
Oracle Label Security

Administrator’s Guide

Release 2 (9.2)

March 2002

Part No. A96578-01

Oracle Label Security Administrator’s Guide, Release 2 (9.2)

Part No. A96578-01

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.

Author: Jeff Levinger

Contributing Author: Rita Moran

Contributors: Paul Needham, Rae Burns, Gary Murphy, Patrick Sack, Vikram Pesati, Shiu Wong,
Ramprasad Sripada, Krishnamurthy Raghuraman, Douglas Kemp, Srvidya Tata

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, Oracle Store, PL/SQL, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments .. xvii

Preface .. xix

Audience .. xx
Organization.. xx
Related Documentation ... xxii
Conventions.. xxiii
Documentation Accessibility ... xxvi

1 Introduction to Oracle Label Security

Computer Security and Data Access Controls .. 1-2
Introduction to Computer Security.. 1-2
Oracle Label Security and Security Standards ... 1-3
Security Policies .. 1-3
Access Control... 1-4

Discretionary Access Control .. 1-4
Label-Based Access Control... 1-5
How Label-Based Access Control Works with Discretionary Access Control............. 1-5

Oracle Label Security Architecture ... 1-6
Oracle9i Enterprise Edition: Virtual Private Database Technology...................................... 1-6
Oracle Label Security: An Out-of-the-Box VPD Policy... 1-7

Features of Oracle Label Security .. 1-8
Overview of Oracle Label Security Policy Functionality.. 1-9
Label Policy Framework Features.. 1-10

iv

Data Labels ... 1-10
Label Authorizations... 1-11
Policy Privileges... 1-11
Policy Enforcement Options .. 1-11
Summary: Four Aspects of Label-Based Row Access .. 1-12

Auditing Features ... 1-12
Oracle Label Security Distributed Capabilities .. 1-12

2 Understanding Data Labels and User Labels

Introduction to Label-Based Security ... 2-2
Label Components .. 2-3

Label Component Definitions and Valid Characters .. 2-3
Levels .. 2-4
Compartments... 2-6
Groups .. 2-8
Industry Examples of Levels, Compartments, and Groups ... 2-10

Label Syntax and Type ... 2-11
How Data Labels and User Labels Work Together... 2-12
Administering Labels... 2-14

3 Understanding Access Controls and Privileges

Introduction to Access Mediation.. 3-2
Understanding Session Label and Row Label .. 3-3

The Session Label.. 3-3
The Row Label... 3-3
Session Label Example ... 3-4

Understanding User Authorizations ... 3-5
Authorizations Set by the Administrator.. 3-5

Authorized Levels ... 3-6
Authorized Compartments .. 3-7
Authorized Groups ... 3-8

Computed Session Labels.. 3-9
How Labels Are Evaluated for Access Mediation .. 3-10

Introduction to Read/Write Access ... 3-10
Difference Between Read and Write Operations .. 3-10

v

Propagation of Read/Write Authorizations on Groups.. 3-11
The Oracle Label Security Algorithm for Read Access ... 3-13
The Oracle Label Security Algorithm for Write Access .. 3-15

Using Oracle Label Security Privileges .. 3-18
Privileges Defined by Oracle Label Security Policies.. 3-18
Special Access Privileges ... 3-19

READ... 3-19
FULL.. 3-19
COMPACCESS .. 3-20
PROFILE_ACCESS.. 3-21

Special Row Label Privileges .. 3-22
WRITEUP ... 3-22
WRITEDOWN ... 3-22
WRITEACROSS ... 3-22

System Privileges, Object Privileges, and Policy Privileges... 3-23
Access Mediation and Views .. 3-23
Access Mediation and Program Unit Execution .. 3-24
Access Mediation and Policy Enforcement Options ... 3-25

Multiple Oracle Label Security Policies... 3-26
Multiple Oracle Label Security Policies in a Single Database....................................... 3-26
Multiple Oracle Label Security Policies in a Distributed Environment 3-26

4 Working with Labeled Data

The Policy Label Column and Label Tags ... 4-2
The Policy Label Column .. 4-2

Hiding the Policy Label Column... 4-2
Example 1: Numeric Column Datatype (NUMBER).. 4-3
Example 2: Numeric Column Datatype with Hidden Column...................................... 4-3

Label Tags .. 4-4
Manually Defining Label Tags to Order Labels.. 4-4
Manually Defining Label Tags to Manipulate Data... 4-5
Automatically Generated Label Tags ... 4-6

Presenting the Label... 4-7
Converting a Character String to a Label Tag, with CHAR_TO_LABEL 4-7
Converting a Label Tag to a Character String, with LABEL_TO_CHAR 4-8

vi

LABEL_TO_CHAR Examples ... 4-8
Retrieving All Columns from a Table When Policy Label Column Is Hidden 4-9

Filtering Data Using Labels .. 4-10
Using Numeric Label Tags in WHERE Clauses... 4-10
Ordering Labeled Data Rows.. 4-11
Ordering by Character Representation of Label .. 4-11
Determining Upper and Lower Bounds of Labels... 4-12

Finding Least Upper Bound with LEAST_UBOUND.. 4-12
Finding Greatest Lower Bound with GREATEST_LBOUND....................................... 4-13

Merging Labels with the MERGE_LABEL Function ... 4-14
Inserting Labeled Data... 4-16

Inserting Labels Using CHAR_TO_LABEL .. 4-16
Inserting Labels Using Numeric Label Tag Values ... 4-16
Inserting Data Without Specifying a Label ... 4-17
Inserting Data When the Policy Label Column Is Hidden ... 4-17
Inserting Labels Using TO_DATA_LABEL .. 4-18

Changing Your Session and Row Labels with SA_SESSION.. 4-19
SA_SESSION Functions to Change Session and Row Labels... 4-19
Changing the Session Label with SA_SESSION.SET_LABEL.. 4-20
Changing the Row Label with SA_SESSION.SET_ROW_LABEL....................................... 4-21
Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS................. 4-22
Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS 4-22
Viewing Session Attributes with SA_SESSION Functions... 4-23

USER_SA_SESSION View to Return All Security Attributes 4-23
Functions to Return Individual Security Attributes... 4-24

5 Creating an Oracle Label Security Policy

Oracle Label Security Administrative Task Overview .. 5-2
Step 1: Create the Policy... 5-2
Step 2: Define the Components of the Labels ... 5-2
Step 3: Identify the Set of Valid Data Labels... 5-3
Step 4: Apply the Policy to Tables and Schemas.. 5-3
Step 5: Authorize Users.. 5-3
Step 6: Create and Authorize Trusted Program Units (Optional) ... 5-4
Step 7: Configure Auditing (Optional) .. 5-4

vii

Organizing the Duties of Oracle Label Security Administrators.. 5-5
Choosing an Oracle Label Security Administrative Interface ... 5-6

Oracle Label Security Packages .. 5-6
Oracle Label Security Demonstration File ... 5-6

Oracle Policy Manager... 5-7
 Using the SA_SYSDBA Package to Manage Security Policies ... 5-8

Who Can Use the SA_SYSDBA Package... 5-8
Who Can Administer a Policy .. 5-8
Valid Characters for Policy Specifications .. 5-9
Creating a Policy with SA_SYSDBA.CREATE_POLICY .. 5-9
Modifying Policy Options with SA_SYSDBA.ALTER_POLICY ... 5-10
Disabling a Policy with SA_SYSDBA.DISABLE_POLICY ... 5-10
Enabling a Policy with SA_SYSDBA.ENABLE_POLICY ... 5-11
Removing a Policy with SA_SYSDBA.DROP_POLICY.. 5-11

Using the SA_COMPONENTS Package to Define Label Components................................. 5-12
Using Overloaded Procedures.. 5-13
Creating a Level with SA_COMPONENTS.CREATE_LEVEL .. 5-14
Modifying a Level with SA_COMPONENTS.ALTER_LEVEL ... 5-15
Removing a Level with SA_COMPONENTS.DROP_LEVEL.. 5-16
Creating a Compartment with SA_COMPONENTS.CREATE_COMPARTMENT 5-16
Modifying a Compartment with SA_COMPONENTS.ALTER_COMPARTMENT 5-17
Removing a Compartment with SA_COMPONENTS.DROP_COMPARTMENT........... 5-18
Creating a Group with SA_COMPONENTS.CREATE_GROUP .. 5-19
Modifying a Group with SA_COMPONENTS.ALTER_GROUP.. 5-20
Modifying a Group Parent with SA_COMPONENTS.ALTER_GROUP_PARENT......... 5-21
Removing a Group with SA_COMPONENTS.DROP_GROUP .. 5-22

Using the SA_LABEL_ADMIN Package to Specify Valid Labels... 5-22
Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL 5-23
Modifying a Label with SA_LABEL_ADMIN.ALTER_LABEL... 5-24
Deleting a Label with SA_LABEL_ADMIN.DROP_LABEL .. 5-25

6 Administering User Labels and Privileges

Introduction to User Label and Privilege Management.. 6-2
Managing User Labels by Component, with SA_USER_ADMIN.. 6-3

SA_USER_ADMIN.SET_LEVELS .. 6-4

viii

SA_USER_ADMIN.SET_COMPARTMENTS... 6-5
SA_USER_ADMIN.SET_GROUPS... 6-6
SA_USER_ADMIN.ALTER_COMPARTMENTS .. 6-7
SA_USER_ADMIN.ADD_COMPARTMENTS .. 6-8
SA_USER_ADMIN.DROP_COMPARTMENTS .. 6-8
SA_USER_ADMIN.DROP_ALL_COMPARTMENTS .. 6-9
SA_USER_ADMIN.ADD_GROUPS .. 6-9
SA_USER_ADMIN.ALTER_GROUPS .. 6-10
SA_USER_ADMIN.DROP_GROUPS .. 6-10
SA_USER_ADMIN.DROP_ALL_GROUPS .. 6-11

Managing User Labels by Label String, with SA_USER_ADMIN ... 6-11
SA_USER_ADMIN.SET_USER_LABELS.. 6-12
SA_USER_ADMIN.SET_DEFAULT_LABEL ... 6-13
SA_USER_ADMIN.SET_ROW_LABEL .. 6-14
SA_USER_ADMIN.DROP_USER_ACCESS ... 6-15

Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS 6-15
Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE........................... 6-16
Returning User Name with SA_SESSION.SA_USER_NAME .. 6-16
Using Oracle Label Security Views ... 6-17

View to Display All User Security Attributes: DBA_SA_USERS .. 6-17
Views to Display User Authorizations by Component... 6-18

7 Implementing Policy Options and Labeling Functions

Choosing Policy Options... 7-2
Overview of Policy Enforcement Options .. 7-2
The HIDE Policy Column Option .. 7-4
The Label Management Enforcement Options... 7-5

LABEL_DEFAULT: Using the Session’s Default Row Label .. 7-5
LABEL_UPDATE: Changing Data Labels ... 7-5
CHECK_CONTROL: Checking Data Labels ... 7-5

The Access Control Enforcement Options .. 7-6
READ_CONTROL: Reading Data... 7-6
WRITE_CONTROL: Writing Data .. 7-6
INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL...................... 7-6

The Overriding Enforcement Options ... 7-7

ix

Guidelines for Using the Policy Enforcement Options... 7-8
Exemptions from Oracle Label Security Policy Enforcement .. 7-9
Viewing Policy Options on Tables and Schemas... 7-10

Using a Labeling Function .. 7-10
Approaches to Data Labeling ... 7-10
How Labeling Functions Work .. 7-11
Creating a Labeling Function.. 7-12
Specifying a Labeling Function .. 7-12

Policy Options and Labeling Functions: Inserting Labeled Data ... 7-13
Enforcement Control Options and INSERT.. 7-13
Inserting Labels When a Labeling Function is Specified .. 7-13
Inserting Child Rows into Tables with Declarative Referential Integrity Enabled 7-14

Policy Options and Labeling Functions: Updating Labeled Data .. 7-14
Updating Labels Using CHAR_TO_LABEL... 7-14
Enforcement Control Options and UPDATE ... 7-14
Updating Labels When a Labeling Function Is Specified... 7-16
Updating Child Rows in Tables with Declarative Referential Integrity Enabled............. 7-16

Policy Options and Labeling Functions: Deleting Labeled Data.. 7-17
Using a SQL Predicate with an Oracle Label Security Policy.. 7-18

SQL Predicates Used with an Oracle Label Security Policy... 7-18
Effect of Multiple SQL Predicates Under Oracle Label Security ... 7-19

8 Applying Policies to Tables and Schemas

Policy Administration Terminology ... 8-2
Policy Administration Functions for Tables and Schemas... 8-3
Administering Policies on Tables Using SA_POLICY_ADMIN... 8-4

Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY 8-4
Removing a Policy with SA_POLICY_ADMIN.REMOVE_TABLE_POLICY..................... 8-5
Disabling a Policy with SA_POLICY_ADMIN.DISABLE_TABLE_POLICY....................... 8-6
Re-enabling a Policy with SA_POLICY_ADMIN.ENABLE_TABLE_POLICY 8-7

Administering Policies on Schemas with SA_POLICY_ADMIN ... 8-8
Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY...................... 8-8
Altering Enforcement Options: SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY 8-9
Removing a Policy with SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY 8-10
Disabling a Policy with SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY................ 8-10

x

Re-Enabling a Policy with SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY 8-11
Policy Issues for Schemas .. 8-11

9 Administering and Using Trusted Stored Program Units

Introduction to Trusted Stored Program Units.. 9-2
How a Trusted Stored Program Unit Executes ... 9-3
Trusted Stored Program Unit Example.. 9-3

Managing Program Unit Privileges with SET_PROG_PRIVS .. 9-4
Creating and Compiling Trusted Stored Program Units... 9-5

Creating Trusted Stored Program Units ... 9-5
Setting Privileges for Trusted Stored Program Units .. 9-5
Re-Compiling Trusted Stored Program Units .. 9-5
Recreating Trusted Stored Program Units .. 9-5
Executing Trusted Stored Program Units ... 9-6

Using SA_UTL Functions to Set and Return Label Information... 9-7
Viewing Session Label and Row Label Using SA_UTL .. 9-7

SA_UTL.NUMERIC_LABEL ... 9-7
SA_UTL.NUMERIC_ROW_LABEL.. 9-7
SA_UTL.DATA_LABEL ... 9-7

Setting the Session Label and Row Label Using SA_UTL .. 9-8
SA_UTL.SET_LABEL.. 9-8
SA_UTL.SET_ROW_LABEL .. 9-8

Returning Greatest Lower Bound and Least Upper Bound... 9-9
GREATEST_LBOUND.. 9-9
LEAST_UBOUND ... 9-9

10 Auditing Under Oracle Label Security

Overview of Oracle Label Security Auditing.. 10-2
Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter 10-3
Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN................................... 10-4

Auditing Options for Oracle Label Security ... 10-4
Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT 10-5
Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT........... 10-7
Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View 10-9

Managing Policy Label Auditing... 10-10

xi

Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL 10-10
Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL.......... 10-10
Finding Label Audit Status with AUDIT_LABEL_ENABLED 10-10

Creating and Dropping an Audit Trail View for Oracle Label Security 10-11
Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW.. 10-11
Dropping the View with SA_AUDIT_ADMIN.DROP_VIEW... 10-11

Oracle Label Security Auditing Tips .. 10-12
Strategy for Setting SA_AUDIT_ADMIN Options.. 10-12
Auditing Privileged Operations ... 10-12

11 Using Oracle Label Security with a Distributed Database

An Oracle Label Security Distributed Configuration.. 11-2
Connecting to a Remote Database Under Oracle Label Security .. 11-4
Establishing Session Label and Row Label for a Remote Session ... 11-5
Setting Up Labels in a Distributed Environment... 11-6

Setting Label Tags in a Distributed Environment.. 11-6
Setting Numeric Form of Label Components in a Distributed Environment 11-7

Using Oracle Label Security Policies in a Distributed Environment..................................... 11-8
Using Replication with Oracle Label Security.. 11-9

Introduction to Replication Under Oracle Label Security .. 11-9
Replication Functionality Supported by Oracle Label Security 11-9
Row Level Security Restriction on Replication Under Oracle Label Security.......... 11-10

Contents of a Materialized View.. 11-11
How Materialized View Contents Are Determined... 11-11
Complete Materialized Views ... 11-12
Partial Materialized Views... 11-12

Requirements for Creating Materialized Views Under Oracle Label Security 11-13
Requirements for the REPADMIN Account ... 11-13
Requirements for the Owner of the Materialized View .. 11-13
Requirements for Creating Partial Multilevel Materialized Views 11-14
Requirements for Creating Complete Multilevel Materialized Views...................... 11-14

How to Refresh Materialized Views.. 11-15

12 Performing DBA Functions Under Oracle Label Security

Using the Export Utility with Oracle Label Security ... 12-2

xii

Using the Import Utility with Oracle Label Security .. 12-2
Requirements for Import Under Oracle Label Security .. 12-3

Preparing the Import Database ... 12-3
Verifying Import User Authorizations... 12-3

Defining Data Labels for Import .. 12-4
Importing Labeled Data Without Installing Oracle Label Security..................................... 12-5
Importing Unlabeled Data... 12-5
Importing Tables with Hidden Columns.. 12-5

Using SQL*Loader with Oracle Label Security .. 12-6
Requirements for Using SQL*Loader Under Oracle Label Security 12-6
Oracle Label Security Input to SQL*Loader ... 12-6

Performance Tips for Oracle Label Security.. 12-8
Using ANALYZE to Improve Oracle Label Security Performance 12-8
Creating Indexes on the Policy Label Column ... 12-8
Planning a Label Tag Strategy to Enhance Performance .. 12-10
Partitioning Data Based on Numeric Label Tags... 12-12

Creating Additional Databases After Installation ... 12-13

13 Releasability Using Inverse Groups

Introduction to Inverse Groups and Releasability... 13-2
Comparing Standard Groups and Inverse Groups .. 13-2
How Inverse Groups Work ... 13-4

Implementing Inverse Groups with the INVERSE_GROUP Enforcement Option 13-4
Inverse Groups and Label Components.. 13-4
Computed Labels with Inverse Groups .. 13-5

Computed Session Labels with Inverse Groups ... 13-6
Inverse Groups and Computed Max Read Groups and Max Write Groups.............. 13-7

Inverse Groups and Hierarchical Structure .. 13-8
Inverse Groups and User Privileges .. 13-8

Algorithm for Read Access with Inverse Groups... 13-9
.. Algorithm for Write Access with Inverse Groups 13-11
Algorithms for COMPACCESS Privilege with Inverse Groups ... 13-13
Session Labels and Inverse Groups .. 13-16

Inverse Groups with SA_USER_ADMIN.SET_DEFAULT_LABEL and SA_USER_

ADMIN.SET_ROW_LABEL 13-16

xiii

Rules for Changing Default Labels with Standard Groups .. 13-16
Rules for Changing Default Labels with Inverse Groups ... 13-16

Inverse Groups with SA_SESSION.SET_ROW_LABEL and SA_SESSION.SET_LABEL...........

13-17
Rules for Changing Session Label with Standard Groups .. 13-17
Rules for Changing Session Label and Row Label with Inverse Groups 13-17

Examples of Session Labels and Inverse Groups... 13-18
Inverse Groups Example 1 ... 13-18
Inverse Groups Example 2 ... 13-19

Changes in Behavior of Procedures with Inverse Groups.. 13-20
SYSDBA.CREATE_POLICY with Inverse Groups .. 13-21
SYSDBA.ALTER_POLICY with Inverse Groups ... 13-21
SA_USER_ADMIN.ADD_GROUPS with Inverse Groups... 13-22
SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups... 13-23
SA_USER_ADMIN.SET_GROUPS with Inverse Groups... 13-23
SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups .. 13-24
SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups.................................. 13-25
SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups... 13-25
SA_COMPONENTS.CREATE_GROUP with Inverse Groups .. 13-25
SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups 13-25
SA_SESSION.SET_LABEL with Inverse Groups... 13-25
 SA_SESSION.SET_ROW_LABEL with Inverse Groups .. 13-26
LEAST_UBOUND with Inverse Groups... 13-26
GREATEST_LBOUND with Inverse Groups ... 13-26

Dominance Rules for Labels with Inverse Groups.. 13-27

A Advanced Topics in Oracle Label Security

Analyzing the Relationships Between Labels .. A-2
Dominant and Dominated Labels .. A-2
Non-Comparable Labels.. A-3
Using Dominance Functions... A-3

DOMINATES Standalone Function.. A-4
STRICTLY_DOMINATES Standalone Function... A-4
DOMINATED_BY Standalone Function.. A-4
STRICTLY_DOMINATED_BY Standalone Function... A-5

xiv

SA_UTL.DOMINATES ... A-5
SA_UTL.STRICTLY_DOMINATES .. A-5
SA_UTL.DOMINATED_BY... A-5
SA_UTL.STRICTLY_DOMINATED_BY.. A-6

OCI Interface for Setting Session Labels ... A-7
OCIAttrSet ... A-7
OCIAttrGet .. A-7
OCIParamGet .. A-8
OCIAttrSet ... A-8
OCI Example ... A-9

B Reference

Oracle Label Security Data Dictionary Tables and Views .. B-2
Oracle9i Data Dictionary Tables ... B-2
Oracle Label Security Data Dictionary Views .. B-2

ALL_SA_AUDIT_OPTIONS.. B-2
ALL_SA_COMPARTMENTS .. B-3
ALL_SA_DATA_LABELS .. B-3
ALL_SA_GROUPS .. B-3
ALL_SA_LABELS.. B-4
ALL_SA_LEVELS .. B-4
ALL_SA_POLICIES... B-4
ALL_SA_PROG_PRIVS .. B-5
ALL_SA_SCHEMA_POLICIES ... B-5
ALL_SA_TABLE_POLICIES.. B-5
ALL_SA_USERS .. B-6
ALL_SA_USER_LABELS.. B-6
ALL_SA_USER_LEVELS.. B-7
ALL_SA_USER_PRIVS ... B-8
DBA_SA_AUDIT_OPTIONS ... B-8
DBA_SA_COMPARTMENTS.. B-8
DBA_SA_DATA_LABELS ... B-9
DBA_SA_GROUPS.. B-9
DBA_SA_GROUP_HIERARCHY ... B-9
DBA_SA_LABELS .. B-10

xv

DBA_SA_LEVELS ... B-10
DBA_SA_POLICIES.. B-10
DBA_SA_PROG_PRIVS ... B-11
DBA_SA_SCHEMA_POLICIES .. B-11
DBA_SA_TABLE_POLICIES ... B-11
DBA_SA_USERS.. B-12
DBA_SA_USER_COMPARTMENTS ... B-12
DBA_SA_USER_GROUPS ... B-13
DBA_SA_USER_LABELS... B-13
DBA_SA_USER_LEVELS... B-14
DBA_SA_USER_PRIVS .. B-14

Oracle Label Security Auditing Views .. B-15
Restrictions in Oracle Label Security ... B-15

CREATE TABLE AS SELECT Restriction in Oracle Label Security B-15
Label Tag Restriction.. B-15
Export Restriction in Oracle Label Security.. B-15
Oracle Label Security Deinstallation Restriction ... B-16
Shared Schema Support... B-16
Hidden Columns Restriction .. B-16

Index

xvi

xvii

Send Us Your Comments

Oracle Label Security Administrator’s Guide, Release 2 (9.2)

Part No. A96578-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xviii

xix

Preface

The Oracle Label Security Administrator’s Guide describes how to use Oracle Label

Security to protect sensitive data. It explains the basic concepts behind label-based

security and provides examples to show how it is used.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

xx

Audience
Oracle Label Security Administrator’s Guide is intended for database administrators

(DBAs), application programmers, security administrators, system operators, and

other Oracle users who perform the following tasks:

■ Analyze application security requirements

■ Create label-based security policies

■ Administer label-based security policies

■ Use label-based security policies

To use this document, you need a working knowledge of SQL and Oracle

fundamentals. You should also be familiar with Oracle security features described

in "Related Documentation" on page -xxii. To use SQL*Loader, you must know how

to use the file management facilities of your operating system.

Organization
This document contains:

Part I: Concepts
This part introduces basic conceptual information about Oracle Label Security.

Chapter 1, "Introduction to Oracle Label Security"
This chapter introduces Oracle Label Security in the larger context of data security.

It gives an overview of computer security issues and data access controls, and

outlines the architecture and major features of Oracle Label Security.

Chapter 2, "Understanding Data Labels and User Labels"
This chapter discusses the fundamental concepts of data labels and user

authorizations, and introduces the terminology that will help you understand

Oracle Label Security. It covers label components, label syntax and type, and

explains how data labels and user authorizations work together.

Chapter 3, "Understanding Access Controls and Privileges"
This chapter presents the access controls and privileges which determine the type of

access users can have to the rows affected. It introduces the concepts of session label

and row label, and explains how rows are evaluated for access mediation.

xxi

Part II: Using Oracle Label Security Functionality
This part provides the information needed by users of Oracle Label Security

policies.

Chapter 4, "Working with Labeled Data"
This chapter explains how to use Oracle Label Security features to manage labeled

data. It then shows how to view and change the value of security attributes for a

session.

Part III: Administering an Oracle Label Security Application
This part explains how to create and manage an Oracle Label Security application.

Chapter 5, "Creating an Oracle Label Security Policy"
This chapter explains how to create an Oracle Label Security policy, and its

underlying label components and labels.

Chapter 6, "Administering User Labels and Privileges"
This chapter explains how you can set authorizations for users, and grant privileges

to users or stored program units by means of the available Oracle Label Security

packages, or Oracle Policy Manager.

Chapter 7, "Implementing Policy Options and Labeling Functions"
This chapter explains how to customize the enforcement of Oracle Label Security

policies, and how to implement labeling functions and SQL predicates.

Chapter 8, "Applying Policies to Tables and Schemas"
This chapter describes the SA_POLICY_ADMIN package, which enables you to

administer policies on tables and schemas.

Chapter 9, "Administering and Using Trusted Stored Program Units"
This chapter explains how to use trusted stored program units to enhance system

security.

Chapter 10, "Auditing Under Oracle Label Security"
This chapter explains how Oracle Label Security supplements the Oracle9i audit

facility by tracking use of its own administrative operations and policy privileges. It

describes the SA_AUDIT_ADMIN package, which enables you to set and change

the policy auditing options.

xxii

Chapter 11, "Using Oracle Label Security with a Distributed Database"
This chapter describes special considerations for using Oracle Label Security in a

distributed configuration.

Chapter 12, "Performing DBA Functions Under Oracle Label Security"
The standard Oracle9i utilities can be used under Oracle Label Security, but certain

restrictions apply, and extra steps may be required to get the expected results. This

chapter describes these special considerations.

Chapter 13, "Releasability Using Inverse Groups"
This chapter discusses the Oracle Label Security implementation of releasability

using inverse groups.

Part IV: Appendix

Appendix A, "Advanced Topics in Oracle Label Security"
This appendix describes dominance relationships, and other ways in which the

relationships between labels can be analyzed. It also describes the OCI interface for

setting session labels.

Appendix B, "Reference"
This appendix documents the MAX_LABEL_POLICIES initialization parameter, the

Oracle Label Security data dictionary tables, and Oracle Label Security restrictions.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Security Overview

■ Oracle9i Database Concepts

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Database Administrator’s Guide

■ Oracle9i SQL Reference

■ Oracle9i Database Reference

■ Oracle9i Replication

■ Oracle9i Database Utilities

xxiii

■ Oracle9i Database Performance Tuning Guide and Reference

Many of the examples in the documentation set use the sample schemas of the seed

database, which is installed by default when you install Oracle. Refer to Oracle9i
Sample Schemas for information on how these schemas were created and how you

can use them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

xxiv

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

xxv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

xxvi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxvii

evaluates nor makes any representations regarding the accessibility of these Web

sites.

xxviii

Part I
Concepts

Introduction to Oracle Label Security 1-1

1
Introduction to Oracle Label Security

Oracle Label Security enables application developers to add label-based access

control to their Oracle9i applications. It mediates access to rows in database tables

based on a label contained in the row, and the label and privileges associated with

each user session. Oracle Label Security is built on the virtual private database

technology of Oracle9i Enterprise Edition. It includes the Oracle Policy Manager, a

graphical user interface for ease of administration.

This chapter introduces Oracle Label Security in the larger context of data security.

It contains the following sections:

■ Computer Security and Data Access Controls

■ Oracle Label Security Architecture

■ Features of Oracle Label Security

Note: This book assumes that you understand the basic concepts

and terminology of Oracle9i database administration and

application development. It supplements core Oracle9i
documentation by focusing on the extra considerations involved in

using, administering, and developing applications for Oracle Label

Security.

See Also: For a complete introduction to Oracle9i features and

terminology, see Oracle9i Database Concepts

Computer Security and Data Access Controls

1-2 Oracle Label Security Administrator’s Guide

Computer Security and Data Access Controls
This section introduces basic concepts of computer security. It contains the

following topics:

■ Introduction to Computer Security

■ Oracle Label Security and Security Standards

■ Security Policies

■ Access Control

Introduction to Computer Security
Computer security involves the protection of computerized data and processes

from unauthorized modification, destruction, disclosure, or delay. In the Internet

age, the risks to valuable and sensitive data are greater than ever before. Figure 1–1

shows the complex computing environment that your data security plan must

encompass.

Figure 1–1 Scope of Data Security Needs

You must protect databases and the servers on which they reside; you must

administer and protect the rights of internal database users; and you must

guarantee the confidentiality of electronic commerce customers as they access your

database. Oracle Corporation provides products to address the full spectrum of

computer security issues.

Database
Server

Clients Application
Web Server

Clients

Intranet

Databases

Internet

Computer Security and Data Access Controls

Introduction to Oracle Label Security 1-3

Oracle Label Security and Security Standards
Oracle Corporation strives to create products which meet stringent international

security standards. Security evaluation is a formal assessment process performed by

independent bodies against national and international criteria. It provides external

and objective assurance that a system meets the security criteria for which it was

designed. Upon successful completion of an evaluation, a security rating is assigned

to the system or product. This certification provides confidence in the security of

information technology products and systems to commercial, government and

military users.

Oracle9i is designed to meet the Database Management System Protection Profile

(DBMS PP). Oracle Label Security is designed for evaluation under the ISO/IEC

15408 Common Criteria.

Security Policies
A database security policy is an implementation of an overall system security

policy, which in turn is often derived from a broad, organizational security policy.

The overall security policy can include:

Data Integrity Policy Defines rules to ensure that information in the system is
consistent

Availability Policy Defines rules to ensure that information is available

Access Control Policy Defines rules to prevent the unauthorized disclosure of
information. Oracle Label Security provides one of many
possible information access control policies. You can use it to
define one or more customized policies for use at a given site.

Computer Security and Data Access Controls

1-4 Oracle Label Security Administrator’s Guide

Access Control
Access control is the process of defining a user’s ability to read or write information.

Application developers must decide which approach to access control best meets

their needs.

■ Discretionary Access Control

■ Label-Based Access Control

■ How Label-Based Access Control Works with Discretionary Access Control

Discretionary Access Control
Oracle9i provides discretionary access control (DAC). DAC is a means of controlling

access to information through privileges, which are permissions to perform an

operation within the system. On a table-by-table basis, DAC provides the SELECT,

INSERT, UPDATE, and DELETE privileges. These privileges authorize the

corresponding SQL operation upon the table.

With discretionary access control, access to data is controlled in a single dimension.

The administrator grants users privileges which determine the operations (such as

read, write) they can perform upon data. A subject, defined as a user and the

processes or tasks running on behalf of that user, must have the appropriate

privilege, such as the SELECT privilege, to access an object, such as a table or view.

A user must first have the necessary DAC privileges to access data in an object.

In Oracle9i, row-level access control is available with the virtual private database
(VPD) technology which is a standard feature of the Enterprise Edition. Virtual

private database provides fine-grained access control which is data-driven,

context-dependent, and row-based. You can implement VPD by writing a stored

procedure to append a SQL predicate to each SQL statement to control row level

access for that statement. For example, if John Doe (who belongs to Department 10)

inputs the statement SELECT * FROM emp, you can use VPD to tack on the clause

WHERE DEPT = 10. In this way query modification is used to restrict data access to

certain rows.

See Also: Oracle9i Application Developer’s Guide - Fundamentals

Computer Security and Data Access Controls

Introduction to Oracle Label Security 1-5

Label-Based Access Control
Label-based access is a way of controlling data on a row level. Each data row is

given a label used to store information about data sensitivity. A label provides

additional sophisticated access control rules in addition to those provided by

discretionary access control. It further mediates access to a data row based on the

identity and label of the user and the label of the row. This provides an additional

level of access control to a system.

Label-based access control depends on the basic DAC policy; together these policies

dictate the criteria by which access to an object is either permitted or denied. In

most applications, a relatively small number of application tables will require

label-based access controls. The protection provided by standard DAC will suffice

for a majority of application tables.

How Label-Based Access Control Works with Discretionary Access Control
To be allowed access to a row, a user must satisfy both Oracle Label Security and

Oracle9i DAC requirements. Oracle9i enforces DAC based on the user’s

system-level privileges and database object privileges. First a user must be

authenticated to the Oracle9i database. Second, the user must have the DAC object

and system privileges required for the operation.

Finally, the user must meet the criteria added by Oracle Label Security. This product

adheres to the label definitions, label hierarchies, and other security policy rules

defined within the database by the site administrators. On top of this, Oracle Label

Security enforces access based on the labels of the user and row, as well as the user’s

Oracle Label Security policy privileges.

Oracle Label Security is flexible and functional enough to support applications in a

variety of production environments. It supports Oracle9i data integrity, availability,

and recovery capabilities, as well as user accountability and auditing, while

enforcing a site’s security policy.

Oracle Label Security Architecture

1-6 Oracle Label Security Administrator’s Guide

Oracle Label Security Architecture
Oracle Label Security is built on the virtual private database (VPD) technology

found in the Oracle9i Enterprise Edition. It also uses the Application Context

functionality of this product.

Figure 1–2 Oracle Label Security and Oracle9i Enterprise Edition

Oracle9 i Enterprise Edition: Virtual Private Database Technology
VPD supports fine-grained access control to data rows. It provides an application

programmatic interface (API) which allows security policies to be assigned to

database tables and views. Using PL/SQL, developers and security administrators

can create security policies with stored procedures, and bind the procedures to a

table or view by means of a call to an RDBMS package. Such policies are based on

the content of application data stored within the Oracle9i database, or based on

context variables provided by Oracle9i. In this way, VPD permits access security

mechanisms to be removed from applications, and centralized within Oracle9i.

As illustrated in Figure 1–3, VPD lets you associate security conditions with tables

or views. In this example, when each user selects from the ORDERS table, the

appropriate security condition is automatically enforced. The server automatically

enforces security policies, no matter how the data is accessed. In this way, VPD

eliminates the need to use many views to implement security.

Oracle9 i
Enterprise Edition

Label Based Access Control Framework

Oracle Label Security

Application
ContextDB TriggersVPD

Oracle Label Security Architecture

Introduction to Oracle Label Security 1-7

Figure 1–3 Oracle9i Enterprise Edition Virtual Private Database Technology

Oracle Label Security: An Out-of-the-Box VPD Policy
Oracle Label Security provides a functional, out-of-the-box VPD policy which

enhances your ability to implement row-level security. It supplies an

infrastructure—a label-based access control framework—whereby you can specify

labels for users and data. It also enables you to create one or more custom security

policies to be used for label access decisions. You can implement these policies

without any knowledge of a programming language. There is no need to write

additional code; in a single step you can apply a security policy to a given table. In

this way, Oracle Label Security provides a straightforward, efficient way to

implement fine-grained security policies using data labeling technology. Finally, the

structure of Oracle Label Security labels provides a degree of granularity and

flexibility which cannot easily be derived from the application data alone. Oracle

Label Security is thus a generic solution which can be used in many different

circumstances.

Figure 1–4 illustrates the process by which data is accessed under Oracle Label

Security. Within an application and Oracle9i session, a user issues a SQL request.

Oracle9i checks the DAC privileges, making sure the user has SELECT privileges on

the table. Then it checks to see if a VPD policy has been attached to the table. It

finds that the table is protected by Oracle Label Security. The SQL statement is

modified on the fly.

SELECT * FROM ORDERS;

Orders

SELECT * FROM ORDERS;

Features of Oracle Label Security

1-8 Oracle Label Security Administrator’s Guide

Each data record has a label; Oracle Label Security is invoked for each row, to

determine whether, based on the label, the user can or cannot access the row.

Figure 1–4 Oracle Label Security Architecture

Features of Oracle Label Security
Oracle Label Security provides additional row level security access controls to the

underlying Oracle9i database. This section contains these topics:

■ Overview of Oracle Label Security Policy Functionality

■ Label Policy Framework Features

■ Auditing Features

■ Oracle Label Security Distributed Capabilities

Oracle Data Server

Application

Oracle User / Session

Object Privilege

Access

Check DAC

SQL Request

USER

VPD SQL Modification

Data Record

Data Record
Oracle Label Security

Enforcement

Table

Data Record

Security Policy

Access Control
Tables

User Defined
VPD Policies

Label Security

Fine Grained
Access Mediation

Features of Oracle Label Security

Introduction to Oracle Label Security 1-9

Overview of Oracle Label Security Policy Functionality
To create a customized Oracle Label Security policy, you define a set of labels and a

set of rules that govern data access, based on these labels.

For example, assume that a user has SELECT privilege on an application table. As

illustrated in Figure 1–5, when the user executes a SELECT statement, Oracle Label

Security evaluates each row selected and determines whether the user can access it

based on the privileges and access labels assigned to the user by the security

administrator. Oracle Label Security can also be configured to perform security

checks on UPDATE, DELETE, and INSERT statements.

Figure 1–5 Oracle Label Security Label-Based Security

■ Oracle Label Security enables a comprehensive set of access authorization

privileges, to ensure that the data label can be protected—independent of the

data itself.

■ Oracle Label Security provides for flexible policy enforcement to handle special

processing requirements.

■ Individual application tables can be protected. All the tables in the application

need not be protected by the policy. Lookup tables such as zip codes, for

example, do not need to be protected.

■ Oracle Label Security allows the security administrator to add special labeling

functions and SQL predicates to the policy.

■ You can create multiple Oracle Label Security policies. For example, a human

resources policy could co-exist with a defense policy in the same database. Each

of the policies can be independently configured, and have its own unique label

definitions.

GRADE 600

600

400

RATE

Manager

Senior

Director

600

450

UNCLASSIFIED

UNCLASSIFIED

SENSITIVE

SENSITIVE

Principal

Senior

ROW LABEL

750 HIGHLY_SENSITIVEUser session label
is UNCLASSIFIED

Features of Oracle Label Security

1-10 Oracle Label Security Administrator’s Guide

Label Policy Framework Features
Oracle Label Security adds label-based access controls to the Oracle9i
object-relational database management system. Access to data is mediated based on

these factors:

■ the label associated with a row of data

■ the label associated with a user session

■ the policy privileges associated with a user session

■ the policy enforcement options associated with a table

Consider, for example, a standard Data Manipulation Language operation (such as

SELECT) performed upon a row of data. When evaluating this access request by a

user with the CONFIDENTIAL label, to a data row labeled CONFIDENTIAL,

Oracle Label Security determines that this access can, in fact, be achieved.

In this way, data of different sensitivities—or belonging to different companies—can

be stored and managed on a single system, while preserving data security through

standard Oracle access controls. Likewise, applications from a broad range of

industries can use row labels to provide additional access control functionality

where necessary.

Data Labels
In Oracle Label Security, each row of a table can be labeled as to its level of

confidentiality. The label contains three components:

■ a single level or sensitivity ranking

■ one or more horizontal compartments or categories

■ one or more hierarchical groups

The level specifies the sensitivity of the data. A typical government organization

might define levels CONFIDENTIAL, SENSITIVE, and HIGHLY_SENSITIVE. A

commercial organization might define a single level for COMPANY_

CONFIDENTIAL data. The compartment component is non-hierarchical;

compartments are typically defined to segregate data—such as data related to an

ongoing strategic initiative. Finally, groups are used to record ownership and can be

used hierarchically. For example, FINANCE and ENGINEERING groups can be

defined as children of the CEO group, creating an ownership relation.

Labels can contain a single level component, a level combined with a set of either

compartments or groups, or a level with both compartments and groups.

Features of Oracle Label Security

Introduction to Oracle Label Security 1-11

Label Authorizations
Users can be granted label authorizations which determine what kind of access

(read or write) they have to the rows that are labeled.

Policy Privileges
Policy privileges enable a user or stored program unit to bypass aspects of the

label-based access control policy. In addition, the administrator can authorize the

user or program unit to perform specific actions, such as the ability of one user to

assume the authorizations of a different user.

Privileges can be granted to program units, authorizing the procedure, rather than

the user, to perform privileged operations. When only stored program units—and

not individual users—have Oracle Label Security privileges, your system is most

secure. Further, such program units encapsulate the policy, which minimizes the

amount of application code that needs to be reviewed for security.

Policy Enforcement Options
In Oracle Label Security you can apply different enforcement options for maximum

flexibility in controlling the different Data Manipulation Language operations that

users can perform. For each operation—SELECT, INSERT, UPDATE, and

DELETE—you can specify a particular type of enforcement of the security policy,

for each table. In this way you can customize the label-based access controls on each

table.

Features of Oracle Label Security

1-12 Oracle Label Security Administrator’s Guide

Summary: Four Aspects of Label-Based Row Access
When label-based access is enforced, a user’s label must meet certain criteria,

determined by policy definitions, to access a row within a protected table. These

access controls act as a secondary access mediation check, on top of the

discretionary access controls which have been implemented by the application

developers.

In summary, Oracle Label Security provides four aspects of label-based access

control:

■ A user’s label indicates the information that a user is permitted to access. The

user’s label also indicates the type of access (read or write) the user is allowed

to perform.

■ A row’s label indicates the sensitivity of the information that the row contains.

■ The policy privileges granted to a user enable him or her to bypass aspects of

the label-based access control policy.

■ The policy enforcement options on the table determine how access controls are

enforced.

Auditing Features
Oracle Label Security supplements the Oracle9i audit facility by tracking the use of

its own Oracle Label Security administrative operations and policy privileges.

Under Oracle Label Security, audit trail records contain a label associated with the

session that generated the audit, so that you can see the relationship between

operations, data labels, and the label of the user performing the operation.

Oracle Label Security Distributed Capabilities
Oracle Label Security supports distributed operation when labels in the local and

remote databases are compatible.

See Also: Chapter 11, "Using Oracle Label Security with a

Distributed Database"

Understanding Data Labels and User Labels 2-1

2
Understanding Data Labels and User Labels

This chapter discusses the fundamental concepts of data labels and user labels, and

introduces the terminology that will help you understand Oracle Label Security.

The chapter includes:

■ Introduction to Label-Based Security

■ Label Components

■ Label Syntax and Type

■ How Data Labels and User Labels Work Together

■ Administering Labels

Introduction to Label-Based Security

2-2 Oracle Label Security Administrator’s Guide

Introduction to Label-Based Security
Label-based security provides a flexible way of controlling access to sensitive data.

Oracle Label Security controls data access based on the identity and label of the

user, and the sensitivity or label of the data. This provides an additional level of

security to a system.

With an Oracle Label Security policy, access to data is controlled in three

dimensions:

Note that the discussion here concerns access to data. The particular type of access

(that is, the ability to read or to write the data in question) is covered in Chapter 3,

"Understanding Access Controls and Privileges."

