
Oracle9i

JPublisher User’s Guide

Release 2 (9.2)

March 2002

Part No. A96658-01

Oracle9i JPublisher User’s Guide, Release 2 (9.2)

Part No. A96658-01

Copyright © 1999, 2002 Oracle Corporation. All rights reserved.

Primary Authors: Brian Wright, Ekkehard Rohwedder, Thomas Pfaeffle, P. Alan Thiesen

Contributing Author: Janice Nygard

Contributors: Quan Wang, Prabha Krishna, Ellen Barnes

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, PL/SQL, SQL*Plus, and Oracle Store are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send Us Your Comments .. vii

Preface.. ix

Intended Audience ... x
Documentation Accessibility .. x
Organization ... xi
Related Documentation .. xi
Conventions... xv

1 Introduction to JPublisher

Introduction to JPublisher Features .. 1-2
Invitation to JPublisher .. 1-2
Getting Started with JPublisher.. 1-3
New JPublisher Features in Oracle9i Release 2.. 1-9

Understanding JPublisher .. 1-11
JPublisher Object Type Mappings and PL/SQL Mappings... 1-11
JPublisher Processes ... 1-12
What JPublisher Produces... 1-13
JPublisher Requirements ... 1-15
JPublisher Input and Output .. 1-16
Overview of Datatype Mappings... 1-18
Creating Types and Packages in the Database... 1-19

JPublisher Operation ... 1-21
Translating and Using PL/SQL Packages and User-Defined Types 1-21
 iii

Representing User-Defined Object, Collection, and Reference Types in Java................... 1-23
Strongly Typed Object References for ORAData Implementations.................................... 1-24
JPublisher Command-Line Syntax ... 1-25
Sample JPublisher Translation.. 1-26

2 JPublisher Concepts

Details of Datatype Mapping ... 2-2
SQL and PL/SQL Mappings to Oracle and JDBC Types.. 2-3
Allowed Object Attribute Types... 2-6
Using Datatypes Unsupported by JDBC... 2-7

Concepts of JPublisher-Generated Classes.. 2-20
Passing OUT Parameters ... 2-20
Translating Overloaded Methods .. 2-23

JPublisher Generation of SQLJ Classes (.sqlj) .. 2-24
Important Notes About Generation of SQLJ Classes .. 2-24
Use of SQLJ Classes JPublisher Generates for PL/SQL Packages....................................... 2-25
Use of Classes JPublisher Generates for Object Types .. 2-26
Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher 2-27

JPublisher Generation of Java Classes (.java) ... 2-31
User-Written Subclasses of JPublisher-Generated Classes .. 2-34

Extending JPublisher-Generated Classes .. 2-34
Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes 2-36
The setFrom(), setValueFrom(), and setContextFrom() Methods.. 2-38

JPublisher Support for Inheritance ... 2-39
ORAData Object Types and Inheritance ... 2-39
ORAData Reference Types and Inheritance ... 2-42
SQLData Object Types and Inheritance .. 2-47
Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE..... 2-48

Backward Compatibility and Migration .. 2-49
JPublisher Backward Compatibility... 2-49
JPublisher Compatibility Between JDK Versions .. 2-49
Migration Between Oracle8i JPublisher and Oracle9i JPublisher.. 2-50

JPublisher Limitations ... 2-55
iv

3 Command-Line Options and Input Files

JPublisher Options ... 3-2
JPublisher Option Summary ... 3-2
JPublisher Option Tips... 3-5
Notational Conventions... 3-6
Detailed Descriptions of Options That Affect Datatype Mappings 3-7
Detailed Descriptions of General JPublisher Options ... 3-13

JPublisher Input Files .. 3-33
Properties File Structure and Syntax ... 3-33
INPUT File Structure and Syntax... 3-35
INPUT File Precautions ... 3-41

4 JPublisher Examples

Example: JPublisher Translations with Different Mappings... 4-2
JPublisher Translation with the JDBC Mapping .. 4-2
JPublisher Translation with the Oracle Mapping .. 4-5

Example: JPublisher Object Attribute Mapping .. 4-8
Listing and Description of Address.java Generated by JPublisher..................................... 4-10
Listing of AddressRef.java Generated by JPublisher .. 4-13
Listing of Alltypes.java Generated by JPublisher .. 4-15
Listing of AlltypesRef.java Generated by JPublisher .. 4-20
Listing of Ntbl.java Generated by JPublisher ... 4-22
Listing of AddrArray.java Generated by JPublisher... 4-25

Example: Generating a SQLData Class .. 4-28
Listing of Address.java Generated by JPublisher .. 4-28
Listing of Alltypes.java Generated by JPublisher .. 4-30

Example: Extending JPublisher Classes ... 4-36
Example: Wrappers Generated for Methods in Objects.. 4-42

Listing and Description of Rational.sqlj Generated by JPublisher...................................... 4-44
Example: Wrappers Generated for Methods in Packages ... 4-49

Listing and Description of RationalP.sqlj Generated by JPublisher 4-51
Example: Using Classes Generated for Object Types .. 4-54

Listing of RationalO.sql (Definition of Object Type)... 4-56
Listing of JPubRationalO.sqlj Generated by JPublisher.. 4-57
Listing of RationalORef.java Generated by JPublisher ... 4-60
 v

Listing of RationalO.sqlj Generated by JPublisher and Modified by User 4-62
Listing of TestRationalO.java Written by User... 4-64

Example: Using Classes Generated for Packages ... 4-66
Listing of RationalP.sql (Definition of the Object Type and Package)................................ 4-67
Listing of TestRationalP.java Written by User ... 4-69

Example: Using Datatypes Unsupported by JDBC .. 4-71
The User-Defined BOOLEANS Datatype ... 4-71
Alternative 1: Using JPublisher for the Entire Process.. 4-72
Alternative 2: Manual Conversion ... 4-76

Index
vi

Send Us Your Comments

Oracle9i JPublisher User’s Guide, Release 2 (9.2)

Part No. A96658-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: jpgcomment_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

This preface introduces you to the Oracle9i JPublisher User’s Guide, discussing the
intended audience, structure, and conventions of this document. A list of related
Oracle documents is also provided.

The JPublisher utility translates user-defined SQL object types and PL/SQL
packages to Java classes. SQLJ, JDBC, and J2EE programmers who need to have
Java classes in their applications to correspond to database object types, VARRAY
types, nested table types, object reference types, opaque types, or PL/SQL packages
can use the JPublisher utility.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions
 ix

Intended Audience
This manual is for JDBC and SQLJ programmers who want Java classes in their
applications to correspond to object types, VARRAY types, nested table types, object
reference types, OPAQUE types, or PL/SQL packages.

It assumes that you are an experienced Java programmer with knowledge of Oracle
databases, SQL, PL/SQL, JDBC, and SQLJ. Although general knowledge is
sufficient, any knowledge of Oracle-specific features would be helpful as well.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.
x

Organization
This document contains:

Chapter 1, "Introduction to JPublisher"
Introduces the JPublisher utility by way of example, lists new features provided in
this release, and provides an overview of JPublisher operations.

Chapter 2, "JPublisher Concepts"
Provides full background and details on the concepts and usage of JPublisher,
including datatype mappings, generation of output classes, support for inheritance,
migration and backward compatibility, and JPublisher limitations.

Chapter 3, "Command-Line Options and Input Files"
Provides details of the JPublisher command line syntax, command line options, and
input file format.

Chapter 4, "JPublisher Examples"
Presents examples of JPublisher usage and output for various object types, wrapper
methods, and usage scenarios.

Related Documentation
Also available from the Oracle Java Platform group, for Oracle9i releases:

■ Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle database Java environment in general,
rather than to a particular product such as JDBC or SQLJ, is in this book.

■ Oracle9i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of the Oracle
implementation of the JDBC standard (for Java Database Connectivity). This
includes an overview of the Oracle JDBC drivers, details of the Oracle
implementation of JDBC 1.22, 2.0, and 3.0 features, and discussion of Oracle
JDBC type extensions and performance extensions.
 xi

■ Oracle9i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

■ Oracle9i Support for JavaServer Pages Reference

This book covers the use of JavaServer Pages technology to embed Java code
and JavaBean invocations inside HTML pages. Both standard JSP features and
Oracle-specific features are described. Discussion covers considerations for the
Oracle9i release 2 Apache JServ environment, but also covers features for
servlet 2.2 environments and emulation of some of those features by the Oracle
JSP container for JServ.

■ Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle9i database. With stored procedures (functions, procedures, triggers, and
SQL methods), Java developers can implement business logic at the server
level, thereby improving application performance, scalability, and security.

The following OC4J documents, for Oracle9i Application Server releases, are also
available from the Oracle Java Platform group:

■ Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

■ Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4J.
xii

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J
configuration files.

■ Oracle9iAS Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4J,
such as JTA, JNDI, and the Oracle9i Application Server Java Object Cache.

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

The following documents are from the Oracle Server Technologies group:

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB

■ Oracle9i XML Developer’s Kits Guide - XDK

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs)

■ Oracle9i Application Developer’s Guide - Object-Relational Features

■ Oracle9i Supplied Java Packages Reference

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ PL/SQL User’s Guide and Reference

■ Oracle9i SQL Reference

■ Oracle9i Net Services Administrator’s Guide

■ Oracle Advanced Security Administrator’s Guide

■ Oracle9i Database Globalization Support Guide

■ Oracle9i Database Reference

■ Oracle9i Database Error Messages

■ Oracle9i Sample Schemas
 xiii

The following documents from the Oracle9i Application Server group may also be
of some interest:

■ Oracle9i Application Server Administrator’s Guide

■ Oracle Enterprise Manager Administrator’s Guide

■ Oracle HTTP Server Administration Guide

■ Oracle9i Application Server Performance Guide

■ Oracle9i Application Server Globalization Support Guide

■ Oracle9iAS Web Cache Administration and Deployment Guide

■ Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x

The following are available from the Oracle9i JDeveloper group:

■ JDeveloper online help

■ JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com
xiv

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis, or terms that are defined in the
text.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.
 xv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents place holders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates place holders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

Convention Meaning Example
xvi

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
 xvii

xviii

 Introduction to JPub
1

Introduction to JPublisher

This chapter starts with a brief introduction and examples for the JPublisher utility,
followed by a more complete overview. The following topics are covered:

■ Introduction to JPublisher Features

■ Understanding JPublisher

■ JPublisher Operation

If you are new to JPublisher, start with "Invitation to JPublisher" on page 1-2. If you
have used JPublisher before, you may want to skip ahead to "New JPublisher
Features in Oracle9i Release 2" on page 1-9.
lisher 1-1

Introduction to JPublisher Features
Introduction to JPublisher Features
This section gives you an introduction to basic features and new features in Oracle9i
release 2 (9.2).

Invitation to JPublisher
JPublisher is a utility, written entirely in Java, that generates Java classes to
represent the following user-defined database entities in your Java program:

■ SQL object types

■ object reference types ("REF types")

■ SQL collection types (VARRAY types or nested table types)

■ PL/SQL packages

JPublisher enables you to specify and customize the mapping of SQL object types,
object reference types, and collection types (VARRAYs or nested tables) to Java
classes in a strongly typed paradigm.

JPublisher generates getXXX() and setXXX() accessor methods for each attribute
of an object type. If your object types have stored procedures, JPublisher can
generate wrapper methods to invoke the stored procedures. A wrapper method is a
method that invokes a stored procedure that executes in Oracle9i.

JPublisher can also generate classes for PL/SQL packages. These classes have
wrapper methods to invoke the stored procedures in the PL/SQL packages.

The wrapper methods JPublisher generates contain SQLJ code, so when JPublisher
generates wrapper methods, it generally produces .sqlj source files. This is true
for classes representing PL/SQL packages or object types that define methods,
unless you specify (through the -methods option) that JPublisher should not
generate wrapper methods.

If no wrapper methods are generated, JPublisher produces .java source files. This
is true for classes representing object types without methods, object reference types,
or collection types, or for classes where the -methods option is off.

Instead of using JPublisher-generated classes directly, you can:

■ Extend the generated classes. This is straightforward, since JPublisher can also
generate initial versions of the subclasses for you, into which you can add your
desired behavior.
1-2 Oracle9i JPublisher User’s Guide

Introduction to JPublisher Features
■ Write your own Java classes by hand, without using JPublisher. This approach
is quite flexible, but time-consuming and error-prone.

■ Use generic classes to represent object, object reference, and collection types.
The oracle.sql package contains generic, weakly typed classes that represent
object, object reference, and collection types. If these classes meet your
requirements, you do not need JPublisher. Typically, you would use this
approach if you need to be able to generically process any SQL object, collection,
reference, or OPAQUE type.

In addition, JPublisher simplifies access to PL/SQL only types from Java. You can
employ predefined or user-defined mappings between PL/SQL and SQL types, as
well as make use of PL/SQL conversion functions between such types. With such
type correspondences in place, JPublisher can automatically generate all of the
required Java and PL/SQL code.

Getting Started with JPublisher
JPublisher is distributed with the Oracle SQLJ translator. If you have installed SQLJ
through the Oracle Installer, you should already be set up. If you have manually
downloaded a version of Oracle SQLJ, however, you have to go through a few
manual steps to ensure you can use SQLJ and JPublisher. You can refer to
instructions in the Oracle9i SQLJ Developer’s Guide and Reference.

You must ensure the following:

■ A version of the Sun Microsystems JDK is installed such that you can invoke
the javac compiler from the command line.

■ The Oracle JDBC driver is installed and in your classpath, typically
[Oracle_Home]/jdbc/classesXX.jar.

■ The Oracle SQLJ translator and runtime are in your classpath, typically
[Oracle_Home]/sqlj/runtimeXX.jar and
[Oracle_Home]/sqlj/translator.jar.

■ The invocation scripts or executables—jpub or jpub.exe, sqlj or
sqlj.exe—are in your file path, typically [Oracle_Home]/bin or (for
manual downloads) [Oracle_Home]/sqlj/bin.

With proper setup, if you type jpub to the command line you will see
information about common JPublisher option and input settings.

Additionally, if you use JPublisher from release 9.2.0 or later against a 9.2.0 or later
Oracle database, the PL/SQL package SYS.SQLJUTL should be installed. If your
database is Java-enabled, this is already the case. If not, have your database
 Introduction to JPublisher 1-3

Introduction to JPublisher Features
administrator install the SQL script [Oracle_Home]/sqlj/lib/sqljutl.sql
into the SYS schema.

Publishing SQL Object Types
It is straightforward to use JPublisher for publishing SQL objects and packages as
Java classes. This section provides examples of this for the OE (Order Entry) schema
that is part of the Oracle9i sample schema (see Oracle9i Sample Schemas for detailed
information). If you do not have the sample schema installed, but have your own
object types or packages that you would like to publish, just replace the user name,
password, and object or package names with your own.

Assuming that the password for the OE schema is OE, this is how you can publish
the SQL object type CATEGORY_TYP:

jpub -user=OE/OE -sql=CATEGORY_TYP:CategoryTyp

Use the JPublisher -user option to specify the user name (schema name) and
password. The -sql option specifies the types and packages to be published.
CATEGORY_TYP is the name of the SQL type and, separated by a colon (":"),
CategoryTyp is the name of the corresponding Java class to be generated.
JPublisher echoes to the standard output the names of the SQL types and packages
that it is publishing:

OE.CATEGORY_TYP

When you list the files in your current directory, you will notice that in addition to
the file CategoryTyp.java, which you would have expected, JPublisher has also
generated a file CategoryTypeRef.java. This represents a strongly typed
wrapper for SQL object references to OE.CATEGORY_TYP. Both files are ready to be
compiled with the Java compiler javac.

Here is another example, for the type CUSTOMER_TYP, using the shorthand -u
(followed by a space) for "-user=" and -s for "-sql=":

jpub -u OE/OE -s CUSTOMER_TYP:CustomerTyp

Note: This rest of this section provides introductory discussion
and examples. For more examples, go to
[Oracle_Home]/sqlj/demo/jpub in your Oracle installation.
1-4 Oracle9i JPublisher User’s Guide

Introduction to JPublisher Features
JPublisher output:

OE.CUSTOMER_TYP
OE.CUST_ADDRESS_TYP
OE.PHONE_LIST_TYP
OE.ORDER_LIST_TYP
OE.ORDER_TYP
OE.ORDER_ITEM_LIST_TYP
OE.ORDER_ITEM_TYP
OE.PRODUCT_INFORMATION_TYP
OE.INVENTORY_LIST_TYP
OE.INVENTORY_TYP
OE.WAREHOUSE_TYP

JPublisher reports a list of SQL object types, because whenever it encounters an
object type for the first time (whether it is an attribute, an object reference, or a
collection that has element types which themselves are objects or collections), it will
automatically generate a wrapper class for that type as well. Two wrapper files are
generated for each object type in this example: 1) a Java class, such as
CustomerTyp, to represent instances of the object type; and 2) a reference class,
such as CustomerTypeRef, to represent references to the object type. You may also
have noticed the naming scheme that JPublisher uses by default: the SQL type
OE.PRODUCT_INFORMATION_TYP turns into a Java class
ProductInformationTyp, for example.

Even though JPublisher automatically generates wrappers for embedded types, it
will not do so for subtypes of given object types. In this case, you have to explicitly
enumerate all of the subtypes that you want to have published. The
CATEGORY_TYP type has three subtypes: LEAF_CATEGORY_TYP,
COMPOSITE_CATEGORY_TYP, and CATALOG_TYP. The following is a single
wraparound JPublisher command line to publish these object types.

jpub -u OE/OE -s COMPOSITE_CATEGORY_TYP:CompositeCategoryTyp
 -s LEAF_CATEGORY_TYP:LeafCategoryTyp,CATALOG_TYP:CatalogTyp

JPublisher output:

OE.COMPOSITE_CATEGORY_TYP
OE.SUBCATEGORY_REF_LIST_TYP
OE.LEAF_CATEGORY_TYP
OE.CATALOG_TYP
OE.CATEGORY_TYP
OE.PRODUCT_REF_LIST_TYP
 Introduction to JPublisher 1-5

Introduction to JPublisher Features
Note the following:

■ If you want to unparse several types, you can list them all together in the -sql
(-s) option, separated by commas , or you can supply several -sql options on
the command line, or you can do both.

■ Although JPublisher does not automatically generate wrappers for all
subclasses, it will generate them for all superclasses.

■ When you ran JPublisher earlier to generate CatalogTyp, a .java file was
output. This time, however, JPublisher created .sqlj files for CATALOG_TYP
and its three subtypes.

This is because SQLJ simplifies the coding of SQL invocations from Java.
Whenever a SQL object type contains methods, JPublisher by default will
generate a .sqlj file that includes wrappers for these methods as well. Both
.sqlj and .java files can be immediately translated and compiled with the
Oracle SQLJ translator, as follows:

sqlj *.sqlj *.java

If you are generating Java wrappers for a SQL type hierarchy, and one or more
of the types contain methods (as is the case here), then JPublisher will
automatically generate .sqlj files for all types in the hierarchy. Note that you
can always suppress the generation of method wrappers and thus of .sqlj
files with the JPublisher option -methods=false.

In case the code generated by JPublisher does not give you the functionality or
behavior you want, you can subclass generated wrapper classes in order to override
or complement their functionality. Consider the following example:

jpub -u OE/OE -s WAREHOUSE_TYP:JPubWarehouse:MyWarehouse

JPublisher output:

OE.WAREHOUSE_TYP

With this command, JPublisher generates JPubWarehouse.java as well as
MyWarehouse.java. The file JPubWarehouse.java is regenerated every time
you rerun this command. The file MyWarehouse.java is created in order to be
customized by you, and will not be overwritten by future runs of this JPublisher
invocation. You can add new methods in MyWarehouse.java, override the
method implementations from JPubWarehouse.java, or both. The class used to
materialize WAREHOUSE_TYP instances in Java is the specialized class
MyWarehouse. If you want user-specific subclasses for all types in an object type
1-6 Oracle9i JPublisher User’s Guide

Introduction to JPublisher Features
hierarchy, you will have to specify "triplets" of the form
SQL_TYPE:JPubClass:UserClass as above for all members of the hierarchy.

Now that we have generated and compiled some Java wrapper classes—how do
you actually use them in Java programs?

Once you have generated and compiled Java wrapper classes with JPublisher, using
them is fairly straightforward, especially if you are programming in SQLJ—just use
the object wrappers directly. The following example calls a PL/SQL stored
procedure that takes a WAREHOUSE_TYPE instance as an IN OUT parameter:

java.math.BigDecimal location = ...;
java.math.BigDecimal warehouseId = ...;
MyWarehouse w = new MyWarehouse(warehouseId,"Industrial Park",location);
...
#sql { call register_warehouse(:INOUT w) };

In JDBC, you typically register the relationship between the SQL type name and the
corresponding Java class in the type map for your connection instance. This is
required once per connection, as in the following example:

java.util.Map typeMap = conn.getTypeMap();
typeMap.put("OE.WAREHOUSE_TYP", MyWarehouse.class);
conn.setTypeMap(typeMap);

The following JDBC code corresponds to the #sql statement shown earlier.

CallableStatement cs = conn.prepareCall("{call register_warehouse(?)}");
((OracleCallableStatement)cs).registerOutParameter
 (1,oracle.jdbc.OracleTypes.STRUCT,"OE.WAREHOUSE_TYP");
cs.setObject(w);
cs.executeUpdate();
w = cs.getObject(1);

Publishing PL/SQL Packages
As shown in the preceding section, it is straightforward to use SQLJ code to call
PL/SQL stored procedures or functions. However, you might prefer to encapsulate
entire PL/SQL packages as Java classes, and JPublisher also offers functionality for
this.

The concept of representing PL/SQL functions and procedures as Java methods
presents a problem—arguments to such functions or procedures might use the
PL/SQL mode OUT or IN OUT, but there are no equivalent modes for passing
arguments in Java. A method that takes an int argument, for example, is not able
 Introduction to JPublisher 1-7

Introduction to JPublisher Features
to modify this argument in such a way that its callers can receive a new value for it.
As a workaround, JPublisher generates single-element arrays for OUT and IN OUT
arguments. For an array int[] abc, for example, the input value is provided in
abc[0], and the modified output value is also returned in abc[0]. A similar
pattern is also used by JPublisher when generating code for SQL object type
methods.

The following command line publishes the SYS.DBMS_LOB package into Java:

jpub -u SCOTT/TIGER -s SYS.DBMS_LOB:DbmsLob

JPublisher output:

SYS.DBMS_LOB

Since DBMS_LOB is publicly visible, we can access it from a different schema, such
as SCOTT. Note that this JPublisher invocation creates a SQLJ source file
DbmsLob.sqlj that contains the calls to the PL/SQL package. The generated Java
methods are actually all instance methods. The idea is that you create an instance of
the package using a JDBC connection or a SQLJ connection context and then call the
methods on that instance.

Use of Object Types Instead of Java Primitive Numbers When you examine the generated
code, notice that JPublisher has generated java.lang.Integer as arguments to
various methods. Using Java object types such as Integer instead of Java primitive
types such as int permits you to represent SQL NULL values directly as Java nulls,
and JPublisher generates these by default. However, for the DBMS_LOB package we
actually prefer int over the object type Integer. The following modified
JPublisher invocation accomplishes this through the -numbertypes option.

jpub -numbertypes=jdbc -u SCOTT/TIGER -s SYS.DBMS_LOB:DbmsLob

JPublisher output:

SYS.DBMS_LOB

Wrapper Code for Procedures at the SQL Top Level JPublisher also allows you to
generate wrapper code for the functions and procedures at the SQL top level. Use
the special package name TOPLEVEL, as in the following example:

jpub -u SCOTT/TIGER -s TOPLEVEL:SQLTopLevel

JPublisher output:

SCOTT.<top-level_scope>
1-8 Oracle9i JPublisher User’s Guide

Introduction to JPublisher Features
You will see a warning if there are no stored functions or procedures in the SQL
top-level scope.

If your stored procedures or functions use types that are specific to PL/SQL and not
supported from Java, you will receive warning messages and no corresponding Java
methods are generated. However, you may be able to map PL/SQL types to
corresponding SQL types and their Java counterparts, which will permit JPublisher
to generate appropriate Java code, and possibly PL/SQL code, to gain access to
these types from Java. (See "Using Datatypes Unsupported by JDBC" on page 2-7.)

New JPublisher Features in Oracle9i Release 2
With Oracle9i release 2 (9.2), JPublisher supports virtually all types that can be used
with the Oracle JDBC drivers. Additionally, JPublisher facilitates the use of PL/SQL
types in stored procedure and object method signatures through PL/SQL
conversion support. The following Oracle JDBC types are now directly supported:

■ NCHAR types

■ TIMESTAMP types

■ SQLJ object types

■ SQL OPAQUE types

Specifically, the OPAQUE type SYS.XMLTYPE is supported through the Java
type oracle.xdb.XMLType. SQL OPAQUE types can be supported through a
predefined type correspondence or can trigger JPublisher code generation. (See
"Type Mapping Support for OPAQUE Types" on page 2-8.)

Native PL/SQL types can now be more easily accessed by JPublisher code through
the automatic generation of PL/SQL wrapper functions and procedures in
conjunction with the following mechanisms:

■ predefined type conversions, such as between PL/SQL BOOLEAN and Java
boolean, or PL/SQL INTERVAL and Java String

See "Type Mapping Support Through PL/SQL Conversion Functions" on
page 2-11.

■ user-defined mappings for PL/SQL indexed-by tables in conjunction with the
JDBC OCI driver

See "Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI" on
page 2-9.
 Introduction to JPublisher 1-9

Introduction to JPublisher Features
■ user-defined conversion functions for mapping PL/SQL RECORD types and
tables of records to SQL object and collection types, and ultimately to Java

See "Type Mapping Support for PL/SQL RECORD Types" on page 2-14.

JPublisher now provides improved functionality as well as flexibility in the code it
generates, as follows:

■ JPublisher generates attribute-based constructors for SQL object types.

■ New APIs are now provided in the generated classes to convert between
strongly typed references and to transfer connection information between
objects.

■ Generated Java wrappers for SQL object types can be made serializable.

See "Serializability of Generated Object Wrappers (-serializable)" on page 3-26.

■ JPublisher can create toString() methods that report the object value.

See "Generation of toString() Method on Object Wrappers (-tostring)" on
page 3-29.

JPublisher now reduces the programming effort even further, as follows:

■ When you request user-subclassing of JPublisher-generated classes, an initial
version of these user subclasses will now be automatically generated by
JPublisher.

■ Inheritance hierarchies now require no initialization by the user application.

■ Generated files will not be overwritten unnecessarily, improving JPublisher’s
interaction with Make environments.

