema. get Measures();
Iterator neaslter = neasures.iterator();
while (neaslter.hasNext()) {
oneMeasure = (Mimveasure) neaslter.next();
get Measur el nf o(oneMeasure, output Style);

Systemout.printin(" ");
Systemout.printin(" ");
}
} catch (Exception e) {
Systemout. println("******Exception encountered : " + e.toString());

}

Il Get the MinSchems’s subschema info

MinSchenma oneSchema = nul | ;

try {
Li st subSchenas = schena. get SubSchenas();
Iterator subSchemalter = subSchemas.iterator();

4-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

whil e (subSchemalter.hasNext()) {
oneSchema = (MinSchema) subSchenalter. next();
get Schemal nf o(oneSchenma, VERBOSE) ;

} catch (Exception e) {
Systemout. println("***Exception encountered : " + e.toString());
}
}

// LR RS SR SRR EEE RS SR EEREEEEEEEEEEEEEEEEEEEEEEREREEESEEESEERERE]

/1 Method for getting info about an MinDi nensi on
public static void getDi nnfo(MinDimension dim int outputStyle) {

Systemout. println("******MinDi mensi on Name: " + di m getName());
Systemout. println("*********Dagcription: " + di mgetDescription());

if (outputStyle == VERBCSE) {

/1 Get MInDi nensi onMenber Type for the MinDi nension
try {
MinDi mensi onMenber Type di mvenber Type = di m get Menber Type() ;
i f (di mvenber Type instanceof MinStandardMenber Type)
Systemout. println("*******x*\bnher Type: MInSt andar dMenber Type");
i f (di mvenber Type instanceof Minili neMenber Type)
Systemout. println("*****x*xx\Nppher Type: MInTi neMenber Type");
i f (di menber Type instanceof Mim\easureMenmber Type)
Systemout. println("*********\Nopnpher Type: MinMeasureMenber Type");
} catch (Exception e) {

Systemout. println("***Exception encountered : " + e.toString());
}
Il Get attributes of the MInDi mension
try {

List attributes = dimgetAttributes();
Iterator attrlter = attributes.iterator();
while (attrlter.hasNext())
Systemout. println("*********Attrjbute: " +
((MimAttribute) attriter.next()).getName());
} catch (Exception e) {
Systemout. println("***Exception encountered : " + e.toString());

}

Discovering the Available Metadata 4-13

Sample Code for Discovering Metadata

Il Get concrete class and hierarchy type of the MinDi nension
String kindO Dim = nul | ;
try {
if (diminstanceof MinListDi mension) {
kindOCDim= "ListDint;
Systemout. println("*****x**x" + dimget Nane() +
" is an MinLi st Di mension");

else if (diminstanceof MintHi erarchy)
swi tch(((MinHi erarchy) din.getH erarchyType()) {
case (MinHi erarchy. UNION_H ERARCHY) :
ki ndOf Di m = "Uni onHi er";
Systemout. println("*****x*x*x" + dimget Nane() +
" is a union MinH erarchy");
br eak;
case (MinHi erarchy. LEVEL_H ERARCHY):
kindODim = "Level H er";
Systemout. println("*****x*x*x" + dimget Nane() +
" is a level MinH erarchy");
br eak;
case (MinHi erarchy. VALUE_H ERARCHY) :
kindO Dim = "Val ueH er";
Systemout. println("*****x*x*x" + dimget Nane() +
" is a value MinHi erarchy");
br eak;
}
el se {
kindOfDim= "Level ";
Systemout. println("*****x*x*x" + dimgetNane() + " is an MinLevel");

}
} catch (Exception e) {
Systemout. println("***Exception encountered : " + e.toString());

}

Il For level MinH erarchy, get parent, ancestors, and region attributes

if (kindO'Dimequal s("LevelHer"))
{
Systemout. println("*********parent attribute: " +

(M erar chi cal Di mensi on) dim.getParentRelation().getName());
Systemout. println("********* Ancestors attribute: " +

((MdH erar chi cal Di nensi on) di n). get AncestorsRel ation().getName());
Systemout. println("*********Ragjion attribute: " +

((Mdmni onDi mensi onDefinition) dimgetDefinition())

.get Regi onAttribute().getNane());

4-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

/] Get the MinDi mensionDefinition for the MinDi mension
MinDi mensi onDefinition dinDef = di mgetDefinition();
/1 For union or |evel MintH erarchy, list the regions and default hierarchy
if ((kindO'Dimequals("UnionHier")) || (kindOfDimequals("LevelHer")))
{
try {
Systemout.printin(" ");
Systemout. println("*********The fol | owing are the regions of " +
di m get Name());
Li st regions = ((Minni onDi nensi onDefi nition)di nDef). get Regi ons();
Iterator reglter = regions.iterator();
while (reglter.hasNext()) {
MinDi mensi on oneRegi on = (MinDi nensi on) reglter.next();
Systemout. println("*****x*xxx*xxx" 4 gneRegi on. get Name());
i f (oneRegi on. hasMinTag(Mim\et adat aPr ovi der . DEFAULT_HI ERARCHY_TAG))
Systemout. printl|n("*****x*xxkxxkxk(The " + oneRegi on. get Name() +
" region is the default MinH erarchy)");
}

} catch (Exception e) {
Systemout. println("***Exception encountered : " + e.toString());
}
}

/1 For union or |evel MinH erarchy, get region info
if ((kindOfD mequals("UnionHier")) || (kindODimequals("LevelHer")))
{

try {
Systemout. println(" ")

Systemout. println("*********| nfornati on about the regions of " +
dimgetName() + ":");
Li st regions = ((Minni onDi nensi onDefi nition)dinDef). get Regi ons();
Iterator reglter = regions.iterator();
while (reglter.hasNext()) {
MinDi mensi on oneRegi on = (MinDi mensi on) reglter.next();
get Di nl nf o(oneRegi on, VERBOSE) ;

}
} catch (Exception e) {
Systemout. println("***Exception encountered : " + e.toString());
}
}
}
Systemout.printin(* ");

}

Discovering the Available Metadata 4-15

Sample Code for Discovering Metadata

// LRSS R SRS EESEEEE SRR R RS EEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEE]

/1 Method for getting info about an Mim\veasure

public static void getMeasurel nfo(Mimveasure neasure, int outputStyle) {
Systemout. println("******Measure: " + neasure. getNane());
if (outputStyle == VERBCSE) {

/1 Get the dinensions of the Mim\Vkasure

try {
Li st nDims = measure. get Di mensions();

Iterator nDinmter = nDins.iterator();
while (nDimter.hasNext())
Systemout. println("*********[j npnsi on of the Measure: " +
((MdnDi mension) nDimter.next()).getName());
} catch (Exception e) {
Systemout. println("******Exception encountered : " + e.toString());

Output from the SampleMetadataDiscoverer Program

The output from the sample program consists of text lines produced by Java
statements such as the following one.

Systemout. println("***Root MinSchema: " + root.getName());
The code uses the get Nane method because its return value is brief. An alternative

would be to use the get Descri pti on method, but the output would be more
verbose.

When the program is run on the Sales History schema, the output includes the
following items;

=« The name of the root MdnSchenm, which is ROOT.

« The name of the measure MdnDi nensi on for the root MinSchena. The name is
MEASUREDIMENSION.

« The names and descriptions of the MinDi nensi on objects in the root
MinSchenma.

4-16 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

« Names, descriptions, and additional information about the MdnDi nensi on and
MidmVeasur e objects in the SH_CAT MinSchena.

Because the SH_CAT Minschena is the only subschema under the root
MinSchemma, its MUnDi mensi on objects are identical to those in the root.

« Two lines that indicate that the code got the primary Sour ce for the
MInDi mensi on that has the name PRODUCTS_DIM.

Here is the output. In order to conserve space, some blank lines have been omitted.

***Root MinSchema: ROOT
**k%kxMeasure MInDi mensi on: MEASUREDI MENSI ON
***Schema: ROOT

EEE RS S SR EEEEEEEEEEEEREEEEEESEEEREEEEEESEEEEEE]

*xxxxx MinDi mensi on Name: CHANNELS DI M
*kkxxxxk*Description: Channel Val ues

LEE RS S SRR EEEEEEEEEEEREREEREEEEEEEEREEEEEEESEEEEEE]

*xxxxx MidnDi mensi on Name: CUSTOMERS_DI M
*rxxkxxxkDescription: Custoner Dinmension Values

LEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEES

*xxxx % MinDi mensi on Name: PRODUCTS DI M
*x*kxkxx*Description: Product Dimension Val ues

LEE RS S SR EEEEEEEEEEEEREREEREEEEEEEEREEEEEESESEEEEE]

*xxkxx MinDi mensi on Narme: PROMOTI ONS_DI M
*kkxxxxk*Description: Promotion Val ues

LEE RS S SR EEEEEEEEEEEEREREEEEEEEEEEEREEEEEESESEEEEEE]

*xxxxx MidnDi mensi on Nane: TIMES DM
*xxxxxx4xDescription: Time Dimension Val ues

LEEE S SR SRR SRS EEEEEREREREEEEEEEEEEEEEEEEEEEE RS

***Subschema: SH CAT
***Schema: SH_CAT

LRSS R EEEEE S EEEEEEEERE RS EEEEEREREEEEEEEEEEES

xx%% MinDi mensi on Name: CHANNELS DI M
*rxxkxxxkDescription: Channel Val ues
*rxkxkxxkMenber Type: MinStandar dMember Type
*rxkkxxkxAttribute: Long Description

Discovering the Available Metadata 4-17

Sample Code for Discovering Metadata

*xxkkxxkkAttribute: Short Description
*kxxxxkk CHANNELS_DIMis a union MinH erarchy

*rxxxxx%x%The following are the regions of CHANNELS_DI M
************C:HANNEL RO_LUP
Frkkxkxxkxkkxkx(The CHANNEL_ROLLUP region is the default MinHi erarchy)

*xxxxxxx%| nf ormati on about the regions of CHANNELS DI M
*xxxxx MinDi mensi on Name: CHANNEL_ROLLUP
*xxxxxx**Description: Standard Channel s

*rxkxkxxkMenber Type: MinStandar dMember Type

*hkxxakkx CHANNEL_ROLLUP is a | evel MinH erarchy
¥*kxxkxkkParent attribute: PARENTRELATI ON
*HkkkkkkkAncestors attribute: ANCESTORSRELATI ON
*rkkxkkxkRegion attribute: LEVELRELATI ON

**xxxxx+%The following are the regions of CHANNEL_ROLLUP
*xkkkkkkkxxx CHANNEL TOTAL

************CHANNEL_CLASS

************CHANNEL—

*rxkxkxxk | nf ormati on about the regions of CHANNEL_ROLLUP:
*xxxxx MinDi mensi on Nane: CHANNEL TOTAL

**kxxxx%*Description: Channel Total for the standard hierarchy
*Rkxxxxkk Menber Type: MinfSt andar dMenber Type

*xkxkkxkk CHANNEL_TOTAL is an MinLevel

*xxxxx MinDi mensi on Nane: CHANNEL CLASS

*xxkxkxxxDescription: Channel Cass level of the standard hierarchy
*RkxxxkkkMember Type: Minft andar dMenber Type

*xkxkkxkk CHANNEL_CLASS is an MinLevel

**xx++ \dnDi mensi on Name: CHANNEL

xxxxxDescription: Channel level of the standard hierarchy
*HkkkxkkkMenber Type: MinSt andar dMenber Type

kxxxx%x CHANNEL i s an MinlLevel

LEREE S SR SRR SRS EEEEERERE R EEEEEEEEEEEEEEEEEEEE RS

** %%+ MinDi mensi on Name: CUSTOVERS DI M
***xxxx**Description: Customer Dinension Val ues
*Rkxxxxkk Member Type: MinfSt andar dMenber Type
*xxkkxxkkAttribute: Long Description
*ExxkkkkxAttribute: Short Description
*rxxxxkkkAttribute: First Nane

4-18 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

*xkxkxkkxx Attribute; Last Nane
*Rxxxxkxx Attribute: Gender
*RxxxkxkxkxAttribute: Marital Status
*rxxxxkxx Attribute: Year of Birth
*xkxkxkxxAttribute: Income Level
*rkxkxkkxxAttribute; Credit Limt
*rxkxkxkkxxAttribute: Street Address
*rxxxxkxx Attribute: Postal Code
*xxxxxkxx Attribute: Phone Number
*rxxxkxkxxAttribute: E-mail
*rkkxkkxk CUSTOMERS DIMis a uni on MinHi erarchy

**xkxxx%%The following are the regions of CUSTOVERS DI M
************Ea; RG_LUP

Frakkxkkkkxkkxkx(The GEOG_ROLLUP region is the default MinH erarchy)
************CUST RO_LUP

**xkkxxk%| nf ormati on about the regions of CUSTOVERS DI M
*xxx %% \MinDi mensi on Name: GEOG ROLLUP
xxxkxxxxxDageri ption: Standard

*rxkxkkxkMenber Type: MinStandar dMember Type
*rkkxkkxk GEOG ROLLUP is a | evel MinHi erarchy
**xxxxxxx%Parent attribute: PARENTRELATI ON
*rkkkkkkkAncestors attribute: ANCESTORSRELATI ON
*xkxxxxx%Region attribute: LEVELRELATI ON

**xxxxxx*The fol l owing are the regions of GEOG ROLLUP
************(Ecx; TG"AL

************REGG\I

************SUBREGO\]

************(nJNTRY

************STATE

************0 TY

************CLJSTO\ER

*xxxxxxx%| nf ormati on about the regions of GEOG ROLLUP:

*xxxx % MinDi mensi on Nanme: CGEOG TOTAL

¥xxxxxxxxDescription: CGeography Total for the standard CUSTOMER hi erarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

**xxxxx+x GEOG TOTAL is an MinLevel

*xxxx % MinDi mensi on Nane: REG ON

*xxxxxxxxDascription: Region |evel of the standard CUSTOMER hi erarchy
*Rkxxxkkk Member Type: MinfSt andar dMenber Type

*rkxkxkxxREG ON is an MimlLevel

Discovering the Available Metadata 4-19

Sample Code for Discovering Metadata

*xxx %5 MAdnDi mensi on Nane: SUBREGQ ON

*x*kxxxxkDegcription: Subregion |evel of the standard CUSTOMVER hi erarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

xkxxxxx QUBREG ON i s an MinLevel

**x*%x* NMdnDi mensi on Name: COUNTRY

*HkxkkkkxDescription: Country level of the standard CUSTOVER hi erarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

xxx%xx% COUNTRY i s an MinLevel

**xxxx MinDi mensi on Nane: STATE

**xkxxxk*Dascription: State level of the standard CUSTOMER hierarchy
*RkxxxxkkMember Type: MinfSt andar dMenber Type

*rkkxkxxk STATE is an MinLevel

*xxxxx MinDi mensi on Name: CITY

*HxxkxxkxDescription: City level of the standard CUSTOVER hierarchy
*Rkxxxkkk Member Type: Minft andar dMenber Type

*xxxxxxxxC| TY i s an MinLevel

**xxxx* NdnDi mensi on Nanme: CUSTOVER

*rxxkkxxkDescription: Custoner |evel of standard CUSTOMER hierarchy
*xxxxxxxxNenber Type: MinStandar dMermber Type

kxxxx%% QUSTOVER i s an MinLevel

xxx% MinDi mensi on Name: CUST_ROLLUP
*x*kxkxx*Description: Standard

*RkxxxkkkMember Type: Minft andar dMenber Type
*rkxxxxxx CUST ROLLUP is a | evel Minhierarchy
*RkxxxxkkParent attribute: PARENTRELATION
*rrxxxxkkAncestors attribute: ANCESTORSRELATI ON
*rkkxkkxkRegion attribute: LEVELRELATI ON

*xxxxxx*x*The fol | owing are the regions of CUST_ROLLUP
************CUST TOTAL
************STATE

************0 TY

************CLJSTO\ER

4-20 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

¥xxxxxxxx|nf ormation about the regions of CUST_ROLLUP:

*xx %% MinDi mensi on Name: CUST_TOTAL

*x*kxxxxkDescription: Customer Total for the standard CUSTOMER hierarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

*xxxxxxxx QUST TOTAL is an MinlLevel

**xxxx MinDi mensi on Nane: STATE

*xxkxxxxkDescription: State level of the standard CUSTOVER hi erarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

*HAFAFRFXSTATE is an MinLevel

*rxkxxMinDi mensi on Name: CITY

*xxxxxxxxDascription: City level of the standard CUSTOVER hierarchy
*RkxxxxkkMember Type: MinfSt andar dMenber Type

*rExxxkx*CITY is an MinlLevel

**xxxx* NdnDi mensi on Nanme: CUSTOVER

**kxxxxk*Description: Customer level of standard CUSTOMER hierarchy
*xxxxxxxxNenber Type: MinStandar dMerber Type

kxxxx%% QUSTOVER i s an MinLevel

LEE RS S SR EEEEEEEEEEEEREREEREEEEEEEEREEEEEEESEEEEEE]

** %% % MinDi nensi on Name: PRODUCTS_DI M
**x%xxx%%Dascription: Product Dinension Val ues
*rxxkkxkkMenber Type: Minft andar dMenber Type
*rxkkxxkxAttribute: Long Description
*rxxxxxkkAttribute: Short Description
kxxxak PRODUCTS_DIMis a union MinH erarchy

**xxxxx%*The foll owing are the regions of PRODUCTS DI M
************PRCD RO_LUP
Frakkxkkxkxkkxkx(The PROD_ROLLUP region is the default MinH erarchy)

*kkxxxxkk | nformation about the regions of PRODUCTS DI M
**++x+MinDi mensi on Nane: PROD ROLLUP
*HkkkkkkxDescription: Standard

*rxkxkxxkMenber Type: MinStandar dMember Type
Frkkxkxx*PROD ROLLUP is a | evel MinHi erarchy
**xxxxxxxxParent attribute: PARENTRELATI ON

¥k kkkkkAncestors attribute: ANCESTORSRELATI ON
*xkxxxxx%Region attribute: LEVELRELATI ON

Discovering the Available Metadata 4-21

Sample Code for Discovering Metadata

¥*xxxxxxxxThe following are the regions of PROD ROLLUP
************PRCD TGI'AL

************CATE(IRY

************SUBCATE(IRY

************Pm

*rxkxxxkk | nf ormati on about the regi ons of PROD_ROLLUP:

*xxxxxMinDi mensi on Name: PROD_TOTAL

*x*xxkxx*Description: Product Total for the standard PRODUCT hierarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

**xxxxxxxPROD TOTAL is an Minlevel

*xx %% MinDi mensi on Nane: CATEGORY

**xxxxx4xDescription: Category level of standard PRODUCT hi erarchy
**xxkkkxxMenber Type: MinSt andar dMenber Type

*kkxxkkxx CATEGORY is an MinLevel

**xxxx MinDi mensi on Nane: SUBCATEGORY

¥*xxxxxxxxDescription: Sub-category |evel of standard PRODUCT hierarchy
*rkxxxxkkMember Type: MinfSt andar dMenber Type

*xxxk k%% % QUBCATEGORY i s an MinLevel

**x*x* NMdnDi mensi on Nanme: PRODUCT

**xkkxxk*Description: Product |evel of standard PRODUCT hierarchy
*xxxxxxxxNenber Type: MinStandar dMerber Type

*xxx%%x%*PRODUCT is an MinLevel

LEEE SR SRR R RS RS EEEEEREREEEEEEEEEEEEEEEEEEEEEE RS

**xxxx MinDi mensi on Nane: PROMOTI ONS_DI M
*kxxkxxx*Description: Promotion Val ues
*rxkxkkxkMenber Type: MinStandar dMember Type
*rxkkxxkxNttribute: Long Description
*EHkxxkkkxAttribute: Short Description
*xkkxkx % x PROMOTI ONS_DIMis a union MinH erarchy

**xxxxx*+*The following are the regions of PROMOTI ONS DI M

************PRO\D RG_LUP
Frkkxkkkkxkkxkx(The PROMO ROLLUP region is the default MinH erarchy)

4-22 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

¥xxxxxxxx|nf ormation about the regions of PROMOTI ONS_DI M
** %% MinDi nensi on Name: PROVO_ROLLUP
***xxxx4*Description: Standard Pronotions
*rxkxkxxkMenber Type: MinStandar dMember Type
*rxkkkxk*PROMO ROLLUP is a | evel MinHi erarchy
*RkxxxxkkParent attribute: PARENTRELATION

¥k kkkkkAncestors attribute: ANCESTORSRELATI ON
*rkkxkkxkRegion attribute: LEVELRELATI ON

*#xxxxxx*The following are the regions of PROMO ROLLUP
************PRO\D TOTAL

************CATEGJQY

************SUB(:ATEGJQY

************PRO\,D

*xkkxkkxk|nf ormati on about the regions of PROMO ROLLUP:

*xxxxxMinDi mensi on Name: PROMO_TOTAL

¥xxxxxx+xDescription: Pronotions Total for the standard PROMOTI ON hi erarchy
*RkxxxkkkMenber Type: MinfSt andar dMenber Type

*********PROVD_TOTAL is an MinLevel

*xx %% MidnDi mensi on Nane: CATEGORY

*x*kxxxx*Degcription: Category level of the standard PROMOTI ON hierarchy
*Rkxxxxkk Member Type: MinfSt andar dMenber Type

*xkkxkxxx CATEGORY is an Minlevel

*xxxxx MidnDi mensi on Nane: SUBCATEGORY

*x*kxxxxkDescription: Sub-category |evel of the standard PROMOTI ON hi erarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

*xxxk k% %% GUBCATEGORY i s an MinLevel

¥*xxxkMInDi mensi on Name: PROMD

**kxkxxxxDescription: Promotion |evel of the standard PROMOTI ON hi erarchy
*rkxxxxkkMember Type: MinfSt andar dMenber Type

*hA kAR XPROMO is an MinLevel

Discovering the Available Metadata 4-23

Sample Code for Discovering Metadata

LEEE S SR EEE SRR EEEEEREREEEEEEEREEEEEEEEEEEEE RS

*xxxxx MdnDi mensi on Nane: TIMES DM
*xxxxxx4xDescription: Time Dimension Val ues
*rxkxkkxkMenber Type: MinStandar dMember Type
*xxkkxxkkAttribute: Long Description
*ExxxkkkxAttribute: Short Description
*RkkkkkkkAttribute: Period Number
*rkxxxxkkAttribute: Period Nunber of Days
*rkxkxkxxAttribute; Period End Date
*rkkxkxx*TIMES_DIMis a union MinH erarchy

*#xxxkxx%*The fol | owing are the regions of TIMES DI M
************CAL RO_LUP

Frkkxkkxkxkkxkx(The CAL_ROLLUP region is the default Mt erarchy)
************FIS RO_LUP

*akxkkkk x| nf ormation about the regions of TIMES DI M
** % %% MinDi nensi on Name: CAL_ROLLUP
*kkxxxxkxDescription: Cal endar

*rxkxkkxkMenber Type: MinStandar dMember Type
FrkkxkxxkCAL ROLLUP is a | evel MinHierarchy
**xxxx*xxParent attribute: PARENTRELATI ON

¥k kkkkkAncestors attribute: ANCESTORSRELATI ON
*xkxxxxx*Region attribute: LEVELRELATI ON

*xxxxxxx%The following are the regions of CAL_ROLLUP
************YEAR

************QJARTER

************,\D\”’H

kkkkkkkkhkk*k DAY

*rxxkxxkk | nf ormation about the regions of CAL_ROLLUP:
**xxxx MdnDi mensi on Nane: YEAR

xxxxxDescription: Year |evel of the Cal endar hierarchy
*RkxxxxkkMenber Type: MinfSt andar dMenber Type

*RkkRRRRFYEAR is an MinLevel

**% %% * MinDi nensi on Name: QUARTER

*rxxxxxx*Description: Quarter level of the Cal endar hierarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

*rkxxxxxx QUARTER i s an MinlLevel

4-24 Oracle9i OLAP Developer’s Guide to the OLAP API

Sample Code for Discovering Metadata

**kxkx MinDi mensi on Name: MONTH

**xxxxx4xDescription: Mnth level of the Cal endar hierarchy
*rAkkxkkkMenber Type: MinSt andar dMvenber Type

FAARARRXMONTH is an MinLevel

*xxxx % MdnDi mensi on Nane: DAY

*HkxxkkxkxDescription: Day |evel of the Cal endar hierarchy
*rxkxkkxkMenber Type: MinStandar dMember Type

*rxxxxkxx DAY s an MinLevel

** %% MinDi nensi on Name: FIS_ROLLUP
*********D?SCI’iption: Fi scal

*RkxxxxkkMember Type: MinfSt andar dMenber Type
*rkkxkxxkE| S ROLLUP is a | evel MinHierarchy
**xxxxxxx%Parent attribute: PARENTRELATI ON
*rrxxxxkkAncestors attribute: ANCESTORSRELATI ON
*xkxxxxx%Region attribute: LEVELRELATI ON

*#xxxkxxx*The fol | owing are the regions of FIS ROLLUP
************FIS YEAR

************FI S_QJARTER

************FIS ,\mI'H

************FIS V\EEK

kkkkkkkkhkk*k DAY

*xkkxkxxk| nf ormati on about the regions of FIS _ROLLUP:
*xxxxx MinDi mensi on Nanme: FI'S YEAR

xxxxxDescription: Year level of the Fiscal hierarchy
*xxxxxxxxNenber Type: MinStandar dMerber Type

*k kK kx| S_YEAR is an MinLevel

** %% MinDi nensi on Name: FI'S_QUARTER

*rxxxxxxkDescription: Quarter level of the Fiscal hierarchy
*rxkxkkxkMenber Type: MinStandar dMember Type

**kkkkxxxxE| S QUARTER is an MinLevel

*xxxx % MinDi mensi on Name: FI'S_MONTH

*xxkxxxx*Degcription: Month level of the Fiscal hierarchy
*rxkxkxxkMenber Type: MinStandar dMember Type

*rxkkkxxkkE|S MONTH is an MinLevel

Discovering the Available Metadata 4-25

Sample Code for Discovering Metadata

*xxxxx MinDi mensi on Name: FI'S_VEEK

*HkxkkxkxDescription: Week |evel of the Fiscal hierarchy
*rkxxxxkkMember Type: MinfSt andar dMenber Type

*rkxkxkxxE| S WEEK i s an MinLevel

*Hk k% MinDi nensi on Name: DAY

*HkxkxkkxkxDescription: Day |evel of the Cal endar hierarchy
*Hkkkkkkk Menber Type: MinSt andar dMvenber Type

*rrxxxxk*DAY is an MinLevel

LEE RS S SR EEEEEEEEEEEEREREEREEEEEEEEEEEEEEESEEESEE]

**xxxkMeasure: SALES_QUANTI TY

*xxxxxxx %O mensi on of the Measure: CHANNELS DIM
*rxxxxxx% D mension of the Measure: CUSTOVERS DI M
*rxxxxxk %D mension of the Measure: PRODUCTS_ DI M
*rxxxxxk% D mension of the Measure: PROMOTI ONS_DI M
*xxxxxx% %O mensi on of the Measure: TIMES DM

**xxkxMeasure: SALES_AMOUNT

*xkxxxkxx O nensi on of the Measure: CHANNELS DI M
*rxxxxxx% D mension of the Measure: CUSTOVERS DI M
*rxxkxxk %D mension of the Measure: PRODUCTS DI M
*kkxxxxk%Di mension of the Measure: PROMOTI ONS_DI M
*xxxxxx%x %O mensi on of the Measure: TIMES DM

**x*xx\easure: UNIT_PRI CE
*xkxkxkxx O nensi on of the Measure: PRODUCTS DI M
*xkxkxkx %N mensi on of the Measure: TIMES DM

**x%kxMeasure: UNI T_COST
*xxxxxx%x %O mensi on of the Measure: PRODUCTS DIM
*xkxkxkx %N mensi on of the Measure: TIMES DM

***Maki ng a Source object for PRODUCTS DI M
***xx*Made the Source

4-26 Oracle9i OLAP Developer’s Guide to the OLAP API

D

Introduction to Querying

This chapter introduces Sour ce objects which are specifications for sets of data that
represent the result of queries. Chapter 6, "Making Queries Using Source Methods"
provides task-oriented discussions of using Sour ce methods to make queries.
Using Tenpl at e objects to make queries is discussed in Chapter 10, "Creating
Dynamic Queries".

This chapter includes the following topics:
« Characteristics of Source Objects

« Creating Source Objects

Introduction to Querying 5-1

Characteristics of Source Objects

Characteristics of Source Objects

Source Type

The OLAP API data model is unique. It is not exactly like the relational model or
multidimensional model. In the OLAP API, specifications for sets of data that
represent the result of queries are represented by instances of the Sour ce class or
its subclasses outlined in Table 5-1. Each Sour ce has a paired

Sour ceDef i ni ti on that defines the operations that created the query.

Table 5-1 Subclasses of the Source Class

Subclass Java Type of Values OLAP API Data Type

Bool eanSour ce bool ean values Boolean

Dat eSour ce Java Dat e objects Date

Nunber Sour ce doubl e, fl oat,i nt,orshort Double, Float, Integer, Short, or

values, or some combination of Number
these numerical values

StringSource Java St ri ng objects String

Sour ce objects are immutable. You cannot change a Sour ce object once it has been
created. When you want to present a Sour ce object as changeable to your users,
use a Sour ce object defined by a Tenpl at e object. Tenpl at e objects have state
and can be modified at any time. Using Tenpl at e objects to make queries is
discussed in Chapter 10, "Creating Dynamic Queries".

Sour ce objects are only specifications for a data set; they do not themselves
actually have data. Even so, it helps to think of them as the result set they define.
From this perspective, a Sour ce knows its type and structure (inputs and outputs).

All Sour ce objects have type. In the OLAP API, the type of a Sour ce is another
Sour ce from which the Sour ce obtains its values. You can retrieve the type of a
Sour ce using the get Type method.

The OLAP API provides a Fundanent al Met adat aCbj ect to represent each of
the fundamental Java data type, the Java St ri ng object, and the Java Dat e object.
These objects are known as the OLAP API data types. The OLAP API data types of
Sour ce objects and their relationship to each other are shown in Table 5-2. You can
create a Sour ce object that represents an OLAP API data type by following the
process outlined in "Creating Source Objects that Represent OLAP API Data Types"
on page 5-9. You can retrieve the OLAP API type of a Sour ce using the

get Dat aType method.

5-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Characteristics of Source Objects

The operation that creates a new Sour ce often determines the type of that Sour ce.
For example, assume that you have a Sour ce object named cust oner whose
values are the unique numerical identifier for each customer. The OLAP API type of
cust omer is| nt eger. Assume, additionally, that you use the sel ect method on
cust omer to create another Sour ce object named cust oner Sel ecti on. The
OLAP API type of cust oner Sel ecti on iscust omer.

Table 5-2 OLAP API Data Types of Source Objects
OLAP API Data Type Descriptions

Value A Sour ce object with any OLAP API data type.

Boolean A Sour ce object whose values have the Java bool ean data

type.

Date A Source object whose values are Java Dat e objects.

Number A Sour ce object with any of OLAP API numerical data type.
Double A Sour ce object whose values have the Java doubl e data type.
Float A Sour ce object whose values have the Java f | oat data type.
Integer A Sour ce object whose values have the Javai nt data type.
Short A Sour ce object whose values have the Java shor t data type.

String A Source object whose values are Java St r i ng objects.

Empty A Sour ce object that does not have any values defined for it.
Null A Sour ce object that has a single nul | value.

Source Structure: Inputs and Outputs

All Sour ce objects (except for an empty Sour ce) have values. In some cases, the
values of a Sour ce are unique data items that are meaningful unto themselves. If
you are familiar with relational concepts, you can conceptualize this type of

Sour ce as a table with a single column -- the column that contains the values of the
Sour ce. If you are more familiar with multidimensional concepts, you can
conceptualize this type of Sour ce as a dimension.

In other cases, the values of a Sour ce are not unique data items and, thus, are not
meaningful unto themselves. Instead the values of the Sour ce are meaningful only
in relationship to the values of another Sour ce. In this case, the structure of the
Sour ce is determined by other Sour ce objects called inputs and outputs. Whether

Introduction to Querying 5-3

Characteristics of Source Objects

one of these other Sour ce objects is an input or an output is determined by
whether or not values have been specified for it:

« Outputs. When values have been specified, the other Sour ce object is called an
output. The values of a Sour ce are identified by the set of its output values.
You can retrieve the outputs of a Sour ce using the get Qut put s method.