When a database table is protected by an Oracle Label Security policy, a column is

added to the table. This policy label column contains the label information for each

data row. The administrator can choose to display or hide this column.

■ A label on a row of data specifies the sensitivity of the information in the row

and explicitly defines the criteria that must be met for a user to access that row.

■ Label authorizations assigned to a user determine the user’s access to labeled

data.

Data Labels Rows of data are labeled to indicate the level and nature of
their sensitivity. A label on a row of data specifies the
sensitivity of the information in the row and explicitly defines
the criteria that must be met for a user to access that row.

User Labels Users are assigned a range of levels, compartments, and
groups which indicate their label authorizations. A label
assigned to a user determines the user’s access to labeled
data.

Policy Privileges Certain users may be given rights to perform special
operations, and to access data beyond their label
authorizations.

Label Components

Understanding Data Labels and User Labels 2-3

Label Components
This section describes the elements which make up a sensitivity label.

■ Label Component Definitions and Valid Characters

■ Levels

■ Compartments

■ Groups

■ Industry Examples of Levels, Compartments, and Groups

Label Component Definitions and Valid Characters
A sensitivity label is a single attribute, with multiple components. All data labels

must contain a level component; compartment and group components are optional.

The administrator must define the label components before he or she can create

labels.

Valid characters for all label component specifications include alphanumeric

characters and underscores. Additionally, spaces can be used within the string.

(Leading or trailing spaces are ignored.)

Table 2–1 Sensitivity Label Components

Component Description Examples

Level A single specification of the labeled data’s
ordered sensitivity ranking

CONFIDENTIAL (1),
SENSITIVE (2), HIGHLY
SENSITIVE (3)

Compartments Zero or more categories associated with
the labeled data

FINANCIAL, STRATEGIC,
NUCLEAR

Groups Zero or more identifiers of organizations
owning or accessing the data

EASTERN_REGION,
WESTERN_REGION

Label Components

2-4 Oracle Label Security Administrator’s Guide

The following figure illustrates the three dimensions in which data can be logically

classified, using levels, compartments, and groups.

Figure 2–1 Data Categorization with Levels, Compartments, Groups

Levels
A level is a ranking that denotes the sensitivity of the information it labels. The more

sensitive the information, the higher its level. The less sensitive the information, the

lower its level.

Oracle Label Security permits up to 10,000 levels in a policy. Every label must

include one level. For each level, the Oracle Label Security administrator defines a

numeric form and character forms.

Compartment C

Level 3

Level 2

Level 1

Compartment B
Compartment A

Group 1

Group 2

Group 3

Label Components

Understanding Data Labels and User Labels 2-5

For example, you can define a set of levels like the following:

Although the administrator defines both long and short names for the level (and for

each of the other label components), only the short form of the name is displayed

upon retrieval. When users manipulate the labels, they use only the short form of

the component names.

Other sets of labels which users commonly define include TOP_SECRET, SECRET,

CONFIDENTIAL, and UNCLASSIFIED; or TRADE_SECRET, PROPRIETARY,

COMPANY_CONFIDENTIAL, PUBLIC_DOMAIN.

Table 2–2 Level Example

Numeric Form Long Form Short Form

40 HIGHLY_SENSITIVE HS

30 SENSITIVE S

20 CONFIDENTIAL C

10 PUBLIC P

Numeric Form The numeric form of the level can range from 0 to 9999. Levels

of sensitivity are ranked by this numeric value, so you must

assign higher numbers to levels which are more sensitive, and

lower numbers to levels which are less sensitive. In Table 2–2,

40 (HIGHLY_SENSITIVE) is a higher level than 30, 20, and 10.

Administrators should avoid using sequential numbers for

the numeric form of levels. A good strategy is to use even

increments (such as 50 or 100) between levels. This enables

you to insert additional levels between two pre-existing

levels, at a later date.

Long Form The long form of the level name can contain up to 80

characters.

Short Form The short form can contain up to 30 characters.

Note: In this guide, all labels (including "TOP_SECRET,"

"SECRET," "CONFIDENTIAL," and so on) are used as illustrations

only.

Label Components

2-6 Oracle Label Security Administrator’s Guide

Compartments
Compartments identify areas which describe the sensitivity of the labeled data.

They provide a finer level of granularity within a level.

Compartments associate the data with one or more security areas. All of the data

related to a particular project can be labeled with the same compartment. For

example, you can define a set of compartments like the following:

Compartments are optional; a label can contain zero or more compartments. Oracle

Label Security permits up to 10,000 compartments.

All labels need not have all compartments. For example, you can specify HIGHLY_

SENSITIVE and CONFIDENTIAL levels with no compartments, and a SENSITIVE

level which does contain compartments.

Table 2–3 Compartment Example

Numeric Form Long Form Short Form

40 FINANCIAL FINCL

30 CHEMICAL CHEM

20 OPERATIONAL OP

Numeric Form The numeric form can range from 0 to 9999. The numeric form
of the compartment does not indicate greater or less
sensitivity. Rather, it controls display order of the short form
compartment name in the label character string. For example,
assume that a label is created which has all three
compartments listed in Table 2–3, and a level of SENSITIVE. If
the label containing the level and compartments is displayed
in string format, it looks like this:

S:OP,CHEM,FINCL

This is because 20 comes before 30, and 30 before 40. By
contrast, if the numeric form for the FINCL compartment
were set to 5, the character string format of the label would
look like this:

S:FINCL,OP,CHEM

Long Form The long form of the compartment name can contain up to 80
characters.

Short Form The short form can contain up to 30 characters.

Label Components

Understanding Data Labels and User Labels 2-7

When you analyze your data’s sensitivity, you may find that some compartments

are only used at specific levels. Figure 2–2 shows how compartments can be used to

categorize data.

Figure 2–2 Label Matrix

Here, compartments FINCL, CHEM, and OP are used with the level HIGHLY_

SENSITIVE (40). The label HIGHLY_SENSITIVE:FINCL, CHEM indicates a level of

40 with the two named compartments. Compartment FINCL is not more sensitive

than CHEM, nor is CHEM more sensitive than FINCL. Note also that some data in

the protected table may not belong to any compartment.

CHEM

Compartments

FINCL

FINCL OP

OP

OP

S

P

HS

Levels

Label Components

2-8 Oracle Label Security Administrator’s Guide

Groups
Groups identify organizations owning or accessing the data, such as EASTERN_

REGION, WESTERN_REGION, WR_SALES. All data pertaining to a certain

department can have that department’s group in the label. Groups are useful for the

controlled dissemination of data, and for timely reaction to organizational change.

When a company reorganizes, data access can change right along with the

reorganization.

Groups are hierarchical: you can label data based upon your organizational

infrastructure. A group can thus be associated with a parent group. For example,

you can define a set of groups corresponding to the following organizational

hierarchy:

Figure 2–3 Group Example

The WESTERN_REGION group includes three subgroups: WR_SALES, WR_

HUMAN_RESOURCES, and WR_FINANCE. The WR_FINANCE subgroup is

further subdivided into WR_ACCOUNTS_RECEIVABLE and WR_ACCOUNTS_

PAYABLE.

Table 2–4 shows how the organizational structure in this example can be expressed

in the form of Oracle Label Security groups. Notice that the numeric form assigned

to the groups affects display order only. The administrator specifies the hierarchy

(that is, the parent-child relationships) separately.

WESTERN_REGION

WR_HUMAN_
RESOURCES

WR_SALES WR_FINANCE

WR_ACCOUNTS_
RECEIVABLE

WR_ACCOUNTS_
PAYABLE

Label Components

Understanding Data Labels and User Labels 2-9

Groups are optional; a label can contain zero or more groups. Oracle Label Security

permits up to 10,000 groups.

All labels need not have groups. When you analyze your data’s sensitivity, you may

find that some groups are only used at specific levels. For example, you can specify

HIGHLY_SENSITIVE and CONFIDENTIAL labels with no groups, and a

SENSITIVE label which does contain groups.

Table 2–4 Group Example

Numeric Form Long Form Short Form Parent Group

1000 WESTERN_REGION WR

1100 WR_SALES WR_SAL WR

1200 WR_HUMAN_RESOURCES WR_HR WR

1300 WR_FINANCE WR_FIN WR

1310 WR_ACCOUNTS_PAYABLE WR_AP WR_FIN

1320 WR_ACCOUNTS_RECEIVABLE WR_AR WR_FIN

Numeric Form The numeric form of the group can range from 0 to 9999, and
must be unique for each policy.

The numeric form does not indicate any kind of ranking. It does
not indicate a parent-child relationship, or greater or less
sensitivity. It simply controls display order of the short form
group name in the label character string.

For example, assume that a label is created which has the level
SENSITIVE, the compartment CHEMICAL, and the groups
WESTERN_REGION and WR_HUMAN_RESOURCES as listed
in Table 2–4. When displayed in string format, the label looks
like this:

S:CHEM:WR,WR_HR

WR is displayed before WR_HR because 1000 comes before 1200.

Long Form The long form of the group name can contain up to 80
characters.

Short Form The short form can contain up to 30 characters.

See Also: Chapter 13, "Releasability Using Inverse Groups"

Label Components

2-10 Oracle Label Security Administrator’s Guide

Industry Examples of Levels, Compartments, and Groups
Table 2–5 illustrates the flexibility of Oracle Label Security levels, compartments,

and groups, by listing typical ways in which they can be implemented in various

industries.

Table 2–5 Typical Levels, Compartments, and Groups, by Industry

Industry Levels Compartments Groups

Defense

TOP_SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

ALPHA

DELTA

SIGMA

UK

NATO

SPAIN

Financial Services

ACQUISITIONS

CORPORATE

CLIENT

OPERATIONS

INSURANCE

EQUITIES

TRUSTS

COMMERCIAL_LOANS

CONSUMER_LOANS

CLIENT

TRUSTEE

BENEFICIARY

MANAGEMENT

STAFF

Judicial

NATIONAL_SECURITY

SENSITIVE

PUBLIC

CIVIL

CRIMINAL

ADMINISTRATION

DEFENSE

PROSECUTION

COURT

Health Care

PRIMARY_PHYSICIAN

PATIENT_
CONFIDENTIAL

PATIENT_RELEASE

PHARMACEUTICAL

INFECTIOUS_DISEASES

CDC

RESEARCH

NURSING_STAFF

HOSPITAL_STAFF

Business to Business

TRADE_SECRET

PROPRIETARY

COMPANY_
CONFIDENTIAL

PUBLIC

MARKETING

FINANCIAL

SALES

PERSONNEL

AJAX_CORP

BILTWELL_CO

ACME_INC

ERSATZ_LTD

Label Syntax and Type

Understanding Data Labels and User Labels 2-11

Label Syntax and Type
After defining the label components, the administrator creates data labels by

combining particular sets of level, compartments, and groups. Out of all the

possible permutations of label components, the administrator specifies those

combinations which will actually be used as valid data labels in the database.

This can be done using the Oracle Policy Manager graphical user interface, or using

a command line procedure. Character string representations of labels use the

following syntax:

LEVEL:COMPARTMENT1,...,COMPARTMENTn:GROUP1,...,GROUPn

The text string specifying the label can have a maximum of 4,000 characters,

including alphanumeric characters, spaces, and underscores. The labels are

case-insensitive; you can enter them in uppercase, lowercase, or mixed case, but the

string is stored in the data dictionary and displayed in uppercase. A colon is used as

the delimiter between components. It is not necessary to enter trailing delimiters in

this syntax.

For example, the administrator might create valid labels such as these:

SENSITIVE:FINANCIAL,CHEMICAL:EASTERN_REGION,WESTERN_REGION
CONFIDENTIAL:FINANCIAL:VP_GRP
SENSITIVE
HIGHLY_SENSITIVE:FINANCIAL
SENSITIVE::WESTERN_REGION

When a valid data label is created, two additional things occur:

■ The label is automatically designated as a valid data label. This functionality

limits the labels which can be assigned to data. Oracle Label Security can also

create valid data labels dynamically at runtime. Most users, however, prefer to

create the labels manually in order to control data label proliferation.

■ A numeric label tag is associated with the text string representing the label. It is

this label tag—rather than the text string—which is stored in the policy label

column of the protected table.

See Also: Chapter 5, "Creating an Oracle Label Security Policy"

for instructions on creating label components and labels

"Label Tags" on page 4-4

How Data Labels and User Labels Work Together

2-12 Oracle Label Security Administrator’s Guide

How Data Labels and User Labels Work Together
A user can only access data within the range of his or her own label authorizations.

A user has:

■ Maximum and minimum levels

■ A set of authorized compartments

■ A set of authorized groups (and, implicitly, authorization for any subgroups)

For example, if a user is assigned a maximum level of SENSITIVE, then the user

potentially has access to SENSITIVE, CONFIDENTIAL, and UNCLASSIFIED data.

The user has no access to HIGHLY_SENSITIVE data.

Figure 2–4 shows how data labels and user labels work together, to provide access

control in Oracle Label Security. Whereas data labels are discrete, user labels are

inclusive. Depending upon authorized compartments and groups, a user can

potentially access data corresponding to all levels within his or her range.

Figure 2–4 Example: Data Labels and User Labels

As shown in the figure, User 1 can access rows 2, 3, and 4 because her maximum

level is HS; she has access to the FIN compartment; and her access to group WR

hierarchically includes group WR_SAL. She cannot access row 1 because she does

not have the CHEM compartment. (A user must have authorization for all
compartments in a row’s data label, to access that row.)

User 1

User 2

User Session Label

S:CHEM,FIN:WRRow 1

S:FIN:WR_SALRow 2

U:FINRow 3

C:FIN:WR_SAL

 = HIGHLY_SENSITIVEHS
 = SENSITIVES
 = CONFIDENTIALC
 = UNCLASSIFIEDU

Row 4

Data Label

HS:FIN:WR

S:FIN:WR_SAL

How Data Labels and User Labels Work Together

Understanding Data Labels and User Labels 2-13

User 2 can access rows 3 and 4. His maximum level is S, which is less than HS in

row 2. Although he has access to the FIN compartment, he only has authorization

for group WR_SAL. He cannot, therefore, access row 1.

Figure 2–5 shows how data pertaining to an organizational hierarchy fits in to data

levels and compartments.

Figure 2–5 How Label Components Interrelate

For example, the UNITED_STATES group includes three subgroups: EASTERN_

REGION, CENTRAL_REGION, and WESTERN_REGION. The WESTERN_

REGION subgroup is further subdivided into CALIFORNIA and NEVADA. For

each group and subgroup, there may be data belonging to some of the valid

compartments and levels within the database. Thus there may be SENSITIVE data

which is FINANCIAL, within the CALIFORNIA subgroup.

UNITED_STATES

CENTRAL_REGIONEASTERN_REGION WESTERN_REGION

NEVADA

Financial OperationalChemical

600

SensitiveLevels

Public

Highly Sensitive

CALIFORNIA

Compartments

Groups

Administering Labels

2-14 Oracle Label Security Administrator’s Guide

Note that data is generally labeled with a single group, whereas users’ labels form a

hierarchy. If users have a particular group, that group may implicitly include child

groups. Thus a user associated with the WESTERN_REGION group has access to all

data; but a user associated with CALIFORNIA would only have access to data

pertaining to that subgroup.

Administering Labels
Oracle Label Security provides administrative interfaces to define and manage the

labels used in a database. You define labels in an Oracle database using Oracle

Label Security packages, or using the Oracle Policy Manager. Initially, an

administrator must define the levels, compartments, and groups that compose the

labels, and then she or he can define the set of valid data labels for the contents of

the database.

The administrator can apply a policy to individual tables in the database, or to

entire application schemas. Finally, the administrator assigns to each database user

the label components (and privileges, if needed) appropriate for the person’s job

function.

See Also: Chapter 8, "Applying Policies to Tables and Schemas"

for information about the Oracle Label Security interfaces used to

manage label components

Understanding Access Controls and Privileges 3-1

3
Understanding Access Controls and

Privileges

Chapter 2 introduced the concept of labels (with their levels, compartments, and

groups) and the basic notion of access control based on the row's data label and the

user's label. The present chapter examines the access controls and privileges which

determine the type of access users can have to the rows affected.

This chapter contains these sections:

■ Introduction to Access Mediation

■ Understanding Session Label and Row Label

■ Understanding User Authorizations

■ How Labels Are Evaluated for Access Mediation

■ Using Oracle Label Security Privileges

■ Multiple Oracle Label Security Policies

Introduction to Access Mediation

3-2 Oracle Label Security Administrator’s Guide

Introduction to Access Mediation
To access data protected by an Oracle Label Security policy, a user must have

authorizations based on the labels defined for the policy. Figure 3–1 illustrates the

relationships between users, data, and labels.

■ Data labels specify the sensitivity of data rows.

■ User labels provide the appropriate authorizations to users.

■ Access mediation between users and rows of data depends upon their labels.

Figure 3–1 Relationships Between Users, Data, and Labels

Note: Oracle Label Security provides a number of enforcement

options which affect the way in which access controls are applied to

tables and schemas. This chapter assumes that all policy

enforcement options are in effect.

For more information, see "Choosing Policy Options" on page 7-2.

Data Sensitivity

Users

DataLabels

U
se

r A
ut

ho
riz

at
io

ns

Access M
ediation

Understanding Session Label and Row Label

Understanding Access Controls and Privileges 3-3

Understanding Session Label and Row Label
This section introduces the basic user labels.

■ The Session Label

■ The Row Label

■ Session Label Example

The Session Label
Each Oracle Label Security user has a set of authorizations which include:

■ A maximum and minimum level

■ A set of authorized compartments

■ A set of authorized groups

■ For each compartment and group, a specification of read-only access, or

read/write access

When the administrator sets up these authorizations for the user, he or she also

specifies the user’s initial session label.

The session label is the particular combination of level, compartments, and groups at

which a user works at any given time. The user can change the session label to any

combination of his or her authorized components.

The Row Label
The row label is the particular label assigned by default to data which a user enters

during a session. It can be set to any level, from the one specified in the user’s

current session label, down to the user’s minimum level. It can include only

compartments and groups contained in the current session label, and for which the

user has write access. The user can change the row label to any label for which he or

she is authorized.

When the administrator sets up the user authorizations, he or she also specifies an

initial default row label.

Understanding Session Label and Row Label

3-4 Oracle Label Security Administrator’s Guide

Session Label Example
The session label and the row label can fall anywhere within the range of the user’s

level, compartment, and group authorizations. In Figure 3–2, the user’s maximum

level is SENSITIVE, and his minimum level is UNCLASSIFIED. However, his

default session label is C:FIN,OP:WR. In this example, the administrator has set the

user’s session label so that the user connects to the database at the CONFIDENTIAL

level.

Similarly, even though the user is authorized for compartments FIN and OP, and

group WR, the administrator could set the session label so that the user connects

with only compartment FIN, and group WR.

Figure 3–2 User Session Label

Data

UNCLASSIFIED :FIN

UNCLASSIFIED :FIN

SENSITIVE :FIN :HR

CONFIDENTIAL :OP :WR

TOP SECRET :OP :WR

Data Label

UNCLASSIFIED :WR:CHEM

Default Session Label
C:FIN,OP:WR

Levels

Compartments

Groups

Understanding User Authorizations

Understanding Access Controls and Privileges 3-5

Understanding User Authorizations
There are two types of user authorizations:

■ Authorizations Set by the Administrator

■ Computed Session Labels

Authorizations Set by the Administrator
The administrator explicitly sets a number of user authorizations:

■ Authorized Levels

■ Authorized Compartments

■ Authorized Groups

Understanding User Authorizations

3-6 Oracle Label Security Administrator’s Guide

Authorized Levels
The administrator explicitly sets the following level authorizations:

For example, in Oracle Policy Manager, the administrator might set the following

authorizations:

Figure 3–3 Setting Up Authorized Levels

Table 3–1 Authorized Levels Set by the Administrator

Authorization Meaning

User Max Level The maximum ranking of sensitivity which a user can access
during read and write operations

User Min Level The minimum ranking of sensitivity which a user can access
during write operations. The User Max Level must be equal to
or greater than the User Min Level.

User Default Level The level which is assumed by default when connecting to
Oracle9i

User Default Row Level The level which is used by default when inserting data into
Oracle9i

Understanding User Authorizations

Understanding Access Controls and Privileges 3-7

Authorized Compartments
The administrator specifies the list of compartments which a user can place in her

session label. Write access must be explicitly given for each compartment. A user

cannot directly insert, update, or delete a row that contains a compartment which

she does not have authorization to write. For example, in Oracle Policy Manager,

the administrator might set the following authorizations:

Figure 3–4 Setting Up Authorized Compartments

In Figure 3–4, the Row designation indicates whether the compartment should be

used as part of the default row label for newly inserted data. Note also that the

LABEL_DEFAULT policy option must be in effect for this setting to be valid.

Understanding User Authorizations

3-8 Oracle Label Security Administrator’s Guide

Authorized Groups
The administrator specifies the list of groups which a user can place in her session

label. Write access must be explicitly given for each group listed. For example, in

Oracle Policy Manager, the administrator might set the following authorizations:

Figure 3–5 Setting Up Authorized Groups

In Figure 3–5, the Row designation indicates whether the group should be used as

part of the default row label for newly inserted data. Note also that the LABEL_

DEFAULT policy option must be in effect for this setting to be valid.

See Also: Chapter 6, "Administering User Labels and Privileges"

for instructions on setting the authorizations

"LABEL_DEFAULT: Using the Session’s Default Row Label" on

page 7-5

Understanding User Authorizations

Understanding Access Controls and Privileges 3-9

Computed Session Labels
Oracle Label Security automatically computes a number of labels based on the

value of the session label. These include:

Table 3–2 Computed Session Labels

Computed Label Definition

Maximum Read Label The user’s maximum level combined with his or her
authorized compartments and groups.

Maximum Write Label The user’s maximum level combined with the compartments
and groups for which the user has been granted write access.

Minimum Write Label The user’s minimum level.

Default Read Label The single default level combined with compartments and
groups which have been designated as default for the user.

Default Write Label A subset of the default read label, containing the
compartments and groups to which the user has been granted
write access. The level component is equal to the level default
in the read label. This label is automatically derived from the
read label based on the user’s write authorizations.

Default Row Label The combination of components between the user’s minimum
write label and the maximum write label, which has been
designated as the default value for the data label for inserted
data.

See Also: "Computed Labels with Inverse Groups" on page 13-5

How Labels Are Evaluated for Access Mediation

3-10 Oracle Label Security Administrator’s Guide

How Labels Are Evaluated for Access Mediation
When a table is protected by an Oracle Label Security policy, the user’s label

components are compared to the row’s label components to determine whether the

user can access the data. In this way, Oracle Label Security evaluates whether the

user is authorized to perform the requested operation on the data in the row. This

section explains the rules and options by which user access is mediated. It contains

these topics:

■ Introduction to Read/Write Access

■ The Oracle Label Security Algorithm for Read Access

■ The Oracle Label Security Algorithm for Write Access

Introduction to Read/Write Access
Although data labels are stored in a column within data records, information about

user authorizations is stored in relational tables. When a user logs on, the tables are

used to dynamically generate user labels for use during the session.

Difference Between Read and Write Operations
Two fundamental types of access mediation on DML operations exist, within

protected tables:

■ read access

■ write access

The user has a maximum authorization for the data he or she can read; the user’s

write authorization is a subset of that. The minimum write level controls the user’s

ability to disseminate data by lowering its sensitivity. The user cannot write data to

any level lower than his or her minimum level.

In addition, there is a list of compartments for which the user is authorized; that is,

for which the user has at least read access. An access flag indicates whether the user

can also write individual compartments.

There is also a list of groups for which the user is authorized; that is, for which the

user has at least read access. An access flag indicates whether the user can also write

individual groups.

How Labels Are Evaluated for Access Mediation

Understanding Access Controls and Privileges 3-11

Propagation of Read/Write Authorizations on Groups
When groups are organized hierarchically, a user’s assigned groups include all

subgroups that are subordinate to the group to which she belongs. In this case, the

user’s read/write authorizations on a parent group flow down to all the subgroups.

Consider the parent group WESTERN_REGION, with three subgroups as

illustrated in Figure 3–6. If the user has read access to WESTERN_REGION, she

also has read access to the three subgroups. The administrator can give the user

write access to subgroup WR_FINANCE, without granting her write access to the

WESTERN_REGION parent group (or to the other subgroups). On the other hand,

if the user has read/write access on WESTERN_REGION, then she also has

read/write access on all of the subgroups subordinate to it in the tree.

Write authorization on a group does not give a user write authorization on the

parent group. If a user has read-only access to WESTERN_REGION and WR_

FINANCE, the administrator can grant her write access to WR_ACCOUNTS_

RECEIVABLE, without affecting her read-only access to the higher-level groups.

How Labels Are Evaluated for Access Mediation

3-12 Oracle Label Security Administrator’s Guide

Figure 3–6 Subgroup Inheritance of Read/Write Access

See Also: "Introduction to User Label and Privilege Management"

on page 6-2

"How Inverse Groups Work" on page 13-4

WESTERN_REGION

WR_HUMAN_
RESOURCES

WR_SALES WR_FINANCE

WR_ACCOUNTS_
RECEIVABLE

WR_ACCOUNTS_
PAYABLE

Read

Read

Read / Write Read / Write

Read / WriteRead

Administrator grants
user write access
to WR_FINANCE

How Labels Are Evaluated for Access Mediation

Understanding Access Controls and Privileges 3-13

The Oracle Label Security Algorithm for Read Access
READ_CONTROL enforcement determines the ability to read data in a row. The

following rules are used, in the sequence listed, to determine a user’s read access to

a row of data:

1. The user’s level must be greater than or equal to the level of the data.

2. The user’s label must include at least one of the groups which belong to the data

(or the parent group of one such subgroup).

3. The user’s label must include all the compartments which belong to the data.

If the user’s label passes these tests, it is said to "dominate" the row’s label.

Note that there is no notion of read or write access connected with levels. This is

because the administrator specifies a range of levels (minimum to maximum)

within which a user can potentially read and write. At any time, the user can read

all data equal to or less than her current session level. No privileges (other than

FULL) allow the user to write below her minimum authorized level.

The label evaluation process proceeds from levels to groups to compartments, as

illustrated in Figure 3–7. Note that if the data label is null or invalid, then the user

is denied access.

Figure 3–7 Label Evaluation Process for Read Access

No
Access

 Access

Data
level =< user

level?

Data has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N N
User

has at least one
group?

How Labels Are Evaluated for Access Mediation

3-14 Oracle Label Security Administrator’s Guide

As a read access request comes in, Oracle Label Security evaluates each row to

determine:

1. Is the user’s level equal to, or greater than, the level of the data?

2. If so, does the user have access to at least one of the groups present in the data

label?

3. If so, does the user have access to all the compartments present in the data

label? (That is, are the data’s compartments a subset of the user’s

compartments?)

If the answer is no at any stage in this evaluation process, then Oracle Label

Security denies access to the row, and moves on to evaluate the next row of data.

Oracle Label Security policies allow user sessions to read rows at their label and

below, which is called reading down. Sessions cannot read rows at labels that they do

not dominate.

For example, if you are logged in at SENSITIVE:ALPHA,BETA, you can read a row

labeled SENSITIVE:ALPHA because your label dominates that of the row.

However, you cannot read a row labeled SENSITIVE:ALPHA,GAMMA because

your label does not dominate that of the row.

Note that the user can gain access to the rows otherwise denied, if she or he

possesses special Oracle Label Security privileges.

See Also: "Privileges Defined by Oracle Label Security Policies"

on page 3-18

"Analyzing the Relationships Between Labels" on page A-2

"Algorithm for Read Access with Inverse Groups" on page 13-9

How Labels Are Evaluated for Access Mediation

Understanding Access Controls and Privileges 3-15

The Oracle Label Security Algorithm for Write Access
In the context of Oracle Label Security, WRITE_CONTROL enforcement determines

the ability to insert, update, or delete data in a row.

WRITE_CONTROL enables you to control data access with ever finer granularity.

Granularity increases when compartments are added to levels; it increases again

when groups are added to compartments. Access control becomes even more fine

grained when you can manage the user’s ability to write the data which he can

read.

To determine whether a user can write a particular row of data, Oracle Label

Security evaluates the following rules, in the order given:

1. The level in the data label must be greater than or equal to the user’s minimum

level and less than or equal to the user’s session level.

2. When groups are present, the user’s label must include at least one of the groups
with write access which appear in the data label (or the parent of one such

subgroup). In addition, the user’s label must include all the compartments in the

data label.

3. When no groups are present, the user’s label must have write access on all of the
compartments in the data label.

To state tests 2 and 3 another way:

■ If the label has no groups, then the user must have write access on all the

compartments in the label, in order to write the data.

■ If the label does have groups, and the user has write access to one of the groups,

she only needs read access to the compartments, in order to write the data.

Just as with read operations, the label evaluation process proceeds from levels to

groups to compartments. Note that the user cannot write any data below her

authorized minimum level, nor above her current session level. The user can always

read below her minimum level.

The following figure illustrates how the process works with INSERT, UPDATE, and

DELETE operations. Note that if the data label is null or invalid, then the user is

denied access.

How Labels Are Evaluated for Access Mediation

3-16 Oracle Label Security Administrator’s Guide

Figure 3–8 Label Evaluation Process for Write Access

As an access request comes in, Oracle Label Security evaluates each row to

determine:

1. Is the data’s level equal to, or less than, the level of the user?

2. Is the data’s level equal to, or greater than, the user’s minimum level?

3. If the data’s level falls within the foregoing bounds, does the user have write

access to at least one of the groups present in the data label?

4. If so, does the user have access to all the compartments with at least read access

which are present in the data label?

5. If there are no groups, but there are compartments, then does the user have

write access to all of the compartments?

If the answer is no at any stage in this evaluation process, then Oracle Label

Security denies access to the row, and moves on to evaluate the next row of data.

No
Access

 Access

Data
level =< user

level?

Data
level => user min

level?

Data
has groups?

Data
has

compartments?

User
has at least one
group with Write

access?
User has all

compartments?

N NN N

Y YYYYY

Data
has

compartments?

User
has all compartments

with Write
access?

N

Y N

YN

N

How Labels Are Evaluated for Access Mediation

Understanding Access Controls and Privileges 3-17

Consider a situation in which your session label is S:ALPHA,BETA but you only

have write access to compartment ALPHA. In this case you can read a row with the

label S:ALPHA,BETA, but you cannot update it.

In summary, write access is enforced on INSERT, UPDATE and DELETE operations

upon the data in the row.

 In addition, each user may have an associated minimum level below which she

cannot write. She cannot update or delete any rows labeled with levels below her

minimum, nor can she insert a row with a row label containing a level less than her

minimum.

See Also: "Algorithm for Write Access with Inverse Groups" on

page 13-11

Using Oracle Label Security Privileges

3-18 Oracle Label Security Administrator’s Guide

Using Oracle Label Security Privileges
This section introduces the Oracle Label Security database and row label privileges:

■ Privileges Defined by Oracle Label Security Policies

■ Special Access Privileges

■ Special Row Label Privileges

■ System Privileges, Object Privileges, and Policy Privileges

Privileges Defined by Oracle Label Security Policies
Oracle Label Security supports special privileges which allow authorized users to

bypass certain parts of the policy. Table 3–3 lists the full set of privileges which can

be granted to users or trusted stored program units.

Table 3–3 Oracle Label Security Privileges

Security Privilege Explanation

READ Allows read access to all data protected by the policy

FULL Allows full read and write access to all data protected by

the policy

COMPACCESS Allows a session access to data authorized by the row’s

compartments, independent of the row’s groups

PROFILE_ACCESS Allows a session to change its labels and privileges to

those of a different user

WRITEUP Allows users to set or raise only the level, within a row

label, up to the maximum level authorized for the user.

(With LABEL_UPDATE enforcement.)

WRITEDOWN Allows users to set or lower the level, within a row label,

to any level equal to or greater than the minimum level

authorized for the user. (With LABEL_UPDATE

enforcement.)

WRITEACROSS Allows a user to set or change groups and compartments

of a row label, but does not allow changes to the level.

(With LABEL_UPDATE enforcement.)

Using Oracle Label Security Privileges

Understanding Access Controls and Privileges 3-19

Special Access Privileges
A user’s authorizations can be modified with any of four privileges:

■ READ

■ FULL

■ COMPACCESS

■ PROFILE_ACCESS

READ
A user with READ privilege can read all data protected by the policy, regardless of

his authorizations or session label. The user does not even need to have label

authorizations. Note, in addition, that a user with READ privilege can write to any

data rows for which he or she has write access, based on any label authorizations.

This privilege is useful for system administrators who need to export data, but who

should not be allowed to change data. It is also useful for people who must run

reports and compile information, but not change data. The READ privilege enables

optimal performance on SELECTs, since the system behaves as though the Oracle

Label Security policy were not even present.

FULL
The FULL privilege has the same effect and benefits as the READ privilege, with

one difference: a user with FULL privilege can also write to all the data. For a user

with the FULL privilege, the READ and WRITE algorithms are not enforced.

Using Oracle Label Security Privileges

3-20 Oracle Label Security Administrator’s Guide

COMPACCESS
The COMPACCESS privilege allows a user to access data based on the row’s

compartments, independent of the row’s groups. If a row has no compartments,

then access is determined by the group authorizations. However, when

compartments do exist, and access to them is authorized, then the group

authorization is bypassed. This allows privileged users to access all of the data for a

particular compartment, independent of what groups may own or otherwise be

allowed access to the data.

Figure 3–9 shows the label evaluation process for read access with COMPACCESS

privilege. Note that if the data label is null or invalid, then the user is denied

access.

Figure 3–9 Label Evaluation Process for Read Access with COMPACCESS Privilege

No
Access

 Access

Data
level =< user

level?

Data has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N

Y

N N
User

has at least one
group?

Data has
compartments?

Using Oracle Label Security Privileges

Understanding Access Controls and Privileges 3-21

Figure 3–10 shows the label evaluation process for write access with COMPACCESS

privilege. Note that if the data label is null or invalid, then the user is denied access.

Figure 3–10 Label Evaluation Process for Write Access with COMPACCESS Privilege

PROFILE_ACCESS
The PROFILE_ACCESS privilege allows a session to change its session labels and

session privileges to those of a different user. This is a very powerful privilege, since

the user can potentially become a user with FULL privileges. This privilege cannot

be granted to a trusted stored program unit.

No
Access

 Access

Data
level =< user

level?

Data
level => user min

level?

Data
has groups?

Data
has

compartments?

User
has at least one
group with Write

access?

User has all
compartments?

N N N

Y YYYYY

Data
has

compartments?

User
has all compartments

with Write
access?

Data has
compartments?

N

Y

N

Y

N

N

Y

N

N

Using Oracle Label Security Privileges

3-22 Oracle Label Security Administrator’s Guide

Special Row Label Privileges
Once the label on a row has been set, Oracle Label Security privileges are required

to modify the label. These privileges include WRITEUP, WRITEDOWN, and

WRITEACROSS.

Note that the LABEL_UPDATE enforcement option must be on for these label

modification privileges to be enforced. When a user updates a row label, the new

label and old label are compared, and the required privileges are determined.

WRITEUP
The WRITEUP privilege enables the user to raise the level of data within a row,

without compromising the compartments or groups. The user can raise the level up

to his or her maximum authorized level.

For example, an authorized user can raise the level of a data row which has a level

lower than his own minimum level. If a row is UNCLASSIFIED and the user’s

maximum level is SENSITIVE, he can raise the row’s level to SENSITIVE. He can

raise the level above his current session level, but cannot change the compartments.

WRITEDOWN
The WRITEDOWN privilege enables the user to lower the level of data within a

row, without compromising the compartments or groups. The user can lower the

level to any level equal to or greater than his or her minimum authorized level.

WRITEACROSS
The WRITEACROSS privilege allows the user to change the compartments and

groups of data, without altering its sensitivity level. This guarantees, for example,

that SENSITIVE data remains at the SENSITIVE level, but at the same time enables

the data’s dissemination to be managed.

It lets the user change compartments and groups to anything that is currently

defined as a valid compartment or group within the policy, while maintaining the

level. With the WRITEACROSS privilege, a user with read access to one group (or

more) can write to a different group without explicitly being given access to it.

Using Oracle Label Security Privileges

Understanding Access Controls and Privileges 3-23

System Privileges, Object Privileges, and Policy Privileges
Remember that Oracle Label Security privileges are different from the standard

Oracle9i system and object privileges.

Oracle9i enforces the discretionary access control privileges which a user has been

granted. By default, a user has no privileges except those granted to the PUBLIC

user group. A user must explicitly be granted the appropriate privilege to perform

an operation.

For example, to read an object in Oracle9i, you must either be the object’s owner, or

be granted the SELECT privilege on the object, or be granted the SELECT ANY

TABLE system privilege. Similarly, to update an object, you must either be the

object’s owner, or be granted the UPDATE privilege on the object, or be granted the

UPDATE ANY TABLE privilege.

Access Mediation and Views
Prior to accessing data through a view, end users must have the appropriate system

and object privileges on the view. If the underlying table (upon which the view is

based) is protected by Oracle Label Security, then the end user of the view must

have authorization from Oracle Label Security to access specific rows of labeled

data.

Table 3–4 Types of Privilege

Source Privileges Definition

Oracle9i System Privileges The right to execute a particular type of SQL
statement

Object Privileges The right to access another user’s object

Oracle Label
Security

Policy Privileges The ability to bypass certain parts of the label
security policy

See Also: For more information about which Oracle9i privileges

are required to perform a certain operation, and how to grant and

revoke these discretionary access control privileges, see Oracle9i
Database Administrator’s Guide

Using Oracle Label Security Privileges

3-24 Oracle Label Security Administrator’s Guide

Access Mediation and Program Unit Execution
In Oracle9i, if User1 executes a procedure which belongs to User2, the procedure

runs with User2’s system and object privileges. However, any procedure executed

by User1 runs with User1’s own Oracle Label Security labels and privileges. This is

true even when User1 executes stored program units owned by other users.

Figure 3–11 illustrates this process:

■ Stored program units execute with the DAC privileges of the procedure’s owner

(User2).

■ In addition, stored program units accessing tables protected by Oracle Label

Security mediate access to data rows based on the label attached to the row, and

the Oracle Label Security labels and privileges of the invoker of the procedure

(User1).

Figure 3–11 Stored Program Unit Execution

Stored program units can become "trusted" when an administrator assigns them

Oracle Label Security privileges. A stored program unit can be run with its own

autonomous Oracle Label Security privileges, rather than those of the user who

invokes it. For example, if you possess no Oracle Label Security privileges in your

own right, but execute a stored program unit which has the WRITEDOWN

LABEL

User invokes stored
program unit

Stored Program Unit

Table accessed using stored
program unit's system and
object privileges

Row access mediated by user's
Oracle Label Security session
labels and privileges

Execute
privilege

Using Oracle Label Security Privileges

Understanding Access Controls and Privileges 3-25

privilege, you can update labels. In this case, the privileges used are those of the

stored program unit, and not your own.

Trusted program units can encapsulate privileged operations in a controlled

manner. By using procedures, packages, and/or functions that have been assigned

privileges, you may be able to access data that your own labels and privileges

would not authorize. For example, to perform aggregate functions over all of the

data in a table, not just the data visible to you, you might make use of a trusted

program unit set up by an administrator. Program units can thus perform

operations on behalf of users, without the need to grant privileges directly to users.

Access Mediation and Policy Enforcement Options
An administrator can choose among a set of policy enforcement options when

applying an Oracle Label Security policy to individual tables. These provide

mechanisms to tailor the enforcement differently for each database table. In

addition to the access controls based on the labels, a SQL predicate can also be

associated with each table, to further define the rows in the table accessible to the

user. In cases where the label associated with a new or updated row should be

automatically computed, an administrator can specify a labeling function that will

always be invoked to provide the data label.

Except where noted, this guide assumes that all enforcement options are in effect.

See Also: Chapter 9, "Administering and Using Trusted Stored

Program Units"

See Also: Chapter 7, "Implementing Policy Options and Labeling

Functions"

Multiple Oracle Label Security Policies

3-26 Oracle Label Security Administrator’s Guide

Multiple Oracle Label Security Policies
This section describes aspects of using multiple policies.

Multiple Oracle Label Security Policies in a Single Database
There may be several Oracle Label Security policies protecting data in a single

database. Each defined policy is associated with a set of labels that are used only by

that policy. Data labels are constrained by the set of defined labels for each policy.

The tables protected may be disjoint, or in some cases a single table may be

protected by more than one Oracle Label Security policy. You must have label

authorizations for all policies protecting the data you need to access. To access any

particular row, you must be authorized by all policies protecting the table. If you

require privileges, then you may need privileges for all of the policies affecting your

work.

Multiple Oracle Label Security Policies in a Distributed Environment
If you work in a distributed environment, where multiple databases may be

protected by the same or different Oracle Label Security policies, your remote

connections will also be controlled by Oracle Label Security.

See Also: Chapter 11, "Using Oracle Label Security with a

Distributed Database"

Part II
 Using Oracle Label Security Functionality

Working with Labeled Data 4-1

4
Working with Labeled Data

This chapter explains how to use Oracle Label Security features to manage labeled

data. It then shows how to view and change the value of security attributes for a

session. The chapter contains these sections:

■ The Policy Label Column and Label Tags

■ Presenting the Label

■ Filtering Data Using Labels

■ Inserting Labeled Data

■ Changing Your Session and Row Labels with SA_SESSION

Note: Many of the examples in this book use the "HUMAN_

RESOURCES" sample policy. Its policy name is "HR", and its policy

label column is "HR_LABEL". Unless otherwise noted, the

examples assume that the SQL statements are performed on rows

within the user’s authorization, and with full Oracle Label Security

policy enforcement in effect.

The Policy Label Column and Label Tags

4-2 Oracle Label Security Administrator’s Guide

The Policy Label Column and Label Tags
This section contains these topics:

■ The Policy Label Column

■ Label Tags

The Policy Label Column
Labels defined in Oracle Label Security have an associated label tag that uniquely

identifies the label in the database. The label tag can be manually specified by the

administrator at the time the label is created, or it will be automatically generated

when the label is created.

The label tag (rather than the character-string label value) is stored in the

policy-specific label column that is added when an Oracle Label Security policy is

applied to a table. By default, the datatype of the policy label column is NUMBER;

it is used to store the numeric label tag.

Hiding the Policy Label Column
The administrator can specify whether or not to display the column. If he or she

applies the HIDE option to a table, then the policy label column is not displayed

when a user executes SELECT *, or performs a DESCRIBE. If the policy label

column is not hidden, then it is displayed as datatype NUMBER.

The Policy Label Column and Label Tags

Working with Labeled Data 4-3

Example 1: Numeric Column Datatype (NUMBER)
SQL> describe emp;
 Name Null? Type
 --- -------- --------
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 SAL NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)
 HR_LABEL NUMBER(10)

Example 2: Numeric Column Datatype with Hidden Column
Notice that in this example, the HR_LABEL column is not displayed.

SQL> describe emp;
 Name Null? Type
 --- -------- --------
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 SAL NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)

The Policy Label Column and Label Tags

4-4 Oracle Label Security Administrator’s Guide

Label Tags
As noted in Chapter 2, the administrator first defines a set of label components to be

used in a policy. When the administrator creates labels, he or she specifies the set of

valid combinations of components which can make up a label. For each such valid

label, an associated numeric tag uniquely identifies the label within the policy.