■ Extended syntax for JPublisher properties files permits embedding of JPublisher
directives in SQL scripts.
1-10 Oracle9i JPublisher User’s Guide

Understanding JPublisher
Understanding JPublisher
This section provides a basic understanding of what JPublisher is for and what it
accomplishes, covering the following topics:

■ JPublisher Object Type Mappings and PL/SQL Mappings

■ JPublisher Processes

■ What JPublisher Produces

■ JPublisher Requirements

■ JPublisher Input and Output

■ Overview of Datatype Mappings

■ Creating Types and Packages in the Database

JPublisher Object Type Mappings and PL/SQL Mappings
JPublisher provides mappings from the following SQL entities to Java classes:

■ SQL object types, collection types, reference types, and OPAQUE types

■ PL/SQL packages and types

Object Types and JPublisher
JPublisher allows your Java language applications to employ user-defined object
types in Oracle9i. If you intend to have your Java-language application access object
data, then it must represent the data in a Java format. JPublisher helps you do this
by creating the mapping between object types and Java classes, and between object
attribute types and their corresponding Java types.

Classes generated by JPublisher implement either the oracle.sql.ORAData
interface or the java.sql.SQLData interface, depending on how you set the
JPublisher options. Either interface makes it possible to transfer object type
instances between the database and your Java program. For more information about
the ORAData and SQLData interfaces, see the Oracle9i JDBC Developer’s Guide and
Reference.

PL/SQL Packages and JPublisher
You might want to call stored procedures in a PL/SQL package from your Java
application. The stored procedure can be a PL/SQL subprogram or a Java method
 Introduction to JPublisher 1-11

Understanding JPublisher
that has been published to SQL. Java arguments and functions are passed to and
returned from the stored procedure.

To help you do this, you can direct JPublisher to create a class containing a wrapper
method for each subprogram in the package. The wrapper methods generated by
JPublisher provide a convenient way to invoke PL/SQL stored procedures from
Java code or to invoke a Java stored procedure from a client Java program.

If you call PL/SQL code that includes top-level subprograms (subprograms not in
any PL/SQL package), JPublisher can generate a class containing wrapper methods
for all top-level procedures and functions, or for a subset of the top-level
subprograms that you request.

PL/SQL Types and JPublisher
Java programs only permit you to use SQL types when calling PL/SQL stored
procedures or functions. Types that are supported by PL/SQL only, such as
BOOLEAN, PL/SQL RECORD types, and PL/SQL indexed-by tables cannot be
accessed by JDBC programs. One exception to this are scalar PL/SQL indexed-by
tables which are currently supported in the client-side JDBC OCI driver only.

JPublisher simplifies the invocation of stored procedures and functions that contain
such types: it will automatically create a package with PL/SQL wrapper procedures
and functions, as necessary, to convert between signatures containing PL/SQL
types and corresponding ones that can be used from Java programs and that
reference SQL types only. A mapping has been predefined for the BOOLEAN type.
However, in general users will have to provide correspondences and conversions
between SQL and PL/SQL in order for JPublisher to incorporate a particular
PL/SQL type into its code generation.

JPublisher Processes
JPublisher connects to a database and retrieves descriptions of the SQL object types
or PL/SQL packages that you specify on the command line or from an input file. By
default, JPublisher connects to the database by using the JDBC OCI driver, which
requires an Oracle client installation, including Oracle9i Net and required support
files. If you do not have an Oracle client installation, JPublisher can use the Oracle
JDBC Thin driver.

JPublisher generates a Java class for each SQL object type it translates. The Java
class includes code required to read objects from and write objects to the database.
When you deploy the generated JPublisher classes, your JDBC driver installation
includes all the necessary runtime files. If you create wrapper methods (Java
methods to wrap stored procedures or functions of the SQL object type), JPublisher
1-12 Oracle9i JPublisher User’s Guide

Understanding JPublisher
generates SQLJ source code so you must additionally have the SQLJ runtime
libraries.

When you call a wrapper method, the SQL value for the object is sent to the server,
along with any IN our IN OUT arguments. Then the method (stored procedure or
function) is invoked, and the new object value is returned to the client, along with
any OUT or IN OUT arguments. Note that this results in a database round trip. If the
method call only performs a simple state change on the object, it will be much more
performant to write and use equivalent Java that affects the state change locally.

JPublisher also generates a class for each PL/SQL package it translates. The class
includes code to invoke the package methods on the server. IN arguments for the
methods are transmitted from the client to the server, and OUT arguments and
results are returned from the server to the client. In addition, JPublisher may also
generate a PL/SQL wrapper package, if required, for converting signatures
containing PL/SQL types into corresponding ones containing SQL types only.

The next section furnishes a general description of the source files that JPublisher
creates for object types and PL/SQL packages.

What JPublisher Produces
The number of files JPublisher produces depends on whether you request ORAData
classes (classes that implement the oracle.sql.ORAData interface) or SQLData
classes (classes that implement the standard java.sql.SQLData interface).

The ORAData interface supports SQL object, object reference, collection, and
OPAQUE types in a strongly typed way. That is, for each specific object, object
reference, collection, or OPAQUE type in the database, there is a corresponding Java
type. The SQLData interface, on the other hand, supports only SQL object types in a
strongly typed way. All object reference types are represented generically as
java.sql.Ref instances, and all collection types are represented generically as
java.sql.Array instances. Therefore, JPublisher generates classes for object
reference, collection, and OPAQUE types only if it is generating ORAData classes.

When you run JPublisher for a user-defined object type and you request ORAData
classes, JPublisher automatically creates the following:

■ an object class that represents instances of the Oracle object type in your Java
program

■ a related reference class for object references to your Oracle object type

■ Java classes for any object or collection or OPAQUE attributes nested directly or
indirectly within the top-level object
 Introduction to JPublisher 1-13

Understanding JPublisher
This is necessary so that attributes can be materialized in Java whenever an
instance of the top-level class is materialized. If an attribute type, such as a SQL
OPAQUE type or a PL/SQL type, has been pre-mapped, then JPublisher will
use the target Java type from the map.

If you request SQLData classes instead, JPublisher does not generate the object
reference class and does not generate classes for nested collection attributes or for
OPAQUE attributes.

When you run JPublisher for a user-defined collection type, you must request
ORAData classes. JPublisher automatically creates the following:

■ a collection class to act as a type definition to correspond to your Oracle
collection type

■ if the elements of the collection are objects, a Java class for the element type, and
Java classes for any object or collection attributes nested directly or indirectly
within the element type

This is necessary so object elements can be materialized in Java whenever an
instance of the collection is materialized.

When you run JPublisher for an OPAQUE type, you must request ORAData classes.
JPublisher automatically creates:

■ a Java class that acts as a wrapper of the OPAQUE type, providing Java
versions of the OPAQUE type methods, as well as protected APIs to access
the representation of the OPAQUE type in a subclass

Typically, however, Java wrapper classes for SQL OPAQUE types will be
furnished by the provider of the OPAQUE type, such as, for example,
oracle.xdb.XMLType for the SQL OPAQUE type SYS.XMLTYPE. In this case,
ensure that the correspondence between the SQL and the Java type is
predefined to JPublisher.

Note: For ORAData implementations, a strongly typed reference
class is always generated, regardless of whether the SQL object type
uses references.

Advantages of using strongly typed instead of weakly typed
references are described in "Strongly Typed Object References for
ORAData Implementations" on page 1-24.
1-14 Oracle9i JPublisher User’s Guide

Understanding JPublisher
When you run JPublisher for a PL/SQL package, it automatically creates the
following:

■ a Java class with wrapper methods that invoke the stored procedures of the
package

■ if required, a PL/SQL package definition containing functions and procedures
needed to convert from PL/SQL signatures to signatures containing SQL types
only

This may also be generated if you translate methods of an object type, and
PL/SQL wrappers are needed for converting PL/SQL to SQL arguments and
vice versa.

JPublisher Requirements
JPublisher requires that Oracle SQLJ and Oracle JDBC also be installed on your
system and in your classpath appropriately. You will need the following libraries
(available as .jar or .zip files):

■ SQLJ translator classes (translator)

■ SQLJ runtime classes (runtime12, runtime12ee, or runtime11)

■ JDBC classes (classes12, ojdbc14, or classes111)

"12" refers to versions for JDK 1.2.x or later; "14" refers to versions for JDK 1.4.x;
"11" and "111" refer to versions for JDK 1.1.x. See the Oracle9i SQLJ Developer’s
Guide and Reference for more information about these files.

When you use an Oracle9i release 2 or later database, then the package SQLJUTL
should also be installed and publicly accessible in the SYS schema. If this is not the
case, you will see the following warning message when you invoke JPublisher:

Warning: Cannot determine what kind of type is
<schema>.<type.> You likely need to install SYS.SQLJUTL. The
database returns: ORA-06550: line 1, column 7:

PLS-00201: identifier ’SYS.SQLJUTL’ must be declared

In this situation, ask your database administrator to install the SQL file [Oracle
Home]/sqlj/lib/sqljutl.sql into the SYS schema and make it publicly
accessible. This will avoid the above warning message in the future.

When you use Oracle9i JPublisher, it is typical to use the equivalent version of SQLJ,
because these two products are always installed together. To use all features of
JPublisher, you also need the following.
 Introduction to JPublisher 1-15

Understanding JPublisher
■ Oracle9i (or version 8.1.7 or 8.1.6)

■ Oracle9i JDBC drivers (or version 8.1.7 or 8.1.6)

■ Java Developer’s Kit (JDK) version 1.2 or higher

If you are using only some features of JPublisher, your requirements might be less
stringent:

■ If you never generate SQLData classes, and you never use the
java.sql.Blob and java.sql.Clob classes, you can use JDK version 1.1.x
instead of JDK 1.2.x.

■ If you never generate classes that implement the Oracle-specific ORAData
interface (or the deprecated CustomDatum interface), you should be able to use
a non-Oracle JDBC driver or a non-Oracle SQLJ implementation. When running
code generated by JPublisher, you should even be able to connect to a
non-Oracle database; however, JPublisher itself must connect to an Oracle
database. Oracle does not test or support configurations that use non-Oracle
components.

■ If you instruct JPublisher to not generate wrapper methods (through the setting
-methods=false), or if your object types define no methods, then JPublisher
will not generate wrapper methods or produce any .sqlj files. In this case,
you would not need the SQLJ translator. See "Generation of Package Classes
and Wrapper Methods (-methods)" on page 3-21 for information about the
-methods option.

■ If you want JPublisher to generate wrappers for SQL OPAQUE types, you must
use an Oracle 9i release 2 or later database and JDBC driver.

■ If you use JPublisher to generate only custom object classes that implement the
deprecated CustomDatum interface, you can use Oracle database version 8.1.5
with JDBC version 8.1.5 and JDK version 1.1.x or higher. (But it is advisable to
upgrade to the ORAData interface, which requires an Oracle9i or higher JDBC
implementation.)

JPublisher Input and Output
You can specify input options on the command line and in the properties file. In
addition to producing .sqlj and .java files for the translated objects, JPublisher
writes the names of the translated objects and packages to standard output.
1-16 Oracle9i JPublisher User’s Guide

Understanding JPublisher
JPublisher Input
"JPublisher Options" on page 3-2 describes all the JPublisher options.

In addition, you can use a file known as the INPUT file to specify the object types
and PL/SQL packages JPublisher should translate. It also controls the naming of the
generated packages and classes. "INPUT File Structure and Syntax" on page 3-35
describes INPUT file syntax.

A properties file is an optional text file that you can use to specify options to
JPublisher. Specify the names of properties files on the command line, using the
-props option. JPublisher processes the properties files as if their contents were
inserted, in sequence, on the command line at that point. For additional flexibility,
properties files can also be SQL script files where the JPublisher directives are
embedded in SQL comments. For more information about this file and its format,
see "Properties File Structure and Syntax" on page 3-33.

JPublisher Output
JPublisher generates a Java class for each object type that it translates. For each
object type, whether an ORAData or a SQLData implementation, JPublisher
generates a <type>.sqlj file for the class code (or a <type>.java file if wrapper
methods were suppressed or do not exist, or depending on the JPublisher
-methods option setting) and a <type>Ref.java file for the code for the REF
class of the Java type. For example, if you define an EMPLOYEE SQL object type,
JPublisher generates an employee.sqlj file (or an employee.java file) and an
employeeRef.java file. Note that the case of Java class names produced by
JPublisher is determined by the -case option. See "Case of Java Identifiers (-case)"
on page 3-15.

For each collection type (nested table or VARRAY) it translates, JPublisher generates
a <type>.java file. For nested tables, the generated class has methods to get and
set the nested table as an entire array and to get and set individual elements of the
table. JPublisher translates collection types when generating ORAData classes, but
not when generating SQLData classes. JPublisher can also generate wrapper classes
for OPAQUE types. However, OPAQUE types are more typically already
pre-mapped to corresponding Java classes that implement the ORAData interface.

For PL/SQL packages, JPublisher generates classes containing wrapper methods as
.sqlj files.

When JPublisher generates the class files and wrappers, it also writes the names of
the translated types and packages to standard output.
 Introduction to JPublisher 1-17

Understanding JPublisher
Overview of Datatype Mappings
JPublisher offers different categories of datatype mappings from SQL to Java.
JPublisher options to specify these mappings are described below, under "Detailed
Descriptions of Options That Affect Datatype Mappings" on page 3-7.

Each type mapping option has at least two possible values: jdbc and oracle. The
-numbertypes option has two additional alternatives: objectjdbc and
bigdecimal.

The following sections describe these categories of mappings. For more information
about datatype mappings, see "Details of Datatype Mapping" on page 2-2.

JDBC Mapping
 The JDBC mapping maps most numeric datatypes to Java primitive types such as
int and float, and maps DECIMAL and NUMBER to java.math.BigDecimal.
LOB types and other non-numeric built-in types map to standard JDBC Java types
such as java.sql.Blob and java.sql.Timestamp. For object types, JPublisher
generates SQLData classes. Predefined datatypes that are Oracle extensions (such
as BFILE and ROWID) do not have JDBC mappings, so only the oracle.sql.*
mapping is supported for these types.

The Java primitive types used in the JDBC mapping do not support null values and
do not guard against integer overflow or floating-point loss of precision. If you are
using the JDBC mapping and you attempt to call an accessor or method to get an
attribute of a primitive type (short, int, float, or double) whose value is
null, an exception is thrown. If the primitive type is short or int, then an
exception is thrown if the value is too large to fit in a short or int variable.

Object JDBC Mapping
The Object JDBC mapping maps most numeric datatypes to Java wrapper classes
such as java.lang.Integer and java.lang.Float, and maps DECIMAL and
NUMBER to java.math.BigDecimal. It differs from the JDBC mapping only in
that it does not use primitive types.

When you use the Object JDBC mapping, all your returned values are objects. If you
attempt to get an attribute whose value is null, a null object is returned.

The Java wrapper classes used in the Object JDBC mapping do not guard against
integer overflow or floating-point loss of precision. If you call an accessor method to
get an attribute that maps to java.lang.Integer, an exception is thrown if the
value is too large to fit.

This is the default mapping for numeric types.
1-18 Oracle9i JPublisher User’s Guide

Understanding JPublisher
BigDecimal Mapping
BigDecimal mapping, as the name implies, maps all numeric datatypes to
java.math.BigDecimal. It supports null values and very large values.

Oracle Mapping
In the Oracle mapping, JPublisher maps any numeric, LOB, or other built-in type to
a class in the oracle.sql package. For example, the DATE type is mapped to
oracle.sql.DATE, and all numeric types are mapped to oracle.sql.NUMBER.
For object, collection, and object reference types, JPublisher generates ORAData
classes.

Because the Oracle mapping uses no primitive types, it can represent a null value as
a Java null in all cases. Because it uses the oracle.sql.NUMBER class for all
numeric types, it can represent the largest numeric values that can be stored in the
database.

Other Option Settings
Note that a number of additional option settings influence the nature of the
generated code. For example, the option -compatible controls generations of the
backward compatible CustomDatum type, while -access specifies the visibility of
the generated methods, constructors, and attributes. The option -serializable
controls whether a generated object wrapper class implements
java.io.Serializable or not.

Creating Types and Packages in the Database
Before you run JPublisher, you must create any new datatypes that you will require
in the database. You must also ensure that any PL/SQL packages, methods, and
subprograms that you want to invoke from Java are also installed in Oracle9i.

Use the SQL CREATE TYPE statement to create object, VARRAY, and nested table
types in the database. JPublisher supports the mapping of these datatypes to Java
classes. JPublisher also generates classes for references to object types. REF types are
not explicitly declared in SQL. For more information on creating object types, see
the Oracle9i SQL Reference.

Use the CREATE PACKAGE and CREATE PACKAGE BODY statements to create
PL/SQL packages and store them in the database. PL/SQL furnishes all the
capabilities necessary to implement the methods associated with object types. These
methods (functions and procedures) reside on the server as part of a user’s schema.
You can implement the methods in PL/SQL or Java.
 Introduction to JPublisher 1-19

Understanding JPublisher
Packages are often implemented to provide the following advantages:

■ encapsulation of related procedures and variables

■ declaration of public and private procedures, variables, constants, and
cursors

■ better performance

For more information on PL/SQL and creating PL/SQL packages, see the PL/SQL
User’s Guide and Reference.
1-20 Oracle9i JPublisher User’s Guide

JPublisher Operation
JPublisher Operation
This section discusses the basic steps in using JPublisher, describes the
command-line syntax, and concludes with a more detailed description of a sample
translation. The following topics are covered:

■ Translating and Using PL/SQL Packages and User-Defined Types

■ Representing User-Defined Object, Collection, and Reference Types in Java

■ Strongly Typed Object References for ORAData Implementations

■ JPublisher Command-Line Syntax

■ Sample JPublisher Translation

Translating and Using PL/SQL Packages and User-Defined Types
This section lists the basic steps, illustrated in Figure 1–1 below, for translating and
using code for user-defined types and PL/SQL packages. User-defined types
include Oracle objects and Oracle collections—VARRAYs and nested table types.

1. Create the desired user-defined datatypes and PL/SQL packages in the
database.

2. Have JPublisher generate source code for Java classes that represent PL/SQL
packages, user-defined types, and reference types and places them in specified
Java packages. JPublisher generates .java files for object reference, VARRAY,
and nested table classes. If you instruct JPublisher to generate wrapper
methods, it will generate .sqlj files for packages and object types (assuming
the object types have methods). If you instruct JPublisher to not generate
wrapper methods, it will generate .java files without wrapper methods for
object types and will not generate classes for packages (because they contain
only wrapper methods). For object types without methods, JPublisher generates
.java files in any case.

3. Import these classes into your application code.

4. Use the methods in the generated classes to access and manipulate the
user-defined types and their attributes.

5. Compile all classes (the JPublisher-generated code and your code). SQLJ
translates and compiles .sqlj and .java files. Or, if you have only .java
files, you can simply invoke the Java compiler.

6. Run your compiled application.
 Introduction to JPublisher 1-21

JPublisher Operation
Figure 1–1 Translating and Using JPublisher-Generated Code
1-22 Oracle9i JPublisher User’s Guide

JPublisher Operation
Representing User-Defined Object, Collection, and Reference Types in Java
Here are the three ways to represent user-defined object, collection, object reference,
and OPAQUE types in your Java program:

■ Use classes that implement the ORAData interface.

JPublisher generates classes that implement the oracle.sql.ORAData
interface. (You can also write them by hand, but this is not generally
recommended.)

■ Use classes that implement the SQLData interface, as described in the JDBC 2.0
API.

JPublisher generates classes for SQL object types that implement the
java.sql.SQLData interface. (You can also write them by hand, but this is
not generally recommended. Be aware that if you write them by hand, or if you
generate classes for an inheritance hierarchy of object types, your classes must
be registered using a type map.)

When you use the SQLData interface, all object reference types are represented
generically as java.sql.Ref instances, and all collection types are
represented generically as java.sql.Array instances. There is no mechanism
for representing OPAQUE types.

■ Use oracle.sql.* classes.

You can use the oracle.sql.* classes to represent user-defined types
generically. The class oracle.sql.STRUCT represents all object types, the
class oracle.sql.ARRAY represents all VARRAY and nested table types, the
class oracle.sql.REF represents all REF types, and the class
oracle.sql.OPAQUE represents all OPAQUE types. These classes are
immutable in the same way that java.lang.String is.

You would need to choose this option if you need to write code that processes
objects, collections, references, or OPAQUE types in a generic way.

Compared to oracle.sql.* classes, classes that implement ORAData or SQLData
are strongly typed. Your connected SQLJ translator will detect an error at
translation time if, for example, you mistakenly select a PERSON object into an
ORAData object that represents an ADDRESS.

JPublisher-generated classes that implement ORAData or SQLData have additional
advantages:

■ The classes are customized, rather than generic. You access attributes of an
object using getXXX() and setXXX() methods named after the particular
 Introduction to JPublisher 1-23

JPublisher Operation
attributes of the object. Note that you have to explicitly update the object in the
database if there are any changes to its data.

■ The classes are mutable. You can generally modify attributes of an object or
elements of a collection. The exception is that ORAData classes representing
object reference types are not mutable, because an object reference does not
have any subcomponents that could be sensibly modified. You can, however,
use the setValue() method of a reference object to change the database value
that the reference points to.

■ You can generate Java wrapper classes that are serializable, or that have
toString() method to print out the object together with its attribute values.

Compared to classes that implement SQLData, classes that implement ORAData are
fundamentally more efficient, because ORAData classes avoid unnecessary
conversions to native Java types. For a comparison of the SQLData and ORAData
interfaces, see the Oracle9i JDBC Developer’s Guide and Reference.

Strongly Typed Object References for ORAData Implementations
For Oracle ORAData implementations, JPublisher always generates strongly typed
object reference classes as opposed to using the weakly typed oracle.sql.REF
class. This is to provide greater type safety and to mirror the behavior in SQL,
where object references are strongly typed. The strongly typed classes (with names
such as PersonRef for references to PERSON objects) are essentially wrappers for
the oracle.sql.REF class.

In these strongly typed REF wrappers, there is a getValue() method that
produces an instance of the SQL object that is referenced, in the form of an instance
of the corresponding Java class. (Or, in the case of inheritance, perhaps as an
instance of a subclass of the corresponding Java class.) For example, if there is a
PERSON object type in the database, with a corresponding Person Java class, there
will also be a PersonRef Java class. The getValue() method of the PersonRef
class would return a Person instance containing the data for a PERSON object in the
database. In addition, JPublisher also generates a static cast() method on the
PersonRef class, permitting you to convert other typed references to a
PersonRef instance.

Whenever a SQL object type has an attribute that is an object reference, the Java
class corresponding to the object type would have an attribute that is an instance of
a Java class corresponding to the appropriate reference type. For example, if there is
a PERSON object with a MANAGER REF attribute, then the corresponding Person
Java class will have a ManagerRef attribute.
1-24 Oracle9i JPublisher User’s Guide

JPublisher Operation
For standard SQLData implementations, strongly typed object references are not
supported—they are not part of the standard. JPublisher does not create a custom
reference class; you must use java.sql.Ref or oracle.sql.REF as the reference
type.

JPublisher Command-Line Syntax
On most operating systems, you invoke JPublisher on the command line, typing
jpub followed by a series of options settings as follows:

jpub -option1=value1 -option2=value2 ...

JPublisher responds by connecting to the database and obtaining the declarations of
the types or packages you specify, then generating one or more custom Java files
and writing the names of the translated object types or PL/SQL packages to
standard output.

Here is an example of a command that invokes JPublisher (single wraparound
command line):

jpub -user=scott/tiger -input=demoin -numbertypes=oracle -usertypes=oracle
-dir=demo -package=corp

Enter the command on one command line, allowing it to wrap as necessary. For
clarity, this chapter refers to the input file (the file specified by the -input option)
as the INPUT file (to distinguish it from any other kinds of input files).

This command directs JPublisher to connect to the database with username SCOTT
and password TIGER and translate datatypes to Java classes, based on instructions
in the INPUT file demoin. The -numbertypes=oracle option directs JPublisher
to map object attribute types to Java classes supplied by Oracle, and the
-usertypes=oracle option directs JPublisher to generate Oracle-specific
ORAData classes. JPublisher places the classes that it generates in the package corp
in the directory demo.

"JPublisher Options" on page 3-2 describes each of these options in more detail.

Notes:

■ No spaces are permitted around the equals sign (=).

■ If you execute JPublisher without any options on the command
line, it displays an option list and then terminates.
 Introduction to JPublisher 1-25

JPublisher Operation
Sample JPublisher Translation
This section provides a sample JPublisher translation of an object type. At this point,
do not worry about the details of the code JPublisher generates. You can find more
information about JPublisher input and output files, options, datatype mappings,
and translation later in this manual.

Create the object type EMPLOYEE:

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(30),
 empno INTEGER,
 deptno NUMBER,
 hiredate DATE,
 salary REAL
);

The INTEGER, NUMBER, and REAL types are all stored in the database as NUMBER
types, but after translation they have different representations in the Java program,
based on your choice for the value of the -numbertypes option.

JPublisher translates the types according to the following command line:

jpub -user=scott/tiger -dir=demo -numbertypes=objectjdbc -builtintypes=jdbc
-package=corp -case=mixed -sql=Employee

This is a single wraparound command line. "JPublisher Options" on page 3-2
describes each of these options in detail.

Note that because the EMPLOYEE object type does not define any methods,
JPublisher will generate a .java file, not a .sqlj file.

Because -dir=demo and -package=corp were specified on the JPublisher
command line, the translated class Employee is written to Employee.java in the
following location:

./demo/corp/Employee.java (UNIX)

.\demo\corp\Employee.java (Windows NT)

The Employee.java class file would contain the code below.

Note: The details of the code JPublisher generates are subject to
change. In particular, non-public methods, non-public fields, and
all method bodies may be generated differently.
1-26 Oracle9i JPublisher User’s Guide

JPublisher Operation
package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Employee implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = { 12,4,2,91,7 };
 private static ORADataFactory[] _factory = new ORADataFactory[5];
 protected static final Employee _EmployeeFactory = new Employee(false);

 public static ORADataFactory getORADataFactory()
 { return _EmployeeFactory; }

 /* constructor */
 protected Employee(boolean init)
 { if(init) _struct = new MutableStruct(new Object[5], _sqlType, _factory); }
 public Employee()
 { this(true); }
 public Employee(String name, Integer empno, java.math.BigDecimal deptno,
java.sql.Timestamp hiredate, Float salary)
 throws SQLException
 { this(true);
 setName(name);
 setEmpno(empno);
 setDeptno(deptno);
 setHiredate(hiredate);
 setSalary(salary);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 Introduction to JPublisher 1-27

JPublisher Operation
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Employee o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Employee(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public String getName() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setName(String name) throws SQLException
 { _struct.setAttribute(0, name); }

 public Integer getEmpno() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setEmpno(Integer empno) throws SQLException
 { _struct.setAttribute(1, empno); }

 public java.math.BigDecimal getDeptno() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(2); }

 public void setDeptno(java.math.BigDecimal deptno) throws SQLException
 { _struct.setAttribute(2, deptno); }

 public java.sql.Timestamp getHiredate() throws SQLException
 { return (java.sql.Timestamp) _struct.getAttribute(3); }

 public void setHiredate(java.sql.Timestamp hiredate) throws SQLException
 { _struct.setAttribute(3, hiredate); }

 public Float getSalary() throws SQLException
 { return (Float) _struct.getAttribute(4); }

 public void setSalary(Float salary) throws SQLException
 { _struct.setAttribute(4, salary); }

}

1-28 Oracle9i JPublisher User’s Guide

JPublisher Operation
Code Generation Notes

■ Oracle JPublisher in Oracle9i release 2 and higher also generates object
constructors based on the object attributes.