« Inputs. When values have not been specified, the other Sour ce object is called
an input. A Sour ce that has inputs is an indeterminable result set. If you are
familiar with relational concepts, you think of an input as a column that acts as
a key to the values of a Sour ce, but that is in the GROUP BY list of a SQL
statement. If you are more familiar with multidimensional concepts, you can
conceptualize an input that is a dimension of a Sour ce, but that is not in its
dimension list. You can retrieve the inputs of a Sour ce using the get | nput s
method.

The inputs and outputs of a Sour ce determine how the Sour ce is processed by
Oracle OLAP. For example, when a Cur sor is opened on a Sour ce, Oracle OLAP
loops over its outputs in order to produce the data, but it (arbitrarily) qualifies away
any of its inputs. In order to retrieve one or more values of a Sour ce with inputs,
you must specify the values for its inputs that will uniquely identify the desired
values of the Sour ce. The order in which you specify values for the inputs
determines the structure and processing of a Sour ce. The input that you specify
values for first becomes the slowest-varying output. For more information on
specifying values for inputs, see "Selecting Based on Output Values" on page 6-3
and "Effect of Input-Output Order on Source Structure" on page 6-6.

Additionally, when a Sour ce has both inputs and outputs, the values of the

Sour ce are identified by the set of its output value and each set of possible output
values typically identifies a number of values (that is, a subset of data). Some

Sour ce methods work on these subsets of data. For example, Oracle OLAP loops
over the outputs of a Sour ce when it processes any methods that select values
based on their positions (the first value of each subset has a position of 1) or any
aggregation methods like aver age and t ot al . For an in-depth discussions of the
positional and aggregation methods, see "Finding the Position of Values" on

page 6-6 and "Working with Aggregation Methods" on page 6-24,

5-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating Source Objects

Creating Source Objects

Making queries using the OLAP API is a process that involves creating a number of
different Sour ce objects. This process is outlined below:

1.

Create Sour ce objects that correspond to metadata objects as described in
"Getting Source Objects From Metadata Objects” on page 5-2. These Sour ce
objects, sometimes called primary Sour ce objects, have a structure that is
similar to the metadata objects from which they are created.

Begin your querying by calling methods on the primary Sour ce objects. The
methods of the Sour ce class and its subclasses return new Sour ce objects
sometimes called derived Sour ce objects. Continue your analysis by deriving
additional Sour ce objects until you have the results you want to retrieve the
data into your program. Derived Sour ce object and the methods that create
them are introduced in "Creating New Source Objects Using Source Methods"
on page 5-7 and documented in detail in the OLAP API Javadoc. Task-oriented
discussions of how to use Sour ce methods to make selections and perform
typical analytic operations are provided in Chapter 6, "Making Queries Using
Source Methods".

As part of the query process, you might also create simple nondimensional
Sour ce object to use as operands when making selections and calculations and
Sour ce objects that represent OLAP API data types. How to create these types
of Sour ce objects is discussed in more detail in"Creating Simple
Nondimensional Source Objects" and "Creating Source Objects that Represent
OLAP API Data Types" on page 5-9.

When you want to retrieve the data set represented by a Sour ce object, create a
Cur sor for it as described in Chapter 9, "Retrieving Query Results".

Getting Source Objects From Metadata Objects

To get a Sour ce object from a metadata object, take the following steps:

1.

Create the metadata data object for which you want to create a corresponding
Sour ce object as described in Chapter 2.

Use the get Sour ce method to create a Sour ce object from the metadata
object.

Introduction to Querying 5-5

Creating Source Objects

Creating a Source from MdmDimension, MdmHierarchy, or MdmLevel Objects

A Sour ce that you create by using the calling the get Sour ce method on a
MdmDi nensi on, an MdnHi er ar chy, or an MimLevel does not have any inputs or
outputs. It is a specification for a simple list of values.

In "Level MdmHierarchy for Calendar Year" on page 2-13, we created an
MdmHi er ar chy named ndnili mesDi nCal Hi er. To create a Sour ce named
ti mesDi mCal H er from mdnili mesDi nCal Hi er, you use code shown in
Example 5-1.

Example 5-1 Getting a Source for an MdmHierarchy
Source ti mesDi mCal Hi er = nmdniTi mesDi nCal Hi er. get Sour ce;

The Sour ce named t i nesDi nCal Hi er consists of a simple non-indexed list of
1529 values: 4 values for year, 16 values for quarters, 48 values for months, and 1461
values for days.

timesDimCalHier values
1998

1998-Q1

1998-01

01-JAN-98

02-JAN-98

03-JAN-98

1998-Q2
1998-04
01-APR-98

1999

5-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating Source Objects

Creating a Source from MdmMeasure or MdmAttribute Objects

A Sour ce that you create by calling the get Sour ce method on a Mim\veasur e or
an MdmAt t ri but e is a specification for a data set that has one or more inputs. Each
of these inputs is a primary Sour ce that was created from a MUnDi nensi on. Thus,
the specification for a set of data represented by a Sour ce that you create from an
MimVeasur e or an MInAt t ri but e is incomplete. Consequently, you cannot create
a Cur sor on these Sour ce objects to retrieve their values into the application. To
retrieve the values of a Sour ce created from a MidnmiVeasur e or an MdmAt t ri but e,
you must derive a new Sour ce from it by specifying values for the values of the
Sour ce objects that act as its dimensions as described in "Selecting Based on
Output Values" on page 6-3.

In "MdmMeasure with two MdmDimension objects" on page 2-21, we created an
MimMveasur e named nmdnni t Cost . To create a Sour ce named uni t Cost from
nmdnini t Cost , you use code shown in Example 5-2.

Example 5-2 Getting a Source for an MdmMeasure
Source unit Cost = ndnlni t Cost . get Source;

Since ndmuni t Cost has ndnPr oduct sDi mand ndnili mesDi mas its

MdnDi nensi on objects, uni t Cost has two inputs (pr oduct sDi mand

ti mesDi m). In order to retrieve one or more values of uni t Cost , you must specify
the values for its inputs (pr oduct sDi mand for t i mesDi m) that will uniquely
identify the values of uni t Cost . For information on specifying values for inputs,
see "Selecting Based on Output Values" on page 6-3.

Creating New Source Objects Using Source Methods

Most OLAP queries derive new Sour ce objects from existing Sour ce objects using
the methods in the Sour ce class.

Table 5-1 outlines the most important Sour ce methods in the OLAP API.

Introduction to Querying 5-7

Creating Source Objects

Table 5-3 The Major Source Methods

Method Description

join The single most important Sour ce creation method in the OLAP
API. The j oi n method creates a new Sour ce by combining the
values of the base Sour ce and another Sour ce (called the
joined Sour ce) and filtering this set of data using a third
Sour ce (called the comparison Source) in the specified manner.
Using an optional parameter, you can also use the j oi n method
to add the joined Sour ce as n output to the new Sour ce.

al i as Creates a new Sour ce object that is the same as the base Sour ce object,
but that has the base Sour ce as its type.

di stinct Creates a new Sour ce object that is the same as the base Sour ce object,
but that has all duplicate rows (tuples) removed.

position Creates a new Sour ce object with the same structure as the base
Sour ce and whose values are the position of the values of the base
Sour ce.

val ue Creates a new Sour ce object that has the values of the base Sour ce

and that has the base Sour ce as an input.

The OLAP API provides various other methods that you can use instead of the
methods listed in Table 5-3, " The Major Source Methods". These methods include
variations on the j oi n method, as well as methods such as appendVal ue, at ,
cunul ativelnterval ,first,ge,interval,sel ect Val ues, and

sort Ascendi ng. All of these methods are documented in the OLAP API Javadoc.
For task-oriented discussions on using these methods to analyze your data, see
Chapter 6, "Making Queries Using Source Methods".

Creating Simple Nondimensional Source Objects

You create simple nondimensional Sour ce objects which are not based on metadata
objects or other Sour ce objects that you can use as operands by using the

cr eat eConst ant Sour ce, cr eat eLi st Sour ce, and cr eat eRangeSour ce
methods on the Dat aPr ovi der class. These Sour ce objects are sometimes referred
to as constant, list, and range Sour ce objects.

Assume that you have an object named nyDat aPr ovi der that represents the
Dat aPr ovi der used by your application and that, for computational purposes,

5-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating Source Objects

you want a Sour ce with a single value of 4. To create this Sour ce you issue the
code shown in Example 5-3

Example 5-3 Creating a Constant Source
Nunber Sour ce myConst ant Four = nyDat aProvi der. creat eConst ant Sour ce(4) ;

Creating Source Objects that Represent OLAP API Data Types

You can retrieve the objects that represent the OLAP API data types using methods
on the Fundanent al Met adat aPr ovi der. Each of these methods returns a
Fundanent al Met adat aObj ect . The OLAP API data types and the methods you
use to retrieve them are shown in Table 5-4.

Table 5—4 Methods that Retrieve Objects that Represent OLAP API Data Types

OLAP API Data Type Method that Retrieves This Data Type
Value get Val uebDat aType
Boolean get Bool eanDat aType
Date get Dat eDat aType
Number get Nunber Dat aType
Double get Doubl eDat aType
Float get Fl oat Dat aType
Int get I nt eger Dat aType
Short get Short Dat aType
String getStringDataType
Empty get Enpt yDat aType

To retrieve an empty Sour ce, use the
Dat aPr ovi der . get Enpt ySour ce method.

Null get Voi dDat aType

To retrieve a null Sour ce, use the
Dat aPr ovi der. get Voi dSour ce method.

Introduction to Querying 5-9

Creating Source Objects

To create a Sour ce object that represents an OLAP API data type, take the
following steps:

1. Getthe Fundanent al Met adat aPr ovi der by using the
get Fundanent al Met adat aPr ovi der method on the Dat aPr ovi der class.

2. Create the Fundanent al Met adat aCbj ect object that represents the OLAP
API data type by using the appropriate method on the
Fundanent al Met adat aPr ovi der class.

3. Create a Sour ce from the objects returned in Step 1 by using the
Fundanent al Met adat aCbj ect . get Sour ce method.

Example 5-4 creates a Sour ce object called ol apBool eanDat aType that
represents the OLAP API Boolean data type. You can use ol apBool eanDat aType
to check to see if the OLAP API data type of any other Sour ce is Boolean.

Example 5-4 Creating a Source for the OLAP API Boolean Data Type

Fundanent al Met adat aCbj ect nmyFundanent al Met adat aProvi der =
myDat aPr ovi der . get Fundanent al Met adat aPr ovi der () ;
Fundanent al Met adat atbj ect ol apBool eanFundChj =
myFundanent al Met adat aPr ovi der . get Bool eanType() ;
Sour ce ol apBool eanDat aType = ol apBool eanFundQbj . get Sour ce() ;

5-10 Oracle9i OLAP Developer’s Guide to the OLAP API

S

Making Queries Using Source Methods

Many queries are made by calling a Sour ce method on a Sour ce object to create
new Sour ce objects. Sour ce methods are introduced in "Creating New Source
Objects Using Source Methods" on page 5-7 and documented in detail in the OLAP
API Javadoc. This chapter discusses how to make queries using these methods.

This chapter includes the following topics:

Selecting Based on Source Value

Selecting Based on Output Values

Selecting Values Based on Rank

Selecting Values Based on Hierarchical Position
Creating a Source that is a Self-Relation
Performing Numerical Analysis

Manipulating String Values

Making Queries Using Source Methods 6-1

Selecting Based on Source Value

Selecting Based on Source Value

You can create a new Sour ce from an existing Sour ce by selecting only certain
values of the base Sour ce. Typically, you use one of the following methods to select
based on the values of the base values:

Sour ce. sel ect (Bool eanSour ce), Sour ce. sel ect Val ue(Sour ce)
Sour ce. sel ect Val ues(Sour ce)

Sour ce. sel ect Val ues(Source[])

Bool eanSour ce. sel ect Val ue(bool ean)
Bool eanSour ce. sel ect Val ues(bool ean[])
Number Sour ce. sel ect Val ue(doubl e)
Number Sour ce. sel ect Val ue(i nt)

Number Sour ce. sel ect Val ue(fl oat)
Number Sour ce. sel ect Val ue(short)
Number Sour ce. sel ect Val ues(doubl e[])
Number Sour ce. sel ect Val ues(float[])
Number Sour ce. sel ect Val ues(int[])
Number Sour ce. sel ect Val ues(short[])
StringSource. sel ect Val ue(String)
StringSource. sel ect Val ues(String[])

You can also select values using the j oi n method using the syntax shown below.

Source Source::join (Source joined,
Sour ce conpari son,
Sour ce. COVPARI SON_RULE_SELECT,
bool ean visible);

Assume that you have a primary Sour ce objects named t i mesDi mthat you
created from an MInDi nensi on object named nmdnii mesDi mand whose values are
the calendar values. To select only the those values for 1996, you can issue the code
shown in Example 6-1

Example 6-1 Selecting Based on Source Values
Source timesSel = timesD msel ectVal ue("1996");

6-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Based on Output Values

Selecting Based on Output Values

If you want to create a Cur sor on a Sour ce object, it cannot have any inputs. Since
any Sour ce created from an Mdmveasur e or an MInmAt t r i but e has inputs, the
need to specify values for inputs is so universal that the OLAP API has a special

j 0i n method to support it

Specifying values for the inputs of a Sour ce is called changing inputs to outputs. In
this sense, moving a Sour ce from the list of inputs returned by the get | nput s
method to the list of outputs returned by get Qut put s is similar to moving a
column out of the GROUP BY list in SQL.

Using the join Method to Change Inputs to Outputs

To specify values for the input of a Sour ce, thereby changing an input to an
output, use the following j oi n method where the original Sour ce is the Sour ce
object that has the input that you want to become an output and the joined Sour ce
is the input you want to change.

Sour ce newSource = base.join (Source joined);

This is a shortcut for the following j oi n method.

Sour ce newSource = base.join (joined, enptySource, Source. COWAR SON RULE_ REMOVE, true);

Note that the comparison Sour ce is the empty Sour ce that has no values.
Consequently, even though the COVPARI SON_RULE REMOVE constant is specified,
no values are removed as a result of the comparison. Also, because the vi si bl e
flag issetto t r ue, the joined Sour ce becomes an output of the new Sour ce.

Additionally, since many of the methods of Sour ce class and its subclasses are
methods that implicitly call the j oi n method, some of these methods also change
inputs to outputs.

Effect of Input-Output Order on Source Structure

The structure of a Sour ce is determined by the order in which you turn the inputs
of the Sour ce into outputs. For a Sour ce that has outputs, the first output that was
created is the fastest-varying output; the last output that was created is the
slowest-varying output.

When you string two j oi n methods together in a single statement, the firstj oi n
(reading left to right) is processed first. Consequently, when creating a single
statement containing several j oi n methods, make sure that the input that you want

Making Queries Using Source Methods 6-3

Selecting Based on Output Values

to be the fastest-varying of the new Sour ce is the joined Sour ce in the firstj oi n
in the statement.

Assume that you have a primary Sour ce hamed uni t Cost that you created from
a Mimveasur e object named ndnni t Cost . The Sour ce named uni t Cost has
inputs of t i mesDi mand pr oduct sDi m and no outputs.The t i mesDi mand

pr oduct sDi mSour ce objects do not have any inputs or outputs. The order in
which you turn the inputs of uni t Cost into outputs determines the structure of a
Sour ce on which you can create a Cur sor. Example 6-2 shows the results when
you join first to t i mesDi m Example 6-3 shows the results when you join first to
product sDi m

Changing Inputs to Outputs with timesDim as the First Output Created

Assume also that you issue the code shown in Example 6-2 to turn the inputs of the
primary Sour ce named uni t Cost into outputs.

Example 6-2 Changing Inputs to Outputs with timesDim as the First Output Created
Source newSource = unitCost.join(timesD n.join(productsDim;

This code strings two j oi h methods together. Because

uni t Cost.joi n(ti mesDi n) is processed first, the output values for t i mesbDi m
are the first output values specified. You can also say that t i mesDi mis the first
output defined for the new Sour ce. After the firstj oi n is processed, the set of data
represented by the resulting unnamed Sour ce has the structure depicted below.

timesDim (outputl) values of unitCost
1998 4,000

500
31-DEC-01 9

500

After the second j oi n is processed, the set of data represented by newSour ce
consists of the names and the values of both of its outputs (that is, t i mesDi mand
pr oduct sDi n. Since t i mesDi mwas the first output for which values were

6-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Based on Output Values

specified, it is the fastest-varying output and the new Sour ce has the structure

depicted below.

productsDim (output2) |timesDim (outputl) values of unitCost
Boys 1998 4,000

Boys 31-DEC-01 10

49780 1998 500

49780 31-DEC-01 9

Changing Inputs to Outputs with productsDim as the First Output Created
Assume that you issue the code in Example 6-3 to turn the inputs of unitCost into

outputs.

Example 6-3 Changing Inputs to Outputs with productsDim as the First Output

Created

Sour ce newSource = unitCost.join(productsDiny.join(timesDm;

This code shown in Example 6-3 strings two j oi n methods together. Because
uni t Cost . j oi n(product sDi n) is processed first, pr oduct sDi mis the first
output defined for the new Sour ce. Consequently, pr oduct sDi mis the
fastest-varying output and the new Sour ce has the structure depicted below.

timesDim (output2) productsDim (outputl) | values of unitCost
1998 Boys 4,000

1998 49780 500

31-DEC-01 Boys 10

31-DEC-01 48780 9

Making Queries Using Source Methods 6-5

Selecting Values Based on Rank

Selecting Based on Output Values and Source Values: Example

Assume that you have three primary Sour ce objects named pr oduct sDi m
pronoti onsDi mchannel sDi mandti mesDi m that you got from

MdnDi nensi on objects and that you have a primary Sour ce object named sal es
that you got from an Mdmveasur e object. The pr oduct sDi m pronoti onsDi m
channel sDi mandt i mesDi mobjects do not have any outputs. The sal es object
has pr oduct sDi m pronoti onsDi m channel sDi m andti mesDi mas inputs.

To create a new Sour ce named bi gSel | er whose values are all of the products
that sold more than $10,000,000 in 1996, you can issue the code shown in
Example 6-4.

Example 6-4 Selecting Based on Output Values and Source Values

Source pronotionSel = pronotionsDi msel ectVal ue("Pronp total");

Source channel Sel = channel sDi m sel ect Val ue(" Channel total");

Source timeSel = timesDi mselectVal ue("1996");

Source bigSellers = productsD m sel ect (sal es. gt (10000000)) .
join(promotionSel).join(timeSel).join(channel Sel);

Selecting Values Based on Rank

When a Sour ce is sorted according to some attribute (or attributes), then the
position of the values of the Sour ce represents a kind of ranking — the so-called
unique ranking. There are many other types of rankings that are not unique and
that are called variant rankings.

Finding the Position of Values

You can also use the methods described in Table 6-1 to find values based on their
position in a Sour ce or to find the position of values with the specified value or
values. In the OLAP API, position is a one-based value. As described in "Finding
the Positions of Values When There are no Inputs or Outputs” on page 6-8, when a
Sour ce has no inputs, position works against the entire set of Sour ce values and
only one value has a position of one. As described in "Finding the Positions of
Values When There Are Outputs and Inputs” on page 6-8, when a Sour ce has

6-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Rank

inputs, position works against the subsets of Sour ce values identified by each
unique set of output values and the first value in each subset has a position of one.

Table 6—-1 Methods for Finding Values Based on Position

Method

Description

position()

at (pos)

first()

I ast ()

posi ti onOf Val ue(val ue)

posi ti onOf Val ues(val ues)

Creates a new Sour ce with the type of Integer, the
base Sour ce as an input, and with values that are
the one-based position of the values of the base
Sour ce. If the base Sour ce is sorted according to
some attribute (or attributes), then the position
represents a kind of ranking - the so called unique
ranking

Creates a new Sour ce that has the same structure as the
base Sour ce but that only has the value that is at the
specified position of the base Sour ce. There are two
versions of this method. One version allows you specify
the position using a Sour ce object; in the other, you
specify position using an i nt value.

Creates a new Sour ce that has the same structure as the
base Sour ce but that only has the value that is at
position 1 of the base Sour ce.

Creates a new Sour ce that has the same structure as the
base Sour ce but that only has the value that is at the last
position of the base Sour ce.

Creates a new Sour ce that has the same structure as the
base Sour ce but that whose values are the positions of
the specified value of the base Sour ce. There are two
versions of this method. One version allows you specify
the value using a Sour ce; in the other, you specify value
usinga String.

Creates a new Sour ce that has the same structure as the
base Sour ce but whose values are the positions of the
specified values of the base Sour ce. There are two
versions of this method. One version allows you specify
the value using a Sour ce; in the other, you specify value
using an array of St r i ng objects.

Making Queries Using Source Methods 6-7

Selecting Values Based on Rank

Finding the Positions of Values When There are no Inputs or Outputs

Assume that there is a Sour ce named pr oduct s (shown below) that has no inputs
or outputs and whose values are the unique identifiers of products.

values of products
395
49780

To create a new Sour ce named pr oduct sPosi ti on hose values are the positions
of the values of pr oduct s, issue the code shown in Example 6-5.

Example 6-5 Finding the Position of Values When There are no Inputs or Outputs
Source productsPosition = products. position();

A tabular representation of pr oduct sPosi t i on showing the position of the
values in pr oduct s is shown below. Note that the posi ti on() method is one

based.
values of products position of values
395 1
49780 2

Finding the Positions of Values When There Are Outputs and Inputs

Assume that there is a Sour ce named uni t sSol dByCount ry (shown below) that
has an output of pr oduct s, an input of count r i es, and whose values are the total
number of units for each product sold for each country.

products (output) | values of unitsSoldByCountry
395 500

800
49780 10000

50

6-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Rank

To create a new Sour ce named posi ti onUni t sSol dByCount r y whose values
are the positions of the values of uni t sSol dByCount ry, issue the code in
Example 6-6.

Example 6-6 Finding the Position of Values When there are Outputs and Inputs
Sour ce positionUnitsSol dByCountry = unitsSol dByCountry. position();

A tabular representation of posi t i onUni t sSol dbyCount ry showing the
position of values on uni t sSol dByCount ry is shown below.

values of
products (output) | positionUnitsSoldbyCountry
395 1

2
49780 1

2

Values Ranked in Ascending or Descending Order

One of the simplest kinds of ranking is to sort the values of a Sour ce in ascending
or descending order.

Example 6-7 creates a new Sour ce named sor t edTupl es whose values are the
same as the Sour ce named base in sorted ascending order. Example 6-8 ranks the
values of the Sour ce named base in descending order.

Example 6-7 Ranking Values in Ascending Order
Source sortedTupl es = base. sort Ascendi ng();

Example 6-8 Ranking Values in Descending Order
Source sortedTupl es = base. sort Descendi ng();

Values Ranked in the Same or the Opposite Order as the Values of Another Source

You can rank the values of a Sour ce by sorting them in the same or the opposite
order of the values of another Sour ce.

Making Queries Using Source Methods 6-9

Selecting Values Based on Rank

Example 6-9 creates a new ranks the values of a Sour ce named base in the same
order as the Sour ce named sor t Val ue. Example 6-10 the values of a Sour ce
named base in the opposite order as the Sour ce named sor t Val ue.

Example 6-9 Ranking Values in the Same Order as Another Source
Source sortedTupl es = base. sort Ascendi ng(Sour ce sortVal ue);

Example 6-10 Ranking Values in the Opposite Order as the Values of Another Source
Source sortedTupl es = base. sort Descendi ng(Source sortVal ue);

Minimum Ranking

Minimum ranking differs from unique ranking (position) in the way it deals with
ties (values in the Sour ce that share the same value for the attribute). All ties are
given the same rank, which is the minimum possible.

Example 6-11 ranks values in different ways where the Sour ce (named base)
whose values you want to rank has two inputs named i nput 1 and i nput 2.

Example 6-11 Minimum Ranking

Source sortedTupl es = base.joi n(inputl).sortDescending(input2);
Sour ce equi val ent RankedTupl es =

sortedTupl es.join(input2, input2);
Nunber Sour ce m nRank = sortedTupl es.

posi ti onCf Val ues(equi val ent RankedTupl es) . m ni nmun{();

Maximum Ranking

Maximum ranking differs from unique ranking (position) in the way it deals with
ties (values in the Sour ce that share the same value for the attribute). All ties are
given the same rank, which is the maximum possible rank.

Example 6-12 ranks values in different ways where the Sour ce (hamed base)
whose values you want to rank has two inputs named i nput 1 and i nput 2.

Example 6-12 Maximum Ranking

Source sortedTupl es = base.join(inputl).sortDescending(input2);
Sour ce equi val ent RankedTupl es =
sortedTupl es.join(input2, input2);
Nunber Sour ce maxRank = sortedTupl es. posi tionOf Val ues
(equi val ent RankedTupl es) . maxi mun();

6-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Rank

Average Ranking

Average ranking differs from unique ranking in the way it deals with ties (values in
the Sour ce that share the same value for the attribute). All ties are given the same
rank, which is equal to the average unique rank for the tied values.

Example 6-13 code ranks values in different ways where the Sour ce (named base)
whose values you want to rank has two inputs named i nput 1 and i nput 2.

Example 6-13 Average Ranking

Source sortedTupl es = base.joi n(inputl).sortDescending(input2;
Sour ce equi val ent RankedTupl es =
sortedTupl es.joi n(input2, input2);
Number Sour ce aver ageRank = sortedTupl es. positionCf Val ues
(equi val ent RankedTupl es) . average();

Packed Ranking

Packed ranking, also called dense ranking, is distinguished from minimum ranking by the
fact that the ranks are packed into consecutive integers.

Example 6-14 ranks values in different ways where the Sour ce (hamed base)
whose values you want to rank has two inputs named i nput 1 and i nput 2.

Example 6-14 Packed Ranking

Source tuples = base.join(outputl);
Source firstEquival entTuple = tuples.join(input2, input2.first();
Source packedRank = firstEquival ent Tupl e.join(tuples).
sort Descendi ng(i nput 2). positionCO Val ues(base. val ue().
join(time. value());

Percentile Ranking

Assume that you want to use the following formula to calculate the percentile of an
attribute Afor a Sour ce S with Nvalues.

Percentile(x) = nunber of val ues
(for which the Adiffers fromA(x))
that come before x in the ordering * 100 / N

The percentile, then, is equivalent to the mi ni rumrank -1 * 100 / N.

Making Queries Using Source Methods 6-11

Selecting Values Based on Hierarchical Position

nTile Ranking

Example 6-15 ranks values in different ways where the Sour ce (hamed base)
whose values you want to rank has two inputs named i nput 1 and i nput 2.

Example 6-15 Percentile Ranking

Source sortedTupl es = base.joi n(inputl).sortDescending(input2);
Sour ce equi val ent RankedTupl es =
sortedTupl es.join(input2, input2);
Nunber Sour ce m nRank = sortedTupl es.
posi ti onCf Val ues(equi val ent RankedTupl es) . m ni nun{();
Nunber Sour ce percentile = m nRank. m nus(1).tinmes(100).
div(sortedTuples.count());

nTile ranking for a given n is defined by dividing the ordered Sour ce of size count
into n buckets, where the bucket with rank k is of size. The ntile rank is equivalent
to the formulacei | i ng* ((uni queRank*n)/ count).

Example 6-16 code ranks values in different ways where the Sour ce (named base)
whose values you want to rank has two inputs named i nput 1 and i nput 2.

Example 6-16 nTile Ranking

Nurber Source n = ... ;
Source sortedTupl es = base.joi n(inputl).sortDescending(input2);
Nunber Sour ce uni queRank = sortedTupl e.
posi ti onCf Val ues(base. val ue().join(inputl.value());
Nunber Source ntile = uniqueRank.times(n).
di v(sortedTupl es.count()).ceiling();

Selecting Values Based on Hierarchical Position

In order to select values based on their hierarchical position you need to navigate
the hierarchy. To navigate within a hierarchy you need to create two primary Source
objects: a primary Sour ce that corresponds to the hierarchy, and a primary Sour ce
that represents the parent-child relationships within this hierarchy.

6-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Hierarchical Position

Creating a Primary Source that Represents a Default Hierarchy
To create a Sour ce that represents a default hierarchy, you take the following steps:

1. Retrieve the default hierarchy of the MinDi nensi on by taking the following
steps:

a. Check to see if the MdnDi mensi on is a union dimension by checking to see
if it has an MdmUni onDi mensi onDef i ni ti on.

b. Ifthe MdnDi nensi on has an Minni onDi mensi onDefi ni ti on, then
check to see if it has a regions that are MdnHi er ar chy objects.

c. Ifthe MinDi nensi on has regions that are MinHi er ar chy objects, select
the MdnHi er ar chy that is its default hierarchy.

2. Make the default hierarchy a Sour ce object, by calling the get Sour ce method
on it.

The get MyDef aul t Hi er ar chy retrieves the default hierarchy of an

MdnDi nensi on is shown below. This method calls the get MyRegi ons method
that retrieves the regions of an MdnDi nensi on which, in turn, calls the

get MyMdnini onDi nensi onDefi ni ti on method that checks to see if the
MinDi nensi on is a union dimension.

Example 6-17 Retrieving a Default Hierarchy

/1 method that gets all of the Regions of an MinDi nension
private MinHi erarchy get MyDefaul t H erarchy(MnD mensi on mdnDin) {
Li st hierarchies = get MRegi ons(ndnDi nj ;
if (hierarchies == null)
return nul | ;
for (Iterator iterator = hierarchies.iterator(); iterator.hasNext();) {
MinHi erarchy hier = (MinH erarchy) iterator.next();
i f (hier.hasMinTag(Minet adat aPr ovi der. DEFAULT_HI ERARCHY_TAG))
return hier;
}

return null;

}

Making Queries Using Source Methods 6-13

Selecting Values Based on Hierarchical Position

/1 method that gets all of the Regions of an MinDi nension
private List get M/Regi ons(MInDi nensi on ndnDi nension) {
MimUni onDi mensi onDef i nition uni onDi nDef =
get MyMinUni onDi mensi onDefinition (mdnDi mension);
if (unionDinDef !'=null)
return uni onDi nDef . get MyRegi ons() ;
return null;

}

/1 method that checks to see if MinDimension is a Uni onDi nension
private Minuni onDi nensi onDefinition get MyMinni onDi mensi onDefi nition(
MinDi nensi on
mdnDi mension) {
MinDi mensi onDefinition di mDef = ndnDi nensi on. get Definition();
i f((dinDef == null) || (!(dinmDef instanceof Minmni onDi mensionDefinition)))
return nul | ;
return (Mnni onDi mensi onDefinition) dinDef;
return null;

}

Creating a Primary Source for the Parent-Child Relationship

If an MdnHi er ar chy is a level hierarchy, it’s values are in parent-child relationship
to each other. To create a Sour ce object that represents the parent-child
relationships within a hierarchy, you take the following steps:

1. Create an MimAt t r i but e that represents the parent-child relationships by
using the get Par ent Rel at i on method on the MinHi er ar chy.

2. Create a Sour ce from the MdmAttribute created in step 1 by using the
get Sour ce method.

Creating Source Objects for Other Relationships

A feature of the OLAP API representation of a relation, such as a parent-child
relation, is that it is directional. A Sour ce object that represents a parent-child
relation maps the children to the parent, but not the parents to the children. By
contrast, in SQL a table that represent the relationship is non-directional. The basic
reason is that the OLAP API, unlike SQL, uses the structure of Sour ce objects to
automatically determine how they j oi n. Since in the OLAP API relations are
directional, if you want a relation to be in the opposite direction, you need to invert
it.

6-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Selecting Values Based on Hierarchical Position

Assume that there is a Sour ce named par ent Chi | d on a hierarchy named

| evel Hi er ar chy. To create Sour ce objects that represent other relationships, you
j oi n these two Sour ce objects in different ways. In other words, as shown in
Example 6-18, Example 6-19, and Example 6-20, you can create new Sour ce
objects that represent the children, siblings, and grandparents in the hierarchy by
using the j oi n method on the Sour ce that represents the parentChild relation. You
can also drill down a hierarchy as shown in "Drilling Down a Hierarchy: Example"
on page 6-15.