The label tag can be manually defined by the administrator, to control the ordering

of label values when they are sorted or logically compared. If the tag is not

pre-defined before a label is used, then a tag is automatically generated for each

label as it is used.

Label tags must be unique across all policies in the database. When you use

multiple policies in a database, you cannot use the same numeric label tag in

different policies. Remember that the label tag is the unique identifier of a label. The

data rows do not store the label’s character-string representation; rather, they store

the label tag.

This section contains these topics:

■ Manually Defining Label Tags to Order Labels

■ Manually Defining Label Tags to Manipulate Data

■ Automatically Generated Label Tags

Manually Defining Label Tags to Order Labels
By manually defining label tags, the administrator can implement a data

manipulation strategy which permits labels to be meaningfully sorted and

compared. To do this, the administrator pre-defines all of the labels to be associated

with protected data, and assigns to each label a meaningful label tag value.

Manually assigned label tags can have up to 8 digits. The value of a label tag must

be greater than zero.

It may be advantageous to implement a strategy in which label tag values are

related to the numeric values of label components. In this way, you can use the tags

to group data rows in a meaningful way. This approach, however, is not mandatory.

It is good practice to set tags for labels of higher sensitivity to a higher numeric

value than tags for labels of lower sensitivity.

Table 4–1 illustrates a set of label tags which have been assigned by an

administrator. Notice that in this example the administrator has based the label tag

value on the numeric form of the levels, compartments, and rows which were

discussed in Chapter 2 (Table 2–2, Table 2–3, and Table 2–4).

The Policy Label Column and Label Tags

Working with Labeled Data 4-5

In this example, labels with a level of PUBLIC begin with "1", labels with a level of

CONFIDENTIAL begin with "2", labels with a level of SENSITIVE begin with "3",

and labels with a level of HIGHLY_SENSITIVE begin with "4". Labels with the

FINANCIAL compartment then come in the 1000 range, labels with the

compartment OP are in the 1100 range, and so on. The tens place is used to indicate

the group WR, for example. Another strategy might be completely based on groups,

where the tags might be 3110, 3120, 3130, and so on. Note, however, that label tags

identify the whole label, independent of the numeric values assigned for the

individual label components.

Manually Defining Label Tags to Manipulate Data
An administratively defined label tag can serve as a convenient way to reference a

complete label string (that is, a particular combination of label components). As

illustrated in Table 4–1, for example, the tag "31110" could stand for the complete

label string "S:OP:WR".

Label tags can be used as a convenient way to partition data. For example, all data

with labels in the range 1000 - 1999 could be placed in tablespace A, all data with

labels in the range 2000 - 2999 could be placed in tablespace B, and so on.

This simplified notation also comes in handy when there is a finite number of

labels, and you need to perform various operations upon them. Consider a situation

in which one company hosts a human resources system for many other companies.

Assume that users from Company Y all have the label "C:ALPHA:CY", for which

Table 4–1 Administratively Defined Label Tags (Example)

Label Tag Label String

10000 P

20000 C

21000 C:FNCL

21100 C:FNCL,OP

30000 S

31110 S:OP:WR

40000 HS

42000 HS:OP

The Policy Label Column and Label Tags

4-6 Oracle Label Security Administrator’s Guide

the tag "210" has been set. To determine the total number of application users from

Company Y, the host administrator can enter:

SELECT * FROM tab1
 WHERE hr_label = 210;

Automatically Generated Label Tags
Dynamically generated label tags, illustrated in Table 4–2 , have 10 digits. In this

case there is no relationship at all between the label tag and the numbers assigned

to the various label components, nor is there any other means of grouping the data

by label.

Table 4–2 Generated Label Tags (Example)

Label Tag Label String

100000020 P

100000052 C

100000503 C:FNCL

100000132 C:FNCL,OP

100000003 S

100000780 S:OP:WR

100000035 HS

100000036 HS:OP

See Also: "Creating a Valid Data Label with SA_LABEL_

ADMIN.CREATE_LABEL" on page 5-23

"Planning a Label Tag Strategy to Enhance Performance" on

page 12-10

Presenting the Label

Working with Labeled Data 4-7

Presenting the Label
When you retrieve labels, you do not automatically obtain the character string

value. By default, the label tag value is returned. Two label manipulation functions

enable you to convert the label tag value to and from its character string

representation:

■ Converting a Character String to a Label Tag, with CHAR_TO_LABEL

■ Converting a Label Tag to a Character String, with LABEL_TO_CHAR

Converting a Character String to a Label Tag, with CHAR_TO_LABEL
Use the CHAR_TO_LABEL function to convert a character string to a label tag. This

function returns the label tag for the specified character string.

Syntax:

FUNCTION CHAR_TO_LABEL (
 policy_name IN VARCHAR2,
 label_string IN VARCHAR2)
RETURN NUMBER;

Example:

INSERT INTO emp (empno,hr_label)
VALUES (999, CHAR_TO_LABEL(’HR’,’S:A,B:G5’);

Here, "HR" is the label’s policy name.

Presenting the Label

4-8 Oracle Label Security Administrator’s Guide

Converting a Label Tag to a Character String, with LABEL_TO_CHAR
When you query a table or view, you automatically retrieve all of the rows in the

table or view that satisfy the qualifications of the query and are dominated by your

label. If the policy label column is not hidden, then the label tag value for each row

is displayed. You must use the LABEL_TO_CHAR function to display the character

string value of each label.

Note that all conversions must be explicit. There is no automatic casting to and from

tag and character string representations.

Syntax:

FUNCTION LABEL_TO_CHAR (
 label IN NUMBER)
RETURN VARCHAR2;

LABEL_TO_CHAR Examples

Example 1: To retrieve the label of a row from a table or view, specify the policy label

column in the SELECT statement as follows:

SELECT label_to_char (hr_label) AS label, ename FROM tab1;
 WHERE ename = ’RWRIGHT’;

This statement returns the following:

LABEL ENAME
------------ ----------
S:A,B:G1 RWRIGHT

Example 2: You can also specify the policy label column in the WHERE clause of a

SELECT statement. The following statement displays all rows which have the

policy label "S:A,B:G1".

SELECT label_to_char (hr_label) AS label,ename FROM emp
 WHERE hr_label = char_to_label (’HR’, ’S:A,B:G1’);

This statement returns the following:

LABEL ENAME
------------- ---------
S:A,B:G1 RWRIGHT
S:A,B:G1 ESTANTON

Presenting the Label

Working with Labeled Data 4-9

Alternatively, you could use a more flexible statement to look up data that contains

the string "S:A,B:G1" anywhere in the text of the HR_LABEL column:

SELECT label_to_char (hr_label) AS label,ename FROM emp
 WHERE label_to_char (hr_label) like ’%S:A,B:G1%’;

If you do not use the LABEL_TO_CHAR function, you will see the label tag.

Example 3: The following example is with the numeric column datatype (NUMBER)

and dynamically generated label tags, but without using the LABEL_TO_CHAR

function. If you do not use the LABEL_TO_CHAR function, you will see the label

tag.

SQL> select empno, hr_label from emp
 where ename=’RWRIGHT’;

EMPNO HR_LABEL
---------- ----------
7839 1000000562

Retrieving All Columns from a Table When Policy Label Column Is Hidden
If the policy label column is hidden, then it is not automatically returned when you

select all columns from a table using the SELECT * command. You must explicitly

specify that you want to retrieve the label. For example, to retrieve all columns from

the DEPT table (including the policy label column in its character representation),

enter the following:

SQL> column label format a10
SQL> select label_to_char (hr_label) as label, dept.*
 2 from dept;

LABEL DEPTNO DNAME LOC
---------- --------- -------------- -------------
L1 10 ACCOUNTING NEW YORK
L1 20 RESEARCH DALLAS
L1 30 SALES CHICAGO
L1 40 OPERATIONS BOSTON

By contrast, if you do not explicitly specify the HR_LABEL column, the label is not

displayed at all. Note that while the policy column name is on a policy basis, the

HIDE option is on a table-by-table basis.

See Also: "The HIDE Policy Column Option" on page 7-4

Filtering Data Using Labels

4-10 Oracle Label Security Administrator’s Guide

Filtering Data Using Labels
During the processing of SQL statements, Oracle Label Security makes calls to the

security policies defined in the database. For SELECT statements, the policy filters

the data rows which the user is authorized to see. For INSERT, UPDATE, and

DELETE statements, Oracle Label Security permits or denies the requested

operation, based on the user’s authorizations.

This section contains these topics:

■ Using Numeric Label Tags in WHERE Clauses

■ Ordering Labeled Data Rows

■ Ordering by Character Representation of Label

■ Determining Upper and Lower Bounds of Labels

■ Merging Labels with the MERGE_LABEL Function

Using Numeric Label Tags in WHERE Clauses
This section describes techniques of using numeric label tags in WHERE clauses of

SELECT statements.

When using labels in the NUMBER format, the administrator can set up labels such

that a list of their label tags distinguishes the different levels. Comparisons of these

numeric label tags can be used for ORDER BY processing, and with the logical

operators.

For example, if the administrator has assigned all UNCLASSIFIED labels to the

1000 range, all SENSITIVE labels to the 2000 range, and all HIGHLY_SENSITIVE

labels to the 3000 range, then you can list all SENSITIVE records by entering:

SELECT * FROM emp
WHERE hr_label BETWEEN 2000 AND 2999;

To list all SENSITIVE and UNCLASSIFIED records, you can enter:

SELECT * FROM emp
WHERE hr_label <3000;

See Also: "Partitioning Data Based on Numeric Label Tags" on

page 12-12

Filtering Data Using Labels

Working with Labeled Data 4-11

To list all HIGHLY_SENSITIVE records, you can enter:

SELECT * FROM emp
WHERE hr_label=3000;

Alternatively, you can use dominance relationships to set up an ordering strategy.

Ordering Labeled Data Rows
You can perform an ORDER BY referencing the policy label column to order rows

by the numeric label tag value which the administrator has set. For example:

SELECT * from emp
ORDER BY hr_label;

Notice that no functions were necessary in this statement. The statement simply

made use of label tags set up by the administrator.

Ordering by Character Representation of Label
Using the LABEL_TO_CHAR function, you can order data rows by the character

representation of the label. For example, the following statement returns all rows

sorted by the text order of the label:

SELECT * FROM emp
ORDER BY label_to_char (hr_label);

Note: Remember that such queries only have meaning if the

administrator has applied a numeric ordering strategy to the label

tags which he or she originally assigned to the labels. In this way

the administrator can provide for convenient dissemination of data.

If, however, the label tag values are generated automatically, then

there is no intrinsic relationship between the value of the tag and

the order of the labels.

See Also: "Using Dominance Functions" on page A-3

Note: Again, such queries only have meaning if the administrator

has applied a numeric ordering strategy to the label tags originally

assigned to the labels.

Filtering Data Using Labels

4-12 Oracle Label Security Administrator’s Guide

Determining Upper and Lower Bounds of Labels
This section describes the Oracle Label Security functions which determine the least

upper bound or the greatest lower bound of two or more labels. Two single-row

functions operate on each row returned by a query; they return one result for each

row.

■ Finding Least Upper Bound with LEAST_UBOUND

■ Finding Greatest Lower Bound with GREATEST_LBOUND

Finding Least Upper Bound with LEAST_UBOUND
The LEAST_UBOUND (LUBD) function returns a character string label that is the

least upper bound of label1 and label2: that is, the one label which dominates both.

The least upper bound is the highest level, the union of the compartments in the

labels, and the union of the groups in the labels. For example, the least upper bound

of HIGHLY_SENSITIVE:ALPHA and SENSITIVE:BETA is HIGHLY_

SENSITIVE:ALPHA,BETA.

Syntax:

FUNCTION LEAST_UBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN VARCHAR2;

The LEAST_UBOUND function is useful when joining rows with different labels,

because it provides a high water mark label for joined rows.

The following query compares each employee’s label with the label of his or her

department, and returns the higher label—whether it be in the EMP table or the

DEPT table.

SELECT ename,dept.deptno,
 LEAST_UBOUND(emp.hr_label,dept.hr_label) as label
 FROM emp, dept
 WHERE emp.deptno=dept.deptno;

Note: In all functions which take multiple labels, the labels must

all belong to the same policy.

Filtering Data Using Labels

Working with Labeled Data 4-13

This query returns the following:

ENAME DEPTNO LABEL
---------- --------- ----------
KING 10 L3:M:D10
BLAKE 30 L3:M:D30
CLARK 10 L3:M:D10
JONES 20 L3:M:D20
MARTIN 30 L2:E:D30

Finding Greatest Lower Bound with GREATEST_LBOUND
The GREATEST_LBOUND (GLBD) function can be used to determine the lowest

label of the data that can be involved in an operation, given two different labels. It

returns a character string label that is the greatest lower bound of label1 and label2.

The greatest lower bound is the lowest level, and the intersection of the

compartments in the labels and the groups in the labels. For example, the greatest

lower bound of HIGHLY_SENSITIVE:ALPHA and SENSITIVE is SENSITIVE.

Syntax:

FUNCTION GREATEST_LBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN VARCHAR2;

Filtering Data Using Labels

4-14 Oracle Label Security Administrator’s Guide

Merging Labels with the MERGE_LABEL Function
The MERGE_LABEL function is a utility for merging two labels together. It accepts

the character string form of two labels, and the three-character specification of a

merge format. Its syntax is as follows:

Syntax:

FUNCTION merge_label (label1 IN number,
 label2 IN number,
 merge_format IN VARCHAR2)
RETURN number;

The valid merge format is specified with a three-character string:

<highest level or lowest level><union or intersection of compartments><union or
intersection of groups>

■ The first character indicates whether to merge using the highest level or the

lowest level of the two labels.

■ The second character indicates whether to merge using the union or the

intersection of the compartments in the two labels.

■ The third character indicates whether to merge using the union or the

intersection of the groups in the two labels.

The following table defines the MERGE_LABEL format constants.

Filtering Data Using Labels

Working with Labeled Data 4-15

For example, HUI specifies the highest level of the two labels, union of the

compartments, intersection of the groups.

The MERGE_LABEL function is particularly useful to developers if the LEAST_

UBOUND function does not provide the intended result. The LEAST_UBOUND

function, when used with two labels containing groups, may result in a less

sensitive data label than expected. The MERGE_LABEL function enables you to

compute an intersection on the groups, instead of the union of groups which is

provided by the LEAST_UBOUND function.

For example, if the label of one data record contains the group UNITED_STATES,

and the label of another data record contains the group UNITED_KINGDOM, and

the LEAST_UBOUND function is used to compute the least upper bound of these

two labels, the resulting label would be accessible to users authorized for either the

UNITED_STATES or the UNITED_KINGDOM.

If, by contrast, the MERGE_LABEL function is used with a format clause of HUI,

the resulting label would contain the highest level, the union of the compartments,

and no groups—because UNITED_STATES and UNITED_KINGDOM do not

intersect.

Table 4–3 MERGE_LABEL Format Constants

Format
Specification Datatype Constant Meaning

Positions in Which
Format Is Used

max_lvl_fmt CONSTANT
varchar2(1)

H Maximum level First (level)

min_lvl_fmt CONSTANT
varchar2(1)

L Minimum level First (Level)

union_fmt CONSTANT
varchar2(1)

U Union of the two
labels

Second (compartments)
and Third (groups)

inter_fmt CONSTANT
varchar2(1)

I Intersection of the
two labels

Second (compartments)
and Third (groups)

minus_fmt CONSTANT
varchar2(1)

M Remove second label
from first label

Second (compartments)
and Third (groups)

null_fmt CONSTANT
varchar2(1)

N If specified in comps
column, returns no
comps. If specified
in groups column,
returns no groups.

Second (compartments)
and Third (groups)

Inserting Labeled Data

4-16 Oracle Label Security Administrator’s Guide

Inserting Labeled Data
When you insert data into a table protected by Oracle Label Security, you must

specify a value for the label in any INSERT statement (unless the LABEL_DEFAULT

policy option is set, or a label function exists to compute the label). To do this, you

must explicitly specify the label tag value for the desired label, or explicitly convert

the character string representation of the label into the appropriate label tag. Note

that this does not mean generating label tags, but simply referencing the

appropriate one.

This section explains the different ways to insert labeled data:

■ Inserting Labels Using CHAR_TO_LABEL

■ Inserting Labels Using Numeric Label Tag Values

■ Inserting Data Without Specifying a Label

■ Inserting Data When the Policy Label Column Is Hidden

■ Inserting Labels Using TO_DATA_LABEL

Inserting Labels Using CHAR_TO_LABEL
To insert a row label, you can specify the label character string, and then transform

it into a label using the CHAR_TO_LABEL function. The following example shows

how to insert data with explicit labels:

INSERT INTO emp (ename,empno,hr_label)
VALUES (’ESTANTON’,10,char_to_label (’HR’, ’SENSITIVE’));

Inserting Labels Using Numeric Label Tag Values
You can insert data using the numeric label tag value of a label, rather than using

the CHAR_TO_LABEL function. For example, if the numeric label tag for

SENSITIVE is 3000, it would look like this:

INSERT INTO emp (ename, empno, hr_label)
VALUES (’ESTANTON’, 10, 3000);

See Also: Chapter 8, "Applying Policies to Tables and Schemas"

for information about inserting data with a labeling function, and

updating and deleting labeled data

Inserting Labeled Data

Working with Labeled Data 4-17

Inserting Data Without Specifying a Label
If LABEL_DEFAULT is set, or there is a labeling function applied to the table, you

do not need to specify a label in your INSERT statements. The label will be

provided automatically. Thus you could enter:

INSERT INTO emp (ename, empno)
VALUES (’ESTANTON’, 10);

The resulting row label is set according to the default value, or labeling function.

Inserting Data When the Policy Label Column Is Hidden
If the label column is hidden, the existence of the column is transparent to the

insertion of data. INSERT statements can be written which do not explicitly list the

table columns, and do not include a value for the label column. The session’s row

label or a label function (if provided) is used to label the data.

You can insert into a table without explicitly naming the columns—as long as you

specify a value for each non-hidden column in the table. The following example

shows how to insert a row into the table described in "Example 2: Numeric Column

Datatype with Hidden Column" on page 4-3:

INSERT INTO emp
VALUES (’196’,’ESTANTON’,Technician,RSTOUT,50000,10);

Note that if the policy label column is not hidden, you must explicitly include a

label value (possibly a null value) in the INSERT statement.

Inserting Labeled Data

4-18 Oracle Label Security Administrator’s Guide

Inserting Labels Using TO_DATA_LABEL
If you are generating new labels dynamically as you insert data, you can use the

TO_DATA_LABEL function to guarantee that this produces valid data labels. To do

this you must have EXECUTE authority on the TO_DATA_LABEL function.

Whereas the CHAR_TO_LABEL function requires that the label already be an

existing data label for the transaction to succeed, the TO_DATA_LABEL does not

have this requirement. It will automatically create a valid data label.

For example:

INSERT INTO emp (ename, empno, hr_label)
VALUES (’ESTANTON’, 10, to_data_label (’HR’, ’SENSITIVE’));

Note: The TO_DATA_LABEL function must be explicitly granted

to individuals, in order to be used. Its usage should be tightly

controlled.

See Also: Chapter 8, "Applying Policies to Tables and Schemas"

for more information about inserting, updating, and deleting

labeled data

Changing Your Session and Row Labels with SA_SESSION

Working with Labeled Data 4-19

Changing Your Session and Row Labels with SA_SESSION
During a given session, a user can change his or her labels, within the

authorizations set by the administrator.

 This section contains these topics:

■ SA_SESSION Functions to Change Session and Row Labels

■ Changing the Session Label with SA_SESSION.SET_LABEL

■ Changing the Row Label with SA_SESSION.SET_ROW_LABEL

■ Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS

■ Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS

■ Viewing Session Attributes with SA_SESSION Functions

SA_SESSION Functions to Change Session and Row Labels
The following functions enable the user to change the session and row labels:

Table 4–4 Functions to Change Session Labels

Function Purpose

SA_SESSION.SET_LABEL Lets the user set a new level and new compartments and
groups to which he or she has read access

SA_SESSION.SET_ROW_
LABEL

Lets the user set the default row label that will be applied to
new rows

SA_SESSION.RESTORE_
DEFAULT_LABELS

Lets the user reset the current session label and row label to the
stored default settings

SA_SESSION.SAVE_
DEFAULT_LABELS

Lets the user store the current session label and row label as
the default for future sessions

Changing Your Session and Row Labels with SA_SESSION

4-20 Oracle Label Security Administrator’s Guide

Changing the Session Label with SA_SESSION.SET_LABEL
Use the SET_LABEL procedure to set the label of the current database session.

Syntax:

PROCEDURE SET_LABEL (policy_name IN VARCHAR2,
 label IN VARCHAR2);

A user can set the session label to:

■ Any level equal to or less than his maximum, and equal to or greater than his

minimum level

■ Include any compartments in his authorized compartment list

■ Include any groups in his authorized group list. (Subgroups of authorized

groups are implicitly included in the authorized list.)

Note that if you change the session label, this change may affect the value of the

session’s row label. The session’s row label contains the subset of compartments

and groups for which the user has write access. This may or may not be equivalent

to the session label. For example, if you use the SA_SESSION.SET_LABEL

command to set your current session label to C:A,B:US and you have write access

only on the A compartment, then your row label would be set to C:A.

policy_name The name of an existing policy

label The value to set as the label

See Also: "SA_USER_ADMIN.SET_DEFAULT_LABEL" on

page 6-13

Changing Your Session and Row Labels with SA_SESSION

Working with Labeled Data 4-21

Changing the Row Label with SA_SESSION.SET_ROW_LABEL
Use the SET_ROW_LABEL procedure to set the default row label value for the

current database session. The compartments and groups in the label must be a

subset of compartments and groups in the session label to which the user has write

access. When the LABEL_DEFAULT option is set, this row label value is used on

insert if the user does not explicitly specify the label.

Syntax:

PROCEDURE SET_ROW_LABEL (policy_name IN VARCHAR2,
 row_label IN VARCHAR2);

If the SA_SESSION.SET_ROW_LABEL procedure is not used to set the default row

label value, then this value is automatically derived from the session label. It

contains the level of the session label, and the subset of compartments and groups

in the session label for which the user has write authorization.

The row label is automatically reset if the session label changes. For example, if you

change your session level from HIGHLY_SENSITIVE to SENSITIVE, the level

component of the row label automatically changes to SENSITIVE.

The user can set the row label independently, but only to include:

■ A level which is less than or equal to the level of the session label, and greater

than or equal to the user’s minimum level

■ A subset of the compartments and groups from the session label, for which the

user is authorized to have write access

If the user tries to set the row label to an invalid value, the operation is not

permitted, and the row label value is unchanged.

policy_name The name of an existing policy

row_label The value to set as the default row label

See Also: "SA_USER_ADMIN.SET_ROW_LABEL" on page 6-14

Changing Your Session and Row Labels with SA_SESSION

4-22 Oracle Label Security Administrator’s Guide

Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS
The RESTORE_DEFAULT_LABELS procedure restores the session label and row

label to those stored in the data dictionary. This command is useful to reset values

after a SA_SESSION.SET_LABEL command has been executed.

Syntax:

PROCEDURE RESTORE_DEFAULT_LABELS (policy_name in VARCHAR2);

Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS
The SAVE_DEFAULT_LABELS procedure stores the current session label and row

label as your initial session label and default row label. It permits you to change

your defaults to reflect your current session label and row label. The saved labels

will be used as the initial default settings for future sessions.

Syntax:

PROCEDURE SAVE_DEFAULT_LABELS (policy_name in VARCHAR2);

When you log into a database, your default session label and row label are used to

initialize the session label and row label. When the administrator originally

authorized your Oracle Label Security labels, he or she also defined your default

level, default compartments, and default groups. If you change your session label

and row label, and want to save these values as the default labels, you can use the

SA_SESSION.SAVE_DEFAULT_LABELS procedure.

This procedure is useful if you have multiple sessions and want to be sure that all

additional sessions have the same labels. You can save the current labels as the

default, and all future sessions will have these as the initial labels.

Consider a situation in which you connect to the database through Oracle Forms,

and want to run a report. By saving the current session labels as the default before

you invoke Oracle Reports, you ensure that Oracle Reports will initialize at the

same labels as are being used by Oracle Forms.

policy_name The name of an existing policy

policy_name The name of an existing policy

Note: The SA_SESSION.SAVE_DEFAULT_LABELS procedure

overrides the settings established by the administrator.

Changing Your Session and Row Labels with SA_SESSION

Working with Labeled Data 4-23

Viewing Session Attributes with SA_SESSION Functions
You can use SA_SESSION functions to view the policy attributes for a session.

■ USER_SA_SESSION View to Return All Security Attributes

■ Functions to Return Individual Security Attributes

USER_SA_SESSION View to Return All Security Attributes
You can display security attribute values by using the USER_SA_SESSION view.

Access to this view is PUBLIC. It lets you see the security attributes for your current

session. For example:

 Name Null? Type
 --- -------- -------------
 POLICY_NAME NOT NULL VARCHAR2(30)
 SA_USER_NAME VARCHAR2(4000)
 PRIVS VARCHAR2(4000)
 MAX_READ_LABEL VARCHAR2(4000)
 MAX_WRITE_LABEL VARCHAR2(4000)
 MIN_LEVEL VARCHAR2(4000)
 LABEL VARCHAR2(4000)
 COMP_WRITE VARCHAR2(4000)
 GROUP_WRITE VARCHAR2(4000)
 ROW_LABEL VARCHAR2(4000)

Changing Your Session and Row Labels with SA_SESSION

4-24 Oracle Label Security Administrator’s Guide

Functions to Return Individual Security Attributes
The SA_SESSION functions take a policy_name as the only input parameter. They

return VARCHAR2 character string values for use in SQL statements.

For example, the following statement shows the current session label for the

Human Resources policy:

SQL> select sa_session.label (’human_resources’)
 2 from dual;

SA_SESSIONs.LABEL(’HUMAN_RESOURCES’)

L3:M,E

Table 4–5 SA_SESSION Functions to View Security Attributes

Function Purpose

SA_SESSION.PRIVS Returns the set of current session privileges, in a comma-separated list

SA_SESSION.MIN_LEVEL Returns the minimum level authorized for the session

SA_SESSION.MAX_LEVEL Returns the maximum level authorized for the session

SA_SESSION.COMP_READ Returns a comma-separated list of compartments which the user is
authorized to read

SA_SESSION.COMP_WRITE Returns a comma-separated list of compartments which the user is
authorized to write. This is a subset of SA_SESSION.COMP_READ.

SA_SESSION.GROUP_READ Returns a comma-separated list of groups which the user is authorized to
read

SA_SESSION.GROUP_WRITE Returns a comma-separated list of groups which the user is authorized to
write. This is a subset of SA_SESSION.GROUP_READ.

SA_SESSION.LABEL Returns the session label (the level, compartments, and groups) with which
the user is currently working. The user can change this value.

SA_SESSION.ROW_LABEL Returns the session’s default row label value. The user can change this value.

SA_SESSION.SA_USER_NAME Returns the username associated with the current Oracle Label Security
session

See Also: "Using SA_UTL Functions to Set and Return Label

Information" on page 9-7 for additional functions that return

numeric label tags and BOOLEAN values

Part III
Administering an Oracle Label Security

Application

Creating an Oracle Label Security Policy 5-1

5
Creating an Oracle Label Security Policy

This chapter explains how to create an Oracle Label Security policy. It contains these

sections:

■ Oracle Label Security Administrative Task Overview

■ Organizing the Duties of Oracle Label Security Administrators

■ Choosing an Oracle Label Security Administrative Interface

■ Oracle Policy Manager

■ Using the SA_SYSDBA Package to Manage Security Policies

■ Using the SA_COMPONENTS Package to Define Label Components

■ Using the SA_LABEL_ADMIN Package to Specify Valid Labels

Oracle Label Security Administrative Task Overview

5-2 Oracle Label Security Administrator’s Guide

Oracle Label Security Administrative Task Overview
To create and implement an Oracle Label Security policy, you perform the following

tasks, which are described in the next few chapters:

■ Step 1: Create the Policy

■ Step 2: Define the Components of the Labels

■ Step 3: Identify the Set of Valid Data Labels

■ Step 4: Apply the Policy to Tables and Schemas

■ Step 5: Authorize Users

■ Step 6: Create and Authorize Trusted Program Units (Optional)

■ Step 7: Configure Auditing (Optional)

Step 1: Create the Policy
Create a policy by defining:

■ The policy name

■ The column name for policy labels

■ The default options for the policy

To do this in Oracle Policy Manager, you can use the Create Policy icon or the

Policy property sheet.

Alternatively, you can use the SA_SYSDBA.CREATE_POLICY command line

procedure.

Step 2: Define the Components of the Labels
Define the levels, compartments, and groups which form the components of the

new policy’s labels.

To do this in Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Labels and use the Labels property sheet.

Alternatively, you can use the SA_COMPONENTS package on the command line.

See Also: "Creating a Policy with SA_SYSDBA.CREATE_

POLICY" on page 5-9

See Also: "Using the SA_COMPONENTS Package to Define

Label Components" on page 5-12

Oracle Label Security Administrative Task Overview

Creating an Oracle Label Security Policy 5-3

Step 3: Identify the Set of Valid Data Labels
Specify the set of valid labels to support the policy. From all the possible

combinations of levels, compartments, and groups, you must define labels which

can be assigned to data.

Alternatively, applications that need to create data labels dynamically at runtime

can use the TO_DATA_LABEL function.

To do this in Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Labels and use the Labels property sheet.

Step 4: Apply the Policy to Tables and Schemas
Protect individual database tables and schemas by applying the policy to them. In

the process, you can customize the level of enforcement of the policy for each table

and schema, to reflect your application security requirements.

To do this with Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Protected Objects. Select either Schemas or Tables, and use the

corresponding property sheet.

Alternatively, you can use the SA_POLICY_ADMIN package.

Step 5: Authorize Users
For individual users, define the authorizations which each person will use for

session access. If users do not have appropriate authorizations, they cannot access

protected data.

You can optionally assign special privileges which particular users need to do their

job. Note that Oracle Label Security privileges may only be necessary to perform

special job functions.

To do this with Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Authorizations—>Users and use the User property sheet.

Alternatively, you can use the SA_POLICY_ADMIN package.

See Also: "Using the SA_LABEL_ADMIN Package to Specify

Valid Labels" on page 5-22

"Inserting Labels Using TO_DATA_LABEL" on page 4-18

See Also: Chapter 8, "Applying Policies to Tables and Schemas"

See Also: Chapter 6, "Administering User Labels and Privileges"

Oracle Label Security Administrative Task Overview

5-4 Oracle Label Security Administrator’s Guide

Step 6: Create and Authorize Trusted Program Units (Optional)
Create any necessary stored trusted program units, and set their labels and

privileges.

To do this with Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Authorizations—>Program Units and use the User property sheet.

Alternatively, you can use the SA_USER_ADMIN package.

Step 7: Configure Auditing (Optional)
Configure monitoring of the administrative tasks and use of privileges, if desired.

■ Configure policy-wide auditing.

To do this with Oracle Policy Manager, go to Oracle Label Security Policies—>
policyname—>Auditing and use the Auditing tab page of the Policy property

sheet.

■ Configure auditing on a user-by-user basis.

To do this with Oracle Policy Manager, go to Oracle Label Security
Policies—>Authorizations—>Users—> username. Use the Auditing tab page of

the User property sheet.

Alternatively, you can use the SA_AUDIT_ADMIN package to set auditing options

for policies, users, and program units.

See Also: Chapter 9, "Administering and Using Trusted Stored

Program Units"

See Also: Chapter 10, "Auditing Under Oracle Label Security"

Organizing the Duties of Oracle Label Security Administrators

Creating an Oracle Label Security Policy 5-5

Organizing the Duties of Oracle Label Security Administrators
You can manage the administration of an Oracle Label Security policy in various

ways. The policy_DBA role is created when you create a new policy, and every

individual who needs to perform administrative functions must be granted this

role. However, you can grant EXECUTE privileges on the administrative packages

to different users, so that each administrator can be restricted to a subset of the

administrative functions.

For example, you could grant EXECUTE privilege on SA_COMPONENTS and SA_

LABEL_ADMIN to one user or role to manage the label definitions, and grant

EXECUTE on SA_USER_ADMIN to a different user or role to manage user labels

and privileges. Alternatively, you could grant EXECUTE on all of the administrative

packages to the policy_DBA role, so that anyone with the policy_DBA role could

perform all of the administrative tasks.

Choosing an Oracle Label Security Administrative Interface

5-6 Oracle Label Security Administrator’s Guide

Choosing an Oracle Label Security Administrative Interface
You can perform Oracle Label Security development and administrative tasks using

either of two interfaces:

■ Oracle Label Security Packages

■ Oracle Policy Manager

Oracle Label Security Packages
Oracle Label Security packages provide a direct, command-line interface for ease of

administration. These include:

Oracle Label Security Demonstration File
For a demonstration showing how to create and develop an Oracle Label Security

policy using the supplied packages, refer to the demobld.sql file in your

ORACLE_HOME/lbac/demo directory.

Table 5–1 Oracle Label Security Administrative Packages

Package Purpose

SA_SYSDBA To create, alter, and drop Oracle Label Security policies

SA_COMPONENTS To define the levels, compartments, and groups for the policy

SA_LABEL_ADMIN To perform standard label policy administrative functions,
such as creating labels

SA_POLICY_ADMIN To apply policies to schemas and tables

SA_USER_ADMIN To manage user authorizations for levels, compartments, and
groups, as well as program unit privileges. Also to administer
user privileges.

SA_AUDIT_ADMIN To set options to audit administrative tasks and use of
privileges

Choosing an Oracle Label Security Administrative Interface

Creating an Oracle Label Security Policy 5-7

Oracle Policy Manager
You can use Oracle Policy Manager, an extension to Oracle Enterprise Manager, to

administer Oracle Label Security. Figure 5–1 is a representative screenshot which

illustrates the Oracle Policy Manager interface. Please see the online help for

instructions on how to use this graphical user interface.

Figure 5–1 Oracle Policy Manager Interface

Using the SA_SYSDBA Package to Manage Security Policies

5-8 Oracle Label Security Administrator’s Guide

Using the SA_SYSDBA Package to Manage Security Policies
This section explains how to manage a policy using the SA_SYSDBA package. To do

this in Oracle Policy Manager, use the Create Policy icon or the Policy property

sheet.

■ Who Can Use the SA_SYSDBA Package

■ Who Can Administer a Policy

■ Valid Characters for Policy Specifications

■ Creating a Policy with SA_SYSDBA.CREATE_POLICY

■ Modifying Policy Options with SA_SYSDBA.ALTER_POLICY

■ Disabling a Policy with SA_SYSDBA.DISABLE_POLICY

■ Enabling a Policy with SA_SYSDBA.ENABLE_POLICY

■ Removing a Policy with SA_SYSDBA.DROP_POLICY

Who Can Use the SA_SYSDBA Package
To use the SA_SYSDBA package to create, alter, and drop policies a user must have:

■ The LBAC_DBA role

■ EXECUTE privilege on the SA_SYSDBA package

Who Can Administer a Policy
When you create a policy, a role named policy_DBA is automatically created. You

can use this role to control the users who are authorized to execute the policy’s

administrative procedures.

For example, after you have created a human resources policy named HR, an HR_

DBA role is automatically created. To use any administrative packages, a user

would need to have the HR_DBA role. If Joan is the administrator of the HR policy,

and David is the administrator of the FIN policy, then Joan has the HR_DBA role

and David has the FIN_DBA role. Each person can only administer the policy for

which he or she has the policy_DBA role.

The user who creates the policy is automatically granted the policy_DBA role with

the ADMIN option, and can grant the role to others.

Using the SA_SYSDBA Package to Manage Security Policies

Creating an Oracle Label Security Policy 5-9

Valid Characters for Policy Specifications
Valid characters for all policy specifications include alphanumeric characters and

underscores, as well as any valid character from your database character set.

Creating a Policy with SA_SYSDBA.CREATE_POLICY
Use the CREATE_POLICY procedure to create a new Oracle Label Security policy,

define a policy-specific column name, and specify a set of default policy options.

Syntax:

PROCEDURE CREATE_POLICY (
 policy_name IN VARCHAR2,
 column_name IN VARCHAR2 DEFAULT NULL,
 default_options IN VARCHAR2 DEFAULT NULL);

policy_name Specifies the policy name, which must be unique within the database.
It can have a maximum of 30 characters.

column_name Specifies the name of the column to be added to tables protected by
the policy. If NULL, the default name "SA_LABEL" is used. Two
Oracle Label Security policies cannot share the same column name.

default_options Specifies the default options to be used when the policy is applied and
no table- or schema-specific options are specified. Includes
enforcement options and the option to hide the label column.

See Also: "Choosing Policy Options" on page 7-2

"SYSDBA.CREATE_POLICY with Inverse Groups" on page 13-21

Using the SA_SYSDBA Package to Manage Security Policies

5-10 Oracle Label Security Administrator’s Guide

Modifying Policy Options with SA_SYSDBA.ALTER_POLICY
Use the ALTER_POLICY procedure to set and modify policy default options.

Syntax:

PROCEDURE ALTER_POLICY (
 policy_name IN VARCHAR2,
 default_options IN VARCHAR2 DEFAULT NULL);

Disabling a Policy with SA_SYSDBA.DISABLE_POLICY
Use the DISABLE_POLICY procedure to turn off enforcement of a policy, without

removing it from the database. The policy is not enforced for all subsequent access

to the database.

To disable a policy means that no access control is enforced on the tables and

schemas protected by the policy. The administrator can continue to perform

administrative operations while the policy is disabled.

Syntax:

PROCEDURE DISABLE_POLICY (policy_name IN VARCHAR2);

Normally, a policy should not be disabled in order to manage data. At times,

however, an administrator may need to disable a policy in order to perform

application debugging tasks. In this case, the database should be run in single-user

policy_name Specifies the policy name

default_options Specifies the default options to be used when the policy is applied
and no table- or schema-specific options are specified. Includes
enforcement options and the option to hide the label column.

policy_name Specifies the policy to be disabled

Note: This feature is extremely powerful, and should be used with

caution. When a policy is disabled, anyone who connects to the

database can access all the data normally protected by the policy.

Your site therefore should establish guidelines for use of this

feature.

Using the SA_SYSDBA Package to Manage Security Policies

Creating an Oracle Label Security Policy 5-11

mode. In a development environment, for example, you may need to observe data

processing operations without the policy turned on. When you re-enable the policy,

all of the selected enforcement options become effective again.

Enabling a Policy with SA_SYSDBA.ENABLE_POLICY
Use the ENABLE_POLICY procedure to enforce access control on the tables and

schemas protected by the policy. A policy is automatically enabled when it is

created. After creation or enabling, the policy is enforced for all subsequent access

to tables protected by the policy

Syntax:

PROCEDURE ENABLE_POLICY (policy_name IN VARCHAR2);

Removing a Policy with SA_SYSDBA.DROP_POLICY
Use the DROP_POLICY procedure to remove the policy and all of its associated

user labels and data labels from the database. It purges the policy from the system

entirely. You can optionally drop the label column from all tables controlled by the

policy.

Syntax:

PROCEDURE DROP_POLICY (policy_name IN VARCHAR2,
 drop_column BOOLEAN DEFAULT FALSE);

policy_name Specifies the policy to be enabled

policy_name Specifies the policy to be dropped

drop_column Indicates that the policy column should be dropped from
protected tables (TRUE)

Using the SA_COMPONENTS Package to Define Label Components

5-12 Oracle Label Security Administrator’s Guide

Using the SA_COMPONENTS Package to Define Label Components
This package manages the component definitions of an Oracle Label Security label.

Each policy defines the components differently. This section contains these topics:

■ Creating a Level with SA_COMPONENTS.CREATE_LEVEL

■ Modifying a Level with SA_COMPONENTS.ALTER_LEVEL

■ Removing a Level with SA_COMPONENTS.DROP_LEVEL

■ Creating a Compartment with SA_COMPONENTS.CREATE_COMPARTMENT

■ Modifying a Compartment with SA_COMPONENTS.ALTER_

COMPARTMENT

■ Removing a Compartment with SA_COMPONENTS.DROP_COMPARTMENT

■ Creating a Group with SA_COMPONENTS.CREATE_GROUP

■ Modifying a Group with SA_COMPONENTS.ALTER_GROUP

■ Modifying a Group Parent with SA_COMPONENTS.ALTER_GROUP_PARENT

■ Removing a Group with SA_COMPONENTS.DROP_GROUP

See Also: Chapter 2, "Understanding Data Labels and User

Labels" for information about the components

"Using Oracle Label Security Views" on page 6-17 for

information about displaying the label definitions

you have set

Using the SA_COMPONENTS Package to Define Label Components

Creating an Oracle Label Security Policy 5-13

Using Overloaded Procedures
Oracle Label Security makes use of overloaded subprogram names. That is, the

same name is used for several different procedures whose formal parameters differ

in number, order, or datatype family.

For example, you can call the SA_COMPONENTS.ALTER_LEVEL procedure this

way:

PROCEDURE ALTER_LEVEL (policy_name IN VARCHAR2,
 level_num IN INTEGER,
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

or this way:

PROCEDURE ALTER_LEVEL (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

Because the processing in these two procedures is the same, it is logical to give them

the same name. PL/SQL determines which of the two procedures is being called by

checking their formal parameters. In the preceding example, the version of

initialize used by PL/SQL depends on whether you call the procedure with a

level_num or short_name parameter.

Using the SA_COMPONENTS Package to Define Label Components

5-14 Oracle Label Security Administrator’s Guide

Creating a Level with SA_COMPONENTS.CREATE_LEVEL
Use the CREATE_LEVEL procedure to create a level and specify its short name and

long name. The numeric values assigned to the level_num determine the sensitivity

ranking (that is, a lower number indicates less sensitive data).

Syntax:

PROCEDURE CREATE_LEVEL (policy_name IN VARCHAR2,
 level_num IN INTEGER,
 short_name IN VARCHAR2,
 long_name IN VARCHAR2);

policy_name Specifies the policy

level_num Specifies the level number (0-9999)

short_name Specifies the short name for the level (up to 30 characters)

long_name Specifies the long name for the level (up to 80 characters)

Using the SA_COMPONENTS Package to Define Label Components

Creating an Oracle Label Security Policy 5-15

Modifying a Level with SA_COMPONENTS.ALTER_LEVEL
Use the ALTER_LEVEL procedure to change the short name and/or long name

associated with a level.

Once they are defined, level numbers cannot be changed. If a level is used in any

existing label, then its short name cannot be changed, but its long name can be

changed.

Syntax:

PROCEDURE ALTER_LEVEL (policy_name IN VARCHAR2,
 level_num IN INTEGER,
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

PROCEDURE ALTER_LEVEL (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

policy_name Specifies the policy

level_num Specifies the number of the level to be altered

short_name Specifies the short name for the level (up to 30 characters)

new_short_name Specifies the new short name for the level (up to 30 characters)

new_long_name Specifies the new long name for the level (up to 80 characters)

Using the SA_COMPONENTS Package to Define Label Components

5-16 Oracle Label Security Administrator’s Guide

Removing a Level with SA_COMPONENTS.DROP_LEVEL
Use the DROP_LEVEL procedure to remove a level. If the level is used in any

existing label, it cannot be dropped.