■ Additional private or public methods may be generated with other settings.
For example, the setting -serializable=true results in the object wrapper
implementing the interface java.io.Serializable and in the generation of
private writeObject and readObject methods. The setting
-tostring=true results in the additional generation of a public
toString() method.

■ For Oracle9i releases (as well as Oracle8i release 8.1.7), there is a protected
_struct field in JPublisher-generated code for SQL object types. This is an
instance of the internal class oracle.jpub.runtime.MutableStruct; this
instance contains the data in original SQL format. In general, you should never
reference this field directly. Instead, use the setting -methods=always or
-methods=named as necessary to ensure that JPublisher produces .sqlj files,
then use the methods setFrom() and setValueFrom() when subclassing.
See "The setFrom(), setValueFrom(), and setContextFrom() Methods" on
page 2-38.

■ In Oracle8i compatibility mode, there is also a protected _ctx field that is a
SQLJ connection context instance. See "Oracle8i Compatibility Mode" on
page 2-52 for more information.

■ Note that Oracle8i JPublisher would generate implementations of the
now-deprecated CustomDatum and CustomDatumFactory interfaces, instead
of ORAData and ORADataFactory. In fact, it is still possible to do this through
the JPublisher -compatible option, and this is required if you are using an
Oracle8i JDBC driver.

JPublisher also generates an EmployeeRef.java class. The source code is
displayed here:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
 Introduction to JPublisher 1-29

JPublisher Operation
import oracle.sql.STRUCT;

public class EmployeeRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

private static final EmployeeRef _EmployeeRefFactory = new EmployeeRef();

 public static ORADataFactory getORADataFactory()
 { return _EmployeeRefFactory; }
 /* constructor */
 public EmployeeRef()
 {
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 EmployeeRef r = new EmployeeRef();
 r._ref = (REF) d;
 return r;
 }

 public static EmployeeRef cast(ORAData o) throws SQLException
 {
 if (o == null) return null;
 try { return (EmployeeRef) getORADataFactory().create(o.toDatum(null),
OracleTypes.REF); }
 catch (Exception exn)
 { throw new SQLException("Unable to convert "+o.getClass().getName()+" to
EmployeeRef: "+exn.toString()); }
 }
1-30 Oracle9i JPublisher User’s Guide

JPublisher Operation
 public Employee getValue() throws SQLException
 {
 return (Employee) Employee.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(Employee c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

Note that JPublisher in Oracle9i release 2 and higher also generates a public
static cast() method to cast from other strongly typed references into a
strongly typed reference instance.

You can find more examples of object mappings in "Example: JPublisher Object
Attribute Mapping" on page 4-8.
 Introduction to JPublisher 1-31

JPublisher Operation
1-32 Oracle9i JPublisher User’s Guide

 JPublisher Con
2

JPublisher Concepts

This chapter provides a detailed discussion of JPublisher’s underlying concepts and
of its operation. The following topics are covered:

■ Details of Datatype Mapping

■ Concepts of JPublisher-Generated Classes

■ JPublisher Generation of SQLJ Classes (.sqlj)

■ JPublisher Generation of Java Classes (.java)

■ User-Written Subclasses of JPublisher-Generated Classes

■ JPublisher Support for Inheritance

■ Backward Compatibility and Migration

■ JPublisher Limitations
cepts 2-1

Details of Datatype Mapping
Details of Datatype Mapping
As described previously, you can specify one of the following settings for datatype
mappings when you use the type mapping options (-builtintypes, -lobtypes,
-numbertypes, and -usertypes):

■ jdbc

■ objectjdbc (for -numbertypes only)

■ bigdecimal (for -numbertypes only)

■ oracle

These mappings, described in "Overview of Datatype Mappings" on page 1-18,
affect the argument and result types JPublisher uses in the methods it generates.

The class that JPublisher generates for an object type will have getXXX() and
setXXX() methods for the object attributes. The class that JPublisher generates for
a VARRAY or nested table type will have getXXX() and setXXX() methods that
access the elements of the array or nested table. When you use the option
-methods=true, the class that JPublisher generates for an object type or PL/SQL
package will have wrapper methods that invoke server methods of the object type
or package. The mapping options control the argument and result types these
methods will use.

The JDBC and Object JDBC mappings use familiar Java types that can be
manipulated using standard Java operations. If your JDBC program is manipulating
Java objects stored as object types, you might prefer the JDBC or Object JDBC
mapping.

The Oracle mapping is the most efficient mapping. The oracle.sql types match
the Oracle internal datatypes as closely as possible so that little or no data
conversion is required between the Java and the SQL formats. You do not lose any
information and have greater flexibility in how you process and unpack the data.
The Oracle mappings for standard SQL types are the most convenient
representations if you are manipulating data within the database or moving data
(for example, performing SELECT and INSERT operations from one existing table
to another). When data format conversion is necessary, you can use methods in the
oracle.sql.* classes to convert to Java native types.

When you decide which mapping to use, you should remember that data format
conversion is only a part of the cost of transferring data between your program and
the server.
2-2 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
SQL and PL/SQL Mappings to Oracle and JDBC Types
Table 2–1 lists the mappings from SQL and PL/SQL datatypes to Java types using
the Oracle and JDBC mappings. You can use all the supported datatypes listed in
this table as argument or result types for PL/SQL methods. You can use a subset of
the datatypes as object attribute types, as listed in "Allowed Object Attribute Types"
on page 2-6.

The SQL and PL/SQL Datatype column contains all possible datatypes.

The Oracle Mapping column lists the corresponding Java types JPublisher uses when
all the type mapping options are set to oracle. These types are found in the
oracle.sql package supplied by Oracle and are designed to minimize the
overhead incurred when converting Oracle datatypes to Java types. Refer to the
Oracle9i JDBC Developer’s Guide and Reference for more information on the
oracle.sql package.

The JDBC Mapping column lists the corresponding Java types JPublisher uses when
all the type mapping options are set to jdbc. For standard SQL datatypes,
JPublisher uses Java types specified in the JDBC specification. For SQL datatypes
that are Oracle extensions, JPublisher uses the oracle.sql.* types. When you set
the type mapping option to objectjdbc, the corresponding types will be the same
as in the JDBC Mapping column except that primitive Java types, such as int, are
replaced with their object counterparts, such as java.lang.Integer. Type
correspondences that are explicitly defined in the JPublisher type map, such as
PL/SQL BOOLEAN to SQL NUMBER to Java boolean, are not affected by the
mapping option settings.

A few datatypes are not directly supported by JPublisher, in particular those types
that pertain to PL/SQL only. You can overcome these limitations by providing
equivalent SQL and Java types, as well as PL/SQL conversion functions between
PL/SQL and SQL representations. The annotations and subsequent sections explain
these conversions further.

Table 2–1 SQL and PL/SQL Datatype to Oracle and JDBC Mapping Classes

SQL and PL/SQL Datatype Oracle Mapping JDBC Mapping

CHAR, CHARACTER, LONG,
STRING, VARCHAR, VARCHAR2

oracle.sql.CHAR java.lang.String

NCHAR, NVARCHAR2 oracle.sql.NCHAR (note 1) oracle.sql.NString (note 1)

RAW, LONG RAW oracle.sql.RAW byte[]
 JPublisher Concepts 2-3

Details of Datatype Mapping
BINARY_INTEGER, NATURAL,
NATURALN, PLS_INTEGER,
POSITIVE, POSITIVEN, SIGNTYPE,
INT, INTEGER

oracle.sql.NUMBER int

DEC, DECIMAL, NUMBER,
NUMERIC

oracle.sql.NUMBER java.math.BigDecimal

DOUBLE PRECISION, FLOAT oracle.sql.NUMBER double

SMALLINT oracle.sql.NUMBER short

REAL oracle.sql.NUMBER float

DATE oracle.sql.DATE java.sql.Timestamp

TIMESTAMP,
TIMESTAMP WITH TZ,
TIMESTAMP WITH LOCAL TZ

oracle.sql.TIMESTAMP,
oracle.sql.TIMESTAMPTZ,
oracle.sql.TIMESTAMPLTZ

java.sql.Timestamp

INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

String (note 2) String (note 2)

ROWID, UROWID oracle.sql.ROWID oracle.sql.ROWID

BOOLEAN boolean (note 3) boolean (note 3)

CLOB oracle.sql.CLOB java.sql.Clob

BLOB oracle.sql.BLOB java.sql.Blob

BFILE oracle.sql.BFILE oracle.sql.BFILE

NCLOB oracle.sql.NCLOB (note 1) oracle.sql.NCLOB (note 1)

object types generated class generated class

SQLJ object types Java class defined at type creation Java class defined at type creation

OPAQUE types generated or predefined class
(note 4)

generated or predefined class
(note 4)

RECORD types through mapping to SQL object
type (note 5)

through mapping to SQL object
type (note 5)

nested table, VARRAY generated class implemented
using oracle.sql.ARRAY

java.sql.Array

reference to object type generated class implemented
using oracle.sql.REF

java.sql.Ref

REF CURSOR java.sql.ResultSet java.sql.ResultSet

Table 2–1 SQL and PL/SQL Datatype to Oracle and JDBC Mapping Classes (Cont.)

SQL and PL/SQL Datatype Oracle Mapping JDBC Mapping
2-4 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
Datatype Mapping Notes The following notes correspond to marked entries in the
preceding table.

1. The Java classes oracle.sql.NCHAR, oracle.sql.NCLOB, and
oracle.sql.NString are not part of JDBC but are distributed with the SQLJ
runtime. SQLJ uses these classes to represent the NCHAR form of use of the
corresponding classes oracle.sql.CHAR, oracle.sql.CLOB, and
java.lang.String.

2. Mapping of SQL INTERVAL types to VARCHAR2 and Java String is defined in
a default JPublisher type map. It uses conversion functions from the
SYS.SQLJUTL package. See also "JPublisher Default Type Map and User Type
Map" on page 2-18.

3. Mapping of PL/SQL BOOLEAN to SQL NUMBER and Java boolean is defined in
the default JPublisher type map. It uses conversion functions from the
SYS.SQLJUTL package.

4. Mapping of the SQL OPAQUE type SYS.XMLTYPE to the Java class
oracle.xdb.XMLType is defined in the default JPublisher type map. For other
OPAQUE types, the vendor will typically provide a corresponding Java class. In
this case you just have to specify a JPublisher type map entry that defines the
correspondence between the SQL OPAQUE type and the corresponding Java
wrapper class. If JPublisher encounters an OPAQUE type that does not have a
type map entry, it will generate a Java wrapper class for that OPAQUE type. See
also "Type Mapping Support for OPAQUE Types" on page 2-8.

5. In order to support a PL/SQL RECORD type you must define a corresponding
SQL object type and two PL/SQL conversion functions that map between SQL
and PL/SQL types (one function to convert in each direction). Additionally, you
must publish a Java wrapper class for the SQL type with JPublisher. At this
point you can provide a type map entry for JPublisher that defines the
correspondences between PL/SQL, SQL, and Java types and the PL/SQL
conversion functions. This allows JPublisher to automatically publish PL/SQL

scalar (numeric or character)
indexed-by tables

through mapping to Java array
(note 6)

through mapping to Java array
(note 6)

indexed-by tables through mapping to SQL
collection (note 7)

through mapping to SQL collection
(note 7)

user-defined subtypes same as for base type same as for base type

Table 2–1 SQL and PL/SQL Datatype to Oracle and JDBC Mapping Classes (Cont.)

SQL and PL/SQL Datatype Oracle Mapping JDBC Mapping
 JPublisher Concepts 2-5

Details of Datatype Mapping
or method signatures that use the PL/SQL RECORD type. See also "Type
Mapping Support for PL/SQL RECORD Types" on page 2-14.

6. If you are using the JDBC OCI driver to call PL/SQL stored procedures or
object methods, you have direct support for scalar indexed-by tables, also
known as PL/SQL TABLE types. In this case, specify a type map entry for
JPublisher that contains the PL/SQL scalar indexed-by table type and the
corresponding Java array type. JPublisher can then automatically publish
PL/SQL or object method signatures that use this scalar indexed-by type. See
also "Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI" on
page 2-9.

7. In order to support a PL/SQL indexed-by table type, you must define a
corresponding SQL collection type and two PL/SQL conversion functions that
map between SQL and PL/SQL types. Additionally, you must publish a Java
wrapper class for the SQL collection type with JPublisher. (If the elements of the
indexed-by table are PL/SQL records, you also must provide full JPublisher
mapping support between these records and corresponding SQL and Java
types.) At this point you can provide a type map entry for JPublisher that
defines the correspondences between PL/SQL, SQL, and Java types and the
PL/SQL conversion functions. Now JPublisher can automatically publish
PL/SQL or method signatures that use this PL/SQL indexed-by-table type. See
also "Type Mapping Support for PL/SQL Indexed-by Table Types" on
page 2-16.

Allowed Object Attribute Types
You can use a subset of the PL/SQL datatypes listed in Table 2–1 as object attribute
types. These datatypes are listed here and have the same Oracle mappings and
JDBC mappings as described in the table:

■ CHAR, VARCHAR, VARCHAR2, CHARACTER

■ NCHAR, NVARCHAR2

■ DATE

■ DECIMAL, DEC, NUMBER, NUMERIC

■ DOUBLE PRECISION, FLOAT

Note: The Object JDBC and BigDecimal mappings, which affect
numeric types only, are fully described in "Mappings For Numeric
Types (-numbertypes)" on page 3-10.
2-6 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
■ INTEGER, SMALLINT, INT

■ REAL

■ RAW, LONG RAW

■ CLOB

■ BLOB

■ BFILE

■ NCLOB

■ object type, OPAQUE type, SQLJ object type

■ nested table, VARRAY type

■ reference type

The TIMESTAMP types TIMESTAMP, TIMESTAMP WITH TIMEZONE, and
TIMESTAMP WITH LOCAL TIMEZONE are supported by JPublisher as object
attributes. However, in Oracle9i release 2 (9.2.0), JDBC does not support these types
as object attributes.

Using Datatypes Unsupported by JDBC
Generally, if JPublisher encounters a PL/SQL stored procedure or function or an
object type method with an unsupported PL/SQL type, it will issue an error
message and skip the generation of a corresponding method in the wrapper class.
However, if you provide appropriate type mapping information, such methods can
still be automatically published by JPublisher. In addition, a JPublisher type map
entry can be used to associate types, such as SQL OPAQUE types or certain scalar
PL/SQL indexed-by table types, with corresponding Java classes. The following
sections discuss various aspects of the type mapping support provided by
JPublisher:

■ Type Mapping Support for OPAQUE Types

■ Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI

■ Type Mapping Support Through PL/SQL Conversion Functions

■ Type Mapping Support for PL/SQL RECORD Types

■ Type Mapping Support for PL/SQL Indexed-by Table Types

■ JPublisher Default Type Map and User Type Map
 JPublisher Concepts 2-7

Details of Datatype Mapping
Type Mapping Support for OPAQUE Types
Oracle JDBC and Oracle SQLJ provide support for SQL OPAQUE types that are
published as Java classes implementing the oracle.sql.ORAData interface. Such
classes must also contain the following public static fields and methods:

public static String _SQL_NAME = "SQL_name_of_OPAQUE_type";
public static int _SQL_TYPECODE = OracleTypes.OPAQUE;
public static ORADataFactory getORADataFactory() { ... }

As of Oracle 9i release 2, the SQL OPAQUE type SYS.XMLTYPE is supported with
the corresponding Java wrapper class oracle.xdb.XMLType.

If you have a Java wrapper class for a SQL OPAQUE type that follows the rules
outlined here, you can specify this association to JPublisher with the following
command line option:

-addtypemap=sql_opaque_type:java_wrapper_class

In this way the predefined type correspondence for XMLTYPE could have been
supplied explicitly to JPublisher as follows:

-addtypemap=SYS.XMLTYPE:oracle.xdb.XMLType

Whenever JPublisher encounters a SQL OPAQUE type for which no type
correspondence has been provided, it will actually publish a Java wrapper class.
Consider the following SQL type defined in the SCOTT schema:

CREATE TYPE X_TYP AS OBJECT (xml SYS.XMLTYPE);

Notice that the attribute xml is published as an oracle.xdb.XMLType, which
corresponds to the predefined type mapping for SYS.XMLTYPE. The following
publishes X_TYP as a Java class XTyp.

jpub -u scott/tiger -s X_TYP:XTyp

If you clear the JPublisher default type map, then an additional wrapper class
Xmltype would be automatically generated for the SYS.XMLTYPE attribute. You
can verify this by invoking JPublisher as follows:

jpub -u scott/tiger -s X_TYP:XTyp -defaulttypemap=

The option -defaulttypemap is for setting the JPublisher default type map. If you
give it no value, as in the preceding example, then the default type map is set to the
empty string, effectively clearing it. For more information on the default type map
refer to "JPublisher Default Type Map and User Type Map" on page 2-18.
2-8 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI
The Oracle JDBC OCI driver directly supports PL/SQL scalar indexed-by tables
with numeric or character elements. (If you are not using the JDBC OCI driver, see
"Type Mapping Support for PL/SQL Indexed-by Table Types" on page 2-16.) An
indexed-by table with numeric elements can be mapped to the following Java array
types:

■ int[]

■ double[]

■ float[]

■ java.math.BigDecimal[]

■ oracle.sql.NUMBER[]

An indexed-by table with character elements can be mapped to the following Java
array types:

■ String[]

■ oracle.sql.CHAR[]

In certain circumstances, as described, you must convey the following information
for an indexed-by table type:

■ Whenever the indexed-by table is used in an OUT or IN OUT parameter
position, you must specify the maximum number of elements. (This is optional
otherwise.) This is defined using the customary syntax for Java array allocation.
For example, you could specify int[100] to denote a type that can
accommodate up to 100 elements, or oracle.sql.CHAR[20] for up to 20
elements.

■ For indexed-by tables with character elements, you can optionally specify the
maximum size of an individual element (in bytes). This setting is defined using
SQL-like size syntax. For example, for an indexed-by table used for IN
arguments, you could specify String[](30). Or specify
oracle.sql.CHAR[20](255) for an indexed-by table of maximum length
20, each of whose elements will not exceed 255 bytes.

Use the JPublisher option -addtypemap to add instructions to the user type map to
specify correspondences between PL/SQL types that are scalar indexed-by tables,
and corresponding Java array types. The size hints that are given using the syntax
outlined above will be embedded into the generated SQLJ statements and thus
conveyed to JDBC at runtime.
 JPublisher Concepts 2-9

Details of Datatype Mapping
As an example, consider the following code fragment from the definition of a
PL/SQL package INDEXBY in the schema SCOTT. Assume this is available in a file
indexby.sql.

create or replace package indexby as

-- jpub.addtypemap=SCOTT.INDEXBY.VARCHAR_ARY:String[1000](4000)
-- jpub.addtypemap=SCOTT.INDEXBY.INTEGER_ARY:int[1000]
-- jpub.addtypemap=SCOTT.INDEXBY.FLOAT_ARY:double[1000]

 type varchar_ary IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
 type integer_ary IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;
 type float_ary IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

 function get_float_ary RETURN float_ary;
 procedure pow_integer_ary(x integer_ary, y OUT integer_ary);
 procedure xform_varchar_ary(x IN OUT varchar_ary);

end indexby;
/
create or replace package body indexby is ...
/

The following are the required -addtypemap directives for mapping the three
indexed-by table types:

-addtypemap=SCOTT.INDEXBY.VARCHAR_ARY:String[1000](4000)
-addtypemap=SCOTT.INDEXBY.INTEGER_ARY:int[1000]
-addtypemap=SCOTT.INDEXBY.FLOAT_ARY:double[1000]

Note that depending on the operating system shell you are using, you might have
to quote options that contain square brackets [...] or parentheses (...). Or you can
avoid this by placing such options into a JPublisher properties file, as follows:

jpub.addtypemap=SCOTT.INDEXBY.VARCHAR_ARY:String[1000](4000)
jpub.addtypemap=SCOTT.INDEXBY.INTEGER_ARY:int[1000]
jpub.addtypemap=SCOTT.INDEXBY.FLOAT_ARY:double[1000]

See "Properties File Structure and Syntax" on page 3-33 for information about
properties files.

Also, as a convenience feature, JPublisher directives in a properties file are
recognized when placed behind a "--" prefix (two dashes), whereas any entry that
does not start with "jpub." or with "-- jpub." is simply ignored. This means you
can place JPublisher directives into SQL scripts and reuse the same SQL scripts as
2-10 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
JPublisher properties files. Thus, after invoking the indexby.sql script in order to
define the INDEXBY package, you can now run JPublisher to publish this package as
a Java class IndexBy as follows:

jpub -u scott/tiger -s INDEXBY:IndexBy -props=indexby.sql

As mentioned previously, this mapping of scalar indexed-by tables can only be used
in conjunction with the JDBC OCI driver. If you are using another driver or if you
want to create driver-independent code, you will have to define SQL types that
correspond to the indexed-by table types as well as conversion functions that map
between the two. Please refer to the section "Type Mapping Support for PL/SQL
Indexed-by Table Types" on page 2-16.

Type Mapping Support Through PL/SQL Conversion Functions
This section discusses the general mechanism used by JPublisher for supporting
PL/SQL types in Java code, through PL/SQL functions that convert to
corresponding SQL types. The sections that follow this are concerned with mapping
issues that are specific to PL/SQL RECORD types and PL/SQL indexed-by table
types, respectively.

In general, Java programs do not support the binding of PL/SQL-specific types.
(Although one exception is scalar indexed-by tables. See "Type Mapping Support
for Scalar Indexed-by Tables Using JDBC OCI" on page 2-9.) The only way such
types can be used from Java is by using PL/SQL code to map them to SQL types
and then accessing these SQL types from Java.

JPublisher makes this task more convenient. For a particular PL/SQL type, specify
the following information in a JPublisher type map entry.

■ the name of the PL/SQL type, typically of the following form:

SCHEMA.PACKAGE.TYPE.

■ the name of the corresponding Java (wrapper) class

■ the name of the SQL type that corresponds to the PL/SQL type

You must be able to directly map this type to the Java wrapper class. For
example, if the SQL type is NUMBER, then the corresponding Java class could be
types such as int, double, Integer, Double, java.math.BigDecimal, or
oracle.sql.NUMBER. Or, if the SQL type is an object type, then the
corresponding Java class would be a corresponding object wrapper
class—typically generated by JPublisher—that implements the ORAData or
SQLData interface.
 JPublisher Concepts 2-11

Details of Datatype Mapping
■ the name of a PL/SQL function (conversion function) that maps the SQL type
to the PL/SQL type

■ the name of a PL/SQL function (conversion function) that maps the PL/SQL
type to the SQL type

The -addtypemap specification for this has the following form:

-addtypemap=plsql_type:java_type:sql_type:sql_to_plsql_fun:plsql_to_sql_fun

As an example, consider a type map entry for supporting the PL/SQL type
BOOLEAN. It consists of the following specifications:

■ the name of the PL/SQL type—BOOLEAN

■ specification to map it to Java boolean

■ the corresponding SQL type—INTEGER

JDBC considers boolean values as special numeric values.

■ the name of the PL/SQL function, INT2BOOL, that maps from SQL to PL/SQL
(from NUMBER to BOOLEAN)

Here is the code for that function:

function int2bool(i INTEGER) return BOOLEAN is
begin if i is null then return null;
 else return i<>0;
 end if;
end int2bool;

■ the name of the PL/SQL function, BOOL2INT, that maps from PL/SQL to SQL
(from BOOLEAN to NUMBER):

Here is the code for that function:

function bool2int(b BOOLEAN) return INTEGER is
begin if b is null then return null;
 elsif b then return 1;
 else return 0; end if;
end bool2int;

Put all this together in the following type map entry:

-addtypemap=BOOLEAN:boolean:INTEGER:INT2BOOL:BOOL2INT

Such a type map entry assumes that the SQL type, the Java type, and both
conversion functions have been defined in SQL, Java, and PL/SQL, respectively.
2-12 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
Note that there already is an entry for PL/SQL BOOLEAN in the JPublisher default
type map—see "JPublisher Default Type Map and User Type Map" on page 2-18. If
you want to try the above type map entry, you would therefore have to override the
default type map. You can use the JPublisher -defaulttypemap option to
accomplish this, as follows:

jpub -u scott/tiger -s SYS.SQLJUTL:SQLJUtl
-defaulttypemap=BOOLEAN:boolean:INTEGER:INT2BOOL:BOOL2INT

If the PL/SQL type that we are trying to convert occurs either as an IN parameter or
as a function return value, then no further effort is necessary. The two conversion
functions, from SQL to PL/SQL and vice versa, are entirely sufficient for all such
conversion requirements. A problem arises, however, if the PL/SQL type occurs in
an OUT or IN OUT parameter position. In this case, conversions between PL/SQL
and SQL representations may be required before or after calling the original
procedure or function that is using this type. This means that we may have to
generate and load additional PL/SQL code, on a method-by-method basis, for
performing this additional conversion task. Fortunately, JPublisher creates this code
automatically for you. It remains your responsibility, however, to install this
additional PL/SQL code in the database.

The following JPublisher options permit you to control how JPublisher creates this
PL/SQL code:

■ -plsqlfile=filename

This specifies the name of the file into which JPublisher generates PL/SQL
code. If this file already exists, it will be overwritten. If no file name is specified,
JPublisher will write to a file named plsql_wrapper.sql. Remember that
you will have to run this SQL script in order to install the PL/SQL wrappers in
the database.

Note: While this manual has described conversions in terms of
mapping between SQL and PL/SQL types, there is no intrinsic
limitation in this approach that would restrict us to PL/SQL. You
could also map between different SQL types. In fact, this is done in
the JPublisher default type map to support SQL INTERVAL types,
which are mapped to VARCHAR2 values and back. (See "JPublisher
Default Type Map and User Type Map" on page 2-18.)
 JPublisher Concepts 2-13

Details of Datatype Mapping
■ -plsqlpackage=plsql_package

This specifies the name of the PL/SQL package into which JPublisher generates
PL/SQL code. If no package name is provided, JPublisher will use
JPUB_PLSQL_WRAPPER.

■ -plsqlmap=flag

This specifies how JPublisher generates PL/SQL wrapper procedures and
functions. The flag setting can be any of the following:

– true (default)—JPublisher will generate PL/SQL wrapper procedures and
functions as needed and use conversion functions only when that is
sufficient.

– false—JPublisher will not generate PL/SQL wrapper procedures or
functions. If it encounters a PL/SQL type in a signature that cannot be
supported by conversion functions alone, then it will skip generation of
Java code for the particular procedure or function.