Example 6-18 Selecting the Children

Source childParent = |evel H erarchy.join(parentChild,
| evel H erarchy. val ue());

Example 6-19 Selecting Siblings
Source siblingParent = |evel H erarchy.join(parentChild, parent);

Example 6-20 Selecting Grandparents
Source grandParent = parentChild.join(level Herarchy, parentChild);

Drilling Down a Hierarchy: Example

Assume that there is an MUdnDi mensi on object for which you have created a

Sour ce named pr oduct sDi m Assume also that this MinDi mensi on object has a
default hierarchy for which you have created an MdVHi er ar chy called

prodSt dHi er Gbj and a Sour ce called pr odHei r. Example 6-21 drills down the
"Trousers - Women" division of the hierarchy.

Example 6-21 Dirilling Down a Hierarchy

/1 Get the parent relation fromthe hierarchy
MimAt tri bute prodHi er Parent Cbj = prodStdHi er Qbj . get Parent Rel ation();
StringSource prodH erParent = prodH er Parent Qbj . get Source();
Il Select children of Trousers - Wnen
/1 - Reverse the parent relation to get a children relation
Source prodHi erChildren = prodHier.join(prodH erParent, prodHier.value());
/I - Note the join is hidden because we only want the children of
/1l - Trousers - Wnen, and not Trousers - Wnen itself
Source trousersChildren = prodHi erChildren.join(prodHier,
cont ext . get Dat aPr ovi der () . cr eat eConst ant Source(" Trousers - Wnen"), fal se);

Making Queries Using Source Methods 6-15

Creating a Source that is a Self-Relation

/1 Select Shirts - Boys, Trousers - Wnen, and Shorts - Men
Source prodHierSel = prodHier. sel ect Val ues(new String[]
{"Shirts - Boys","Trousers - Wnen","Shorts - Men"});
Il Insert the children of Trousers - Wnen after Trousers - \Wnen
/1 (which is 2nd val ue)
Source drilledProdH erSel = prodHi er Sel . appendVal ues(trousersChildren);
/1 This selection has the effect of sorting the result in hierarchical order.
Source result = prodHier. sel ect Val ues(drilledProdHi erSel);

Creating a Source that is a Self-Relation

Suppose we want to do a region-to-region comparison in some way. Specifically,
suppose we want to create a data view in which the regions appear on both the
rows and the columns. In the OLAP API you use the al i as() and the val ue()
methods to do this. The al i as() method creates a new Sour ce that mirrors
exactly the original Sour ce in terms of its data, its inputs, and its outputs. The only
difference is that the original Sour ce becomes the type of the alias Sour ce. The
val ue() method creates a new Sour ce that has the original Sour ce as both its
type and as an input.

Assume that there would naturally be an input-output match between input A of
the original Sour ce (called base) and some output B of the joined Sour ce in the
j oi n shown below.

Source result = base.join(joined, conparison);

To avoid this input-output match, and hence keep A as an input of the result, use
the code shown in Example 6-22.

Assume that we have a Sour ce named r egi on that does not have any inputs or
outputs and whose values are the names of geographical regions. Assume also that
we want to create a data view in which the regions appear on both the rows and the
columns. For each cell in this table we want to show the percentage difference
between the areas (in square miles) of the regions. In other words, we want to create

6-16 Oracle9i OLAP Developer’s Guide to the OLAP API

Creating a Source that is a Self-Relation

a Sour ce named r egi onConpar i son that has two inputs -- both of them the
Sour ce named r egi ons. Example 6-23 shows how you do this.

Example 6-22 Procedure for Creating a Self-Relation

//Create an alias Source named B2 for a Source nanmed B;
Source B2 = B.alias();

//Create a variant of the original called base2

I/ know that input Awll match to B

Source base2 = base.join(B, B2.value());

I/ Now j oi n base2 and joi ned

/I'\ know that input B2 will not match to B in joined
Source preResult = base2.join(joined, conparison);
/IFinally, jointo the B2 and regain the input A
Source result = preResult.join(B2, A value());

Example 6-23 Creating a Source that is a Self-Relation

//Create an alias for region that is for the row
Source rowRegi on = region.alias();

/I Create an alias for region that is for the col um
Source col umRegi on = region.alias();

|/ Create rowRegi onArea which has an input of rowRegion,

/1 an output of area,

1 and val ues whose values are the sane as those of region
Source rowRegi onArea = area.joi n(rowRegi on.val ue());

/I Creat e col utmRegi onArea which has an input of col utmRegion,
/1 an output of area,

1 and val ues whose values are the sane as those of region
Sour ce col umRegi onArea = area.j oi n(col utmRegi on. val ue());

/I Conpute the values of the cells
Sour ce areaConparison = rowRegi onArea. di v(col unmRegi onArea) . tines(100);

//Create a new Source with outputs rather than inputs
Sour ce regi onConpari son = areaConpari son. j oi n(rowRegi on. j oi n(col umRegi on));

The first two lines of code create two new Sour ce objects that are aliases for the
Sour ce named r egi on. These Sour ce objects are called r owRegi on and
col unmRegi on.

Making Queries Using Source Methods 6-17

Performing Numerical Analysis

The next two lines of code create Sour ce objects, named r owRegi onAr ea and
col umRegi onAr ea, that represent the areas of r owRegi on and col unmRegi on
respectively. To create r owRegi onAr ea, we j oi n ar ea which has the input of
regi on tor owRegi on. val ue() which has an input of r owRegi on and the same
values as r egi on. The r owRegi onAr ea Sour ce has an input of r owRegi on, an
output of ar ea, and values whose values are the same as those of r egi on. To
create col utmRegi onAr ea, we j oi n area which has the input of r egi on to

col unmmRegi on. val ue() which has an input of col unmRegi on and the same
values as r egi on. The Sour ce named col utmRegi onAr ea has an input of

col unmmRegi on, an output of ar ea, and values that are the same as those of

regi on. These j oi n calls have the effect of replacing the r egi on input with

r owRegi on or col utTmRegi on, which, since they both have the names as regions
as data, makes no real difference to the value of ar ea.

The next line of code performs the needed computation. Because r owRegi onAr ea
has r owRegi on as an input and col umRegi onAr ea has col utmRegi on as an
area, the new Sour ce named ar eaConpar i son has two inputs, r owRegi on and
col unmmRegi on, both of whose values are the names of regions. What we have
done is to effectively create a Sour ce object that has duplicate inputs.

The final step of changing inputs to outputs is easy. We merely j oi n
ar eaConpar i son to its inputs (r owRegi on and col utmRegi on).

Performing Numerical Analysis

The Nunber Sour ce class and its subclasses define methods that are
numeric-specific versions of various Sour ce methods that you can use to append,
insert, select, and remove numeric values. The Nurrber Sour ce class and its
subclasses also have methods that you can use to perform simple numerical
operations such as subtraction and division, make numerical comparisons, perform
standard numerical functions such as finding the absolute value of numbers, and
aggregate values by summing values. You can also create your own functions to
perform numerical analysis that is unique to your program.

6-18 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis

Performing Numerical Operations

Using the OLAP API you perform basic numeric operations using Nunber Sour ce
methods such as m nus. There are separate versions of each of these methods that
you can use to specify a literal doubl e, f | oat ,i nt, orshort value. There is also a
version of each of these method that takes a Nunber Sour ce as an argument.

The OLAP API methods that you use to perform basic numeric operations include
those outlined in Table 6-2.

Table 62 OLAP API Methods that Perform Basic Numeric Operations

Method

Description

di v(rhs)

i ntpart()

m nus(r hs)

negat e()

pl us(rhs)

ren(rhs)

times (rhs)

Creates a new Nunber Sour ce that has the same structure as the base
Nurber Sour ce but whose values are the values of the base
Nunber Sour ce divided by the specified value.

Creates a new Nunber Sour ce that has the same structure as the base
Number Sour ce but whose values are the integer portion of the values of
the base Nunber Sour ce.

Creates a new Nunber Sour ce that has the same structure as the base
Nurber Sour ce but whose values are the values of the base
Number Sour ce minus the specified value.

Creates a new Nunber Sour ce that has the same structure as the base
Nunber Sour ce but whose values are the values of the base
Number Sour ce negated.

Creates a new Nunber Sour ce that has the same structure as the base
Nunber Sour ce but whose values are the values of the base
Nunmber Sour ce plus the specified value.

Creates a new Nunber Sour ce that has the same structure as the base
Nunber Sour ce but whose values are the remainders of the values of the
base Nunmber Sour ce when they are divided by the specified value.

Creates a new Nunber Sour ce that has the same structure as the base
Nurber Sour ce but whose values are the values of the base
Nunber Sour ce multiplied by the specified value.

Making Queries Using Source Methods 6-19

Performing Numerical Analysis

Subtracting the Same Value From all Values: Example

Assume, as shown below. that there is a Nunber Sour ce named uni t _Cost that
has outputs of pr oduct sDi mand t i nresDi mand a type of | nt eger.

productsDim timesDim unit_Cost
Boys 1998 4000

Boys 31-DEC-01 10

49780 1998 500

49780 31-DEC-01 9

Now assume that you want to subtract 10% of the sales from each value of
uni t _Cost to find the adjusted income for each product as shown in which
creates a new Sour ce named per cent Aj ust ment .

Example 6-24 Subtracting the Same Value from all Values
Nunber Sour ce percent Adj ustment = unit_Cost. m nus(unit_Cost.tines(.10));

The new Nunmber Sour ce, named per cent Adj ust nent , has the following
structure and values.

productsDim timesDim percentAdjustment
Boys 1998 3600

Boys 31-DEC-01 9

49780 1998 450

49780

49780 31-DEC-01 8

6-20 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis

Subtracting the Values of one NumberSource from Another: Example

Assume that you have the Nunber Sour ce named uni t Cost described in the
previous example and that you also have the Nunber Sour ce named
uni t Manuf act uri ngCost shown below.

productsDim timesDim unit_Cost values
Boys 1998 600

Boys 31-DEC-01 3

49780 1998 250

49780 31-DEC-01 2

Now assume that you want to calculate the non-manufacturing for each product. To
do this you need to subtract the manufacturing costs from the unit costs. To do this
you use the following code which creates a new Sour ce named

nonManuf act uri ngCost by performing the operation on uni t _Cost .

Example 6-25 Subtracting the Values of one NumberSource from Another

Nunber Sour ce nonManuf act ur i ngCost

uni t Cost . mi nus(uni t Manuf act uri ngCost);

nonManuf act uri ngCost has the structure and values shown below.

productsDim timesDim values
Boys 1998 3400
Boys 31-DEC-01 7
49780 1998 250
49780 31-DEC-01 7

For a more complete explanation of these methods, see OLAP API Javadoc.

Making Queries Using Source Methods 6-21

Performing Numerical Analysis

Making Numerical Comparisons

The Nunber Sour ce class has a number of methods make numerical comparisons.
These methods compare each value in a Nunber Sour ce to a specified value. These
methods return a Bool eanSour ce that has the same structure as the original
Number Sour ce and that has an value that is true when the comparison for a given
value of the original Nunber Sour ce is true, or false when the comparison is false.
There are separate versions of each of these methods that you can use to specify a
literal doubl e, f | oat , i nt, or short value.

The numerical comparison methods provided with the OLAP API include those
listed in Table 6-3. For a more complete explanation of these methods, see the
OLAP API Javadoc.

Table 6-3 Numerical Comparison Methods

Method Description

eq Creates a new Bool eanSour ce, with the same outputs and inputs as the base
Nunber Sour ce, and with a value of t r ue for each value of the
Nunber Sour ce that is equal to the specified value and a value of f al se for
each value of the Nurber Sour ce that is not.

ge Creates a new Bool eanSour ce, with the same outputs and inputs as the base
Nunber Sour ce, and with a value of t r ue for each value of the
Nunmber Sour ce that is greater than or equal to the specified value and a value
of f al se for each value of the Nunber Sour ce that is not.

gt Creates a new Bool eanSour ce, with the same outputs and inputs as the base
Nunber Sour ce, and with a value of t r ue for each value of the
Nunmber Sour ce that is larger than the specified value and a value of f al se for
each value of the Nurmber Sour ce that is not.

le Creates a new Bool eanSour ce, with the same outputs and inputs as the base
Nunber Sour ce, and with a value of t r ue for each value of the
Nunmber Sour ce that is lesser than or equal to the specified value and a value of
f al se for each value of the Nurmber Sour ce that is not.

It Creates a new Bool eanSour ce, with the same outputs and inputs as the base
Nunber Sour ce, and with a value of t r ue for each value of the
Number Sour ce that is less than the specified value and a value of f al se for
each value of the Nunber Sour ce that is not.

ne Creates a new Bool eanSour ce, with the same outputs and inputs as the base
Nunber Sour ce, and with a value of t r ue for each value of the
Nunmber Sour ce that is not equal to the specified value and a value of f al se
for each value of the Nurmber Sour ce that is equal.

6-22 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis

Working with Standard Numerical Functions

The OLAP API has many methods that represent standard numerical functions.
These methods include those listed in Table 6—4. You can also write your own
functions as described in "Creating Your own Numerical Functions" on page 6-27.

When you use these functions with a Nunber Sour ce, they return a new

Number Sour ce that has the same structure as the original Nunber Sour ce and
whose values are the values of the original Nunber Sour ce modified according to
the function. For example, the abs() method returns a new Nunmber Sour ce each
of whose values has the absolute value of the corresponding value in the original
Nunber Sour ce.

Table 6—4 Methods that Represent Standard Numerical Functions

Method Description

abs() Creates a new Numnber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are the absolute value of
each value of the base Nurrber Sour ce.

arccos() Creates a new Nunber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are the angle value (in
radians) of the value (interpreted as a cosine) of each value of the
Nunber Sour ce.

arcsin() Creates a new Numnber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are the angle value (in
radians) of the value (interpreted as a sine) of each value of the
Number Sour ce.

arctan() Creates a new Numnber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are the angle value (in
radians) of the value (interpreted as a tangent) of each value of the
Number Sour ce.

cos() Creates a new Nunber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are the cosine of the value
(interpreted as an angle value in radians) of each value of the
Number Sour ce.

cosh() Creates a new Nunber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are the hyperbolic cosine of
the value (interpreted as an angle value in radians) of each value of
the Nurmber Sour ce

I og() Creates a new Nunber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are the natural logarithm of
each value of the Nunber Sour ce.

Making Queries Using Source Methods 6-23

Performing Numerical Analysis

Table 6—4 (Cont.) Methods that Represent Standard Numerical Functions

Method

Description

pow(r hs)

round(mul ti pl e)

sin()

Creates a new Nunber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are each value of the
Nunber Sour ce raised to the specified value.

Creates a new Nunber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are each value of the
Nunmber Sour ce rounded to the nearest multiple of the specified
value.

Creates a new Nunber Sour ce, with the same outputs and inputs as
the base Nunber Sour ce, whose values are the sine of the value
(interpreted as an angle) of each value of the Nunber Sour ce.

Working with Aggregation Methods

Standard numerical methods like st dev() work on each value in a

Number Sour ce. An aggregation method is a method like t ot al () that uses the
values in a series of Sour ce values to perform its calculations. The way that Oracle
OLAP processes an aggregation function varies depending on whether or not the
base Nunmber Sour ce has inputs:

« When the base Nunber Sour ce does not have any inputs, an aggregation function
creates a new Nunber Sour ce, without any outputs or inputs, with a single value that is
calculated using all of the values in the base Nunber Sour ce. (See "Calculating the Sum
When a Source Has only Outputs: Example" on page 6-25 for an example.)

« When the base Nunber Sour ce has inputs, each set of output values identifies a
subset of values (tuples). In this case, an aggregation method works on each
subset of data. The aggregation function creates a new Nunmber Sour ce, without the
same outputs as the base Nurrber Sour ce, with one value for each set of output values.
These values are calculated using all of values in the base Nunber Sour ce identified by
that set of output values. (See "Calculating the Sum When a Source Has only Outputs:
Example" on page 6-25 for an example.)

6-24 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis

The numerical aggregation methods provided by the OLAP API include the
methods in Table 6-5. You can also write your own aggregation functions as
described in "Creating Your own Numerical Functions" on page 6-27.

Table 6-5 Aggregation Methods

Method Description When the NumberSource Does Not Have Inputs

aver age Creates a new Nunber Sour ce, without any outputs or inputs, whose
value is the average of the values of a Nurber Sour ce.

maxi mnum Creates a new Nunber Sour ce, without any outputs or inputs, whose
value is the largest value of a Number Sour ce.

nm ni mum Creates a new Nunber Sour ce, without any output or inputs, whose value
is the smallest value of a Nunber Sour ce.

t ot al Creates a new Nunber Sour ce, without any outputs or inputs, whose
value is the sum of the values of a Nunber Sour ce.

There are two different versions of each of the numerical aggregation methods. One
version excludes all null values when making its calculations. The other version
allows you to specify whether or not you want null values included in the
calculation.

For more information on how OLAP API methods determine the position of an
value and therefore how they determine what values to use when calculating the
values of aggregation methods, see Finding the Position of Values on page 6-6.

Calculating the Sum When a Source Has only Outputs: Example

Assume that you have the Sour ce named uni t sSol dByCount r y that has two
outputs (pr oduct s and count ri es) and whose values are the total number of
units for each product sold for each country.

products (output2) | countries (outputl) | values of unitsSoldByCountry
395 Australia 1300

395 United States 800

49780 Australia 10050

49780 United States 50

Making Queries Using Source Methods 6-25

Performing Numerical Analysis

Now assume that you want to total these values. Since both pr oduct s and
count ri es are outputs, when you issue the code shown below, the new
Number Sour ce calculates the total number of units sold for all products in all
countries.

Example 6-26 Calculating the Sum of Values When a Source has only Outputs
Number Sour ce total UnitsSol d = unitsSol dyByCountry.total ();

The new Nunber Sour ce called t ot al Uni t sSol d has only a single value that is
the total of the values of uni t sSol dByCount ry.

value of totalUnitsSold

11350

Calculating the Sum When a Source Has an Output and an Input: Example

Assume that you have the Sour ce named uni t sSol dByCount r y that has an
output of count ri es and an input of pr oduct s and whose values are the total
number of units for each product sold for each country.

countries (output) values of unitsSoldByCountry
Australia 1300

10050
United States 50

800

Now assume that you total these values. Since pr oduct is input, when you issue
the code shown below, the new Nurrber Sour ce calculates the total number of units

6-26 Oracle9i OLAP Developer’s Guide to the OLAP API

Performing Numerical Analysis

sold for all products in each country;. It does not calculate the total for all products
in all countries.

Example 6-27 Calculating the Sum of Values When a Source has Outputs and Inputs
Nunber Sour ce total UnitsSol dByCountry = unitsSol dByCountry.total ();

The new Nunber Sour ce called t ot al Uni t sSol dByCount ry has an output of
count ri es and values shown below.

countries (output) values of unitsSoldByCountry
Australia 11350
United States 850

Creating Your own Numerical Functions

The alias method can be used to create parameters. Example 6-28, "Creating a
Standard Function" shows how to create a new function using the al i as method.
You can only create cell or row calculation functions in this way. To create client
aggregation or position-based functions you use the ext r act method.

Creating Your own Standard Function: Example

Example 6-28 creates a function that takes a number and multiplies it by 1.05. The
function has one parameter, called par am which is created by calling the al i as
method on the fundamental Sour ce representing the Number OLAP API data type
which is the set of all numbers. (Note how the val ue method is used to make the
parameter an input of the function.) The function created in Example 6-28 is
effectively the same as the built-in functions provided by the OLAP API. It can be
used by joining the function to the parameter and the required parameter
expression.

Assume you want to create a product selection defined to be the set of all products
for which the uni t sSol d measure is greater than the value specified by a
parameter. The parameter must be specified before data can be fetched from this
Sour ce. You can create this parameter as shown in Example 6-29. To set the value
of the parameter to 100, you use the code shown in Example 6-30. You can then

Making Queries Using Source Methods 6-27

Performing Numerical Analysis

apply the function created in Example 6-28 to a Sour ce named sal es as shown in
Example 6-31.

Example 6-28 Creating a Standard Function

/1 Get the Source that represents the nunber data type
Number Sour ce nunber =(Nunber Sour ce) dat aPr ovi der
. get Fundanent al Defi ni tionProvi der ()
. get Nunber Dat aType()
. get Source();
I/ Create a paraneter
Nunber Sour ce param = (Nunber Sour ce) nunber. al i as();
//Create a function
Nunmber Source function = ((Nunber Sour ce) param val ue()).times(1.05);

Example 6-29 Creating a Parameterized Selection

/1 Get the Source that represents the nunber data type
Nunber Sour ce nunber = dat aProvi der
. get Fundanent al Defi ni tionProvi der ()
. get Nunber Dat aType()
. get Source();
/I Create a paraneter
Nunber Sour ce param = (Nunber Sour ce) nunber . al i as();
|/ Create a paraneterized sel ection
Source products = ...;
Number Source unitsSold = ...;
Source product Sel ection = products. sel ect (unitsSol d. gt (param val ue()));

Example 6-30 Setting the Value of the Parameter
Sour ce unitsSol dGT100 = product Sel ection.joi n(param 100);

Example 6-31 Using a Standard Function You Created

/1 Use the function
Nunber Sour ce sales = ...;
Nunber Source fsal es = function.join(param sales);

6-28 Oracle9i OLAP Developer’s Guide to the OLAP API

Manipulating String Values

Creating Your own Aggregation Function: Example

Assume that you want to create a weighted average function. To do so, you write
the code shown in Example 6-32, "Creating a Weighted Average Function”. As with
the example of a standard function Example 6-28, "Creating a Standard Function"”,
this code first creates a parameter named par amfor the function to use. However,
since this is an aggregation function, the code uses the ext r act () method with
par amwhen it calculates the final result.

To use the weighted average function created in Example 6-32, you issue the code
shown in Example 6-33.

Example 6-32 Creating a Weighted Average Function

/I Define an aggregation function

Nunber Source weight = ...;

I/ Create a paraneter

Nunber Sour ce param = (Nunber Source) nunber. alias();

//Create a function

Nunmber Sour ce wei ght edAverage = paramextract().times(wei ght).average();

Example 6-33 Using the Weighted Average Function Created in Example 6-32

/1 Use the aggregation function

Number Source sales = ...;

Nunber Sour ce paranfal es = dp. creat eConst ant Sour ce(par am sel ect Val ues(sal es));
Source wei ght edSal es = wei ght edAver age. j oi n(par anfal es) ;

Manipulating String Values

The St ri ngSour ce class defines methods that are string-specific versions of
various Sour ce methods that you can use to append, insert, select, and remove
values whose values are Java St r i ng objects.

The St ri ngSour ce class also has methods listed in Table 6-6 that you can use to
manipulate the values of the St ri ngSour ce objects. The OLAP API also provides
the methods listed in Table 6-7 that you can use to manipulate substrings within the
values of a St ri ngSour ce.

Making Queries Using Source Methods 6-29

Manipulating String Values

Table 6-6 Methods for Manipulating the values of StringSource Objects

Method

Description

| engt h()

text Fi |l (width)

toLower case()

t oUpper case()

trim)

trinmLeadi ng()

trimirailing

Creates a new Nunber Sour ce with the same structure as the
base St ri ngSour ce and whose values are the length of each
value of the St ri ngSour ce.

Creates a new St ri ngSour ce, with the same structure as the
base St ri ngSour ce, whose values are each value of the base
St ri ngSour ce reformatted o the specified width by adding
blank spaces.

Creates a new St ri ngSour ce, with the same structure as the
base St ri ngSour ce, whose values are the values of the base
St ri ngSour ce with all alphabetic characters in lowercase.

Creates a new St ri ngSour ce, with the same structure as the
base St ri ngSour ce, whose values are the values of the base
St ri ngSour ce with all alphabetic characters in uppercase.

Creates a new St ri ngSour ce, with the same structure as the
base St ri ngSour ce, whose values are the values of the base
St ri ngSour ce with the leading and trailing blank spaces
removed.

Creates a new St ri ngSour ce, with the same structure as the
base St ri ngSour ce, whose values are the values of the base
St ri ngSour ce with the leading blank spaces removed.

Creates a new St ri ngSour ce, with the same structure as the
base St ri ngSour ce, whose values are the values of the base
St ri ngSour ce with the trailing blank spaces removed.

6-30 Oracle9i OLAP Developer’s Guide to the OLAP API

Manipulating String Values

Table 6—7 Methods for Manipulating Substrings of StringSource Objects

Method Description

i ndexX™X (substring, from ndex) Createsanew StringSource, with the same
structure as the base St ri ngSour ce, whose
values are the specified substrings in the values
of the base St ri ngSour ce that begin after the
specified character position.

renove (index, |ength) Creates a new St ri ngSour ce, with the same
structure as the base St ri ngSour ce, whose
values a re the values of the base St ri ngSour ce
with the characters between the specified
character positions removed.

replace (ol dString, newString) Createsanew StringSource, with the same
structure as the base St ri ngSour ce, whose
values are the values of the base St ri ngSour ce
with the specified substring, and replaced with a
different substring.

substring (index, |ength) Creates a new St ri ngSour ce, with the same
structure as the base St ri ngSour ce, whose
values are the specified substrings in the values
of the base St ri ngSour ce.

There are two different versions of each of these methods. In one version you
specify the values using Sour ce objects, in the other you specify the values using
literal values.

Making Queries Using Source Methods 6-31

Manipulating String Values

6-32 Oracle9i OLAP Developer’s Guide to the OLAP API

v

Using a TransactionProvider

This chapter describes the Oracle OLAP API Tr ansact i on and

Transacti onProvi der interfaces and describes how you use implementations of
those interfaces in an application. You must create a Tr ansact i onPr ovi der
before you can create a Dat aPr ovi der, and you must use methods on the
Transacti onProvi der to prepare and commita Tr ansact i on before you can
create a Cur sor for a derived Sour ce.

This chapter includes the following topics:
= About Creating a Query in a Transaction

« Using TransactionProvider Objects

Using a TransactionProvider 7-1

About Creating a Query in a Transaction

About Creating a Query in a Transaction

The Oracle OLAP API is transactional. Each step in creating a query occurs in the
context of a Tr ansact i on. One of the first actions of an OLAP API application is to
create a Tr ansact i onPr ovi der. The Tr ansact i onPr ovi der provides
Transact i on objects to the application.

The Transact i onProvi der ensures the following:

« ATransacti on isisolated from other Tr ansact i on objects. Operations
performed in a Tr ansact i on are not visible in, and do not affect, other
Transact i on objects.

« Ifanoperationina Transact i on fails, its effects are undone (the
Transact i on is rolled back).

« The effects of a completed Tr ansact i on persist.

When you create a derived Sour ce by calling a method on another Sour ce, that
Sour ce is created in the context of the current Tr ansact i on. The Sour ce is active
in the Tr ansact i on in which you create it or in a child Tr ansact i on of that
Transacti on.

You get or set the current Tr ansact i on, or begin a child Tr ansact i on, by calling
methods on a Tr ansact i onPr ovi der. In achild Tr ansact i on you can change
the state of a Tenpl at e that you created in the parent Tr ansact i on. By
displaying the data specified by the Sour ce produced by the Tenpl at e in the
parent Tr ansact i on and also displaying the data specified by the Sour ce
produced by the Tenpl at e in the child Tr ansact i on, you can provide the end
user of your application with the means of performing what-if analysis.

7-2 Oracle9i OLAP Developer’s Guide to the OLAP API

About Creating a Query in a Transaction

Types of Transaction Objects
The OLAP API has the following two types of Tr ansact i on objects:

« Avread Transact i on. Initially, the current Tr ansact i on is a read
Transacti on. Aread Tr ansact i on is required for creating a Cur sor to fetch
data from Oracle OLAP. For more information on Cur sor objects, see
Chapter 9.

« Awrite Transacti on. A write Transact i on is required for creating a
derived Sour ce or for changing the state of a Tenpl at e. For more information
on creating a derived Sour ce, see Chapter 5. For information on Tenpl at e
objects, see Chapter 10.

In the initial read Tr ansact i on, if you create a derived Sour ce or if you change
the state of a Tenpl at e object, then a child write Tr ansact i on is automatically
generated. That child Tr ansact i on becomes the current Tr ansact i on.

If you then create another derived Sour ce or change the Tenpl at e state again,
that operation occurs in the same write Tr ansact i on. You can create any number
of derived Sour ce objects, or make any number of Tenpl at e state changes, in that
same write Tr ansact i on. You can use those Sour ce objects, or the Sour ce
produced by the Tenpl at e, to define a complex query.

Before you can create a Cur sor to fetch the result set specified by a derived
Sour ce, you must move the Sour ce from the child write Tr ansact i on into the
parent read Tr ansact i on. To do so, you prepare and commit the Tr ansact i on.

Preparing and Committing a Transaction

To move a Sour ce that you created in a child Tr ansact i on into the parent read
Transact i on, call the pr epar eCurr ent Tr ansacti on and

conmi t Current Transact i on methods on the Tr ansact i onPr ovi der. When
you commit a child write Tr ansact i on, a Sour ce you created in the child
Transact i on moves into the parent read Tr ansact i on. The child Tr ansacti on
disappears and the parent Tr ansact i on becomes the current Tr ansact i on. The
Sour ce is active in the current read Tr ansact i on and you can therefore create a
Cur sor for it.

Using a TransactionProvider 7-3

About Creating a Query in a Transaction

The following figure illustrates the process of moving a Sour ce created in a child
write Tr ansact i on into its parent read Tr ansact i on.

Figure 7-1 Committing a Write Transaction into Its Parent Read Transaction

t 1 = The initial Transaction t 1 = After committing t2, this read Transaction
is a read Transaction. is again the current Transaction.
/I Get MdmDimension objects. /I Sources from t2 now exist in t1.
/I Get MdmMeasure objects. /I Transaction t2 diappears.
/I Get primary Sources from /I Create a Cursor for unitCostForSelections.
/I those metadata objects. /I Display the result set.

Creating a derived

Source begins the child Committing the child Transaction

write Transaction, t2. makes the new Sources visible

in the parent Transaction.

t2 = A write Transaction is now
the current Transaction.

/I Create derived Sources from the primary Sources

StringSource prodSel, timeSel;
NumberSource unitCostForSelections;

prodSel = products.selectValues(new String [] {"P1", "P2", "P3"});
timeSel = times.selectValues(new String[] {"T1", "T2", "T3", "T4"});

unitCostForSelections = unitCost.join(timeSel).join(prodSel);

transactionProvider.prepareCurrentTransaction();
transactionProvider.commitCurrentTransaction();

7-4 Oracle9i OLAP Developer’s Guide to the OLAP API

About Creating a Query in a Transaction

About Transaction and Template Objects

Getting and setting the current Tr ansact i on, beginning a child Tr ansact i on,
and rolling back a Tr ansact i on are operations that you use to allow an end user
to make different selections starting from a given state of a dynamic query. This
creating of alternatives based on an initial state is known as what-if analysis.

To present the end user with alternatives based on the same initial query, you do the
following:

1. Create a Tenpl at e ina parent Tr ansact i on and set the initial state for the
Tenpl at e.

2. Getthe Sour ce produced by the Tenpl at e, create a Cur sor to retrieve the
result set, get the values from the Cur sor, and then display the results to the
end user.

3. Beginachild Transact i on and modify the state of the Tenpl at e.

4. Getthe Sour ce produced by the Tenpl at e in the child Tr ansact i on, create
a Cur sor, get the values, and display them.

You can then replace the first Tenpl at e state with the second one or discard the
second one and retain the first.

Beginning a Child Transaction

To begin a child read Tr ansact i on, call the begi nSubt r ansact i on method on
the Transact i onPr ovi der you are using. If you then change the state of a
Tenpl at e, a child write Tr ansact i on begins automatically. The write
Transact i on is a child of the child read Tr ansact i on.

To get the data specified by the Sour ce produced by the Tenpl at e, you prepare
and commit the write Tr ansact i on into its parent read Tr ansact i on. You can
then create a Cur sor to fetch the data. The changed state of the Tenpl at e is not
visible in the original parent. The changed state does not become visible in the
parent until you prepare and commit the child read Tr ansact i on into the parent
read Tr ansact i on.