Syntax:

PROCEDURE DROP_LEVEL (policy_name IN VARCHAR2,
 level_num IN INTEGER);

PROCEDURE DROP_LEVEL (policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

Creating a Compartment with SA_COMPONENTS.CREATE_COMPARTMENT
Use the CREATE_COMPARTMENT procedure to create a compartment and specify

its short name and long name. The comp_num determines the order in which

compartments are listed in the character string representation of labels.

Syntax:

PROCEDURE CREATE_COMPARTMENT (policy_name IN VARCHAR2,
 comp_num IN INTEGER,
 short_name IN VARCHAR2,
 long_name IN VARCHAR2);

policy_name Specifies the policy

level_num Specifies the number of an existing level for the policy

short_name Specifies the short name for the level (up to 30 characters)

policy_name Specifies the policy

comp_num Specifies the compartment number (0-9999)

short_name Specifies the short name for the compartment (up to 30 characters)

long_name Specifies the long name for the compartment (up to 80 characters)

Using the SA_COMPONENTS Package to Define Label Components

Creating an Oracle Label Security Policy 5-17

Modifying a Compartment with SA_COMPONENTS.ALTER_COMPARTMENT
Use the ALTER_COMPARTMENT procedure to change the short name and/or long

name associated with a compartment.

Once set, the comp_num cannot be changed. If the comp_num is used in any existing

label, then its short name cannot be changed, but its long name can be changed.

Syntax:

PROCEDURE ALTER_COMPARTMENT (policy_name IN VARCHAR2,
 comp_num IN INTEGER,
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

PROCEDURE ALTER_COMPARTMENT (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

policy_name Specifies the policy

comp_num Specifies the number of the compartment to be altered

short_name Specifies the short name of the compartment to be altered (up to 30
characters)

new_short_name Specifies the new short name of the compartment (up to 30
characters)

new_long_name Specifies the new long name of the compartment (up to 80
characters).

Using the SA_COMPONENTS Package to Define Label Components

5-18 Oracle Label Security Administrator’s Guide

Removing a Compartment with SA_COMPONENTS.DROP_COMPARTMENT
Use the DROP_COMPARTMENT procedure to remove a compartment. If the

compartment is used in any existing label, it cannot be dropped.

Syntax:

PROCEDURE DROP_COMPARTMENT (policy_name IN VARCHAR2,
 comp_num IN INTEGER);

PROCEDURE DROP_COMPARTMENT (policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

policy_name Specifies the policy

comp_num Specifies the number of an existing compartment for the policy

short_name Specifies the short name of an existing compartment for the policy

Using the SA_COMPONENTS Package to Define Label Components

Creating an Oracle Label Security Policy 5-19

Creating a Group with SA_COMPONENTS.CREATE_GROUP
Use the CREATE_GROUP procedure to create a group and specify its short name

and long name, and optionally a parent group.

Syntax:

PROCEDURE CREATE_GROUP (policy_name IN VARCHAR2,
 group_num IN INTEGER,
 short_name IN VARCHAR2,
 long_name IN VARCHAR2,
 parent_name IN VARCHAR2 DEFAULT NULL);

Note that the group number affects the order in which groups will be displayed

when labels are selected.

policy_name Specifies the policy

group_num Specifies the group number (0-9999)

short_name Specifies the short name for the group (up to 30 characters)

long_name Specifies the long name for the group (up to 80 characters)

parent_name Specifies the short name of an existing group as the parent group.
If NULL, the group is a top-level group.

See Also: "Groups" on page 2-8

Using the SA_COMPONENTS Package to Define Label Components

5-20 Oracle Label Security Administrator’s Guide

Modifying a Group with SA_COMPONENTS.ALTER_GROUP
Use the ALTER_GROUP procedure to change the short name and/or long name

associated with a group.

Once set, the group_num cannot be changed. If the group is used in any existing

label, then its short name cannot be changed, but its long name can be changed.

Syntax:

PROCEDURE ALTER_GROUP (policy_name IN VARCHAR2,
 group_num IN INTEGER,
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

PROCEDURE ALTER_GROUP (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

policy_name Specifies the policy

group_num Specifies the existing group number to be altered

short_name Specifies the existing group short name to be altered

new_short_name Specifies the new short name for the group (up to 30 characters)

new_long_name Specifies the new long name for the group (up to 80 characters)

Using the SA_COMPONENTS Package to Define Label Components

Creating an Oracle Label Security Policy 5-21

Modifying a Group Parent with SA_COMPONENTS.ALTER_GROUP_PARENT
The ALTER_GROUP_PARENT procedure changes the parent group associated with

a particular group.

Syntax:

PROCEDURE ALTER_GROUP_PARENT (policy_name IN VARCHAR2,
 group_num IN INTEGER,
 parent_name IN VARCHAR2);

PROCEDURE ALTER_GROUP_PARENT (policy_name IN VARCHAR2,
 group_num IN INTEGER,
 parent_num IN INTEGER);

PROCEDURE ALTER_GROUP_PARENT (policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 parent_name IN VARCHAR2);

policy_name Specifies the policy

group_num Specifies the existing group number to be altered

short_name Specifies the existing group short name to be altered

parent_num Specifies the number of an existing group as the parent group

parent_name Specifies the short name of an existing group as the parent
group

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

5-22 Oracle Label Security Administrator’s Guide

Removing a Group with SA_COMPONENTS.DROP_GROUP
Use the DROP_GROUP procedure to remove a group. If the group is used in

existing labels, it cannot be dropped.

Syntax:

PROCEDURE DROP_GROUP (policy_name IN VARCHAR2,
 group_num IN INTEGER);

PROCEDURE DROP_GROUP (policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

Using the SA_LABEL_ADMIN Package to Specify Valid Labels
The SA_LABEL_ADMIN package provides an administrative interface to manage

the labels used by a policy. To do this, a user must have EXECUTE privilege for the

SA_LABEL_ADMIN package and have been granted the policy_DBA role.

This section includes:

■ Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL

■ Modifying a Label with SA_LABEL_ADMIN.ALTER_LABEL

■ Deleting a Label with SA_LABEL_ADMIN.DROP_LABEL

policy_name Specifies the policy

group_num Specifies the number of an existing group for the policy

short_name Specifies the short name of an existing group

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

Creating an Oracle Label Security Policy 5-23

Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL
Use the SA_LABEL_ADMIN.CREATE_LABEL procedure to create a valid data

label. You must manually specify a label tag value from 1 to 8 digits long.

Syntax:

PROCEDURE CREATE_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN INTEGER,
 label_value IN VARCHAR2,
 data_label IN BOOLEAN DEFAULT TRUE);

When specifying labels, use the short name of the level, compartment and group.

When you identify valid labels, you specify which of all the possible combinations

of levels, compartments, and groups can potentially be used to label data in tables.

policy_name Specifies the name of an existing policy

label_tag Specifies an unique integer value representing the sort order of

the label, relative to other policy labels (0-99999999)

label_value Specifies the character string representation of the label to be

created

data_label TRUE if the label can be used to label row data. Use this to define

the label as valid for data.

Note: If you create a new label by using the TO_DATA_LABEL

procedure, a system-generated label tag of 10 digits will be

generated automatically.

See Also: "The Policy Label Column and Label Tags" on page 4-2

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

5-24 Oracle Label Security Administrator’s Guide

Modifying a Label with SA_LABEL_ADMIN.ALTER_LABEL
Use the ALTER_LABEL procedure to change the character string label definition

associated with a label tag. Note that the label tag itself cannot be changed.

If you change the character string associated with a label tag, the sensitivity of the

data in the rows changes accordingly. For example, if the label character string TS:A

with an associated label tag value of 4001 is changed to the label TS:B, then access to

the data changes accordingly. This is true even though the label tag value (4001) has

not changed. In this way you can change the data’s sensitivity without the need to

update all the rows.

Note that, when you specify a label to alter, you can refer to it either by its label tag

or by its character string value.

Syntax:

PROCEDURE ALTER_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN INTEGER,
 new_label_value IN VARCHAR2 DEFAULT NULL,
 new_data_label IN BOOLEAN DEFAULT NULL);

PROCEDURE ALTER_LABEL (
 policy_name IN VARCHAR2,
 label_value IN VARCHAR2,
 new_label_value IN VARCHAR2 DEFAULT NULL,
 new_data_label IN BOOLEAN DEFAULT NULL);

policy_name Specifies the name of an existing policy

label_tag Identifies the integer tag assigned to the label to be altered

label_value Identifies the existing character-string representation of the label
to be altered

new_label_value Specifies the new character string representation of the label
value. If NULL, the existing value is not changed.

new_data_label TRUE if the label can be used to label row data. If NULL, the
existing value is not changed.

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

Creating an Oracle Label Security Policy 5-25

Deleting a Label with SA_LABEL_ADMIN.DROP_LABEL
Use the SA_LABEL_ADMIN.DROP_LABEL procedure to delete a specified policy

label. Any subsequent reference to the label (in data rows, or in user or program

unit labels) will raise an invalid label error.

Syntax:

PROCEDURE DROP_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN INTEGER);

PROCEDURE DROP_LABEL (
 policy_name IN VARCHAR2,
 label_value IN VARCHAR2);

Use this procedure only while setting up labels, prior to data population. If you

should inadvertently drop a label which is being used, you can recover by disabling

the policy, fixing the problem, and then re-enabling the policy.

policy_name Specifies the name of an existing policy

label_tag Specifies the integer tag assigned to the label to be dropped

label_value Specifies the string value of the label to be dropped

Caution: Do not drop a label which is in use anywhere in the
database.

Using the SA_LABEL_ADMIN Package to Specify Valid Labels

5-26 Oracle Label Security Administrator’s Guide

Administering User Labels and Privileges 6-1

6
Administering User Labels and Privileges

In Oracle Label Security, you can set authorizations for users, and grant privileges

to users or stored program units by means of the available Oracle Label Security

packages, or Oracle Policy Manager.

■ Introduction to User Label and Privilege Management

■ Managing User Labels by Component, with SA_USER_ADMIN

■ Managing User Labels by Label String, with SA_USER_ADMIN

■ Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS

■ Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE

■ Returning User Name with SA_SESSION.SA_USER_NAME

■ Using Oracle Label Security Views

Introduction to User Label and Privilege Management

6-2 Oracle Label Security Administrator’s Guide

Introduction to User Label and Privilege Management
To manage user labels and privileges, you must have EXECUTE privilege for the

SA_USER_ADMIN package, and must have been granted the policy_DBA role.

To perform these functions with Oracle Policy Manager, go to Oracle Label
Security Policies—> policyname—>Authorizations—>Users and use the User

property sheet.

The SA_USER_ADMIN package provides the functions to manage the Oracle Label

Security user security attributes. It contains several procedures to manage user

labels by component: that is, specifying user levels, compartments, and groups. For

convenience, there are additional procedures that accept character string

representations of full labels, rather than components. Note that the level,

compartment and group parameters use the short name defined for each

component.

All of the label and privilege information is stored in Oracle Label Security data

dictionary tables. When a user connects to the database, his session labels are

established based on the information stored in the Oracle Label Security data

dictionary.

Note that a user can be authorized under multiple policies.

Managing User Labels by Component, with SA_USER_ADMIN

Administering User Labels and Privileges 6-3

Managing User Labels by Component, with SA_USER_ADMIN
The following SA_USER_ADMIN procedures enable you to manage user labels by

label component:

■ SA_USER_ADMIN.SET_LEVELS

■ SA_USER_ADMIN.SET_COMPARTMENTS

■ SA_USER_ADMIN.SET_GROUPS

■ SA_USER_ADMIN.ADD_COMPARTMENTS

■ SA_USER_ADMIN.ALTER_COMPARTMENTS

■ SA_USER_ADMIN.DROP_COMPARTMENTS

■ SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

■ SA_USER_ADMIN.ADD_GROUPS

■ SA_USER_ADMIN.ALTER_GROUPS

■ SA_USER_ADMIN.DROP_GROUPS

■ SA_USER_ADMIN.DROP_ALL_GROUPS

Managing User Labels by Component, with SA_USER_ADMIN

6-4 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.SET_LEVELS
The SET_LEVELS procedure assigns a minimum and maximum level to a user and

identifies default values for the user’s session label and row label.

■ If the min_level is NULL, it is set to the lowest defined level for the policy.

■ If the def_level is not specified, it is set to the max_level.

■ If the row_level is not specified, it is set to the def_level.

Syntax:

PROCEDURE SET_LEVELS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 max_level IN VARCHAR2,
 min_level IN VARCHAR2 DEFAULT NULL,
 def_level IN VARCHAR2 DEFAULT NULL,
 row_level IN VARCHAR2 DEFAULT NULL);

policy_name Specifies the policy

user_name Specifies the user name

max_level The highest level for read and write access

min_level The lowest level for write access

def_level Specifies the default level (equal to or greater than the
minimum level, and equal to or less than the maximum level)

row_level Specifies the row level (equal to or greater than the minimum
level, and equal to or less than the default level)

Managing User Labels by Component, with SA_USER_ADMIN

Administering User Labels and Privileges 6-5

SA_USER_ADMIN.SET_COMPARTMENTS
The SET_COMPARTMENTS procedure assigns compartments to a user and

identifies default values for the user’s session label and row label.

■ If write_comps are NULL, they are set to the read_comps.

■ If the def_comps are NULL, they are set to the read_comps.

■ If the row_comps are NULL, they are set to the components in def_comps which

are authorized for write access.

All users must have their levels set before their authorized compartments can be

established.

The write compartments, if specified, must be a subset of the read compartments.

(The write compartments are those to which the user should have write access.)

Syntax:

PROCEDURE SET_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 read_comps IN VARCHAR2,
 write_comps IN VARCHAR2 DEFAULT NULL,
 def_comps IN VARCHAR2 DEFAULT NULL,
 row_comps IN VARCHAR2 DEFAULT NULL);

policy_name Specifies the policy

user_name Specifies the user name

read_comps A comma-separated list of compartments authorized for read
access

write_comps A comma-separated list of compartments authorized for
write access (subset of read_comps)

def_comps Specifies the default compartments. This must be a subset of
read_comps.

row_comps Specifies the row compartments. This must be a subset of
write_comps and the def_comps.

Managing User Labels by Component, with SA_USER_ADMIN

6-6 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.SET_GROUPS
The SET_GROUPS procedure assigns groups to a user and identifies default values

for the user’s session label and row label.

■ If the write_groups are NULL, they are set to the read_groups.

■ If the def_groups are NULL, they are set to the read_groups.

■ If the row_groups are NULL, they are set to the groups in def_groups which are

authorized for write access.

All users must have their levels set before their authorized groups can be

established.

Syntax:

PROCEDURE SET_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 read_groups IN VARCHAR2,
 write_groups IN VARCHAR2 DEFAULT NULL,
 def_group IN VARCHAR2 DEFAULT NULL,
 row_groups IN VARCHAR2 DEFAULT NULL);

policy_name Specifies the policy

user_name Specifies the user name

read_groups A comma-separated list of groups authorized for read

write_groups A comma-separated list of groups authorized for write.

This must be a subset of read_groups.

def_groups Specifies the default groups. This must be a subset of

read_groups.

row_groups Specifies the row groups. This must be a subset of

write_groups and def_groups.

Managing User Labels by Component, with SA_USER_ADMIN

Administering User Labels and Privileges 6-7

SA_USER_ADMIN.ALTER_COMPARTMENTS
The ALTER_COMPARTMENTS procedure changes the write access, the default

label indicator, and/or the row label indicator for each of the compartments in the

list.

Syntax:

PROCEDURE ALTER_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 comps IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

policy_name Specifies the policy

user_name Specifies the user name

comps A comma-separated list of compartments to modify

access_mode One of two public variables which contain string values that can
specify the type of access authorized. The variable names, values, and
meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write access

SA_UTL.READ_WRITE READ_WRITE Indicates write is authorized

in_def Specifies whether these compartments should be in the default
compartments (Y/N)

in_row Specifies whether these compartments should be in the row label
(Y/N)

Managing User Labels by Component, with SA_USER_ADMIN

6-8 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.ADD_COMPARTMENTS
This procedure adds compartments to a user’s authorizations, indicating whether

the compartments are authorized for write as well as read.

Syntax:

PROCEDURE ADD_COMPARTMENTS (policy_name IN VARCHAR2,
user_name IN VARCHAR2,
comps IN VARCHAR2,
access_model IN VARCHAR2 DEFAULT NULL,
in_def IN VARCHAR2 DEFAULT NULL,
in_row IN VARCHAR2 DEFAULT NULL);

SA_USER_ADMIN.DROP_COMPARTMENTS
The DROP_COMPARTMENTS procedure drops the specified compartments from a

user’s authorizations.

Syntax:

PROCEDURE DROP_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 comps IN VARCHAR2);

policy_name Specifies the policy

user_name Specifies the user name

comps A comma-separated list of read compartments to add

access_mode One of two public variables which contain string values that can specify
the type of access authorized. The variable names, values, and meaning
are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write access

SA_UTL.READ_WRITE READ_WRITE Indicates write is authorized

in_def Specifies whether these compartments should be in the default
compartments (Y/N)

in_row Specifies whether these compartments should be in the row label (Y/N)

policy_name Specifies the policy

user_name Specifies the user name

comps A comma-separated list of compartments to drop

Managing User Labels by Component, with SA_USER_ADMIN

Administering User Labels and Privileges 6-9

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
The DROP_ALL_COMPARTMENTS procedure drops all compartments from a

user’s authorizations.

Syntax:

PROCEDURE DROP_ALL_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

SA_USER_ADMIN.ADD_GROUPS
The ADD_GROUPS procedure adds groups to a user, indicating whether the

groups are authorized for write as well as read.

Syntax:

PROCEDURE ADD_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

policy_name Specifies the policy

user_name Specifies the user name

policy_name Specifies the policy

user_name Specifies the user name

groups A comma-separated list of read groups to add

access_mode One of two public variables which contain string values that can
specify the type of access authorized. The variable names, values, and
meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write access

SA_UTL.READ_WRITE READ_WRITE Indicates write is authorized

in_def Specifies whether these groups should be in the default groups (Y/N)

in_row Specifies whether these groups should be in the row label (Y/N)

Managing User Labels by Component, with SA_USER_ADMIN

6-10 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.ALTER_GROUPS
The ALTER_GROUPS procedure changes the write access, the default label

indicator, and/or the row label indicator for each of the groups in the list.

Syntax:

PROCEDURE ALTER_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

SA_USER_ADMIN.DROP_GROUPS
The DROP_GROUPS procedure drops the specified groups from a user’s

authorizations.

Syntax:

PROCEDURE DROP_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2);

policy_name Specifies the policy

user_name Specifies the user name

groups A comma-separated list of groups to alter

access_mode Two public variables contain string values that can specify the type of
access authorized. The variable names, values, and meaning are as
follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write access

SA_UTL.READ_WRITE READ_WRITE Indicates write is authorized

in_def Specifies whether these groups should be in the default groups (Y/N)

in_row Specifies whether these groups should be in the row label (Y/N)

policy_name Specifies the policy

user_name Specifies the user name

groups A comma-separated list of groups to drop

Managing User Labels by Label String, with SA_USER_ADMIN

Administering User Labels and Privileges 6-11

SA_USER_ADMIN.DROP_ALL_GROUPS
The DROP_ALL_GROUPS procedure drops all groups from a user’s authorizations.

Syntax:

PROCEDURE DROP_ALL_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

Managing User Labels by Label String, with SA_USER_ADMIN
The following SA_USER_ADMIN procedures enable you to manage user labels by

specifying the complete character label string:

■ SA_USER_ADMIN.SET_USER_LABELS

■ SA_USER_ADMIN.SET_DEFAULT_LABEL

■ SA_USER_ADMIN.SET_ROW_LABEL

■ SA_USER_ADMIN.SET_DEFAULT_LABEL

policy_name Specifies the policy

user_name Specifies the user name

Managing User Labels by Label String, with SA_USER_ADMIN

6-12 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.SET_USER_LABELS
The SET_USER_LABELS procedure sets the user’s levels, compartments, and

groups using a set of labels, instead of the individual components.

Syntax:

PROCEDURE SET_USER_LABELS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 max_read_label IN VARCHAR2,
 max_write_label IN VARCHAR2 DEFAULT NULL,
 min_write_label IN VARCHAR2 DEFAULT NULL,
 def_label IN VARCHAR2 DEFAULT NULL,
 row_label IN VARCHAR2 DEFAULT NULL);

policy_name Specifies the policy

user_name Specifies the user name

max_read_label Specifies the label string to be used to initialize the user’s maximum
authorized read label. Composed of the user’s maximum level,
compartments authorized for read access, and groups authorized
for read access.

max_write_label Specifies the label string to be used to initialize the user’s maximum
authorized write label. Composed of the user’s maximum level,
compartments authorized for write access, and groups authorized
for write access. If the max_write_label is not specified, it is set to the
max_read_label.

min_write_label Specifies the label string to be used to initialize the user’s minimum
authorized write label. Contains only the level, with no
compartments or groups. If the min_write_label is not specified, it is
set to the lowest defined level for the policy, with no compartments
or groups.

def_label Specifies the label string to be used to initialize the user’s session
label, including level, compartments, and groups (a subset of max_
read_label). If the default_label is not specified, it is set to the max_
read_label.

row_label Specifies the label string to be used to initialize the program’s row
label. Includes level, components, and groups: subsets of max_write_
label and def_label. If row_label is not specified, it is set to the def_label,
with only the compartments and groups authorized for write access.

See Also: "Managing Program Unit Privileges with SET_PROG_

PRIVS" on page 9-4

Managing User Labels by Label String, with SA_USER_ADMIN

Administering User Labels and Privileges 6-13

SA_USER_ADMIN.SET_DEFAULT_LABEL
The SET_DEFAULT_LABEL procedure sets the user’s initial session label to the one

specified.

Syntax:

PROCEDURE SET_DEFAULT_LABELS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 def_label IN VARCHAR2);

As long as the row label will still be dominated by the new write label, the user can

set the session label to:

■ Any level equal to or less than his maximum, and equal to or greater than his

minimum label

■ Include any compartments in the authorized compartment list

■ Include any groups in the authorized group list. (Subgroups of authorized

groups are implicitly included in the authorized list.)

The row label must be dominated by the new write label which will result from

resetting the session label. If this condition is not true, the SET_DEFAULT_LABEL

procedure will fail.

For example, suppose the current row label is S:A,B, and that you have write access

to both compartments. If you attempt to set the new default label to C:A,B the SET_

LABEL procedure will fail. This is because the new write label would be C:A,B,

which does not dominate the current row label.

To successfully reset the session label in this case, you must first lower the row label

to a value which will be dominated by the resulting session label.

policy_name Specifies the policy

user_name Specifies the user name

def_label Specifies the label string to be used to initialize the user’s
default labels. This label may contain any compartments and
groups that are authorized for read access.

See Also: "Changing the Session Label with SA_SESSION.SET_

LABEL" on page 4-20

"Session Labels and Inverse Groups" on page 13-16

Managing User Labels by Label String, with SA_USER_ADMIN

6-14 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.SET_ROW_LABEL
Use the SET_ROW_LABEL procedure to set the user’s initial row label to the one

specified.

Syntax:

PROCEDURE SET_ROW_LABEL (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 row_label IN VARCHAR2);

The user can set the row label independently, but only to:

■ A level which is less than or equal to the level of the session label, and greater

than or equal to the user’s minimum level

■ Include a subset of the compartments and groups from the session label, for

which the user is authorized to have write access

If you try to set the row label to an invalid value, the operation is disallowed, and

the row label value is unchanged.

policy_name Specifies the policy

user_name Specifies the user name

row_label Specifies the label string to be used to initialize the user’s row label.
The label must contain only those compartments and groups from
the default label that are authorized for write access.

See Also: "Changing the Row Label with SA_SESSION.SET_

ROW_LABEL" on page 4-21

Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS

Administering User Labels and Privileges 6-15

SA_USER_ADMIN.DROP_USER_ACCESS
Use the DROP_USER_ACCESS procedure to remove all Oracle Label Security

authorizations and privileges from the specified user. This procedure must be

issued from the command line. It is not available in Oracle Policy Manager.

Syntax:

PROCEDURE DROP_USER_ACCESS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS
The SET_USER_PRIVS procedure sets policy-specific privileges for users. These

privileges do not become effective in the current session; rather, they become

effective the next time the user logs in. The new set of privileges replaces any

existing privileges. A NULL value for the privileges parameter removes the user’s

privileges for the policy.

To assign policy privileges to users, you must have EXECUTE privilege for the SA_

USER_ADMIN package, and must have been granted the policy_DBA role.

To use Oracle Policy Manager to perform these functions, go to the Privileges tab of

the User property sheet.

Syntax:

PROCEDURE SET_USER_PRIVS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privileges IN VARCHAR2);

policy_name Specifies the policy

user_name Specifies the user name

policy_name Specifies the policy name of an existing policy

user_name The name of the user to be granted privileges

privileges A character string of policy-specific privileges separated by
commas

See Also: "Managing Program Unit Privileges with SET_PROG_

PRIVS" on page 9-4

Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE

6-16 Oracle Label Security Administrator’s Guide

Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE
The SET_ACCESS_PROFILE procedure sets the Oracle Label Security

authorizations and privileges of the database session to those of the specified user.

(Note that the originating user retains the PROFILE_ACCESS privilege.)

The user executing the SA_SESSION.SET_ACCESS_PROFILE procedure must have

the PROFILE_ACCESS privilege. Note that the logged-in database user (the Oracle

userid) does not change. That user assumes only the authorizations and privileges

of the specified user. By contrast, the Oracle Label Security user name is changed.

This administrative procedure is useful for various tasks:

■ With SET_ACCESS_PROFILE, the administrator can see the result of the

authorization and privilege settings for a particular user.

■ Applications need to have proxy accounts connect as (and assume the identity

of) application users, for purposes of accessing labeled data. With the SET_

ACCESS_PROFILE privilege, the proxy account can act on behalf of the

application users.

Syntax:

PROCEDURE SET_ACCESS_PROFILE (policy_name IN VARCHAR2
 user_name IN VARCHAR2);

Returning User Name with SA_SESSION.SA_USER_NAME
The SA_USER_NAME function returns the name of the current Oracle Label

Security user, as set by the SET_ACCESS_PROFILE procedure (or as established at

login). This is how you can determine the identity of the current user in relation to

Oracle Label Security, rather than in relation to your Oracle login name.

Syntax:

FUNCTION SA_USER_NAME (policy_name IN VARCHAR2)
RETURN VARCHAR2;

policy_name The name of an existing policy

user_name Name of the user whose authorizations and privileges should be assumed

policy_name The name of an existing policy

Using Oracle Label Security Views

Administering User Labels and Privileges 6-17

Using Oracle Label Security Views
This section describes views you can use to see the user authorization and privilege

assignments made by the administrator.

Note that the views are designed to display these values from two different

perspectives. The DBA_SA_USERS view is optimized for users of the

command-line interface. The component views are optimized for users of the Oracle

Policy Manager administrative tool.

■ View to Display All User Security Attributes: DBA_SA_USERS

■ Views to Display User Authorizations by Component

View to Display All User Security Attributes: DBA_SA_USERS
The DBA_SA_USERS view displays the values assigned for privileges, level,

compartments, and groups all together—corresponding to the way in which you

enter these values through the SA_USER_ADMIN command-line interface. The

values include:

USER_PRIVILEGES

MAX_READ_LABEL

MAX_WRITE_LABEL

MIN_WRITE_LABEL

DEFAULT_READ_LABEL

DEFAULT_WRITE_LABEL

DEFAULT_ROW_LABEL

USER_LABELS

MAX_READ_LABEL

MAX_WRITE_LABEL

MIN_WRITE_LABEL

DEFAULT_READ_LABEL

DEFAULT_WRITE_LABEL

DEFAULT_ROW_LABEL

Using Oracle Label Security Views

6-18 Oracle Label Security Administrator’s Guide

This information is stored in data dictionary tables, and used to establish session

and row labels when a user logs in.

Views to Display User Authorizations by Component
The following views display individually each component of the label,

corresponding to the way in which you enter these values through Oracle Policy

Manager.

Note: The field USER_LABELS in DBA_SA_USERS is retained

solely for backward compatibility and will be removed in the next

release.

Table 6–1 Oracle Label Security Views

View Contents

DBA_SA_USER_LEVELS Displays the levels assigned to the user:
minimum level, maximum level, default level,
and level for the row label

DBA_SA_USER_COMPARTMENTS Displays the compartments assigned to the user

DBA_SA_USER_GROUPS Displays the groups assigned to the user

Implementing Policy Options and Labeling Functions 7-1

7
Implementing Policy Options and Labeling

Functions

This chapter explains how to customize the enforcement of Oracle Label Security

policies, and how to implement labeling functions.

This chapter contains these sections:

■ Choosing Policy Options

■ Using a Labeling Function

■ Policy Options and Labeling Functions: Inserting Labeled Data

■ Policy Options and Labeling Functions: Updating Labeled Data

■ Policy Options and Labeling Functions: Deleting Labeled Data

■ Using a SQL Predicate with an Oracle Label Security Policy

Choosing Policy Options

7-2 Oracle Label Security Administrator’s Guide

Choosing Policy Options
This section introduces the policy options, and discusses their use.

■ Overview of Policy Enforcement Options

■ The HIDE Policy Column Option

■ The Label Management Enforcement Options

■ The Access Control Enforcement Options

■ The Overriding Enforcement Options

■ Guidelines for Using the Policy Enforcement Options

■ Exemptions from Oracle Label Security Policy Enforcement

Overview of Policy Enforcement Options
Of all the enforcement controls which Oracle Label Security permits, the

administrator must choose those which meet the needs of the given application.

These options can operate at three different levels:

■ Policy level

■ Schema level

■ Table level

For each policy, you can specify a set of default enforcement options that will

automatically be used whenever the policy is applied to a table. Alternatively, you

can explicitly specify enforcement options by schema or by table.

When you apply a policy to a schema or a table, you can customize its enforcement

in accordance with your security requirements, and specify whether the label

column should be displayed or hidden. You can chose to enforce some or all of the

policy options for any protected table.

Optionally, you can assign each table a labeling function and/or a SQL predicate.

Choosing Policy Options

Implementing Policy Options and Labeling Functions 7-3

The Oracle Label Security policy enforcement options are as follows:

Remember: although Oracle Label Security may be applied to a table, not all DML

operations will necessarily be governed by the policy. Depending on how the

administrator has set the policy enforcement options, there will be differences in

SQL processing behavior (and what an authorized user can actually see in

response to a query on a protected table). Except where noted, this chapter

assumes that ALL_CONTROL is set. This means that all enforcement options are

in effect. If a user attempts to perform an operation for which he or she is not

authorized, an error message is raised and the SQL statement fails.

Table 7–1 Policy Enforcement Options

Option Description

LABEL_DEFAULT If the user does not explicitly specify a label on INSERT, the
session’s default row label value is used.

LABEL_UPDATE Applies policy enforcement to UPDATE operations that set or
change the value of a label attached to a row. The WRITEUP,
WRITEDOWN, and WRITEACROSS privileges are only
enforced if the LABEL_UPDATE option is set.

CHECK_CONTROL Applies READ_CONTROL policy enforcement to INSERT and
UPDATE statements to assure that the new row label is
read-accessible.

READ_CONTROL Applies policy enforcement to all queries; only authorized
rows are accessible for SELECT, UPDATE, and DELETE
operations.

WRITE_CONTROL Determines the ability to INSERT, UPDATE, and DELETE data
in a row. If this option is set, it enforces INSERT_CONTROL,
UPDATE_CONTROL, and DELETE_CONTROL.

INSERT_CONTROL Applies policy enforcement to INSERT operations, according
to the algorithm for write access described in Figure 3–8.

DELETE_CONTROL Applies policy enforcement to DELETE operations, according
to the algorithm for write access described in Figure 3–8.

UPDATE_CONTROL Applies policy enforcement to UPDATE operations on the data
columns within a row, according to the algorithm for write
access described in Figure 3–8.

ALL_CONTROL Applies all enforcement options.

NO_CONTROL Applies no enforcement options. A labeling function or a SQL
predicate can nonetheless be applied.

Choosing Policy Options

7-4 Oracle Label Security Administrator’s Guide

The HIDE Policy Column Option
HIDE is a configuration option which you can specify when initially applying an

Oracle Label Security policy to a table (that is, when adding the policy column to

the table). When HIDE is specified, the column which contains the policy’s labels is

not displayed.

Once the policy has been applied, the hidden (or not hidden) status of the column

cannot be changed unless the policy is removed with the DROP_COLUMN

parameter set to TRUE. Then the policy can be reapplied with a new hidden status.

For INSERT statements, the values for the hidden label columns are not required for

all-column inserts. For SELECT statements, the values of hidden label columns are

not automatically returned; they must be explicitly retrieved.

Furthermore, the label column may or may not be displayed when you perform a

DESCRIBE on the table, depending on how the administrator has set the HIDE

option. With the HIDE option off, the label column is displayed in response to a

select.

See Also: "Implementing Inverse Groups with the INVERSE_

GROUP Enforcement Option" on page 13-4

See Also: "Retrieving All Columns from a Table When Policy

Label Column Is Hidden" on page 4-9

Choosing Policy Options

Implementing Policy Options and Labeling Functions 7-5

The Label Management Enforcement Options
This section describes the label enforcement options.

LABEL_DEFAULT: Using the Session’s Default Row Label
If set, this option specifies that the user’s session default row label should be used

on insert as the new row label, if the user does not explicitly specify a value. Note

that if a labeling function is in force on the table, it will override the LABEL_

DEFAULT option.

LABEL_UPDATE: Changing Data Labels
If this option is not set, any user can change a row’s label, within the range of his or

her authorizations. If LABEL_UPDATE is set, then the user must have the

WRITEUP, WRITEDOWN, and/or WRITEACROSS privilege in order to modify a

label.

The LABEL_UPDATE option uses an Oracle after-row trigger. It is only invoked on

an update operation which changes the value of the policy label column. Note that

any labeling function which is in force on a table will override the LABEL_UPDATE

option.

CHECK_CONTROL: Checking Data Labels
After an INSERT or UPDATE, the READ_CONTROL option is enforced on the new

label to assure that the user is authorized for read access. In other words, CHECK_

CONTROL ensures that the user who modifies a label on a row can still access the

row after the operation.

Choosing Policy Options

7-6 Oracle Label Security Administrator’s Guide

The Access Control Enforcement Options
This section describes the options related to access control:

■ READ_CONTROL: Reading Data

■ WRITE_CONTROL: Writing Data

■ INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL

READ_CONTROL: Reading Data
The READ_CONTROL option uses Oracle virtual private database (VPD)

technology to enforce the read access mediation algorithm, as illustrated in

Figure 3–7 on page 3-13.

READ_CONTROL determines the set of records accessible to a session for SELECT,

UPDATE and DELETE operations. If READ_CONTROL is off, then all rows in the

table protected by the policy are accessible to all users.

WRITE_CONTROL: Writing Data
The WRITE_CONTROL option uses Oracle after-row triggers to enforce the write

access mediation algorithm, as illustrated in Figure 3–8 on page 3-16. When an

Oracle Label Security policy is applied to a table and the WRITE_CONTROL option

is selected, triggers are generated and the algorithm is enforced.

If WRITE_CONTROL is on but LABEL_UPDATE is not specified, the user can

change both data and labels. If you want to control updating the row labels, use the

LABEL_UPDATE option in addition to WRITE_CONTROL.

INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL
These options apply policy enforcement during the corresponding operations on

the data columns within a row, according to the algorithm for write access

described in Figure 3–8.

Note: The protection implementation for WRITE_CONTROL is

the same for all write operations, but you need not apply all write

options across the board. You can apply WRITE_CONTROL

separately in INSERT, UPDATE, and DELETE operations using the

corresponding policy enforcement option (INSERT_CONTROL,

UPDATE_CONTROL, and DELETE_CONTROL).

Choosing Policy Options

Implementing Policy Options and Labeling Functions 7-7

The Overriding Enforcement Options
Whereas ALL_CONTROL applies all of the label management and access control

enforcement options, NO_CONTROL applies none of them. Labeling functions and

SQL predicates can nonetheless be applied. Note that the ALL_CONTROL option

can be used on the command line only. Oracle Policy Manager does not provide this

as an alternative to selecting individual options.

If you apply a policy with NO_CONTROL specified, a policy label column is added

to the table, but the label values are NULL. Since no access controls are operating on

the table, you can proceed to enter labels as desired. You can then set the policy

enforcement options as you wish.

NO_CONTROL can be a useful option if you have a labeling function in force to

label the data correctly—but want to let all users access all the data.

Choosing Policy Options

7-8 Oracle Label Security Administrator’s Guide

Guidelines for Using the Policy Enforcement Options
You can customize policy enforcement for a schema or table through the Oracle

Policy Manager, or by using the SA_POLICY_ADMIN package. This section

documents the supported keywords.

Note that you can specify a string of default options for the policy; these are used if

no schema or table options are specified.

If a policy is applied to a table, and subsequently applied to the schema containing

that table, the options on the table are not affected. The table retains its original

options.

In general, administrators will use the LABEL_DEFAULT policy option. This causes

the user’s row label to be used to label data. Alternatively, a labeling function can be

used to label the data. If neither of these two options is used, a label would have to

be specified in every INSERT statement.

The following table suggests certain combinations of policy enforcement options

which you may find useful when implementing your Oracle Label Security policy.

As the table illustrates, you might typically enforce READ_CONTROL and WRITE_

CONTROL, and take one or another approach to setting the label.

Table 7–2 Suggested Policy Enforcement Option Combinations

Options Access Enforcement

READ_CONTROL, WRITE_CONTROL,
LABEL_DEFAULT

Read and write access based on session label.
Default label provided; users can insert/update
both data and labels.

READ_CONTROL, WRITE_CONTROL,
Labeling Function

Read and write access based on session label.
Users can set/change only row data; all row
labels are set explicitly by the labeling function.
Add CHECK_CONTROL to restrict new labels
(on insert or update) to visible range of labels.

READ_CONTROL, WRITE_CONTROL,
LABEL_UPDATE

Read and write access based on session label, but
users cannot change labels without privileges.
Add CHECK_CONTROL to restrict new labels
(on insert or update) to visible range.

Choosing Policy Options

Implementing Policy Options and Labeling Functions 7-9

Exemptions from Oracle Label Security Policy Enforcement
Oracle Label Security is not enforced during DIRECT path export.

By design, Oracle Label Security policies cannot be applied to objects in schema

SYS. As a consequence, the SYS user, and users making a DBA-privileged

connection to the database (such as CONNECT AS SYSDBA) do not have Oracle

Label Security policies applied to their actions. DBAs need to be able to administer

the database. It would make no sense, for example, to export part of a table due to

an Oracle Label Security policy being applied. The database user SYS is thus

always exempt from Oracle Label Security enforcement, regardless of the export

mode, application or utility used to extract data from the database.

Similarly, database users granted the Oracle9i EXEMPT ACCESS POLICY privilege,

either directly or through a database role, are completely exempt from Oracle Label

Security enforcement—regardless of the export mode, application or utility used to

extract data from the database. This is a very powerful privilege and should be

carefully managed.

Note that this privilege does not affect the enforcement of standard Oracle9i object

privileges such as SELECT, INSERT, UPDATE, and DELETE. These privileges are

enforced even if a user has been granted the EXEMPT ACCESS POLICY privilege.

Using a Labeling Function

7-10 Oracle Label Security Administrator’s Guide

Viewing Policy Options on Tables and Schemas
You can use the following views to see the policy enforcement options which are

currently applied to tables and schemas:

■ DBA_SA_TABLE_POLICIES

■ DBA_SA_SCHEMA_POLICIES

Using a Labeling Function
Application developers can create labeling functions, programs which contain

procedural logic to compute and return a label. The function can use a wide array of

resources to compute the label. These include context variables (such as date or

username) and data values.

This section describes how to use labeling functions.

■ Approaches to Data Labeling

■ How Labeling Functions Work

■ Creating a Labeling Function

■ Specifying a Labeling Function

Approaches to Data Labeling
There are three ways to label data which is being inserted:

■ Explicitly specify a label in every INSERT into the table.

■ Set the LABEL_DEFAULT option, which causes the session’s row label to be

used if an explicit row label is not included in the INSERT statement.

■ Create a labeling function which will be invoked upon every INSERT

statement, and which operates independently of any user’s authorization.

The recommended approach is to write a labeling function to implement your rules

for labeling data. If you specify a labeling function, Oracle Label Security embeds a

call to that function in INSERT and UPDATE triggers to compute a label.

For example, the following labeling function uses the contents of COL1 and COL2

of the new row to compute and return the appropriate label for the row.

my_label(:new.col1,:new.col2)

Using a Labeling Function

Implementing Policy Options and Labeling Functions 7-11

 If you do not specify a labeling function, then you should use the LABEL_

DEFAULT option. Otherwise, you must explicitly specify a label on every INSERT

statement.

How Labeling Functions Work
Labeling functions enable you to consider, in your rules for assigning labels,

information drawn from the application context. For example, you can use as a

labeling consideration the IP address to which the user is attached. There are many

opportunities to use SYS_CONTEXT in this way.

Labeling functions override the LABEL_DEFAULT and LABEL_UPDATE options.

A labeling function is called in the context of a before-row trigger. This enables you

to pass in the old and new values of the data record, as well as the old and new

labels.

You can construct a labeling function to permit an explicit label to be passed in by

the user.

All labeling functions must have return types of the LBACSYS.LBAC_LABEL

datatype. The TO_LBAC_DATA_LABEL function can be used to convert a label in

character string format to a datatype of LBACSYS.LBAC_LABEL. Note that

LBACSYS must have EXECUTE privilege on your labeling function. The owner of

the labeling function must have EXECUTE privilege on the TO_LBAC_DATA_

LABEL function, with GRANT option.

Note: If the SQL is invalid, an error will occur when you apply the

labeling function to the table or policy. You should thoroughly test

a labeling function before using it with tables.

Using a Labeling Function

7-12 Oracle Label Security Administrator’s Guide

Creating a Labeling Function
The following example shows how to create a labeling function.

 SQL> CREATE OR REPLACE FUNCTION sa_demo.gen_emp_label
 (Job varchar2,
 Deptno number,
 Total_sal number)

 Return LBACSYS.LBAC_LABEL
 as
 i_label varchar2(80);
 Begin
 /* Determine Class Level */
 if total_sal > 2000 then

 i_label := ’L3:’;
 elsif total_sal >1000 then

 i_label := ’L2:’;
 else

 i_label := ’L1:’;
 end if;

 /* Determine Compartment */
 IF Job in (’MANAGER’,’PRESIDENT’) then

 i_label := i_label||’M:’;
 else

 i_label := i_label||’E:’;
 end if;
 /* Determine Groups */
 i_label := i_label||’D’||to_char(deptno);

 return TO_LBAC_DATA_LABEL(’human_resources’,i_label);
 End;
 /

Specifying a Labeling Function
The following example shows how to specify a labeling function.

sa_policy_admin.remove_table_policy(’human_resources’,’sa_demo’,’emp’);
sa_policy_admin.apply_table_policy (

POLICY_NAME => ’human_resources’,
SCHEMA_NAME => ’sa_demo’,
TABLE_NAME => ’emp’,
TABLE_OPTIONS => ’READ_CONTROL,WRITE_CONTROL,CHECK_CONTROL’,
LABEL_FUNCTION => ’sa_demo.gen_emp_label(:new.job,:new.deptno,:new.sal)’,
PREDICATE => NULL);

Policy Options and Labeling Functions: Inserting Labeled Data

Implementing Policy Options and Labeling Functions 7-13

Policy Options and Labeling Functions: Inserting Labeled Data
This section explains how enforcement options and labeling functions affect the

insertion of labeled data.