– always—JPublisher will generate a PL/SQL wrapper procedure or
function for every stored procedure or function that uses a PL/SQL type.
This is useful for generating a "proxy" PL/SQL package that complements
an original PL/SQL package, providing Java-accessible signatures for those
functions or procedures that were not accessible from JDBC or SQLJ in the
original package.

Type Mapping Support for PL/SQL RECORD Types
Publishing PL/SQL RECORD types is just a special case of using conversion
functions as described in the previous section. The required steps are most easily
illustrated by a concrete example.

Assume that you have method signatures that use the following PL/SQL RECORD
type, defined in a PL/SQL package SCHEM.PACK:

TYPE plsql_record IS RECORD (
 pls_number NUMBER,
 pls_name VARCHAR2(60));

Also assume that the conversions are to take place in the schema SCOTT.

The following list describes the steps to take.
2-14 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
1. Define a SQL type that PLSQL_RECORD can be mapped to. For example:

 create TYPE sql_record as object (
 sql_number NUMBER,
 sql_name VARCHAR2(60));

2. Use JPublisher to publish the SQL type to Java. For example, you can create a
Java wrapper class SqlRecord for SQL_RECORD as follows:

jpub -u scott/tiger -s SQL_RECORD:SqlRecord

3. Define PL/SQL stored functions that map from PLSQL_RECORD to
SQL_RECORD and vice versa:

function plsql_record2sql(r SCHEM.PACK.PLSQL_RECORD)
 return sql_record is
begin
 return sql_record(r.inst_number, r.inst_name);
end plsql_record2sql;

function sql_record2plsql(r sql_record)
 return SCHEM.PACK.PLSQL_RECORD is
 res SCHEM.PACK.PLSQL_RECORD;
begin
 if r IS NOT NULL
 then
 res.plsql_number := r.sql_number;
 res.plsql_name := r.sql_name;
 end if;
 return res;
end sql_record2plsql;

4. Set up a type map entry for JPublisher that tells it how to publish the
PLSQL_RECORD type by mapping it to the SQL_RECORD type. You could create
the following JPublisher properties file, record.properties, for example
(with backslash characters, "\", indicating that continuation lines follow):

Type map entries have the format:
jpub.sql=PLSQL_type:Java_type:SQL_type:sql_to_plsql_fun:plsql_to_sql_fun
#
Note the use of line continuation in the entry below.
jpub.addtypemap=SCHEM.PACK.PLSQL_RECORD:\
 SqlRecord:\
 SQL_RECORD:\
 SQL_RECORD2PLSQL:\
 PLSQL_RECORD2SQL
 JPublisher Concepts 2-15

Details of Datatype Mapping
5. Use this type map entry whenever you publish a package or type that refers to
PLSQL_RECORD. For example, in the following JPublisher invocation we are
including record.properties with this type map entry (using the -u
shorthand for -users and -p for -props):

jpub -u schema/pw_for_schem -p record.properties -s SCHEM.PACK:Pack

6. If PLSQL_RECORD is used as an OUT or IN OUT parameter in SCHEM.PACK,
then JPublisher will also alert you that it has generated a file
plsql_wrapper.sql containing PL/SQL wrapper definitions. Make sure to
run this script before using the generated Java class Pack. Also note that you
can use the -plsqlfile, -plsqlpackage, and -plsqlmap options to
customize the PL/SQL script that JPublisher creates.

Type Mapping Support for PL/SQL Indexed-by Table Types
If you are using the JDBC OCI driver and require only the publishing of scalar
indexed-by tables, you can use the direct mapping between Java and these types
outlined in "Type Mapping Support for Scalar Indexed-by Tables Using JDBC OCI"
on page 2-9. In all other cases you must define a SQL collection type that permits
conversion to and from the PL/SQL indexed-by table type.

This section continues the example in the preceding section and adds an indexed-by
table type PLSQL_INDEXBY with elements of type PLSQL_RECORD. The steps to
follow are the same as those outlined previously. We assume once more that the
type declarations are defined in the package SCHEM.PACK. In addition to the
previous declaration of PLSQL_RECORD, there is also the following definition for
PLSQL_INDEXBY:

TYPE plsql_indexby IS TABLE OF plsql_record INDEX BY BINARY_INTEGER;

Again, assume that the conversions are taking place in the schema SCOTT.

The following list describes the steps to take.

1. Define a SQL type that PLSQL_INDEXBY can be mapped to. For example:

create TYPE sql_indexby as table of sql_record;

Note that the elements of this type must be mappable to the elements of
PLSQL_INDEXBY. We accomplished this previously by creating the type
SQL_RECORD and mapping it to PLSQL_RECORD.
2-16 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
2. Use JPublisher to publish the SQL type to Java. For example, to create a Java
wrapper class SqlIndexby for SQL_INDEXBY, you can run JPublisher as
follows:

jpub -u scott/tiger -s SQL_INDEXBY:SqlIndexby

3. Define PL/SQL stored functions that map from PLSQL_INDEXBY to
SQL_INDEXBY and vice versa. The following functions work in conjunction
with the previously defined conversion functions PLSQL_RECORD2SQL and
SQL_RECORD2PLSQL:

function plsql_indexby2sql (r SCHEM.PACK.PLSQL_INDEXBY)
 return sql_indexby is
 tab sql_indexby := sql_indexby();
begin
 FOR i IN 1..r.LAST LOOP
 tab(i) := plsql_record2sql(r(i));
 END LOOP;
 return tab;
end plsql_indexby2sql;

function sql_indexby2plsql (r sql_indexby)
 return SCHEM.PACK.PLSQL_INDEXBY is
 res SCHEM.PACK.PLSQL_INDEXBY;
begin
 FOR i IN 1..r.LAST LOOP
 res(i) := sql_record2plsql(r(i));
 END LOOP;
 return res;
end sql_indexby2plsql;

4. Set up a type map entry for JPublisher that tells it how to publish the
PLSQL_INDEXBY type by mapping it to the SQL_INDEXBY type. For example,
you could create the following JPublisher properties file,
indexby.properties:

Type map entries have the format:
jpub.sql=PLSQL_type:Java_type:SQL_type:sql_to_plsql_fun:plsql_to_sql_fun
#
Note the use of line continuation in the entry below.
jpub.addtypemap=SCHEM.PACK.PLSQL_INDEXBY:\
 SqlIndexby:\
 SQL_INDEXBY:\
 SQL_INDEXBY2PLSQL:\
 PLSQL_INDEXBY2SQL
 JPublisher Concepts 2-17

Details of Datatype Mapping
5. Use this type map entry whenever you publish a package or type that refers to
PLSQL_INDEXBY. For example, in the following JPublisher invocation (a single
wraparound command line), the indexby.properties file is included with
this type map entry:

jpub -u schem/pw_for_schem -p indexby.properties -p record.properties
 -s SCHEM.PACK:Pack

Note that we also included the record.properties file that tells JPublisher
how to map PLSQL_RECORD entities. This allows JPublisher to map signatures
that contain either PLSQL_RECORD or PLSQL_INDEXBY types or both. Of
course you can also combine all the type map entries into a single properties
file.

6. If PLSQL_INDEXBY or PLSQL_RECORD is used as an OUT or IN OUT parameter
in SCHEM.PACK, then JPublisher will also alert you that it has generated a file
plsql_wrapper.sql containing PL/SQL wrapper definitions. Be sure to run
this script before using the generated Java class Pack. Also note that you can
use the -plsqlfile, -plsqlpackage, and -plsqlmap options to customize
the PL/SQL script that JPublisher creates.

JPublisher Default Type Map and User Type Map
JPublisher has a user type map, which is controlled by the -typemap and
-addtypemap options and starts out empty, and a default type map, which is
controlled by the -defaulttypemap and -adddefaulttypemap options and
starts with the following entries:

jpub.defaulttypemap=SYS.XMLTYPE:oracle.xdb.XMLType
jpub.adddefaulttypemap=BOOLEAN:boolean:INTEGER:\
SYS.SQLJUTL.INT2BOOL:SYS.SQLJUTL.BOOL2INT
jpub.adddefaulttypemap=INTERVAL DAY TO SECOND:String:CHAR:\
SYS.SQLJUTL.CHAR2IDS:SYS.SQLJUTL.IDS2CHAR
jpub.adddefaulttypemap=INTERVAL YEAR TO MONTH:String:CHAR:\
SYS.SQLJUTL.CHAR2IYM:SYS.SQLJUTL.IYM2CHAR

JPublisher reads the default type map first. If you attempt in the user type map to
redefine a mapping that is in the default type map, JPublisher will generate a
warning message and ignore the redefinition. Similarly, attempts to add mappings
through -adddefaulttypemap or -addtypemap settings that conflict with
previous mappings are ignored and generate warnings.
2-18 Oracle9i JPublisher User’s Guide

Details of Datatype Mapping
To use custom mappings, it is recommended that you clear the default type map, as
follows:

-defaulttypemap=

and then use the -addtypemap option to put any required mappings into the user
type map.

The predefined default type map defines a correspondence between the OPAQUE
type SYS.XMLTYPE and the Java wrapper class oracle.xdb.XMLType. In
addition, it maps the PL/SQL BOOLEAN type to Java boolean and to SQL
INTEGER through two conversion functions defined in the SYS.SQLJUTL package.
Finally, the default type map provides mappings between SQL INTERVAL types
and the Java String type.

However, you may (for example) prefer mapping the PL/SQL BOOLEAN type to the
Java object type Boolean in order to capture SQL NULL values in addition to true
and false values. This can be accomplished by resetting the default type map, as
shown by the following (single wraparound line):

-defaulttypemap=BOOLEAN:Boolean:INTEGER:SYS.SQLJUTL.INT2BOOL:
SYS.SQLJUTL.BOOL2INT

This changes the designated Java type from boolean to Boolean. The rest of the
conversion remains valid.

Other Alternatives for Datatypes Unsupported by JDBC
The preceding sections describe the mechanisms used by JPublisher to access types
that are not supported in JDBC. As an alternative to using JPublisher in this way,
you can try one of these alternatives:

■ Rewrite the PL/SQL method to avoid using the type.

■ Write an anonymous block that does the following:

– Converts input types that JDBC supports into the input types used by the
PL/SQL method.

– Converts output types used by the PL/SQL method into output types that
JDBC supports.

For more information on this technique, see "Example: Using Datatypes
Unsupported by JDBC" on page 4-71.
 JPublisher Concepts 2-19

Concepts of JPublisher-Generated Classes
Concepts of JPublisher-Generated Classes
This section covers basic concepts about the code that JPublisher produces,
including the following:

■ how output parameters of SQL object type methods and PL/SQL methods are
treated

■ how member methods are called

■ how overloaded methods are handled

For more information, see the following sections later in this chapter:

■ "JPublisher Generation of SQLJ Classes (.sqlj)" on page 2-24

■ "JPublisher Generation of Java Classes (.java)" on page 2-31

■ "JPublisher Support for Inheritance" on page 2-39

Passing OUT Parameters
Stored procedures called through SQLJ do not have the same parameter-passing
behavior as ordinary Java methods. This affects the code you write when you call a
wrapper method that JPublisher generates.

When you call an ordinary Java method, parameters that are Java objects are passed
as object references. The method can modify the object.

In contrast, when you call a stored procedure through SQLJ, a copy of each
parameter is passed to the stored procedure. If the procedure modifies any
parameters, copies of the modified parameters are returned to the caller. Therefore,
the "before" and "after" values of a parameter that has been modified appear in
separate objects.

A wrapper method JPublisher generates contains SQLJ code to call a stored
procedure. The parameters to the stored procedure, as declared in your CREATE
TYPE or CREATE PACKAGE declaration, have three possible parameter modes: IN,
OUT, and IN OUT. The IN OUT and OUT parameters of the stored procedure are
returned to the wrapper method in newly created objects. These new values must
be returned to the caller somehow, but assignment to the formal parameter within
the wrapper method does not affect the actual parameter visible to the caller.
2-20 Oracle9i JPublisher User’s Guide

Concepts of JPublisher-Generated Classes
Passing Parameters Other Than the "this" Parameter
The simplest way to solve the problem described above is to pass an OUT or IN OUT
parameter to the wrapper method in a single-element array. The array is a sort of
container that holds the parameter.

■ You assign the "before" value of the parameter to element 0 of an array.

■ You pass the array to your wrapper method.

■ The wrapper method assigns the "after" value of the parameter to element 0 of
the array.

■ After executing the method, you extract the "after" value from the array.

In the following example, you have an initialized variable p of class Person, and x
is an object belonging to a JPublisher-generated class that has a wrapper method f
taking an IN OUT Person argument. You create the array and pass the parameter as
follows:

Person [] pa = {p};
x.f(pa);
p = pa[0];

Unfortunately, this technique for passing OUT or IN OUT parameters requires you
to add a few extra lines of code to your program for each parameter. If your stored
program has many OUT or IN OUT parameters, you might prefer to call it directly
using SQLJ code, rather than a wrapper method.

Passing the "this" Parameter
Problems similar to what is described above arise when the this object of an
instance method is modified.

The this object is an additional parameter that is passed in a different way. Its
mode, as declared in the CREATE TYPE statement, may be IN or IN OUT. If you do
not explicitly declare the mode of this, its mode is IN OUT if the stored procedure
does not return a result, or IN if it does.

If the mode of the this object is IN OUT, the wrapper method must return the new
value of this. The code generated by JPublisher processes this in different ways,
depending on the situation:

■ For a stored procedure that does not return a result, the new value of this is
returned as the result of the wrapper method.
 JPublisher Concepts 2-21

Concepts of JPublisher-Generated Classes
As an example, assume the SQL object type MYTYPE has the following member
procedure:

MEMBER PROCEDURE f1(y IN OUT INTEGER);

Also assume that JPublisher generates a corresponding Java class MyJavaType.
This class would define the following method:

public MyJavaType f1(int[] y)

The f1 method returns the modified this object value as a MyJavaType
instance.

■ For a stored function (a stored procedure that returns a result), the wrapper
method returns the result of the stored function as its result. The new value of
this is returned in a single-element array, passed as an extra argument (the last
argument) to the wrapper method.

Assume the SQL object type MYTYPE has the following member function:

MEMBER FUNCTION f2(x IN INTEGER) RETURNS VARCHAR2;

Then the corresponding Java class MyJavaType would define the following
method:

public String f2(int x, MyJavaType[] newValue)

The f2 method returns the VARCHAR2 function-return as a Java string, and
returns the modified this object value as an array element in the MyJavaType
array.

Note: For PL/SQL static procedures or functions, JPublisher
generates instance methods, not static methods, in the wrapper
class. This is the logistic for associating a database connection (a
SQLJ connection context instance or JDBC connection instance)
with each wrapper class instance. The connection instance is used
in initializing the wrapper class instance, so that you are not
subsequently required to explicitly provide a connection or
connection context instance when calling wrapper methods.
2-22 Oracle9i JPublisher User’s Guide

Concepts of JPublisher-Generated Classes
Translating Overloaded Methods
PL/SQL, as with Java, lets you create overloaded methods—two or more methods
with the same name, but different signatures. If you use JPublisher to generate
wrapper methods for PL/SQL methods, it is possible that two overloaded methods
with different signatures in PL/SQL might have identical signatures in Java. If this
occurs, JPublisher changes the names of the methods to avoid generating two or
more methods with the identical signature. For example, consider a PL/SQL
package or object type that includes these functions:

FUNCTION f(x INTEGER, y INTEGER) RETURN INTEGER

and

FUNCTION f(xx FLOAT, yy FLOAT) RETURN INTEGER

In PL/SQL, these functions have different argument types. However, once they are
translated to Java with Oracle mapping, this difference disappears (both INTEGER
and FLOAT map to oracle.sql.NUMBER).

Suppose that JPublisher generates a class for the package or object type with the
command-line setting -methods=true and Oracle mapping. JPublisher responds
by generating code similar to this:

 public oracle.sql.NUMBER f_1 (
 oracle.sql.NUMBER x,
 oracle.sql.NUMBER y)
 throws SQLException
 {
 /* body omitted */
 }

 public oracle.sql.NUMBER f_4 (
 oracle.sql.NUMBER xx,
 oracle.sql.NUMBER yy)
 throws SQLException
 {
 /* body omitted */
 }

Note that in this example, JPublisher names the first function f_1 and the second
function f_4. Each function name ends with _<nn>, where <nn> is a number
assigned by JPublisher. The number has no significance of its own, but JPublisher
uses it to guarantee that the names of functions with identical parameter types will
be unique.
 JPublisher Concepts 2-23

JPublisher Generation of SQLJ Classes (.sqlj)
JPublisher Generation of SQLJ Classes (.sqlj)
When -methods=all (the default) or -methods=true, JPublisher generates
.sqlj files for PL/SQL packages and for object types—both ORAData
implementations and SQLData implementations (unless an object type does not
define any methods, in which case a .java file is generated). The classes includes
wrapper methods that invoke the server methods of the object types and packages.
Run SQLJ to translate the .sqlj file.

This section describes how to use these generated classes in your SQLJ code.

Important Notes About Generation of SQLJ Classes
Be aware of the following for JPublisher-generated SQLJ classes:

■ Classes produced by JPublisher include a release() method. In creating and
using an instance of a JPublisher-generated wrapper class, if you do not use the
constructor with the DefaultContext argument, and you do not
subsequently call the setConnectionContext() method with a connection
context argument, and you then invoke a wrapper method, then the wrapper
object will implicitly construct a DefaultContext instance. In this case, you
should use the release() method to release the connection context instance
when it is no longer needed.

In other words, one of the following is recommended:

– Do not supply connection information, and thus implicitly use the static
SQLJ default connection context instance.

or:

– Explicitly associate the object with a SQLJ connection context instance
through the setConnectionContext() method.

or:

– Construct the object with an explicitly provided SQLJ connection context.

See "Use of Connection Contexts and Instances in SQLJ Code Generated by
JPublisher" on page 2-27 for more information.

■ In Oracle8i JPublisher and in the JPublisher Oracle8i compatibility mode,
instead of the constructor taking a DefaultContext instance or
user-specified-class instance, there is a constructor that simply takes a
ConnectionContext instance (an instance of any class that implements the
standard sqlj.runtime.ConnectionContext interface).
2-24 Oracle9i JPublisher User’s Guide

JPublisher Generation of SQLJ Classes (.sqlj)
Use of SQLJ Classes JPublisher Generates for PL/SQL Packages
Take the following steps to use a class that JPublisher generates for a PL/SQL
package:

1. Construct an instance of the class.

2. Call the wrapper methods of the class.

The constructors for the class associate a database connection with an instance of
the class. One constructor takes a SQLJ DefaultContext instance (or an instance
of a class specified through the -context option when you ran JPublisher), one
constructor takes a JDBC Connection instance, and one constructor has no
arguments. Calling the no-argument constructor is equivalent to passing the SQLJ
default context to the constructor that takes a DefaultContext instance. Oracle
JDBC provides the constructor that takes a Connection instance for the
convenience of the JDBC programmer who knows how to compile a SQLJ program,
but is unfamiliar with SQLJ concepts such as DefaultContext.

The wrapper methods are all instance methods, because the connection context in
the this object is used in #sql statements in the wrapper methods.

Because a class generated for a PL/SQL package has no instance data other than the
connection context, you will typically construct one class instance for each
connection context you use. If the default context is the only one you use then you
can call the no-argument constructor once. However, the Oracle9i SQLJ Developer’s
Guide and Reference discusses reasons for using explicit connection context instances
instead.

An instance of a class generated for a PL/SQL package does not contain copies of
PL/SQL package variables. It is not an ORAData class or a SQLData class, and you
cannot use it as a host variable.

"Example: Using Classes Generated for Packages" on page 4-66 shows how to use a
class generated for a PL/SQL package.

Important: See "Important Notes About Generation of SQLJ
Classes" on page 2-24.
 JPublisher Concepts 2-25

JPublisher Generation of SQLJ Classes (.sqlj)
Use of Classes JPublisher Generates for Object Types
To use an instance of a Java class that JPublisher generates for a SQL object type or a
SQL OPAQUE type, you must first initialize the Java object. You can accomplish this
in one of the following ways:

■ Assign an already initialized Java object to your Java object.

or:

■ Retrieve a copy of a SQL object into your Java object. You can do this by using
the SQL object as an OUT argument or as the function call return of a
JPublisher-generated wrapper method, or by retrieving the SQL object through
#sql statements you write, or by retrieving the SQL object through JDBC calls
you write.

or:

■ Construct the Java object with the no-argument constructor and set its attributes
using the setXXX() methods, or construct the Java object with the constructor
that accepts values for all of the object attributes. Typically, you would
subsequently use the setConnection() or setConnectionContext()
method to associate the object with a database connection before invoking any
of its wrapper methods. If you do not explicitly associate the object with a JDBC
or SQLJ connection and invoke a method on it, it will become implicitly
associated with the default (static) SQLJ connection context.

Other constructors for the class associate a connection with the class instance.
One constructor takes a DefaultContext instance (or an instance of a class
specified through the -context option when you ran JPublisher), and one
constructor takes a Connection instance. The constructor that takes a
Connection instance is provided for the convenience of the JDBC programmer
who knows how to compile a SQLJ program, but is unfamiliar with SQLJ
concepts such as DefaultContext.

Once you have initialized your Java object, you can:

■ Call the accessor methods of the object.

■ Call the wrapper methods of the object.

■ Pass the object to other wrapper methods.

Important: See "Important Notes About Generation of SQLJ
Classes" on page 2-24.
2-26 Oracle9i JPublisher User’s Guide

JPublisher Generation of SQLJ Classes (.sqlj)
■ Use the object as a host variable in #sql statements.

■ Use the object as a host variable in JDBC calls.

There is a Java attribute for each attribute of the corresponding SQL object type,
with getXXX() and setXXX() accessor methods for each attribute. The accessor
method names are of the form getFoo() and setFoo() for attribute foo.
JPublisher does not generate fields for the attributes.

By default, the class includes wrapper methods that invoke the associated Oracle
object methods executing in the server. The wrapper methods are all instance
methods, regardless of whether the server methods are. The DefaultContext in
the this object is used in #sql statements in the wrapper methods.

With Oracle mapping, JPublisher generates the following methods for the Oracle
JDBC driver to use. These methods are specified in the ORAData and
ORADataFactory interfaces:

■ create()

■ toDatum()

These methods are not generally intended for your direct use. In addition,
JPublisher generates methods setFrom(otherObject),
setValueFrom(otherObject), and setContextFrom(otherObject) that
can be used to copy value or connection information from one object instance to
another.

The sample in "Example: Using Classes Generated for Object Types" on page 4-54
shows how to use a class that was generated for an object type and has wrapper
methods.

Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher
The class that JPublisher uses in creating SQLJ connection context instances
depends on how you set the -context option when you run JPublisher, as follows:

■ A setting of -context=DefaultContext (the default) results in JPublisher
using instances of the standard sqlj.runtime.ref.DefaultContext class.

■ A setting of a user-specified class (that is in the classpath and implements the
standard sqlj.runtime.ConnectionContext interface) results in
JPublisher using instances of that class.
 JPublisher Concepts 2-27

JPublisher Generation of SQLJ Classes (.sqlj)
■ A setting of -context=generated results in the following declaration in the
JPublisher-generated class.

#sql static context _Ctx;

In this case, JPublisher uses instances of the _Ctx class for connection context
instances.

See "SQLJ Connection Context Classes (-context)" on page 3-16 for more information
about the -context option.

Considerations in Using Connection Contexts and Connection Instances
Consider the following points in using SQLJ connection context instances or JDBC
connection instances in instances of JPublisher-generated wrapper classes:

■ Wrapper classes generated by JPublisher provide a
setConnectionContext() method you can use to explicitly specify a SQLJ
connection context instance. (This will not be necessary if you have already
specified a connection context instance through the constructor.)

 This method is defined as follows:

public void setConnectionContext(conn_ctxt_instance);

This installs the passed connection context instance as the SQLJ connection
context in the object wrapper instance. The connection context instance must be
an instance of the class specified through the -context option for JPublisher
connection contexts (typically DefaultContext).

Note: It is no longer routine (as it was in Oracle8i JPublisher) for
JPublisher to declare a connection context instance _ctx. This is
used in Oracle8i compatibility mode, however (-compatible=8i
or -compatible=both8i), with _ctx being declared as a
protected instance of the static connection context class _Ctx.

Unless you have legacy code that depends on _ctx, it is preferable
to use the getConnectionContext() and
setConnectionContext() methods to retrieve and manipulate
connection context instances in JPublisher-generated classes. See
"Considerations in Using Connection Contexts and Connection
Instances" below for more information about these methods.
2-28 Oracle9i JPublisher User’s Guide

JPublisher Generation of SQLJ Classes (.sqlj)
Be aware that the underlying JDBC connection must be compatible with the
connection used to materialize the database object in the first place. Specifically,
some objects may have attributes, such as object reference types or BLOBs, that
are only valid for a particular connection.

■ Use either of the following methods of an object wrapper instance, as
appropriate, to retrieve a connection or connection context instance.

– Connection getConnection()

– ConnCtxtType getConnectionContext()

The getConnectionContext() method returns an instance of the connection
context class specified through the JPublisher -context option (typically
DefaultContext).

The returned connection context instance might either be an instance that was
set explicitly through the setConnectionContext() method, or an instance
that was created implicitly by JPublisher.

■ If code in a JPublisher-generated class uses any SQLJ statements, and you do
not set a connection context instance explicitly, then one will be created
implicitly from the JDBC connection instance when the
getConnectionContext() method is called.

In this circumstance, you must be careful to use the release() method to free
resources in the SQLJ runtime that would otherwise result in a memory leak.

Note: Using the setConnectionContext() method to
explicitly set a connection context instance avoids a problem of the
connection context not being closed properly. This problem only
occurs with implicitly created connection context instances.

Note: These methods are available only in generated .sqlj files,
not generated .java files. If necessary, you can use the setting
-methods=always to ensure that .sqlj files are produced. See
"Generation of Package Classes and Wrapper Methods (-methods)"
on page 3-21.
 JPublisher Concepts 2-29

JPublisher Generation of SQLJ Classes (.sqlj)
■ Having different connection context classes in different generated classes gives
you the option of checking different classes against different exemplar schemas
during SQLJ on-line semantics checking; however, because the SQLJ source is
constructed from actual SQL types, this checking is usually not necessary.

See "Releasing Connection Context Resources" (below) and "SQLJ Connection
Context Classes (-context)" on page 3-16 for related information.

Releasing Connection Context Resources
In some situations, you must use the release() method of an instance of a
JPublisher-generated wrapper class in order to free SQLJ runtime connection
context resources. This is true in the following set of circumstances:

■ You used the SQLJ setting -codegen=iso in translating SQLJ classes.

and:

■ You use JDK 1.1.x or the SQLJ generic runtime library (as opposed to
runtime12, runtime11, and so on) when you execute the generated class or
classes.

and:

■ You did not create the object with the constructor that takes an instance of
DefaultContext (or some other connection context class you specified
through the -context option when you ran JPublisher).

and:

■ You have called one or more wrapper methods on the wrapper instance.

and:

■ You did not use the setConnectionContext() method of the wrapper
instance to explicitly set a connection context instance.