The following figure illustrates beginning a child read Tr ansact i on, creating
Sour ce objects in a write Tr ansact i on,and committing the write Tr ansact i on
into its parent read Tr ansact i on. The figure then shows committing the child
read Tr ansact i on into its parent read Tr ansact i on. In the figure, t p is the
Transacti onProvi der.

Using a TransactionProvider 7-5

About Creating a Query in a Transaction

Figure 7-2 Committing a Child Read Transaction into Its Parent Transaction

t1 = The initial read
Transaction.

t1 = After committing t2 and again after
committing t3, t1 is the current Transaction.

/I Create a TopBottomTemplate,
/I topNBottom.

/I After committing t2, get the Source
/I produced by topNBottom.

/I Create a Cursor for the

/I for the Source. Display the values.

tp.beginSubtransaction() ; / begins t3

/I After committing t3, the Source
/I produced by topNBottom is generated
/I using the state defined in t4.

Changing the state of topNBottom
automatically begins t2.

t2 = The current Transaction
is now a write Transaction.

active in t1.

The state of topNBottom
defined in t2 is now

/I Change the state of topNBottom
topNBottom.setTopBottomType(TOP);
topNBottom.setN(10);

/I Prepare and commit the current Transaction.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction();

The state changes
from t3 are now
active in t1 and t3
disappears.

Beginning a child Transaction creates t3.

t3 = The current Transaction is a read Transaction.

V

/I The state of topNBottom
/I is the one defined in t2.

/I After submitting t4, t3 is the current Transaction.
i Il The state of topNBottom is the one defined in t4.
/I Get the Source produced by topNBottom. Create
{ Il a Cursor for the Source and display the values.

| /| Prepare and commit t3.

! tp.prepareCurrentTransaction();

| tp.commitCurrentTransaction();

Changing the state of
topNBottom begins t4.

t4 = The current Transaction
is a write Transaction.

The state changes
are now active in t3
and t4 disappears.

topNBottom.setN(15);

/I Change the state of topNBottom
topNBottom.setTopBottomType(BOTTOM);

/I Prepare and commit the current Transaction.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction();

7-6 Oracle9i OLAP Developer’s Guide to the OLAP API

About Creating a Query in a Transaction

After beginning a child read Tr ansact i on, you can begin a child read

Transact i on of that child, or a grandchild of the initial parent Tr ansact i on. For
an example of creating child and grandchild Tr ansact i on objects, see

Example 7-2.

About Rolling Back a Transaction

You roll back, or undo, a Tr ansact i on by calling the

rol | backCur rent Tr ansact i on method on the Tr ansact i onPr ovi der you
are using. Rolling back a Tr ansact i on discards any changes that you made
during that Tr ansact i on and makes the Tr ansact i on disappeatr.

Before rolling back a Tr ansact i on, you must close any Cur sor Manager objects
you created in that Tr ansact i on. After rolling back a Tr ansact i on, any Sour ce
objects that you created or Tenpl at e state changes that you made in the
Transact i on are no longer valid. Any Cur sor objects you created for those

Sour ce objects are also invalid.

Once you roll back a Tr ansact i on, you cannot prepare and commit that
Transact i on. Likewise, once you commita Tr ansact i on, you cannot roll it
back.

Example 7-1 Rolling Back a Transaction

The following example creates a TopBot t omTenpl at e and sets its state. The
example begins a child Tr ansact i on that sets a different state for the
TopBot t onTenpl at e and then rolls back the child Tr ansact i on. The
Transacti onProvi der istp.

/1 The current Transaction is a read Transaction, t1.

/1 Create a TopBottonTenpl ate using product as the base

/1 and dp as the DataProvider.

TopBot t onTenpl at e t opNBott om = new TopBot t oniTenpl at e(product, dp);

/1 Changing the state of a Tenplate requires a wite Transaction, so a
Il wite child Transaction, t2, is automatically started.

t opNBot t om set TopBot t onilype(TopBot t onTenpl at e. TOP_BOTTOM TYPE_TOP) ;

t opNBot t om set N(10) ;

topNBott om set Criterion(singleSel ections. getSource());

/I Prepare and conmt the Transaction t2.

tp. prepareCurrent Transaction();
tp. commi t Current Transaction(); /1t2 disappears

Using a TransactionProvider 7-7

Using TransactionProvider Objects

/1 The current Transaction is now t1.
/I Create a Cursor and display the results (operations not shown).

/1 Start a child Transaction, t3. It is a read Transacti on.
t p. begi nSubt ransaction(); /] t3 is the current Transaction

/1 Change the state of topNBottom Changing the state requires a

/I wite Transaction so Transaction t4 starts automatically,

t opNBot t om set TopBot t onilype(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTQOW) ;
t opNBot t om set N(15) ;

Il Prepare and conmmit the Transaction.
tp. prepareCurrent Transaction();
tp. commi t Current Transaction(); /1 t4 disappears

Il Create a Cursor and display the results. // t3 is the current Transaction
/1 dose the CursorhManager for the Cursor created in t3.

/1 Undo t3, which discards the state of topNBottomthat was set in t4.
tp.rol |l backCurrent Transaction() Il t3 disappears

/1 Transaction tl is now the current Transaction and the state of
/1 topNBottomis the one defined in t2.

Getting and Setting the Current Transaction

You get the current Tr ansact i on by calling the get Current Transacti on
method on the Tr ansact i onPr ovi der you are using, as in the following
example.

Transaction t1 = get Current Transaction();

To make a previously saved Tr ansact i on the current Tr ansact i on, you call the
set Current Transact i on method on the Tr ansact i onPr ovi der, as in the
following example.

set Current Transaction(t1);

Using TransactionProvider Objects

In the Oracle OLAP API, the Tr ansact i onPr ovi der interface is implemented by
the Expr essTransacti onPr ovi der concrete class. Before you create a

Dat aPr ovi der, you must create a new instance of an

ExpressTransacti onProvi der. You then pass that Tr ansact i onPr ovi der to
the Dat aPr ovi der constructor. The Tr ansact i onPr ovi der provides
Transact i on objects to your application.

7-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Using TransactionProvider Objects

As described in “Preparing and Committing a Transaction” on page 7-3, you use the
pr epar eCurrent Transacti on and comi t Cur r ent Tr ansact i on methods to
make a derived Sour ce that you created in a child write Tr ansact i on visible in
the parent read Tr ansact i on. You can then create a Cur sor for that Sour ce.

If you are using Tenpl at e objects in your application, you might also use the other
methods on Tr ansact i onPr ovi der to do the following:

« Beginachild Transacti on.
« Getthe current Transact i on so you can save it.
= Setthe current Tr ansact i on to a previously saved one.

= Rollback, or undo, the current Tr ansact i on, which discards any changes
made in the Tr ansact i on. Once a Tr ansact i on has been rolled back, it is
invalid and cannot be committed. Once a Tr ansact i on has been committed, it
cannot be rolled back. If you created a Cur sor for a Sour ce ina
Transact i on, you must close the Cur sor Manager before rolling back the
Transacti on.

To demonstrate how to use Tr ansact i on objects to modify dynamic queries,
Example 7-2 builds on the TopBot t oniTest application defined in Chapter 10. To
help track the Tr ansact i on objects, the example saves the different

Transact i on objects with calls to the get Cur r ent Tr ansact i on method.

Replace the last five lines of the code from the TopBot t onilest class with the code
from Example 7-2.

Example 7-2 Using Child Transaction Objects

/1 The parent Transaction is the current Transaction at this point.
/| Save the parent read Transaction as parentT1.
Transaction parent Tl = tp. getCurrent Transaction();

/1 Begin a child Transaction of parentT1.
tp. begi nSubtransaction(); // This is a read Transaction.

/1 Save the child read Transaction as childT2.
Transaction childT2 = tp.getCurrentTransaction();

/] Change the state of the TopBottonilenpl ate. This starts a

/I wite Transaction, a child of the read Transaction childT2.

t opNBot t om set N(15) ;

t opNBot t om set TopBot t onilype(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTOW) ;

Using a TransactionProvider 7-9

Using TransactionProvider Objects

/1 Save the child wite Transaction as witeT3.
Transaction witeT3 = tp.getCurrentTransaction();

Il Prepare and conmit the wite Transaction witeT3.

try{
cont ext . get Transacti onProvi der (). prepareCurrent Transaction();
}

cat ch(Not Conmi tt abl eException e){
Systemout. println("Caught exception " + e + ".");

}

cont ext. get Transacti onProvi der().comit Current Transaction();

/1 The conmit noves the changes nade in witeT3 into its parent,
Il the read Transaction childT2. The witeT3 Transaction

/'l disappears. The current Transaction is now childT2

/'l again but the state of the TopBottonilenpl ate has changed.

/] Create a Cursor and display the results of the changes to the
/] TopBottonienpl ate that are visible in childT2.
creat eCursor (t opNBot t om get Source());

/'l Begin a grandchild Transaction of the initial parent.
tp. begi nSubtransaction(); // This is a read Transaction.

/1 Save the grandchild read Transaction as grandchil dT4.
Transaction grandchil dT4 = tp.getCurrent Transaction();

/'l Change the state of the TopBottonienpl ate. This starts another
/1l wite Transaction, a child of grandchildT4.
t opNBot t om set TopBot t onilype(TopBot t onTenpl at e. TOP_BOTTOM TYPE_TOP) ;

/] Save the wite Transaction as witeT5.
Transaction witeT5 = tp.getCurrentTransaction();

/] Prepare and commt witeT5.

try{
cont ext . get Transacti onProvi der (). prepareCurrent Transaction();

}
cat ch(Not Commi tt abl eException e){

Systemout. println("Caught exception " + e + ".");

}

cont ext. get Transacti onProvi der().comit Current Transaction();

7-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Using TransactionProvider Objects

/'l Transaction grandchildT4 is now the current Transaction and the
/'l changes made to the TopBottonTenpl ate state are visible.

/] Create a Cursor and display the results visible in grandchildT4.
creat eCursor (t opNBott om get Source());

/] Commt the grandchild into the child.

try{
cont ext . get Transact i onProvi der (). prepareCurrent Transaction();

}
cat ch(Not Commi tt abl eException e){
Systemout. println("Caught exception " + e +".");

}

cont ext . get Transact i onProvi der (). comit Current Transaction();

/'l Transaction childT2 is now the current Transaction.

/1 Instead of preparing and committing the grandchild Transaction,
/1 you could rol |l back the Transaction, as in the foll ow ng

/1 method call:

/'l rollbackCurrent Transaction();

/1 If you roll back the grandchild Transaction, then the changes
/'l you made to the TopBottonilenpl ate state in the grandchild

/I are discarded and childT2 is the current Transaction.

/1 Commit the child into the parent.
try{
cont ext . get Transact i onProvi der (). prepareCurrent Transaction();
}
cat ch(Not Commi tt abl eException e){
Systemout. println("Caught exception " + e +".");
}

cont ext . get Transact i onProvi der (). comit Current Transaction();

/'l Transaction parentTl is now the current Transaction. Again,
/1 you could roll back the childT2 Transaction instead of

/'l preparing and committing it. If you did so, then the changes
/1 you nade in childT2 are discarded. The current Transaction
/1 would be parentT1, which would have the original state of

/'l the TopBottoniTenpl ate, without any of the changes made in

/'l the grandchild or the child transactions.

/1 end of main() nethod
} /1 end of TopBottoniest class

Using a TransactionProvider 7-11

Using TransactionProvider Objects

7-12 Oracle9i OLAP Developer’s Guide to the OLAP API

8

Understanding Cursor Classes and
Concepts

This chapter describes the Oracle OLAP API Cur sor class and its related classes,
which you use to retrieve and gain access to the results of a query. This chapter also
describes the Cur sor concepts of position, fetch size, and extent. For examples of
creating and using a Cur sor and its related objects, see Chapter 9.

This chapter includes the following topics:
« Overview of the OLAP API Cursor Objects
= About Cursor Positions and Extent

= About Fetch Sizes and Fetch Blocks

Understanding Cursor Classes and Concepts 8-1

Overview of the OLAP API Cursor Objects

Overview of the OLAP API Cursor Objects

A Cur sor retrieves the result set defined by a Sour ce. Creating a Cur sor fora
Sour ce requires at least two intermediate steps. After creating a Sour ce that
defines the data that you want to retrieve from the data store, you create a Cur sor
for that Sour ce by doing the following:

1.

Creating a Cur sor Manager Speci fi cat i on by passing the Sour ce to the

cr eat eCur sor Manager Speci fi cati on method on the Dat aPr ovi der that
you are using. The Cur sor Manager Speci fi cati on has

Cur sor Speci fi cat i on objects in a structure that mirrors the structure of the
Sour ce.

Creating a Cur sor Manager by calling the cr eat eCur sor Manager method
on the Dat aPr ovi der and passing it the Cur sor Manager Speci fi cati on.
The Cur sor Manager creates Cur sor objects. It also manages the local data
cache for its Cur sor objects and is aware of changes to the Sour ce for a
dynamic query. If the Sour ce for the Cur sor Manager Speci fi cati on has
inputs, then you must also pass to the cr eat eCur sor Manager method an
array of Sour ce objects for those inputs.

Creating a Cur sor by calling the cr eat eCur sor method on the

Cur sor Manager . The structure of the Cur sor mirrors the structures of the
Cur sor Manager Speci fi cati on and the Sour ce. The

Cur sor Speci fi cat i on objects of a Cur sor Manager Speci fi cati on
specify the behavior of their corresponding Cur sor objects. If the Sour ce for
the Cur sor Manager Speci fi cat i on has inputs, then you must also pass to
the cr eat eCur sor method an array of Cur sor | nput objects that specify
values for the input Sour ce objects.

For an example of creating a Cur sor, see Chapter 9.

This architecture provides great flexibility in fetching data from a result set and in
selecting data to display. You can do the following:

Create more than one Cur sor Manager Speci fi cat i on object for the same
Sour ce. You can specify different behavior on the Cur sor Speci fi cati on
components of the various Cur sor Manager Speci fi cat i on objects in order
to retrieve and display different sets of values from the same result set. You
might want to do this when displaying the data from a Sour ce in different
formats, such as in a table and a crosstab.

Receive notification that the Sour ce produced by the Tenpl at e has changed.
If you add a Cur sor Manager Updat eLi st ener to the Cur sor Manager fora
Sour ce, then the Cur sor Manager notifies the

8-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of the OLAP API Cursor Objects

Cur sor Manager Updat eLi st ener when the Sour ce for a dynamic query has
changed and you that therefore need to update the
Cur sor Manager Speci fi cati on for the Cur sor Manager.

Update the Cur sor Manager Speci fi cat i on for a Cur sor Manager. If you
are using Tenpl at e objects to produce a dynamic query and the state of a
Tenpl at e changes, then the Sour ce produced by the Tenpl at e changes. If
you have created a Cur sor for the Sour ce produced by the Tenpl at e, then
you need to replace the Cur sor Manager Speci fi cat i on for the

Cur sor Manager with an updated Cur sor Manager Speci fi cat i on for the
changed Sour ce. You can then create a new Cur sor from the

Cur sor Manager.

Create different of Cur sor objects from the same Cur sor Manager and set
different fetch sizes on those Cur sor objects. You might do this when you want
to display the same data as a table and as a graph.

Sources For Which You Cannot Create a Cursor

Some Sour ce objects do not specify data that a Cur sor can retrieve from the data
store. The following are Sour ce objects for which you cannot create a Cur sor.

A Sour ce that specifies an operation that is not computationally possible. An
example is a Sour ce that specifies an infinite recursion.

A Sour ce that defines an infinite result set. An example is the fundamental
Sour ce that represents the set of all St ri ng objects.

A Sour ce that has no elements or includes another Sour ce that has no
elements. Examples are a Sour ce returned by the get Enpt y Sour ce method
on Dat aPr ovi der and another Sour ce derived from the empty Sour ce.
Another example is a derived Sour ce that results from selecting a value from a
primary Sour ce that you got from an MinDi mensi on and the selected value
does not exist in the dimension.

Understanding Cursor Classes and Concepts 8-3

Cursor Class

Cursor Objects and Transaction Objects

When you create a derived Sour ce or change the state of a Tenpl at e, you create
the Sour ce in the context of the current Tr ansact i on. The Sour ce is active in the
Transact i on in which you create it or in a child Tr ansact i on of that
Transacti on. A Sour ce must be active in the current Tr ansact i on for you to
be able to create a Cur sor for it.

Creating a derived Sour ce occurs in awrite Tr ansact i on. Creating a Cur sor
occursinaread Tr ansact i on. After creating a derived Sour ce, and before you
can create a Cur sor for that Sour ce, you must change the write Tr ansact i on
into aread Tr ansact i on by calling the pr epar eCurr ent Tr ansact i on and
conmmi t Current Transact i on methods on the Tr ansacti onPr ovi der your
application is using. For information on Tr ansact i on and

Transacti onProvi der objects, see Chapter 7.

Cursor Class

In the or acl e. ol api . dat a. cur sor package, the Oracle OLAP API defines the
interfaces described in the following table.

Interface Description

Cur sor An abstract superclass that encapsulates the notion of a
current position.

Val ueCur sor A Cur sor that has a value at the current position. A
Val ueCur sor has no child Cur sor objects.

ConpoundCur sor Cur sor that has child Cur sor objects, which are a child
Val ueCur sor for the values of its Sour ce and an output
child Cur sor for each output of the Sour ce.

Figure 8-1shows the class hierarchy of the Cur sor classes. The ConpoundCur sor
and Val ueCur sor interfaces extend the Cur sor interface.

8-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Cursor Class

Figure 8-1 Cursor Hierarchy

<<interface>>
Cursor

FETCH_SIZE_NOT_SPECIFIED

getExtent() : long

getFetchSize() : int
getParentend() : long
getParentStart() : long
getPosition() : long

getSource() : Sourceldentifier
next() : boolean

setFetchSize(int fetchSize) : void
setPosition(long position) : void

i

<<interface>>
CompoundCursor

<<interface>>
ValueCursor

getOutputs() : List

getValueCursor() : ValueCursor

Structure of a Cursor

getCurrentBoolean() : boolean
getCurrentDate() : Date
getCurrentDouble() : double
getCurrentFloat() : float
getCurrentinteger() : int
getCurrentShort() : short
getCurrentSource() : Sourceldentifier
getCurrentString() : String
getCurrentValue() : Object
hasCurrentValue() : boolean

The structure of a Cur sor mirrors the structure of its Sour ce. If the Sour ce does
not have any outputs, the Cur sor for that Sour ce is a Val ueCur sor. If the

Sour ce has one or more outputs, the Cur sor for that Sour ce isa

ConpoundCur sor. A ConpoundCur sor has as children a base Val ueCur sor,
which has the values of the base of the Sour ce of the ConpoundCur sor, and one
or more output Cur sor objects.

The output of a Sour ce is another Sour ce. An output Sour ce can itself have
outputs. The child Cur sor for an output of a Sour ce is a Val ueCur sor if the
output Sour ce does not have any outputs and a ConpoundCur sor if it does.

Understanding Cursor Classes and Concepts 8-5

Cursor Class

For example, suppose you have created a derived Sour ce called pr oduct Sel that
represents a selection of product identification values from a primary Sour ce that

represents values from a dimension of products. You have selected 815, 1050, and

2055 as the values for pr oduct Sel . If you create a Cur sor for pr oduct Sel , then
that Cur sor isa Val ueCur sor because pr oduct Sel has no outputs.

You have also created a derived Sour ce called t i meSel that represents a selection
of day values from a primary Sour ce that represents a dimension of time values.
The values of t i meSel are 1- JAN- 00, 1- APR- 00, 1- JUL- 00, and 1- OCT- 00.

You have an Mim\veasur e that represents values for the price of product units. The
Mdmveasur e has as inputs the MdnDi mensi on objects representing products and
times. You get a Sour ce called uni t Pri ce from the measure. The Sour ce has
products and times as inputs.

You join product Sel andti meSel tounitPri ce tocreate a Sour ce,
uni t Pri ceByDay, which has pr oduct Sel andti neSel asoutputs, asinthe
following:

uni tPriceByDay = unitPrice.join(productSel).join(timSel);

The result set defined by uni t Pri ceByDay is unit price values organized by the
outputs. Since t i meSel is joined to the result of

unitPrice.join(product Sel),tineSel isthe slower varying output, which
means that the result set specifies the set of selected products for each selected time
value. For each time value the result set has three product values so the product
values vary faster than the time values. The values of the base Val ueCur sor of
uni t Pri ceByDay are the fastest varying of all, because there is one price value for
each product for each day.

You then create a Cur sor, quer yCur sor, for uni t Pri ceByDay. Since

uni t Pri ceByDay has outputs, quer yCur sor isa ConmpoundCur sor. The base
Val ueCur sor of quer yCur sor has values from uni t Pri ce, which is the base
Sour ce of the operation that created uni t Pri ceByDay. The outputs for

guer yCur sor are a Val ueCur sor that has values from pr oduct Sel and a
Val ueCur sor that has values fromti neSel .

8-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Cursor Class

Figure 8-2 illustrates the structure of quer yCur sor. The base Val ueCur sor and
the two output Val ueCur sor objects are the children of quer yCur sor, which is
the parent ConpoundCur sor.

Figure 8-2 Structure of the queryCursor CompoundCursor

queryCursor
CompoundCursor
Base
\L Output 1 Output 2 \L ValueCursor
ValueCursor for ValueCursor for ValueCursor for
timeSel productSel unitPrice

The following table displays the values from quer yCur sor in a table. The left
column has time values, the middle column has product values, and the right
column has the unit price of the specified product on the specified day.

Day Product Price of Unit
01-JAN-00 815 58
01-JAN-00 1050 24
01-JAN-00 2055 24
01-APR-00 815 59
01-APR-00 1050 24
01-APR-00 2055 25
01-JUL-00 815 59
01-JUL-00 1050 25
01-JUL-00 2055 25
01-OCT-00 815 61
01-OCT-00 1050 25
01-OCT-00 2055 26

For examples of getting the values from a Val ueCur sor, see Chapter 9.

Understanding Cursor Classes and Concepts 8-7

Cursor Class

Specifying the Behavior of a Cursor

The Cur sor Speci fi cati on objects of a Cur sor Manager Speci fi cati on
specify some aspects of the behavior of their corresponding Cur sor objects. You
must specify the behavior on a Cur sor Speci fi cat i on before creating the
corresponding Cur sor . To specify the behavior, use the following

Cur sor Speci fi cat i on methods:

«» setDefaul t FetchSi ze

« setExtentCal cul ati onSpecified

« setParent EndCal cul ati onSpeci fied

« setParentStartCal cul ati onSpecified

« specifyDefaul t FetchSi zeOnChil dren
(for a ConrpoundCur sor Speci fi cati on only)

A Cur sor Speci fi cati on also has methods that you can use to discover if the
behavior is specified. Those methods are the following:

« IsExtentCal cul ati onSpecified
« 1 sParent EndCal cul ati onSpeci fi ed
« JisParentStartCal cul ati onSpecified

If you have used the Cur sor Speci fi cati on methods to set the default fetch size,
or to calculate the extent or the starting or ending positions of a value in its parent,
you can successfully use the following Cur sor methods:

« get Extent

« getFetchSize

« getParent End

« getParentStart
=« setFetchSize

For examples of specifying Cur sor behavior, see Chapter 9. For information on
fetch sizes, see "About Fetch Sizes and Fetch Blocks" on page 8-27. For information
on the extent of a Cur sor, see"What is the Extent of a Cursor?" on page 8-25. For
information on the starting and ending positions in a parent Cur sor of the current
value of a Cur sor, see "About the Parent Starting and Ending Positions in a Cursor"
on page 8-22.

8-8 Oracle9i OLAP Developer’s Guide to the OLAP API

CursorManagerSpecification Class

CursorManagerSpecification Class

A Cur sor Manager Speci fi cat i on for a Sour ce has one or more

Cur sor Speci fi cat i on objects. The structure of those objects reflects the
structure of the Sour ce. For example, a Sour ce that has outputs has a top-level, or
root, Cur sor Speci fi cati on for the Sour ce, a child Cur sor Speci fi cati on for
the values of the Sour ce, and a child Cur sor Speci fi cat i on for each output of
the Sour ce.

A Sour ce that does not have any outputs has only one set of values. A
Cur sor Manager Speci fi cat i on for that Sour ce therefore has only one
Cur sor Speci fi cati on. That Cur sor Speci fi cati on is the root

Cur sor Speci fi cati on of the Cur sor Manager Speci fi cati on.

You can create a Cur sor Manager Speci fi cat i on for a multidimensional Sour ce
that has one or more inputs. If you do so, then you need to supply a Sour ce for
each input when you create a Cur sor Manager for the

Cur sor Manager Speci fi cati on. You must also supply a Cur sor | nput for each
input Sour ce when you create a Cur sor from the Cur sor Manager. You might
create a Cur sor Manager Speci fi cati on for a Sour ce with inputs if you want to
use a Cur sor Manager to create a series of Cur sor objects with each Cur sor
retrieving data specified by a different set of single values for the input Sour ce
objects.

The structure of a Cur sor reflects the structure of its

Cur sor Manager Speci fi cati on. A Cur sor can be asingle Val ueCur sor, fora
Sour ce with no outputs, or a ConpoundCur sor with child Cur sor objects, for a
Sour ce with outputs. Each Cur sor corresponds to a Cur sor Speci fi cationin
the Cur sor Manager Speci fi cati on. You use Cur sor Speci fi cati on methods
to specify aspects of the behavior of the corresponding Cur sor.

If your application uses Tenpl at e objects, and a change occurs in the state of a
Tenpl at e so that the structure of the Sour ce produced by the Tenpl at e changes,
then any Cur sor Manager Speci fi cat i on objects that the application created for
the Sour ce expire. If a Cur sor Manager Speci fi cati on expires, you must create
a new Cur sor Manager Speci fi cati on. You can then either use the new

Cur sor Manager Speci fi cati on to replace the old

Cur sor Manager Speci fi cati on of a Cur sor Manager or use it to create a new
Cur sor Manager . You can discover if a Cur sor Manager Speci fi cati on has
expired by calling the i sExpi r ed method on the

Cur sor Manager Speci fi cati on.

Understanding Cursor Classes and Concepts 8-9

CursorManagerSpecification Class

CursorSpecification Class

A Cur sor Speci fi cati on specifies certain aspects of the behavior of the Cur sor
that corresponds to it. You do not create a Cur sor Speci fi cat i on directly. You
pass a Sour ce to the cr eat eCur sor Manager Speci fi cati on method of a

Dat aPr ovi der and the Cur sor Manager Speci fi cati on returned has a root
Cur sor Speci fi cat i on for that Sour ce. If the Sour ce has outputs, the

Cur sor Manager Speci fi cati on also has a child Cur sor Speci fi cati on for
the values of the Sour ce and one for each output of the Sour ce.

With Cur sor Speci fi cati on methods, you can do the following:

Get the Sour ce that corresponds to the Cur sor Speci fi cati on.
Get or set the default fetch size for the corresponding Cur sor.

On a ConpoundCur sor Speci fi cat i on, specify that the default fetch size is
set on the children of the corresponding Cur sor.

Specify that Oracle OLAP should calculate the extent of a Cur sor.
Determine if calculating the extent is specified.

Specify that Oracle OLAP should calculate the starting or ending position of the
current value of the corresponding Cur sor in its parent Cur sor. If you know
the starting and ending positions of a value in the parent, then you can
determine how many faster varying elements the parent Cur sor has for that
value.

Determine if calculating the starting or ending position of the current value of
the corresponding Cur sor in its parent is specified.

Accepta Cur sor Speci ficationVisitor.

For more information, see "About Cursor Positions and Extent" on page 8-16 and
"About Fetch Sizes and Fetch Blocks" on page 8-27.

8-10 Oracle9i OLAP Developer’s Guide to the OLAP API

CursorManagerSpecification Class

In the or acl e. ol api . dat a. sour ce package, the Oracle OLAP API defines the
classes described in the following table.

Class Description

Cur sor Speci fication An abstract superclass that implements
methods inherited by its subclasses.

Val ueCur sor Speci fication A Cur sor Speci fi cati on fora Source
that has values and no outputs.

ConpoundCur sor Speci fication A Cursor SpecificationforaSource
that has one or more outputs. A
ConmpoundCur sor Speci fi cati on has
component child Cur sor Speci fi cati on
objects.

A Cur sor has the same structure as its Cur sor Manager Speci fi cati on. For
every Val ueCur sor Speci fi cati on or ConpoundCur sor Speci fi cati on ofa
Cur sor Manager Speci fi cati on, a Cur sor has a corresponding Val ueCur sor
or ConpoundCur sor. To be able to get certain information or behavior from a

Cur sor, your application must specify that it wants that information or behavior by
calling methods on the corresponding Cur sor Speci fi cat i on before it creates the
Cur sor.

Cursorlnput Class

A Cur sor | nput provides a value for a Sour ce that you include in the array of
Sour ce objects that is the i nput Sour ces argument to the

cr eat eCur sor Manager method on a Dat aPr ovi der. If you create a

Cur sor Manager Speci fi cati on for a Sour ce that has one or more inputs, then
you must provide an i nput Sour ces argument when you create a

Cur sor Manager for that Cur sor Manager Speci fi cati on. You include a

Sour ce inthe i nput Sour ces array for each input of the Sour ce that you pass to
the cr eat eCur sor Manager Speci fi cati on method.

When you create a Cur sor | nput object, you can specify either a single value or a
Val ueCur sor. If you specify a Val ueCur sor, you can call the synchr oni ze
method on the Cur sor | nput to make the value of the Cur sor | nput be the
current value of the Val ueCur sor.

Understanding Cursor Classes and Concepts 8-11

CursorManagerSpecification Class

CursorManager Class

A Cur sor Manager manages the buffering of data for the Cur sor objects it creates.
To create a Cur sor Manager, call the cr eat eCur sor Manager method on a

Dat aPr ovi der and pass it a Cur sor Manager Speci fi cati on. If the Sour ce for
the Cur sor Manager Speci fi cat i on has one or more inputs, then also pass an
array of Sour ce objects to the cr eat eCur sor Manager method. Include in the
array a Sour ce for each input.

You can create more than one Cur sor from the same Cur sor Manager, which is
useful for displaying data from a result set in different formats such as a table or a
graph. All of the Cur sor objects created by a Cur sor Manager have the same
specifications, such as the default fetch sizes and the levels at which fetch sizes are
set. Because the Cur sor objects have the same specifications, they can share the
data managed by the Cur sor Manager.

A Cur sor Manager has methods for creating a Cur sor, for discovering whether
the Cur sor Manager Speci fi cati on for the Cur sor Manager needs updating,
and for adding or removing a Cur sor Manager Updat eLi st ener. The

Speci fi edCur sor Manager interface adds methods for updating the

Cur sor Manager Speci fi cati on, for discovering if the

Speci fi edCur sor Manager is open, and for closing it. The

cr eat eCur sor Manager method on Dat aPr ovi der returns an implementation of
the Speci f i edCur sor Manager interface.

When your application no longer needs a Speci fi edCur sor Manager, it should
close it to free resources in the application and in Oracle OLAP. To close the
Speci fi edCur sor Manager, call its cl ose method.

Updating the CursorManagerSpecification for a CursorManager

If your application is using OLAP API Tenpl at e objects and the state of a

Tenpl at e changes in a way that alters the structure of the Sour ce produced by
the Tenpl at e, then any Cur sor Manager Speci fi cat i on objects for the Sour ce
are no longer valid. You need to create new Cur sor Manager Speci fi cati on
objects for the changed Sour ce.

After creating a new Cur sor Manager Speci fi cat i on, you can create a new

Cur sor Manager for the Sour ce. You do not, however, need to create a new

Cur sor Manager . You can call the updat eSpeci fi cat i on method on the existing
Cur sor Manager to replace the previous Cur sor Manager Speci fi cat i on with
the new Cur sor Manager Speci fi cat i on. You can then create a new Cur sor
from the Cur sor Manager.

8-12 Oracle9i OLAP Developer’s Guide to the OLAP API

CursorManagerSpecification Class

To determine if the Cur sor Manager Speci fi cati on for a Cur sor Manager
needs updating, call the i sSpeci fi cati onUpdat eNeeded method on the

Cur sor Manager . You can also use a Cur sor Manager Updat eLi st ener to listen
for events generated by changes in a Sour ce. For more information, see
"CursorManagerUpdateListener Class" on page 8-15.