■ Enforcement Control Options and INSERT

■ Inserting Labels When a Labeling Function is Specified

■ Inserting Child Rows into Tables with Declarative Referential Integrity Enabled

Enforcement Control Options and INSERT
When you attempt to insert or update data based on your authorizations, the

outcome depends upon the way in which the policy enforcement controls are set.

■ If INSERT_CONTROL is set, then you can only insert rows labeled within your

write authorizations. If you attempt to update data which you can read, but for

which you do not have write authorization, an error is raised. For example, if

you can read compartments A and B, but you can only write to compartment A,

then if you attempt to insert data with compartment B, the statement will fail.

■ If INSERT_CONTROL is not set, you can insert with any valid label.

■ If the CHECK_CONTROL option is set, you can only insert rows with labels

which you are authorized to read—even if the labels are generated by a labeling

function.

Inserting Labels When a Labeling Function is Specified
A labeling function takes precedence over labels entered by the user. If the

administrator has set up an automatic labeling function, then no label you enter will

have effect (unless the label function enables your label to be considered). New row

labels are always determined by the label function.

Note that the security administrator can establish a labeling function which sets the

label of a row being inserted to a value outside the range which the user can see. If

this is the case, the user can potentially insert a row, but not be authorized to see the

row. You can prevent this situation from occurring by using the CHECK_

CONTROL option. This option verifies the user’s read authorization on the new

label; if this option is on, she will not be able to perform such an insert.

Policy Options and Labeling Functions: Updating Labeled Data

7-14 Oracle Label Security Administrator’s Guide

Inserting Child Rows into Tables with Declarative Referential Integrity Enabled
Declarative referential integrity can enforce parent-child relationships between

tables, if the parent is a protected table. If a child row is in a table which has a

referential integrity constraint, then the parent row must be visible (the user must

be able to see the parent row) for the insert to succeed. Thus, the user must have

read access to the parent row.

If the parent table has READ_CONTROL on, the user’s read authorization must be

sufficient to authorize a SELECT on the parent row. For example, a user who cannot

read department 20, cannot insert child rows for department 20. (Note that all

records will be visible if the user has FULL or READ privilege.)

Policy Options and Labeling Functions: Updating Labeled Data
Update behavior in Oracle Label Security is similar to that of insert behavior. There

is nothing different, as long as the user is authorized to change the rows in question.

This section contains these topics:

■ Updating Labels Using CHAR_TO_LABEL

■ Enforcement Control Options and UPDATE

■ Updating Labels When a Labeling Function Is Specified

■ Updating Child Rows in Tables with Declarative Referential Integrity Enabled

Updating Labels Using CHAR_TO_LABEL
If you need to change a row’s label from SENSITIVE to CONFIDENTIAL, you can

change the label as follows:

UPDATE emp
SET hr_label = char_to_label (’HR’, ’CONFIDENTIAL’)
WHERE ename = ’ESTANTON’;

Enforcement Control Options and UPDATE
When you attempt to update data based on your authorizations, the outcome

depends upon the way in which enforcement controls are set.

■ If UPDATE_CONTROL is set, then you can only update rows labeled within

your write authorizations. If you attempt to update data which you can read,

but for which you do not have write authorization, an error is raised. Assume,

for example, that you can read compartments A and B, but you can only write

Policy Options and Labeling Functions: Updating Labeled Data

Implementing Policy Options and Labeling Functions 7-15

to compartment A. In this case, if you attempt to update data with

compartment B, the statement will fail.

■ If UPDATE_CONTROL is not set, you can update all rows to which you have

read access.

■ If LABEL_UPDATE is set, you must have the appropriate privilege (WRITEUP,

WRITEDOWN, or WRITEACROSS) in order to update a label.

■ If the CHECK_CONTROL option is set, you can only specify labels which you

are authorized to read.

■ If LABEL_UPDATE is not set but UPDATE_CONTROL is set, then you can

update a label to any new label value within your write authorization.

The following figure illustrates the label evaluation process for LABEL_UPDATE.

Figure 7–1 Label Evaluation Process for LABEL_UPDATE

No
Access

 Access

WRITE
DOWN

Privilege?

New level
< old level?

New level
> old level?

WRITE
UP

Privilege?

New
level

=< Max
=> Min

WRITE
ACROSS
Privilege?

N

Y

N N

N

Y

Y

Y

New groups
not equal to
old groups?

New comp
not equal to
old comp?

Y

NN

Y

N N

YY

Policy Options and Labeling Functions: Updating Labeled Data

7-16 Oracle Label Security Administrator’s Guide

Updating Labels When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user. If the

administrator has set up an automatic labeling function, then no label you enter will

have effect (unless the label function permits your label to be considered). New row

labels are always determined by the label function.

Note that the security administrator can establish a labeling function which sets the

label of a row being updated to a value outside the range which you can see. If this

is the case, you can update a row, but not be authorized to see the row. If the

CHECK_CONTROL option is on, you will not be able to perform such an update.

CHECK_CONTROL verifies your read authorization on the new label.

Updating Child Rows in Tables with Declarative Referential Integrity Enabled
If a child row is in a table which has a referential integrity constraint, then the

parent row must be visible (the user must be able to see the parent row) for the

update to succeed. If the parent table has READ_CONTROL on, the user’s read

authorization must be sufficient to authorize a SELECT on the parent row.

For example, a user who cannot read department 20 in a parent table, cannot

update an employee’s department to department 20 in a child table. (If the user has

FULL or READ privilege, then all records will be visible.)

See Also: Oracle9i Application Developer’s Guide - Fundamentals

Policy Options and Labeling Functions: Deleting Labeled Data

Implementing Policy Options and Labeling Functions 7-17

Policy Options and Labeling Functions: Deleting Labeled Data
This section covers the deletion of labeled data.

■ If the DELETE_CONTROL option is set, you can only delete rows within your

write authorization.

■ If the DELETE_CONTROL is not set, then you can only delete rows which you

can read.

■ With DELETE_CONTROL set, and declarative referential integrity defined with

cascading deletes, then you must have write authorization on all the rows to be

deleted, or the statement will fail.

You cannot delete a parent row if there are any child rows attached to it, regardless

of your write authorization. To delete such a parent row, you must first delete each

of the child rows. If DELETE_CONTROL is set on any of the child rows, then you

must have write authorization to delete the child rows.

Consider, for example, a situation in which the user is UNCLASSIFIED and there

are three rows as follows:

In this case, the UNCLASSIFIED user cannot delete the parent row.

DELETE_CONTROL has no effect when DELETE_RESTRICT is set. DELETE_

RESTRICT is always enforced. In some cases (depending on the user’s

authorizations and the data’s labels) it may look as though a row has no child rows,

when it actually does have children but the user cannot see them. Even if a user

cannot see child rows, he still cannot delete the parent row.

Row Table Sensitivity

Parent row: DEPT UNCLASSIFIED

Child row: EMP UNCLASSIFIED

Child row: EMP UNCLASSIFIED

See Also: Oracle9i Application Developer’s Guide - Fundamentals:

Using a SQL Predicate with an Oracle Label Security Policy

7-18 Oracle Label Security Administrator’s Guide

Using a SQL Predicate with an Oracle Label Security Policy
You can use a SQL predicate to provide extensibility for selective enforcement of

data access rules.

This section contains these topics:

■ SQL Predicates Used with an Oracle Label Security Policy

■ Effect of Multiple SQL Predicates Under Oracle Label Security

SQL Predicates Used with an Oracle Label Security Policy
A SQL predicate is a condition, with an optional preceding AND or OR. It can be

appended for READ_CONTROL access mediation. The following predicate, for

example, adds an application-specific test based on COL1 to determine if the

session has access to the row.

AND my_function(col1)=1

The combined result of the policy and the user-specified predicate affects the labels

which a user can read. It therefore affects the labels and data which CHECK_

CONTROL will permit a user to change. An OR clause, for example, increases the

number of rows a user can read.

A SQL predicate can be useful if you want to avoid performing label-based filtering.

In certain situations, a SQL predicate can easily implement row level security on

tables. Used instead of READ_CONTROL, a SQL predicate will filter the data for

SELECT, UPDATE, and DELETE operations.

Similarly, in a typical, Web-enabled human resources application, a user might have

to be a manager to access rows in the employee table. (That is, her user label would

have to dominate the label on the employee’s row). A SQL predicate like the

following could be added, such that an employee could bypass label-based filtering

if he wanted to view his own record in the employee table. (An "OR" is used so that

either the label policy will apply, or this statement will apply.)

OR SYS_CONTEXT (’USERENV’, ’SESSION_USER’) = employee_name

This predicate enables you to have additional access controls so that each employee

can access his or her own record.

You can use such a predicate in conjunction with READ_CONTROL, or as a

standalone predicate even if READ_CONTROL is not implemented.

Using a SQL Predicate with an Oracle Label Security Policy

Implementing Policy Options and Labeling Functions 7-19

Effect of Multiple SQL Predicates Under Oracle Label Security
A predicate applied to a table by means of an Oracle Label Security policy is

appended to any other predicates which may be applied by other Oracle Label

Security policies, or by Oracle fine grain access control/VPD policies. The

predicates are ANDed together.

Consider the following predicates applied to the EMP table in the SCOTT schema:

■ A predicate generated by an Oracle VPD policy, such as deptno=10

■ A label-based predicate generated by an Oracle Label Security policy, such as

label=100 , with a user-specified predicate such as

OR SYS_CONTEXT (’USERENV’, ’SESSION_USER’) = ename

Correct: These predicates would be ANDed together as follows:

WHERE deptno=10 AND (label=100 OR SYS_CONTEXT (’USERENV’, ’SESSION_USER’) =
ename)

Incorrect: The predicates would not be combined in the following way:

WHERE deptno=10 AND label=100 OR SYS_CONTEXT (’USERENV’, ’SESSION_USER’) = ename

Note: Verify that the predicate accomplishes your security goals

before you implement it in an application.

If a syntax error occurs in a predicate under Oracle Label Security,

an error will not arise when you try to apply the policy to a table.

Rather, a predicate error message will arise when you first attempt

to reference the table.

Using a SQL Predicate with an Oracle Label Security Policy

7-20 Oracle Label Security Administrator’s Guide

Applying Policies to Tables and Schemas 8-1

8
Applying Policies to Tables and Schemas

This chapter describes the SA_POLICY_ADMIN package, which enables you to

administer policies on tables and schemas. It contains these sections:

■ Policy Administration Terminology

■ Policy Administration Functions for Tables and Schemas

■ Administering Policies on Tables Using SA_POLICY_ADMIN

■ Administering Policies on Schemas with SA_POLICY_ADMIN

Policy Administration Terminology

8-2 Oracle Label Security Administrator’s Guide

Policy Administration Terminology
When you apply a policy to a table, the policy is automatically enabled. To disable a

policy is to turn off its protections, although it is still applied to the table. To enable a

policy is to turn on and enforce its protections for a particular table or schema.

To remove a policy is to take it entirely away from the table or schema. Note,

however, that the policy label column and labels remain in the table unless you

explicitly drop them.

You can alter the default policy enforcement options for future tables which may be

created in a schema. This does not, however, affect policy enforcement options on

existing tables in the schema.

To change the enforcement options on an existing table, you must first remove the

policy from the table, make the desired changes, and then re-apply the policy to the

table.

See Also: "Choosing Policy Options" on page 7-2

Policy Administration Functions for Tables and Schemas

Applying Policies to Tables and Schemas 8-3

Policy Administration Functions for Tables and Schemas
Two sets of functions are available to administer Oracle Label Security policies:

■ functions to administer policies at the table level

■ functions to administer policies at the schema level

Schema-level functions are provided for convenience. Note, however, that

administrative operations which you perform at the table level will override

operations performed at the schema level.

To perform these functions with Oracle Policy Manager, go to Oracle Label
Security Policies—> policyname—>Protected Objects. Select either Schemas or

Tables, and use the corresponding property sheet.

Table 8–1 Policy Administration Functions

Purpose Table-Level Function Level Function

Apply policy APPLY_TABLE_POLICY APPLY_SCHEMA_POLICY

Alter policy Not applicable ALTER_SCHEMA_POLICY

Disable policy DISABLE_TABLE_POLICY DISABLE_SCHEMA_POLICY

Re-enable policy ENABLE_TABLE_POLICY ENABLE_SCHEMA_POLICY

Remove policy REMOVE_TABLE_POLICY REMOVE_SCHEMA_POLICY

Note: You should restrict access to application tables when using

Oracle Policy Manager to change enforcement options. This is

because Oracle Policy Manager must remove the policy in order to

make such changes, and then re-apply the policy after the changes

have been made.

Administering Policies on Tables Using SA_POLICY_ADMIN

8-4 Oracle Label Security Administrator’s Guide

Administering Policies on Tables Using SA_POLICY_ADMIN
To administer policies on tables, a user must have EXECUTE privilege for the SA_

POLICY_ADMIN package, and must have been granted the policy_DBA role.

Authorized users can also perform these functions with the Oracle Policy Manager.

This section contains these topics:

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY

■ Removing a Policy with SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

■ Disabling a Policy with SA_POLICY_ADMIN.DISABLE_TABLE_POLICY

■ Re-enabling a Policy with SA_POLICY_ADMIN.ENABLE_TABLE_POLICY

Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY
Use the APPLY_TABLE_POLICY procedure to add the specified policy to a table.

A policy label column is added to the table if it does not exist, and is set to NULL.

When a policy is applied, it is automatically enabled. To change the table options,

labeling function, or predicate, you must first remove the policy, then re-apply it.

Syntax:

PROCEDURE APPLY_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 table_options IN VARCHAR2 DEFAULT NULL,
 label_function IN VARCHAR2 DEFAULT NULL,
 predicate IN VARCHAR2 DEFAULT NULL);

policy_name Specifies an existing policy

schema_name Specifies the schema which contains the table

table_name Specifies the table to be controlled by the policy

table_options A comma-separated list of policy enforcement options to be used for the
table. If NULL, then the policy’s default options are used.

label_function A string invoking a function to return a label value to use as the default.
For example, my_label(:new.dept,:new.status) computes the label
based on the new values of the DEPT and STATUS columns in the row.

predicate Specifies an additional predicate to combine (using AND or OR) with the
label-based predicate for READ_CONTROL

Administering Policies on Tables Using SA_POLICY_ADMIN

Applying Policies to Tables and Schemas 8-5

Example:

The following statement applies the HUMAN_RESOURCES policy to the EMP table

in the SA_DEMO schema.

SA_POLICY_ADMIN.APPLY_TABLE_POLICY(’human_resources’,
’sa_demo’,’emp’,’no_control’);

Removing a Policy with SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
The REMOVE_TABLE_POLICY procedure removes the specified policy from a

table. The policy predicate and any DML triggers will be removed from the table,

and the policy label column can optionally be dropped. Policies can be removed

from tables belonging to a schema that is protected by the policy.

Syntax:

PROCEDURE REMOVE_TABLE_POLICY (
policy_name IN VARCHAR2,
schema_name IN VARCHAR2,
table_name IN VARCHAR2,
 drop_column IN BOOLEAN DEFAULT FALSE);

Example:

The following statement removes the HUMAN_RESOURCES policy from the EMP

table in the SA_DEMO schema:

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY(’human_resources’,’sa_demo’,’emp’);

policy_name Specifies an existing policy

schema_name Specifies the schema which contains the table

table_name Specifies the table

drop_column If TRUE, the policy’s column will be dropped from the table.
Otherwise, the column will remain.

Administering Policies on Tables Using SA_POLICY_ADMIN

8-6 Oracle Label Security Administrator’s Guide

Disabling a Policy with SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
The DISABLE_TABLE_POLICY procedure disables the enforcement of the policy

for the specified table without changing the enforcement options, labeling function,

or predicate values. It removes the RLS predicate and DML triggers from the table.

Syntax:

PROCEDURE DISABLE_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2);

Example:

The following statement disables the HUMAN_RESOURCES policy on the EMP

table in the SA_DEMO schema:

SA_POLICY_ADMIN.DISABLE_TABLE_POLICY(’human_resources’,’sa_demo’,’emp’);

policy_name Specifies an existing policy

schema_name Specifies the schema which contains the table

table_name Specifies the table

Administering Policies on Tables Using SA_POLICY_ADMIN

Applying Policies to Tables and Schemas 8-7

Re-enabling a Policy with SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
The ENABLE_TABLE_POLICY procedure re-enables the current enforcement

options, labeling function, and predicate for the specified table by re-applying the

RLS predicate and DML triggers.

Syntax:

PROCEDURE ENABLE_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2);

Example:

The following statement re-enables the HUMAN_RESOURCES policy on the EMP

table in the SA_DEMO schema:

SA_POLICY_ADMIN.ENABLE_TABLE_POLICY(’human_resources’,’sa_demo’,’emp’);

policy_name Specifies an existing policy

schema_name Specifies the schema which contains the table

table_name Specifies the table

Administering Policies on Schemas with SA_POLICY_ADMIN

8-8 Oracle Label Security Administrator’s Guide

Administering Policies on Schemas with SA_POLICY_ADMIN
To administer policies on schemas, a user must have EXECUTE privilege on the

SA_POLICY_ADMIN package, and must have been granted the policy_DBA role.

Authorized users can also use the Oracle Policy Manager to perform these

functions.

This section contains these topics:

■ Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY

■ Altering Enforcement Options: SA_POLICY_ADMIN.ALTER_SCHEMA_

POLICY

■ Removing a Policy with SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY

■ Disabling a Policy with SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY

■ Re-Enabling a Policy with SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY

■ Policy Issues for Schemas

Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
In addition to applying a policy to individual tables, you can apply a policy at the

schema level. The APPLY_SCHEMA_POLICY procedure applies the specified

policy to all of the existing tables in a schema (that is, to those which do not already

have the policy applied) and enables the policy for these tables. Then, whenever a

new table is created in the schema, the policy is automatically applied to that table,

using the schema’s default options. No changes are made to existing tables in the

schema which already have the policy applied.

Syntax:

PROCEDURE APPLY_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 default_options IN VARCHAR2 DEFAULT NULL);

If the default_options parameter is NULL, then the policy’s default options will be

used to apply the policy to the tables in the schema.

policy_name Specifies an existing policy.

schema_name Specifies the schema name to control with the policy.

default_options The default options to be used for tables in the schema.

Administering Policies on Schemas with SA_POLICY_ADMIN

Applying Policies to Tables and Schemas 8-9

Altering Enforcement Options: SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
The ALTER_SCHEMA_POLICY procedure changes the default enforcement options

for the policy. Any new tables created in the schema will automatically have the

new enforcement options applied; existing tables in the schema are not affected.

Syntax:

PROCEDURE ALTER_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 default_options IN VARCHAR2);

To change enforcement options on a table (rather than a schema) you must first

drop the policy from the table, make the change, and then re-apply the policy.

If you alter the enforcement options on a schema, this will take effect the next time a

table is created in the schema. As a result, different tables within a schema may

have different policy enforcement options in force.

policy_name Specifies an existing policy.

schema_name Specifies the schema name to control with the policy.

default_options The default options to be used for new tables created in the schema.

Administering Policies on Schemas with SA_POLICY_ADMIN

8-10 Oracle Label Security Administrator’s Guide

Removing a Policy with SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
The REMOVE_SCHEMA_POLICY procedure removes the specified policy from a

schema. The policy will be removed from all of the tables in the schema and,

optionally, the label column for the policy will be dropped from all of the tables.

Syntax:

PROCEDURE REMOVE_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 drop_column IN BOOLEAN DEFAULT FALSE);

Disabling a Policy with SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
The DISABLE_SCHEMA_POLICY procedure disables the enforcement of the policy

for all of the tables in the specified schema, without changing the enforcement

options, labeling function, or predicate values. It removes the RLS predicate and

DML triggers from all the tables in the schema.

Syntax:

PROCEDURE DISABLE_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2);

policy_name Specifies an existing policy

schema_name Specifies the schema name

drop_column If TRUE, the policy’s column will be dropped from the tables;
otherwise, the column will remain.

policy_name Specifies an existing policy

schema_name Specifies the schema name containing the table

Administering Policies on Schemas with SA_POLICY_ADMIN

Applying Policies to Tables and Schemas 8-11

Re-Enabling a Policy with SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
The ENABLE_SCHEMA_POLICY procedure re-enables the current enforcement

optiofns, labeling function, and predicate for the tables in the specified schema by

re-applying the RLS predicate and DML triggers.

Syntax:

PROCEDURE ENABLE_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2);

This is the same as enabling a policy for a table, but it covers all tables in the

schema.

Policy Issues for Schemas
Note the following aspects of using Oracle Label Security policies with schemas:

■ If you apply a policy to an empty schema, then every time you create a table

within that schema, the policy is applied. Once the policy is applied to the

schema, the default options you choose are applied to every table added.

■ If you remove the policy from a table so that it is unprotected, and then execute

SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY, the table will remain

unprotected. If you wish to protect the table once again, you must apply the

policy to the table, or re-apply the policy to the schema.

If you apply a policy to a schema which already contains tables protected by the

policy, then all future tables will have the new options that were specified when you

applied the policy. The existing tables will keep the options they already had.

policy_name Specifies an existing policy

schema_name Specifies the schema name containing the table

Administering Policies on Schemas with SA_POLICY_ADMIN

8-12 Oracle Label Security Administrator’s Guide

Administering and Using Trusted Stored Program Units 9-1

9
Administering and Using Trusted Stored

Program Units

This chapter explains how to use trusted stored program units to enhance system

security. It contains these topics:

■ Introduction to Trusted Stored Program Units

■ Managing Program Unit Privileges with SET_PROG_PRIVS

■ Creating and Compiling Trusted Stored Program Units

■ Using SA_UTL Functions to Set and Return Label Information

Introduction to Trusted Stored Program Units

9-2 Oracle Label Security Administrator’s Guide

Introduction to Trusted Stored Program Units
Oracle9i stored procedures, functions, and packages are sets of PL/SQL statements

stored in a database in compiled form. The single difference between functions and

procedures is that functions return a value and procedures do not. Trusted stored

program units are just like any other stored program units in Oracle9i: the

underlying logic is the same.

A package is a set of procedures and functions, together with the cursors and variables they

use, stored as a unit. There are two parts to a package: the package specification and

the package body. The package specification declares the external definition of the

public procedures, functions, and variables that the package contains. The package

body contains the actual text of the procedures and functions, as well as any private

procedures and variables.

A trusted stored program unit is a stored procedure, function, or package which has

been granted one or more Oracle Label Security privileges. Trusted stored program

units are typically used to let users perform privileged operations in a controlled

manner, or update data at several labels. This is the optimal approach to permit

users to access data beyond their authorization.

Trusted stored program units provide fine-grained control over the use of

privileges. Although you can potentially grant privileges to many users, the

granting of privileges should be done with great discretion; doing so may violate

the security policy established for your application. Rather than assigning

privileges to users, you can identify any application operations requiring privileges,

and implement them as trusted program units. When you grant privileges to these

stored program units, you effectively restrict the Oracle Label Security privileges

required by users. This approach employs the principle of least privilege.

For example, if a user with the label CONFIDENTIAL needs to insert data into

SENSITIVE rows, you can grant the WRITEUP privilege to a trusted stored

program to which the user has access. In this way, the user can perform the task by

means of the trusted stored program, while staying at the CONFIDENTIAL level.

The trusted program unit performs all the actions on behalf of the user. You can

thus effectively encapsulate the security policy into a module which can be verified

to make sure that it is valid.

Introduction to Trusted Stored Program Units

Administering and Using Trusted Stored Program Units 9-3

How a Trusted Stored Program Unit Executes
A trusted stored program unit executes using its own privileges, and the invoker’s

labels. It can thus perform privileged operations on the set of rows constrained by

the user’s labels.

Oracle9i system and object privileges are intended to be bundled into roles. Users

are then granted roles as necessary. By contrast, Oracle Label Security privileges can

only be assigned to users or to stored program units. These trusted stored program

units provide a more manageable mechanism than roles to control the use of Oracle

Label Security privileges.

Trusted Stored Program Unit Example
A trusted stored program unit with READ privilege can read all unprotected data,

and all data protected by this policy in the database. Consider, for example, a user

who is responsible for creating purchasing forecast reports. She must perform a

summation operation on the amount of all purchases—regardless of whether or not

her own labels authorize access to the individual purchase orders. The syntax for

creating the summation procedure in this example is as follows:

CREATE FUNCTION sum_purchases RETURN NUMBER IS
DECLARE
 psum NUMBER;
BEGIN
 SELECT SUM(amount) INTO psum
 FROM purchase_orders;
RETURN psum;
END sum_purchases;

In this way, the program unit can gather information the end user is not able to

gather, and can make it available by means of a summation.

Note that to execute SUM_PURCHASES, the user would need to be granted the

standard Oracle9i EXECUTE object privilege upon this procedure.

See Also: Chapter 3, "Understanding Access Controls and

Privileges"

Managing Program Unit Privileges with SET_PROG_PRIVS

9-4 Oracle Label Security Administrator’s Guide

Managing Program Unit Privileges with SET_PROG_PRIVS
To grant privileges to a stored program unit, you must have the policy_DBA role,

and EXECUTE permission on the SA_USER_ADMIN package. You can use either

the SA_USER_ADMIN package or the Oracle Policy Manager to manage Oracle

Label Security privileges.

Use the SA_USER_ADMIN.SET_PROG_PRIVS procedure to set policy-specific

privileges for program units. If the privileges parameter is NULL, the program unit’s

privileges for the policy are removed.

Syntax:

PROCEDURE SET_PROG_PRIVS (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 program_unit_name IN VARCHAR2,
 privileges IN VARCHAR2);

For example, to give READ privilege to the SUM_PURCHASES function (described

in "Trusted Stored Program Unit Example" on page 9-3), you could enter:

EXECUTE sa_user_admin.set_prog_privs (
’HR’,’myschema’,’sum_purchases’,’READ’);

When the SUM_PURCHASES procedure is then called, it executes with the READ

privilege as well as the current user’s Oracle Label Security privileges. Using this

technique, the user can be allowed to find the value of the total corporate payroll,

without learning what salary any individual employee receives.

policy_name Specifies the policy name of an existing policy.

schema_name Specifies the schema containing the program unit

program_unit_name Specifies the program unit to be granted privileges

privileges A comma-separated character string of policy-specific privileges

Warning: When you create a trusted stored program unit, have

the Oracle Label Security administrator review it carefully and

evaluate the privileges you are granting to it. Ensure, for example,

that procedures in trusted packages do not perform privileged

database operations and then write result or status information into

a public variable of the package. In this way you can make sure that

no violations of your site’s Oracle Label Security policy can occur.

Creating and Compiling Trusted Stored Program Units

Administering and Using Trusted Stored Program Units 9-5

Creating and Compiling Trusted Stored Program Units
This section contains these topics:

■ Creating Trusted Stored Program Units

■ Setting Privileges for Trusted Stored Program Units

■ Re-Compiling Trusted Stored Program Units

■ Recreating Trusted Stored Program Units

■ Executing Trusted Stored Program Units

Creating Trusted Stored Program Units
You create a trusted stored program unit in the same way that you create a standard

procedure, function, or package: using the statement CREATE PROCEDURE,

CREATE FUNCTION, or CREATE PACKAGE and CREATE PACKAGE BODY. The

program unit becomes trusted when you grant it Oracle Label Security privileges.

Setting Privileges for Trusted Stored Program Units
When a developer creates a stored program unit, the Oracle Label Security

administrator can verify the correctness of the code before granting the necessary

privileges to the stored program unit. Whenever the trusted stored program unit is

recreated or replaced, its privileges are removed. The Oracle Label Security

administrator must then re-verify the code and grant the privileges once again.

Re-Compiling Trusted Stored Program Units
Re-compiling a trusted stored program unit, either automatically or manually

(using ALTER PROCEDURE), does not affect its Oracle Label Security privileges.

You must, however, re-grant the EXECUTE privilege on the program unit after

re-compiling.

Recreating Trusted Stored Program Units
Oracle Label Security privileges are revoked if you perform a CREATE OR

REPLACE operation on a trusted stored program unit. This limits the potential for

misuse of a procedure’s Oracle Label Security privileges. Note that the procedure,

See Also: Oracle9i SQL Reference

Creating and Compiling Trusted Stored Program Units

9-6 Oracle Label Security Administrator’s Guide

function, or package can still execute even if the Oracle Label Security privileges

have been removed.

If you re-create a procedure, function, or package, you should carefully review its

text. When you are certain that the re-created program unit does not violate your

site’s Oracle Label Security policy, you can then re-grant it the required privileges.

In a development environment where trusted stored program units must frequently

be replaced (for example, during the first few months of a live system), it is

advisable to create a script which can grant the appropriate Oracle Label Security

privileges, as required.

Executing Trusted Stored Program Units
Under Oracle Label Security all of the standard Oracle9i controls on procedure

invocation (regarding access to tables and schemas) are still in force. Oracle Label

Security complements these security mechanisms by controlling access to rows.

When a trusted stored program unit is executed, the policy privileges in force are a

union of the invoking user’s privileges and the program unit’s privileges. Whether

a trusted stored program unit calls another trusted program unit or a non-trusted

program unit, the program unit called runs with the same privileges as the original

program unit.

If a sequence of non-trusted and trusted stored program units is executed, the first

trusted program unit will determine the privileges of the entire calling sequence

from that point on. Consider the following sequence:

Procedure A (non-trusted)

Procedure B with WRITEUP

Procedure C with WRITEDOWN

Procedure D (non-trusted)

Here, Procedures B, C, and D all execute with WRITEUP privilege, because B was

the first trusted procedure in the sequence. When the sequence ends, the privilege

pertaining to Procedure B is no longer in force for subsequent procedures.

Note: Unhandled exceptions raised in trusted program units are

caught by Oracle Label Security. This means that error messages

may not be displayed to the user. For this reason, you should

always thoroughly test and debug any program units before

granting them privileges.

Using SA_UTL Functions to Set and Return Label Information

Administering and Using Trusted Stored Program Units 9-7

Using SA_UTL Functions to Set and Return Label Information
The SA_UTL package provides several functions for use within PL/SQL programs.

These functions return information about the current values of the session security

attributes, in the form of numeric label values. While they can be used in program

units which are not trusted, these functions are primarily for use in trusted stored

program units.

Note that these are public functions; you do not need the policy_DBA role to use

them. In addition, each of the functions has a parallel SA_SESSION function which

returns the same labels in character string format.

■ Viewing Session Label and Row Label Using SA_UTL

■ Setting the Session Label and Row Label Using SA_UTL

■ Returning Greatest Lower Bound and Least Upper Bound

Viewing Session Label and Row Label Using SA_UTL

SA_UTL.NUMERIC_LABEL
This procedure returns the current session label. It takes a policy name as the input

parameter and returns a NUMBER value.

SA_UTL.NUMERIC_LABEL (policy_name) RETURN NUMBER;

SA_UTL.NUMERIC_ROW_LABEL
This procedure returns the current row label. It takes a policy name as the input

parameter and returns a NUMBER value.

SA_UTL.NUMERIC_ROW_LABEL (policy_name) RETURN NUMBER;

SA_UTL.DATA_LABEL
This function returns TRUE if the label is a data label.

FUNCTION DATA_LABEL(label IN NUMBER)
RETURN BOOLEAN;

See Also: "Viewing Session Attributes with SA_SESSION

Functions" on page 4-23

Using SA_UTL Functions to Set and Return Label Information

9-8 Oracle Label Security Administrator’s Guide

Setting the Session Label and Row Label Using SA_UTL
These procedures use numeric labels instead of character strings as input values.

Available SA_SESSION procedures perform the same functions as these, but in

character string format.

SA_UTL.SET_LABEL
Use this procedure to set the label of the current database session. The session’s

write label and row label are set to the subset of the label’s compartments and

groups that are authorized for write access.

PROCEDURE SET_LABEL (policy_name IN VARCHAR2,
 label IN NUMBER);

SA_UTL.SET_ROW_LABEL
Use this procedure to set the row label of the current database session. The

compartments and groups in the label must be a subset of compartments and

groups in the session label that are authorized for write access.

PROCEDURE SET_ROW_LABEL (policy_name IN VARCHAR2,
 row_label IN NUMBER);

policy_name The name of an existing policy

label The label to set as the session label

policy_name The name of an existing policy

row_label The label to set as the session default row label

See Also: "Changing Your Session and Row Labels with SA_

SESSION" on page 4-19

Using SA_UTL Functions to Set and Return Label Information

Administering and Using Trusted Stored Program Units 9-9

Returning Greatest Lower Bound and Least Upper Bound

GREATEST_LBOUND
This function returns a label that is the greatest lower bound of the two label

arguments.

Syntax:

FUNCTION GREATEST_LBOUND (label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER;

LEAST_UBOUND
This function returns an Oracle Label Security label that is the least upper bound of

the label arguments.

Syntax:

FUNCTION LEAST_UBOUND (label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER;

See Also: "Determining Upper and Lower Bounds of Labels" on

page 4-12. The functions above are the same as those described in

Chapter 4, except that these return a number instead of a character

string.

Using SA_UTL Functions to Set and Return Label Information

9-10 Oracle Label Security Administrator’s Guide

Auditing Under Oracle Label Security 10-1

10
Auditing Under Oracle Label Security

The Oracle9i audit facility lets you hold database users accountable for the

operations they perform. It can track specific database objects, operations, users,

and privileges. Oracle Label Security supplements this by tracking use of its own

administrative operations and policy privileges. It provides the SA_AUDIT_

ADMIN package to set and change the policy auditing options.

This chapter explains how to use Oracle Label Security auditing. It contains these

topics:

■ Overview of Oracle Label Security Auditing

■ Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter

■ Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

■ Creating and Dropping an Audit Trail View for Oracle Label Security

■ Oracle Label Security Auditing Tips

Overview of Oracle Label Security Auditing

10-2 Oracle Label Security Administrator’s Guide

Overview of Oracle Label Security Auditing
Oracle Label Security auditing supplements standard Oracle9i auditing by tracking

use of its own administrative operations, and use of the policy privileges. You can

use either the SA_AUDIT_ADMIN package or Oracle Policy Manager to set and

change the auditing options for an Oracle Label Security policy.

When you create a new policy, a label column for that policy is added to the

database audit trail. The label column is created regardless of whether auditing is

enabled or disabled, and independent of whether database auditing or operating

system auditing is used. Whenever a record is written to the audit table, each policy

provides a label for that record to indicate the session label. The administrator can

create audit views to display these labels. Note that in the audit table, the label does

not control access to the row; instead, it simply records the sensitivity of the row.

The auditing options which you specify apply only to subsequent sessions, not to

the current session. You can specify audit options even if auditing is disabled; no

overhead is created simply by making these specifications. When you do enable

Oracle Label Security auditing, the options come into effect, and overhead is created

beyond that created by standard Oracle9i auditing.

Note that Oracle Label Security does not provide labels for audit data written to the

operating system audit trial. All Oracle Label Security audit records are written

directly to the database audit trail, even if operating system auditing is enabled. If

auditing is disabled, then no Oracle Label Security audit records are generated.

Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter

Auditing Under Oracle Label Security 10-3

Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
For Oracle Label Security to generate audit records, you must first enable

systemwide auditing by setting the Oracle9i AUDIT_TRAIL initialization parameter

in the database’s parameter file. The parameter can be set to one of the following

values:

After you have edited the parameter file, restart the database instance to enable or

disable database auditing as specified.

Set the AUDIT_TRAIL parameter before you set audit options. If you do not set this

parameter, you are still able to set audit options, however audit records are not

written to the database until the parameter is set and the database instance is

restarted.

DB Enables database auditing and directs all audit records to the database audit
trail. This approach is recommended by Oracle Corporation.

Note that even with AUDIT_TRAIL set to DB, some records are always sent
to the operating system audit trail. These include STARTUP and
SHUTDOWN statements, as well as CONNECT AS SYSOPER or SYSDBA.

OS Enables operating system auditing. This directs most of your Oracle9i audit
records to the operating system, rather than to the database; the records will
not contain Oracle Label Security labels. By contrast, any Oracle Label
Security auditing will go to the database, with labels.

If you set AUDIT_TRAIL to OS, the Oracle Label Security-specific audit
records are written to the database audit trail and the other Oracle9i audit
records are written to the operating system audit trail (with no policy
column in the operating system data).

NONE Disables auditing. This is the default.

See Also: For information about enabling and disabling

systemwide auditing, setting audit options, and managing the

audit trail, see Oracle9i Database Administrator’s Guide

For information about editing initialization parameters, see Oracle9i
Database Reference

For details about systemwide AUDIT and NOAUDIT functioning,

see Oracle9i SQL Reference

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

10-4 Oracle Label Security Administrator’s Guide

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN
After you have enabled systemwide auditing, you can use SA_AUDIT_ADMIN

procedures to enable or disable Oracle Label Security auditing. To use Oracle Label

Security auditing, you must have the policy_DBA role.

■ Auditing Options for Oracle Label Security

■ Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT

■ Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT

■ Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View

Auditing Options for Oracle Label Security
The AUDIT and NOAUDIT options are as follows:

Table 10–1 Auditing Options for Oracle Label Security

Option Description

APPLY Audits application of specified Oracle Label Security policies to
tables and schemas

REMOVE Audits removal of specified Oracle Label Security policies from
tables and schemas

SET Audits the setting of user authorizations, and user and program
privileges

PRIVILEGES Audits use of all policy-specific privileges

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

Auditing Under Oracle Label Security 10-5

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT
Use the AUDIT procedure to enable policy-specific auditing.

Syntax:

PROCEDURE AUDIT (
 policy_name IN VARCHAR2,
 users IN VARCHAR2 DEFAULT NULL,
 option IN VARCHAR2 DEFAULT NULL,
 type IN VARCHAR2 DEFAULT NULL,
 success IN VARCHAR2 DEFAULT NULL);

If the administrator does not specify any audit options, then all options except the

privilege-related ones are audited. Auditing of privileges must be specified

explicitly. For example, if the administrator enters

SA_AUDIT_ADMIN.AUDIT (’HR’);

then default auditing options are set for the HR policy. When the administrator

enables auditing, it will be performed on all users by session, whether successful or

not.

Parameter Description Default Behavior

policy_name Required. Specifies the name of an existing policy.
Auditing of each policy is independent of all others.)

None

users Optional. A comma-separated list of user names to
audit. If not specified, all users are audited.

All users

option Optional. A comma-separated list of options to be
audited. See Table 10–1.

If not specified, all default options (that is, options not
including privileges) are audited. Audit options for
privileged operations should be set explicitly by
specifying the PRIVILEGES option, which sets audit
options for all privileges.

All options

type Optional. BY ACCESS or BY SESSION. If not specified,
audit records are written by session.

BY SESSION

success Optional. SUCCESSFUL or NOT SUCCESSFUL. If not
specified, audit is written for both.

SUCCESSFUL
and NOT
SUCCESSFUL

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

10-6 Oracle Label Security Administrator’s Guide

When you set auditing parameters and options, the new values apply only to

subsequent sessions, not to the current session.

Consider also a case in which one AUDIT call (with no users specified) enables

auditing for APPLY operations for all users, and then a second call enables auditing

of REMOVE operations for a specific user. For example:

SA_AUDIT_ADMIN.AUDIT (’HR’, NULL, ’APPLY’);
SA_AUDIT_ADMIN.AUDIT (’HR’, ’SCOTT’, ’REMOVE’);

In this case, SCOTT is audited for both APPLY and REMOVE operations.

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

Auditing Under Oracle Label Security 10-7

Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT
To disable policy-specific auditing, use the SA_AUDIT_ADMIN.NOAUDIT

procedure.

Syntax:

PROCEDURE NOAUDIT (
 policy_name IN VARCHAR2,
 users IN VARCHAR2 DEFAULT NULL,
 option IN VARCHAR2 DEFAULT NULL);

You can disable auditing for all enabled options, or only for a subset of enabled

options. All auditing for the specified options is disabled for all specified users (or

all users, if the users parameter is NULL). For example, the following statement

disables auditing of the APPLY and REMOVE operations for users John, Mary, and

Scott:

SA_AUDIT_ADMIN.NOAUDIT (’HR’, ’JOHN, MARY, SCOTT’, ’APPLY, REMOVE’);

Consider also a case in which one AUDIT call enables auditing for a specific user,

and a second call (with no user specified) enables auditing for all users. For

example:

SA_AUDIT_ADMIN.AUDIT (’HR’, ’SCOTT’);
SA_AUDIT_ADMIN.AUDIT (’HR’);

In this case, a subsequent call to NOAUDIT with no users specified (such as the

following)

SA_AUDIT_ADMIN.NOAUDIT (’HR’);

Parameter Description Default Behavior

policy_name Required. Specifies the name of an existing policy. None

users Optional. A comma-separated list of user names to
audit. If not specified, auditing is disabled for all
users.

All users

option Optional. A comma-separated list of options to be
disabled. See Table 10–1. If not specified, all default
options are disabled. Privileges must be disabled
explicitly.

All options

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

10-8 Oracle Label Security Administrator’s Guide

does not reverse the auditing which was set for SCOTT explicitly in the first call.

Auditing thus continues to be performed on SCOTT. In this way, even if NOAUDIT

is set for all users, Oracle Label Security still audits any users for whom auditing

was explicitly set.

Auditing of privileged operations must be specified explicitly. If you execute

NOAUDIT with no options, Oracle Label Security will nonetheless continue to

audit privileged operations. For example, if auditing is enabled and you enter

SA_AUDIT_ADMIN.NOAUDIT (’HR’);

then auditing will continue to be performed on the privileged operations (such as

WRITEDOWN).

 NOAUDIT parameters and options which you set apply only to subsequent

sessions, not to current sessions.

If you try to enable an audit option which has already been set, or if you try to

disable an audit option which has not been set, Oracle Label Security processes the

statement without indicating an error. An attempt to specify an invalid option

results in an error message.

Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

Auditing Under Oracle Label Security 10-9

Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View
This section describes the view which displays the Oracle Label Security auditing

options and privileges.

The DBA_SA_AUDIT_OPTIONS view contains the following columns:

Name Null? Type
--- -------- ------------
POLICY_NAME NOT NULL VARCHAR2(30)
USER_NAME NOT NULL VARCHAR2(30)
APY VARCHAR2(3)
REM VARCHAR2(3)
SET_ VARCHAR2(3)
PRV VARCHAR2(3)

Output is similar to the following:

Table 10–2 DBA_SA_AUDIT_OPTIONS Sample Output

POLICY_
NAME USER_NAME APY REM SET PRV

HR SCOTT -/- -/- -/- A/A

HR LBACSYS S/S S/S S/S -/-

See Also: Oracle9i Database Administrator’s Guide

Managing Policy Label Auditing

10-10 Oracle Label Security Administrator’s Guide

Managing Policy Label Auditing
This section describes procedures available to manage policy label auditing:

■ Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL

■ Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL

■ Finding Label Audit Status with AUDIT_LABEL_ENABLED

Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL
Use the AUDIT_LABEL procedure to record policy labels during auditing. It causes

the user’s session label to be stored in the audit table.