In this set of circumstances, a connection context instance would have been created
implicitly on the object and must explicitly be freed through the release()
method before the object goes out of scope.

(When there is an explicit connection context instance, such as through an explicit
constructor or use of the setConnectionContext() method, using release()
is not necessary.)
2-30 Oracle9i JPublisher User’s Guide

JPublisher Generation of Java Classes (.java)
JPublisher Generation of Java Classes (.java)
When -methods=false, or when SQL object types do not define any methods,
JPublisher does not generate wrapper methods for object types. In this regard, the
behavior is the same for ORAdata and SQLData implementations. Furthermore,
when -methods=false, JPublisher does not generate code for PL/SQL packages
at all, because they are not useful without wrapper methods. (Note that when
-methods=false, JPublisher exclusively generates .java files.)

JPublisher generates the same Java code for reference, VARRAY, and nested table
types regardless of whether -methods is false or true.

To use an instance of a class JPublisher generates for an object type when
-methods=false, or for a reference, VARRAY, or nested table type, you must first
initialize the object.

Similarly to the case with JPublisher-generated SQLJ classes, you can initialize your
object in one of the following ways:

■ Assign an already initialized Java object to your Java object.

or:

■ Retrieve a copy of a SQL object into your Java object. You can do this by using
the SQL object as an OUT argument or as the function call return of a
JPublisher-generated wrapper method in some other class, or by retrieving the
SQL object through #sql statements you write, or by retrieving the SQL object
through JDBC calls you write.

or:

■ Construct the Java object with a no-argument constructor and initialize its data,
or construct the Java object based on its attribute values.

Unlike the constructors generated in .sqlj source files, the constructors generated
in .java source files do not take a connection argument. Instead, when your object
is passed to or returned from a Statement, CallableStatement, or
PreparedStatement object, JPublisher applies the connection it uses to construct
the Statement, CallableStatement, or PreparedStatement object.

This does not mean you can use the same object with different connections at
different times. On the contrary, this is not always possible. An object might have a
subcomponent, such as a reference or a BLOB, that is valid only for a particular
connection.

To initialize the object data, use the setXXX() methods if your class represents an
object type, or the setArray() or setElement() method if your class represents
 JPublisher Concepts 2-31

JPublisher Generation of Java Classes (.java)
a VARRAY or nested table type. If your class represents a reference type, you can
only construct a null reference. All non-null references come from the database.

Once you have initialized your object, you can accomplish the following:

■ Pass the object to wrapper methods in other classes.

■ Use the object as a host variable in #sql statements.

■ Use the object as a host variable in JDBC calls.

■ Call the methods that read and write the state of the object. These methods
operate on the Java object in your program and do not affect data in the
database.

– For a class that represents an object type, you can call the getXXX() and
setXXX() accessor methods.

– For a class that represents a VARRAY or nested table, you can call the
getArray(), setArray(), getElement(), and setElement()
methods.

The getArray() and setArray() methods return or modify an array as
a whole. The getElement() and setElement() methods return or
modify individual elements of the array. Then re-insert the Java array into
the database if you want to update the data there.

■ You cannot modify an object reference, because it is an immutable entity;
however, you can read and write the SQL object it references, using the
getValue() and setValue() methods.

The getValue() method returns a copy of the SQL object to which the
reference refers. The setValue() method updates a SQL object type instance
in the database, taking as input an instance of the Java class that represents the
object type. Unlike the getXXX() and setXXX() accessor methods of a class
generated for an object type, the getValue() and setValue() methods read
and write SQL objects.

Note that both, getValue() and setValue() will result in a database round
trip for reading and, respectively, writing the value of the underlying database
object that the reference points to.

A few methods have not been mentioned yet. You can use the
getORADataFactory() method in JDBC code to return an ORADataFactory
object. You can pass this ORADataFactory to the Oracle getORAData() methods
in the classes ArrayDataResultSet, OracleCallableStatement, and
2-32 Oracle9i JPublisher User’s Guide

JPublisher Generation of Java Classes (.java)
OracleResultSet in the oracle.jdbc package. The Oracle JDBC driver uses
the ORADataFactory object to create objects of your JPublisher-generated class.

In addition, classes representing VARRAYs and nested tables have a few methods
that implement features of the oracle.sql.ARRAY class:

■ getBaseTypeName()

■ getBaseType()

■ getDescriptor()

JPublisher-generated classes for VARRAYs and nested tables do not, however,
extend oracle.sql.ARRAY.

With Oracle mapping, JPublisher generates the following methods for the Oracle
JDBC driver to use. These methods are specified in the ORAData and
ORADataFactory interfaces:

■ create()

■ toDatum()

These methods are not generally intended for your direct use; however, you may
want to use them if converting from one object reference wrapper type to another.

The sample in "Example: Using Classes Generated for Packages" on page 4-66
includes a class that was generated for an object type that does not have wrapper
methods.
 JPublisher Concepts 2-33

User-Written Subclasses of JPublisher-Generated Classes
User-Written Subclasses of JPublisher-Generated Classes
You might want to enhance the functionality of a custom Java class generated by
JPublisher by adding methods and transient fields.

One way to accomplish this is to add methods directly to the JPublisher-generated
class. However, this is not advisable if you anticipate running JPublisher at some
future time to regenerate the class. If you regenerate a class that you have modified
in this way, your changes (that is, the methods you have added) will be overwritten.
Even if you direct JPublisher output to a separate file, you will still need to merge
your changes into the file.

The preferred way to enhance the functionality of a generated class is to extend the
class—that is, treat the JPublisher-generated class as a superclass, write a subclass to
extend its functionality, then map the object type to the subclass. (This is referred to
as the "Generation Gap" pattern in object-oriented terminology.)

This section discusses how to accomplish this.

Extending JPublisher-Generated Classes
Suppose you want JPublisher to generate the class JAddress from the SQL object
type ADDRESS. You also want to write a class MyAddress to represent ADDRESS
objects, where MyAddress extends the functionality JAddress provides.

Under this scenario, you can use JPublisher to generate a custom Java class
JAddress, as well as an initial version of a subclass, MyAddress, into which you
then add the desired functionality. You then use JPublisher to map ADDRESS objects
to the MyAddress class instead of the JAddress class.

To do this, JPublisher must alter the code it generates in the following ways:

■ It generates the reference class MyAddressRef rather than JAddressRef.

■ It uses the MyAddress class instead of the JAddress class to represent
attributes whose SQL type is ADDRESS, or to represent VARRAY and nested
table elements whose SQL type is ADDRESS.

■ It uses the MyAddress factory instead of the JAddress factory when the
ORADataFactory interface is used to construct Java objects whose SQL type is
ADDRESS.

■ It generates or regenerates the code for the JAddress class. In addition, it also
generates an initial version of the code for the MyAddress class, which you can
then modify to insert your own additional functionality. If the source file for the
2-34 Oracle9i JPublisher User’s Guide

User-Written Subclasses of JPublisher-Generated Classes
MyAddress class already exists, however, it will be left untouched by
JPublisher.

Syntax for Mapping to Alternative Classes
JPublisher has functionality to streamline the process of mapping to alternative
classes. Use the following syntax in your -sql command-line option setting:

-sql=object_type:generated_class:map_class

For the above scenario, this would be:

-sql=ADDRESS:JAddress:MyAddress

See "Declaration of Object Types and Packages to Translate (-sql)" on page 3-26 for
information about the -sql option.

If you were to enter the line in the INPUT file instead of on the command line, it
would look like this:

SQL ADDRESS GENERATE JAddress AS MyAddress

See "INPUT File Structure and Syntax" on page 3-35 for information about the
INPUT file.

In this syntax, JAddress indicates the name of the class that JPublisher will
generate (typically as JAddress.sqlj), but MyAddress specifies the name of the
class that actually maps to ADDRESS. You are ultimately responsible for the code in
MyAddress. Update this as necessary to add your custom functionality. If you
retrieve an object that has an ADDRESS attribute, this attribute will be created as an
instance of MyAddress in Java. Or if you retrieve an ADDRESS object directly, you
will retrieve it into an instance of MyAddress.

For an example of how you would use JPublisher to generate the JAddress class,
see "Example: Generating a SQLData Class" on page 4-28.

Format of the Class that Extends the Generated Class
For convenience, an initial version of the source file into which you place your
custom code—for example, MyAddress.sqlj—is automatically generated by
JPublisher, unless it already exists.
 JPublisher Concepts 2-35

User-Written Subclasses of JPublisher-Generated Classes
The generated code has the following features:

■ The class has a no-argument constructor. The easiest way to construct a
properly initialized object is to invoke the constructor of the superclass, either
explicitly or implicitly.

■ The class implements the ORAData interface or the SQLData interface. This
happens implicitly by inheriting the necessary methods from the superclass.

■ When extending an ORAData class, the subclass will also implement the
ORADataFactory interface.

An implementation of the ORADataFactory create() method might look as
follows.

public ORAData create(Datum d, int sqlType) throws SQLException
{
 return create(new UserClass(),d,sqlType);
}

When the class is part of an inheritance hierarchy, however, the generated
method changes to protected ORAData createExact() with the same
signature and body as create() above.

The following code shows a more efficient implementation, where an initialized
UserClass instance is created through the UserClass(boolean)
constructor. This constructor is provided in JPublisher-generated code,
including the superclass that UserClass extends. Using this constructor
ensures that a UserClass instance is not needlessly created if the data object is
null, or needlessly re-initialized if the data object is non-null.

protected UserClass(boolean init) { super(boolean); }
public ORAData create(Datum d, int sqlType) throws SQLException
{
 return (d==null) ? null : create(new UserClass(false),d,sqlType);
}

Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes
If you have been providing user-written subclasses for JPublisher-generated classes
under Oracle8i JPublisher, you should be aware that there are a number of relevant
changes in how Oracle9i JPublisher generates code. You would have to make
changes in any applications written against the Oracle8i functionality if you want to
use it under Oracle9i.
2-36 Oracle9i JPublisher User’s Guide

User-Written Subclasses of JPublisher-Generated Classes
Following are the changes:

■ Replace any use of the declared _ctx connection context field with use of the
provided getConnectionContext() method. The _ctx field is no longer
supported under Oracle9i.

■ Replace the explicit implementation of the create() method with a call to a
superclass create() method.

Assume that in the example below, UserClass extends BaseClass. Instead of
writing the following method in UserClass:

public CustomDatum create(Datum d, int sqlType) throws SQLException
{
 if (d == null) return null;
 UserClass o = new UserClass();
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o._ctx = new _Ctx(((STRUCT) d).getConnection());
 return o;
}

supply the following:

public CustomDatum create(Datum d, int sqlType) throws SQLException
{
 return create(new UserClass(),d,sqlType);
}

or, if the class is part of an inheritance hierarchy, write the following:

protected CustomDatum createExact(Datum d, int sqlType) throws SQLException
{
 return create(new UserClass(),d,sqlType);
}

Note: If you use the -compatible=both8i or 8i setting, you
will not see the changes discussed here and your application will
continue to work as before. See "Backward-Compatible Oracle
Mapping for User-Defined Types (-compatible)" on page 3-9.

In general, however, it is advisable to make the transformation to
Oracle9i JPublisher functionality, because this will help insulate
your user code from implementation details of
JPublisher-generated classes.
 JPublisher Concepts 2-37

User-Written Subclasses of JPublisher-Generated Classes
In addition, in .sqlj files, JPublisher now generates a protected constructor
with a boolean argument that specifies whether the object must be initialized:

protected BaseClass(boolean init) { ... }

You can use this to optimize the UserClass code as described in "Format of
the Class that Extends the Generated Class" on page 2-35.

■ In addition to the getConnectionContext() method, Oracle9i JPublisher
provides a getConnection() method that can be used to obtain the JDBC
connection associated with the object.

The setFrom(), setValueFrom(), and setContextFrom() Methods
Oracle9i JPublisher provides the following utility methods in generated .sqlj files:

■ setFrom(anotherObject)

This initializes the calling object from another object of the same base type,
including connection and connection context information. An existing,
implicitly created, connection context object on the calling object is freed.

■ setValueFrom(anotherObject)

This initializes the underlying field values of the calling object from another
object of the same base type. This method does not transfer connection or
connection context information.

■ setContextFrom(anotherObject)

This initializes the connection and connection context information on the calling
object from the connection setting of another object of the same base type. An
existing, implicitly created, connection context object on the calling object is
freed. This method does not transfer any information related to the object value.

Note that there is semantic equivalence between the following:

x.setFrom(y);

and the following:

x.setValueFrom(y);
x.setContextFrom(y);
2-38 Oracle9i JPublisher User’s Guide

JPublisher Support for Inheritance
JPublisher Support for Inheritance
This section primarily discusses inheritance support for ORAData types, explaining
the following related topics:

■ how JPublisher implements support for inheritance

■ why a reference class for a subtype does not extend the reference class for the
base type, and how you can convert from one reference type to another
reference type (typically a subclass or superclass)

This information is followed by a brief overview of standard inheritance support for
SQLData types, with reference to appropriate documentation for further
information.

ORAData Object Types and Inheritance
Consider the following SQL object types:

CREATE TYPE PERSON AS OBJECT (
...
) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (
...
);

CREATE TYPE INSTRUCTOR UNDER PERSON (
...
);

And consider the following JPublisher command line to create corresponding Java
classes (a single wraparound command):

jpub -user=scott/tiger -sql=PERSON:Person,STUDENT:Student,INSTRUCTOR:Instructor
-usertypes=oracle

In this example, JPublisher generates a Person class, a Student class, and an
Instructor class. The Student and Instructor classes extend the Person
class, because STUDENT and INSTRUCTOR are subtypes of PERSON.

The class at the root of the inheritance hierarchy—Person in this
example—contains the full information for the entire inheritance hierarchy and
automatically initializes its type map with the required information. As long as you
use JPublisher to generate all the required classes of a class hierarchy together, no
 JPublisher Concepts 2-39

JPublisher Support for Inheritance
additional action is required in order to appropriately populate the type map of the
class hierarchy.

Precautions when Combining Partially Generated Type Hierarchies
If you run JPublisher several times on a SQL type hierarchy, each time generating
only part of the corresponding Java wrapper classes, then you must take
precautions in the user application in order to ensure that the type map at the root
of the class hierarchy is properly initialized.

In our previous example you might have run the following JPublisher command
lines:

jpub -user=scott/tiger -sql=PERSON:Person,STUDENT:Student -usertypes=oracle
jpub -user=scott/tiger -sql=PERSON:Person,INSTRUCTOR:Instructor
-usertypes=oracle

In this case you should create instances of the generated classes—at a minimum, the
leaf classes—before using these mapped types in your code. For example:

new Instructor(); // required
new Student(); // required
new Person(); // optional

The reason for this requirement is explained next.

Mapping of Type Hierarchies in JPublisher-Generated Code
The Person class includes the following method:

Person create(oracle.sql.Datum d, int sqlType)

This method, which converts a Datum instance to its representation as a custom
Java object, is called by the Oracle JDBC driver whenever a SQL object declared to
be a PERSON is retrieved into a Person variable. The SQL object, however, might
actually be a STUDENT object. In this case, the create() method must create a
Student instance rather than a Person instance.

In general, to handle this kind of situation, the create() method of a custom Java
class (regardless of whether the class was created by JPublisher) must be able to
create instances of any subclass that represents a subtype of the SQL object type
corresponding to the oracle.sql.Datum argument. This ensures that the actual
type of the created Java object will match the actual type of the SQL object.

You might think that the code for the create() method in the root class of a
custom Java class hierarchy must mention all its subclasses. But if this were the case,
2-40 Oracle9i JPublisher User’s Guide

JPublisher Support for Inheritance
you would have to modify the code for a base class when writing or generating a
new subclass. While this would happen automatically if you always use JPublisher
to regenerate entire class hierarchies, this might not always be possible. For
example, you might not have access to the source code for the Java classes being
extended.

Code generated by JPublisher permits incremental extension of a class hierarchy by
creating a static initialization block in each subclass of the custom Java class
hierarchy. This static initialization block initializes a data structure (equivalent to a
type map) declared in the root-level Java class, giving the root class the information
it needs about the subclass. When an instance of a subclass is created at runtime, the
type is registered in the data structure. Because of this implicit mapping
mechanism, no explicit type map, such as those required in SQLData scenarios, is
required.

To better understand how code generated by JPublisher supports inheritance, try an
example similar to the one at the beginning of this section, and look at the
generated code.

Important: This implementation makes it possible to extend
existing classes without having to modify them, but it also carries a
penalty—the static initialization blocks of the subclasses must be
executed before the class hierarchy can be used to read objects from
the database. This occurs if you instantiate an object of each
subclass by calling new(). It is sufficient to instantiate just the leaf
classes, because the constructor for a subclass will invoke the
constructor for its immediate superclass.

As an alternative, you can always generate (or regenerate) the
entire class hierarchy. In this case, there is no need for concern
about instantiating the type map through creation of instances of all
the leaf classes.
 JPublisher Concepts 2-41

JPublisher Support for Inheritance
ORAData Reference Types and Inheritance
This section shows how to convert from one custom reference class to another, and
also generally explains why a custom reference class generated for a subtype by
JPublisher does not extend the reference classes of the base type.

Casting a Reference Type Instance into Another Reference Type
Revisiting the example in "ORAData Object Types and Inheritance" on page 2-39,
we also obtain PersonRef, StudentRef, and InstructorRef, for strongly
typed references, in addition to the underlying object type wrappers.

There may be situations where you have a StudentRef instance but you want to
use it in a context that requires a PersonRef instance. In this case, use the static
cast() method that is generated on strongly typed reference classes:

StudentRef s_ref = ...; PersonRef p_ref = PersonRef.cast(s_ref);

Conversely, you might have a PersonRef instance and know that you can narrow
it to an InstructorRef instance:

PersonRef pr = ...; InstructorRef ir = InstructorRef.cast(pr);

Next we outline why we need to use a cast() function rather than just being able
to establish a reference type hierarchy that mirrors the object type hierarchy.

Why Reference Type Inheritance Does Not Follow Object Type Inheritance
The example here helps explain why it is not desirable for reference types to follow
the hierarchy of their related object types.

Consider again a subset of the example given in the previous section, repeated here
for convenience:

CREATE TYPE PERSON AS OBJECT (
...
) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (
...
);

jpub -user=scott/tiger -sql=PERSON:Person,STUDENT:Student -usertypes=oracle

In addition to generating Person.sqlj (or .java) and Student.sqlj (or
.java), JPublisher will generate PersonRef.java and StudentRef.java.
2-42 Oracle9i JPublisher User’s Guide

JPublisher Support for Inheritance
Because the Student class extends the Person class, you might expect
StudentRef to extend PersonRef. This is not the case, however, because the
StudentRef class can provide more compile-time type safety as an independent
class than as a subtype of PersonRef. Additionally, a PersonRef can do
something that a StudentRef cannot do: modify a Person object in the database.

The most important methods of the PersonRef class would be the following:

■ Person getValue()

■ void setValue(Person c)

The corresponding methods of the StudentRef class would be as follows:

■ Student getValue()

■ void setValue(Student c)

If the StudentRef class extended the PersonRef class, two problems would
occur:

■ Java would not permit the getValue() method in StudentRef to return a
Student object when the method it would override in the PersonRef class
returns a Person object, even though this is arguably a sensible thing to do.

■ The setValue() method in StudentRef would not override the
setValue() method in PersonRef, because the two methods have different
signatures.

It would not be sensible to remedy these problems by giving the StudentRef
methods the same signatures and result types as the PersonRef methods, because
the additional type safety provided by declaring an object as a StudentRef, rather
than as a PersonRef, would be lost.

Manually Converting Between Reference Types
Because reference types do not follow the hierarchy of their related object types,
there is a JPublisher limitation that you cannot convert directly from one reference
type to another. For background information, this section explains how the
generated cast() methods work to convert from one reference type to another.

It is not recommended that you follow these manual steps—they are presented here
for illustration only. Simply use the cast() method instead.

The following code, for example, could be used to convert from the reference type
XxxxRef to the reference type YyyyRef.
 JPublisher Concepts 2-43

JPublisher Support for Inheritance
java.sql.Connection conn = ...; // get underlying JDBC connection
XxxxRef xref = ...;
YyyyRef yref = (YyyyRef) YyyyRef.getORADataFactory().
 create(xref.toDatum(conn),oracle.jdbc.OracleTypes.REF);

This conversion consists of two steps, each of which can be useful in its own right.

1. Convert xref from its strong XxxxRef type to the weak oracle.sql.REF
type:

oracle.sql.REF ref = (oracle.sql.REF) xref.toDatum(conn);

2. Convert from the oracle.sql.REF type to the target YyyyRef type:

YyyyRef yref = (YyyyRef) YyyyRef.getORADataFactory().
 create(ref,oracle.jdbc.OracleTypes.REF);

"Example: Manually Converting Between Reference Types" below provides sample
code for such a conversion.

Example: Manually Converting Between Reference Types
The following example, including SQL definitions and Java code, illustrates the
points of the preceding discussion.

SQL Definitions Consider the following SQL definitions:

create type person_t as object (ssn number, name varchar2 (30), dob date) not
final;
/
show errors

create type instructor_t under person_t (title varchar2(20)) not final;
/
show errors

create type instructorPartTime_t under instructor_t (num_hours number);
/
show errors

Note: This conversion does not involve any type-checking.
Whether this conversion is actually permitted depends on your
application and on the SQL schema you are using.
2-44 Oracle9i JPublisher User’s Guide

JPublisher Support for Inheritance
create type student_t under person_t (deptid number, major varchar2(30)) not
final;
/
show errors

create type graduate_t under student_t (advisor instructor_t);
/
show errors

create type studentPartTime_t under student_t (num_hours number);
/
show errors

create table person_tab of person_t;

insert into person_tab values (1001, ’Larry’, TO_DATE(’11-SEP-60’));
insert into person_tab values (instructor_t(1101, ’Smith’, TO_DATE
(’09-OCT-1940’), ’Professor’));
insert into person_tab values (instructorPartTime_t(1111, ’Myers’,
TO_DATE(’10-OCT-65’), ’Adjunct Professor’, 20));
insert into person_tab values (student_t(1201, ’John’, To_DATE(’01-OCT-78’), 11,
’EE’));
insert into person_tab values (graduate_t(1211, ’Lisa’, TO_DATE(’10-OCT-75’),
12, ’ICS’, instructor_t(1101, ’Smith’, TO_DATE (’09-OCT-40’), ’Professor’)));
insert into person_tab values (studentPartTime_t(1221, ’Dave’,
TO_DATE(’11-OCT-70’), 13, ’MATH’, 20));

JPublisher Mappings Assume the following mappings when you run JPublisher:

Person_t:Person,instructor_t:Instructor,instructorPartTime_t:InstructorPartTime,
graduate_t:Graduate,studentPartTime_t:StudentPartTime

Java Class Here is a Java class with an example of reference type conversion as
discussed above, in "Manually Converting Between Reference Types" on page 2-43:

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sqlj.runtime.Oracle;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ResultSetIterator;
 JPublisher Concepts 2-45

JPublisher Support for Inheritance
public class Inheritance
{
 public static void main(String[] args) throws SQLException
 {
 System.out.println("Connecting.");
 Oracle.connect("jdbc:oracle:oci:@","scott","tiger");

 // The following is only required in 9.0.1
 // or if the Java class hierarchy was created piecemeal
 System.out.println("Initializing type system.");
 new Person();
 new Instructor();
 new InstructorPartTime();
 new StudentT();
 new StudentPartTime();
 new Graduate();

 PersonRef p_ref;
 InstructorRef i_ref;
 InstructorPartTimeRef ipt_ref;
 StudentTRef s_ref;
 StudentPartTimeRef spt_ref;
 GraduateRef g_ref;

 System.out.println("Selecting a person.");
 #sql { select ref(p) INTO :p_ref FROM PERSON_TAB p WHERE p.NAME=’Larry’ };

 System.out.println("Selecting an instructor.");
 #sql { select ref(p) INTO :i_ref FROM PERSON_TAB p WHERE p.NAME=’Smith’ };

 System.out.println("Selecting a part time instructor.");
 #sql { select ref(p) INTO :ipt_ref FROM PERSON_TAB p WHERE p.NAME=’Myers’ };

 System.out.println("Selecting a student.");
 #sql { select ref(p) INTO :s_ref FROM PERSON_TAB p WHERE p.NAME=’John’ };

 System.out.println("Selecting a part time student.");
 #sql { select ref(p) INTO :spt_ref FROM PERSON_TAB p WHERE p.NAME=’Dave’ };

 System.out.println("Selecting a graduate student.");
 #sql { select ref(p) INTO :g_ref FROM PERSON_TAB p WHERE p.NAME=’Lisa’ };

 // Connection object for conversions
 Connection conn = DefaultContext.getDefaultContext().getConnection();
2-46 Oracle9i JPublisher User’s Guide

JPublisher Support for Inheritance
 // Assigning a part-time instructor ref to a person ref
 System.out.println("Assigning a part-time instructor ref to a person ref");
 oracle.sql.Datum ref = ipt_ref.toDatum(conn);
 PersonRef pref = (PersonRef) PersonRef.getORADataFactory().
 create(ref,OracleTypes.REF);
 // or just use: PersonRef pref = PersonRef.cast(ipt_ref);

 // Assigning a person ref to an instructor ref
 System.out.println("Assigning a person ref to an instructor ref");
 InstructorRef iref = (InstructorRef) InstructorRef.getORADataFactory().
 create(pref.toDatum(conn), OracleTypes.REF);
 // or just use: InstructorRef iref = InstructorRef.cast(pref);

 // Assigning a graduate ref to an part time instructor ref
 // ==> this should actually bomb at runtime!
 System.out.println
 ("Assigning a graduate ref to a part time instructor ref");
 InstructorPartTimeRef iptref =
 (InstructorPartTimeRef) InstructorPartTimeRef.getORADataFactory()
 .create(g_ref.toDatum(conn), OracleTypes.REF);
 // or just use: InstructorPartTimeRef iptref =
InstructorPartTimeRef.cast(g_ref);

 Oracle.close();
 }
}

SQLData Object Types and Inheritance
As described earlier, if you use the JPublisher -usertypes=jdbc setting instead of
-usertypes=oracle, the custom Java class that JPublisher generates will
implement the standard SQLData interface instead of the Oracle ORAData
interface. The SQLData standard readSQL() and writeSQL() methods provide
equivalent functionality to the ORAData/ORADataFactory create() and
toDatum() methods for reading and writing data.

As is the case when JPublisher generates ORAData classes corresponding to a
hierarchy of SQL object types, when JPublisher generates SQLData classes
corresponding to a SQL hierarchy, the Java types will follow the same hierarchy as
the SQL types.
 JPublisher Concepts 2-47

JPublisher Support for Inheritance
SQLData implementations do not, however, offer the implicit mapping intelligence
that JPublisher automatically generates into ORAData classes (as described in
"ORAData Object Types and Inheritance" on page 2-39).