CursorManager Class Hierarchy

The following table lists most of the Cur sor Manager interfaces and classes.

Interface or Class

Description

Cur sor Manager

Abst r act Cur sor Manager

Speci fi edCur sor Manager

Expr essSpeci fi edCur sor Manager

An interface that has defines methods
for all Cur sor Manager obijects.

A Cur sor Manager that implements
methods for adding and removing

Cur sor Manager Updat eLi st ener
objects. For more information, see
"CursorManagerUpdateL.istener Class"
on page 8-15.

An interface that defines additional
methods for a Cur sor Manager.

A class that implements the

Speci fi edCur sor Manager interface
and extends

Abst ract Cur sor Manager. In the
Oracle OLAP API, the

cr eat eCur sor Manager method on
Dat aPr ovi der returns an instance of
this class.

Understanding Cursor Classes and Concepts 8-13

CursorManagerSpecification Class

Figure 8-3 shows the relationships of the Cur sor Manager classes described in the
preceding table. A solid line and a closed arrowhead indicate that a class extends
the class to which the arrow points. A dotted line and an open arrowhead indicate
that the class implements the interface to which the arrow points.

Figure 8-3 CursorManager Hierarchy

<<interface>>
CursorManager

addCursorManagerUpdateListener(CursorManagerUpdateListener |) : void
createCursor() : Cursor

createCursor(Cursorlnput[] cursorinputs) : Cursor
isSpecificationUpdateNeeded() : boolean
removeCursorManagerUpdateListener(CursorManagerUpdateListener |) : void
4 "

AbstractCursorManager

addCursorManagerUpdateListener(CursorManagerUpdateListener) : void
createCursor() : Cursor
removeCursorManagerUpdateListener(CursorManagerUpdateListener 1) : void

<<interface>>
SpecifiedCursorManager

close() : void

getinputSources() : Source[]

isOpen() : boolean

setinputSources(Source[] newlnputSources) : void
updateSpecification(CursorManagerSpecification cursorManagerSpecification) : void

ExpressSpecifiedCursorManager

close() : void

createCursor() : Cursor

createCursor(Cursorlnput[] cursorinputs) : Cursor

getlnputSources() : Source[]

isOpen() : boolean

setInputSources(Source[] newlnputSources) : void

isSpecificationUpdateNeeded() : boolean
updateSpecification(CursorManagerSpecification cursorManagerSpecification) : void

8-14 Oracle9i OLAP Developer’s Guide to the OLAP API

CursorManagerSpecification Class

CursorManagerUpdateListener Class

Cur sor Manager Updat eLi st ener is an interface that has methods that receive
Cur sor Manager Updat eEvent objects. Oracle OLAP generates a

Cur sor Manager Updat eEvent object in response to a change that occurs in a
Sour ce that is produced by a Tenpl at e or when a Cur sor Manager updates its
Cur sor Manager Speci fi cati on. Your application can use a

Cur sor Manager Updat eLi st ener to listen for events that indicate it might need
to create new Cur sor objects from the Cur sor Manager or to update its display of
data from a Cur sor.

To use a Cur sor Manager Updat eLi st ener, implement the interface, create an
instance of the class, and then add the Cur sor Manager Updat eLi st ener to the
Cur sor Manager for a Sour ce. When a change to the Sour ce occurs, the

Cur sor Manager calls the appropriate method on the

Cur sor Manager Updat eLi st ener and passes ita

Cur sor Manager Updat eEvent . Your application can then perform the tasks
needed to generate new Cur sor objects and update the display of values from the
result set that the Sour ce defines.

You can implement more than one version of the
Cur sor Manager Updat eLi st ener interface. You can add instances of them to the
same Cur sor Manager.

CursorManagerUpdateEvent Class

Oracle OLAP generates a Cur sor Manager Updat eEvent object in response to a
change that occurs in a Sour ce that is produced by a Tenpl at e or when a
Cur sor Manager updates its Cur sor Manager Speci fi cati on.

You do not directly create instances of this class. Oracle OLAP generates

Cur sor Manager Updat eEvent objects and passes them to the appropriate
methods of any Cur sor Manager Updat eLi st ener objects you have added to a
Cur sor Manager. The Cur sor Manager Updat eEvent has a field that indicates the
type of event that occurred. A Cur sor Manager Updat eEvent has methods you
can use to get information about it.

Understanding Cursor Classes and Concepts 8-15

About Cursor Positions and Extent

About Cursor Positions and Extent

A Cur sor has one or more positions. The current position of a Cur sor is the
position that is currently active in the Cur sor. To move the current position of a
Cur sor call the set Posi ti on or next methods on the Cur sor.

Oracle OLAP does not validate the position that you set on the Cur sor until you
attempt an operation on the Cur sor, such as calling the get Cur r ent Val ue
method. If you set the current position to a negative value or to a value that is
greater than the number of positions in the Cur sor and then attempt a Cur sor
operation, the Cur sor throws a Posi ti onQut Of BoundsExcept i on.

The extent of a Cursor is described in "What is the Extent of a Cursor?" on
page 8-25.

Positions of a ValueCursor

The current position of a Val ueCur sor specifies a value, which you can retrieve.
For example, pr oduct Sel , a derived Sour ce described in "Structure of a Cursor"
on page 8-5, is a selection of three products from a primary Sour ce that specifies a
dimension of products and their hierarchical groupings. The Val ueCur sor for
product Sel has three elements. The following example gets the position of each
element of the Val ueCur sor, and displays the value at that position. The out put
objectisaPrintWiter.

/'l product Sel Val Cursor is the Val ueCursor for product Sel
do {
out put. print(product Sel Val Cursor. getPosition + " : ");
out put. println(product Sel Val Cursor. get Current Val ue) ;

}
whi | e(product Sel Val Cursor. next());

The preceding example displays the following:

1: 815
2 : 1050
3 : 2055

8-16 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent

The following example sets the current position of pr oduct Sel Val Cur sor to 2
and retrieves the value at that position.

product Sel Val Cursor. set Posi tion(2);
out put. print | n(product Sel Val Cur sor. get Current Val ue) ;

The preceding example displays the following:
1050

For more examples of getting the current value of a Val ueCur sor, see Chapter 9.

Positions of a CompoundCursor

A ConpoundCur sor has one position for each set of the elements of its descendent
Val ueCur sor objects. The current position of the ConpoundCur sor specifies one
of those sets.

For example, uni t Pri ceByDay, the Sour ce described in "Structure of a Cursor"
on page 8-5, has values from a measure, uni t Pri ce. The values are the prices of
product units at different times. The outputs of uni t Pri ceByDay are Sour ce
objects that represent selections of four day values from a time dimension and three
product values from a product dimension.

The result set for uni t Pri ceByDay has one measure value for each tuple (each set
of output values), so the total number of values is twelve (one value for each of the
three products for each of the four days). Therefore, the quer yCur sor
ConpoundCur sor created for uni t Pri ceByDay has twelve positions.

Each position of quer yCur sor specifies one set of positions of its outputs and its
base Val ueCur sor . For example, position 1 of quer yCur sor defines the following
set of positions for its outputs and its base Val ueCur sor :

« Position 1 of output 1 (the Val ueCur sor forti neSel)
« Position 1 of output 2 (the Val ueCur sor for pr oduct Sel)

« Position 1 of the base Val ueCur sor for quer yCur sor (This position has the
value from the uni t Pri ce measure that is specified by the values of the
outputs.)

Understanding Cursor Classes and Concepts 8-17

About Cursor Positions and Extent

Figure 8-4 illustrates the positions of quer yCur sor ConpoundCur sor, its base
Val ueCur sor, and its outputs.

Figure 8—4 Cursor Positions in queryCursor

queryCursor
CompoundCursor

Positions
Output 1 =1, Output 2 = 1,
Output 1 =1, Output 2 = 2,
Output 1 =1, Output 2 = 3,
Output 1 =2, Output 2 = 1,
Output 1 = 2, Output 2 = 2,
Output 1 = 2, Output 2 = 3,
Output 1 = 3, Output 2 = 1,
Output 1 = 3, Output 2 = 2,
Output 1 = 3, Output 2 = 3,
Output 1 =4, Output 2 = 1,
Output 1 =4, Output 2 = 2,
Output 1 =4, Output 2 = 3,

|
J v v

Positions Positions Positions
1 | 01-JAN-00 1| 815 1 n

2 | 01-APR-00 2 1050
3 | 01-JUL-00 3 2055
4 | 01-OCT-00

O©oO~NOUh WNPRE

e
[ENYS)

\4
\
\
\4
\
\
\
\
\
\
\
\

T R I L R S I R [
RPRRPRRPRRPRPRRERRRRE

C
C
C
C
C
C
C
C
C
C
C
C

[EnY
N

Output 1 Output 2 Base ValueCursor
ValueCursor for ValueCursor for with specified values
timeSel productSel from unitPrice

The Val ueCur sor for quer yCur sor has only one position because only one value
of uni t Pri ce is specified by any one set of values of the outputs. For a query like
uni t Pri ceByDay, the Val ueCur sor of its Cur sor has only one value, and
therefore only one position, at a time for any one position of the root

ConmpoundCur sor.

8-18 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent

The following table illustrates one possible display of the data from quer yCur sor.
It is a crosstab view with four columns and five rows. In the left column are the day
values. In the top row are the product values. In each of the intersecting cells of the
crosstab is the price of the product on the day.

Product
Day 815 1050 2055
01-JAN-00 58 24 24
01-APR-00 59 24 25
01-JUL-00 59 25 25
01-OCT-00 61 25 26

A CompoundCur sor coordinates the positions of its Val ueCur sor objects relative
to each other. The current position of the ConpoundCur sor specifies the current
positions of its descendent Val ueCur sor objects. Example 8-1 sets the position of
guer yCur sor and then gets the current values and the positions of the child

Cur sor objects.

Example 8-1 Setting the CompoundCursor Position and Getting the Current Values

ConmpoundCur sor root Cursor = (ConpoundCursor) queryCursor;

Val ueCur sor baseVal ueCursor = root Cursor. get Val ueCursor();

Li st outputs = rootCursor.getQut puts();

Val ueCursor outputl = (Val ueCursor) outputs.get(0);

Val ueCursor output2 = (Val ueCursor) outputs.get(1);

int pos = 5;

root. set Position(pos);

System out . printl n(" ConpoundCur sor position set to " + pos + ".");

Systemout.println("CC position =" + rootCursor.getPosition() +".");

Systemout.printin("Qutput 1 position =" + outputl.getPosition() +
", value =" + outputl. getCurrentValue());

Systemout.printin("Qutput 2 position =" + output2.getPosition() +
", value =" + output2. getCurrentValue());

Systemout.println("VC position =" + baseVal ueCursor.getPosition() +
", value =" + baseVal ueCursor. get Current Val ue());

Understanding Cursor Classes and Concepts 8-19

About Cursor Positions and Extent

Example 8-1 displays the following:

CompoundCur sor position set to 5.
CC position = 5.

Qutput 1 position = 2, value
Qutput 2 position = 2, value
VC position = 1, value = 24

01- APR-00
1050

The positions of quer yCur sor are symmetric in that the result set for

uni t Pri ceByDay always has three product values for each time value. The
Val ueCur sor for product Sel , therefore, always has three positions for each
value of the t i neSel Val ueCursor.Theti neSel outputVal ueCursor is
slower varying than the pr oduct Sel Val ueCur sor.

In an asymmetric case, however, the number of positions in a Val ueCur sor is not
always the same relative to its slower varying output. For example, if the price of
units for product 2055 on October 1, 2000 were null because that product was no
longer being purchased by that date, and if null values were suppressed in the
query, then quer yCur sor would only have eleven positions. The Val ueCur sor
for pr oduct Sel would only have two positions when the position of the

Val ueCur sor forti meSel was 4.

Example 8-2 produces an asymmetric result set by using a revision of the query
from "Structure of a Cursor” on page 8-5. The result set of the revised query
specifies products by price on a day. The base values of pr oduct ByPr i ceOnDay
are the values from pr oduct Sel as specified by the values of uni t Pri ce and
timeSel .

Because pr oduct ByPri ceOnDay is a derived Sour ce, this example prepares and
commits the current Tr ansacti on. The Tr ansacti onPr ovi der in the example
ist p. For information on Tr ansact i on objects, see Chapter 7.

The example creates a Cur sor for pr oduct ByPr i ceOnDay, loops through the
positions of the CompoundCur sor, gets the position and current value of each child
Val ueCur sor object, and displays the positions and values.

8-20 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent

Example 8-2 Positions in an Asymmetric Query

Il Create the query
product ByPri ceOnDay = product Sel . join(unitPrice).join(timSel);

/I Prepare and commit the current Transaction.
try{

t p. prepareCurrent Transaction();
}
cat ch(Not Conmi t t abl eException e){

out put. println("Caught exception " +e + ".");
}

tp. conmi t Current Transaction();

Il Create the Cursor. The DataProvider is dp.
Cur sor Manager Speci fi cation cursor vhgr Spec =

dp. creat eCur sor Manager Speci fi cati on(product ByPri ceOnDay) ;
Cur sor Manager cursor Manager = dp. cr eat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor queryCursor2 = cursor Manager. createCursor();

Il Get the ValueCursor and the outputs

CompoundCur sor root Cursor = (ConpoundCursor) queryCursor2;
Val ueCur sor baseVal ueCursor = root Cursor. get Val ueCursor();
Li st outputs = rootCursor.getQut puts();

Val ueCursor outputl = (Val ueCursor) outputs.get(0);

Val ueCursor output2 = (Val ueCursor) outputs.get(1);

Il Get the positions and val ues and display them

Systemout.printin(" CC\t\tQutput 1 \tQutput 2 \tVC");

Systemout.println("position \tposition:value " +
"\tposition:value \tposition:value");

do {
Systemout. println(" " + root.getPosition() +
"\t\ "+ outputl. getPosition() +
" . " + outputl. getCurrentValue() +
"\t " + output2.getPosition() +
" . " + output2. getCurrentValue() +
"\t " + baseVal ueCursor.getPosition() +

+ baseVal ueCur sor. get Current Val ue());

}
whi | e(queryCursor 2. next();

Understanding Cursor Classes and Concepts 8-21

About Cursor Positions and Extent

Example 8-2 displays the following:

cC Qutput 1 Qut put 2 VC
posi tion posi tion:val ue posi tion: val ue posi tion:val ue
1 1 . 01-JAN 0O 1 . 58 1 . 815
2 1 : 01-JAN 0O 2 . 24 1 : 1050
3 1 01- JAN- 00 2 24 2 . 2055
4 2 01- APR- 00 1 59 1 815
5 2 01- APR- 00 2 24 1 1050
6 2 01- APR- 00 3 25 1 2055
7 3 01-JUL- 00 1 59 1 815
8 3 01-JUL- 00 2 25 1 1050
9 3 01-JUL- 00 2 25 2 2055
10 4 01- OCT- 00 1 61 1 815
11 4 01- OCT- 00 2 25 1 1050
12 4 01- OCT- 00 3 26 1 2055

The Val ueCur sor with uni t Pri ce values (output 2) has only two positions for
01-JAN-00 and 01-JUL-00 because it has only two different values for those days.
The prices of two of the products are the same on those two days: 24 for products
1050 and 2055 on January 1, 2000 and 25 for those same two products on July 1,
2000. The base Val ueCur sor for quer yCur sor 2 has two positions when the

ti meSel value is 01-JAN-00 or 01-JUL-00 because each of the uni t Pri ce values
for those days is not unique.

About the Parent Starting and Ending Positions in a Cursor

To effectively manage the display of the data that you get from a

ConpoundCur sor, you sometimes need to know how many faster varying values
exist for the current slower varying value. For example, suppose that you are
displaying in a crosstab one row of values from an edge of a cube, then you might
want to know how many columns to draw in the display for the row.

To determine how many faster varying values exist for the current value of a child
Cur sor, you find the starting and ending positions of that current value in the
parent Cur sor. Subtract the starting position from the ending position and then
add 1, as in the following.

long span = (cursor.getParentEnd() - cursor.getParentStart()) + 1;

The result is the span of the current value of the child Cur sor in its parent Cur sor,
which tells you how many values of the fastest varying child Cur sor exist for the
current value. Calculating the starting and ending positions is costly in time and

8-22 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent

computing resources, so you should only specify that you want those calculations
performed when your application needs the information.

An Oracle OLAP API Cur sor enables your application to have only the data that it
is currently displaying actually present on the client computer. For information on
specifying the amount of data for a Cur sor, see "About Fetch Sizes and Fetch
Blocks" on page 8-27.

From the data on the client computer, however, you cannot determine at what
position of its parent Cur sor the current value of a child Cur sor begins or ends. To
get that information, you use the get Par ent St art and get Par ent End methods
of a Cursor.

For example, suppose your application has a Sour ce named cube that represents a
cube that has an asymmetric edge. The cube has four outputs. The cube Sour ce
defines products with sales amounts greater than $5,000 purchased by customers in
certain cities during the first three months of the calendar year 2000. The products
were sold through the direct sales channel (S) during a television promotion (TV).

You create a Cur sor for that Sour ce and call it cubeCur sor. The
ConpoundCur sor cubeCur sor has the following child Cur sor objects:

« outputl,aVal ueCursor for the promotion values
« output2,aVal ueCursor for the channel values

« output 3,aVal ueCur sor for the time values

= output4,aVal ueCursor for the customer values

« The base Val ueCur sor, which has values that are the products with sales
amounts over $5,000.

Understanding Cursor Classes and Concepts 8-23

About Cursor Positions and Extent

Figure 8-5 illustrates the parent, cubeCur sor, with the values of its child Cur sor
objects layered horizontally. The slowest varying output, with the promotion
values, is at the top and the fastest varying child, with the product values, is at the
bottom. The only portion of the edge that you are currently displaying in the user
interface is the block between positions 7 and 9 of cubeCur sor, which is shown
within the bold border. The positions, 1 through 10, of cubeCur sor appear above
the top row.

Figure 8-5 Values of ValueCursor Children of cubeCursor

1 2 3 4 5 6 7 8 9 10
TV
S
2000-01 2000-02 2000-03
Bonn London Bonn London | Paris Bonn London
1050 2055 815 1050 1555 935 1050 935 1050 3690

The current value of the output Val ueCur sor for the time Sour ce is 2000-02. You
cannot determine from the data within the block that the starting and ending
positions of the current value, 2000-02, in the parent, cubeCur sor, are 4 and 7,
respectively.

The cubeCur sor from the previous figure is shown again in Figure 8-6, this time
with the range of the positions of the parent, cubeCur sor, for each of the values of
the child Cur sor objects. By subtracting the smaller value from the larger value
and adding one, you can compute the span of each value. For example, the span of
the time value 2000-02 is (7 -4 + 1) = 4.

8-24 Oracle9i OLAP Developer’s Guide to the OLAP API

About Cursor Positions and Extent

Figure 8-6 The Range of Positions of the Child Cursor Objects of cubeCursor

1 2 3 4 5 6 7 8 9 10
1-10
1-10
1to3 4107 81to 10
lto2 3to3 4t05 6t06 7t07 8to8 9to 10
ltol 2t02 3to3 4t04 5t05 6t06 7t07 8to8 9to9 10to 10

To specify that you want Oracle OLAP to calculate the starting and ending positions
of a value of a child Cur sor in its parent Cur sor, call the

set Parent St art Cal cul ati onSpeci fi ed and

set Par ent EndCal cul ati onSpeci f i ed methods on the

Cur sor Speci fi cat i on corresponding to the Cur sor. You can determine
whether calculating the starting or ending positions is specified by calling the

i sParent Start Cal cul ati onSpeci fi edor

i sPar ent EndCal cul ati onSpeci fi ed methods on the

Cur sor Speci fi cati on. For an example of specifying these calculations, see
Chapter 9.

What is the Extent of a Cursor?

The extent of a Cur sor is the total number of elements it contains relative to any

slower varying outputs. Figure 8-7 illustrates the number of positions of each child
Cur sor of cubeCur sor relative to the value of its slower varying output. The child
Cur sor objects are layered horizontally with the slowest varying output at the top.

The total number of elements in cubeCur sor is 10 so the extent of cubeCur sor is
therefore 10. That number is above the top row of the figure. The top row is the

Val ueCur sor for the promotion value and the next row down is the

Val ueCur sor for the channel value. The extent of each of those Val ueCur sor
objects is 1 because they each have only one value.

The third row down represents the time values. Its extent is 3, since there are 3
months values. The next row down is the Val ueCur sor for the customers by city.
The extent of its elements depends on the value of the slower varying output, which
is time. The extent of the customers Val ueCur sor for the first month is 2, for the
second month it is 3, and for the third month it is 2.

Understanding Cursor Classes and Concepts 8-25

About Cursor Positions and Extent

The bottom row is the base Val ueCur sor for the cubeCur sor ConpoundCur sor.
Its values are products. The extent of the elements of the products Val ueCur sor
depends on the values of the customers Val ueCur sor and the time Val ueCur sor.
For example, since two products values are specified by the first set of month and
city values (1050 and 2055 for Bonn in 2000-01), the extent of the products

Val ueCur sor for that set is 2. For the second set of values for customers and times
(2000-10, London), the extent of the products Val ueCur sor is 1, and so on.

Figure 8-7 The Number of Elements of the Child Cursor Objects of cubeCursor

10

The extent is information that you can use, for example, to display the correct
number of columns or correctly-sized scroll bars. The extent, however, can be
expensive to calculate. For example, a Sour ce that represents a cube might have
four outputs. Each output might have hundreds of values. If all null values and zero
values of the measure for the sets of outputs are eliminated from the result set, then
to calculate the extent of the ConpoundCur sor for the Sour ce, Oracle OLAP must
traverse the entire result space before it creates the ConpoundCur sor. If you do not
specify that you wants the extent calculated, then Oracle OLAP only needs to
traverse the sets of elements defined by the outputs of the cube as specified by the
fetch size of the Cur sor and as needed by your application.

To specify that you want Oracle OLAP to calculate the extent for a Cur sor, call the
set Ext ent Cal cul ati onSpeci fi ed method on the Cur sor Speci fi cati on
corresponding to the Cur sor. You can determine whether calculating the extent is
specified by calling the i sExt ent Cal cul at i onSpeci fi ed method on the

Cur sor Speci fi cat i on. For an example of specifying the calculation of the extent
of a Cur sor, see Chapter 9.

8-26 Oracle9i OLAP Developer’s Guide to the OLAP API

About Fetch Sizes and Fetch Blocks

About Fetch Sizes and Fetch Blocks

An OLAP API Cur sor represents the entire result set for a Sour ce. The Cur sor is
avirtual Cur sor, however, because it retrieves only a portion of the result set at a
time from Oracle OLAP. A Cur sor Manager manages a virtual Cur sor and
retrieves results from Oracle OLAP as your application needs it. By managing the
virtual Cur sor, the Cur sor Manager relieves your application of a substantial
burden.

The amount of data that a Cur sor retrieves in a single fetch operation is
determined by the fetch size specified for the Cur sor. For a ConpoundCur sor, the
amount of data fetched in a single operation is the product of the fetch sizes of all of
its descendent Val ueCur sor objects. The total set of values retrieved in a single
fetch is the fetch block for the Cur sor. You specify fetch sizes in order to limit the
amount of data your application needs to cache on the local computer and to
maximize the efficiency of the fetch by customizing it to meet the needs of your
method of displaying of the data.

When you create a Cur sor Manager Speci fi cati on for a Sour ce, as the first
step in creating a Cur sor, Oracle OLAP specifies a default fetch size on the root
Cur sor Speci fi cati on of the Cur sor Manager Speci fi cati on. By calling
methods on the Cur sor Speci fi cat i on objects of the

Cur sor Manager Speci fi cati on, you can specify a default fetch size or specify
setting the fetch size at other levels of a ConpoundCur sor.

If the fetch size is specified on a Cur sor Speci fi cat i on, then you can get or set
the fetch size for the corresponding Cur sor by calling the get Fet chSi ze or

set Fet chSi ze method on that Cur sor. For a ConpoundCur sor, you can set
different fetch sizes for child Cur sor objects at different levels in the outputs.

A Cur sor has a local fetch size if the size of the fetch block is specified for that

Cur sor. Not all of the Cur sor objects in a ConpoundCur sor can have local fetch
sizes. The structure of a ConpoundCur sor is like a tree, with the hierarchy of

Cur sor objects starting at the topmost (root) Cur sor and going down through all
the child Cur sor objects. Any path through the hierarchy, starting from the root
and going down to a leaf Val ueCur sor, can contain one, and only one, Cur sor
with a local fetch size. Specifying the fetch size on a parent Cur sor affects all of the
child Cur sor objects of that parent. This means that a fetch block can contain no
more than the number of elements of each child Cur sor specified by the fetch size.

Understanding Cursor Classes and Concepts 8-27

About Fetch Sizes and Fetch Blocks

Figure 8-8 shows an example of a path through the hierarchy of a Cur sor treein
which the Cur sor objects with local fetch sizes are shaded.

Figure 8-8 A Local Fetch Size Path Through a Cursor Hierarchy

root

N\

I

N\

Any path from the root to
one of the leaves contains
exactly one Cursor with a
local fetch size.

N\

—

Cursor without local fetch size

Cursor with local fetch size

8-28 Oracle9i OLAP Developer’s Guide to the OLAP API

leaf

About Fetch Sizes and Fetch Blocks

About Determining the Shape of a Fetch Block

In a ConpoundCur sor, the levels at which you set the fetch sizes determine the
shape of the fetch block of the ConpoundCur sor. The optimal fetch block for a
ConpoundCur sor depends on the way you intend to navigate the Cur sor and
display the data. After determining how to display the data, you should do the
following:

« Specify a fetch block that is large enough to contain all the data required for the
portion of the result set that you are displaying in the user interface. For
example, if you display the data in a table and the size of the window means
that 25 rows are visible at a time, then the fetch block should contain at least 25
rows. If it is any smaller than this, the Cur sor needs to make multiple trips to
Oracle OLAP to fill the display.

« Specify fetch sizes on the Cur sor objects that you use to loop through the result
set. For example, for a table view, set fetch sizes on the root Cur sor and for a
crosstab view, set fetch sizes on the child Cur sor objects.

« Keep the product of all of the fetch sizes relatively small because the product
determines the total number of cells in the fetch block. If the product of all the
fetch sizes is too large, then you lose the advantages of the virtual Cur sor.

For examples of specifying fetch sizes and fetch blocks for different displays, see
Chapter 9.

About Sharing Fetch Blocks

You can create two or more Cur sor objects from the same Cur sor Manager and
use both Cur sor objects simultaneously. The Cur sor objects can share the data
managed by the Cur sor Manager, rather than having separate data caches, because
the shape of the fetch blocks is the same for both Cur sor objects. The shape of the
fetch blocks is determined by the levels of the Cur sor Manager Speci fi cati on
on which the fetch size is specified.

An example is an application that displays the results of a query to the user as both
a table and a graph. The application creates a Cur sor Manager Speci fi cati on
for a Sour ce and then creates a Cur sor Manager for the

Cur sor Manager Speci fi cat i on. The application creates two separate Cur sor
objects from the same Cur sor Manager, one for a table view and one for a graph
view. The two views share the same query and display the same data, just in

Understanding Cursor Classes and Concepts 8-29

About Fetch Sizes and Fetch Blocks

different formats. Figure 8-9 illustrates the relationship between the Sour ce, the
Cur sor objects, and the views.

Figure 8-9 A Source and Two Cursors for Different Views of Its Values

Table View

1000's —

Bar Graph View

|51

tableView : View

tableCursor : Cursor

graphView : View

graphCurs

or : Cursor

queryCM : CursorManager

queryCMS : CursorManagerSpecification

querySource : Source

8-30 Oracle9i OLAP Developer’s Guide to the OLAP API

9

Retrieving Query Results

This chapter describes how to retrieve the results of a query with an Oracle OLAP
API Cur sor and how to gain access to those results. This chapter also describes
how to customize the behavior of a Cur sor to fit your method of displaying the
results. For information on the class hierarchies of Cur sor and its related classes,
and for information on the Cur sor concepts of position, fetch size, and extent, see
Chapter 8.

This chapter includes the following topics:

Retrieving the Results of a Query

Navigating a CompoundCursor for Different Displays of Data
Specifying the Behavior of a Cursor

Calculating Extent and Starting and Ending Positions of a Value

Specifying Fetch Sizes and Fetch Blocks

Retrieving Query Results 9-1

Retrieving the Results of a Query

Retrieving the Results of a Query

A query is an OLAP API Sour ce that specifies the data that you want to retrieve
from Oracle OLAP and any calculations you want Oracle OLAP to perform on that
data. A Cur sor is the object that retrieves, or fetches, the result set specified by a
Sour ce. Creating a Cur sor for a Sour ce involves the following steps:

1. Getaprimary Sour ce from an Mintbj ect or create a derived Sour ce
through operations on a Dat aPr ovi der or a Sour ce. For information on
getting or creating Sour ce objects, see Chapter 5.

2. Ifthe Sour ce is a derived Sour ce, prepare and commit the Tr ansact i onin
which you created the Sour ce. To prepare and commit the Tr ansact i on, call
the pr epar eCurrent Transact i on and conmi t Cur r ent Tr ansact i on
methods on your Tr ansact i onPr ovi der. For more information on preparing
and committing a Tr ansact i on, see Chapter 7. If the Sour ce is a primary
Sour ce, then you do not need to prepare and commit the Tr ansact i on.

3. Create a Cur sor Manager Speci fi cati on by calling the
cr eat eCur sor Manager Speci fi cat i on method on your Dat aPr ovi der
and passing that method the Sour ce.

4. Create a Speci fi edCur sor Manager by calling the cr eat eCur sor Manager
method on your Dat aPr ovi der and passing that method the
Cur sor Manager Speci fi cati on. If the Sour ce for the
Cur sor Manager Speci fi cati on has one or more inputs, then you must also
pass an array of Sour ce objects that provides a Sour ce for each input.

5. Create a Cur sor by calling the cr eat eCur sor method on the
Cur sor Manager . If you created the Cur sor Manager with an array of input
Sour ce objects, then you must also pass an array of Cur sor | nput objects that
provides a value for each input Sour ce.

Example 9-1 creates a Cur sor for the derived Sour ce named quer ySour ce. The
example uses a Tr ansact i onPr ovi der namedt p and a Dat aPr ovi der named
dp. The example creates a Cur sor Manager Speci fi cati on named

cur sor Mhgr Spec, a Speci fi edCur sor Manager named cur sor Mhgr, and a
Cur sor named quer yCur sor.

Finally, the example closes the Speci f i edCur sor Manager . When you have
finished using the Cur sor, you should close the Speci f i edCur sor Manager to

9-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving the Results of a Query

free resources.

Example 9-1 Creating a Cursor

try{
tp. prepareCurrent Transaction();

}
cat ch(Not Conmi t t abl eException e){

Systemout. println("Caught exception " + e + ".");

}

tp. commi t Current Transaction();
Cur sor Manager Speci fi cation cursor Mhgr Spec =
dp. creat eCur sor Manager Speci fi cati on(quer ySource);
Speci fi edCur sor Manager cursorMhgr =
dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor queryCursor = cursorMhgr. createCursor();

Il ... Use the Cursor in sone way, such as to display its val ues.

cur sor Mhgr. cl ose();

Getting Values from a Cursor

The Cur sor interface encapsulates the notion of a current position and has methods
for moving the current position. The Val ueCur sor and ConpoundCur sor
interfaces extend the Cur sor interface. The Oracle OLAP API has implementations
of the Val ueCur sor and ConpoundCur sor interfaces. Calling the

cr eat eCur sor method on a Cur sor Manager returns either a Val ueCur sor or a
ConmpoundCur sor implementation, depending on the Sour ce for which you are
creating the Cur sor.

A Val ueCur sor is returned for a Sour ce that has a single set of values. A
Val ueCur sor has a value at its current position, and it has methods for getting the
value at the current position.

A ConpoundCur sor is created for a Sour ce that has more than one set of values,
which is a Sour ce that has one or more outputs. Each set of values of the Sour ce
is represented by a child Val ueCur sor of the ConpoundCur sor. A
ConpoundCur sor has methods for getting its child Cur sor objects.