Syntax:

PROCEDURE AUDIT_LABEL (
 policy_name IN VARCHAR2);

Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL
Use the NOAUDIT_LABEL procedure to disable auditing of policy labels.

Syntax:

PROCEDURE NOAUDIT_LABEL (
 policy_name IN VARCHAR2);

Finding Label Audit Status with AUDIT_LABEL_ENABLED
Use the AUDIT_LABEL_ENABLED function to show whether labels are being

recorded in audit records for the policy.

Syntax:

FUNCTION AUDIT_LABEL_ENABLED (policy_name IN VARCHAR2)
 RETURN boolean;

Parameter Description Default

policy_name Required. Specifies the name of an existing policy. None

Parameter Description Default

policy_name Required. Specifies the name of an existing policy. None

Creating and Dropping an Audit Trail View for Oracle Label Security

Auditing Under Oracle Label Security 10-11

Creating and Dropping an Audit Trail View for Oracle Label Security
This section contains these topics:

■ Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW

■ Dropping the View with SA_AUDIT_ADMIN.DROP_VIEW

Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW
The CREATE_VIEW procedure creates an audit trail view named DBA_policyname_

AUDIT_TRAIL, which contains the specified policy’s label column as well as all the

entries in the audit trail written on behalf of this policy. If the view name exceeds

the database limit of 30 characters, the user can optionally specify a shorter view

name.

Syntax:

PROCEDURE CREATE_VIEW (
 policy_name IN VARCHAR2);
 view_name IN VARCHAR2 DEFAULT NULL);

where policy_name specifies the name of an existing policy

Dropping the View with SA_AUDIT_ADMIN.DROP_VIEW
The DROP_VIEW procedure drops the audit trail view for the specified policy.

Syntax:

PROCEDURE DROP_VIEW (
 policy_name IN VARCHAR2);
 view_name IN VARCHAR2 DEFAULT NULL);

where policy_name specifies the name of a policy. View_name is an optional

parameter which can have a maximum of 14 characters.

Oracle Label Security Auditing Tips

10-12 Oracle Label Security Administrator’s Guide

Oracle Label Security Auditing Tips
This section contains these topics:

■ Strategy for Setting SA_AUDIT_ADMIN Options

■ Auditing Privileged Operations

Strategy for Setting SA_AUDIT_ADMIN Options
Before setting any audit options, you must devise an auditing strategy which

monitors events of interest, without recording extraneous events. You should

periodically review this strategy, because applications, user base, configurations,

and other external factors can change.

The Oracle Label Security options, and those provided by the Oracle9i audit facility,

might not directly address all of your specific or application-dependent auditing

requirements. However, through use of database triggers, you can audit specific

events and record specific information that you cannot audit and record using the

more generic audit facility.

Auditing Privileged Operations
Consider auditing any operations that require Oracle Label Security privileges.

Because these privileges perform sensitive operations, and because their abuse

could jeopardize security, you should closely monitor their dissemination and use.

See Also: For more information about using triggers for

auditing, see Oracle9i Database Concepts

Using Oracle Label Security with a Distributed Database 11-1

11
Using Oracle Label Security with a

Distributed Database

This chapter describes special considerations for using Oracle Label Security in a

distributed configuration. It contains the following sections:

■ An Oracle Label Security Distributed Configuration

■ Connecting to a Remote Database Under Oracle Label Security

■ Establishing Session Label and Row Label for a Remote Session

■ Setting Up Labels in a Distributed Environment

■ Using Oracle Label Security Policies in a Distributed Environment

■ Using Replication with Oracle Label Security

An Oracle Label Security Distributed Configuration

11-2 Oracle Label Security Administrator’s Guide

An Oracle Label Security Distributed Configuration
A network configuration that supports distributed databases can include multiple

Oracle9i servers, or other database servers, running on the same or different

operating systems. Each cooperative server in a distributed system communicates

with other clients and servers over a network.

Figure 11–1 illustrates a distributed database that includes clients and servers with

and without Oracle Label Security. As described in this chapter, if you establish

database links from the WESTERN_REGION database to the EASTERN_REGION

database, you can access data if your userid on EASTERN_REGION is authorized

to see it, even if locally (on WESTERN_REGION) you do not have this access.

An Oracle Label Security Distributed Configuration

Using Oracle Label Security with a Distributed Database 11-3

Figure 11–1 Using Oracle Label Security with a Distributed Database

Oracle9 i

WESTERN_
REGION

ServerClients

Oracle Label
Security policy
installed: HR

Oracle Net and TCP/IP

Oracle9 i

EASTERN_
REGION

ServerClients

Oracle Label
Security policies
installed: HR and
DEFENSE

Oracle Net and TCP/IP

Oracle9 i

HQ

ServerClients

Oracle Net and TCP/IP

Oracle Net and TCP/IP

Connecting to a Remote Database Under Oracle Label Security

11-4 Oracle Label Security Administrator’s Guide

Connecting to a Remote Database Under Oracle Label Security
Distributed databases behave in the standard way with Oracle Label Security: the

local user ends up connected as a particular remote user. Oracle Label Security

protects the labeled data, whether you connect locally or remotely. If the remote

user has the appropriate labels, you can access the data. If not, you cannot access

the data.

The database link sets up the connection to the remote database and identifies the

user that will be associated with the remote session. Your Oracle Label Security

authorizations on the remote database are based upon those of the remote user

identified in the database link.

For example, local user JANE might connect as remote user AUSTEN, in the

database referenced by the connect string sales , as follows:

CREATE DATABASE LINK sales
 CONNECT TO austen IDENTIFIED BY pride
 USING ’sales’

When JANE connects, her authorizations are based on the labels and privileges of

remote user AUSTEN, since AUSTEN is the user identified in the database link.

When JANE issues the first reference to the remote database, the remote session is

actually established. For example, the remote session would be created if JANE

enters:

SELECT * FROM emp@sales

You need not be an Oracle Label Security policy user in the local database. If you

connect as a policy user on the remote database, you can access protected data.

Establishing Session Label and Row Label for a Remote Session

Using Oracle Label Security with a Distributed Database 11-5

Establishing Session Label and Row Label for a Remote Session
When connecting remotely, you can directly control the session label and row label

in effect when you establish the connection. When you connect, Oracle Label

Security passes these values (for all policies) over to the remote database. Notice

that:

■ The local session label and row label are used as the default for the remote

session, if they are valid for the remote user.

■ The remote session is constrained by the minimum and maximum

authorizations of the remote user.

■ Although the local user’s session labels are passed to the remote database, the

local user’s privileges are not passed. The privileges for the remote session are

those associated with the remote user.

Consider a local user with a maximum level of HS, and a session level of S. On the

remote database, the remote user identified in the database link has a maximum

level of S.

■ If the local user’s session label is S when the database link is established, the S

label is passed over. This is a valid label; the user can connect and read

SENSITIVE data.

■ If the local user’s session label is HS when the database link is established, the

HS level is passed across, but it is not valid for the remote user. The local user

will pick up the remote user’s default label (S).

Be aware of the label at which you are running the first time you connect to the

remote database. The first time you reference a database link, your local session

labels are sent across to the remote system when a connection is made. Afterward

you can change the label, but to do so you must execute the SA_SESSION.SET_

LABEL procedure on the remote database.

The local user described above can connect at level HS, set the label to S, and then

perform a remote access. Connection is implicitly made when the database link is

established. Her default label is S on the remote database.

On the local database, the user can set her session label to her maximum level of

HS, but if the label of the remote user is set to S, then she can only retrieve S data

from the remote database. If she performs a distributed query, she will get HS data

from the local database, and S data from the remote database.

Setting Up Labels in a Distributed Environment

11-6 Oracle Label Security Administrator’s Guide

Setting Up Labels in a Distributed Environment
It is advisable to use the same label component definitions and label tags on any

database which is to be protected by the policy.

■ Setting Label Tags in a Distributed Environment

■ Setting Numeric Form of Label Components in a Distributed Environment

Setting Label Tags in a Distributed Environment
In a distributed environment you may choose to use the same label tags across

multiple databases. However, if you choose not to use the same tags across multiple

databases, you should retrieve the character form of the label when performing

remote operations. This will ensure that the labels are consistent.

In the following example the character string representation of the label string is the

same; the label tag, however, does not match. If the retrieved label tag has a value of

11 on the WESTERN_REGION database, but a tag of 2001 on the EASTERN_

REGION database, the tags have no meaning. Serious consequences can result.

Figure 11–2 Label Tags in a Distributed Database

When retrieving labels from a remote system, you should return the character string

representation (rather than the numeric label tag), unless you are using the same

numeric labels on both databases.

If you allow Oracle Label Security to automatically generate labels on different

databases, the label tags will not be identical. Character strings will have meaning,

but the numeric values will not, unless you have predefined labels with the same

label tags on both instances.

To avoid the complexities of label tags, you can simply convert labels to strings

upon retrieval (using LABEL_TO_CHAR) and use CHAR_TO_LABEL when you

store labels. Operations will succeed as long as the component names are the same.

Label Tag

EASTERN_REGION WESTERN_REGION

Label 600

S:A S:A

C:A

Label

3001

C:A 2001

10U

11

6

Label Tag

U 5

Setting Up Labels in a Distributed Environment

Using Oracle Label Security with a Distributed Database 11-7

Setting Numeric Form of Label Components in a Distributed Environment
In a distributed environment you should use the same relative ranking of the

numeric form of the level component, in order to ensure proper sorting of the

labels.

In the following example, the levels in the two databases are effectively the same.

Although the numeric form is different, the relative ranking of the levels’ numeric

form is the same. As long as the relative order of the components is the same, the

labels are perceived as identical.

Figure 11–3 Label Components in a Distributed Database

Numeric
Form

EASTERN_REGION WESTERN_REGION

Level 600

S S

C

Level

30

C 20

10U

6

5

Numeric
Form

U 4

Using Oracle Label Security Policies in a Distributed Environment

11-8 Oracle Label Security Administrator’s Guide

Using Oracle Label Security Policies in a Distributed Environment
Oracle Label Security supports all standard Oracle9i distributed configurations.

Whether or not you can access protected data depends on the policies installed in

each distributed database.

Be sure to take into account the relationships between databases in a distributed

environment:

■ If the same application runs on two databases, and you want them to have the

same protection, you must apply the same Oracle Label Security policy to both

the local and the remote database.

■ If the local and remote databases have a policy in common, then your local

session label and row label will override the default labels for the remote user.

■ If the remote database has a different policy from the local database, then the

remote policy can restrict access to the data independent of your local policies.

On the other hand, when you make a connection as a remote user who has

authorization on the remote policy, you can access any data to which the remote

user has access—regardless of your local authorizations.

If the remote database has no policy applied to it, you can access its data just as you

would with a standard distributed database.

Consider a situation in which three databases exist, with different Oracle Label

Security policies in force:

Database 1 has Policy A and Policy B

Database 2 has Policy A

Database 3 had Policy C

Users authorized for Policy A can obtain protected data from Database 1 and

Database 2. If the remote user is authorized for Policy C, this user can obtain data

from Database 3 as well.

Using Replication with Oracle Label Security

Using Oracle Label Security with a Distributed Database 11-9

Using Replication with Oracle Label Security
This section explains how to use the replication option with tables protected by

Oracle Label Security policies. It contains these topics:

■ Introduction to Replication Under Oracle Label Security

■ Contents of a Materialized View

■ Requirements for Creating Materialized Views Under Oracle Label Security

■ How to Refresh Materialized Views

Introduction to Replication Under Oracle Label Security
This section introduces the use of replication under Oracle Label Security. It

contains the following topics:

■ Replication Functionality Supported by Oracle Label Security

■ Row Level Security Restriction on Replication Under Oracle Label Security

Replication Functionality Supported by Oracle Label Security
Oracle Label Security supports standard replication and Advanced Replication,

including multimaster replication and updatable materialized views (snapshots).

Oracle9i uses materialized views for replicating data. A materialized view is a local

copy of a local or remote master table that reflects a recent state of the master table.

As illustrated in Figure 11–4, a master table is a table you wish to replicate, on a

node that you designate as the master node. Using a dblink account (such as

REPADMIN), you can create a materialized view of the table in a different database.

(This can also be done in the same database, and on the same machine.) You can

select rows from the remote master table, and copy them into the local materialized

view. Here, mvEMP represents the materialized view of table EMP, and mlog$_EMP
represents the materialized view log.

See Also: For a complete explanation of replication in Oracle9i,
and how to set up the replication environment, see Oracle9i
Replication

For general information about using materialized views, see

Oracle9i Database Concepts

Oracle9i Data Warehousing Guide

Using Replication with Oracle Label Security

11-10 Oracle Label Security Administrator’s Guide

Figure 11–4 Use of Materialized Views for Replication

In a distributed environment, a materialized view alleviates query traffic over the

network and increases data availability when a node is not available.

Row Level Security Restriction on Replication Under Oracle Label Security
An Oracle Label Security policy applies Row Level Security (RLS) to a table if

READ_CONTROL is specified as one of the policy options. Problems occur if both of

the following conditions are true:

■ The Oracle Label Security policy is applied to any table relevant to replication

(such as the master table, materialized view, or materialized view log), and

■ The policy returns a predicate in the WHERE clause of SELECT statements.

To avoid the additional predicate (and thus avoid this problem), the users involved

in a replication environment should be given the necessary Oracle Label Security

privileges. To be specific, the designated users in the database link (such as

REPADMIN and/or the materialized view owner) must have READ or FULL

privilege. As a result, the queries used to perform the replication will not be

modified by RLS.

See Also: Oracle9i Database Concepts

dblink account:
REPADMIN

Master Node

EMP mvEMP

mlog$_EMP

Local Node

Using Replication with Oracle Label Security

Using Oracle Label Security with a Distributed Database 11-11

Contents of a Materialized View
This section discusses the contents of materialized views.

■ How Materialized View Contents Are Determined

■ Complete Materialized Views

■ Partial Materialized Views

How Materialized View Contents Are Determined
Oracle Label Security performs the following steps when creating materialized

views. These steps determine the contents of the view.

1. It reads the definition of the master table in the remote database.

2. It reads the rows in the master table which meet the conditions defined in the

materialized view definition.

3. It writes these rows to the materialized view in the local database.

Because Oracle Label Security only writes those rows to which you have write

access in the local database, the contents of the materialized view vary according to:

■ The policy options in effect

■ The privileges you have defined in the local database

■ The session label

Using Replication with Oracle Label Security

11-12 Oracle Label Security Administrator’s Guide

Complete Materialized Views
If you read all of the rows in the master table and have write access in the local

database to each label in the materialized view, the result is a complete materialized

view of the master table. To ensure that the materialized view is complete, ensure

that you have read access to all of the data in the master table and write access in

the local database to all labels at which data is stored in the master table.

Partial Materialized Views
A partial materialized view is created when you specify a WHERE clause in the

materialized view definition. This is a convenient way to pass subsets of data to a

remote database.

Note: Never revoke privileges that you granted when you created

the materialized view. If you do, you may not be able to perform a

replication refresh.

Note: To create a partial materialized view you must have write

access to all the rows being replicated.

Using Replication with Oracle Label Security

Using Oracle Label Security with a Distributed Database 11-13

Requirements for Creating Materialized Views Under Oracle Label Security
Requirements for creating a materialized view depend upon the type of

materialized view you are creating.

■ Requirements for the REPADMIN Account

■ Requirements for the Owner of the Materialized View

■ Requirements for Creating Partial Multilevel Materialized Views

■ Requirements for Creating Complete Multilevel Materialized Views

Requirements for the REPADMIN Account
Requirements for the REPADMIN account vary depending on the configuration. In

general, however, it should meet the following requirements:

■ It must have the FULL Oracle Label Security privilege (mandatory for all

configurations).

■ It must have SELECT privilege on the master table.

■ It must be the account which establishes the database link from the remote node

to the database containing the master table.

Requirements for the Owner of the Materialized View
Remember that the privileges belonging to the owner of the materialized view are

used during the refresh of the materialized view. If these privileges are not

sufficient, then there are two options:

■ The materialized view can be created in the REPADMIN account, or

■ Additional privileges must be granted to the owner of the materialized view.

Consider, for example, the following materialized view created by user SCOTT:

CREATE MATERIALIZED VIEW mvemp as
SELECT *
FROM EMP@link_to_master
WHERE label_to_char(sa_label) = ’HS’;

Here, SCOTT should have permission to insert records at the HS level in the local

database. If Oracle Label Security policies are applied on the materialized view,

then SCOTT must have the FULL privilege to avoid the RLS restriction.

See Also: Oracle9i Replication

Using Replication with Oracle Label Security

11-14 Oracle Label Security Administrator’s Guide

Different configurations can be set up depending on whether Oracle Label Security

policies are applied on the materialized view, what privileges are granted to the

owner of the materialized view, and so on. If Oracle Label Security policies are

applied to the materialized view, but SCOTT should not be granted the FULL

privilege, then the REPADMIN account must be used to create the materialized

view. SCOTT can then be granted the SELECT privilege on that table.

If no policies are applied to the materialized view, then the view can be created in

SCOTT’s schema without any additional privileges. In this case, the materialized

view should be created in such a way that a WHERE condition limits the records to

those which SCOTT can read.

Finally, if SCOTT can be granted the FULL privilege, then the materialized view can

be created in SCOTT’s schema, and Oracle Label Security policies can also be

applied on the materialized view.

Note that the master table can have Oracle Label Security policies containing any

set of policy options. If SCOTT has the FULL or READ privilege, he can select all

rows, regardless of policy options.

Requirements for Creating Partial Multilevel Materialized Views
To create a partial materialized view which includes only some of the rows in a

remote master table protected by Oracle Label Security, you must have sufficient

privileges to WRITE in the local database at every label retrieved by your query.

Requirements for Creating Complete Multilevel Materialized Views
To create a complete materialized view which includes every row in a remote

master table protected by Oracle Label Security, you must be able to WRITE in the

local database at the labels of all of the rows retrieved by the defined materialized

view query.

Using Replication with Oracle Label Security

Using Oracle Label Security with a Distributed Database 11-15

How to Refresh Materialized Views
If the contents or definition of a master table changes, refresh the materialized view

so that it accurately reflects the contents of the master table. To refresh a

materialized view of a remote multilevel table, you must also have privileges to

write in the local database at the labels of all of the rows that the materialized view

query retrieves

To ensure an accurate materialized view refresh, use the optional materialized view

background processes, SNPn, to refresh the views automatically. These processes

must have sufficient privileges both to read all of the rows in the master table and to

write those rows to the materialized view, ensuring that the view is completely

refreshed. Remember that the privileges used by these processes are those of the

materialized view owner.

Warning: A materialized view can potentially contain outdated
rows if you refresh a partial or full materialized view but do not
have READ access to all of the rows in the master table, and
consequently do not overwrite the rows in the original
materialized view with the updated rows from the master table.

See Also: For information about SNPn background processes, see

Oracle9i Database Administrator’s Guide

Using Replication with Oracle Label Security

11-16 Oracle Label Security Administrator’s Guide

Performing DBA Functions Under Oracle Label Security 12-1

12
Performing DBA Functions Under Oracle

Label Security

The standard Oracle9i utilities can be used under Oracle Label Security, but certain

restrictions apply, and extra steps may be required to get the expected results. This

chapter describes these special considerations. It assumes you are using policy label

columns of the NUMBER datatype.

The chapter contains these sections:

■ Using the Export Utility with Oracle Label Security

■ Using the Import Utility with Oracle Label Security

■ Using SQL*Loader with Oracle Label Security

■ Performance Tips for Oracle Label Security

■ Creating Additional Databases After Installation

Using the Export Utility with Oracle Label Security

12-2 Oracle Label Security Administrator’s Guide

Using the Export Utility with Oracle Label Security
The Export utility functions in the standard way under Oracle Label Security. There

are, however, a few differences resulting from the enforcement of Oracle Label

Security policies.

■ For any tables protected by an Oracle Label Security policy, only rows with

labels authorized for read access will be exported; unauthorized rows will not

be included in the export file. Consequently, to export all the data in protected

tables, you must have a privilege (such as FULL or READ) which gives you

complete access.

■ SQL statements to reapply policies are exported along with tables and schemas

that are exported. These statements are executed during import to reapply

policies with the same enforcement options as in the original database.

■ The HIDE property is not exported. When protected tables are exported, the

label columns in those tables are also exported (as numeric values). However, if

a label column is hidden, it is exported as a normal, unhidden column.

■ The LBACSYS schema cannot be exported due to the use of opaque types in

Oracle Label Security. To export an entire database, you must individually

specify all of the schemas and/or tables (except for the LBACSYS schema). Use

standard backup techniques to back up the LBACSYS schema.

Using the Import Utility with Oracle Label Security
This section explains how the Import utility functions under Oracle Label Security:

■ Requirements for Import Under Oracle Label Security

■ Defining Data Labels for Import

■ Importing Labeled Data Without Installing Oracle Label Security

■ Importing Unlabeled Data

■ Importing Tables with Hidden Columns

See Also: Oracle9i Database Utilities

See Also: Oracle9i Database Utilities

Using the Import Utility with Oracle Label Security

Performing DBA Functions Under Oracle Label Security 12-3

Requirements for Import Under Oracle Label Security
To use the Import utility under Oracle Label Security, you must prepare the import

database and ensure that the import user has the proper authorizations.

Preparing the Import Database
Before you can use the Import utility with Oracle Label Security, you must prepare

the import database, as follows:

1. Install Oracle Label Security.

2. Create any Oracle Label Security policies which protect the data to be imported.

The policies must use the same column names as in the export database.

3. Define in the import database all of the label components and individual labels

used in tables being imported. Tag values assigned to the policy labels in each

database must be the same. (Note that if you are importing into a database from

which you exported, the components are most likely already defined.)

Verifying Import User Authorizations
To successfully import data under Oracle Label Security, the user running the

import operation must be authorized for all of the labels required to insert the data

and labels contained in the export file. Errors will be raised upon import if the

following requirements are not met:

Requirement 1: To assure that all rows can be imported, the user must have the

policy_DBA role for all policies with data being imported. After each schema or

table is imported, any policies from the export database are reapplied to the

imported objects.

Requirement 2: The user must also have the ability to write all rows that have been

exported. This can be accomplished by one of the following methods:

■ The user can be granted the FULL privilege.

■ A user-defined labeling function can be applied to the table.

■ The user can be given sufficient authorization to write all labels contained in the

import file.

Using the Import Utility with Oracle Label Security

12-4 Oracle Label Security Administrator’s Guide

Defining Data Labels for Import
The label definitions at the time of import must include all of the policy labels used

in the export file. You can use the views DBA_SA_LEVELS, DBA_SA_

COMPARTMENTS, DBA_SA_GROUPS, and DBA_SA_LABELS in the export

database to design SQL scripts that re-create the label components and labels for

each policy in the import database. The following example shows how to generate a

PL/SQL block that re-creates the individual labels for the HR policy:

set serveroutput on
BEGIN
 dbms_output.put_line(’BEGIN’);
 FOR l IN (SELECT label_tag, label
 FROM dba_sa_labels
 WHERE policy_name=’HR’
 ORDER BY label_tag) LOOP
 dbms_output.put_line
 (’ SA_LABEL_ADMIN.CREATE_LABEL(’’HR’’, ’ ||
 l.label_tag || ’, ’’’ || l.label || ’’’);’);
 END LOOP;
 dbms_output.put_line (’END;’);
 dbms_output.put_line (’/’);
END;
/

If the individual labels do not exist in the import database with the same numeric
values and the same character string representations as in the export database, then the

label values in the imported tables will be meaningless. The numeric label value in

the table may refer to a different character string representation, or it may be a label

value that has not been defined at all in the import database.

If a user attempts to access rows containing invalid numeric labels, the operation

will fail.

Using the Import Utility with Oracle Label Security

Performing DBA Functions Under Oracle Label Security 12-5

Importing Labeled Data Without Installing Oracle Label Security
When policy label columns are defined as a NUMBER datatype, they can be

imported into databases that do not have Oracle Label Security installed. In this

case, the values in the policy label column are imported as numbers. Without the

corresponding Oracle Label Security label definitions, the numbers will not

reference any specific label.

Note that errors will be raised during the import if Oracle Label Security is not

installed, since the SQL statements to reapply the policy to the imported tables and

schemas will fail.

Importing Unlabeled Data
You can import unlabeled data into an existing table protected by an Oracle Label

Security policy. Either the LABEL_DEFAULT option or a labeling function must be

specified for each table being imported, so that the labels for the rows can be

automatically initialized as they are inserted into the table.

Importing Tables with Hidden Columns
A hidden column is exported as a normal column, but the fact that it was hidden is

lost. If you want to preserve the hidden property of the label column, you must

pre-create the table in the import database.

1. Before you perform the import, create the table and apply the policy with the

HIDE option. This causes the policy label column to be added to the table as a

hidden column.

2. Then remove the policy from the table, so that the enforcement options

specified in the export file can be re-applied to the table during the import

operation.

3. Perform the import. In this way, the hidden property of the label column is

preserved.

Using SQL*Loader with Oracle Label Security

12-6 Oracle Label Security Administrator’s Guide

Using SQL*Loader with Oracle Label Security
SQL*Loader moves data from external files into tables in an Oracle9i database. This

section contains these topics:

■ Requirements for Using SQL*Loader Under Oracle Label Security

■ Oracle Label Security Input to SQL*Loader

Requirements for Using SQL*Loader Under Oracle Label Security
You can use SQL*Loader with the conventional path to load data into a database

protected by Oracle Label Security. Since SQL*Loader performs INSERT operations,

all of the standard requirements apply when using SQL*Loader on tables protected

by Oracle Label Security policies.

Oracle Label Security Input to SQL*Loader
If the policy column for a table is hidden, then you must use the HIDDEN keyword

to convey this information to SQL*Loader.

To specify row labels in the input file, include the policy label column in the INTO

TABLE clause in the control file. To load policy labels along with the data for each

row, you can specify the CHAR_TO_LABEL function or the TO_DATA_LABEL

function in the SQL*Loader control file.

You can use the following variations when loading Oracle Label Security data with

SQL*Loader:

See Also: For information about SQL*Loader, including log files,

discard files, and bad files, see Oracle9i Database Utilities

col1 hidden integer external Hidden column loaded with tag value of data directly from

data file

col2 hidden char(5) "func(:col2)" Hidden column loaded with character value of data from

data file. func() used to translate between the character

label and its tag value. Note: func() might be char_to_

label().

col3 hidden "func(:col3)" Same as col2 above; fieldtype defaults to char

col4 hidden expression "func(:col4)" Hidden column not mapped to input data. func() will be

called to provide the label value. This could be a user

function.

Using SQL*Loader with Oracle Label Security

Performing DBA Functions Under Oracle Label Security 12-7

For example, the following is a valid INTO TABLE clause in a control file that is

loading data into the DEPT table:

INTO TABLE dept
(hr_label POSITION (1:22) HIDDEN CHAR "CHAR_TO_LABEL(’HR’,:hr_label)",
deptno POSITION (23:26) INTEGER EXTERNAL,
dname POSITION (27:40) CHAR,
loc POSITION(41,54) CHAR)

The following could be an entry in the datafile specified by this control file:

HS:FN 231 ACCOUNTING REDWOOD SHORES

Performance Tips for Oracle Label Security

12-8 Oracle Label Security Administrator’s Guide

Performance Tips for Oracle Label Security
This section explains how to achieve optimal performance with Oracle Label

Security.

■ Using ANALYZE to Improve Oracle Label Security Performance

■ Creating Indexes on the Policy Label Column

■ Planning a Label Tag Strategy to Enhance Performance

■ Partitioning Data Based on Numeric Label Tags

Using ANALYZE to Improve Oracle Label Security Performance
Run the ANALYZE command on the Oracle Label Security data dictionary tables in

the LBACSYS schema, so that the cost-based optimizer can improve execution plans

on queries. This will improve Oracle Label Security performance.

Running ANALYZE on application tables improves the application SQL

performance.

Creating Indexes on the Policy Label Column
By creating the appropriate type of index on the policy label column, you can

improve the performance of user-issued queries on protected tables.

If you have applied an Oracle Label Security policy on a database table in a

particular schema, you should compare the number of different labels to the

amount of data. Based on this information, you can decide which type of index to

create on the policy label column.

■ If the cardinality of data in the policy label column (that is, the number of labels

compared to the number of rows) is low, consider creating a bitmapped index.

■ If the cardinality of data in the policy label column is high, consider creating a

B-tree index.

Performance Tips for Oracle Label Security

Performing DBA Functions Under Oracle Label Security 12-9

Example 1:

Consider the following case, in which the EMP table is protected by an Oracle Label

Security policy with the READ_CONTROL enforcement option set, and HR_LABEL

is the name of the policy label column. A user issues the following query:

SELECT COUNT (*) FROM scott.emp;

In this situation Oracle Label Security adds a predicate based on the label column.

For example:

SELECT COUNT (*) FROM scott.emp
 WHERE hr_label=100;

In this way, Oracle Label Security uses the security label to restrict the rows which

are processed, based on the user’s authorizations. To improve performance of this

query, you could create an index on the HR_LABEL column.

Example 2:

Consider a more complex query (once again, with READ_CONTROL applied to the

EMP table):

SELECT COUNT (*) FROM scott.emp
 WHERE deptno=10

Again, Oracle Label Security adds a predicate based on the label column:

SELECT COUNT (*) FROM scott.emp
 WHERE deptno=10
 AND hr_label=100;

In this case, you might want to create a composite index based on the DEPTNO and

HR_LABEL columns, to improve application performance.

See Also: Oracle9i Database Performance Tuning Guide and Reference

Performance Tips for Oracle Label Security

12-10 Oracle Label Security Administrator’s Guide

Planning a Label Tag Strategy to Enhance Performance
For optimal performance, you can plan a strategy for assigning values to label tags.

In general, it is best to assign higher numeric values to labels with higher sensitivity

levels. This is because, typically, many more users can see data at comparatively

low levels; fewer users at higher levels can see many levels of data.

In addition, with READ_CONTROL set, Oracle Label Security generates a predicate

that uses a BETWEEN clause to restrict the rows to be processed by the query. As

illustrated in the following example, if the higher-sensitivity labels do not have a

higher label tag than the lower-sensitivity labels, then the query will potentially

examine a larger set of rows. This will affect performance.

Consider, for example, label tags assigned as follows:

Here, a user whose maximum authorization is S:A can potentially access data at

labels S:A, S, and U:A. Consider what happens when this user issues the following

query:

SELECT COUNT (*) FROM scott.emp;

Oracle Label Security adds a predicate which includes a BETWEEN clause (based

on the user’s maximum and minimum authorizations) to restrict the set of rows this

user can see:

SELECT COUNT (*) FROM scott.emp
 AND hr_label BETWEEN 10 AND 50;

Performance improves, because the query examines only a subset of data based on

the user’s authorizations. It does not fruitlessly process rows that the user is not

authorized to access.

Table 12–1 Label Tag Performance Example: Correct Values

Label Label Tag

TS:A,B 100

S:A 50

S 20

U:A 10

Performance Tips for Oracle Label Security

Performing DBA Functions Under Oracle Label Security 12-11

By contrast, unnecessary work would be performed if tag values were assigned as

follows:

In this case, the user with S:A authorization can see only some of the labels between

100 and 10—although he cannot see TS:A,B labels (that is, rows with a label tag of

50). A query would nonetheless pick up and process these rows, even though the

user ultimately will not have access to them.

Table 12–2 Label Tag Performance Example: Incorrect Values

Label Label Tag

TS:A,B 50

S:A 100

S 20

U:A 10

Performance Tips for Oracle Label Security

12-12 Oracle Label Security Administrator’s Guide

Partitioning Data Based on Numeric Label Tags
If you are using a numeric ordering strategy with the numeric label tags which you

have applied to the labels, you can use this as a basis for Oracle9i data partitioning.

Depending upon the application, partitioning data based on label values may or

may not be useful.

Consider, for example, a business-hosting CRM application to which many

companies subscribe. In the same EMP table, there might be rows (and labels) for

Subscriber 1 and Subscriber 2. That is, information for both companies can be stored

in the same table, as long as it is labeled differently. In this case, employees of

Subscriber 1 will never need to access data for Subscriber 2, and so it might make

sense to partition based on label. You could put rows for Subscriber 1 in one

partition, and rows for Subscriber2 in a different partition. When a query is issued,

it will access only one or the other partition, depending on the label. Performance

improves because partitions that are not relevant are not examined by the query.

The following example shows how to do this. It places labels in the 2000 series on

one partition, labels in the 3000 series on another partition, and labels in the 4000

series on a third partition.

CREATE TABLE EMPLOYEE
 (EMPNO NUMBER(10) CONSTRAINT PK_EMPLOYEE PRIMARY KEY,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(4),
 HR_LABEL NUMBER(10))
 TABLESPACE PERF_DATA
 STORAGE (initial 2M
 NEXT 1M
 MINEXTENTS 1
 MAXEXTENTS unlimited)
 PARTITION BY RANGE (hr_label)
 (partition sx1 VALUES LESS THAN (2000) NOLOGGING,
 partition sx2 VALUES LESS THAN (3000),
 partition sx3 VALUES LESS THAN (4000));

Creating Additional Databases After Installation

Performing DBA Functions Under Oracle Label Security 12-13

Creating Additional Databases After Installation
When you install the Oracle9i Enterprise Edition and Oracle Label Security, an

initial Oracle8i database is created. You can then install Oracle Label Security, as

described in the Oracle Label Security Installation Notes for your platform.

If you wish to create additional databases, Oracle Corporation recommends that

you do this using the Oracle Database Configuration Assistant. Alternatively, you

can create additional databases by following the steps listed in Chapter 2 of the

Oracle9i Database Administrator’s Guide

Each time you create a new database, you must install into it the Oracle Label

Security data dictionary tables, views, and packages, and create the LBACSYS

account. For the first database, this is done automatically when you install Oracle

Label Security. For additional databases, you must perform the following tasks

manually.

1. In your initsid.ora file, set the COMPATIBLE parameter to the current Oracle9i
release which you are running. (This must be no lower than 8.1.7.)

Shut down and restart your database so that this change will take effect.

2. Connect to the Oracle9i instance as user SYS, using the AS SYSDBA syntax.

3. Run the script $ORACLE_HOME/rdbms/admin/catols.sql .

This script installs the label-based framework, data dictionary, datatypes, and

packages. After the script is run, the LBACSYS account exists, with the

password LBACSYS. All the Oracle Label Security packages exist under this

account.

4. Change the default password of the LBACSYS user.

Now you can proceed to create an Oracle Label Security policy.

Note: If you have not installed Oracle Label Security at least once

in your target Oracle environment, you must first do so using the

Oracle Universal Installer.

See Also: For a complete discussion of Oracle database creation,

see Oracle9i Database Administrator’s Guide

Creating Additional Databases After Installation

12-14 Oracle Label Security Administrator’s Guide

Releasability Using Inverse Groups 13-1

13
Releasability Using Inverse Groups

This chapter discusses the Oracle Label Security implementation of releasability

using inverse groups. It contains the following sections:

■ Introduction to Inverse Groups and Releasability

■ Comparing Standard Groups and Inverse Groups

■ How Inverse Groups Work

■ Algorithm for Read Access with Inverse Groups

■ Algorithm for Write Access with Inverse Groups

■ Algorithms for COMPACCESS Privilege with Inverse Groups

■ Session Labels and Inverse Groups

■ Changes in Behavior of Procedures with Inverse Groups

■ Dominance Rules for Labels with Inverse Groups

Note: The Oracle Policy Manager graphical user interface is not

supported for policies which contain inverse groups.

Introduction to Inverse Groups and Releasability

13-2 Oracle Label Security Administrator’s Guide

Introduction to Inverse Groups and Releasability
Inverse groups indicate releasability of information: they are used to mark the

dissemination of data. When you add an inverse group to a data label, the data

becomes less classified. For example, a user with inverse groups UK, US cannot

access data which only has inverse group UK. Adding US to that data makes it

accessible to all users with the inverse groups UK, US.

When you assign releasabilities to a user, you mark the communication channel to

the user. For data to flow across the communication channel, the data releasabilities

must dominate the releasabilities assigned to the user. In other words,

releasabilities assigned to a data record must contain all the releasabilities assigned

to a user.

The advantage of releasabilities lies in their power to broadly disseminate

information. Releasing data to the entire marketing organization becomes as simple

as adding the Marketing releasability to the data record.

Comparing Standard Groups and Inverse Groups
Groups in Oracle Label Security identify organizations which own or access data.

Like standard groups, inverse groups control the dissemination of information.

However, the behavior of inverse groups differs from Oracle Label Security

standard group behavior. By default, all policies created in Oracle Label Security

use the standard group behavior.

The term, "releasabilities" is sometimes used to refer to the behavior provided by

inverse groups. When you include inverse groups in a data label, the effect is

similar to assigning label compartment authorizations to a user. When Oracle Label

Security evaluates whether a user can view a row of data assigned a label with

inverse groups, it checks to see whether the data, not the user, has the appropriate

group authorizations: does the data have all the inverse groups assigned to the

user? With standard groups, by contrast, Oracle Label Security checks to see

whether a user is authorized for at least one of the groups assigned to a row of data.

Consider a policy which contains 3 standard groups: Eastern, Western, and

Southern. User1’s label authorizations include the groups Eastern and Western.

Assuming User1 has been assigned the appropriate level and compartment

authorizations in the policy, then:

Comparing Standard Groups and Inverse Groups

Releasability Using Inverse Groups 13-3

■ With standard Oracle Label Security groups, User1 can view all data records

that have the group Eastern, or the group Western, or both Eastern and

Western.

■ With inverse groups, User1 can only view data records that have, at a minimum,
all the groups assigned to the user: that is, both Eastern and Western. She cannot
view records that have only the Eastern group, only the Western group, or that

have no groups at all.

Table 13–1 shows all the rows which User1 can potentially access, given the type of

group which is used in the policy.

Standard groups indicate ownership of information: thus all data pertaining to a

certain department can have that department’s group in the label. When you add a

group to a data label, the data becomes more classified. For example, a user with no

groups can access data which has no groups in its label. If you add the group US to

the data label, the user can no longer access the data.

Table 13–1 Access to Standard Groups and Inverse Groups

If row label contains groups:
User1 access with
standard groups?

User1 access with
inverse groups?

none Y N

Eastern Y N

Western Y N

Southern N N

Eastern, Western Y Y

Eastern, Southern Y N

Western, Southern Y N

Eastern, Western, Southern Y Y

See Also: "Groups" on page 2-8

How Inverse Groups Work

13-4 Oracle Label Security Administrator’s Guide

How Inverse Groups Work
This section explains how inverse groups are implemented, and how they work. It

contains these topics:

■ Implementing Inverse Groups with the INVERSE_GROUP Enforcement Option

■ Inverse Groups and Label Components

■ Computed Labels with Inverse Groups

■ Inverse Groups and Hierarchical Structure

■ Inverse Groups and User Privileges

Implementing Inverse Groups with the INVERSE_GROUP Enforcement Option
When creating an Oracle Label Security policy, the administrator can specify

whether the policy can use inverse group functionality to implement releasability.

To do this, he specifies INVERSE_GROUP as one of the default_options in the

CREATE_POLICY statement.

The INVERSE_GROUP option can only be set at policy creation time. Once a policy

is created, this option cannot be changed.

The INVERSE_GROUP option is thus policy-wide. It cannot be turned on or off

when the policy is applied to a table or schema. If you attempt to do so, using the

procedure APPLY_TABLE_POLICY or APPLY_SCHEMA_POLICY, then an error

will be generated.

Whereas other policy enforcement options can be dropped from a policy, the

INVERSE_GROUP policy configuration option cannot be dropped once it is set. To

remove the option you must drop, and then re-create, the policy.

The administrator can give individual users authorization for one or more inverse

groups.

Inverse Groups and Label Components
When an Oracle Label Security policy is created with the inverse group option, the

components in the policy label (levels, compartments, and groups) are the same as

with standard groups. With inverse groups, however, the user’s read groups and

write groups have a different meaning and role in data access.

Consider the following policy example:

How Inverse Groups Work

Releasability Using Inverse Groups 13-5

There are three levels:

One compartment:

Three groups:

Two user labels have been assigned: CON:FIN and SE:FIN:EAS,WES

Two data labels have been assigned: CON:FIN:EAS and SE:FIN:EAS

User access to the data differs, depending on the type of group being used:

■ If the policy uses standard groups, then:

The user with the label CON: FIN cannot read CON:FIN:EAS data.

The user with the label SE:FIN:EAS,WES can read SE:FIN:EAS data.

■ If the policy has the INVERSE GROUPS policy enforcement option, then:

The user with the label CON: FIN can read CON:FIN:EAS data.

The user with the label SE:FIN:EAS,WES cannot read SE:FIN:EAS data.

Computed Labels with Inverse Groups
This section explains how inverse groups affect computed label values. It contains

these topics:

■ Computed Session Labels with Inverse Groups

■ Inverse Groups and Computed Max Read Groups and Max Write Groups

UNCLASSIFIED UN

CONFIDENTIAL CON

SECRET SE

FINANCIAL FIN

EASTERN EAS

WESTERN WES

SOUTHERN SOU

How Inverse Groups Work

13-6 Oracle Label Security Administrator’s Guide

Computed Session Labels with Inverse Groups
After the administrator assigns label authorizations to a user, Oracle Label Security

automatically computes a number of labels. With inverse groups these labels are as

follows:

Table 13–2 Computed Session Labels with Inverse Groups

Computed Label Definition

Max Read Label The user’s maximum level combined with his or her

authorized compartments and the minimum set of

inverse groups that should be in the user label (session

label).

Max Write Label The user’s maximum level combined with the

compartments for which the user has been granted

write access. Contains the maximum authorized inverse

groups that can be set in any label. The user has write

authorizations on all these inverse groups.

Min Write Label The user’s minimum level.

Default Read Label The default level, combined with compartments and

inverse groups which have been designated as default

for the user.

Default Write Label A subset of the default read label, containing the

compartments and inverse groups for which the user

has been granted write access. However the inverse

groups component has no significance as it is the Max

Write Groups which is always used for write access.

Default Row Label The combination of components between the user’s

minimum write label and the maximum write label,

which has been designated as the default for the data

label for inserted data. The Inverse groups should be a

superset of inverse groups in the default label and a

subset of Max Write Groups.

See Also: "Computed Session Labels" on page 3-9

How Inverse Groups Work

Releasability Using Inverse Groups 13-7

Inverse Groups and Computed Max Read Groups and Max Write Groups
From the computed values in Table 13–2, two sets of groups are identified for label

evaluation of read and write access:

As shown in Table 13–3, for standard groups you can have READ ONLY and

READ/WRITE authorizations; for inverse groups you can have WRITE ONLY and

READ/WRITE authorizations.

Although Max Read Groups identifies the set of groups contained in the Max Read

Label, this value represents the minimum set of inverse groups that can be set. For

example:

Max Read Groups: S:C1:G1,G2

Max Write Groups: S:C1:G1,G2,G3,G4,G5

Here, the user can read data which contains at least the 2 groups listed in Max Read

Groups.

Note that in standard groups, there can never be a situation in which there are more

groups in the Max Write Label than in the Max Read Label.