In a SQLData scenario, you must manually provide a type map to ensure the
proper mapping between SQL object types and Java types. In a JDBC application,
you can properly initialize the default type map for your connection, or you can
explicitly provide a type map as a getObject() input parameter. (See the Oracle9i
JDBC Developer’s Guide and Reference for information.) In a SQLJ application, use a
type map resource that is similar in nature to a properties file. (See the Oracle9i SQLJ
Developer’s Guide and Reference for information.)

In addition, be aware that there is no support for strongly typed object references in
a SQLData implementation. All object references are weakly typed java.sql.Ref
instances.

Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE
This section discusses the effect on JPublisher-generated wrapper classes of using
the SQL modifiers FINAL, NOT FINAL, INSTANTIABLE, or NOT INSTANTIABLE.

Using the SQL modifier FINAL or NOT FINAL on a SQL type or on a method of a
SQL type has no effect on the generated Java wrapper code. This is so JPublisher
users are able in all cases to customize the generated Java wrapper class through
subclassing and overriding the generated behavior.

Using the SQL modifier NOT INSTANTIABLE on a method of a SQL type results in
no code being generated for that method in the Java wrapper class. Therefore, you
must cast to some wrapper class that corresponds to an instantiable SQL subtype in
order to call such a method.

Using NOT INSTANTIABLE on a SQL type results in the corresponding wrapper
class being generated with protected constructors. This will remind you that
instances of that class can only be created through subclasses that correspond to
instantiable SQL types.
2-48 Oracle9i JPublisher User’s Guide

Backward Compatibility and Migration
Backward Compatibility and Migration
This section discusses issues of backward compatibility, compatibility between JDK
versions, and migration between Oracle8i and Oracle9i releases of JPublisher.

JPublisher Backward Compatibility
The JPublisher runtime is packaged with Oracle JDBC in the classes111,
classes12, or ojdbc14 library. Code generated by an earlier version of JPublisher
will:

■ continue to run with the current release of the JPublisher runtime

■ continue to be compilable against the current release of the JPublisher runtime

If you use an earlier release of the JPublisher runtime and Oracle JDBC in
generating code, the code will be compilable against that version of the JPublisher
runtime. Specifically, when you use an Oracle8i JDBC driver, JPublisher will
generate code for the now-deprecated CustomDatum interface, not the ORAData
interface that replaced it.

JPublisher Compatibility Between JDK Versions
Generally speaking, .sqlj files generated by JPublisher can be translated under
either JDK 1.1.x (assuming you are not using JDBC 2.0-specific types), or JDK 1.2.x
or higher. However, if you intend to translate and compile in separate steps (setting
-compile=false in SQLJ so that only .java files, not .class files, are
produced), then you must use the same JDK version for compilation as for
translation unless you use a special JPublisher option setting.

In this situation (translating and compiling in separate steps), the JPublisher default
setting -context=DefaultContext results in generation of .sqlj files that are
completely compatible between JDK 1.1.x and JDK 1.2.x or higher. (With this
setting, for example, you could translate against JDK 1.1.x but still compile against
JDK 1.2.x successfully.)

In this situation, all generated .sqlj files use the
sqlj.runtime.ref.DefaultContext class for all connection contexts. This is
as opposed to the setting -context=generated, which results in each generated
.sqlj file declaring its own connection context inner class. This was the Oracle8i
JPublisher default behavior, and is what makes translated .java code incompatible
between JDK 1.1.x and 1.2.x or higher.
 JPublisher Concepts 2-49

Backward Compatibility and Migration
See "SQLJ Connection Context Classes (-context)" on page 3-16 for more information
about the -context option.

See the Oracle9i SQLJ Developer’s Guide and Reference for general information about
connection contexts.

Migration Between Oracle8i JPublisher and Oracle9i JPublisher
In Oracle9i JPublisher, default option settings and some features of the generated
code have changed. If you wrote an application using JPublisher release 8.1.7 or
earlier, it is unlikely that you will be able to simply re-run JPublisher in Oracle9i and
have the generated classes still work within your application. This section describes
how to modify your JPublisher option settings or your application code
appropriately.

Changes in Behavior in Oracle9i JPublisher
Be aware of the following changes in JPublisher behavior in Oracle9i:

■ By default, JPublisher no longer declares the inner SQLJ connection context
class _Ctx for every object type. Instead, it uses the connection context class
sqlj.runtime.ref.DefaultContext throughout.

Also, user-written code must call the getConnectionContext() method to
have a connection context handle, instead of using the _ctx connection context
field that was declared under Oracle8i code generation. See "Considerations in
Using Connection Contexts and Connection Instances" on page 2-28 for more
information about the getConnectionContext() method.

Important: With some JPublisher option settings under JDK 1.1.x
there is risk of memory leakage caused by SQLJ connection context
instances that are not closed. See "Releasing Connection Context
Resources" on page 2-30 for information.

Note: Also see "Changes in User-Written Subclasses of Oracle9i
JPublisher-Generated Classes" on page 2-36 for differences between
Oracle8i functionality and Oracle9i functionality for classes that
extend JPublisher-generated classes.
2-50 Oracle9i JPublisher User’s Guide

Backward Compatibility and Migration
■ Even with the setting -methods=true, .java files are generated instead of
.sqlj files if the underlying SQL object type or PL/SQL package does not
define any methods. (But a setting of -methods=always will always result in
.sqlj files being produced.)

■ By default, JPublisher now generates code that implements the
oracle.sql.ORAData interface instead of the deprecated
oracle.sql.CustomDatum interface.

■ By default, JPublisher now places generated code into the current directory,
rather than into a package-directory hierarchy under the current directory.

See the following sections, "Individual Settings to Force JPublisher Behavior as in
Previous Releases" below and "Oracle8i Compatibility Mode" on page 2-52, for
information about how to revert to Oracle8i behavior instead.

Individual Settings to Force JPublisher Behavior as in Previous Releases
In Oracle9i, if you want JPublisher to behave as it did in release 8.1.7 and prior,
there are a number of individual backward-compatibility options you can set. This
is detailed in Table 2–2. See descriptions of these options under "Detailed
Descriptions of General JPublisher Options" on page 3-13 for more information.

See "Oracle8i Compatibility Mode" on page 2-52 for a single setting that results in
the same behavior as for Oracle8i JPublisher—backward-compatible code
generation plus behavior that is equivalent to what would happen with the
combination of these individual option settings.

Table 2–2 JPublisher Backward-Compatibility Options

Option Setting Behavior

-context=generated This results in the declaration of an inner class, _Ctx, for
SQLJ connection contexts. This is used instead of the default
DefaultContext class or user-specified connection context
classes.

-methods=always This forces generation of .sqlj (as opposed to .java)
source files for all JPublisher-generated classes, regardless of
whether the underlying SQL object or package actually
defines any methods.

-compatible=customdatum For Oracle-specific object wrappers, this results in JPublisher
implementing the deprecated (but still supported)
oracle.sql.CustomDatum and CustomDatumFactory
interfaces instead of the oracle.sql.ORAData and
ORADataFactory interfaces.
 JPublisher Concepts 2-51

Backward Compatibility and Migration
Unless you have a compelling reason to use the backward-compatibility settings,
however, it is recommended that you accept the current default (or other) settings.

Oracle8i Compatibility Mode
Either of the JPublisher option settings -compatible=both8i and
-compatible=8i results in what is called Oracle8i compatibility mode.

See "Backward-Compatible Oracle Mapping for User-Defined Types (-compatible)"
on page 3-9 for more information about this option.

For use of this mode to be permissible, however, at least one of the following
circumstances must hold:

■ You will translate JPublisher-generated .sqlj files with the default SQLJ
-codegen=oracle setting.

or:

■ The JPublisher-generated code will execute under JDK 1.2 or higher and will
use the SQLJ runtime12 or runtime12ee library, or will execute in the
Oracle9i release of the server-side Oracle JVM.

or:

■ You will run JPublisher with the -methods=false or -methods=none
setting.

JPublisher has the following functionality in Oracle8i compatibility mode:

■ It will generate code that implements the deprecated CustomDatum and
CustomDatumFactory interfaces instead of the ORAData interface (as with
the -compatible=customdatum setting). In addition, if you choose the
setting -compatible=both8i, the generated code will also implement the
ORAData interface, though not ORADataFactory.

■ With the -methods=true setting, it will always generate SQLJ source code for
a SQL object type, even if the object type does not define any methods (as with
-methods=always).

-dir=. Setting this option to "." (a period or "dot") results in
generation of output files into a hierarchy under the current
directory, as was the default behavior in Oracle8i.

Table 2–2 JPublisher Backward-Compatibility Options (Cont.)

Option Setting Behavior
2-52 Oracle9i JPublisher User’s Guide

Backward Compatibility and Migration
■ It will generate connection context declarations and connection context
instances on every object type wrapper, as follows (as with
-context=generated):

#sql static context _Ctx;
protected _Ctx _ctx;

■ It provides a constructor in the wrapper class that takes a generic
ConnectionContext instance (an instance of any class implementing the
standard sqlj.runtime.ConnectionContext interface) as input. In
Oracle9i, the constructor accepts only a DefaultContext instance or an
instance of the class specified through the -context option when JPublisher
was run.

■ It does not provide an API for releasing a connection context instance that has
been created implicitly on a JPublisher object.

By contrast, Oracle9i JPublisher provides both a setConnectionContext()
method for explicitly setting the connection context instance for an object, and a
release() method for releasing an implicitly created connection context
instance of an object.

In general, if you must choose Oracle8i compatibility mode, it is strongly
recommended that you use the setting -compatible=both8i. This will permit
your application to work in a middle-tier environment such as the Oracle9i
Application Server, where JDBC connections are obtained through data sources and
likely will be wrapped using oracle.jdbc.OracleXxxx interfaces.
CustomDatum implementations do not support such wrapped connections.

Oracle8i compatibility mode is now the only way for a connection context instance
_ctx to be declared in JPublisher-generated code—there is no other option setting
to accomplish this particular Oracle8i behavior. The _ctx instance might be useful
if you have legacy code that depends on it, but otherwise you should obtain
connection context instances through the getConnectionContext() method.

Note: The setting -compatible=both8i requires Oracle JDBC
9.0.1 or higher.
 JPublisher Concepts 2-53

Backward Compatibility and Migration
Important: There are circumstances where you should not use
Oracle8i compatibility mode. If your environment uses any of the
following:

■ JDK 1.1.x, the SQLJ generic runtime library, or the SQLJ
runtime11 library

and you use the following SQLJ translator setting:

■ -codegen=iso

as well as any of the following JPublisher settings:

■ -methods=named (or some), -methods=true (or all), or
-methods=always

then there may be significant memory leakage caused by implicit
connection context instances that are not closed.

Avoid the -compatible=8i and -compatible=both8i settings
in these circumstances, and use the setConnectionContext()
and release() methods in manipulating connection contexts. For
more information, see "Use of Connection Contexts and Instances
in SQLJ Code Generated by JPublisher" on page 2-27.
2-54 Oracle9i JPublisher User’s Guide

JPublisher Limitations
JPublisher Limitations
This section summarizes limitations in the Oracle9i release 2 version of JPublisher.

■ Some datatypes are only supported indirectly through JPublisher type maps
that map PL/SQL-specific types to SQL types. This includes the following:

– RECORD types

– indexed-by tables

Note that JPublisher has predefined support for mapping PL/SQL BOOLEAN to
Java boolean using conversion functions in the SYS.SQLJUTL package. In
general, if JPublisher encounters wrapper methods that use one or more
unrecognized datatypes, it will not generate a corresponding Java method and
will display one or more error messages instead.

For more information about datatype support, see "SQL and PL/SQL Mappings
to Oracle and JDBC Types" on page 2-3.

■ INPUT file error reporting is sometimes incomplete.

JPublisher reports most, but not all, errors in the INPUT file. The few errors in
the INPUT file that are not reported by JPublisher are described in "INPUT File
Precautions" on page 3-41.

■ Although the -omit_schema_names option behaves as a boolean option, you
cannot set it =true or =false (unlike other boolean options). Simply specify
"-omit_schema_names" to enable it. The default is disabled. See "Omission of
Schema Name from Generated Names (-omit_schema_names)" on page 3-22 for
information about this option.
 JPublisher Concepts 2-55

JPublisher Limitations
2-56 Oracle9i JPublisher User’s Guide

 Command-Line Options and Input
3

Command-Line Options and Input Files

This chapter describes the use and syntax details of JPublisher option settings and
input files to specify program behavior, organized as follows:

■ JPublisher Options

■ JPublisher Input Files
 Files 3-1

JPublisher Options
JPublisher Options
This section lists and discusses JPublisher command-line options, covering the
following topics:

■ JPublisher Option Summary

■ JPublisher Option Tips

■ Notational Conventions

■ Detailed Descriptions of Options That Affect Datatype Mappings

■ Detailed Descriptions of General JPublisher Options

JPublisher Option Summary
Table 3–1 lists the options that you can use on the JPublisher command line, their
syntax, and a brief description. The abbreviation "n/a" represents "not applicable".

Table 3–1 Summary of JPublisher Options

Option Name Description Default Value

-access Determines the access modifiers that
JPublisher includes in generated method
definitions.

public

-adddefaulttypemap Appends an entry to the JPublisher default
type map.

n/a

-addtypemap Appends an entry to the JPublisher user type
map.

n/a

-builtintypes Specifies the datatype mappings (jdbc or
oracle) for built-in datatypes that are
non-numeric and non-LOB.

jdbc

-case Specifies the case of Java identifiers that
JPublisher generates.

mixed

-compatible Specifies the general Oracle8i compatibility
mode, or the particular interface to
implement in generated classes for Oracle
mapping of user-defined types—ORAData or
CustomDatum (supported for backward
compatibility); modifies the behavior of
-usertypes=oracle.

oradata
3-2 Oracle9i JPublisher User’s Guide

JPublisher Options
-context Specifies the class JPublisher uses for
connection contexts—the SQLJ
DefaultContext class, a user-specified
class, or a JPublisher-generated inner class.

DefaultContext

-defaulttypemap Sets the default type map used by JPublisher. See "JPublisher Default Type Map
and User Type Map" on page 2-18.

-dir Specifies the directory that holds generated
files or packages. An empty directory name
results in all generated files being placed in
the current directory. A non-empty directory
name specifies a directory to be used as the
root directory of a class hierarchy.

empty

-driver Specifies the driver class that JPublisher uses
for JDBC connections to the database.

oracle.jdbc.OracleDriver

-encoding Specifies the Java encoding of JPublisher
input files and output files.

the value of the system property
file.encoding

-gensubclass Specifies whether and how to generate stub
code for user subclasses.

true

-input (or -i) Specifies a file that lists the types and
packages JPublisher translates.

n/a

-lobtypes Specifies the datatype mappings (jdbc or
oracle) that JPublisher uses for BLOB and
CLOB types.

oracle

-mapping Specifies the mapping that generated
methods support for object attribute types
and method argument types.

Note: This is deprecated in favor of the
"XXXtypes" mapping options, but is
supported for backward compatibility.

objectjdbc

-methods Determines whether JPublisher generates
wrapper methods for SQL object methods
and PL/SQL package methods. Also, as
secondary effects, determines whether
JPublisher generates .sqlj files or .java
files, and whether it generates PL/SQL
wrapper classes at all.

all

Table 3–1 Summary of JPublisher Options (Cont.)

Option Name Description Default Value
 Command-Line Options and Input Files 3-3

JPublisher Options
-numbertypes Specifies the datatype mappings (jdbc,
objectjdbc, bigdecimal, or oracle)
that JPublisher uses for numeric datatypes.

objectjdbc

-omit_schema_names Specifies whether all object types and
package names that JPublisher generates
include the schema name.

disabled (do not omit schema names)

-package Specifies the name of the Java package into
which JPublisher generates Java wrappers.

n/a

-plsqlfile Specifies a file into which JPublisher
generates PL/SQL wrapper functions and
procedures.

plsql_wrapper.sql

-plsqlmap Specifies whether and how to generate
PL/SQL wrapper functions and procedures.

true

-plsqlpackage Specifies the PL/SQL package into which
JPublisher generates wrapper functions and
procedures.

JPUB_PLSQL_WRAPPER

-props (or -p) Specifies a file that contains JPublisher
options in addition to those listed on the
command line.

n/a

-serializable Specifies whether code generated for object
types implements
java.io.Serializable.

false

-sql (or -s) Specifies object types and packages for
which JPublisher will generate code.

n/a

-tostring Specifies whether to generate a toString()
method for object types.

false

-typemap Specifies the JPublisher type map (a list of
mappings).

empty

-types Specifies object types for which JPublisher
will generate code.

Note: This option is deprecated in favor of
-sql, but is supported for backward
compatibility.

n/a

Table 3–1 Summary of JPublisher Options (Cont.)

Option Name Description Default Value
3-4 Oracle9i JPublisher User’s Guide

JPublisher Options
JPublisher Option Tips
Be aware of the following usage notes for JPublisher options.

■ JPublisher always requires the -user option (or -u, its shorthand equivalent).

■ Options are processed in the order in which they appear. Options from an
INPUT file are processed at the point where the -input (or -i) option occurs.
Similarly, options from a properties file are processed at the point where the
-props (or -p) option occurs.

■ If a particular option appears more than once, JPublisher in general uses the
value from the last occurrence. This is not true for the following options,
however, which are cumulative.

-sql (or the deprecated -types)

-addtypemap or -adddefaulttypemap

■ In general, options and corresponding option values must be separated by an
equals sign ("="). When the following options appear on the command line,
however, you are also permitted to use a space as a separator:

-sql (or -s), -user (or -u), -props (or -p), and -input (or -i)

■ It is advisable to specify a Java package for your generated classes, with the
-package option, either on the command line or in a properties file. For
example, on the command line you could enter:

jpub -sql=Person -package=e.f ...

-url Specifies the URL JPublisher uses to connect
to the database.

jdbc:oracle:oci:@

-user (or -u) Specifies an Oracle username and password
for connection.

n/a

-usertypes Specifies the type mappings (jdbc or
oracle) JPublisher uses for user-defined
SQL types.

oracle

Table 3–1 Summary of JPublisher Options (Cont.)

Option Name Description Default Value
 Command-Line Options and Input Files 3-5

JPublisher Options
or in the properties file you could enter:

jpub.sql=Person
jpub.package=e.f
...

These statements direct JPublisher to create the class Person in the Java
package e.f; that is, to create the class e.f.Person.

"Properties File Structure and Syntax" on page 3-33 describes the properties file.

■ If you do not specify a type or package in the INPUT file or on the command
line, then JPublisher translates all types and packages in the user schema
according to the options specified on the command line or in the properties file.

Notational Conventions
The JPublisher option syntax used in the following sections follows these notational
conventions:

■ Angle brackets <...> enclose strings that the user supplies.

■ Braces {...} enclose a list of possible values—specify only one of the values
within the braces.

■ A vertical bar | separates alternatives within brackets or braces.

■ Terms in italics are like for values to input—specify an actual value or string.

■ Square brackets [...] enclose optional items. In some cases, however, square
brackets or parentheses are part of the syntax and need to be entered verbatim.
In this case, this manual uses boldface: [...] or (...).

■ An ellipsis ... immediately following an item (or items enclosed in brackets)
means that you can repeat the item any number of times.

■ Punctuation symbols other than those described above are entered as shown.
These include "." and "@", for example.

The next section discusses the options that affect datatype mappings. The remaining
options are then discussed in alphabetical order.
3-6 Oracle9i JPublisher User’s Guide

JPublisher Options
Detailed Descriptions of Options That Affect Datatype Mappings
The following options control which datatype mappings JPublisher uses to translate
object types, collection types, object reference types, and PL/SQL packages to Java
classes:

■ The -usertypes option controls JPublisher behavior for user-defined types
(possibly in conjunction with the -compatible option for oracle mapping).

■ The -numbertypes option controls datatype mappings for numeric types.

■ The -lobtypes option controls datatype mappings for the BLOB and CLOB
types.

■ The -builtintypes option controls datatype mappings for non-numeric,
non-LOB, predefined SQL and PL/SQL types.

These four options are known as the type-mapping options. (Another, less flexible
option, -mapping, is discussed later. It is deprecated, but still supported for
compatibility with older releases of JPublisher.)

In addition, JPublisher code generation is also controlled through entries in the
JPublisher user type map or default type map. This is primarily to permit JPublisher
to access signatures with PL/SQL types. You can refer to "Using Datatypes
Unsupported by JDBC" on page 2-7 for more information.

The following options are used in conjunction with JPublisher type mapping, and
are described in the general options section:

■ -addtypemap, -adddefaulttypemap, -defaulttypemap, and -typemap
for specifying type mappings

■ -plsqlfile, -plsqlmap, and -plsqlpackage for controlling the generation
of PL/SQL wrapper code

For an object type, JPublisher applies the mappings specified by the type mapping
options to the object attributes and to the arguments and results of any methods
included with the object. The mappings control the types that the generated
accessor methods support; that is, what types the getXXX() methods return and
the setXXX() methods require.

For a PL/SQL package, JPublisher applies the mappings to the arguments and
results of the methods in the package.

For a collection type, JPublisher applies the mappings to the element type of the
collection.
 Command-Line Options and Input Files 3-7

JPublisher Options
The -usertypes option controls whether JPublisher implements the Oracle
ORAData interface or the standard SQLData interface in generated classes, and
whether JPublisher generates code for collection and object reference types. In
addition, if -usertypes=oracle, you can use the -compatible option to specify
using CustomDatum instead of ORAData for Oracle mapping. CustomDatum is
replaced by ORAData and deprecated in Oracle9i, but is supported for backward
compatibility. (Beyond this, you can use the -compatible option to specify a more
general Oracle8i compatibility mode. See "Oracle8i Compatibility Mode" on
page 2-52.)

See "Details of Datatype Mapping" on page 2-2 for more information about the
different datatype mappings and factors you should consider in deciding which
mappings to use.

The following sections provide additional information about these type mapping
options.

Mappings for User-Defined Types (-usertypes)
-usertypes={oracle|jdbc}

The -usertypes option controls whether JPublisher implements the Oracle
ORAData interface or the standard SQLData interface in generated classes for
user-defined types.

When -usertypes=oracle (the default), JPublisher generates ORAData classes
for object, collection, and object reference types.

When -usertypes=jdbc, JPublisher generates SQLData classes for object types.
JPublisher does not generate classes for collection or object reference types in this
case—use java.sql.Array for all collection types and java.sql.Ref for all
object reference types.

Notes:

■ The -usertypes=jdbc setting requires JDK 1.2 or higher,
because the SQLData interface is a JDBC 2.0 feature.

■ With certain settings of the -compatible option, a
-usertypes=oracle setting results in classes that implement
the deprecated CustomDatum interface instead of ORAData.
See "Backward-Compatible Oracle Mapping for User-Defined
Types (-compatible)" below.
3-8 Oracle9i JPublisher User’s Guide

JPublisher Options
Backward-Compatible Oracle Mapping for User-Defined Types (-compatible)
-compatible={oradata|customdatum|both8i|8i}

If -usertypes=oracle, you have the option of setting
-compatible=customdatum to implement the CustomDatum interface instead of
the ORAData interface in your generated classes for user-defined types.
CustomDatum is replaced by ORAData and deprecated in Oracle9i, but is still
supported for backward compatibility. If -usertypes=jdbc, a -compatible
setting of customdatum (or oradata) is ignored.

The default setting is oradata.

This option also has another mode of operation. With a setting of
-compatible=8i or -compatible=both8i, you can specify the general Oracle8i
compatibility mode. This not only uses CustomDatum, but also generates the same
code that would be generated by Oracle8i JPublisher, and is equivalent to setting
other JPublisher options for backward compatibility to Oracle8i. Behavior of
method generation is equivalent to that for a -methods=always setting, and
generation of connection context declarations is equivalent to that for a
-context=generated setting. See "Oracle8i Compatibility Mode" on page 2-52.

Notes: If you use JPublisher in an environment that does not
support the ORAData interface (such as Oracle8i JDBC 8.1.7 or prior
releases), then the CustomDatum interface is used automatically if
-usertypes=oracle. (You will receive an informational warning
if -compatible=oradata, but the generation will take place.)

The option setting -compatible=both8i additionally makes the
generated object type wrapper implement the ORAData interface.
This is generally preferred over the -compatible=8i setting,
because support for ORAData is required for programs running in
the middle tier, such as in the Oracle9i Application Server. Note,
however, that the use of ORAData requires an Oracle 9.0.1 or higher
JDBC driver.
 Command-Line Options and Input Files 3-9

JPublisher Options
Mappings For Numeric Types (-numbertypes)
-numbertypes={jdbc|objectjdbc|bigdecimal|oracle}

The -numbertypes option controls datatype mappings for numeric SQL and
PL/SQL types. The following four choices are available:

■ The JDBC mapping maps most numeric datatypes to Java primitive types such
as int and float, and maps DECIMAL and NUMBER to
java.math.BigDecimal.

■ The Object JDBC mapping (the default) maps most numeric datatypes to Java
wrapper classes such as java.lang.Integer and java.lang.Float, and
maps DECIMAL and NUMBER to java.math.BigDecimal.

■ The BigDecimal mapping maps all numeric datatypes to
java.math.BigDecimal.

■ The Oracle mapping maps all numeric datatypes to oracle.sql.NUMBER.

Table 3–2 lists the SQL and PL/SQL types affected by the -numbertypes option,
and shows their Java type mappings for -numbertypes=jdbc and
-numbertypes=objectjdbc (the default).

Table 3–2 Mappings for Types Affected by the -numbertypes Option

SQL or PL/SQL Datatype JDBC Mapping Type Object JDBC Mapping Type

BINARY_INTEGER, INT,
INTEGER, NATURAL,
NATURALN, PLS_INTEGER,
POSITIVE, POSITIVEN,
SIGNTYPE

int java.lang.Integer

SMALLINT short java.lang.Integer

REAL float java.lang.Float

DOUBLE PRECISION, FLOAT double java.lang.Double

DEC, DECIMAL, NUMBER,
NUMERIC

java.math.BigDecimal java.math.BigDecimal
3-10 Oracle9i JPublisher User’s Guide

JPublisher Options
Mappings For LOB Types (-lobtypes)
-lobtypes={jdbc|oracle}

The -lobtypes option controls datatype mappings for the LOB types. Table 3–3
shows how these types are mapped for -lobtypes=oracle (the default) and for
-lobtypes=jdbc.

Mappings For Built-In Types (-builtintypes)
-builtintypes={jdbc|oracle}

The -builtintypes option controls datatype mappings for all the built-in
datatypes except the LOB types (controlled by the -lobtypes option) and the
different numeric types (controlled by the -numbertypes option). Table 3–4 lists
the datatypes affected by the -builtintypes option and shows their Java type
mappings for -builtintypes=oracle and -builtintypes=jdbc (the default).