The structure of the Sour ce determines the structure of the Cur sor. A Sour ce can
have nested outputs, which occurs when one or more of the outputs of the Sour ce
is itself a Sour ce with outputs. If a Sour ce has a nested output, then the

Retrieving Query Results 9-3

Retrieving the Results of a Query

ConmpoundCur sor for that Sour ce has a child ConpoundCur sor for that nested
output.

The ConpoundCur sor coordinates the positions of its child Cur sor objects. The
current position of the ConmpoundCur sor specifies one set of positions of its child
Cur sor objects.

For an example of a Sour ce that has only one level of output values, see
Example 9-4. For an example of a Sour ce that has nested output values, see
Example 9-5.

An example of a Sour ce that represents a single set of values is one returned by the
get Sour ce method on an MdnDi nensi on, such as an MdnDi nensi on that
represents a hierarchical list of product values. Creating a Cur sor for that Sour ce
returns a Val ueCur sor. Calling the get Cur r ent Val ue method returns the
product value at the current position of that Val ueCur sor.

Example 9-2 gets the Sour ce from ndnPr oduct Hi er, which is an MdnDi nensi on
that represents product values, and creates a Cur sor for that Sour ce. The example
sets the current position to the fifth element of the Val ueCur sor and gets the
product value from the Cur sor. The example then closes the Cur sor Manager. In
the example, dp is the Dat aPr ovi der.

Example 9-2 Getting a Single Value from a ValueCursor

Sour ce product Source = ndnProduct H er. get Source();
/1 Because productSource is a primary Source, you do not need to
/1 prepare and conmit the current Transaction.
Cur sor Manager Speci fi cation cursorvgrSpec =

dp. creat eCur sor Manager Speci f i cati on(pr oduct Sour ce);
Speci fi edCur sor Manager cursorMhgr =

dp. creat eCur sor Manager (cur sor Mhgr Spec) ;

Cursor product Cursor = cursorMgr.createCursor();
/1 Cast the Cursor to a Val ueCursor.
Val ueCur sor product Val ues = (Val ueCursor) product Cursor;
Il Set the position to the fifth elenent of the Val ueCursor.
product Val ues. set Posi ti on(5);

9-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving the Results of a Query

/1 Product values are strings. Get the String value at the current
Il position.
String val ue = productVal ues. getCurrent String();

/1 Do something with the value, such as display it...

/1 dose the SpecifiedCursorManager.
cur sor Mhgr. cl ose();

Example 9-3 uses the same Cur sor as Example 9-2. Example 9-3 uses a

do. .. whi |l e loop and the next method of the Val ueCur sor to move through the
positions of the Val ueCur sor. The next method begins at a valid position and
returns t r ue when an additional position exists in the Cur sor. It also advances the
current position to that next position.

The example sets the position to the first position of the Val ueCur sor. The
example loops through the positions and uses the get Cur r ent Val ue method to
get the value at the current position.

Example 9-3 Getting All of the Values from a ValueCursor

Il productVal ues is the ValueCursor for product Source
product Val ues. set Posi tion(1);
do {

System out. printl n(product Val ues. get Current Val ue);

}
whi | e(product Val ues. next ());

The values of the result set represented by a ConpoundCur sor are in the child
Val ueCur sor objects of the ConpoundCur sor. To get those values, you must get
the child Val ueCur sor objects from the ConpoundCur sor.

An example of a ConpoundCur sor is one that is returned by calling the

cr eat eCur sor method on a Cur sor Manager for a Sour ce that represents the
values of a measure as specified by selected values from the dimensions of the
measure.

Example 94 uses a Sour ce, named sal esAnount , that results from calling the
get Sour ce method on an MimMeasur e that represents monetary amounts for
sales. The dimensions of the measure are MUnDi nensi on objects representing
products, customers, times, channels, and promotions. This example uses Sour ce
objects that represent selected values from those dimensions. The names of those
Sour ce objects are pr odSel , cust Sel ,ti neSel ,chanSel ,and pronpSel . The

Retrieving Query Results 9-5

Retrieving the Results of a Query

creation of the Sour ce objects representing the measure and the dimension
selections is not shown.

Example 9—4 joins the dimension selections to the measure, which results in a
Sour ce named sal esFor Sel ecti ons. It creates a Cur sor, named

sal esFor Sel Cur sor, for sal esFor Sel ecti ons, caststhe Cursor toa
ConmpoundCur sor, named sal esConpndCr sr, and gets the base Val ueCur sor
and the outputs from the ConpoundCur sor. Each output is a Val ueCur sor, in
this case. The outputs are returned in a Li st . The order of the outputs in the Li st
is the inverse of the order in which the dimensions were joined to the measure. In
the example, dp is the Dat aPr ovi der andt p is the Transact i onPr ovi der.

Example 9-4 Getting ValueCursor Objects from a CompoundCursor

Sour ce sal esFor Sel ections = sal esAnount. j oi n(prodSel)
.join(cust Sel)
.join(timSel)
.j oi n(chanSel)
.join(pronoSel);
Il Prepare and commit the current Transaction

try{
tp. prepareCurrent Transaction();

cat ch(Not Conmi t t abl eException e){
out put. println("Caught exception " +e + ".");

}

tp. commi t Current Transaction();

/| Create a Cursor for sal esForSelections
Cur sor Manager Speci fi cation cursorMgrSpec =
dp. creat eCur sor Manager Speci f i cati on(sal esFor Sel ecti ons);
Speci fi edCur sor Manager cursorMhgr =
dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor sal esFor Sel Cursor = cursor Mgr. createCursor();

/| Cast sal esForSel Cursor to a ConpoundCursor
CompoundCur sor sal esConpndCrsr = (ConpoundCur sor) sal esVal ues;

/1 Get the base Val ueCursor
Val ueCursor specifiedSal esVals = sal esConpndCr sr. get Val ueCursor () ;

9-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving the Results of a Query

/1 Get the outputs

Li st outputs = sal esConpndCrsr. get Qut puts();

Val ueCur sor pronoSel Val s = (Val ueCursor) outputs.get(0
Val ueCursor chanSel Val s = (Val ueCursor) outputs.get (1)
Val ueCursor timeSel Vals = (Val ueCursor) outputs.get(2)
Val ueCursor cust Sel Val s = (Val ueCursor) out puts. get(3)
Val ueCursor prodSel Val s = (Val ueCursor) outputs. get(4)

? ;

/1 You can now get the values fromthe Val ueCursor objects.
/1 \Wen you have finished using the Cursor objects, close the
/'l Speci fiedCur sor Manager .

cur sor Mhgr. cl ose()

Example 9-5 uses the same sales amount measure as Example 9-4, but it joins the
dimension selections to the measure differently. Example 9-5 joins two of the
dimension selections together. It then joins the result to the Sour ce that results
from joining the single dimension selections to the measure. The resulting Sour ce,
sal esFor Sel ecti ons, represents a query has nested outputs, which means it has
more than one level of outputs.

The ConpoundCur sor that this example creates for sal esFor Sel ecti ons
therefore also has nested outputs. The ConpoundCur sor has a child base

Val ueCur sor and as its outputs has three child Val ueCur sor objects and one
child ConpoundCur sor.

Example 9-5 joins the selection of promotion dimension values, pr onoSel , to the
selection of channel dimension values, chanSel . The result is chanByPr onpoSel , a
Sour ce that has channel values as its base values and promotion values as the
values of its output. The example joins to sal esAmount the selections of product,
customer, and time values, and then joins chanByPr onoSel . The resulting query is
represented by sal esFor Sel ecti ons.

The example prepares and commits the current Tr ansact i on and creates a
Cur sor, named sal esFor Sel Cur sor, for sal esFor Sel ecti ons.

The example casts the Cur sor to a ConpoundCur sor, named sal esConpndCr sr,
and gets the base Val ueCur sor and the outputs from it. In the example, dp is the
Dat aPr ovi der andt p isthe Transacti onPr ovi der.

Retrieving Query Results 9-7

Retrieving the Results of a Query

Example 9-5 Getting Values from a CompoundCursor with Nested Outputs

Il ...in someMethod. ..

Source chanByPronoSel = chanSel . joi n(promSel);

Sour ce sal esFor Sel ections = sal esAnount. j oi n(prodSel)
.join(cust Sel)
.join(timSel)
.j oi n(chanByPromSel) ;

Il Prepare and commit the current Transaction
try{

tp. prepareCurrent Transaction();
}
cat ch(Not Conmi t t abl eException e){

out put. println("Caught exception " +e + ".");
}

tp. commi t Current Transaction();

/| Create a Cursor for sal esForSelections
Cur sor Manager Speci fi cation cursorvgrSpec =
dp. creat eCur sor Manager Speci f i cati on(sal esFor Sel ecti ons);
Speci fi edCur sor Manager cursorMhgr =
dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor sal esFor Sel Cursor = cursor Mgr. createCursor();

/1 Send the Cursor to a nethod that does different operations
/1 dependi ng on whether the Cursor is a ConmpoundCursor or a
/'l Val ueCursor.

print Cursor(sal esFor Sel Cursor);

cursor Mgr. cl ose();

/1 ...the renaining code of soneMethod...

9-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Retrieving the Results of a Query

/1 The printCursor method has a do...while loop that noves through the positions
Il of the Cursor passed to it. At each position, the method prints the nunber of
/1 the iteration through the I oop and then a colon and a space. The out put
I/ object is a PrintWiter. The method calls the private _printTuple nmethod and
/1 then prints a newline. A"tuple" is the set of output ValueCursor val ues
/'l specified by one position of the parent ConpoundCursor. The nethod prints one
Il line for each position of the parent CompoundCursor.
public void printCursor(Cursor rootCursor) {

int i =1;

do {

output.print(i++ +": ");

}

_printTupl e(rootCQursor);
output.print("\n");
out put. flush();

whi | e(root Cursor.next());

}

/1
/11
I
I
iy
/1
pri
i

If the Cursor passed to the _printTuple nethod is a Val ueCursor,
the method prints the value at the current position of the ValueCursor.
If the Qursor passed in is a ConpoundCursor, the method gets the
outputs of the ConmpoundCursor and iterates through the outputs,
recursively calling itself for each output. The nmethod then gets the
base Val ueCursor of the ConpoundCursor and calls itself again.
vate void _printTuple(Cursor cursor) {
f(cursor instanceof ConmpoundCursor) {
CompoundCur sor conpoundCur sor = (ConpoundCur sor) cur sor;
/1 Put an open parenthesis before the value of each out put
output.print("(");
Iterator iterQutputs = conpoundCursor.getQutputs().iterator();
Cursor output = (Cursor)iterQutputs.next();
_printTupl e(output);
whi | e(iterQutputs.hasNext()) {

/] Put a comma after the value of each output

output.print(",");

_printTuple((Cursor)iterQutputs.next());
}

/] Put a corma after the value of the last output
output.print(",");
Il Get the base Val ueCursor

_print Tupl e(conpoundCur sor . get Val ueCursor());

Retrieving Query Results 9-9

Navigating a CompoundCursor for Different Displays of Data

Il Put a close parenthesis after the base value to indicate
Il the end of the tuple.
output.print(")");
}
el se if(cursor instanceof ValueCursor) {
Val ueCursor val ueCursor = (Val ueCursor) cursor;
i f (valueCursor.hasCurrentVal ue())
print(val ueCursor. get CurrentVal ue());
el se [l If this position has a null value
print("NA");

Navigating a CompoundCursor for Different Displays of Data

With methods on a CorpoundCur sor you can easily move through, or navigate, its
structure and get the values from its Val ueCur sor descendents. Data from a
multidimensional OLAP query is often displayed in a crosstab format, or as a table
or a graph.

To display the data for multiple rows and columns, you loop through the positions
at different levels of the ConpoundCur sor depending on the needs of your display.
For some displays, such as a table, you loop through the positions of the parent
ConpoundCur sor. For other displays, such as a crosstab, you loop through the
positions of the child Cur sor objects.

To display the results of a query in a table view, in which each row contains a value
from each output Val ueCur sor and from the base Val ueCur sor, you determine
the position of the top-level, or root, ConpoundCur sor and then iterate through its
positions. Example 9-6 displays only a portion of the result set at one time. It
creates a Cur sor for a Sour ce that represents a query that is based on a measure
that has unit cost values. The dimensions of the measure are the product and time
dimensions. The creation of the primary Sour ce objects and the derived selections
of the dimensions is not shown.

The example joins the Sour ce objects representing the dimension value selections
to the Sour ce representing the measure. It prepares and commits the current
Transact i on and then creates a Cur sor . It casts the Cur sor toa

ConpoundCur sor. The example sets the position of the ConpoundCur sor, iterates
through twelve positions of the ConpoundCur sor, and prints out the values
specified at those positions. The Tr ansact i onPr ovi der ist p and the

Dat aPr ovi der isdp. The out put objectisaPri nt Witer.

9-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Navigating a CompoundCursor for Different Displays of Data

Example 9-6 Navigating for a Table View

Source unitPriceByDay = unitPrice.join(productSel)
.join(timeSel);
try{
tp. prepareCurrent Transaction();

cat ch(Not Conmi t t abl eException e){
out put. println("Caught exception " +e + ".");

}

tp. commi t Current Transaction();

/I Create a Cursor for unitPriceByDay
Cur sor Manager Speci fi cation cursor Mhgr Spec =
dp. creat eCur sor Manager Speci fi cati on(uni t Pri ceByDay);
Speci fi edCur sor Manager cursorMhgr =
dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor unitPriceByDayCQursor = cursorhgr.createCursor();

/1 Cast the Cursor to a ConpoundCursor
ConpoundCur sor root Cursor = (ConpoundCursor) unitPriceByDayCursor;

/] Determine a starting position and the nunber of rows to display
int start = 7;
int numRows = 12;

Il Iterate through the specified positions of the root ConpoundCursor.
/1 Assume that the Cursor contains at least (start + numRows) positions.
for(int pos = start; pos < start + nunRows; pos++) {
/1 Set the position of the root CompoundCursor
root Cur sor. set Posi ti on(pos);
/1 Print the values of the output ValueCursors
out put. print(root Cursor.getQutputs().get(0).getCurrentValue() + "\t");
out put. print(root Cursor.getQutputs().get(1).getCurrentValue() + "\t");
[l Print the value of the base ValueCursor and a new |ine
out put. print(root Cursor.getVal ueCursor().getCurrentValue() + "\n");
out put. flush();
b

cur sor Mhgr. cl ose();

If the time selection for the query has eight values, such as the first day of each
calendar quarter for the years 1999 and 2000, and the product selection has three
values, then the result set of the uni t Pri ceByDay query has twenty-four

Retrieving Query Results 9-11

Navigating a CompoundCursor for Different Displays of Data

positions. Example 9-6 displays something like the following table, which has the
values specified by positions 7 through 18 of the ConpoundCur sor.

01-JUL-99 815 57
01-JUL-99 1050 23
01-JUL-99 2055 22
01-CCT-99 815 56
01- CCT-99 1050 24
01- CCT-99 2055 21
01- JAN-00 815 58
01- JAN-00 1050 24
01- JAN-00 2055 24
01- APR-00 815 59
01- APR-00 1050 24
01- APR-00 2055 25

Example 9-7 uses the same query as Example 9-6. In a crosstab view, the first row is
column headings, which are the values fromt i meSel in this example. The output
forti meSel is the faster varying output because the t i meSel dimension selection
was joined to the measure first. The remaining rows begin with a row heading. The
row headings are values from the slower varying output, which is pr oduct Sel .
The remaining positions of the rows, under the column headings, contain the

uni t Pri ce values specified by the set of the dimension values.

To display the results of a query in a crosstab view, you specify the positions of the
children of the top-level ConpoundCur sor and then iterate through their positions.
Example 9-7 gets the values but does not include code for putting the values in the
appropriate cells of the crosstab display.

Example 9-7 Navigating for a Crosstab View without Pages
Source unitPriceByDay = unitPrice.join(productSel)
.join(timeSel);

try{
t p. prepareCurrent Transaction();

cat ch(Not Conmi t t abl eException e){
out put. println("Caught exception " +e + ".");

}

t p. conmi t Current Transaction();

9-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Navigating a CompoundCursor for Different Displays of Data

/| Create a Cursor for unitPriceByDay
Cur sor Manager Speci fi cation cursorMhgrSpec =
dp. creat eCur sor Manager Speci fi cati on(uni t Pri ceByDay);
Speci fi edCur sor Manager cursorMhgr =
dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor unitPriceByDayCQursor = cursorhgr.createCursor();

/1 Cast the Cursor to a ConpoundCursor
ConpoundCur sor root Cursor = (ConpoundCursor) unitPriceByDayCursor;

/| Determine a starting position and the nunber of rows to display.
/1 colStart is the position in columCursor at which the current
/1 display starts and rowStart is the position in rowCursor at
/1 which the current display starts.

int colStart = 1;

int rowStart = 1;

String product Val ue;

String timeVal ue;

doubl e price;

int nunProducts = 3;

int nunDays = 12;

Il Get the outputs and the Val ueCursor

ConmpoundCQur sor root Cursor = (ConpoundCursor) unitPriceByDayCursor;

Li st outputs = rootCursor.getQutputs();

/1 The first output has the values of tineSel, the slower varying output
Val ueCursor rowCursor = (Val ueCursor) outputs.get(0);

Il The second output has the faster varying val ues of product Sel

Val ueCursor col umQursor = (Val ueCursor) outputs.get(1);

Val ueCursor unitPriceVal ues = root Cursor. getVal ueCursor();// Prices

/1 Loop through positions of the faster varying output Cursor
for(int pPos = col Start; pPos < col Start + nunProducts; pPos++) {
col utmCQur sor . set Posi tion(pPos);
/1 Loop through positions of the slower varying output Cursor
for(int tPos = rowStart; tPos < rowStart + nunmDays; tPos++) {
r owCur sor . set Posi ti on(t Pos);
Il Get the values. Sending the values to the appropriate
/] display mechanismis not shown.
product Val ue = col umCursor.getCurrentString();
timeVal ue = rowCursor.getCurrentString();
price = unitPriceVal ues. get Current Doubl e();
}
}

cur sor Mhgr. cl ose();

Retrieving Query Results 9-13

Navigating a CompoundCursor for Different Displays of Data

Figure 9-1 is crosstab view of the values from the result set specified by the
uni t Pri ceByDay query.

Figure 9—1 Crosstab View of the Result Set Specified by unitPriceByDay

815 1050 2055
01-JAN-99 56 22 21
01-APR-99 57 22 21
01-JUL-99 57 23 22
01-OCT-99 56 24 21
01-JAN-00 58 24 24
01-APR-00 59 24 25
01-JUL-00 59 25 25
01-OCT-00 61 25 26

Example 9-8 creates a Sour ce that is based on a sales amount measure. The
dimensions of the measure are the customer, product, time, channel, and promotion
dimensions. The Sour ce objects for the dimensions represent selections of the
dimension values. The creation of those Sour ce objects is not shown.

The query that results from joining the dimension selections to the measure Sour ce
represents total sales amount values as specified by the values of its outputs.

The example creates a Cur sor for the query and then sends the Cur sor to the
pri nt AsCr osst ab method, which prints the values from the Cur sor ina
crosstab. That method calls other methods that print page, column, and row values.

The fastest varying output of the Cur sor is the selection of customers, which has
three values that specify all of the customers from France, the UK, and the USA. The
customer values are the column headings of the crosstab. The next fastest varying
output is the selection of products, which has four values that specify types of
products. The page dimensions are selections of two time values, which are the first
and second calendar quarters of the year 2000, one channel value, which is the
direct channel, and one promotion value, which is all promotions.

The Tr ansact i onProvi der ist p and the Dat aPr ovi der is dp. The out put
objectisaPrintWiter.

9-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Navigating a CompoundCursor for Different Displays of Data

Example 9-8 Navigating for a Crosstab View with Pages

Il ...in someMethod. ..

Sour ce sal esAnount sFor Sel ections = sal esAmount . j oi n(cust oner Sel)
.j oi n(product Sel) ;
.join(timSel);
.joi n(channel Sel);
.join(pronotionSel);

try{

t p. prepareCurrent Transaction();

cat ch(Not Conmi t t abl eException e){
out put. println("Caught exception " +e + ".");

}

t p. conmi t Current Transaction();

/1 Create a Cursor for sal esAnount sFor Sel ecti ons
Cur sor Manager Speci fi cati on cursor vhgr Spec =
dp. creat eCur sor Manager Speci fi cati on(sal esAnmount sFor Sel ecti ons);
Speci fi edCur sor Manager cursorMhgr =
dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor sal esFor Sel Cursor = cursor Mgr. createCursor();

/1 Send the Cursor to the printAsCrosstab method
print AsCrosst ab(sal esFor Sel Cursor);

cur sor Mhgr. cl ose();
[l ...the remainder of the code of someMethod...

/1 This method expects a ConpoundCursor.

private void printAsCrosstab(Cursor cursor) {
/] Cast the Cursor to a ConpoundCursor
ConpoundCur sor root Cursor = (ConpoundCursor) cursor;
List outputs = root Cursor.get Qutputs();

int nQutputs = outputs.size();

/1 Set the initial positions of all outputs
Iterator outputlter = outputs.iterator();
whil e (outputlter.hasNext())

((Cursor) outputlter.next()).setPosition(1);

Retrieving Query Results 9-15

Navigating a CompoundCursor for Different Displays of Data

/1 The last output is fastest-varying; it represents col ums.
/1 The next to last output represents rows.
/1 Al other outputs are on the page.
Cursor col Cursor = (Cursor) outputs.get(nQutputs - 1);
Cursor rowCursor = (Cursor) outputs.get(nQutputs - 2);
ArrayList pageCursors = new ArrayList();
for (int i =0 ; i <nQutputs - 2 ; i++) {

pageCursors. add(out puts. get(i));
}

/] Get the base Val ueCursor, which has the data val ues
Val ueCur sor dat aCursor = root Cursor. get Val ueCursor();

[l Print the pages of the crosstab
print Pages(pageCursors, 0, rowCursor, col Cursor, dataCursor);

}

Il Prints the pages of a crosstab
private void printPages(List pageCursors, int pagelndex, Cursor rowCursor,
Cursor col Cursor, Val ueCursor dataCursor) {
/] Get a Cursor for this page
Cursor pageCursor = (Cursor) pageCursors. get(pagel ndex);

/1 Loop over the values of this page dimension
do {
[l If this is the fastest-varying page dinension, print a page
i f (pagel ndex == pageCursors.size() - 1) {
Il Print the values of the page di nmensions
pri nt PageHeadi ngs(pageCur sors);

[l Print the col um headi ngs
pri nt Col umHeadi ngs(col Cursor);

[l Print the rows
print Rows(rowCursor, col Cursor, dataCursor);

9-16 Oracle9i OLAP Developer’s Guide to the OLAP API

Navigating a CompoundCursor for Different Displays of Data

Il Print a couple of blank lines to delimt pages
output.printin();
output.printin();

}

[l 1f this is not the fastest-varying page, recurse to the
/] next fastest varying di mension.
el se {
print Pages(pageCursors, pagelndex + 1, rowCursor, col Cursor,
dat aCursor);

}
} while (pageCursor.next()):

/] Reset this page dimension Cursor to its first element.
pageCursor. setPosition(1);

}

/1 Prints the values of the page dinensions on each page
private void printPageHeadi ngs(List pageCursors) {
[l Print the values of the page dinensions
Iterator pagelter = pageCursors.iterator();
whil e (pagelter.hasNext())
out put. println(((ValueCursor) pagelter.next()).getCurrentValue());
output.printin();
}

Il Prints the col umm headi ngs on each page
private void printCol umHeadi ngs(Cursor col Cursor) {
do {
output.print("\t");
out put. print (((Val ueCursor) col Cursor).getCurrentVal ue());
} while (col Cursor.next());
output.println();
col Cursor.setPosition(1);

}

Il Prints the rows of each page
private void printRows(Cursor rowCursor, Cursor col Cursor,
Val ueCur sor dataCursor) {

Retrieving Query Results 9-17

Navigating a CompoundCursor for Different Displays of Data

/1 Loop over rows

do {

[l Print row di nension val ue
out put. print(((Val ueCursor) rowCursor).getCurrentVal ue());

out put.print("\t");

/1 Loop over col ums

do {

/1l Print data val ue

out put. print (dataCursor. get Current Val ue());

output.print("\t");
} while (col Cursor.next());

output.printin();

/] Reset the colum Cursor to its first element
col Cursor.setPosition(1);
} while (rowCursor.next());

/| Reset the row Cursor to its first elenent
rowCur sor. set Position(1);

}

The crosstab output of Example 9-8 looks like the following.

Pronotion total

Direct
2000- Q1

Qut er wear
Qut er wear
Qut er wear
Qut er wear

Men
Wonen
Boys
Grls

Pronotion total

Direct
2000- @

Qut er wear
Qut er wear
Qut er wear
Qut er wear

9-18 Oracle9i OLAP Developer’s Guide to the OLAP API

Men
Wnen
Boys
Grls

FR

750563.
984461.
693382.
926520.

FR

683521.
840024.
600382.
901558.

50
00
00
50

00
50
50
00

WK

938014. 00
1388755. 50
799452. 00
977291. 50

UK

711945. 00
893587. 50
755031. 00
909421. 50

us
12773925. 50
15421979. 00
9183052. 00
11854203. 00

us

9947221. 50
12484221. 00
8791240. 00
9975927. 00

Specifying the Behavior of a Cursor

Specifying the Behavior of a Cursor
You can specify the following aspects of the behavior of a Cur sor.

« The fetch size of a Cur sor, which is the number of elements of the result set that
the Cur sor retrieves during one fetch operation.

= The shape of the fetch block of a Cur sor. The fetch block is the set of elements of
each descendent Val ueCur sor that the parent ConpoundCur sor retrieves.
The shape of the fetch block is the levels of the ConpoundCur sor at which you
set the fetch sizes.

=« Whether Oracle OLAP calculates the extent of the Cur sor. The extent is the
total number of positions of the Cur sor. If the Cur sor is achild Cur sor of a
ConpoundCur sor, its extent is relative to any slower varying outputs.

« Whether Oracle OLAP calculates the positions in the parent Cur sor at which
the value of a child Cur sor starts or ends.

To specify the behavior of Cur sor, you use methods on the

Cur sor Speci fi cati on for that Cur sor. To get the Cur sor Speci fi cati on for
a Cur sor, you use methods on the Cur sor Manager Speci fi cati on that you
create for a Sour ce.

Note: Specifying the calculation of the extent or the starting or
ending position in a parent Cur sor of the current value of a child
Cur sor can be a very expensive operation. The calculation can
require considerable time and computing resources. You should
only specify these calculations when your application needs them.

For more information on the relationships of Sour ce, Cur sor,
Cur sor Speci fi cati on, and Cur sor Manager Speci fi cat i on objects or the
concepts of fetch size, extent, or Cur sor positions, see Chapter 8.

Example 9-9 creates a Sour ce, creates a Cur sor Manager Speci fi cati on for the
Sour ce, and then gets the Cur sor Speci fi cati on objects from a

Cur sor Manager Speci fi cati on. The root Cur sor Speci fi cati on isthe

Cur sor Speci fi cat i on for the top-level ConpoundCur sor.

Retrieving Query Results 9-19

Specifying the Behavior of a Cursor

Example 9-9 Getting CursorSpecification Objects from a
CursorManagerSpecification

Sour ce sal esAnmount sFor Sel ections = sal esAmount . j oi n(cust oner Sel)
.j oi n(product Sel) ;
.join(timSel);
.j oi n(channel Sel) ;
.join(pronotionSel);
try{
tp. prepareCurrent Transaction();

cat ch(Not Conmi t t abl eException e){
out put. println("Caught exception " +e + ".");

}

t p. conmi t Current Transaction();

/1 Create a Cursor for sal esAmount sFor Sel ecti ons
Cur sor Manager Speci fi cation cursor Mhgr Spec =
dp. creat eCur sor Manager Speci fi cati on(sal esAnmount sFor Sel ecti ons);

Il Get the root CursorSpecification of the CursorMnager Specification.
ConpoundCur sor Speci fi cation root Cursor Spec =
(ConpoundCur sor Speci fication) cursorMgr Spec. get Root Cur sor Speci fi cation();

/1 Get the CursorSpecification for the base val ues
Val ueCur sor Speci fi cati on baseVal ueSpec =
r oot Cur sor Spec. get Val ueCur sor Speci fication();

/1 Get the CursorSpecification objects for the outputs
Li st out put Specs = root Cursor Spec. get Qut put s() ;
Val ueCur sor Speci fi cation pronoSel Val CSpec =

(Val ueCur sor Speci fi cation) out put Specs. get(0);
Val ueCur sor Speci fi cation chanSel Val CSpec =

(Val ueCur sor Speci fi cation) output Specs.get(1);
Val ueCur sor Speci fi cation timeSel Val CSpec =

(Val ueCur sor Speci fi cation) out put Specs. get(2);
Val ueCur sor Speci fi cation prodSel Val CSpec =

(Val ueCur sor Speci fi cation) out put Specs. get(3);
Val ueCur sor Speci fi cation cust Sel Val CSpec =

(Val ueCur sor Speci fi cation) out put Specs. get(4);

Once you have the Cur sor Speci fi cat i on objects, you can use their methods to
specify the behavior of the Cur sor objects that correspond to them.

9-20 Oracle9i OLAP Developer’s Guide to the OLAP API

Calculating Extent and Starting and Ending Positions of a Value

Calculating Extent and Starting and Ending Positions of a Value

To manage the display of the result set retrieved by a ConpoundCur sor, you
sometimes need to know the extent of its child Cur sor components. You might also
want to know the position at which the current value of a child Cur sor starts in its
parent ConpoundCur sor. You might want to know the span of the current value of
a child Cur sor. The span is the number of positions of the parent Cur sor that the
current value of the child Cur sor occupies. You can calculate the span by
subtracting the starting position of the value from its ending position and
subtracting 1.

Before you can get the extent of a Cur sor or get the starting or ending positions of
avalue in its parent Cur sor, you must specify that you want Oracle OLAP to
calculate the extent or those positions. To specify the performance of those
calculations, you use methods on the Cur sor Speci fi cati on for the Cur sor.

Example 9-10 specifies calculating the extent of a Cur sor. The example uses the
Cur sor Manager Speci fi cati on from Example 9-9.

Example 9-10 Specifying the Calculation of the Extent of a Cursor

ConpoundCur sor Speci fi cation root Cursor Spec =
(ConpoundCur sor Speci fication) cursorMgr Spec. get Root Cur sor Speci fi cation();
root Cur sor Spec. set Ext ent Cal cul ati onSpeci fied(true);

You can use methods on a Cur sor Speci fi cat i on to determine whether the
Cur sor Speci fi cat i on specifies the calculation of the extent of a Cur sor asin
the following example.

bool ean isSet = root Cursor Spec. i sExt ent Cal cul ati onSpecified();

Example 9-11 specifies calculating the starting and ending positions of the current
value of a child Cur sor in its parent Cur sor. The example uses the
Cur sor Manager Speci fi cati on from Example 9-9.

Retrieving Query Results 9-21

Calculating Extent and Starting and Ending Positions of a Value

Example 9-11 Specifying the Calculation of Starting and Ending Positions in a Parent

ConpoundCur sor Speci fi cation root Cursor Spec =
(ConpoundCur sor Speci fication) cursorMgr Spec. get Root Cur sor Speci fi cation();

/1 Get the List of CursorSpecification objects for the outputs.
Il 1terate through the list, specifying the calculation of the extent
/1 for each output CursorSpecification.
Iterator iterQutputSpecs = root CursorSpec.get Qutputs().iterator();
Val ueCur sor Speci fi cation val Cursor Spec = (Val ueCursor Speci ficati on)
i terQutput Specs. next();

whi | e(iterQutput Specs. hasNext ()) {

val Cur sor Spec. set Parent Start Cal cul ati onSpeci fi ed(true);

val Cur sor Spec. set Par ent EndCal cul ati onSpeci fi ed(true);

val Cur sor Spec = (Val ueCursor Specification) iterQutputSpecs. next();

}

You can use methods on a Cur sor Speci fi cat i on to determine whether the
Cur sor Speci fi cat i on specifies the calculation of the starting or ending
positions of the current value of a child Cur sor in its parent Cur sor, as in the
following example.

bool ean isSet;
Iterator iterQutputSpecs = root CursorSpec.get Qutputs().iterator();
Val ueCur sor Speci fi cation val Cursor Spec = (Val ueCursor Speci ficati on)
i terCQutput Specs. next();

whi | e(iterCQutput Specs. hasNext ()) {

i sSet = val CursorSpec.isParentStartCal cul ati onSpecified();

i sSet = val Cursor Spec. i sParent EndCal cul ati onSpeci fied();

val Qur sor Spec = (Val ueCursor Specification) iterQutputSpecs.next();

}

Example 9-12 determines the span of the positions in a parent ConpoundCur sor of
the current value of a child Cur sor for two of the outputs of the

ConpoundCur sor. The example uses the sal esAnount sFor Sel ecti ons

Sour ce from Example 9-8.