Max Read Groups This is the set of groups contained in the Max Read Label. It
identifies the minimum set of inverse groups that can be set in
any user label.

Max Write Groups This is the set of groups contained in the Max Write Label. It
identifies the maximum authorized inverse groups that can be
set in any user label. This set of groups is checked at the time
of write access, and also when setting session labels.

Note that Max Write Groups is a superset of Max Read Groups.

Table 13–3 Read and Write Authorizations for Standard Groups and Inverse Groups

READ ONLY READ/WRITE WRITE ONLY

Standard
Groups

The group is present only
in Max Read Label, not
in Max Write Label.

The group is present in
both Max Read Label
and Max Write Label.

Not supported

Inverse
Groups

Not supported The group is present in
both Max Read Label
and Max Write Label.

The group is present only
in Max Write Label, not
in Max Read Label.

How Inverse Groups Work

13-8 Oracle Label Security Administrator’s Guide

Inverse Groups and Hierarchical Structure
Standard groups in Oracle Label Security are hierarchical, such that a group can be

associated with a parent group. For example, the EASTERN region can be the

parent of two subordinate groups: EAS_SALES, and EAS_HR.

In a policy with standard groups, if the user label has the parent group, then it can

access all data of the subordinate groups.

With inverse groups, parent-child relationships are not supported.

Inverse Groups and User Privileges
With inverse groups implemented, the meaning of user privileges remains the

same.

When the user has no special privileges, then the read algorithm and the write

algorithm are different for groups and inverse groups. The differences are described

below, in "Algorithm for Read Access with Inverse Groups" on page 13-9 and

"Algorithm for Write Access with Inverse Groups" on page 13-11.

The effect of inverse groups on the COMPACCESS privilege is described below, in

"Algorithms for COMPACCESS Privilege with Inverse Groups" on page 13-13.

Inverse groups have no impact upon the following user privileges:

■ PROFILE_ACCESS

■ WRITEUP

■ WRITEDOWN

■ WRITEACROSS

Algorithm for Read Access with Inverse Groups

Releasability Using Inverse Groups 13-9

Algorithm for Read Access with Inverse Groups
This section describes the algorithm for read access with inverse groups.

To read data in a table with the INVERSE GROUP option in effect, the label

evaluation process proceeds from levels to groups to compartments, as illustrated in

Figure 13–1. (Note that the current session label is the label being evaluated.)

1. The user’s level must be greater than or equal to the level of data

2. The user’s label must include all the compartments assigned to the data

3. The groups in the data label must be a superset of the groups in the user label.

If the user’s label passes these tests, then he can access the data. If not, he is denied

access. Note that if the data label is null or invalid, then the user is denied access.

Algorithm for Read Access with Inverse Groups

13-10 Oracle Label Security Administrator’s Guide

Figure 13–1 Label Evaluation Process for Read Access with Inverse Groups

Note: This flow diagram is true only when the user has no special

privileges.

See Also: "The Oracle Label Security Algorithm for Read Access"

on page 3-13

Algorithm for Write Access with Inverse Groups

Releasability Using Inverse Groups 13-11

Algorithm for Write Access with Inverse Groups
This section describes the algorithm for write access with inverse groups.

To write data in a table with the INVERSE GROUP option, the label evaluation

process proceeds from levels to groups to compartments, as illustrated in

Figure 13–2. (Note that the current session label is the label being evaluated.)

1. The level in the data label must be greater than or equal to the user’s minimum

level, and less than or equal to the user’s session level.

2. One of the following conditions must be met:

The groups in the data label must be a superset of the groups in the user label.

or

The user has READ access privilege on the policy.

3. The user’s Max Write Groups must be a superset of the data label groups.

4. The user label must have write access on all of the compartments in the data

label.

Note that if the data label is null or invalid, then the user is denied access.

Algorithm for Write Access with Inverse Groups

13-12 Oracle Label Security Administrator’s Guide

Figure 13–2 Label Evaluation Process for Write Access with Inverse Groups

Note: This flow diagram is true only when the user has no special

privileges.

See Also: "The Oracle Label Security Algorithm for Write Access"

on page 3-15

Algorithms for COMPACCESS Privilege with Inverse Groups

Releasability Using Inverse Groups 13-13

Algorithms for COMPACCESS Privilege with Inverse Groups
This section describes the algorithms for read and write access with inverse groups,

for users who have COMPACCESS privilege.

The COMPACCESS privilege allows a user to access data based on the row’s

compartments, independent of the row’s groups.

■ When compartments exist, and access to them is authorized, then the group

authorization is bypassed.

■ If a row has no compartments, then access is determined by the inverse group

authorizations.

Figure 13–3 and Figure 13–4 show the label evaluation process for read access and

write access for a user with COMPACCESS privilege. If the data label is null or

invalid, then the user is denied access.

(Note that the current session label is the label being evaluated.)

Algorithms for COMPACCESS Privilege with Inverse Groups

13-14 Oracle Label Security Administrator’s Guide

Figure 13–3 Label Evaluation for Read Access with COMPACCESS Privilege and Inverse Groups

Note: These flow diagrams are true only when the user has no

special privileges.

See Also: "COMPACCESS" on page 3-20

Algorithms for COMPACCESS Privilege with Inverse Groups

Releasability Using Inverse Groups 13-15

Figure 13–4 Label Evaluation for Write Access with COMPACCESS Privilege and Inverse Groups

Session Labels and Inverse Groups

13-16 Oracle Label Security Administrator’s Guide

Session Labels and Inverse Groups
This section describes how inverse groups affect session labels and and row labels.

■ Inverse Groups with SA_USER_ADMIN.SET_DEFAULT_LABEL and SA_

USER_ADMIN.SET_ROW_LABEL

■ Inverse Groups with SA_SESSION.SET_ROW_LABEL and SA_SESSION.SET_

LABEL

■ Examples of Session Labels and Inverse Groups

Inverse Groups with SA_USER_ADMIN.SET_DEFAULT_LABEL and SA_USER_
ADMIN.SET_ROW_LABEL

The use of inverse groups affects the behavior of Oracle Label Security procedures

which determine the session label. The SA_USER_ADMIN.SET_DEFAULT_LABEL

and SA_USER_ADMIN.SET_ROW_LABEL procedures set the user’s initial session

label and row label, respectively, to the one specified.

Rules for Changing Default Labels with Standard Groups
A user’s default session label can be changed using SA_USER_ADMIN.SET_

DEFAULT_LABEL. In the case of standard groups, the default session label can be

set to include any groups in the authorized list, as long as the current default row

label will still be dominated by the new write label. That is, the row label will have

the same or fewer standard groups than the new write label.

The same rule applies for SA_USER_ADMIN.SET_ROW_LABEL.

Rules for Changing Default Labels with Inverse Groups
In the case of inverse groups, the default session label can be set to include any

groups in the authorized list, as long as the current default row label will still be

dominated by the new write label. That is, the row label will have the same or more
inverse groups than the new write label.

The same rule applies for SA_USER_ADMIN.SET_ROW_LABEL.

See Also: "SA_USER_ADMIN.SET_DEFAULT_LABEL" on

page 6-13

"SA_USER_ADMIN.SET_ROW_LABEL" on page 6-14

"Dominance Rules for Labels with Inverse Groups" on page 13-27

Session Labels and Inverse Groups

Releasability Using Inverse Groups 13-17

Inverse Groups with SA_SESSION.SET_ROW_LABEL and SA_SESSION.SET_LABEL
The use of inverse groups affects the behavior of the SA_SESSION.SET_LABEL and

SA_SESSION.SET_ROW_LABEL procedures, which can be used to set the user’s

current session label and row label, respectively.

Rules for Changing Session Label with Standard Groups
With standard groups, the SA_SESSION.SET_LABEL procedure can be used to set

the session label to include any groups in the user’s authorized group list.

(Subgroups of authorized groups are implicitly included in the authorized list.)

Note that if you change the session label, this may affect the value of the session’s

row label.

Use the SET_ROW_LABEL procedure to set the row label value for the current

database session. The compartments and groups in the label must be a subset of

compartments and groups in the session label to which the user has write access.

Rules for Changing Session Label and Row Label with Inverse Groups
With inverse groups, the addition of groups to the session label decreases a user’s

ability to access sensitive data with fewer groups. The removal of groups enables

him to access more sensitive information. The user should thus be allowed to add

groups to the session label, as long as Max Read Groups is a subset of the groups in

the session label, and Max Write Groups is a superset of groups in the session label.

The same restriction applies when a user removes groups from his session label.

Note that there are no subgroups of authorized groups when using inverse groups.

This is because parent groups are not allowed in policies using inverse groups.

Use the SET_ROW_LABEL procedure to set the row label value for the current

database session. The compartments in the label must be a subset of compartments

in the session label to which the user has write access.

The user is allowed to add inverse groups to the row label, as long as the session

label inverse groups are a subset of the row label inverse groups, and Max Write

Groups is a superset of inverse groups in the row label.

For example:

■ If the user has the inverse groups UK, US as his Max Read Groups, and

UK,US,CAN as his Max Write Groups. He can set his session label to

C:ALPHA:UK,US,CAN but not to C:ALPHA:UK.

■ If the user has the inverse group UK as his Max Read Groups, and UK,CAN as

his Max Write Groups.assigned to him. He can set his session label to

Session Labels and Inverse Groups

13-18 Oracle Label Security Administrator’s Guide

C:ALPHA:UK,CAN but cannot change it to either C:ALPHA or

C:ALPHA:UK,US,CAN.

Examples of Session Labels and Inverse Groups
This section presents examples to illustrate the use of inverse groups.

Inverse Groups Example 1
Consider a User1, of a policy that implements inverse groups. The user has the

following labels:

These values are derived from the foregoing labels:

The following conclusions can be drawn:

■ User1 can update data with label SE:ALPHA:G1,G2 as well as data with label

SE:ALPHA:G1,G2,G3. User1 cannot, however, update label SE:ALPHA:G1.

If standard groups were being used, rather than inverse groups, then User1

could update data with label SE:ALPHA:G1.

■ Data which User1 inserts has the label SE:ALPHA:G1,G2. (This is the same as

with standard groups.)

■ If User1 leaves the default label as is, and sets his row label to

SE:ALPHA:G1,G2,G3, then he will insert SE:ALPHA:G1,G2,G3 in new rows of

See Also: "Changing the Session Label with SA_SESSION.SET_

LABEL" on page 4-20

"Changing the Row Label with SA_SESSION.SET_ROW_LABEL"

on page 4-21

Max Read Label SE:ALPHA,BETA:G1,G2

Max Write Label SE:ALPHA:G1,G2,G3

Default Read Label SE:ALPHA,BETA:G1,G2

Default Write Label SE:ALPHA:G1,G2

Default Row Label SE:ALPHA:G1,G2

Max Read Groups G1,G2

Max Write Groups G1,G2,G3

Session Labels and Inverse Groups

Releasability Using Inverse Groups 13-19

data he writes. (In standard groups, he can never set more groups in the row

label than in the default label.)

Inverse Groups Example 2
Consider a User1, of a policy that implements inverse groups. The user has the

following labels:

These values are derived from the foregoing labels:

The following conclusions can be drawn:

■ User1 can update any data with level C, compartment ALPHA, and any

combination of groups G1, G2, G3, or no groups. He inserts the label C:ALPHA:

in new data he writes.

■ User2, who has Max Read Groups of G1,G2 or G1,G3, and so on, will not be

able to view the data written by User1. This is because User1’s Default Row

Label contains no groups.

■ User1 can choose to set inverse groups in his row label, as long as the inverse

groups in the session label dominates the row label (that is, his session label

contains the same or fewer groups than contained in the row label).

This is true because the row label must have at least the groups in the session

label, and can at most have the Maximum Write Groups. If the session label is

G1, then you can set the groups in the row label from G1 to the Max Write

Groups (G1,G2,G3).

■ If User1 sets his session label and row label to C:ALPHA:G1:G2:G3, then his

data becomes accessible to anyone who has any combination of G1,G2,G3 in his

Max Read Groups.

Max Read Label C:ALPHA:

Max Write Label C:ALPHA:G1,G2,G3

Default Read Label C:ALPHA:

Default Write Label C:ALPHA:

Default Row Label C:ALPHA:

Max Read Groups (an empty set)

Max Write Groups G1,G2,G3

See Also: "Computed Session Labels" on page 3-9

Changes in Behavior of Procedures with Inverse Groups

13-20 Oracle Label Security Administrator’s Guide

Changes in Behavior of Procedures with Inverse Groups
When the INVERSE_GROUP option is specified at the time the policy is created, a

change occurs in the algorithms which determine the read and write access of the

user to labeled data. This section describes how inverse groups affect the behavior

of the following procedures:

■ SYSDBA.CREATE_POLICY with Inverse Groups

■ SYSDBA.ALTER_POLICY with Inverse Groups

■ SA_USER_ADMIN.ADD_GROUPS with Inverse Groups

■ SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups

■ SA_USER_ADMIN.SET_GROUPS with Inverse Groups

■ SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups

■ SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups

■ SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups

■ SA_COMPONENTS.CREATE_GROUP with Inverse Groups

■ SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups

■ SA_SESSION.SET_LABEL with Inverse Groups

■ SA_SESSION.SET_ROW_LABEL with Inverse Groups

■ LEAST_UBOUND with Inverse Groups

■ GREATEST_LBOUND with Inverse Groups

Changes in Behavior of Procedures with Inverse Groups

Releasability Using Inverse Groups 13-21

SYSDBA.CREATE_POLICY with Inverse Groups
The CREATE_POLICY procedure under the SYSDBA package creates the policy,

defines an optional policy-specific column name, and specifies a set of default

policy options. With inverse group support the user has one more policy

enforcement option, INVERSE_GROUP. For example:

PROCEDURE CREATE_POLICY (
 HR IN VARCHAR2,
 SA_LABEL IN VARCHAR2 DEFAULT NULL,
 INVERSE_GROUP IN VARCHAR2 DEFAULT NULL);

SYSDBA.ALTER_POLICY with Inverse Groups
The ALTER_POLICY procedure under the SYSDBA package enables you to change

a policy’s default enforcement options, except for the INVERSE_GROUP option.

Once a policy is configured for inverse groups, it cannot be changed.

See Also: "Creating a Policy with SA_SYSDBA.CREATE_

POLICY" on page 5-9

"Overview of Policy Enforcement Options" on page 7-2

See Also: "Modifying Policy Options with SA_SYSDBA.ALTER_

POLICY" on page 5-10

Changes in Behavior of Procedures with Inverse Groups

13-22 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
The ADD_GROUPS procedure adds groups to a user, indicating whether the

groups are authorized for write as well as read.

The access_mode is one of two variables which specify the type of access authorized.

Note that if in_def is Y in a row, then in_row must also be set to Y, but not vice

versa.

If the access mode is set to READ_WRITE, the group is added to Max Read Groups,

and Max Write Groups. If the group should be added only to the Max Write

Groups, then the access mode should be set to SA_UTL.WRITE_ONLY. If not

specified, access_mode is set to SA_UTL.READ_WRITE. If in_def is not specfied,

then it will be set to Y or N depending on whether the access mode is READ_

WRITE or WRITE_ONLY, respectively. The same is the case with the in_row field.

READ_WRITE Indicates that write is authorized. (That is, the group is

contained in both Max Read Groups and Max Write Groups.)

WRITE_ONLY Indicates that the group is contained in Max Write Groups

and not in Max Read Groups

 in_def Specifies whether these groups should be in the default

groups (Y/N)

 in_row Specifies whether these groups should be in the row label

(Y/N)

See Also: "Inverse Groups and Computed Max Read Groups and

Max Write Groups" on page 13-7

Changes in Behavior of Procedures with Inverse Groups

Releasability Using Inverse Groups 13-23

SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
The ALTER_GROUPS procedure changes the write access, the default label

indicator, and/or the row label indicator for each of the groups in the list.

The behavior of inverse groups is the same as described in the case of ADD_

GROUPS.

SA_USER_ADMIN.SET_GROUPS with Inverse Groups
The SET_GROUPS procedure assigns groups to a user and identifies default values

for the user’s session label and row label. Inverse groups are handled differently

from standard groups, as follows:

read_groups A comma-separated list of groups which would be Max Read

Groups.

write_groups A comma-separated list of groups which would be Max Write

Groups. It must be a superset of read_groups.

def_groups Specifies the default groups. It should at least have the read_
groups and write_groups should be a superset of def_groups.

row_groups Specifies the row groups. It should at least have the def_groups
and should be a subset of max write groups.

Changes in Behavior of Procedures with Inverse Groups

13-24 Oracle Label Security Administrator’s Guide

SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
The SET_USER_LABELS procedure sets the user’s levels, compartments, and

groups using a set of labels, instead of the individual components. Inverse groups

are handled differently from standard groups, as follows:

max_read_label Specifies the label string to be used to initialize the user’s

maximum authorized read label. Composed of the user’s

maximum level, compartments authorized for read access,

and if inverse groups, minimum set of groups that can be set

in any label.(Max Read Groups)

max_write_label Specifies the label string to be used to initialize the user’s

maximum authorized write label. Composed of the user’s

maximum level, compartments authorized for write access,

and if inverse groups, the maximum authorized groups that

can be set in any label (Max Write Groups). All the inverse

groups in this have write authorization also. It should be a

superset of groups in max_read_label. If the max_write_label

is not specified, it is set to max_read_label.

def_label Specifies the label string to be used to initialize the user’s

session label, including level, compartments, and groups (a

subset of max_read_label). If the default_label is not specified,

it is set to the max_read_label. For inverse groups, component

it should at least have the groups in max_read_label, and

groups in max_write_label should be a superset of the groups

in the def_label.

row_label Specifies the label string to be used to initialize the program’s

row label. Includes levels, compartments, and groups: subsets

of max_write_label and def_label. If row_label is not specified,

it is set to the def_label, with only the compartments and

groups authorized for write access. The inverse groups

component is set to same as that in def_label if the row_label

is not specified. The inverse groups in row label should at

least be those in default label and should be a subset of Max

Write Groups.

Changes in Behavior of Procedures with Inverse Groups

Releasability Using Inverse Groups 13-25

SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
The SET_DEFAULT_LABEL procedure sets the user’s initial session label to the one

specified.

All the rules mentioned for setting inverse groups component of session label

mentioned in "Session Labels and Inverse Groups" are applicable here.

SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
Use the SET_ROW_LABEL procedure to set the user’s initial row label to the one

specified.

When specifying the row_label, the inverse groups component must contain at least

all the inverse groups in def_label and should be a subset of Max Write Groups.

SA_COMPONENTS.CREATE_GROUP with Inverse Groups
Use the CREATE_GROUP procedure to create a group and specify its short name

and long name, and optionally a parent group.

With inverse groups the parent_name field should always be NULL. If the user

specifies a value for this field, then an error message is displayed, indicating that

the group hierarchy is disabled.

SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
This function is disabled for policies with the inverse group option. An error

message is displayed if the user invokes this function.

SA_SESSION.SET_LABEL with Inverse Groups
Use the SET_LABEL procedure to set the label of the current database session.

For the current user, this procedure follows the same rules for setting the session

label as does the sa_user_admin.set_user_label function.

See Also: "Rules for Changing Default Labels with Inverse

Groups" on page 13-16

See Also: "Rules for Changing Session Label and Row Label with

Inverse Groups" on page 13-17

Changes in Behavior of Procedures with Inverse Groups

13-26 Oracle Label Security Administrator’s Guide

 SA_SESSION.SET_ROW_LABEL with Inverse Groups
Use the SET_ROW_LABEL procedure to set the default row label value for the

current database session.

For the current user, this procedure follows the same rules for setting the row label

as does the sa_user_admin.set_row_label function.

LEAST_UBOUND with Inverse Groups
The LEAST_UBOUND (LUBD) function returns a character string label that is the

least upper bound of label1 and label2: that is, the one label which dominates both.

With standard groups, the least upper bound is the highest level, the union of the

compartments in the labels, and the union of the groups in the labels.

With inverse groups, the least upper bound is the highest level, the union of the

compartments in the labels, and the intersection of the inverse groups in the labels.

For example, with inverse groups the least upper bound of HIGHLY_

SENSITIVE:ALPHA:G1,G2 and SENSITIVE:BETA:G1 is HIGHLY_

SENSITIVE:ALPHA,BETA:G1

GREATEST_LBOUND with Inverse Groups
The GREATEST_LBOUND (GLBD) function can be used to determine the lowest

label of the data that can be involved in an operation, given two different labels. It

returns a character string label that is the greatest lower bound of label1 and label2.

With standard groups, the greatest lower bound is the lowest level, and the

intersection of the compartments in the labels and the groups in the labels.

With inverse groups, the greatest lower bound is the lowest level, and the intersection
of the compartments in the labels and the union of inverse groups in the labels.

For example, with inverse groups the greatest lower bound of HIGHLY_

SENSITIVE:ALPHA:G1,G3 and SENSITIVE::G1 is SENSITIVE:G1,G3

See Also: "Rules for Changing Session Label and Row Label with

Inverse Groups" on page 13-17

See: "Determining Upper and Lower Bounds of Labels" on

page 4-12

Dominance Rules for Labels with Inverse Groups

Releasability Using Inverse Groups 13-27

Dominance Rules for Labels with Inverse Groups
Dominance rules for Oracle Label Security with standard groups can be

summarized as follows:

A user label dominates a data label if:

■ User level is greater than or equal to the data level

■ User compartments are a superset of the data compartments

■ User groups intersects (has at least one group from) the data groups

Dominance rules for Oracle Label Security with inverse groups can be summarized

as follows:

A user label dominates a data label if:

■ User level is greater than or equal to the data level

■ User compartments are a superset of the data compartments

■ Data groups are a superset of user groups

See Also: "Dominant and Dominated Labels" on page A-2

Dominance Rules for Labels with Inverse Groups

13-28 Oracle Label Security Administrator’s Guide

Part IV
Appendix

Advanced Topics in Oracle Label Security A-1

A
Advanced Topics in Oracle Label Security

This appendix covers topics of interest to advanced users of Oracle Label Security.

It contains these sections:

■ Analyzing the Relationships Between Labels

■ OCI Interface for Setting Session Labels

Analyzing the Relationships Between Labels

A-2 Oracle Label Security Administrator’s Guide

Analyzing the Relationships Between Labels
This section describes relationships between labels. It contains these topics:

■ Dominant and Dominated Labels

■ Non-Comparable Labels

■ Using Dominance Functions

Dominant and Dominated Labels
The relationship between two labels can be described in terms of dominance. A
user’s ability to access an object depends on whether the user’s label dominates the

label of the object. If a user’s label does not dominate the object’s label, the user is

not allowed to access the object.

Label dominance is analyzed in terms of all its components: levels, compartments,

and groups.

One label dominates another label if all of its components dominate the components

of the other label. For example, the label HIGHLY_

SENSITIVE:FINANCE,OPERATIONS dominates the label HIGHLY_

SENSITIVE:FINANCE. Similarly, the label HIGHLY_SENSITIVE::WR_AP

dominates the label HIGHLY_SENSITIVE::WR_AP, WR_AR.

Table A–1 Dominance in the Comparison of Labels

Factor Criteria for Dominance

Level For label1 to dominate label2, the level of label1 must be
greater than or equal to that of label2.

Compartment For label1 to dominate label2, the compartments of label1
must contain all of the compartments of label2.

Group For label1 to dominate label2, label1 must contain at least
one of the groups of label2.

See Also: "Dominance Rules for Labels with Inverse Groups" on

page 13-27

Analyzing the Relationships Between Labels

Advanced Topics in Oracle Label Security A-3

Non-Comparable Labels
The relationship between two labels cannot always be defined by dominance. Two

labels are non-comparable if neither label dominates the other. If any compartments

differ between the two labels (as with HS:A and HS:B), then they are

non-comparable. Similarly, the labels HS:A and S:B are non-comparable.

Using Dominance Functions
You can use dominance functions to specify ranges in queries. The following

functions enable you to indicate dominance relationships between specified labels.

Note that there are two types of dominance function. Whereas the SA_UTL

dominance functions return BOOLEAN values, the standalone dominance

functions return integers.

■ DOMINATES Standalone Function

■ STRICTLY_DOMINATES Standalone Function

■ DOMINATED_BY Standalone Function

■ STRICTLY_DOMINATED_BY Standalone Function

■ SA_UTL.DOMINATES

■ SA_UTL.STRICTLY_DOMINATES

■ SA_UTL.DOMINATED_BY

■ SA_UTL.STRICTLY_DOMINATED_BY

Table A–2 Functions to Determine Dominance

Function Meaning

STRICTLY_DOMINATES The value of label1 dominates that of label2, and is not
equal to it.

DOMINATES The value of label1 dominates, or is equal to, that of
label2.

DOMINATED_BY The value of label1 is dominated by that of label2.

STRICTLY_DOMINATED_BY The value of label1 is dominated by that of label2, and is
not equal to it.

See Also: "Ordering Labeled Data Rows" on page 4-11

Analyzing the Relationships Between Labels

A-4 Oracle Label Security Administrator’s Guide

DOMINATES Standalone Function
The DOMINATES (DOM) function returns 1 (TRUE) if label1 dominates label2, or 0

(FALSE) if it does not.

Syntax:

FUNCTION DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

STRICTLY_DOMINATES Standalone Function
The STRICTLY_DOMINATES (SDOM) function returns 1 (TRUE) if label1
dominates label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

DOMINATED_BY Standalone Function
The DOMINATED_BY (DOM_BY) function returns 1 (TRUE) if label1 is dominated

by label2.

Syntax:

FUNCTION DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER
RETURN INTEGER;

Analyzing the Relationships Between Labels

Advanced Topics in Oracle Label Security A-5

STRICTLY_DOMINATED_BY Standalone Function
The STRICTLY_DOMINATED_BY (SDOM_BY) function returns 1 (TRUE) if label1 is

dominated by label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

SA_UTL.DOMINATES
The SA_UTL.DOMINATES function returns TRUE if label1 dominates label2.

Syntax:

FUNCTION DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

SA_UTL.STRICTLY_DOMINATES
The SA_UTL.STRICTLY_DOMINATES function returns TRUE if label1 dominates

label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

SA_UTL.DOMINATED_BY
The SA_UTL.DOMINATED_BY function returns TRUE if label1 is dominated by

label2.

Syntax:

FUNCTION DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

Analyzing the Relationships Between Labels

A-6 Oracle Label Security Administrator’s Guide

SA_UTL.STRICTLY_DOMINATED_BY
The SA_UTL.STRICTLY_DOMINATED_BY function returns TRUE if label1 is

dominated by label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

OCI Interface for Setting Session Labels

Advanced Topics in Oracle Label Security A-7

OCI Interface for Setting Session Labels
When using OCI to connect, the policy’s SYS_CONTEXT variables can be used to

initialize the session label and the row label. The variables are set using the

OCIAttrSet function to initialize "externally initialized" SYS_CONTEXT variables.

These are available in Release 8.1.7 only when Oracle Label Security is installed.

Each policy has a SYS_CONTEXT named SA$policy_name_X. There are two

variables that can be set: INITIAL_LABEL and INITIAL_ROW_LABEL.

When set to valid labels within the user’s authorizations, the new values will be

used instead of the default values stored for the user. This is the same mechanism

used for remote connections

OCIAttrSet
Additional attributes are defined for OCIAttrSet to insert context. Use OCI_ATTR_

APPCTX_SIZE to initialize the context array size with the desired number of

context attributes:

OCIAttrSet(session, OCI_HTYPE_SESSION,
 (dvoid *)&size, (ub4)0, OCI_ATTR_APPCTX_SIZE, error_handle);

Note that size is ub4 type.

OCIAttrGet
Then call OCIAttrGet with OCI_ATTR_APPCTX_LIST to get a handle on the

application context list descriptor for the session:

(session, OCI_HTYPE_SESSION,
 (dvoid *)&ctxl_desc, (ub4)0, OCI_ATTR_APPCTX_LIST, error_handle);

Note that ctxl_desc is (OCIParam *) type[

See Also: Chapter 11, "Using Oracle Label Security with a

Distributed Database"

OCI Interface for Setting Session Labels

A-8 Oracle Label Security Administrator’s Guide

OCIParamGet
Then use the application context list descriptor to obtain an individual descriptor

for the i-th application context:

OCIParamGet(ctxl_desc, OCI_DTYPE_PARAM, error_handle,(dvoid **)&ctx_desc, i);

Note that ctx_desc is (OCIParam *) type.

OCIAttrSet
Set the appropriate values in the application context using the three new attributes

OCI_ATTR_APPCTX_NAME, OCI_ATTR_APPCTX_ATTR, and OCI_ATTR_

APPCTX_VALUE:

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)ctx_name, sizeof(ctx_name), OCI_ATTR_APPCTX_NAME,
 error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)attr_name, sizeof(attr_name), OCI_ATTR_APPCTX_ATTR,
 error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)value, sizeof(value), OCI_ATTR_APPCTX_VALUE,
 error_handle);

Note that only character type is supported, because application context operations

are based on VARCHAR2 type.

OCI Interface for Setting Session Labels

Advanced Topics in Oracle Label Security A-9

OCI Example
The following example shows how to use externalized SYS_CONTEXT with Oracle

Label Security.

#ifdef RCSID
static char *RCSid =
 "$Header: ext_mls.c 09-may-00.10:07:08 jdoe Exp $ ";
#endif /* RCSID */

/* Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved. */

/*

 NAME
 ext_mls.c - <one-line expansion of the name>

 DESCRIPTION
 <short description of component this file declares/defines>

 PUBLIC FUNCTION(S)
 <list of external functions declared/defined - with one-line descriptions>

 PRIVATE FUNCTION(S)
 <list of static functions defined in .c file - with one-line descriptions>

 RETURNS
 <function return values, for .c file with single function>

 NOTES
 <other useful comments, qualifications, and so on>

 MODIFIED (MM/DD/YY)
 jdoe 05/09/00 - cleanup
 jdoe 10/13/99 - standalone OCI program to test MLS SYS_CONTEXT
 jdoe 10/13/99 - Creation

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OCIEnv *envhp;
static OCIError *errhp;

OCI Interface for Setting Session Labels

A-10 Oracle Label Security Administrator’s Guide

int main(/*_ int argc, char *argv[] _*/);

/* get and print error */
static void checkerr(/*_OCIError *errhp, sword status _*/);
/* print error */
static void printerr(char *call);
static sword status;

/* return the average of employees' salary */
static CONST text *const selectstmt = (text *)
 "select avg(sal) from sa_demo.emp";

int main(argc, argv)
int argc;
char *argv[];
{
 OCISession *authp = (OCISession *) 0;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIDefine *defnp = (OCIDefine *) 0;
 dvoid *parmdp;
 ub4 ctxsize;
 OCIParam *ctxldesc;
 OCIParam *ctxedesc;
 OCIStmt *stmtp = (OCIStmt *) 0;
 ub4 avg_sal = 0;
 sword status;

 if (OCIInitialize((ub4) OCI_DEFAULT, (dvoid *) 0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
 (void (*)(dvoid *, dvoid *)) 0))
 printerr("OCIInitialize");

 if (OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0, (dvoid **) 0))
 printerr("OCIEnvInit");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_ERROR");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SERVER");

OCI Interface for Setting Session Labels

Advanced Topics in Oracle Label Security A-11

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SVCCTX");

 if (OCIServerAttach(srvhp, errhp, (text *) "", strlen(""), 0))
 printerr("OCIServerAttach");

 /* set attribute server context in the service context */
 if (OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *) srvhp,
 (ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp))
 printerr("OCIAttrSet:OCI_HTYPE_SVCCTX");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SESSION");

 /* set application context to 1 */
 ctxsize = 1;

 /* set up app ctx buffer */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) &ctxsize,
 (ub4) 0, (ub4) OCI_ATTR_APPCTX_SIZE, errhp))
 printerr("OCIAttrSet:OCI_ATTR_APPCTX_SIZE");

 /* retrieve the list descriptor */
 if (OCIAttrGet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) &ctxldesc, 0, OCI_ATTR_APPCTX_LIST, errhp))
 printerr("OCIAttrGet:OCI_ATTR_APPCTX_LIST");

 if (status = OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp,
 (dvoid **) &ctxedesc, 1))
 {
 if (status == OCI_NO_DATA)
 {
 printf("No Data found!\n");
 exit(1);
 }
 }

 /* set context namespace to SA$<pol_name>_X */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "SA$HUMAN_RESOURCES_X",
 (ub4) strlen((char *) "SA$HUMAN_RESOURCES_X"),
 (ub4) OCI_ATTR_APPCTX_NAME, errhp))

OCI Interface for Setting Session Labels

A-12 Oracle Label Security Administrator’s Guide

 printerr("OCIAttrSet:OCI_ATTR_APPCTX_NAME:SA$HUMAN_RESOURCES_X");

 /* set context attribute to INITIAL_LABEL */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "INITIAL_LABEL",
 (ub4) strlen((char *) "INITIAL_LABEL"),
 (ub4) OCI_ATTR_APPCTX_ATTR, errhp))
 printerr("OCIAttrSet:OCI_DTYPE_PARAM:INITIAL_LABEL");

 /* set context value to argv[3] - initial label */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) argv[3],
 (ub4) strlen((char *) argv[3]),
 (ub4) OCI_ATTR_APPCTX_VALUE, errhp))
 printerr("OCIAttrSet:argv[3]");

 /* username first command line argument */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[1],
 (ub4) strlen((char *) argv[1]), (ub4) OCI_ATTR_USERNAME,
 errhp))
 printerr("OCIAttrSet:username");

 /* password second command line argument */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[2],
 (ub4) strlen((char *) argv[2]), (ub4) OCI_ATTR_PASSWORD,
 errhp))
 printerr("OCIAttrSet:password");

 if (OCISessionBegin(svchp, errhp, authp, OCI_CRED_RDBMS, (ub4) OCI_DEFAULT))
 printerr("OCISessionBegin");

 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) authp,
 (ub4) 0, (ub4) OCI_ATTR_SESSION, errhp))
 printerr("OCIAttrSet:OCI_ATTR_SESSION");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmtp, OCI_HTYPE_STMT,
 0, 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_STMT");

 if (OCIStmtPrepare(stmtp, errhp, (CONST OraText *) selectstmt,
 (ub4) strlen((const char *) selectstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 printerr("OCIStmtPrepare");

 if (OCIDefineByPos(stmtp, &defnp, errhp, (ub4) 1, (dvoid *) &avg_sal,

OCI Interface for Setting Session Labels

Advanced Topics in Oracle Label Security A-13

 (sb4) sizeof(avg_sal), SQLT_INT, 0, 0, 0, OCI_DEFAULT))
 printerr("OCIDefineByPos");

 if (status = OCIStmtExecute(svchp, stmtp, errhp, 1, 0, NULL, NULL,
 OCI_DEFAULT))
 {
 if (status == OCI_NO_DATA)
 {
 printf("No Data found!\n");
 exit(1);
 }
 }

 if (OCISessionEnd(svchp, errhp, authp, OCI_DEFAULT))
 printerr("OCISessionEnd");

 printf("average salary is: %d\n", avg_sal);
}

void checkerr(errhp, status)
 OCIError *errhp;
 sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *) errhp, 1, NULL, &errcode, errbuf,
 (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 printf("Error - %.*s\n", 512, errbuf);
 break;
 default:
 break;
 }
}

void printerr(call)
 char *call;
{
 printf("Error: %s\n", call);
}
/* end of file ext_mls.c */

OCI Interface for Setting Session Labels

A-14 Oracle Label Security Administrator’s Guide

Reference B-1

B
Reference

This appendix provides the following reference information:

■ Oracle Label Security Data Dictionary Tables and Views

■ Restrictions in Oracle Label Security

Oracle Label Security Data Dictionary Tables and Views

B-2 Oracle Label Security Administrator’s Guide

Oracle Label Security Data Dictionary Tables and Views
■ Oracle9i Data Dictionary Tables

■ Oracle Label Security Data Dictionary Views

■ Oracle Label Security Auditing Views

Oracle9 i Data Dictionary Tables
Oracle Label Security does not in any way label the Oracle9i data dictionary tables.

Access is controlled by standard Oracle9i system and object privileges. For a

description of all data dictionary tables and views, see the Oracle9i Database
Reference

Oracle Label Security Data Dictionary Views
Oracle Label Security maintains an independent set of data dictionary tables. These

tables are exempt from any policy enforcement. This section lists the views which

can display information related to Oracle Label Security.

Note that access to the DBA views is granted by default to the SELECT_CATALOG_

ROLE, a standard Oracle9i role which lets you examine the Oracle9i data dictionary.

ALL_SA_AUDIT_OPTIONS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

APY VARCHAR2(3)

REM VARCHAR2(3)

SET_ VARCHAR2(3)

PRV VARCHAR2(3)

Oracle Label Security Data Dictionary Tables and Views

Reference B-3

ALL_SA_COMPARTMENTS

ALL_SA_DATA_LABELS

ALL_SA_GROUPS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

COMP_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LABEL VARCHAR2(4000)

LABEL_TAG NUMBER

NAME Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

GROUP_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

PARENT_NUM NUMBER(4)

PARENT_NAME VARCHAR2(30)

Oracle Label Security Data Dictionary Tables and Views

B-4 Oracle Label Security Administrator’s Guide

ALL_SA_LABELS
Access to ALL_SA_LABELS is PUBLIC, however only the labels authorized for read

access by the session are visible.

ALL_SA_LEVELS

ALL_SA_POLICIES

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LABEL VARCHAR2(4000)

LABEL_TAG NUMBER

LABEL_TYPE VARCHAR2(15)

Name Null? Type

POLICY_NAME VARCHAR2(30)

LEVEL_NUM NUMBER(4)

SHORT_NAME VARCHAR2(30)

LONG_NAME VARCHAR2(80)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

POLICY_OPTIONS VARCHAR2(4000)

Oracle Label Security Data Dictionary Tables and Views

Reference B-5

ALL_SA_PROG_PRIVS

ALL_SA_SCHEMA_POLICIES

ALL_SA_TABLE_POLICIES

Name Null? Type

SCHEMA_NAME NOT NULL VARCHAR2(30)

PROGRAM_NAME NOT NULL VARCHAR(30)

POLICY_NAME NOT NULL VARCHAR2(30)

 PROGRAM_PRIVILEGES VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

SCHEMA_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

SCHEMA_OPTIONS VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

SCHEMA_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

TABLE_OPTIONS VARCHAR2(4000)

FUNCTION VARCHAR2(1024)

PREDICATE VARCHAR2(256)

Oracle Label Security Data Dictionary Tables and Views

B-6 Oracle Label Security Administrator’s Guide

ALL_SA_USERS

ALL_SA_USER_LABELS

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

USER_PRIVILEGES VARCHAR2(4000)

MAX_READ_LABEL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_WRITE_LABEL VARCHAR2(4000)

DEFAULT_READ_LABEL VARCHAR2(4000)

DEFAULT_WRITE_LABEL VARCHAR2(4000)

DEFAULT_ROW_LABEL VARCHAR2(4000)

USER_LABELS VARCHAR2(4000)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

MAX_READ_LABEL NOT NULL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_WRITE_LABEL VARCHAR2(4000)

DEFAULT_READ_LABEL VARCHAR2(4000)

DEFAULT_WRITE_LABEL VARCHAR2(4000)

DEFAULT_ROW_LABEL VARCHAR2(4000)

LABELS VARCHAR2(4000)

Oracle Label Security Data Dictionary Tables and Views

Reference B-7

ALL_SA_USER_LEVELS

Note: The field USER_LABELS in ALL_SA_USERS and the field

LABELS in ALL_SA_USER_LABELS are retained solely for

backward compatibility and will be removed in the next release.

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

MAX_LEVEL NOT NULL VARCHAR2(30)

MIN_LEVEL NOT NULL VARCHAR2(30)

DEF_LEVEL NOT NULL VARCHAR2(30)

ROW_LEVEL NOT NULL VARCHAR2(30)

Oracle Label Security Data Dictionary Tables and Views

B-8 Oracle Label Security Administrator’s Guide

ALL_SA_USER_PRIVS

DBA_SA_AUDIT_OPTIONS

DBA_SA_COMPARTMENTS

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

USER_PRIVILEGES VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

APY VARCHAR2(3)

REM VARCHAR2(3)

SET_ VARCHAR2(3)

PRV VARCHAR2(3)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

COMP_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

Oracle Label Security Data Dictionary Tables and Views

Reference B-9

DBA_SA_DATA_LABELS

DBA_SA_GROUPS

DBA_SA_GROUP_HIERARCHY

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LABEL VARCHAR2(4000)

LABEL_TAG NUMBER

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

GROUP_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

PARENT_NUM NUMBER(4)

PARENT_NAME VARCHAR2(30)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

HIERARCHY_LEVEL NUMBER

GROUP_NAME VARCHAR2(4000)

Oracle Label Security Data Dictionary Tables and Views

B-10 Oracle Label Security Administrator’s Guide

DBA_SA_LABELS

DBA_SA_LEVELS

DBA_SA_POLICIES

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LABEL VARCHAR2(4000)

LABEL_TAG NUMBER

LABEL_TYPE VARCHAR2(15)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

LEVEL_NUM NOT NULL NUMBER(4)

SHORT_NAME NOT NULL VARCHAR2(30)

LONG_NAME NOT NULL VARCHAR2(80)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

POLICY_OPTIONS VARCHAR2(4000)

Oracle Label Security Data Dictionary Tables and Views

Reference B-11

DBA_SA_PROG_PRIVS

DBA_SA_SCHEMA_POLICIES

DBA_SA_TABLE_POLICIES

Name Null? Type

SCHEMA_NAME NOT NULL VARCHAR2(30)

PROGRAM_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

PROGRAM_PRIVILEGES VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

SCHEMA_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

SCHEMA_OPTIONS VARCHAR2(4000)

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

SCHEMA_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

STATUS VARCHAR2(8)

TABLE_OPTIONS VARCHAR2(4000)

FUNCTION VARCHAR2(1024)

PREDICATE VARCHAR2(256)

Oracle Label Security Data Dictionary Tables and Views

B-12 Oracle Label Security Administrator’s Guide

DBA_SA_USERS

DBA_SA_USER_COMPARTMENTS

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

USER_PRIVILEGES VARCHAR2(4000)

MAX_READ_LABEL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_WRITE_LABEL VARCHAR2(4000)

DEFAULT_READ_LABEL VARCHAR2(4000)

DEFAULT_WRITE_LABEL VARCHAR2(4000)

DEFAULT_ROW_LABEL VARCHAR2(4000)

USER_LABELS VARCHAR2(4000)

Note: The field USER_LABELS in DBA_SA_USERS is retained

solely for backward compatibility and will be removed in the next

release.

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

COMP NOT NULL VARCHAR2(30)

RW_ACCESS VARCHAR2(5)

DEF_COMP NOT NULL VARCHAR2(1)

ROW_COMP NOT NULL VARCHAR2(1)

Oracle Label Security Data Dictionary Tables and Views

Reference B-13

DBA_SA_USER_GROUPS

DBA_SA_USER_LABELS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

GRP NOT NULL VARCHAR2(30)

RW_ACCESS VARCHAR2(5)

DEF_GROUP NOT NULL VARCHAR2(1)

ROW_GROUP NOT NULL VARCHAR2(1)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

MAX_READ_LABEL NOT NULL VARCHAR2(4000)

MAX_WRITE_LABEL VARCHAR2(4000)

MIN_WRITE_LABEL VARCHAR2(4000)

DEFAULT_READ_LABEL VARCHAR2(4000)

DEFAULT_WRITE_LABEL VARCHAR2(4000)

DEFAULT_ROW_LABEL VARCHAR2(4000)

LABELS VARCHAR2(4000)

Note: The field LABELS in DBA_SA_USER_LABELS is retained

solely for backward compatibility and will be removed in the next

release.