Table 3–3 Mappings for Types Affected by the -lobtypes Option

SQL or PL/SQL Datatype Oracle Mapping Type JDBC Mapping Type

CLOB oracle.sql.CLOB java.sql.Clob

BLOB oracle.sql.BLOB java.sql.Blob

BFILE oracle.sql.BFILE oracle.sql.BFILE

Notes:

■ BFILE is an Oracle-specific SQL type, so there is no standard
java.sql.Bfile Java type.

■ NCLOB is an Oracle-specific SQL type. It denotes an NCHAR
form of use of a CLOB and is represented as an instance of
oracle.sql.NCLOB in SQLJ programs.

■ The java.sql.Clob and java.sql.Blob interfaces are new
in JDK 1.2. If you use JDK 1.1, do not select -lobtypes=jdbc.
 Command-Line Options and Input Files 3-11

JPublisher Options
Mappings for All Types (-mapping)
-mapping={jdbc|objectjdbc|bigdecimal|oracle}

The -mapping option specifies mapping for all datatypes, so offers little flexibility
between types.

The setting -mapping=oracle is equivalent to setting all the type mapping
options to oracle . The other -mapping settings are equivalent to setting
-numbertypes equal to the value of -mapping and setting the other type
mapping options to their defaults, as summarized in Table 3–5.

Table 3–4 Mappings for Types Affected by the -builtintypes Option

SQL or PL/SQL Datatype Oracle Mapping Type JDBC Mapping Type

CHAR, CHARACTER, LONG,
STRING, VARCHAR,
VARCHAR2

oracle.sql.CHAR java.lang.String

RAW, LONG RAW oracle.sql.RAW byte[]

DATE oracle.sql.DATE java.sql.Timestamp

TIMESTAMP,
TIMESTAMP WITH TZ,
TIMESTAMP WITH LOCAL TZ

oracle.sql.TIMESTAMP,
oracle.sql.TIMESTAMPTZ,
oracle.sql.TIMESTAMPLTZ

java.sql.Timestamp

Note: This option is deprecated in favor of the more specific type
mapping options: -usertypes, -numbertypes,
-builtintypes, and -lobtypes. It is still supported, however,
for backward compatibility.

Table 3–5 Relation of -mapping Settings to Settings of Other Mapping Options

-builtintypes= -numbertypes= -lobtypes= -usertypes=

-mapping=oracle oracle oracle oracle oracle

-mapping=jdbc jdbc jdbc oracle oracle

-mapping=objectjdbc
(default)

jdbc objectjdbc oracle oracle

-mapping=bigdecimal jdbc bigdecimal oracle oracle
3-12 Oracle9i JPublisher User’s Guide

JPublisher Options
Detailed Descriptions of General JPublisher Options
This section discusses the remaining JPublisher options, for settings other than
datatype mappings. Options in this section are in alphabetical order.

Method Access (-access)
-access={public|protected|package}

The -access option determines the access modifier that JPublisher includes in
generated constructors, attribute setter and getter methods, member methods on
object type wrapper classes, and methods on PL/SQL packages.

JPublisher uses the possible option settings as follows:

■ public (default)—Methods are generated with the public access modifier.

■ protected—Methods are generated with the protected access modifier.

■ package—The access modifier is omitted, which means that generated
methods are local to the package.

You might want to use a setting of -access=protected or -access=package if
you need to control the usage of the generated JPublisher wrapper classes. Perhaps
you are providing your own customized versions of the wrappers as subclasses of
the JPublisher-generated classes, but do not want to provide access to the generated
superclasses.

You can specify the -access option on the command line or in a properties file.

Note: Because options are processed in the order in which they
appear on the command line, if the -mapping option precedes one
of the specific type mapping options (-builtintypes,
-lobtypes, -numbertypes, or -usertypes), the specific type
mapping option overrides the -mapping option for the relevant
types. If the -mapping option follows one of the specific type
mapping options, the specific type mapping option is ignored.

Note: Wrappers for object references, VARRAYs, and nested tables
are not affected by the value of the -access option.
 Command-Line Options and Input Files 3-13

JPublisher Options
Additional Entry to the Default Type Map (-adddefaulttypemap)
-adddefaulttypemap=<list_of_typemap_entries>

This option permits you to append an entry or a comma-separated list of entries to
the default type map used by JPublisher. This option is used internally by
JPublisher for setting up its default type map. The format for type map entries is
described in "Additional Entry to the User Type Map (-addtypemap)" below.

Additional Entry to the User Type Map (-addtypemap)
-addtypemap=<list_of_typemap_entries>

This option permits you to append an entry or a comma-separated list of entries to
the JPublisher user type map. An entry has one of the following formats:

-addtypemap=<opaque_sql_type>:<java_type>
-addtypemap=<numeric_indexed_by_table>:<java_numeric_type>[<max_length>]
-addtypemap=<char_indexed_by_table>:<java_char_type>[<max_length>](<elem_size>)
-addtypemap=<plsql_type>:<java_type>:<sql_type>:<sql_to_plsql_func>:
 <plsql_to_sql_func>

Note that [...] and (...) are part of the syntax. Also note that some operating
systems require you to quote command-line options that contain special characters.

The maximum array length <max_length> and the maximum element size
designation <elem_size> can be omitted in certain cases.

The difference between the -addtypemap option and the -typemap option is that
-addtypemap appends entries to the user type map, while -typemap replaces the
existing type map with the specified entries. See "Replacement of the JPublisher
Type Map (-typemap)" on page 3-29.

For more information about the first -addtypemap format above, see "Type
Mapping Support for OPAQUE Types" on page 2-8. The second and third formats
are discussed in "Type Mapping Support for Scalar Indexed-by Tables Using JDBC
OCI" on page 2-9. The last format is explained in "Type Mapping Support Through
PL/SQL Conversion Functions" on page 2-11.

Note: Avoid conflicts between the default type map and user type
map—see "JPublisher Default Type Map and User Type Map" on
page 2-18 for information. That section also describes the initial
content of the default type map.
3-14 Oracle9i JPublisher User’s Guide

JPublisher Options
Case of Java Identifiers (-case)
-case={mixed|same|lower|upper}

For class or attribute names you do not specify in an INPUT file or on the command
line, the -case option affects the case of Java identifiers that JPublisher generates,
including class names, method names, attribute names embedded within
getXXX() and setXXX() method names, arguments of generated method names,
and Java wrapper names.

Table 3–6 describes the possible values for the -case option.

For class or attribute names that you enter with the -sql option, or class names in
the INPUT file, JPublisher retains the case of the letters in the specified name,
overriding the -case option.

Note: Avoid conflicts between the default type map and user type
map—see "JPublisher Default Type Map and User Type Map" on
page 2-18 for information.

Table 3–6 Values for the -case Option

-case Option Value Description

mixed (default) The first letter of every word-unit of a class name or every
word-unit after the first word-unit of a method name is in
uppercase. All other characters are in lower case. An
underscore (_), dollar sign ($), or any character that is illegal in
Java constitutes a word-unit boundary and is silently removed.
A word-unit boundary also occurs after get or set in a
method name.

same JPublisher does not change the case of letters from the way
they are represented in the database. Underscores and dollar
signs are retained. JPublisher removes any other character that
is illegal in Java and issues a warning message.

upper JPublisher converts lowercase letters to uppercase and retains
underscores and dollar signs. It removes any other character
that is illegal in Java and issues a warning message.

lower JPublisher converts uppercase letters to lowercase and retains
underscores and dollar signs. It removes any other character
that is illegal in Java and issues a warning message.
 Command-Line Options and Input Files 3-15

JPublisher Options
JPublisher will retain, as written, the case of the Java class identifier for an object
type specified on the command line or in the INPUT file. For example, if the
command line includes the following:

-sql=Worker

then JPublisher generates:

public class Worker ... ;

If the entry in the INPUT file is written as:

SQL wOrKeR

then JPublisher will follow the case for the identifier as it was entered in the INPUT
file and generate:

public class wOrKeR ... ;

SQLJ Connection Context Classes (-context)
-context={generated|DefaultContext|user-specified}

The -context option controls the connection context class that JPublisher may use,
and possibly declare, for .sqlj wrappers for user-defined object types and
PL/SQL packages.

The setting -context=DefaultContext is the default and results in any
JPublisher-generated .sqlj source files using the SQLJ default connection context
class—sqlj.runtime.ref.DefaultContext—for all connection contexts.

Alternatively, you can specify any class that implements the standard
sqlj.runtime.ConnectionContext interface and that exists in the classpath.
The specified class will be used for all connection contexts.

The setting -context=generated results in the following inner class declaration
in all .sqlj files generated by JPublisher.

Note: With a user-specified class setting, instances of that class
must be used for output from the getConnectionContext()
method or input to the setConnectionContext() method. See
"Considerations in Using Connection Contexts and Connection
Instances" on page 2-28 for information about these methods.
3-16 Oracle9i JPublisher User’s Guide

JPublisher Options
#sql static context _Ctx;

This means that each PL/SQL package and each object type wrapper uses its own
SQLJ connection context class. (Also see "Use of Connection Contexts and Instances
in SQLJ Code Generated by JPublisher" on page 2-27.)

Note the following benefits in using the DefaultContext setting or
user-specified-class setting:

■ No additional context classes are generated.

■ You have greater flexibility if you translate and compile your .sqlj files in
separate steps (translating with the SQLJ -compile=false setting). Assuming
you are not using JDK 1.2-specific types (such as java.sql.BLOB, CLOB,
Struct, Ref, or Array), the resulting .java files can be compiled under
either JDK 1.1.x or under JDK 1.2.x or higher. This is not the case with the
setting -context=generated, because SQLJ connection contexts in JDK 1.1.x
use java.util.Dictionary instances for object type maps, while SQLJ
connection contexts in JDK 1.2 or higher use java.util.Map instances.

A benefit of using the generated setting, however, is that it permits full control
over the way the SQLJ translator performs online checking. Specifically, every object
type and every PL/SQL package can be checked against its own exemplar database
schema. However, because JPublisher generates .sqlj files from an existing
schema, the generated code is already verified as correct through construction from
that schema.

Note that using the user-specified-class setting gives you the flexibility of the
generated setting while still giving you the advantages of the DefaultContext
setting.

You can specify the -context option on the command line or in a properties file.

See the Oracle9i SQLJ Developer’s Guide and Reference for general information about
SQLJ connection contexts.

Default Type Map for JPublisher (-defaulttypemap)
-defaulttypemap=[<list_of_typemap_entries>]

This option is used internally by JPublisher to set up predefined type map entries.
This is separate from the user type map entries specified with -addtypemap or
-typemap. If you want to clear the default type map, you can use the following
option setting:

-defaulttypemap=
 Command-Line Options and Input Files 3-17

JPublisher Options
Output Directory for Generated Files (-dir)
-dir=<directory name>

A non-empty -dir option setting specifies the root of the directory tree within
which JPublisher will place Java and SQLJ source files. JPublisher will nest
generated packages in this directory. A setting of "." (a period, or "dot") specifies the
current directory as the root of the directory tree.

The empty setting, however, installs all generated file directly into the current
directory—there is no hierarchy in this case. This is the default setting, but you can
also specify it explicitly as follows:

-dir=

If you specify a non-empty setting, JPublisher combines the directory, the package
name given with the -package option, and any package name included in a SQL
statement in the INPUT file to determine the specific directory within which it will
generate a .java or .sqlj file. The "Name for Generated Packages (-package)"
section on page 3-23 discusses this in more detail.

For example, consider the following command line (which is a single wraparound
line):

jpub -user=scott/tiger -input=demoin -mapping=oracle -case=lower -sql=employee
-package=corp -dir=demo

In this case, the demo directory will be the base directory for packages JPublisher
generates for object types you specify in the INPUT file demoin.

You can specify -dir on the command line or in a properties file. The default value
for the -dir option is empty.

Note: Avoid conflicts between the default type map and user type
map—see "JPublisher Default Type Map and User Type Map" on
page 2-18 for information. That section also describes the initial
content of the default type map.
3-18 Oracle9i JPublisher User’s Guide

JPublisher Options
JDBC Driver Class for Database Connection (-driver)
-driver=<driver_class_name>

The -driver option specifies the driver class that JPublisher uses for JDBC
connections to the database. The default is:

-driver=oracle.jdbc.OracleDriver

This setting is appropriate for any Oracle JDBC driver.

Java Character Encoding (-encoding)
-encoding=<name_of_character_encoding>

The -encoding option specifies the Java character encoding of the INPUT file
JPublisher reads and the .sqlj and .java files JPublisher writes. The default
encoding is the value of the system property file.encoding, or, if this property is
not set, 8859_1 (ISO Latin-1).

As a general rule, you are not required to specify this option unless you specify an
-encoding option when you invoke SQLJ and your Java compiler, in which case
you should use the same -encoding option for JPublisher.

You can use the -encoding option to specify any character encoding that is
supported by your Java environment. If you are using the Sun Microsystems JDK,
these options are listed in the native2ascii documentation, which you can find
at the following URLs:

http://www.javasoft.com/products/jdk/1.2/docs/tooldocs/solaris/native2ascii.html

or:

http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/native2ascii.html

Note: Encoding settings, either set through the JPublisher
-encoding option or the Java file.encoding setting, do not
apply to Java properties files, including those specified through the
JPublisher -props option. Properties files always use the encoding
8859_1. This is a feature of Java in general, not JPublisher in
particular. You can, however, use Unicode escape sequences in a
properties file.
 Command-Line Options and Input Files 3-19

JPublisher Options
Generation of User Subclasses (-gensubclass)
-gensubclass={true|false|force|call-super}

The value of the -gensubclass option determines whether JPublisher generates
initial source files for user-provided subclasses and, if so, what format these
subclasses should have.

For -gensubclass=true (the default), JPublisher will generate code for the
subclass only if it finds that no source file (.java or .sqlj) is present for the user
subclass.

The -gensubclass=false setting results in JPublisher not generating any code
for user subclasses.

For -gensubclass=force, JPublisher will always generate code for user
subclasses. It will overwrite any existing code in the corresponding .java or
.sqlj file if it already exists. Use this setting with caution.

The setting -gensubclass=call-super is equivalent to -gensubclass=true,
except that JPublisher will generate slightly different code. By default, JPublisher
generates only constructors and methods necessary for implementing, for example,
the ORAData interface. JPublisher indicates how superclass methods or attribute
setter and getter methods can be called, but places this code inside comments. With
the call-super setting, all methods, getters, and setters are generated as code.
The idea is that you can specify this setting if you are using Java development tools
that are based on class introspection. Generally only those methods that relate to
SQL object attributes and SQL object methods are interesting, while JPublisher
implementation details should remain hidden. In this case you can point the tool at
the generated user subclass.

You can specify the -gensubclass option on the command line or in a properties
file.

File Containing Names of Objects and Packages to Translate (-input)
-input=<filename>
-i <filename>

Both formats are synonymous. The second one is provided for convenience as a
command-line abbreviation.

The -input option specifies the name of a file from which JPublisher reads the
names of object types and PL/SQL packages to translate, and other information it
needs for their translation. JPublisher translates each object type and package in the
3-20 Oracle9i JPublisher User’s Guide

JPublisher Options
list. You can think of the INPUT file as a makefile for type declarations—it lists the
types that need Java class definitions.

In some cases, JPublisher might find it necessary to translate some additional
classes that do not appear in the INPUT file. This is because JPublisher analyzes the
types in the INPUT file for dependencies before performing the translation, and
translates other types as necessary. For more information on this topic, see
"Translating Additional Types" on page 3-39.

If you do not specify any packages or object types in an INPUT file or on the
command line, then JPublisher translates all object types and packages declared in
the database schema to which it is connected.

For more information about the syntax of the INPUT file, see "INPUT File Structure
and Syntax" on page 3-35.

Generation of Package Classes and Wrapper Methods (-methods)
-methods={true|all|always|named|some|false|none}

The value of the -methods option determines whether JPublisher generates
wrapper methods for methods in object types and PL/SQL packages.

For -methods=true or, equivalently, -methods=all (the default), JPublisher
generates wrapper methods for all the methods in the object types and PL/SQL
packages it processes. In Oracle9i, this results in generation of a .sqlj source file
whenever the underlying SQL object or package actually defines methods, but a
.java source if not. (In previous releases, .sqlj source files were always
generated for a true or all setting.)

The -methods=always setting also results in wrapper methods being generated;
however, for backward compatibility to earlier JPublisher versions, this setting
always results in .sqlj files being generated for all SQL object types, regardless of
whether the types define methods.

For -methods=named or, equivalently, -methods=some, JPublisher generates
wrapper methods only for the methods explicitly named in the INPUT file.

For -methods=false or, equivalently, -methods=none, JPublisher does not
generate wrapper methods. In this case JPublisher does not generate classes for
PL/SQL packages, because they would not be useful without wrapper methods.

The default is -methods=all.

You can specify the -methods option on the command line or in a properties file.
 Command-Line Options and Input Files 3-21

JPublisher Options
Omission of Schema Name from Generated Names (-omit_schema_names)
-omit_schema_names

Specifying -omit_schema_names determines that certain object type names
generated by JPublisher include the schema name. Omitting the schema name
makes it possible for you to use classes generated by JPublisher when you connect
to a schema other than the one used when JPublisher was invoked, as long as the
object types and packages you use are declared identically in the two schemas.

ORAData and SQLData classes generated by JPublisher include a static final
String that names the SQL object type matching the generated class. When the
code generated by JPublisher executes, the object type name in the generated code
is used to locate the object type in the database. If the object type name does not
include the schema name, the type is looked up in the schema associated with the
current connection when the code generated by JPublisher is executed. If the object
type name does include the schema name, the type is looked up in that schema.

If you specify -omit_schema_names, every object type or wrapper name
generated by JPublisher is qualified with a schema name.

If you do not specify -omit_schema_names, an object type or wrapper name
generated by JPublisher is qualified with a schema name only under the following
circumstances:

■ You declare the object type or wrapper in a schema other than the one to which
JPublisher is connected.

or:

■ You declare the object type or wrapper with a schema name on the command
line or INPUT file.

That is, an object type or wrapper from another schema requires a schema name to
identify it, and the use of a schema name with the type or package on the command
line or INPUT file overrides the -omit_schema_names option.

Note: Although this option behaves as a boolean option, as of
Oracle9i release 2 you cannot set it =true or =false. Simply
specify "-omit_schema_names" to enable it, or do nothing to
leave it disabled.
3-22 Oracle9i JPublisher User’s Guide

JPublisher Options
Name for Generated Packages (-package)
-package=<package_name>

The -package option specifies the name of the package JPublisher generates. The
name of the package appears in a package declaration in each .java or .sqlj file.
The directory structure also reflects the package name. An explicit name in the
INPUT file, after the -sql option, overrides the value given to the -package
option.

Example 1 If the command line includes the following:

-dir=/a/b -package=c.d -case=mixed

and the INPUT file contains the following line (and assuming the SQL type PERSON
has methods defined on it):

SQL PERSON AS Person

then in the following cases, JPublisher creates the file /a/b/c/d/Person.sqlj:

-sql=PERSON:Person
-sql=PERSON
SQL PERSON AS Person
SQL PERSON

The Person.sqlj file contains (among other things) the following package
declaration:

package c.d;

Example 2 Now assume the following is again in the command line:

-dir=/a/b -package=c.d -case=mixed

but is followed by specification of an INPUT file containing the following:

-sql=PERSON:e.f.Person
SQL PERSON AS e.f.Person

In this case the package information in the INPUT file overrides the -package
option on the command line. JPublisher creates the file a/b/e/f/Person.sqlj,
which includes the following package declaration:

package e.f;
 Command-Line Options and Input Files 3-23

JPublisher Options
If you do not supply a package name for a class by any of the means described in
this section, then JPublisher will not supply a name for the package containing the
class. In addition, JPublisher will not generate a package declaration, and it will put
the file containing the declaration of the class in the directory specified by the -dir
option.

Occasionally, JPublisher might need to translate a type not explicitly listed in the
INPUT file, because the type is used by another type that must be translated. In this
case, the file declaring the required type is placed in the default package named on
the command line, in a properties file, or in the INPUT file. JPublisher does not
translate non-specified packages, because packages do not have dependencies on
other packages.

File for Generated PL/SQL Wrapper Code (-plsqlfile)
-plsqlfile=<name_of_file_for_generated_PLSQL_code>

The -plsqlfile option specifies the name of the file into which JPublisher writes
PL/SQL wrapper stored procedures and functions. If this file already exists, it will
be silently overwritten. By default, JPublisher writes PL/SQL code to the file
plsql_wrapper.sql.

Also note that it is your responsibility to load the generated file into the database
(using SQL*Plus, for example).

Generation of PL/SQL Wrapper Code (-plsqlmap)
-plsqlmap={true|false|always}

The -plsqlmap option specifies how JPublisher generates PL/SQL wrapper
procedures and functions.

If this option is set to true (the default), JPublisher will generate PL/SQL wrapper
procedures and functions as needed and, whenever possible, use conversion
functions only.

If this option is set to false, JPublisher will not generate PL/SQL wrapper
procedures or functions. If it encounters in a signature a PL/SQL type that cannot
be supported by conversion functions alone (in other words, that would require
generation of a PL/SQL wrapper), then JPublisher will skip generation of Java code
for this particular procedure or function.

The setting always specifies that JPublisher will generate a PL/SQL wrapper
procedure or function for every stored procedure or function that uses a PL/SQL
type. This is useful for generating a "proxy" PL/SQL package that complements an
3-24 Oracle9i JPublisher User’s Guide

JPublisher Options
original PL/SQL package. The proxy provides Java-accessible signatures for those
functions or procedures that are not directly accessible from JDBC or SQLJ in the
original package.

Package for Generated PL/SQL Wrapper Code (-plsqlpackage)
-plsqlpackage=<name_of_PLSQL_package_to_hold_generated_PLSQL_code>

The -plsqlpackage option specifies the name of a PL/SQL package into which
JPublisher places any generated PL/SQL wrapper stored procedures and functions.
By default, JPublisher uses the package JPUB_PLSQL_WRAPPER.

Note that it is your responsibility to create this package in the database by running
the SQL script generated by JPublisher. See "File for Generated PL/SQL Wrapper
Code (-plsqlfile)" on page 3-24.

Input Properties File (-props)
-props=<filename>
-p <filename>

Both formats are synonymous. The second one is provided for convenience as a
command-line abbreviation.

The -props option, entered on the command line, specifies the name of a
JPublisher properties file that lists the values of commonly used options. JPublisher
processes the properties file as if its contents were inserted in sequence on the
command line at that point.

If more than one properties file appears on the command line, JPublisher processes
them with the other command-line options in the order in which they appear.

For information on the contents of the properties file, see "Properties File Structure
and Syntax" on page 3-33.

Note: Encoding settings, either set through the JPublisher
-encoding option or the Java file.encoding setting, do not
apply to Java properties files, including those specified through the
-props option. Properties files always use the encoding 8859_1.
This is a feature of Java in general, not JPublisher in particular. You
can, however, use Unicode escape sequences in a properties file.
 Command-Line Options and Input Files 3-25

JPublisher Options
Serializability of Generated Object Wrappers (-serializable)
-serializable={true|false}

The boolean option -serializable specifies whether the Java classes that
JPublisher generates for SQL object types implement the java.io.Serializable
interface. The default setting is -serializable=false. Please note the following
if you choose to set -serializable=true:

■ Not all object attributes are serializable. In particular, none of the Oracle LOB
types, such as oracle.sql.BLOB, oracle.sql.CLOB, or
oracle.sql.BFILE, can be serialized. Whenever you serialize objects with
such attributes, the corresponding attribute values will be initialized to null
after deserialization.

■ If you use object attributes of type java.sql.Blob or java.sql.Clob, then
the code generated by JPublisher requires that the Oracle JDBC rowset
implementation be available in the classpath. This is provided in the
ocrs12.jar library at [Oracle Home]/jdbc/lib. In this case, the
underlying value of Clob and Blob objects is materialized, serialized, and
subsequently retrieved.

■ Whenever you deserialize objects containing attributes that are object
references, the underlying connection is severed, and you cannot issue
setValue() or getValue() calls on the reference. For this reason, JPublisher
generates the following method into your Java classes whenever you specify
-serializable=true:

public void restoreConnection(Connection)

After deserialization, call this method once for a given object reference or object
in order to restore the current connection into the reference or, respectively, into
all transitively embedded references.

Declaration of Object Types and Packages to Translate (-sql)
-sql={toplevel|object type and package translation syntax}
-s {toplevel|object type and package translation syntax}

The two formats are synonymous. The second one is provided for convenience as a
command-line shortcut.

You can use the -sql option when you do not need the generality of an INPUT file.
The -sql option lets you list one or more database entities declared in SQL that
you want JPublisher to translate. (Alternatively, you can use several -sql options
3-26 Oracle9i JPublisher User’s Guide

JPublisher Options
in the same command line, or several jpub.sql options in a properties file.)
Currently, JPublisher supports translation of object types and packages. JPublisher
also translates the top-level subprograms in a schema, just as it does for
subprograms in a PL/SQL package.

You can mix object types and package names in the same -sql declaration.
JPublisher can detect whether each item is an object type or a package.

You can also use the -sql option with the keyword toplevel to translate all
top-level PL/SQL subprograms in a schema. The toplevel keyword is not
case-sensitive. More information on the toplevel keyword is provided later in
this section.

If you do not enter any types or packages to translate in the INPUT file or on the
command line, then JPublisher will translate all the types and packages in the
schema to which you are connected.

In this section, the -sql option is explained by translating it to the equivalent
INPUT file syntax. INPUT file syntax is explained in "Understanding the Translation
Statement" on page 3-35.

The JPublisher command-line syntax for -sql lets you indicate three possible type
translations.

■ -sql=name_a

JPublisher interprets this syntax as: SQL name_a

■ -sql=name_a:name_c

JPublisher interprets this syntax as: SQL name_a AS name_c

■ -sql=name_a:name_b:name_c

JPublisher interprets this syntax as:
SQL name_a GENERATE name_b AS name_c

In this case, name_a must represent an object type.

Important: Only non-case-sensitive SQL names are supported on
the JPublisher command line. If a user-defined type was defined in
a case-sensitive way (in quotes) in SQL, then you must specify the
name in the JPublisher INPUT file instead of on the command line,
and in quotes. See "INPUT File Structure and Syntax" on page 3-35
for information.
 Command-Line Options and Input Files 3-27

JPublisher Options
Enter -sql=... followed by one or more object types and packages (including
top-level "packages") that you want JPublisher to translate. If you enter more than
one item for translation, they must be separated by commas, without any white
space. This example assumes that CORPORATION is a package, and EMPLOYEE and
ADDRESS are object types:

-sql=CORPORATION,EMPLOYEE:oracleEmployee,ADDRESS:JAddress:MyAddress

JPublisher will interpret this as follows:

SQL CORPORATION
SQL EMPLOYEE AS oracleEmployee
SQL ADDRESS GENERATE JAddress AS MyAddress

And JPublisher executes the following:

■ It creates a wrapper for the CORPORATION package.