The example gets the starting and ending positions of the current values of the time
and product selections and then calculates the span of those values in the parent
Cur sor. The parent is the root ConpoundCur sor. The Tr ansact i onPr ovi der is
t p, the Dat aPr ovi der isdp, and out put isaPrintWiter.

9-22 Oracle9i OLAP Developer’s Guide to the OLAP API

Calculating Extent and Starting and Ending Positions of a Value

Example 9-12 Calculating the Span of the Positions in the Parent of a Value

Sour ce sal esAnmount sFor Sel ections = sal esAmount . j oi n(cust oner Sel)
.j oi n(product Sel) ;
.join(timSel);
.j oi n(channel Sel) ;
.join(pronotionSel);
try{
t p. prepareCurrent Transaction();

cat ch(Not Conmi t t abl eException e){
out put. println("Caught exception " +e + ".");

}

t p. conmi t Current Transaction();

/1 Create a Cursor Manager Specification for sal esAmount sFor Sel ections
Cur sor Manager Speci fi cation cursor vhgrSpec =
dp. creat eCur sor Manager Speci fi cati on(sal esAnmount sFor Sel ecti ons);

Il Get the root CursorSpecification fromthe CursorManager Specification.
ConpoundCur sor Speci fi cation root Cursor Spec =

(ConpoundCur sor Speci fication) cursorMgr Spec. get Root Cur sor Speci fi cation();
/1 Get the CursorSpecification objects for the outputs

Li st out put Specs = root Cur sor Spec. get Qut put s() ;

Val ueCur sor Speci fi cation timeSel Val CSpec =

(Val ueCur sor Speci fi cation) outputSpecs.get(2); \\ output for time

Val ueCur sor Speci fi cation prodSel Val CSpec =

(Val ueCur sor Speci fi cation) outputSpecs.get(3) \\ output for product

Il Specify the calculation of the starting and endi ng positions
ti meSel Val CSpec. set Parent Start Cal cul ati onSpeci fied(true);

ti meSel Val CSpec. set Par ent EndCal cul ati onSpecified(true);

prodSel Val CSpec. set Parent Start Cal cul ati onSpeci fied(true);
prodSel Val CSpec. set Par ent EndCal cul ati onSpecified(true);

/I Create the CursorManager and the Cursor

Speci fi edCur sor Manager cursor Mgr = dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
CompoundCur sor cursor = (ConpoundCursor) cursorMgr.createCursor();

Retrieving Query Results 9-23

Specifying Fetch Sizes and Fetch Blocks

/1 Get the child Cursor objects

Val ueCursor baseVal Cursor = cursor. get Val ueCursor();
Li st outputs = cursor.getQutputs();

Val ueCur sor pronoSel Val s = (Val ueCursor) outputs.get(0
Val ueCur sor chanSel Val s = (Val ueCursor) outputs.get(1);
Val ueCursor timeSel Vals = (Val ueCursor) outputs.get(2);
Val ueCursor cust Sel Val s = (Val ueCursor) outputs. get(3)
Val ueCursor prodSel Val s = (Val ueCursor) outputs. get(4)

)

Il Set the position of the root ConpoundCursor

cursor. set Posi tion(15);

/*

* Get the values at the current position and determ ne the span
* of the values of the tine and product outputs.

*/

out put. print (pronoSel Val s. get CurrentValue() + ", ");
out put. print (chanSel Val s. get Current Val ue() +
output.print(timeSel Vals.getCurrentValue() + ", "
() +
) +

out put. print (cust Sel Val s. get Cur rent Val ue(o
out put. print (prodSel Val s. get Cur rent Val ue(
out put. print!| n(baseVal Cursor. get Current Val ue());

~— — — —

Il Determine the span of the values of the two fastest varying outputs
int span;

span = (prodSel Val s. get Parent End() - prodSel Val s. getParentStart()) -1);
output. println("The span of " + prodSel Val s. get CurrentVal ue() +

" at the current positionis " + span +".")

span = (tineSel Val s. get Parent End() - timeSel Vals.getParentStart()) -1);
out put. println("The span of " + tinmeSel Vals.getCurrentValue() +

" at the current positionis " + span +".")

cursor Mgr. cl ose();

This example produces the following output.

Pronotion total, Direct, 2000-QL, CQuterwear - Men, US, 9947221.50
The span of Quterwear - Men at the current position is 3.
The span of 2000-@ at the current position is 12.

Specifying Fetch Sizes and Fetch Blocks

The number of elements of a Cur sor that Oracle OLAP sends to the client
application during one fetch operation depends on the fetch size specified for that
Cur sor. For a CorpoundCur sor, you can set the fetch size on the

ConpoundCur sor itself or at one or more levels of its descendent Cur sor

9-24 Oracle9i OLAP Developer’s Guide to the OLAP API

Specifying Fetch Sizes and Fetch Blocks

components. Setting the fetch size on a ConpoundCur sor specifies that fetch size
for its child Cur sor components.

The set of elements the Cur sor retrieves in a single fetch is the fetch block. The
shape of the fetch block is determined by the set of Cur sor components on which
you set the fetch sizes. For more information on fetch sizes and fetch blocks, see
Chapter 8.

You specify the shape of the fetch block and the specific fetch sizes according to the
needs of your display of the data. To display the results of a query in a table view,
you specify the fetch size on the top-level ConpoundCur sor.

To display the results in a crosstab view, you specify the fetch sizes on the children
of the top-level ConpoundCur sor. For a crosstab that displays the results of a
query that has nested levels of outputs, you might specify fetch sizes at different
levels of the children of the component ConpoundCur sor objects.

You use methods on a Cur sor Speci fi cat i on to set the default fetch size for its
Cur sor. For a CorpoundCur sor Speci fi cati on, you can specify setting the
fetch sizes on its children and thereby determine the shape of the fetch block.

If a default fetch size is set on a Cur sor Speci fi cat i on, you can use the

set Fet chSi ze method on the Cur sor for that Cur sor Speci fi cati onto
change the fetch size of the Cur sor. By default, the root Cur sor Speci fi cati on
of a Cur sor Manager Speci fi cat i on has the fetch size set to 100.

Example 9-13 creates a Sour ce that represents the sales amount measure values as
specified by selections of values from the dimensions of the measure. The product
and customer selections each have ten values, the time selection has four values,
and the promotion and channel selections each have one value. Assuming that a
sales amount exists for each set of dimension values, the result set of the query has
300 elements (10*10*3*1*1).

To match a display of the elements that contains only twenty rows, the example sets
a fetch size of twenty elements on the top-level ConpoundCur sor . Because the
default fetch size is automatically set on the root Cur sor Speci fi cat i on, which
in this example is the ConmpoundCur sor Speci fi cat i on for the top-level
ConpoundCur sor, the example just uses the set Fet chSi ze method on the
ConmpoundCur sor to change the fetch size. The fetch block is the set of output and
base values specified by twenty positions of the top-level ConpoundCur sor. The
Transacti onProvi der ist p and the Dat aPr ovi der is dp.

Retrieving Query Results 9-25

Specifying Fetch Sizes and Fetch Blocks

Example 9-13 Specifying the Fetch Size and Fetch Block for a Table View

Sour ce sal esAnmount sFor Sel ections = sal esAmount . j oi n(cust oner Sel)
.joi n(product Sel) ;
.join(timSel);
.j oi n(channel Sel) ;
.join(pronotionSel);
try{
t p. prepareCurrent Transaction();

cat ch(Not Conmi t t abl eException e){
out put. println("Caught exception " +e + ".");

}

t p. conmi t Current Transaction();

Il Create a Cursor for sal esAmount sFor Sel ections
Cur sor Manager Speci fi cation cursor vhgr Spec =
dp. creat eCur sor Manager Speci fi cati on(sal esAnmount sFor Sel ecti ons);
Speci fi edCur sor Manager cursor Mgr = dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor cursor = cursorMgr.createCursor();

Il Set the fetch size of the top-level ConpoundCursor to 20
cursor. set Fet chSi ze(20) ;

Example 9-14 modifies the example in Example 9-7. In Example 9-14, the number
of times that the f or loops are repeated depends upon the extent of the Cur sor. As
the conditional statement of the f or loops, instead of specifying the number of
positions that the Cur sor has, this example gets the extent of the Cur sor and uses
the extent as the condition. The optimal fetch block for the crosstab display is a fetch
block that contains, for each position of the ConpoundCur sor, the extent of the
child Cur sor elements at that position.

This example creates a Cur sor Manager Speci fi cat i on and gets the root

Cur sor Speci fi cat i on. It casts the root Cur sor Speci fi cati onasa
ConmpoundCur sor Speci fi cat i on. The example specifies setting the default fetch
sizes on the children of the root ConpoundCur sor Speci fi cat i on and it specifies
the calculation of its extent.

The example sets the fetch size on each output Val ueCur sor equal to the extent of
the Val ueCur sor. It then gets the displayable portion of the crosstab by looping
through the positions of the child Val ueCur sor objects.

9-26 Oracle9i OLAP Developer’s Guide to the OLAP API

Specifying Fetch Sizes and Fetch Blocks

Example 9-14 Using Extents To Specify the Fetch Sizes for a Crosstab View

Source unitPriceByDay = unitPrice.join(productSel)
.join(timeSel);
try{
tp. prepareCurrent Transaction();

cat ch(Not Conmi t t abl eException e){
out put. println("Caught exception " +e + ".");

}

tp. commi t Current Transaction();

/I Create a CursorMainager Specification for unitPriceByDay
Cur sor Manager Speci fi cation cursor Mhgr Spec =
dp. creat eCur sor Manager Speci fi cati on(uni t Pri ceByDay);

/1 Get the root CursorSpecification and cast it to a

/'l ConpoundCur sor Speci fication

CorpoundCur sor Speci fi cation root Spec =

(ConpoundCur sor Speci fi cation) cursorMgr Spec. get Root Cur sor Speci fi cation();

Il Specify setting the fetch size on the child Cursor objects
/1 and cal culating the extent of the positions in the Cursor
root Spec. speci f yDef aul t Fet chSi zeOnChi | dren();

root Spec. set Ext ent Cal cul ati onSpeci fied(true);

Il Create the CursorManager and the Cursor
Speci fi edCur sor Manager cursorMhgr =

dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor unitPriceByDayCQursor = cursorhgr.createCursor();

/1 Cast the Cursor to a ConpoundCursor
ConpoundCur sor root Cursor = (ConpoundCursor) unitPriceByDayCursor;

/] Determine a starting position and the nunber of rows to display.
/1 The position in columCursor at which the current display starts
/] is colStart and rowStart is the position in rowCursor at which
Il the current display starts.

int col Start = 1;

int rowStart = 1;

String product Val ue;

String timeVal ue;

doubl e price;

Retrieving Query Results 9-27

Specifying Fetch Sizes and Fetch Blocks

/1 The nunber of values fromthe Val ueCursor objects for products and
/1 days are now initialized as 1 because the Val ueCursor objects have
/] at |east one elenent.

int nunProducts = 1;

int nunDays = 1,

/1 Get the ValueCursor and the outputs

CormpoundCQur sor root Cursor = (ConpoundCursor) unitPriceByDayCursor;

Li st outputs = rootCursor.getQutputs();

/1 The first output has the values of timeSel, the slower varying output
Val ueCursor rowCursor = (Val ueCursor) outputs.get(0);

/1 The second out put has the faster varying values of product Sel

Val ueCursor col umQCursor = (Val ueCursor) outputs.get(1);

Val ueCursor unitPriceVal ues = root Cursor. getVal ueCursor();// Prices

/'l Loop through the positions of the faster varying output Cursor
for(int pPos = col Start; pPos < col Start + nunProducts; pPos++) {
col utmcQur sor. set Posi tion(pPos);
/] Get the extents of the output Val ueCursor objects
nunProducts = col umCur sor. get Extent ();
nunDays = rowCur sor. get Extent ();
/] Set the fetch sizes
col utmCQur sor . set Fet chSi ze(nunPr oduct s) ;
r owCur sor. set Fet chSi ze(numvbnt hs) ;
/1 Loop through the positions of the slower varying output Cursor
for(int tPos = rowStart; tPos < rowStart + nunmDays; tPos++) {
r owCur sor . set Posi ti on(t Pos);

Il Get the values. Sending the values to the appropriate
/1 display mechanismis not shown.

product Val ue = col umCursor.getCurrentString();
tinmeValue = rowCursor.getCurrentString();

price = unitPriceVal ues. get Current Doubl e();

9-28 Oracle9i OLAP Developer’s Guide to the OLAP API

10

Creating Dynamic Queries

This chapter describes the Oracle OLAP API Tenpl at e class and its related classes,
which you use to create dynamic queries. This chapter also provides examples of
implementations of those classes.

This chapter includes the following topics:
« About Template Objects
« Overview of Template and Related Classes

« Designing and Implementing a Template

Creating Dynamic Queries 10-1

About Template Objects

About Template Objects

The Tenpl at e class is the basis of a very powerful feature of the Oracle OLAP API.
You use Tenpl at e objects to create modifiable Sour ce objects. With those Sour ce
objects, you can create dynamic queries that can change in response to end-user
selections. Tenpl at e objects also offer a convenient way for you to translate
user-interface elements into OLAP API operations and objects.

These features are briefly described below. The rest of this chapter describes the
Tenpl at e class and the other classes you use to create dynamic Sour ce objects.
For information on the Tr ansact i on objects that you use to make changes to the
dynamic Sour ce and to either save or discard those changes, see Chapter 7.

About Creating a Dynamic Source

The main feature of a Tenpl at e is its ability to produce a dynamic Sour ce. That
ability is based on two of the other objects that a Tenpl at e uses: instances of the
Dynani cDefi ni ti on and Met adat aSt at e classes.

When a Sour ce is created, a Sour ceDef i ni ti on is automatically created. The
Sour ceDef i ni ti on has information about how the Sour ce was created. Once
created, the Sour ce and its Sour ceDef i ni ti on are paired immutably. The
get Sour ce method of a Sour ceDef i ni ti on gets its paired Sour ce.

Dynani cDefi ni ti on isasubclass of Sour ceDef i niti on. ATenpl at e creates a
Dynani cDefi ni ti on, which acts as a proxy for the Sour ceDef i ni ti on of the
Sour ce produced by the Tenpl at e. This means that instead of always getting the
same immutably paired Sour ce, the get Sour ce method on the

Dynani cDefi ni ti on gets whatever Sour ce is currently produced by the

Tenpl at e. The instance of the Dynami cDef i ni ti on does not change even
though the Sour ce that it gets is different.

The Sour ce that a Tenpl at e produces can change because the values, including
other Sour ce objects, that the Tenpl at e uses to create the Sour ce can change. A
Tenpl at e stores those values in a Met adat aSt at e. A Tenpl at e provides
methods to get the current state of the Met adat aSt at e, to get or set a value, and to
set the state. You use those methods to change the data values the Met adat aSt at e
stores.

You use a Dynam cDefi ni ti on to get the Sour ce produced by a Tenpl at e. If
your application changes the state of the values that the Tenpl at e uses to create
the Sour ce, for example, in response to end-user selections, then the application
uses the same Dynam cDef i ni ti on to get the Sour ce again, even though the
new Sour ce defines a result set different than the previous Sour ce.

10-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of Template and Related Classes

The Sour ce produced by a Tenpl at e can be the result of a series of Sour ce
operations that create other Sour ce objects, such as a series of selections, sorts,
calculations, and joins. You put the code for those operations in the

gener at eSour ce method of a Sour ceGener at or for the Tenpl at e. That
method returns the Sour ce produced by the Tenpl at e. The operations use the
data stored in the Met adat aSt at e.

You might build an extremely complex query that involves the interactions of
dynamic Sour ce objects produced by many different Tenpl at e objects. The end
result of the query building is a Sour ce that defines the entire complex query. If
you change the state of any one of the Tenpl at e objects that you used to create the
final Sour ce, then the final Sour ce represents a result set different than that of the
previous Sour ce. You can thereby modify the final query without having to
reproduce all of the operations involved in defining the query.

About Translating User Interface Elements into OLAP API Objects

You design Tenpl at e objects to represent elements of the user interface of an
application. Your Tenpl at e objects turn the selections that the end user makes into
OLAP API query-building operations that produce a Sour ce. You then create a
Cur sor to fetch the result set defined by the Sour ce from Oracle OLAP. You get
the values from the Cur sor and display them to the end user. When an end user
makes changes to the selections, you change the state of the Tenpl at e. You then
get the Sour ce produced by the Tenpl at e, create a new Cur sor, get the new
values, and display them.

Overview of Template and Related Classes

In the OLAP API, several classes work together to produce a dynamic Sour ce. In
designing a Tenpl at e, you must implement or extend the following:

« The Tenpl at e abstract class
= The Met adat aSt at e interface
= The Sour ceGener at or interface

Instances of those three classes, plus instances of other classes that Oracle OLAP
creates, work together to produce the Sour ce that the Tenpl at e defines. The

Creating Dynamic Queries 10-3

Overview of Template and Related Classes

classes that Oracle OLAP provides, which you create by calling factory methods, are
the following:

Dat aPr ovi der
Dynani cDefinition

What Is the Relationship Between the Classes That Produce a Dynamic Source?
The classes that produce a dynamic Sour ce work together as follows:

A Tenpl at e has methods that create a Dynani cDef i ni ti on and that get and
set the current state of a Met adat aSt at e. An extension to the Tenpl at e
abstract class adds methods that get and set the values of fields on the

Met adat aSt at e.

The Met adat aSt at e implementation has fields for storing the data to use in
generating the Sour ce for the Tenpl at e. When you create a new Tenpl at e,
you pass the Met adat aSt at e to the constructor of the Tenpl at e. When you
call the get Sour ce method on the Dynani cDefi ni ti on, the

Met adat aSt at e is passed to the gener at eSour ce method on the

Sour ceCener at or.

The Dat aPr ovi der is used in creating a Tenpl at e and by the
Sour ceCener at or in creating new Sour ce objects.

The Sour ceGener at or implementation has a gener at eSour ce method that
uses the current state of the data in the Met adat aSt at e to produce a Sour ce
for the Tenpl at e. You pass in the Sour ceGener at or to the

creat eDynami cDef i ni ti on method on the Tenpl at e to create a

Dynani cDefi ni ti on.

The Dynami cDef i ni ti on has a get Sour ce method that gets the Sour ce
produced by the Sour ceGener at or. The Dynami cDef i ni ti on serves as a
proxy for the immutably paired Sour ceDef i ni ti on of that Sour ce.

Figure 10-1 illustrates the relationship of the classes described in the preceding list.
The arrows on the right indicate that the Dat aPr ovi der and Met adat aSt at e
objects are passed to the Tenpl at e constructor and that the Sour ceGener at or is
passed to the cr eat eDynami cDef i ni ti on method on the Tenpl at e. The arrows
on the left indicate that a Dynani cDef i ni ti on is returned by the

creat eDynami cDef i ni ti on method and that the same Sour ce is returned by
the gener at eSour ce method on the Sour ceGener at or and the get Sour ce
method on the Dynami cDef i ni ti on.

10-4 Oracle9i OLAP Developer’s Guide to the OLAP API

Overview of Template and Related Classes

Figure 10-1 The Relationship of the Classes That Produce a Dynamic Source

DataProvider

//Methods not shown

DataProvider and
initial MetadataState

passed to Template

<<interface>>
MetadataState

constructor.

clone() : Object

Template

Template(MetadataState initialState, DataProvider dataProvider)

createDynamicDefinition(SourceGenerator sourceGenerator) :
DynamicDefinition

getCurrentState() : MetadataState

setCurrentState(MetadataState state) : void

Template creates a
DynamicDefinition based
on the SourceGenerator
passed in.

SourceGenerator passed to
createDynamicDefinition.

<<interface>>
SourceGenerator

The generateSource

method uses the

generateSource(MetadataState state) : Source MetadataState from

the Template.

Source

The generateSource method
produces the Source returned

//Methods not shown

by the getSource method on
DynamicDefinition.

DynamicDefinition

getSource() : Source

getTemplate() : Template

acceptVisitor(DataDescriptionDefinitionVisitor visitor, Object context) : Object
getCurrent() : SourceDefinition
getDataDescriptor() : DataDescriptor

getSourceGenerator() : SourceGenerator

Creating Dynamic Queries 10-5

Overview of Template and Related Classes

Template Class

You use a Tenpl at e to produce a modifiable Sour ce. A Tenpl at e has methods
for creating a Dynam cDef i ni ti on and for getting and setting the current state of
the Tenpl at e. In extending the Tenpl at e class, you add methods that provide
access to the fields on the Met adat aSt at e for the Tenpl at e. The Tenpl at e
creates a Dynami cDef i ni ti on that you use to get the Sour ce produced by the
Sour ceCener at or for the Tenpl at e.

For an example of a Tenpl at e implementation, see Example 10-1 on page 10-9.

MetadataState Interface

An implementation of the Met adat aSt at e interface stores the current state of the
values for a Tenpl at e. A Met adat aSt at e must include a cl one method that
creates a copy of the current state.

When instantiating a new Tenpl at e, you pass a Met adat aSt at e to the

Tenpl at e constructor. The Tenpl at e has methods for getting and setting the
values stored by the Met adat aSt at e. The gener at eSour ce method on the

Sour ceCener at or for the Tenpl at e uses the Met adat aSt at e when the method
produces a Sour ce for the Tenpl at e.

For an example of a Met adat aSt at e implementation, see Example 10-2 on
page 10-12.

SourceGenerator Interface

An implementation of Sour ceGener at or must include a gener at eSour ce
method, which produces a Sour ce for a Tenpl at e. A Sour ceGener at or must
produce only one type of Sour ce, such as a Bool eanSour ce, a Nunber Sour ce,
ora StringSour ce. In producing the Sour ce, the gener at eSour ce method
uses the current state of the data represented by the Met adat aSt at e for the
Tenpl at e.

To get the Sour ce produced by the gener at eSour ce method, you create a
Dynani cDefi ni ti on by passing the Sour ceGener at or to the

creat eDynani cDef i ni ti on method on the Tenpl at e. You then get the Sour ce
by calling the get Sour ce method on the Dynamni cDef i ni ti on.

A Tenpl at e can create more than one Dynami cDef i ni ti on, each with a
differently implemented Sour ceGener at or. The gener at eSour ce methods on
the different Sour ceGener at or objects use the same data, as defined by the

10-6 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template

current state of the Met adat aSt at e for the Tenpl at e, to produce Sour ce objects
that define different queries.

For an example of a Sour ceGener at or implementation, see Example 10-3 on
page 10-13.

DynamicDefinition Class

Dynani cDefi ni ti on is asubclass of Sour ceDef i ni ti on. You create a

Dynani cDefi ni ti on by calling the cr eat eDynamni cDef i ni ti on method on a
Tenpl at e and passing it a Sour ceGener at or. You get the Sour ce produced by
the Sour ceGener at or by calling the get Sour ce method on the

Dynani cDefi ni ti on.

A Dynami cDef i ni ti on created by a Tenpl at e is a proxy for the

Sour ceDefi ni ti on of the Sour ce produced by the Sour ceGener at or. The
Sour ceDefi ni ti on isimmutably paired to its Sour ce. If the state of the
Tenpl at e changes, then the Sour ce produced by the Sour ceGener at or is
different. Because the Dynani cDef i ni ti on is a proxy, you use the same
Dynani cDefi ni ti on to get the new Sour ce even though that Sour ce has a
different Sour ceDefi ni ti on.

The get Cur r ent method of a Dynani cDef i ni ti on returns the

Sour ceDefi ni ti on immutably paired to the Sour ce that the gener at eSour ce
method currently returns. For an example of the use of a Dynani cDef i ni ti on,
see Example 10-4 on page 10-15.

Designing and Implementing a Template

The design of a Tenpl at e reflects the query-building elements of the user interface
of an application. For example, suppose you want to develop an application that
allows the end user to create a query that requests a number of values from the top
or bottom of a list of values. The values are from one dimension of a measure. The
other dimensions of the measure are limited to single values.

Creating Dynamic Queries 10-7

Designing and Implementing a Template

The user interface of your application has a dialog box that allows the end user to
do the following:

Select a radio button that specifies whether the data values should be from the
top or bottom of the range of values.

Select a measure from a drop-down list of measures.

Select a number from a field. The number specifies the number of data values to
display.

Select one of the dimensions of the measure as the base of the data values to
display. For example, if the user selects the product dimension, then the query
specifies some number of products from the top or bottom of the list of
products. The list is determined by the measure and the selected values of the
other dimensions.

Click a button to bring up a Single Selections dialog box through which the end
user selects the single values for the other dimensions of the selected measure.
After selecting the values of the dimensions, the end user clicks an OK button
on the second dialog box and returns to the first dialog box.

Click an OK button to generate the query. The results of the query appear.

To generate a Sour ce that represents the query that the end user creates in the first
dialog box, you design a Tenpl at e called TopBot t onirenpl at e. You also design
asecond Tenpl at e, called Si ngl eSel ecti onTenpl at e, to create a Sour ce that
represents the end user’s selections of single values for the dimensions other than
the base dimension. The designs of your Tenpl at e objects reflect the user interface
elements of the dialog boxes.

In designing the TopBot t onTenpl at e and its Met adat aSt at e and
Sour ceCener at or, you do the following:

Create a class called TopBot t onTTenpl at e that extends Tenpl at e. To the
class, you add methods that get the current state of the Tenpl at e, set the
values specified by the user, and then set the current state of the Tenpl at e.

Create a class called TopBot t onTTenpl at eSt at e that implements

Met adat aSt at e. You provide fields on the class to store values for the
Sour ceCener at or to use in generating the Sour ce produced by the
Tenpl at e. The values are set by methods of the TopBot t onTTenpl at e.

Create a class called TopBot t onTTenpl at eGener at or that implements
Sour ceCener at or. In the gener at eSour ce method of the class, you provide
the operations that create the Sour ce specified by the end user’s selections.

10-8 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template

Using your application, an end user selects sales amount as the measure and
products as the base dimension in the first dialog box. From the Single Selections
dialog box, the end user selects customers from San Francisco, the first quarter of
2000, the direct channel, and billboard promotions as the single values for each of
the remaining dimensions.

The query that the end user has created requests the ten products that have the
highest total sales amount values of those sold through the direct sales channel to
customers from San Francisco during the first calendar quarter of the year 2000
while a billboard promotion was occurring.

For examples of implementations of the TopBot t oniTenpl at e,

TopBot t omTenpl at eSt at e, and TopBot t onTenpl at eGener at or objects, and
an example of an application that uses them, see Example 10-1, Example 10-2,
Example 10-3, and Example 10-4.

Implementing the Classes for a Template
Example 10-1 is an implementation of the TopBot t omTenpl at e class.

Example 10-1 Implementing a Template

package nyTest Package;

i mport oracl e. ol api . dat a. sour ce. Dat aPr ovi der;

i nport oracl e. ol api . dat a. source. Dynam cDefi ni tion;

i nport oracl e. ol api . dat a. sour ce. Sour ce;

i nport oracl e. ol api . data. source. Tenpl at e;

i mport oracl e. ol api.transaction. net adat aSt at eManager . Met adat aSt at e;

/**
* Creates a TopBottonienpl ateState, a TopBottoniTenpl at eGener at or,
* and a DynamicDefinition. Gets the current state of the
* TopBottonTenpl ateState and the values it stores. Sets the data val ues
* stored by the TopBottoniTenpl ateState and sets the changed state as
* the current state.
*/
public class TopBottoniTenpl ate extends Tenplate {
public static final int TOP_BOTTOM TYPE TOP = 0;
public static final int TOP_BOTTOM TYPE BOTTOM = 1;

[l Variable to store the Dynam cDefinition.
private Dynami cDefinition _definition;

Creating Dynamic Queries 10-9

Designing and Implementing a Template

/**
* Creates a TopBottonTenplate with default type and nunber val ues
* and a specified base di mension.
*/
public TopBottonienpl at e(Sour ce base, DataProvider dataProvider) {
super (new TopBot t onTenpl at eSt at e(base, TOP_BOTTOM TYPE_TCP, 0),
dat aProvi der);
/| Create the DynamicDefinition for this Tenplate. Create the
/'l TopBottonTenpl at eGenerator that the Dynani cDefinition uses.
_definition =
creat eDynami cDef i ni ti on(new TopBot t oniTenpl at eGener at or (dat aProvi der));

}

/**
* CGets the Source produced by the TopBottonifenpl at eGener at or
* fromthe Dynani cDefinition.
*/
public final Source getSource() {
return _definition. getSource();

}

/**

* Gets the Source that is the base of the values in the result set.

* Returns null if the state has no base.

*/

public Source getBase() {
TopBot t onTenpl ateState state = (TopBott onifenpl ateState) getCurrentState();
return state. base;

}

/**

* Sets a Source as the base.

*/

public void setBase(Source base) {
TopBot t onTenpl ateState state = (
state. base = base;
setCurrent State(state);

}

TopBot t onTenpl ateState) getCurrentState();

10-10 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template

/**

* CGets the Source that specifies the measure and the single

* selections fromthe dimensions other than the base.

*/

public Source getCriterion() {
TopBot t onTenpl ateState state = (TopBottonifenpl ateState) getCurrentState();
return state.criterion;

}

/**

* Specifies a Source that defines the neasure and the single val ues

* selected fromthe dinensions other than the base.

* The SingleSel ectionTenpl ate produces such a Source.

*/

public void setCriterion(Source criterion) {
TopBot t onTenpl ateState state = (TopBott onifenpl ateState) getCurrentState();
state.criterion = criterion;
setCurrent State(state);

}

/**

* CGets the type, which is either TOP_BOTTOM TYPE_TOP or

* TOP_BOTTOM TYPE_BOTTOM

*/

public int getTopBottonType() {
TopBot t onTenpl ateState state = (TopBottonifenpl ateState) getCurrentState();
return state.topBottomlype;

}

/**
* Sets the type.
*/
public void set TopBottoniType(int topBottonType) {
if ((topBottonType < TOP_BOTTOM TYPE TOP) ||
(topBottonType > TCP_BOTTOM TYPE_BOTTQM))
throw new ||| egal Argument Exception("lnval i dTopBott onilype");
TopBot t onTenpl ateState state = (TopBottonifenpl ateState) getCurrentState();
state.topBottonilype = topBottonType;
setCurrent State(state);

}

Creating Dynamic Queries 10-11

Designing and Implementing a Template

/**

* Cets the nunmber of values selected.

*/

public float getN) {
TopBot t onTenpl ateState state = (TopBottonifenpl ateState) getCurrentState();
return state. N

}

/**

* Sets the nunber of values to select.

*/

public void setN(float N) {
TopBot t onTenpl ateState state = (TopBottonifenpl ateState) getCurrentState();
state.N = N
setCurrent State(state);

}

}

Example 10-2 is an implementation of the TopBot t omTenpl at eSt at e class
described earlier.

Example 10-2 Implementing a MetadataState
package nyTest Package;

inport oracle. ol api . data. source. Sour ce;
inport oracle.ol api.transaction. net adat aSt at eManager . Met adat aSt at e;

/**
* Stores data that can be changed by its TopBottonTenpl ate.
* The data is used by a TopBottonTenpl at eGenerator in producing
* a Source for the TopBottoniTenpl at e.
*/
public final class TopBottonienpl at eSt at e
inpl ements C oneable, MetadataState {
public int topBottonType;
public float N
public Source criterion;
public Source base;

10-12 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template

/**

* Creates a TopBottonienpl at eSt at e.

*/

public TopBottonienpl at eSt at e(Sour ce base, int topBottonType, float N {
this.base = base;
this.topBottonType = topBottonType;
this.N=N

}

/**

* Creates a copy of this TopBottoniTenpl ateSt at e.