Oracle Label Security Data Dictionary Tables and Views

B-14 Oracle Label Security Administrator’s Guide

DBA_SA_USER_LEVELS

DBA_SA_USER_PRIVS

Name Null? Type

POLICY_NAME NOT NULL VARCHAR2(30)

USER_NAME NOT NULL VARCHAR2(30)

MAX_LEVEL NOT NULL VARCHAR2(30)

MIN_LEVEL NOT NULL VARCHAR2(30)

DEF_LEVEL NOT NULL VARCHAR2(30)

ROW_LEVEL NOT NULL VARCHAR2(30)

Name Null? Type

USER_NAME NOT NULL VARCHAR2(30)

POLICY_NAME NOT NULL VARCHAR2(30)

USER_PRIVILEGES VARCHAR2(4000)

Restrictions in Oracle Label Security

Reference B-15

Oracle Label Security Auditing Views
Using the SA_AUDIT_ADMIN.CREATE_VIEW procedure, you can create an audit

trail view for the specified policy. By default, this view is named DBA_policyname_

AUDIT_TRAIL.

The DBA_SA_AUDIT_OPTIONS view contains the columns POLICY_NAME,

USER_NAME, APY, SET_, and PRV.

Restrictions in Oracle Label Security
The following restrictions exist in this Oracle Label Security release:

■ CREATE TABLE AS SELECT Restriction in Oracle Label Security

■ Label Tag Restriction

■ Export Restriction in Oracle Label Security

■ Oracle Label Security Deinstallation Restriction

■ Shared Schema Support

■ Hidden Columns Restriction

CREATE TABLE AS SELECT Restriction in Oracle Label Security
If you attempt to perform CREATE TABLE AS SELECT in a schema which is

protected by an Oracle Label Security policy, the statement will fail.

Label Tag Restriction
Label tags must be unique across all policies in the database. When you use

multiple policies in a database, you cannot use the same numeric label tag in

different policies.

Export Restriction in Oracle Label Security
The LBACSYS schema cannot be exported due to the use of opaque types in Oracle

Label Security. To export an entire database, you must individually specify all of the

See Also: "Creating and Dropping an Audit Trail View for Oracle

Label Security" on page 10-11

Restrictions in Oracle Label Security

B-16 Oracle Label Security Administrator’s Guide

schemas and/or tables (except for the LBACSYS schema). Use standard backup

techniques to back up the LBACSYS schema.

Oracle Label Security Deinstallation Restriction
Do not perform a DROP USER CASCADE on the LBACSYS account.

Connect to the database as user SYS, using the AS SYSDBA syntax, and run the file

$ORACLE_HOME/rdbms/admin/catnools.sql to deinstall Oracle Label

Security.

Shared Schema Support
User accounts defined in the Oracle Internet Directory cannot be given individual

Oracle Label Security authorizations. However, authorizations can be given to the

shared schema to which the directory users are mapped.

The Oracle Label Security function SET_ACCESS_PROFILE can be used

programmatically to set the label authorization profile to use after a user has been

authenticated and mapped to a shared schema. Oracle Label Security does not

enforce a mapping between users who are given label authorizations in Oracle

Label Security and actual database users.

Hidden Columns Restriction
PL/SQL does not recognize references to hidden columns in tables. A compiler

error will be generated.

See Also: Your platform-specific Oracle installation

documentation

Index-1

Index
A
access control

discretionary, 1-4, 1-5, 3-23

fine-grained, 1-4, 1-6

label-based, 1-5, 1-7, 1-12

policies, 1-3

understanding, 3-1

access mediation

and views, 3-23

enforcement options, 3-25

introduction, 3-2

label evaluation, 3-10

program units, 3-24

ADD_COMPARTMENTS function, 6-8

ADD_GROUPS procedure, 6-9

inverse groups, 13-22

ALL_CONTROL option, 7-3, 7-7

ALL_SA_AUDIT_OPTIONS view, B-2

ALL_SA_COMPARTMENTS view, B-3

ALL_SA_DATA_LABELS view, B-3

ALL_SA_GROUPS view, B-3

ALL_SA_LABELS view, B-4

ALL_SA_LEVELS view, B-4

ALL_SA_POLICIES view, B-4

ALL_SA_PROG_PRIVS view, B-5

ALL_SA_SCHEMA_POLICIES view, B-5

ALL_SA_TABLE_POLICIES view, B-5

ALL_SA_USER_LABELS view, B-6

ALL_SA_USER_LEVELS view, B-7

ALL_SA_USER_PRIVS view, B-8

ALL_SA_USERS view, B-6

ALTER_COMPARTMENT procedure, 5-17

ALTER_COMPARTMENTS procedure, 6-7

ALTER_GROUP procedure, 5-20

ALTER_GROUP_PARENT

inverse groups, 13-25

ALTER_GROUP_PARENT procedure, 5-21

ALTER_GROUPS function, 6-10

ALTER_GROUPS procedure

inverse groups, 13-23

ALTER_LABEL function, 5-24

ALTER_LEVEL procedure, 5-13, 5-15

ALTER_POLICY procedure, 5-10

inverse groups, 13-21

ALTER_SCHEMA_POLICY procedure, 8-3, 8-9

ANALYZE command, 12-8

APPLY_SCHEMA_POLICY procedure, 8-3, 8-8

with inverse groups, 13-4

APPLY_TABLE_POLICY procedure, 8-3, 8-4

with inverse groups, 13-4

architecture, Oracle Label Security, 1-8

AS SYSDBA clause, 12-13

AUDIT procedure, 10-5

AUDIT_LABEL procedure, 10-10

AUDIT_LABEL_ENABLED function, 10-10

AUDIT_TRAIL parameter, 10-3

auditing

audit trails, 1-12, 10-2, 10-3, 10-11

options for Oracle Label Security, 10-4

Oracle Label Security, 1-12, 10-1, 10-2

security and, 10-5

strategy, 10-12

systemwide, 10-3

types of, 5-4

views, 10-11

Index-2

B
B-tree indexes, 12-8

C
CHAR_TO_LABEL function, 4-7, 4-16, 4-18

characters, valid, 2-3, 5-9

CHECK_CONTROL option

and label update, 7-15, 7-16

and labeling functions, 7-13

and READ_CONTROL, 7-5

definition, 7-3

with other options, 7-8

child rows

deleting, 7-17

inserting, 7-14

updating, 7-16

COMP_READ function, 4-24

COMP_WRITE function, 4-24

COMPACCESS privilege, 3-18, 3-20

inverse groups, 13-8, 13-13

compartments

definition, 2-6

example, 2-7

setting authorizations, 3-7

COMPATIBLE parameter, 12-13

components. See label components

CREATE FUNCTION statement, 9-5

CREATE PACKAGE BODY statement, 9-5

CREATE PACKAGE statement, 9-5

Create Policy icon, 5-2, 5-8

CREATE PROCEDURE statement, 9-5

CREATE TABLE AS SELECT statement, B-15

CREATE_COMPARTMENT procedure, 5-16

CREATE_GROUP procedure, 5-19

inverse groups, 13-25

CREATE_LABEL procedure, 5-23

CREATE_LEVEL procedure, 5-14

CREATE_POLICY procedure, 5-2, 5-9

inverse groups, 13-21

CREATE_VIEW procedure, 10-11, B-15

creating databases, 12-13

D
DAC. See discretionary access control (DAC)

data

access rules, 1-9

label-based access, 2-2

restricting access, 1-4

sensitivity, 1-10, 5-24

data dictionary tables, 6-2, 6-18, 12-8, 12-13, B-2

DATA_LABEL function, 9-7

database links, 11-4

databases, creating additional, 12-13

DBA_policyname_AUDIT_TRAIL view, B-15

DBA_SA_AUDIT_OPTIONS view, 10-9, B-8, B-15

DBA_SA_COMPARTMENTS view, 12-4, B-8

DBA_SA_DATA_LABELS view, B-9

DBA_SA_GROUP_HIERARCHY view, B-9

DBA_SA_GROUPS view, 12-4, B-9

DBA_SA_LABELS view, 12-4, B-10

DBA_SA_LEVELS view, 12-4, B-10

DBA_SA_POLICIES view, B-10

DBA_SA_PROG_PRIVS view, B-11

DBA_SA_SCHEMA_POLICIES view, 7-10, B-11

DBA_SA_TABLE_POLICIES view, 7-10, B-11

DBA_SA_USER_COMPARTMENTS view, 6-18,

B-12

DBA_SA_USER_GROUPS view, 6-18, B-13

DBA_SA_USER_LABELS view, B-13

DBA_SA_USER_LEVELS view, 6-18, B-14

DBA_SA_USER_PRIVS view, B-14

DBA_SA_USERS view, 6-17, B-12

DELETE_CONTROL option, 7-3, 7-17

DELETE_RESTRICT option, 7-17

deleting labeled data, 7-17

demobld.sql file, 5-6

DISABLE_POLICY procedure, 5-10

DISABLE_SCHEMA_POLICY procedure, 8-3, 8-10

DISABLE_TABLE_POLICY procedure, 8-3, 8-6

discretionary access control (DAC), 1-4, 3-23

distributed databases

connecting to, 11-4

multiple policies, 3-26

Oracle Label Security configuration, 11-2

remote session label, 11-5

dominance

Index-3

definition, 3-13, 3-14

functions, A-3

greatest lower bound, 4-13

inverse groups, 13-27

least upper bound, 4-12

overview, A-2

DOMINATED_BY function, A-3, A-4, A-5

DOMINATES function, A-2, A-3, A-4, A-5

DROP USER CASCADE restriction, B-16

DROP_ALL_COMPARTMENTS procedure, 6-9

DROP_ALL_GROUPS procedure, 6-11

DROP_COMPARTMENT procedure, 5-18

DROP_COMPARTMENTS function, 6-8

DROP_GROUP procedure, 5-22

DROP_GROUPS procedure, 6-10

DROP_LABEL function, 5-25

DROP_LEVEL procedure, 5-16

DROP_POLICY procedure, 5-11

DROP_USER_ACCESS procedure, 6-15

DROP_VIEW procedure, 10-11

duties, of security administrators, 5-5

E
ENABLE_POLICY procedure, 5-11

ENABLE_SCHEMA_POLICY procedure, 8-3, 8-11

ENABLE_TABLE_POLICY procedure, 8-3, 8-7

enforcement options

and UPDATE, 7-14

combinations of, 7-8

exemptions, 7-9

guidelines, 7-8

INVERSE_GROUP, 13-4

list of, 7-3

overview, 7-2

viewing, 7-10

EXEMPT ACCESS POLICY privilege, 7-9

Export utility

LBACSYS restriction, B-15

policy enforcement, 7-9

row labels, 3-19, 12-2, 12-4

F
FULL privilege, 3-18, 3-19, 3-21

G
GLBD function, 4-13

granularity, data access, 3-15

GREATEST_LBOUND function, 4-13, 9-9

inverse groups, 13-26

GROUP_READ function, 4-24

GROUP_WRITE function, 4-24

groups

definition, 2-8

example, 2-8

hierarchical, 2-8, 2-13, B-9

inverse, 13-2

parent, 2-8, 3-11, 5-19, 5-21, 13-8

read/write access, 3-11

setting authorizations, 3-8

H
HIDE option

default, 5-9

discussion of, 7-4

example, 4-3

importing hidden column, 12-5

inserting data, 4-17

introduction, 4-2

not exported, 12-2

per-table basis, 4-9

PL/SQL restriction, B-16

schema level, 7-2

I
Import utility

importing labeled data, 12-3, 12-4

importing policies, 12-2

importing unlabeled data, 12-5

with Oracle Label Security, 12-2

indexes, 12-8

INITIAL_LABEL variable, A-7

INITIAL_ROW_LABEL variable, A-7

initialization parameters

AUDIT_TRAIL, 10-3

COMPATIBLE, 12-13

INSERT_CONTROL option, 7-3, 7-13

inserting labeled data, 4-16, 7-13

Index-4

INTO TABLE clause, 12-6

inverse groups

and label components, 13-4

COMPACCESS privilege, 13-8, 13-13

computed labels, 13-5

dominance, 13-27

implementation of, 13-4

introduction, 13-2

Max Read Groups, 13-7

Max Write Groups, 13-7

parent-child unsupported, 13-8

read algorithm, 13-9

session labels, 13-16

SET_DEFAULT_LABEL, 13-16

SET_LABEL, 13-17

SET_ROW_LABEL, 13-16, 13-17

usesr privileges, 13-8

write algorithm, 13-11

INVERSE_GROUP enforcement option

behavior of procedures, 13-20

implementation, 13-4

L
label components

defining, 5-2, 5-12

in distributed environment, 11-6

industry examples, 2-10

interrelation, 2-13

valid characters, 2-3, 5-9

label evaluation process

COMPACCESS read, 3-20

COMPACCESS write, 3-21

inverse groups, COMPACCESS, 13-13

LABEL_UPDATE, 7-15

read access, 3-13

read access, inverse groups, 13-9

write access, 3-15

write access, inverse groups, 13-11

LABEL function, 4-24

label tags

converting from string, 4-7

converting to string, 4-8

distributed environment, 11-6

example, 4-5

inserting data, 4-16

introduction, 2-11

manually defined, 4-4, 4-5

strategy, 12-10

using in WHERE clauses, 4-10

LABEL_DEFAULT option

and labeling functions, 7-5, 7-10, 7-11

authorizing compartments, 3-7

authorizing groups, 3-8

definition, 7-3

importing unlabeled data, 12-5

inserting labeled data, 4-16, 4-17

with enforcement options, 7-8

with SET_ROW_LABEL, 4-21

LABEL_TO_CHAR function, 4-8, 4-9, 4-11

LABEL_UPDATE option

and labeling functions, 7-5, 7-11

and privileges, 7-5

and WRITE_CONTROL, 7-6

and WRITEACROSS, 3-18

and WRITEDOWN, 3-18, 3-22

and WRITEUP, 3-18, 3-22

definition, 7-3

evaluation process, 7-15

with enforcement options, 7-8

label-based security, 2-2

labeling functions

ALL_CONTROL and NO_CONTROL, 7-7

and CHECK_CONTROL, 7-13

and LABEL_DEFAULT, 7-5, 7-11

and LABEL_UPDATE, 7-5

and LBACSYS, 7-11

creating, 7-12

example, 7-10

how they work, 7-11

importing unlabeled data, 12-5

inserting data, 4-17

introduction, 3-25

override manual insert, 7-13

specifying, 7-12

testing, 7-11

UPDATE, 7-16

using, 7-10

with enforcement options, 7-8

labels

Index-5

administering, 2-14

and performance, 3-19

data and user, 2-12

merging, 4-14

non-comparable, A-3

relationships between, A-2

syntax, 2-11

valid, 2-11, 4-4

with inverse groups, 13-5

Labels property sheet, 5-2, 5-3

LBAC_DBA role, 5-8

LBAC_LABEL datatype, 7-11

LBACSYS schema

and labeling functions, 7-11

creating additional databases, 12-13

data dictionary tables, 12-8

export restriction, 12-2, B-15

LEAST_UBOUND function, 4-12, 4-15, 9-9

inverse groups, 13-26

levels

definition, 2-4

example, 2-5

setting authorizations, 3-6

LUBD function, 4-12

M
materialized views, 11-9, 11-13

Max Read Groups, 13-7

Max Write Group, 13-7

MAX_LEVEL function, 4-24

MERGE_LABEL function, 4-14, 4-15

MIN_LEVEL function, 4-24

N
NO_CONTROL option, 7-3, 7-7

NOAUDIT procedure, 10-4, 10-7, 10-10

NUMBER datatype, 4-2

NUMERIC_LABEL function, 9-7

NUMERIC_ROW_LABEL function, 9-7

O
object privileges

and Oracle Label Security privileges, 3-23

and trusted stored program units, 3-24, 9-3

discretionary access control, 1-5

OCI example, A-9

OCI interface, A-7

OCI_ATTR_APPCTX_LIST, A-7

OCI_ATTR_APPCTX_SIZE, A-7

OCIAttrGet, A-7

OCIAttrSet, A-7, A-8

OCIParamGet, A-8

Oracle Policy Manager

administering labels, 2-14

applying policies, 5-3, 8-3

authorizing trusted program units, 5-4

authorizing users, 5-3, 6-2

configuring auditing, 5-4

creating policies, 5-2, 5-8

defining label components, 5-2

identifying valid labels, 5-3

introduction, 5-7

ORDER BY clause, 4-10, 4-11

P
packages

Oracle Label Security, 5-6

trusted stored program units, 9-2

partitioning, 4-5, 12-12

performance, Oracle Label Security

ANALYZE command, 12-8

indexes, 12-8

label tag strategy, 12-10

partitioning, 12-12

READ privilege, 3-19

PL/SQL

creating VPD policies, 1-6

overloaded procedures, 5-13

recreating labels for import, 12-4

SA_UTL package, 9-7

trusted stored program units, 9-2

policies

creating, 5-2

enforcement guidelines, 7-8

enforcement options, 1-11, 3-25, 4-1, 7-2, 7-3, 7-8

managing, 5-8

Index-6

multiple, 3-26, 4-4, 6-2, B-15

privileges, 1-5, 1-11, 3-23, 6-15

terminology, 8-2

virtual private database (VPD), 1-7

policy label column

indexing, 12-8

inserting data when hidden, 4-17

introduction, 2-2, 4-2

retrieving, 4-8

retrieving hidden, 4-9

storing label tag, 2-11

policy_DBA role, 5-5, 5-8, 5-22, 6-2, 6-15, 8-4, 8-8

predicates

access mediation, 3-25

errors, 7-19

label tag performance strategy, 12-10

multiple, 7-19

used with policy, 7-18

virtual private database, 1-4

privileges

COMPACCESS, 3-18, 3-20

FULL, 3-18, 3-19, 3-21

Oracle Label Security, 3-18

PROFILE_ACCESS, 3-18, 3-21

program units, 3-24

READ, 3-18, 3-19

row label, 3-22

trusted stored program units, 9-6

WRITEACROSS, 3-18, 3-22

WRITEDOWN, 3-18, 3-22, 3-24

WRITEUP, 3-18, 3-22

PRIVS function, 4-24

procedures, overloaded, 5-13

PROFILE_ACCESS privilege, 3-18, 3-21

R
read access

algorithm, 3-13, 3-19

introduction, 3-10

read label, 3-9

READ privilege, 3-18, 3-19

READ_CONTROL option

about, 7-6

algorithm, 3-13

and CHECK_CONTROL, 7-5

and child rows, 7-14

definition, 7-3

referential integrity, 7-16

with other options, 7-8

with predicates, 7-18

READ_ONLY function, 6-7, 6-8, 6-9, 6-10

READ_WRITE function, 6-7, 6-8, 6-9, 6-10

reading down, 3-14

referential integrity, 7-14, 7-16, 7-17

releasability, 13-2

remote users, 11-4

REMOVE_SCHEMA_POLICY procedure, 8-3, 8-10

REMOVE_TABLE_POLICY procedure, 8-3, 8-5

REPADMIN account, 11-9, 11-13, 11-14

replication

materialized views (snapshots), 11-9, 11-13,

11-15

with Oracle Label Security, 11-9, 11-10

RESTORE_DEFAULT_LABELS procedure, 4-19,

4-22

restrictions, Oracle Label Security, B-15

row labels

changing compartments, 6-7

default, 3-7, 3-8, 3-9, 4-19, 9-8

example, 3-4

in distributed environment, 11-5

inserting, 4-16

LABEL_DEFAULT option, 7-5

privileges, 3-22

restoring, 4-22

saving defaults, 4-22

setting, 4-21, 9-8

setting compartments, 6-5

setting groups, 6-6

setting levels, 6-4

understanding, 3-3

updating, 3-22

viewing, 9-7

ROW_LABEL function, 4-24

row-level security, 1-4

S
SA_COMPONENTS package, 5-12

Index-7

SA_POLICY_ADMIN package, 8-1

SA_SESSION functions

defined, 4-19

viewing security attributes, 4-24

SA_SYSDBA package, 5-8

SA_USER_ADMIN package

administering stored program units, 9-4

overview, 6-2

SA_USER_NAME function, 4-24, 6-16

SA_UTL package

dominance functions, A-5

overview, 9-7

SAVE_DEFAULT_LABELS procedure, 4-19, 4-22

schemas

applying policies to, 5-3, 5-10, 7-2, 7-8

default policy options, 5-9

restrictions on shared, B-16

security

introduction, 1-2

standards, 1-3

security policies

introduction, 1-3

Oracle Label Security, 1-7

VPD, 1-7

session labels

changing, 4-20

computed, 3-9

distributed database, 11-5

example, 3-4

OCI interface, A-7

restoring, 4-22

SA_UTL.SET_LABEL, 9-8

saving defaults, 4-22

setting compartments, 6-5

setting groups, 6-6

setting levels, 6-4

understanding, 3-3

viewing, 9-7

SET_ACCESS_PROFILE function, B-16

SET_ACCESS_PROFILE procedure, 6-16

SET_COMPARTMENTS procedure, 6-5

SET_DEFAULT_LABEL function, 6-13

inverse groups, 13-16

SET_DEFAULT_LABEL procedure

inverse groups, 13-25

SET_GROUPS procedure, 6-6

inverse groups, 13-23

SET_LABEL function

and RESTORE_DEFAULT_LABELS, 4-22

definition, 4-19

inverse groups, 13-17

on remote database, 11-5

SA_UTL.SET_LABEL, 9-8

using, 4-20

SET_LABEL procedure

inverse groups, 13-25

SET_LEVELS procedure, 6-4

SET_PROG_PRIVS function, 9-4

SET_ROW_LABEL function

inverse groups, 13-16, 13-17

SET_ROW_LABEL procedure, 4-19, 4-21, 6-14, 9-8,

13-17

inverse groups, 13-25, 13-26

SET_USER_LABELS procedure, 6-12

inverse groups, 13-24

SET_USER_PRIVS function, 6-15

shared schema restrictions, B-16

SQL*Loader, 12-6

STRICTLY_DOMINATED_BY function, A-3, A-5,

A-6

STRICTLY_DOMINATES function, A-3, A-4, A-5

SYS account

policy enforcement, 7-9

SYS_CONTEXT

and labeling functions, 7-11

variables, A-7

SYSDBA privilege, 10-3

system privileges, 1-5, 3-23, 3-24

T
tasks, overview, 5-2

TO_DATA_LABEL function, 4-18, 5-3, 5-23

TO_LBAC_DATA_LABEL function, 7-11

triggers, 7-11

trusted stored program units

creating, 9-5

error handling, 9-6

example, 9-3

executing, 9-6

Index-8

introduction, 9-2

privileges, 3-24, 9-6

re-compiling, 9-5

replacing, 9-5

U
UPDATE_CONTROL option, 7-3, 7-14

updating labeled data, 7-14

user authorizations

compartments, 3-7

groups, 3-8

levels, 3-6

understanding, 3-5

USER_SA_SESSION view, 4-23

V
views

access mediation, 3-23

ALL_SA_COMPARTMENTS, B-3

ALL_SA_GROUPS, B-3

ALL_SA_LABELS, B-3, B-4

ALL_SA_LEVELS, B-4

ALL_SA_POLICIES, B-4

ALL_SA_PROG_PRIVS, B-5

ALL_SA_SCHEMA_POLICIES, B-5

ALL_SA_TABLE_POLICIES, B-5

ALL_SA_USER_LABELS, B-6

ALL_SA_USER_LEVELS, B-7

ALL_SA_USER_PRIVS, B-8

ALL_SA_USERS, B-6

auditing, B-15

DBA_policyname_AUDIT_TRAIL, B-15

DBA_SA_AUDIT_OPTIONS, 10-9, B-8, B-15

DBA_SA_COMPARTMENTS, B-8

DBA_SA_DATA_LABELS, B-9

DBA_SA_GROUP_HIERARCHY, B-9

DBA_SA_GROUPS, B-9

DBA_SA_LABELS, B-10

DBA_SA_LEVELS, B-10

DBA_SA_POLICIES, B-10

DBA_SA_PROG_PRIVS, B-11

DBA_SA_SCHEMA_POLICIES, 7-10, B-11

DBA_SA_TABLE_POLICIES, 7-10, B-11

DBA_SA_USER_COMPARTMENTS, B-12

DBA_SA_USER_GROUPS, B-13

DBA_SA_USER_LABELS, B-13

DBA_SA_USER_LEVELS, B-14

DBA_SA_USER_PRIVS, B-14

DBA_SA_USERS, B-12

USER_SA_SESSION, 4-23

virtual private database (VPD)

introduction, 1-4

Oracle Label Security policies, 1-7

policies, 1-6

W
write access

algorithm, 3-16, 3-19

introduction, 3-10

write label, 3-9

WRITE_CONTROL option

algorithm, 3-15

definition, 7-3

introduction, 7-6

LABEL_UPDATE, 7-6

with INSERT, UPDATE, DELETE, 7-6

with other options, 7-8

WRITEACROSS privilege, 3-18, 3-22, 7-3, 7-5, 7-15

WRITEDOWN privilege, 3-18, 3-22, 3-24, 7-3, 7-5,

7-15

WRITEUP privilege, 3-18, 3-22

	Contents
	Send Us Your Comments
	Preface
	Part I� Concepts
	1 Introduction to Oracle Label Security
	Computer Security and Data Access Controls
	Introduction to Computer Security
	Oracle Label Security and Security Standards
	Security Policies
	Access Control
	Discretionary Access Control
	Label-Based Access Control
	How Label-Based Access Control Works with Discretionary Access Control

	Oracle Label Security Architecture
	Oracle9i Enterprise Edition: Virtual Private Database Technology
	Oracle Label Security: An Out-of-the-Box VPD Policy

	Features of Oracle Label Security
	Overview of Oracle Label Security Policy Functionality
	Label Policy Framework Features
	Data Labels
	Label Authorizations
	Policy Privileges
	Policy Enforcement Options
	Summary: Four Aspects of Label-Based Row Access

	Auditing Features
	Oracle Label Security Distributed Capabilities

	2 Understanding Data Labels and User Labels
	Introduction to Label-Based Security
	Label Components
	Label Component Definitions and Valid Characters
	Levels
	Compartments
	Groups
	Industry Examples of Levels, Compartments, and Groups

	Label Syntax and Type
	How Data Labels and User Labels Work Together
	Administering Labels

	3 Understanding Access Controls and Privileges
	Introduction to Access Mediation
	Understanding Session Label and Row Label
	The Session Label
	The Row Label
	Session Label Example

	Understanding User Authorizations
	Authorizations Set by the Administrator
	Authorized Levels
	Authorized Compartments
	Authorized Groups

	Computed Session Labels

	How Labels Are Evaluated for Access Mediation
	Introduction to Read/Write Access
	Difference Between Read and Write Operations
	Propagation of Read/Write Authorizations on Groups

	The Oracle Label Security Algorithm for Read Access
	The Oracle Label Security Algorithm for Write Access

	Using Oracle Label Security Privileges
	Privileges Defined by Oracle Label Security Policies
	Special Access Privileges
	READ
	FULL
	COMPACCESS
	PROFILE_ACCESS

	Special Row Label Privileges
	WRITEUP
	WRITEDOWN
	WRITEACROSS

	System Privileges, Object Privileges, and Policy Privileges
	Access Mediation and Views
	Access Mediation and Program Unit Execution
	Access Mediation and Policy Enforcement Options

	Multiple Oracle Label Security Policies
	Multiple Oracle Label Security Policies in a Single Database
	Multiple Oracle Label Security Policies in a Distributed Environment

	Part II� Using Oracle Label Security Functionality
	4 Working with Labeled Data
	The Policy Label Column and Label Tags
	The Policy Label Column
	Hiding the Policy Label Column
	Example 1: Numeric Column Datatype (NUMBER)
	Example 2: Numeric Column Datatype with Hidden Column

	Label Tags
	Manually Defining Label Tags to Order Labels
	Manually Defining Label Tags to Manipulate Data
	Automatically Generated Label Tags

	Presenting the Label
	Converting a Character String to a Label Tag, with CHAR_TO_LABEL
	Converting a Label Tag to a Character String, with LABEL_TO_CHAR
	LABEL_TO_CHAR Examples
	Retrieving All Columns from a Table When Policy Label Column Is Hidden

	Filtering Data Using Labels
	Using Numeric Label Tags in WHERE Clauses
	Ordering Labeled Data Rows
	Ordering by Character Representation of Label
	Determining Upper and Lower Bounds of Labels
	Finding Least Upper Bound with LEAST_UBOUND
	Finding Greatest Lower Bound with GREATEST_LBOUND

	Merging Labels with the MERGE_LABEL Function

	Inserting Labeled Data
	Inserting Labels Using CHAR_TO_LABEL
	Inserting Labels Using Numeric Label Tag Values
	Inserting Data Without Specifying a Label
	Inserting Data When the Policy Label Column Is Hidden
	Inserting Labels Using TO_DATA_LABEL

	Changing Your Session and Row Labels with SA_SESSION
	SA_SESSION Functions to Change Session and Row Labels
	Changing the Session Label with SA_SESSION.SET_LABEL
	Changing the Row Label with SA_SESSION.SET_ROW_LABEL
	Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS
	Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS
	Viewing Session Attributes with SA_SESSION Functions
	USER_SA_SESSION View to Return All Security Attributes
	Functions to Return Individual Security Attributes

	Part III� Administering an Oracle Label Security Application
	5 Creating an Oracle Label Security Policy
	Oracle Label Security Administrative Task Overview
	Step 1: Create the Policy
	Step 2: Define the Components of the Labels
	Step 3: Identify the Set of Valid Data Labels
	Step 4: Apply the Policy to Tables and Schemas
	Step 5: Authorize Users
	Step 6: Create and Authorize Trusted Program Units (Optional)
	Step 7: Configure Auditing (Optional)

	Organizing the Duties of Oracle Label Security Administrators
	Choosing an Oracle Label Security Administrative Interface
	Oracle Label Security Packages
	Oracle Label Security Demonstration File

	Oracle Policy Manager

	Using the SA_SYSDBA Package to Manage Security Policies
	Who Can Use the SA_SYSDBA Package
	Who Can Administer a Policy
	Valid Characters for Policy Specifications
	Creating a Policy with SA_SYSDBA.CREATE_POLICY
	Modifying Policy Options with SA_SYSDBA.ALTER_POLICY
	Disabling a Policy with SA_SYSDBA.DISABLE_POLICY
	Enabling a Policy with SA_SYSDBA.ENABLE_POLICY
	Removing a Policy with SA_SYSDBA.DROP_POLICY

	Using the SA_COMPONENTS Package to Define Label Components
	Using Overloaded Procedures
	Creating a Level with SA_COMPONENTS.CREATE_LEVEL
	Modifying a Level with SA_COMPONENTS.ALTER_LEVEL
	Removing a Level with SA_COMPONENTS.DROP_LEVEL
	Creating a Compartment with SA_COMPONENTS.CREATE_COMPARTMENT
	Modifying a Compartment with SA_COMPONENTS.ALTER_COMPARTMENT
	Removing a Compartment with SA_COMPONENTS.DROP_COMPARTMENT
	Creating a Group with SA_COMPONENTS.CREATE_GROUP
	Modifying a Group with SA_COMPONENTS.ALTER_GROUP
	Modifying a Group Parent with SA_COMPONENTS.ALTER_GROUP_PARENT
	Removing a Group with SA_COMPONENTS.DROP_GROUP

	Using the SA_LABEL_ADMIN Package to Specify Valid Labels
	Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL
	Modifying a Label with SA_LABEL_ADMIN.ALTER_LABEL
	Deleting a Label with SA_LABEL_ADMIN.DROP_LABEL

	6 Administering User Labels and Privileges
	Introduction to User Label and Privilege Management
	Managing User Labels by Component, with SA_USER_ADMIN
	SA_USER_ADMIN.SET_LEVELS
	SA_USER_ADMIN.SET_COMPARTMENTS
	SA_USER_ADMIN.SET_GROUPS
	SA_USER_ADMIN.ALTER_COMPARTMENTS
	SA_USER_ADMIN.ADD_COMPARTMENTS
	SA_USER_ADMIN.DROP_COMPARTMENTS
	SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
	SA_USER_ADMIN.ADD_GROUPS
	SA_USER_ADMIN.ALTER_GROUPS
	SA_USER_ADMIN.DROP_GROUPS
	SA_USER_ADMIN.DROP_ALL_GROUPS

	Managing User Labels by Label String, with SA_USER_ADMIN
	SA_USER_ADMIN.SET_USER_LABELS
	SA_USER_ADMIN.SET_DEFAULT_LABEL
	SA_USER_ADMIN.SET_ROW_LABEL
	SA_USER_ADMIN.DROP_USER_ACCESS

	Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS
	Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE
	Returning User Name with SA_SESSION.SA_USER_NAME
	Using Oracle Label Security Views
	View to Display All User Security Attributes: DBA_SA_USERS
	Views to Display User Authorizations by Component

	7 Implementing Policy Options and Labeling Functions
	Choosing Policy Options
	Overview of Policy Enforcement Options
	The HIDE Policy Column Option
	The Label Management Enforcement Options
	LABEL_DEFAULT: Using the Session’s Default Row Label
	LABEL_UPDATE: Changing Data Labels
	CHECK_CONTROL: Checking Data Labels

	The Access Control Enforcement Options
	READ_CONTROL: Reading Data
	WRITE_CONTROL: Writing Data
	INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL

	The Overriding Enforcement Options
	Guidelines for Using the Policy Enforcement Options
	Exemptions from Oracle Label Security Policy Enforcement
	Viewing Policy Options on Tables and Schemas

	Using a Labeling Function
	Approaches to Data Labeling
	How Labeling Functions Work
	Creating a Labeling Function
	Specifying a Labeling Function

	Policy Options and Labeling Functions: Inserting Labeled Data
	Enforcement Control Options and INSERT
	Inserting Labels When a Labeling Function is Specified
	Inserting Child Rows into Tables with Declarative Referential Integrity Enabled

	Policy Options and Labeling Functions: Updating Labeled Data
	Updating Labels Using CHAR_TO_LABEL
	Enforcement Control Options and UPDATE
	Updating Labels When a Labeling Function Is Specified
	Updating Child Rows in Tables with Declarative Referential Integrity Enabled

	Policy Options and Labeling Functions: Deleting Labeled Data
	Using a SQL Predicate with an Oracle Label Security Policy
	SQL Predicates Used with an Oracle Label Security Policy
	Effect of Multiple SQL Predicates Under Oracle Label Security

	8 Applying Policies to Tables and Schemas
	Policy Administration Terminology
	Policy Administration Functions for Tables and Schemas
	Administering Policies on Tables Using SA_POLICY_ADMIN
	Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY
	Removing a Policy with SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
	Disabling a Policy with SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
	Re-enabling a Policy with SA_POLICY_ADMIN.ENABLE_TABLE_POLICY

	Administering Policies on Schemas with SA_POLICY_ADMIN
	Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
	Altering Enforcement Options: SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
	Removing a Policy with SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
	Disabling a Policy with SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
	Re-Enabling a Policy with SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
	Policy Issues for Schemas

	9 Administering and Using Trusted Stored Program Units
	Introduction to Trusted Stored Program Units
	How a Trusted Stored Program Unit Executes
	Trusted Stored Program Unit Example

	Managing Program Unit Privileges with SET_PROG_PRIVS
	Creating and Compiling Trusted Stored Program Units
	Creating Trusted Stored Program Units
	Setting Privileges for Trusted Stored Program Units
	Re-Compiling Trusted Stored Program Units
	Recreating Trusted Stored Program Units
	Executing Trusted Stored Program Units

	Using SA_UTL Functions to Set and Return Label Information
	Viewing Session Label and Row Label Using SA_UTL
	SA_UTL.NUMERIC_LABEL
	SA_UTL.NUMERIC_ROW_LABEL
	SA_UTL.DATA_LABEL

	Setting the Session Label and Row Label Using SA_UTL
	SA_UTL.SET_LABEL
	SA_UTL.SET_ROW_LABEL

	Returning Greatest Lower Bound and Least Upper Bound
	GREATEST_LBOUND
	LEAST_UBOUND

	10 Auditing Under Oracle Label Security
	Overview of Oracle Label Security Auditing
	Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
	Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN
	Auditing Options for Oracle Label Security
	Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT
	Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT
	Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View

	Managing Policy Label Auditing
	Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL
	Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL
	Finding Label Audit Status with AUDIT_LABEL_ENABLED

	Creating and Dropping an Audit Trail View for Oracle Label Security
	Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW
	Dropping the View with SA_AUDIT_ADMIN.DROP_VIEW

	Oracle Label Security Auditing Tips
	Strategy for Setting SA_AUDIT_ADMIN Options
	Auditing Privileged Operations

	11 Using Oracle Label Security with a Distributed Database
	An Oracle Label Security Distributed Configuration
	Connecting to a Remote Database Under Oracle Label Security
	Establishing Session Label and Row Label for a Remote Session
	Setting Up Labels in a Distributed Environment
	Setting Label Tags in a Distributed Environment
	Setting Numeric Form of Label Components in a Distributed Environment

	Using Oracle Label Security Policies in a Distributed Environment
	Using Replication with Oracle Label Security
	Introduction to Replication Under Oracle Label Security
	Replication Functionality Supported by Oracle Label Security
	Row Level Security Restriction on Replication Under Oracle Label Security

	Contents of a Materialized View
	How Materialized View Contents Are Determined
	Complete Materialized Views
	Partial Materialized Views

	Requirements for Creating Materialized Views Under Oracle Label Security
	Requirements for the REPADMIN Account
	Requirements for the Owner of the Materialized View
	Requirements for Creating Partial Multilevel Materialized Views
	Requirements for Creating Complete Multilevel Materialized Views

	How to Refresh Materialized Views

	12 Performing DBA Functions Under Oracle Label Security
	Using the Export Utility with Oracle Label Security
	Using the Import Utility with Oracle Label Security
	Requirements for Import Under Oracle Label Security
	Preparing the Import Database
	Verifying Import User Authorizations

	Defining Data Labels for Import
	Importing Labeled Data Without Installing Oracle Label Security
	Importing Unlabeled Data
	Importing Tables with Hidden Columns

	Using SQL*Loader with Oracle Label Security
	Requirements for Using SQL*Loader Under Oracle Label Security
	Oracle Label Security Input to SQL*Loader

	Performance Tips for Oracle Label Security
	Using ANALYZE to Improve Oracle Label Security Performance
	Creating Indexes on the Policy Label Column
	Planning a Label Tag Strategy to Enhance Performance
	Partitioning Data Based on Numeric Label Tags

	Creating Additional Databases After Installation

	13 Releasability Using Inverse Groups
	Introduction to Inverse Groups and Releasability
	Comparing Standard Groups and Inverse Groups
	How Inverse Groups Work
	Implementing Inverse Groups with the INVERSE_GROUP Enforcement Option
	Inverse Groups and Label Components
	Computed Labels with Inverse Groups
	Computed Session Labels with Inverse Groups
	Inverse Groups and Computed Max Read Groups and Max Write Groups

	Inverse Groups and Hierarchical Structure
	Inverse Groups and User Privileges

	Algorithm for Read Access with Inverse Groups
	Algorithm for Write Access with Inverse Groups
	Algorithms for COMPACCESS Privilege with Inverse Groups
	Session Labels and Inverse Groups
	Inverse Groups with SA_USER_ADMIN.SET_DEFAULT_LABEL and SA_USER_ ADMIN.SET_ROW_LABEL
	Rules for Changing Default Labels with Standard Groups
	Rules for Changing Default Labels with Inverse Groups

	Inverse Groups with SA_SESSION.SET_ROW_LABEL and SA_SESSION.SET_LABEL
	Rules for Changing Session Label with Standard Groups
	Rules for Changing Session Label and Row Label with Inverse Groups

	Examples of Session Labels and Inverse Groups
	Inverse Groups Example 1
	Inverse Groups Example 2

	Changes in Behavior of Procedures with Inverse Groups
	SYSDBA.CREATE_POLICY with Inverse Groups
	SYSDBA.ALTER_POLICY with Inverse Groups
	SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
	SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
	SA_USER_ADMIN.SET_GROUPS with Inverse Groups
	SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
	SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
	SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
	SA_COMPONENTS.CREATE_GROUP with Inverse Groups
	SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
	SA_SESSION.SET_LABEL with Inverse Groups
	SA_SESSION.SET_ROW_LABEL with Inverse Groups
	LEAST_UBOUND with Inverse Groups
	GREATEST_LBOUND with Inverse Groups

	Dominance Rules for Labels with Inverse Groups

	Part IV� Appendix
	A Advanced Topics in Oracle Label Security
	Analyzing the Relationships Between Labels
	Dominant and Dominated Labels
	Non-Comparable Labels
	Using Dominance Functions
	DOMINATES Standalone Function
	STRICTLY_DOMINATES Standalone Function
	DOMINATED_BY Standalone Function
	STRICTLY_DOMINATED_BY Standalone Function
	SA_UTL.DOMINATES
	SA_UTL.STRICTLY_DOMINATES
	SA_UTL.DOMINATED_BY
	SA_UTL.STRICTLY_DOMINATED_BY

	OCI Interface for Setting Session Labels
	OCIAttrSet
	OCIAttrGet
	OCIParamGet
	OCIAttrSet
	OCI Example

	B Reference
	Oracle Label Security Data Dictionary Tables and Views
	Oracle9i Data Dictionary Tables
	Oracle Label Security Data Dictionary Views
	ALL_SA_AUDIT_OPTIONS
	ALL_SA_COMPARTMENTS
	ALL_SA_DATA_LABELS
	ALL_SA_GROUPS
	ALL_SA_LABELS
	ALL_SA_LEVELS
	ALL_SA_POLICIES
	ALL_SA_PROG_PRIVS
	ALL_SA_SCHEMA_POLICIES
	ALL_SA_TABLE_POLICIES
	ALL_SA_USERS
	ALL_SA_USER_LABELS
	ALL_SA_USER_LEVELS
	ALL_SA_USER_PRIVS
	DBA_SA_AUDIT_OPTIONS
	DBA_SA_COMPARTMENTS
	DBA_SA_DATA_LABELS
	DBA_SA_GROUPS
	DBA_SA_GROUP_HIERARCHY
	DBA_SA_LABELS
	DBA_SA_LEVELS
	DBA_SA_POLICIES
	DBA_SA_PROG_PRIVS
	DBA_SA_SCHEMA_POLICIES
	DBA_SA_TABLE_POLICIES
	DBA_SA_USERS
	DBA_SA_USER_COMPARTMENTS
	DBA_SA_USER_GROUPS
	DBA_SA_USER_LABELS
	DBA_SA_USER_LEVELS
	DBA_SA_USER_PRIVS

	Oracle Label Security Auditing Views

	Restrictions in Oracle Label Security
	CREATE TABLE AS SELECT Restriction in Oracle Label Security
	Label Tag Restriction
	Export Restriction in Oracle Label Security
	Oracle Label Security Deinstallation Restriction
	Shared Schema Support
	Hidden Columns Restriction

	Index