*/
public final Ohject clone() {
try {
return super.clone();
}
cat ch(d oneNot Support edException e) {
return null;
}
}

}

Example 10-3 is an implementation of the TopBot t onmTenpl at eGener at or class
described earlier.

Example 10-3 Implementing a SourceGenerator
package nyTest Package;

inport oracle. ol api . data. source. Dat aProvi der;
inport oracle. ol api . data. source. Sour ce;

inport oracle. ol api . dat a. source. Sour ceGener at or;
inport java.lang. Math;

/**

* Produces a Source for a TopBottonTenpl ate based on the data
* val ues of a TopBottoniTenpl at eSt at e.

*/
public final class TopBottonTenpl at eGener at or

i npl ements Sour ceGenerat or {
/] Store the DataProvider.
private DataProvider _dataProvider;

Creating Dynamic Queries 10-13

Designing and Implementing a Template

/**

* Creates a TopBottonifenpl at eGenerator.

*/

public TopBott onifenpl at eGener at or (Dat aProvi der dat aProvi der) {
_dat aProvi der = dataProvider;

}

/**

* CGenerates a Source for a TopBottonienpl ate using the current
* state of the data values stored by the TopBottonTenpl ateState.
*/
public Source generateSource(MtadataState state) {
TopBot t onTenpl ateState cast State = (TopBottonTenpl at eSt at e) st ate;
if (castState.criterion == null)
t hrow new Nul | Poi nt er Exception("Criteri onParameterM ssing");
Sour ce sortedBase = nul | ;
if (castState.topBottonType == TOP_BOTTOM TYPE_TOP)
sortedBase = cast State. base. sort Descendi ng(castState.criterion);
el se
sortedBase = cast State. base. sort Ascendi ng(castState.criterion);
return sortedBase.interval (1, Math.round(castState.N));

Implementing an Application That Uses Templates

After you have stored the selections made by the end user in the Met adat aSt at e
for the Tenpl at e, use the get Sour ce method on the Dynam cDef i ni ti on to get
the Sour ce created by the Tenpl at e. This section provides an example of an
application that uses the TopBot t omTenpl at e described in Example 10-1. For
brevity, the code does not contain much exception handling.

The Cont ext class used in the example has methods that do the following:
« Connects to Oracle OLAP.
« Opens a database.

« Gets metadata objects for the measure and the dimensions selected by the end
user.

« Gets primary Sour ce objects from the metadata objects.

10-14 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template

The example does the following:

« Gets primary Sour ce objects from the Cont ext .

« Createsa Si ngl eSel ecti onTenpl at e for selecting single values from some
of the dimensions of the measure.

« Creates a TopBot t oniTenpl at e and stores selections made by the end user.

« Gets the Sour ce produced by the TopBot t omTenpl at e.

= Creates a Cur sor for that Sour ce.

« Gets the values from the Cur sor and displays them.

Example 10-4 does not include the code for interacting with the end user or for
implementing the Si ngl eSel ecti onTenpl at e or the Met adat aSt at e and
Sour ceCener at or objects for the Si ngl eSel ecti onTenpl at e. The example
class has a method for creating a Cur sor and a method for printing the values of
the Cur sor. All other operations occur in the mai n method. The Cont ext object
supplies the connection to the database, the Dat aPr ovi der and the

Transacti onProvi der, and primary Sour ce objects.

Example 10-4 Getting the Source Produced by the Template

package nyTest Package;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

oracle.ol api.
oracl e.ol api.

oracl e. ol api
oracl e. ol api

oracle.ol api.

oracl e. ol api
oracl e. ol api
oracl e. ol api

oracl e.ol api.

dat a. source.
dat a. sour ce.
. dat a. source.
. dat a. source.
dat a. cur sor.
. dat a. source.
. data. cursor.
. data. cursor.
transaction.

myTest Package. Cont ext ;
myTest Package. TopBot t onTenpl at e;
myTest Package. Si ngl eSel ecti onTenpl at e;

Sour ce;

StringSource;

Dat aProvi der;

Cur sor Manager Speci fi cati on;
Cur sor Manager ;

Speci fi edCur sor Manager ;
Cursor;

Val ueCur sor ;

Not Commi t t abl eExcepti on;

Creating Dynamic Queries 10-15

Designing and Implementing a Template

/**
* Creates a query that specifies a nunber of values fromthe top or
* bottomof a list of values fromone of the dimensions of a measure.
* The list is determned by the measure and by single val ues from
* the other dimensions of the neasure. Displays the results of the
*oquery.
*/
public class TopBottonTest {

/**

* Prints the values of the Cursor.

*/

public static void printCursor(Cursor cursor) {

/1 Because the result is a single set of values with no outputs,
/] cast the Cursor to a ValueCursor and print out the val ues.
Val ueCur sor val ueCursor = (Val ueCursor) cursor;

int i =1;
do {
Systemout.printin(i +". " + valueCursor.getCurrentVal ue());
i ++;
} while(val ueCursor.next());
}
/**

* Creates a CQursor.
*/
public static void createCursor(Source choice, DataProvider dp) {
Cur sor Manager Speci ficati on cursorhgr Spec =
dp. cr eat eCur sor Manager Speci fi cati on(choi ce);
Speci fi edCur sor Manager cur sor Manager =
dp. creat eCur sor Manager (cur sor Mhgr Spec) ;
Cursor cursor = cursorMnager. createCursor();
/1 Print the values of the Cursor.
printCursor(cursor);
Il Cose the CursorManager.
cur sor Manager . cl ose();

10-16 Oracle9i OLAP Developer’s Guide to the OLAP API

Designing and Implementing a Template

public static void main(String[] args) {

Il Create a Context object and fromit get the DataProvider and
/'l the primary Source objects for the neasure and the dinensions.
Context context = new Context();
Dat aProvi der dp = context. get Dat aProvider();
Source[] sources = context.getPrimarySourcesByName(
new String[]{"SALES_AMOUNT", "PRODUCTS_DI M, "CUSTOMVERS DI M',
"CHANNELS DIM', "TIMES DIM', "PROMOTIONS DIM'});
Sour ce sal esAnount = sources[0];
StringSource product = (StringSource)sources[1];
StringSource custoner = (StringSource)sources|?2];
StringSource channel = (StringSource)sources[3];
StringSource time = (StringSource)sources[4];
StringSource prono = (StringSource)sources[5];

Il Create a SingleSelectionTenplate to produce a Source that
/'l specifies a single value for each of the dinensions other
/1 than the base for the selected neasure.
Singl eSel ectionTenpl ate singl eSel ections =

new Singl eSel ecti onTenpl at e(sal esAnount, dp);
singl eSel ecti ons. addSel ection((StringSource) customner,

"San Francisco");

singl eSel ecti ons. addSel ection((StringSource) time, "2000-QL");
Il Sis the direct sales channel
singl eSel ecti ons. addSel ection((StringSource) channel, "S');
singl eSel ecti ons. addSel ection((StringSource) prono, "billboard");

Il Create a TopBottoniTenpl ate and set the paraneters selected by
/1 the end user, including a dinmension as the base and the

/1 Source produced by the SingleSelectionTenplate as the

/'l criterion.

TopBot t onTenpl at e t opNBott om = new TopBot t oniTenpl at e(product, dp);
t opNBot t om set TopBot t oniType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_TOP) ;
t opNBot t om set N(15) ;

topNBott om set Criterion(singleSel ections. get Source());

Creating Dynamic Queries 10-17

Designing and Implementing a Template

/1 Wth nmethods on the TransactionProvider, prepare and commt
/1 the transaction.

try{
cont ext . get Transact i onProvi der (). prepareCurrent Transaction();
}

cat ch(Not Commi tt abl eException e){
Systemout. println("Cannot prepare current Transaction. " +
"Caught exception " +e +".");
}

cont ext . get Transact i onProvi der (). comit Current Transaction();
/1 Get the Source produced by the TopBott onifenpl at e,

/] create a Cursor for it and display the results.
creat eCur sor (t opNBot t om get Source(), dp);

10-18 Oracle9i OLAP Developer’s Guide to the OLAP API

A

Setting Up the Development Environment

This appendix describes the development environment for creating applications
that use the OLAP API.

This appendix includes the following topics:

« Overview

« Required Software

= Setting Up on Your Application Development Computer

« Considerations for Deploying Your Application

Setting Up the Development Environment A-1

Overview

Overview

The Oracle installation, with the OLAP option, provides all of the Oracle OLAP
software that is required in the database and on its host computer. In addition, the
Client installation provides j ar files that are needed on the application
development computer for creating an OLAP API client application.

As an application developer, you must complete the Client installation with the
Administrator option, which copies these j ar files to the computer on which you
will write your Java application. In addition, you must ensure that supporting JDBC
and Java files are available on the development computer.

Required Software
The application development computer must have the following files:

« OLAP APIj ar files, which represent the OLAP API client software. The Oracle
Client installation with the Administrator option provides these files, along
with the OLAP API Javadoc.

« Oracle JDBC (Java Database Connectivity) j ar files, which provide
communications between the application and the Oracle database. The Oracle
Client installation with the Administrator option provides JDBC. For additional
information about using the Oracle implementation of JDBC, see the Oracle
Technology Web site at

http://otn.oracle.conl

You must use Oracle’s implementation, not a product from another vender.

« The Java Development Kit (JDK) version 1.2. The Oracle installation does not
provide the JDK. For information about obtaining and using it, see the Sun
Microsystems Java Web site at

http://java. sun.com
If you are using Oracle JDeveloper as your development environment, JDBC and

the JDK are already installed on your computer. However, ensure that you are using
the correct version of the JDK in JDeveloper.

A-2 Oracle9i OLAP Developer’s Guide to the OLAP API

Setting Up on Your Application Development Computer

Setting Up on Your Application Development Computer

Installing the jar files

To make the j ar files accessible in your development environment, take the
following steps:

1. Onyour application development computer, start the Oracle Client Software
CD for your platform.

2. Select the Administrator installation type, and complete the installation as
directed.

3. Find the OLAP APl j ar files on your computer where the installation
procedure copied them. Look in the ol ap/ ol api /| i b subdirectory of the
Oracle home directory.

4. Make the OLAP APl j ar files accessible to the Java integrated development
environment (IDE) that you are using. An example of an IDE is Oracle
JDeveloper.

5. Edit your Java CLASSPATH environment variable to include the paths of the
files on your computer.

6. Inthe IDE, make any specifications that are required to make the files accessible
for importing classes into your programs.

Installing the OLAP API Javadoc

If you want to access the OLAP API Javadoc on your application development
computer, locate the j ar files that contain them on your computer where the
installation procedure copied them. Look in the ol ap/ ol api / doc subdirectory of
the Oracle home directory. Consult the r eadmne. t xt file in that directory for
instructions on how to install the files and access them in your Web browser.

Using a Sample Program

If you want to examine or run a sample Java program that uses the OLAP API, you
can obtain it from the Oracle MetaLink (iSupport) Web site. To get the program, list
the patches for the Oracle OLAP product in the Oracle Server product family on the
Solaris or Windows NT platform. Search for a patch named "OLAP API Sample
Program," and download the file.

Setting Up the Development Environment A-3

Considerations for Deploying Your Application

Considerations for Deploying Your Application

When you deploy your application, ensure that the following are installed on each
computer that will run the OLAP API:

« The OLAP APIj ar files
= Oracle JDBC
= Alava Runtime Environment (JRE)

For JDBC and the JRE, ensure that the installed version is compatible with the
version that you used when you developed your application.

A-4 Oracle9i OLAP Developer’s Guide to the OLAP API

A

aggregation functions, creating, 6-29
aggregation methods
explanation of, 6-24

list of, 6-25
using, 6-25, 6-26
alias method

description, 5-7

example, 6-16
ancestors attributes

example of getting, 4-8

for MdmHierarchy objects, 2-12

for MdmLevel objects, 2-10
application

deployment, 1-12

development steps, 1-8

tasks performed by, 1-12
asymmetric result set, Cursor positions in an, 8-20
attributes

ancestors, 2-10, 2-12

definition, 1-3

in OLAP metadata, 2-3

MdmAttribute objects, 2-23

parent, 2-10, 2-12

region, 2-12

Source objects for, 5-7

B

Boolean OLAP API data type, 2-25, 5-9, 5-10

Index

C

CompoundCursor objects
getting children of, example, 9-5
navigating for a crosstab view, example, 9-12,
9-14
navigating for a table view, example, 9-10
positions of, 8-17
Connection objects
example of closing, 3-5
example of creating, 3-2
example of getting an existing one, 3-4
connections
closing, 3-5
getting existing ones, 3-4
prerequisites, 3-2
steps for establishing, 3-2
constant Source objects
definition, 5-5
example, 5-8
crosstab view
navigating Cursor for, example, 9-12,9-14
current position in a Cursor, definition, 8-16
Cursor class
architecture, advantages of, 8-2
hierarchy, 8-4

Index-1

Cursor objects
created in the current Transaction, 8-4
creating, example, 9-2
current position, definition, 8-16
extent calculation, example, 9-21
extent definition, 8-25
faster and slower varying components, 8-6
fetch block definition, 8-27
fetch size definition, 8-27
getting children of, example, 9-5
getting the values of, examples, 9-3
parent starting and ending position, 8-22
position, 8-16
Source objects for which you cannot create, 8-3
span, definition, 8-22
specifying fetch size for a crosstab view,
example, 9-26
specifying fetch size for a table view,
example, 9-25
specifying the behavior of, 8-8, 9-19
starting and ending positions of a value, example
of calculating, 9-21
structure, 8-5
Cursorlnput class, 8-9, 8-11
CursorManager class, 8-12
hierarchy, 8-13
CursorManager objects
closing before rolling back a Transaction, 7-9
creating, example, 9-2
updating the CursorManagerSpecification, 8-12
CursorManagerSpecification class, 8-9
creating object, example, 9-2
CursorManagerUpdateEvent class, 8-15
CursorManagerUpdateL.istener class, 8-15
CursorSpecification class, 8-10
CursorSpecification objects
getting from a CursorManagerSpecification,
example, 9-19

D

data store
definition, 1-4
exploring, 4-2
scope of, 4-2

Index-2

data type
of MDM metadata objects, 2-24
of MdmSource objects, 2-26
data warehouse, 1-3
DataProvider objects
creating, 3-4
needed to create MdmMetadataProvider,
Date OLAP API data type, 2-25,5-9, 5-10
default hierarchy
example of getting, 4-8
retrieving, 6-13
derived Source objects
definition, 5-5
description, 5-8
introduced, 5-8
dimensions
definition, 1-2
in OLAP metadata, 2-3
MdmDimension objects, 2-8
Source objects for, 5-6
distinct method
description, 5-7
documentation, A-3
Double OLAP API data type, 2-25,5-9, 5-10
drilling down a hierarchy, 6-15
DriverManager objects, 3-3
dynamic queries, 10-2
DynamicDefinition class, 10-7

E

43

elements
of a level MdmHierarchy, 2-13
of a union MdmHierarchy, 2-16
of an MdmAttribute, 2-23
of an MdmLevel, 2-11
of an MdmListDimension, 2-18
of an MdmMeasure, 2-20
ranking, 6-10 to 6-12
selecting by value, 6-2
sorting, 6-10to 6-12
Empty OLAP API data type, 2-26,5-9
ExpressTransactionProvider class, 7-8

extent of a Cursor
definition, 8-25
example of calculating, 9-21
use of, 8-26

extract method, description, 5-7

F

faster varying Cursor components, 8-6
fetch block of a Cursor

definition, 8-27

determining shape of, 8-29

sharing, 8-29
fetch size of a Cursor

definition, 8-27

example of specifying, 9-25, 9-26

reasons for specifying, 8-27

specifying, 8-27
Float OLAP API data type, 2-25,5-9, 5-10
fundamental Source objects

creating, 5-10

definition, 5-5
FundamentalMetadataObject class, 2-24
FundamentalMetadataProvider class, 2-24

G

getSource method
for creating primary Source objects, 5-5to 5-7
for getting Source produced by a Template,
example, 10-14
in DynamicDefinition class, 10-2, 10-7
in MdmSource class, 2-7
simple example, 4-9

H

hierarchies
creating Source objects for, 6-13
definition, 1-2

drilling down, 6-15

in OLAP metadata, 2-3
MdmHierarchy objects, 2-12
node and leaf terminology, 2-16
retrieving default, 4-8,6-13

input-output order

determining, 6-4, 6-5

effect on Source structure, 6-4, 6-5
inputs

changing to outputs, 6-31t06-5
installation for application development, A-2
Integer OLAP API data type, 2-25,5-9, 5-10

J

Java Development Kit, version required, A-2
Javadoc, A-3
JDBC

Connection objects, 3-3

DriverManager objects, 3-3

installing, A-2
loading drivers, 3-3
join method

changing inputs to outputs, 6-3
example, 6-4 to 6-5, 6-6, 6-16

L

leaf in a hierarchy, 2-16
level MdmHierarchy, 2-12
levels

definition, 1-2

in OLAP metadata, 2-3

MdmLevel objects, 2-10
list Source objects, 5-5

M

MDM. See multidimensional metadata model
MdmAttribute objects
creating Source objects for, 5-7
description, 2-23
elements, 2-23
example of getting, 4-8

Index-3

MdmDimension objects
description, 2-8
example of getting related objects, 4-7
introduction, 1-6
regions, 2-9
related MdmAttribute objects, 2-9
related MdmDimensionDefinition objects,
related MdmDimensionMemberType
objects, 2-10
MdmDimensionDefinition objects
description, 2-9
example of getting, 4-8
MdmDimensionMemberType objects
description, 2-10
example of getting, 4-8
MdmHierarchy objects
creating Source objects for, 6-13
description, 2-12
elements of a level MdmHierarchy, 2-13
elements of a union MdmHierarchy, 2-16
level type description, 2-12
union type description, 2-12
value type description, 2-12
MdmLevel objects
description, 2-10
elements, 2-11
MdmListDimension objects
description, 2-18
elements, 2-18
MdmMeasure objects
description, 2-19
elements, 2-20
example of getting their dimensions, 4-7
introduction, 1-6
kinds of values, 2-20
MdmMetadataProvider objects
creating, 4-4
description, 4-3
introduction, 1-6
MdmObiject class, 2-5

Index-4

MdmSchema objects
description, 2-6
getting contents of, 4-6
getting the root, 4-6
introduction, 1-6
root, 2-6,4-4
MdmSource objects, 2-7
measure folders
in OLAP metadata, 2-4
mapped to MdmSchema objects, 2-6
measure MdmDimension objects, 4-6
measures
definition, 1-2
in OLAP metadata, 2-3
MdmMeasure objects, 2-19
Source objects for, 5-7
metadata
definition, 1-3
discovering, 4-2
distinguished from data, 1-5
mapping OLAP metadata to MDM
metadata, 2-6

preparation for OLAP API, 1-3,2-2

sample code for discovering, 4-9to 4-26
MetadataState class, 10-6

example of implementation, 10-12

multidimensional metadata model (MDM)
description, 2-2
introduction, 1-5

N

nested outputs
getting values from a Cursor with, example,
of a Source, definition, 9-3
node in a hierarchy, 2-16
Null OLAP API data type, 5-9
Number OLAP API data type,
numeric comparisons
performing, 6-22
numeric functions
creating, 6-27
numeric methods
using, 6-231to0 6-29

2-26, 5-9, 5-10

9-8

numeric operations
example, 6-20, 6-21
list of methods for, 6-19, 6-22
performing, 6-19 to 6-21

O

OLAP API
definition, 1-2
installing for application development, A-2
software components, 1-7
OLAP API data types
for MDM metadata objects, 2-24
objects that represent, 5-9, 5-10
OLAP Metadata API, 2-2
OLAP metadata objects, 2-2
outputs
changing from inputs, 6-3 to 6-5
getting from a CompoundCursor, example, 9-5
getting from a CompoundCursorSpecification,
example, 9-19
getting nested, example, 9-8
in a CompoundCursor, 8-5, 8-23, 8-25
positions of, 8-17

P

parameterized selections
creating, 6-27
parameters
creating, 6-27
parent attributes
example of getting, 4-8
for MdmHierarchy objects, 2-12
for MdmLevel objects, 2-10
parent-child relationships
creating Source objects for, 6-14
in hierarchies, 2-3, 2-8, 2-10, 2-12, 2-16
position
parent starting and ending, 8-22
position method
description, 5-7
example, 6-8
positions
CompoundCursor, 8-17

Cursor, 8-16
of elements, 6-9
ValueCursor, 8-16

primary Source objects
definition, 5-5
for parent-child relationship, 6-14
from MdmHierarchy objects, 6-13
from MdmSource objects, 2-7
getting, 5-5to 5-7
result of getSource method, 4-9
structure, 5-6, 5-7

primitive methods, 5-7,5-8

Q

queries
dynamic, 10-2
Source objects that are not, 8-3
steps in retrieving results of, 9-2

R

range Source objects, 5-5
ranking elements, 6-10 to 6-12
read Transaction object, 7-3
region attributes

example of getting, 4-8

for MdmHierarchy objects, 2-12
regions

example of getting, 4-8

of an MdmDimension, 2-9
relationships

Source objects for, 6-14
root MdmSchema

description, 2-6

function of, 4-4

obtaining, 4-6

S

Sales History schema
accessing through sample program, A-3
list of metadata objects in, 4-16
metadata discovery program, 4-9
sample program, A-3

Index-5

selecting elements
based on element values, 6-2to 6-6
based on hierarchical position, 6-12 to 6-15
based on rank, 6-6to 6-12
selectValue method
example, 6-6
self-relation
Source object for, 6-16
Short OLAP API data type, 2-25, 5-9, 5-10
slower varying Cursor components, 8-6, 8-20
software provided, A-2
sorting elements, 6-10 to 6-12
Source class
convenience methods, 5-8
primitive methods, 5-7,5-8
shortcut methods, 5-8
Source methods

alias, 5-7

distinct, 5-7
extract, 5-7
position, 5-7
string, 6-29 to 6-31
value, 5-7

Source objects

active in a Transaction object, 7-2, 8-4

constant, 5-5

derived, 5-5

for attributes, 5-7

for measures, 5-7

for relationships, 6-14

for self-relation, 6-16

fundamental, 5-5

getting, 5-5to 5-7

getting a modifiable Source from a

DynamicDefinition, 10-7

list, 5-5

modifiable, 10-2

primary, 5-5

range, 5-5

structure, 5-6, 5-7
SourceGenerator class, 10-6

example of implementation, 10-13
span of a value in a Cursor

definition, 8-22,9-21

Index-6

SpecifiedCursorManager objects
closing, 8-12
returned by the createCursorManager
method, 8-12
string methods, 6-29 to 6-31
String OLAP API data type, 2-25, 5-9, 5-10
subschemas
description, 4-4
getting contents, 4-6

T

table view

navigating Cursor for, example, 9-10
Template class, 10-6

designing, 10-7

example of implementation, 10-9
Template objects

benefits of using, 1-10

classes used to create, 10-3

for creating modifiable Source objects, 10-2

introductory example, 1-11

relationship of classes producing a dynamic

Source, 10-4

Transaction objects used in, 7-5
Transaction objects

child read and write, 7-3

committing, 7-3

creating a Cursor in the current, 8-4

current, 7-2

example of using child, 7-9

getting the current, 7-8

preparing, 7-3

read, 7-3

rolling back, 7-7

setting the current, 7-8

using in Template classes, 7-5

write, 7-3
TransactionProvider interface, 7-8
TransactionProvider objects

creating, 3-4
needed to create MdmMetadataProvider, 4-3
tuple

definition, 8-17
in a Cursor, example, 9-9

type of an MDM object
defined, 2-28
obtaining, 2-29

U

union MdmHierarchy, 2-12

\Y,

value MdmHierarchy, 2-12
value method, 5-7
Value OLAP API data type, 2-26, 5-9, 5-10
ValueCursor objects
getting from a parent CompoundCursor,
example, 9-5
getting values from, example, 9-4,9-5
position, 8-16
virtual Cursor
definition, 8-27
Void OLAP API data type, 2-26

wW

write Transaction object, 7-3

Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	1 Introduction to the OLAP API
	OLAP API Overview
	Multidimensional Concepts And the OLAP API
	What Type Of Data Can an Application Access Through the OLAP API?
	What Can an Application Do with the OLAP API?
	Context for OLAP API development

	Access to Data and Metadata Through the OLAP API
	MDM Model in the OLAP API
	Access to Data Through the OLAP API
	User Connection Requirements

	OLAP API Client Software
	Software Configurations
	Requirements for Using the OLAP API Client Software

	Developing an OLAP API Application
	Step 1: Decide on General Design Issues
	Step 2: Decide on Requirements for End-User Queries
	Step 3: Design OLAP API Template Objects That Create End-User Queries
	Step 4: Write and Test the Java Code for the Application
	Step 5: Deploy the Application to users

	Tasks That an OLAP API Application Performs
	Task 1: Connect to the Data Store
	Task 2: Discover the Available Metadata
	Task 3: Select and Calculate Data Through Queries
	Task 4: Retrieve Query Results

	2 Understanding OLAP API Metadata
	Overview of the OLAP API Metadata
	Data Preparation
	Metadata Preparation

	OLAP Metadata Objects
	Dimensions in the OLAP Metadata
	Measures in the OLAP Metadata
	Measure Folders in the OLAP Metadata

	Overview of MDM Metadata Objects in the OLAP API
	Mapping of OLAP Metadata Objects to MDM objects
	MdmSchema Class
	MdmSource Class

	MdmDimension Class
	Description of an MdmDimension
	Information Held by an MdmDimensionDefinition
	Information Held by an MdmDimensionMemberType

	MdmLevel Class
	Description of an MdmLevel
	Elements of an MdmLevel

	MdmHierarchy Class
	Description of an MdmHierarchy
	Elements of a Level MdmHierarchy
	Level MdmHierarchy for Calendar Year
	Level MdmHierarchy for Fiscal Year
	Terminology: Nodes and leaves

	Elements of a union MdmHierarchy
	Distinct elements in the regions of a union MdmHierarchy
	Union MdmHierarchy for Time

	MdmListDimension Class
	Description of an MdmListDimension
	Elements of an MdmListDimension

	MdmMeasure Class
	Description of an MdmMeasure
	Elements of an MdmMeasure
	MdmMeasure Elements Are Determined by MdmDimension Elements
	MdmMeasure with two MdmDimension objects

	MdmAttribute Class
	Description of an MdmAttribute
	Elements of an MdmAttribute

	Data Type and Type of MDM Metadata Objects
	Data Type of MDM Metadata Objects
	Getting the Data Type of an MdmSource
	Type of MDM Metadata Objects
	Getting the Type of an MdmSource

	3 Connecting to a Data Store
	Overview of the Connection Process
	Connection Steps
	Prerequisites for Connecting

	Establishing a Connection
	Step 1: Load the JDBC Driver
	Step 2: Get a Connection from the DriverManager
	Step 3: Create a TransactionProvider
	Step 4: Create a DataProvider

	Getting an Existing Connection
	Executing DML Commands Through the Connection
	Closing a Connection

	4 Discovering the Available Metadata
	Overview of the Procedure for Discovering Metadata
	MDM Metadata
	Purpose of Discovering the Metadata
	Steps in Discovering the Metadata
	Discovering Metadata and Making Queries

	Creating an MdmMetadataProvider
	Getting the Root MdmSchema
	Function of the Root MdmSchema
	Calling the getRootSchema Method

	Getting the Contents of the Root MdmSchema
	Getting the MdmDimension Objects in an MdmSchema
	Getting the Subschemas in an MdmSchema
	Getting the Contents of Subschemas
	Getting the Measure MdmDimension and Its Contents

	Getting the Characteristics of Metadata Objects
	Getting the MdmDimension Objects for an MdmMeasure
	Getting the Related Objects for an MdmDimension

	Getting the Source for a Metadata Object
	Sample Code for Discovering Metadata
	Code for the SampleMetadataDiscoverer Program
	Output from the SampleMetadataDiscoverer Program

	5 Introduction to Querying
	Characteristics of Source Objects
	Source Type
	Source Structure: Inputs and Outputs

	Creating Source Objects
	Getting Source Objects From Metadata Objects
	Creating a Source from MdmDimension, MdmHierarchy, or MdmLevel Objects
	Creating a Source from MdmMeasure or MdmAttribute Objects

	Creating New Source Objects Using Source Methods
	Creating Simple Nondimensional Source Objects
	Creating Source Objects that Represent OLAP API Data Types

	6 Making Queries Using Source Methods
	Selecting Based on Source Value
	Selecting Based on Output Values
	Using the join Method to Change Inputs to Outputs
	Effect of Input-Output Order on Source Structure
	Changing Inputs to Outputs with timesDim as the First Output Created
	Changing Inputs to Outputs with productsDim as the First Output Created

	Selecting Based on Output Values and Source Values: Example

	Selecting Values Based on Rank
	Finding the Position of Values
	Finding the Positions of Values When There are no Inputs or Outputs
	Finding the Positions of Values When There Are Outputs and Inputs

	Values Ranked in Ascending or Descending Order
	Values Ranked in the Same or the Opposite Order as the Values of Another Source
	Minimum Ranking
	Maximum Ranking
	Average Ranking
	Packed Ranking
	Percentile Ranking
	nTile Ranking

	Selecting Values Based on Hierarchical Position
	Creating a Primary Source that Represents a Default Hierarchy
	Creating a Primary Source for the Parent-Child Relationship
	Creating Source Objects for Other Relationships
	Drilling Down a Hierarchy: Example

	Creating a Source that is a Self-Relation
	Performing Numerical Analysis
	Performing Numerical Operations
	Subtracting the Same Value From all Values: Example
	Subtracting the Values of one NumberSource from Another: Example

	Making Numerical Comparisons
	Working with Standard Numerical Functions
	Working with Aggregation Methods
	Calculating the Sum When a Source Has only Outputs: Example
	Calculating the Sum When a Source Has an Output and an Input: Example

	Creating Your own Numerical Functions
	Creating Your own Standard Function: Example
	Creating Your own Aggregation Function: Example

	Manipulating String Values

	7 Using a TransactionProvider
	About Creating a Query in a Transaction
	Types of Transaction Objects
	Preparing and Committing a Transaction
	About Transaction and Template Objects
	Beginning a Child Transaction
	About Rolling Back a Transaction
	Getting and Setting the Current Transaction

	Using TransactionProvider Objects

	8 Understanding Cursor Classes and Concepts
	Overview of the OLAP API Cursor Objects
	Sources For Which You Cannot Create a Cursor
	Cursor Objects and Transaction Objects

	Cursor Class
	Structure of a Cursor
	Specifying the Behavior of a Cursor

	CursorManagerSpecification Class
	CursorSpecification Class
	CursorInput Class
	CursorManager Class
	Updating the CursorManagerSpecification for a CursorManager
	CursorManager Class Hierarchy
	CursorManagerUpdateListener Class
	CursorManagerUpdateEvent Class

	About Cursor Positions and Extent
	Positions of a ValueCursor
	Positions of a CompoundCursor
	About the Parent Starting and Ending Positions in a Cursor
	What is the Extent of a Cursor?

	About Fetch Sizes and Fetch Blocks
	About Determining the Shape of a Fetch Block
	About Sharing Fetch Blocks

	9 Retrieving Query Results
	Retrieving the Results of a Query
	Getting Values from a Cursor

	Navigating a CompoundCursor for Different Displays of Data
	Specifying the Behavior of a Cursor
	Calculating Extent and Starting and Ending Positions of a Value
	Specifying Fetch Sizes and Fetch Blocks

	10 Creating Dynamic Queries
	About Template Objects
	About Creating a Dynamic Source
	About Translating User Interface Elements into OLAP API Objects

	Overview of Template and Related Classes
	What Is the Relationship Between the Classes That Produce a Dynamic Source?
	Template Class
	MetadataState Interface
	SourceGenerator Interface
	DynamicDefinition Class

	Designing and Implementing a Template
	Implementing the Classes for a Template
	Implementing an Application That Uses Templates

	A Setting Up the Development Environment
	Overview
	Required Software
	Setting Up on Your Application Development Computer
	Installing the jar files
	Installing the OLAP API Javadoc
	Using a Sample Program

	Considerations for Deploying Your Application

	Index