■ It translates the object type EMPLOYEE as oracleEmployee.

■ It translates ADDRESS as JAddress, generating code so that ADDRESS objects
will be represented by the MyAddress class that you will write to extend
JAddress.

■ It creates the references to the MyAddress class that you will write to extend
JAddress.

If you want JPublisher to translate all the top-level PL/SQL subprograms in the
schema to which JPublisher is connected, enter the keyword toplevel following
the -sql option. JPublisher treats the top-level PL/SQL subprograms as if they
were in a package. For example:

-sql=toplevel

JPublisher generates a wrapper class, known as toplevel, for the top level
subprograms. If you want the class to be generated with a different name, you can
declare the name with the -sql=name_a:name_b syntax. For example:

-sql=toplevel:myClass

Note that this is synonymous with the INPUT file syntax:

SQL toplevel AS myClass

Note: The name_a:name_b:name_c translation syntax is not
meaningful when name_a represents a package.
3-28 Oracle9i JPublisher User’s Guide

JPublisher Options
Similarly, if you want JPublisher to translate all the top-level PL/SQL subprograms
in some other schema, enter:

-sql=<schema_name>.toplevel

In this example, <schema_name> is the name of the schema containing the
top-level subprograms.

When you request generation of top-level subprograms, you can also supply a list
of names, in which case JPublisher will only generate code for those top-level
functions or procedures mentioned in the list. The list of names must follow the
TOPLEVEL token and be enclosed in (...), and the function names must be
separated with "+" (the plus character). Consider the following example:

-sql=toplevel(BOOL2INT+INT2BOOL):Conversions

Function and procedure names specified in the list are sensitive to case. You must
specify them in uppercase if they were defined in a case-insensitive way. Also note
that if you want to use this option, your operating system shell may require that this
option be quoted in the JPublisher command line.

Generation of toString() Method on Object Wrappers (-tostring)
-tostring={true|false}

You can use the boolean option -tostring to tell JPublisher to generate an
additional toString() method for printing out an object value. The output
resembles SQL code you would use to construct the object. The default setting is
false.

Replacement of the JPublisher Type Map (-typemap)
-typemap=[<list_of_typemap_entries>]

The difference between the -addtypemap option and the -typemap option is that
-addtypemap appends entries to the user type map, while -typemap replaces the
existing type map with the specified entries. Thus, if you want to clear the user type
map, you can use the following option setting.

-typemap=

Note that this does not clear the content of the default type map, which is controlled
independently from the user type map with the -defaulttypemap and
 Command-Line Options and Input Files 3-29

JPublisher Options
-adddefaulttypemap options. The format of the type map entries is described in
"Additional Entry to the User Type Map (-addtypemap)" on page 3-14.

Declaration of Object Types to Translate (-types)
-types=<type_translation_syntax>

You can use the -types option, for object types only, when you do not need the
generality of an INPUT file. The -types option lets you list one or more individual
object types that you want JPublisher to translate. Except for the fact that the
-types option does not support PL/SQL packages, it is identical to the -sql
option.

If you do not enter any types or packages to translate in the INPUT file or with the
-types or -sql options, then JPublisher will translate all the types and packages
in the schema to which you are connected.

The command-line syntax lets you indicate three possible type translations.

■ -types=name_a

JPublisher interprets this syntax as

TYPE name_a

■ -types=name_a:name_b

JPublisher interprets this syntax as:

TYPE name_a AS name_b

■ -types=name_a:name_b:name_c

JPublisher interprets this syntax as:

TYPE name_a GENERATE name_b AS name_c

Note: Avoid conflicts between the default type map and user type
map—see "JPublisher Default Type Map and User Type Map" on
page 2-18 for information.

Note: The -types option is currently supported for compatibility,
but deprecated. Use the -sql option instead.
3-30 Oracle9i JPublisher User’s Guide

JPublisher Options
TYPE, TYPE...AS, and TYPE...GENERATE...AS syntax has the same
functionality as SQL, SQL...AS and SQL...GENERATE...AS syntax. See
"Understanding the Translation Statement" on page 3-35.

Enter -types=... on the command line, followed by one or more object type
translations you want JPublisher to perform. If you enter more than one item, they
must be separated by commas without any white space. For example, if you enter:

-types=CORPORATION,EMPLOYEE:oracleEmployee,ADDRESS:JAddress:MyAddress

JPublisher will interpret this as:

TYPE CORPORATION
TYPE EMPLOYEE AS oracleEmployee
TYPE ADDRESS GENERATE JAddress AS MyAddress

Connection URL for Target Database (-url)
-url=<url>

You can use the -url option to specify the URL of the database to which you want
to connect. The default value is:

-url=jdbc:oracle:oci:@

You can follow the "@" symbol with an Oracle SID.

To specify the Thin driver, enter:

-url=jdbc:oracle:thin:@host:port:sid

In this example, host is the name of the host on which the database is running,
port is the port number, and sid is the Oracle SID.

Note: With Oracle9i, use "oci" in the connect string for the Oracle
JDBC OCI driver in any new code. For backward compatibility,
however, "oci8" is still accepted. (And "oci7" is accepted for Oracle9i
version 7.3.4.)
 Command-Line Options and Input Files 3-31

JPublisher Options
User Name and Password for Database Connection (-user)
-user=<username/password>
-u <username/password>

Both formats are synonymous. The second one is provided for convenience as a
command-line shortcut.

JPublisher requires the -user option, which specifies an Oracle user name and
password, so that it can connect to the database. If you do not enter the -user
option, JPublisher prints an error message and stops execution.

For example, the following command line directs JPublisher to connect to your
database with username scott and password tiger:

jpub -user=scott/tiger -input=demoin -dir=demo -mapping=oracle -package=corp
3-32 Oracle9i JPublisher User’s Guide

JPublisher Input Files
JPublisher Input Files
These sections describe the structure and contents of JPublisher input files:

■ Properties File Structure and Syntax

■ INPUT File Structure and Syntax

■ INPUT File Precautions

Properties File Structure and Syntax
A properties file is an optional text file where you can specify frequently used
options. Specify the name of the properties file on the JPublisher command line
with the -props option. (And -props is the only option that you cannot specify in
a properties file.)

In a properties file, enter one option with its associated value on each line. Enter
each option name with the following prefix (including the period), case-sensitive:

jpub.

White space is permitted only directly in front of "jpub."—any other white space
within the option line is significant.

Alternatively, JPublisher permits you to specify options using the following prefix,
which resembles the syntax of SQL line comments.

-- jpub.

A line that does not start with either of the prefixes above is simply ignored by
JPublisher.

Additionally, you can use line continuation to spread a JPublisher option over
several lines in the properties file. A line that is to be continued must have "\"
(backslash character) as the last character, immediately after the text of the line. Any
leading space, or any leading "--" (SQL comment designation), on the following
line is ignored. Consider the following sample entries:

/* The next three lines represent a JPublisher option
 jpub.sql=SQL_TYPE:JPubJavaType:MyJavaType,\
 OTHER_SQL_TYPE:OtherJPubType:MyOtherJavaType,\
 LAST_SQL_TYPE:My:LastType
*/
-- The next two lines represent another JPublisher option
-- jpub.addtypemap=PLSQL_TYPE:JavaType:SQL TYPE\
-- :SQL_TO_PLSQL_FUNCTION:PLSQL_TO_SQL_FUNCTION
 Command-Line Options and Input Files 3-33

JPublisher Input Files
Because of this functionality, it is straightforward to embed JPublisher options in
SQL scripts. This can be useful when setting up PL/SQL-to-SQL type mappings.

JPublisher reads the options in the properties file in order, as if its contents were
inserted on the command line at the point where the -props option is specified. If
you specify an option more than once, the last value encountered by JPublisher will
override previous values, except for the following options, which are cumulative:

■ jpub.sql

■ jpub.type

■ jpub.addtypemap

■ jpub.adddefaulttypemap

For example, consider the following command line (a single wraparound line):

jpub -user=scott/tiger -sql=employee -mapping=oracle -case=lower -package=corp
-dir=demo

This is equivalent to the following:

jpub -props=my_properties

if you assume my_properties has a definition like the following:

-- jpub.user=scott\
-- /tiger
// jpub.user=cannot_use/java_line_comments
jpub.sql=employee
/*
jpub.mapping=oracle
*/
Jpub.notreally=a jpub option
 jpub.case=lower
jpub.package=corp
 jpub.dir=demo

You must include the "jpub." prefix (including the period) at the beginning of each
option name. If you enter anything else except white space or "--" before the option
name, JPublisher will ignore the entire line.

This example also illustrates that the "jpub." prefix must be all lowercase,
otherwise it is ignored, as for "Jpub.notreally=a jpub option".

"JPublisher Options" on page 3-2 describes all the JPublisher options.
3-34 Oracle9i JPublisher User’s Guide

JPublisher Input Files
INPUT File Structure and Syntax
Specify the name of the INPUT file on the JPublisher command line with the
-input option. This file identifies the object types and PL/SQL packages
JPublisher should translate. It also controls the naming of the generated classes and
packages. Although you can use the -sql command-line option to specify object
types and packages, an INPUT file allows you a finer degree of control over how
JPublisher translates object types and PL/SQL packages.

If you do not specify types or packages to translate in an INPUT file or on the
command line, then JPublisher translates all object types and PL/SQL packages in
the schema to which it connects.

Understanding the Translation Statement
The translation statement in the INPUT file identifies the names of the object types
and PL/SQL packages that you want JPublisher to translate. Optionally, the
translation statement can also specify a Java name for the type or package, a Java
name for attribute identifiers, and whether there are any extended classes.

One or more translation statements can appear in the INPUT file. The structure of a
translation statement is:

(SQL <name>
| SQL [<schema_name>.]toplevel [(<name_list>)]
| TYPE <type_name>)
[GENERATE <java_name_1>]
[AS <java_name_2>]
[TRANSLATE
 <database_member_name> AS <simple_java_name>
 { , <database_member_name> AS <simple_java_name>}*
]

The following sections describe the components of the translation statement.

SQL <name> | TYPE <type_name> Clause Enter SQL <name> to identify an object type
or a PL/SQL package that you want JPublisher to translate. JPublisher examines the
<name>, determines whether it is an object type or a package name, and processes it
appropriately. If you use the reserved word toplevel in place of <name>,
JPublisher translates the top-level subprograms in the schema to which JPublisher is
connected.

Instead of SQL, it is permissible to enter TYPE <type_name> if you are specifying
only object types; however, TYPE syntax is deprecated in Oracle9i.
 Command-Line Options and Input Files 3-35

JPublisher Input Files
You can enter <name> as <schema_name>.<name> to specify the schema to which
the object type or package belongs. If you enter <schema_name>.toplevel,
JPublisher translates the top-level subprograms in schema <schema_name>. In
conjunction with TOPLEVEL, you can also supply (<name_list>), a
comma-separated list of names, enclosed in parentheses, that are to be published.
JPublisher will consider only top-level functions and procedures that match this list.
If you do not specify this list, JPublisher will generate code for all top-level
subprograms.

AS <java_name_2> Clause This clause optionally specifies the name of the Java class
that represents the user-defined type or PL/SQL package. The <java_name_2>
can be any legal Java name and can include a package identifier. The case of the
Java name overrides the value of the -case option. For more information on how
to name packages, see "Package Naming Rules in the INPUT File" on page 3-38.

When you use the AS clause without a GENERATE clause, the class in the AS clause
is what JPublisher generates and is mapped to the SQL type.

When you use the AS clause with a GENERATE clause, JPublisher generates the class
in the GENERATE clause but maps the SQL type to the class in the AS clause. You

Important: If a user-defined type was defined in a case-sensitive
way (in quotes) in SQL, then you must specify the name in quotes.
For example:

SQL "CaseSenstiveType" AS CaseSensitiveType

or, if also specifying a non-case-sensitive schema name:

SQL SCOTT."CaseSensitiveType" AS CaseSensitiveType

or, if also specifying a case-sensitive schema name:

SQL "Scott"."CaseSensitiveType AS CaseSensitiveType

The AS clauses, described below, are optional.

Avoid situations where a dot (".") is part of the schema name or
type name itself.

Note: The TYPE syntax is currently supported for compatibility,
but deprecated. Use the SQL syntax instead.
3-36 Oracle9i JPublisher User’s Guide

JPublisher Input Files
manually create the class in the AS clause, extending the class that JPublisher
generates.

Also see "Extending JPublisher-Generated Classes" on page 2-34.

GENERATE <java_name_1> Clause This clause specifies the name of the class that
JPublisher generates when you want to create a subclass for mapping purposes. Use
the GENERATE clause in conjunction with the AS clause. JPublisher generates the
class in the GENERATE clause. The AS clause specifies the name of the subclass that
you create and that your Java program will use to represent the SQL object type.

The <java_name_1> can be any legal Java name and can include a package
identifier. Its case overrides the value of the -case option.

Use the GENERATE clause only when you are translating object types. When you are
translating an object type, the code JPublisher generates mentions both the name of
the class that JPublisher generates and the name of the class that your Java program
will use to represent the SQL object type. When these are two different classes, use
GENERATE...AS.

Do not use this clause if you are translating PL/SQL packages. When you are
translating a PL/SQL package, the code JPublisher generates mentions only the
name of the class that JPublisher generates, so there is no need to use the GENERATE
clause in this case.

Also see "Extending JPublisher-Generated Classes" on page 2-34.

TRANSLATE <database_member_name> AS <simple_java_name> Clause This clause
optionally specifies a different name for an attribute or method. The
<database_member_name> is the name of an attribute of an object type, or a
method of a type or package, which is to be translated to the following
<simple_java_name>. The <simple_java_name> can be any legal Java name,
and its case overrides the value of the -case option. This name cannot have a
package name.

If you do not use TRANSLATE...AS to rename an attribute or method, or if
JPublisher translates an object type not listed in the INPUT file, then JPublisher uses
the database name of the attribute or method as the Java name as modified
according to the value of the -case option. Reasons why you might want to
rename an attribute name or method include:

■ The name contains characters other than letters, digits, and underscores.

■ The name conflicts with a Java keyword.
 Command-Line Options and Input Files 3-37

JPublisher Input Files
■ The type name conflicts with another name in the same scope. This can happen,
for example, if the program uses two types with the same name from different
schemas.

Remember that your attribute names will appear embedded within getXXX() and
setXXX() method names, so you might want to capitalize the first letter of your
attribute names. For example, if you enter:

TRANSLATE FIRSTNAME AS FirstName

JPublisher will generate a getFirstName() method and a setFirstName()
method. In contrast, if you enter:

TRANSLATE FIRSTNAME AS firstName

JPublisher will generate a getfirstName() method and a setfirstName()
method.

Package Naming Rules in the INPUT File If you use a simple Java identifier to name a
class in the INPUT file, its full class name will include the package name from the
-package option. If the class name in the INPUT file is qualified with a package
name, then that package name overrides the value of the -package option and
becomes the full package name of the class.

Note the following:

■ If you enter the syntax:

SQL A AS B

then JPublisher uses the value that was entered for -package on the command
line or the properties file.

Note: The Java keyword null has special meaning when used as
the target Java name for an attribute or method, such as in the
following example:

TRANSLATE FIRSTNAME AS null

When you map a SQL method to null, JPublisher does not
generate a corresponding Java method in the mapped Java class.
When you map a SQL object attribute to null, JPublisher does not
generate the getter and setter methods for the attribute in the
mapped Java class.
3-38 Oracle9i JPublisher User’s Guide

JPublisher Input Files
■ If you enter the syntax:

SQL A AS B.C

then JPublisher interprets B.C to represent the full class name.

For example, if you enter the following on the command line:

-package=a.b

and the INPUT file contains the following translation statement:

SQL scott.employee AS e.Employee

then JPublisher will generate the class as follows:

e.Employee

For more examples of how the package name is determined, see "Name for
Generated Packages (-package)" on page 3-23.

Translating Additional Types It might be necessary for JPublisher to translate
additional types not listed in the INPUT file. This is because JPublisher analyzes the
types in the INPUT file for dependencies before performing the translation, and
translates other types as necessary. Recall the example in "Sample JPublisher
Translation" on page 1-26. Assume the object type definition for EMPLOYEE had
included an attribute called ADDRESS, and ADDRESS was an object with the
following definition:

CREATE OR REPLACE TYPE address AS OBJECT
(
 street VARCHAR2(50),
 city VARCHAR2(50),
 state VARCHAR2(30),
 zip NUMBER
);

In this case, JPublisher would first translate ADDRESS, because that would be
necessary to define the EMPLOYEE type. In addition, ADDRESS and its attributes
would all be translated in the same case, because they are not specifically
mentioned in the INPUT file. A class file would be generated for Address.java,
which would be included in the package specified on the command line.

JPublisher does not translate packages you do not request. Because packages do not
have attributes, they do not have any dependencies on other packages.
 Command-Line Options and Input Files 3-39

JPublisher Input Files
Sample Translation Statement
To better illustrate the function of the INPUT file, consider a more complicated
version of the example in "Sample JPublisher Translation" on page 1-26. Consider
the following command line (a single wraparound line):

jpub -user=scott/tiger -input=demoin -dir=demo -numbertypes=oracle -package=corp
-case=same

And assume the INPUT file demoin contains the following:

SQL employee AS c.Employee
 TRANSLATE NAME AS Name
 HIRE_DATE AS HireDate

The -case=same option indicates that generated Java identifiers should maintain
the same case as in the database. Any identifier in a CREATE TYPE or CREATE
PACKAGE declaration is stored in upper case in the database unless it is quoted.
However, the -case option is applied only to those identifiers not explicitly
mentioned in the INPUT file. Therefore, Employee will appear as written. The
attribute identifiers not specifically mentioned (that is, EMPNO, DEPTNO, and
SALARY) will remain in upper case, but JPublisher will translate the specifically
mentioned NAME and HIRE_DATE attribute identifiers as shown.

The translation statement specifies a SQL object type to be translated. In this case,
there is only one object type, Employee.

The AS c.Employee clause causes the package name to be further qualified. The
translated type will be written to the following file:

./demo/corp/c/Employee.sqlj (UNIX)

.\demo\corp\c\Employee.sqlj (Windows NT)

(This assumes the object type defines methods; otherwise Employee.java will be
generated instead.)

The generated file is written in package corp.c in output directory demo. Note
that the package name is reflected in the directory structure.

The TRANSLATE...AS clause specifies that the name of any mentioned object
attributes should be changed when the type is translated into a Java class. In this
case, the NAME attribute is changed to Name and the HIRE_DATE attribute is
changed to HireDate.
3-40 Oracle9i JPublisher User’s Guide

JPublisher Input Files
INPUT File Precautions
This section describes some of the common errors made in INPUT files. Check for
these errors before you run JPublisher. Although JPublisher reports most of the
errors that it finds in the INPUT file, it does not report these.

Requesting the Same Java Class Name for Different Object Types
If you request the same Java class name for two different object types, the second
class will silently overwrite the first. For example, if the INPUT file contains:

type PERSON1 as Person
TYPE PERSON2 as Person

JPublisher will create the file Person.java for PERSON1 and will then overwrite it
for type PERSON2.

Requesting the Same Attribute Name for Different Object Attributes
If you request the same attribute name for two different object attributes, JPublisher
will generate getXXX() and setXXX() methods for both attributes without
issuing a warning message. The question of whether the generated class is valid in
Java depends on whether the two getXXX() methods with the same name and the
two setXXX() methods with the same name have different argument types so that
they may be unambiguously overloaded.

Specifying Nonexistent Attributes
If you specify a nonexistent object attribute in the TRANSLATE clause, JPublisher
will ignore it without issuing a warning message.

Consider the following example from an INPUT file:

type PERSON translate X as attr1

A situation where X is not an attribute of PERSON would not cause JPublisher to
issue a warning message.
 Command-Line Options and Input Files 3-41

JPublisher Input Files
3-42 Oracle9i JPublisher User’s Guide

 JPublisher Exam
4

JPublisher Examples

This chapter provides examples of the output JPublisher produces when translating
object types and PL/SQL packages. It contains the following sections:

■ Example: JPublisher Translations with Different Mappings—Contains examples
of JPublisher output, comparing different outputs where only the values of the
datatype mapping parameters are changed.

■ Example: JPublisher Object Attribute Mapping—Illustrates an example of
JPublisher output when translating different object types.

■ Example: Generating a SQLData Class—Covers an example of JPublisher
output when generating classes that implement the SQLData interface.

■ Example: Extending JPublisher Classes—Presents an example of JPublisher
output when generating a class that you will extend.

■ Example: Wrappers Generated for Methods in Objects—Shows an example of
JPublisher output when generating method wrappers for object type attributes
and methods.

■ Example: Wrappers Generated for Methods in Packages—Shows an example of
JPublisher output when generating method wrappers for PL/SQL methods.

■ Example: Using Classes Generated for Object Types—Presents a complete
program using the classes that JPublisher generates for object types.

■ Example: Using Classes Generated for Packages—Presents a complete program
using the classes and method wrappers that JPublisher generates for objects and
packages respectively.

■ Example: Using Datatypes Unsupported by JDBC—Illustrates JPublisher
support for PL/SQL types, setting up an object type that uses PL/SQL
BOOLEAN values. The example compares publishing the type directly through
JPublisher, and manually writing conversions for the type.
ples 4-1

Example: JPublisher Translations with Different Mappings
Example: JPublisher Translations with Different Mappings
This section presents sample output from JPublisher with the only difference in the
translations being the values of the datatype mapping parameters. It uses the
following type declaration:

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(30),
 empno INTEGER,
 deptno NUMBER,
 hiredate DATE,
 salary REAL
);

And the following command line (a single wraparound line), but with different
-numbertypes and -builtintypes settings for the two examples:

jpub -user=scott/tiger -dir=demo -numbertypes=xxxx -builtintypes=xxxx
-package=corp -case=mixed -sql=Employee

In the following two examples, JPublisher uses these datatype mappings:

■ first, with -numbertypes=jdbc and -builtintypes=jdbc

■ second, with -numbertypes=oracle and -builtintypes=oracle

JPublisher Translation with the JDBC Mapping
Because the user requests the JDBC mapping rather than the Object JDBC mapping
for numeric types, the getXXX() and setXXX() accessor methods use the type
int instead of Integer and the type float instead of Float.

Following are the contents of the Employee.java file. The EmployeeRef.java
file is unchanged because it does not depend on the types of the attributes.

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;

Note: The details of method bodies generated by JPublisher might
change in future releases.
4-2 Oracle9i JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Employee implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = { 12,4,2,91,7 };
 private static ORADataFactory[] _factory = new ORADataFactory[5];
protected static final Employee _EmployeeFactory = new Employee(false);

 public static ORADataFactory getORADataFactory()
 { return _EmployeeFactory; }
 /* constructor */
 protected Employee(boolean init)
 { if(init) _struct = new MutableStruct(new Object[5], _sqlType, _factory); }
 public Employee()
 { this(true); }
 public Employee(String name, int empno, java.math.BigDecimal deptno,
 java.sql.Timestamp hiredate, float salary) throws SQLException
 { this(true);
 setName(name);
 setEmpno(empno);
 setDeptno(deptno);
 setHiredate(hiredate);
 setSalary(salary);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Employee o, Datum d, int sqlType) throws SQLException
 JPublisher Examples 4-3

Example: JPublisher Translations with Different Mappings
 {
 if (d == null) return null;
 if (o == null) o = new Employee(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public String getName() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setName(String name) throws SQLException
 { _struct.setAttribute(0, name); }

 public int getEmpno() throws SQLException
 { return ((Integer) _struct.getAttribute(1)).intValue(); }

 public void setEmpno(int empno) throws SQLException
 { _struct.setAttribute(1, new Integer(empno)); }

 public java.math.BigDecimal getDeptno() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(2); }

 public void setDeptno(java.math.BigDecimal deptno) throws SQLException
 { _struct.setAttribute(2, deptno); }

 public java.sql.Timestamp getHiredate() throws SQLException
 { return (java.sql.Timestamp) _struct.getAttribute(3); }

 public void setHiredate(java.sql.Timestamp hiredate) throws SQLException
 { _struct.setAttribute(3, hiredate); }

 public float getSalary() throws SQLException
 { return ((Float) _struct.getAttribute(4)).floatValue(); }

 public void setSalary(float salary) throws SQLException
 { _struct.setAttribute(4, new Float(salary)); }

}

4-4 Oracle9i JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings
JPublisher Translation with the Oracle Mapping
Because the user requests Oracle type mappings, the getXXX() and setXXX()
accessor methods employ the type oracle.sql.CHAR instead of String, the type
oracle.sql.DATE instead of java.sql.Timestamp, and the type
oracle.sql.NUMBER instead of java.lang.Integer,
java.math.BigDecimal, and java.lang.Float.

Following are the contents of the Employee.java file. The EmployeeRef.java
file is unchanged, because it does not depend on the types of the attributes.

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Employee implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = { 12,4,2,91,7 };
 private static ORADataFactory[] _factory = new ORADataFactory[5];
protected static final Employee _EmployeeFactory = new Employee(false);

 public static ORADataFactory getORADataFactory()
 { return _EmployeeFactory; }
 /* constructor */
 protected Employee(boolean init)
 { if(init) _struct = new MutableStruct(new Object[5], _sqlType, _factory); }
 public Employee()
 { this(true); }

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 4-5

Example: JPublisher Translations with Different Mappings
 public Employee(oracle.sql.CHAR name, oracle.sql.NUMBER empno,
oracle.sql.NUMBER deptno,
 oracle.sql.DATE hiredate, oracle.sql.NUMBER salary) throws
SQLException
 { this(true);
 setName(name);
 setEmpno(empno);
 setDeptno(deptno);
 setHiredate(hiredate);
 setSalary(salary);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Employee o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Employee(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public oracle.sql.CHAR getName() throws SQLException
 { return (oracle.sql.CHAR) _struct.getOracleAttribute(0); }

 public void setName(oracle.sql.CHAR name) throws SQLException
 { _struct.setOracleAttribute(0, name); }

 public oracle.sql.NUMBER getEmpno() throws SQLException
 { return (oracle.sql.NUMBER) _struct.getOracleAttribute(1); }

 public void setEmpno(oracle.sql.NUMBER empno) throws SQLException
 { _struct.setOracleAttribute(1, empno); }
4-6 Oracle9i JPublisher User’s Guide

Example: JPublisher Translations with Different Mappings
 public oracle.sql.NUMBER getDeptno() throws SQLException
 { return (oracle.sql.NUMBER) _struct.getOracleAttribute(2); }

 public void setDeptno(oracle.sql.NUMBER deptno) throws SQLException
 { _struct.setOracleAttribute(2, deptno); }

 public oracle.sql.DATE getHiredate() throws SQLException
 { return (oracle.sql.DATE) _struct.getOracleAttribute(3); }

 public void setHiredate(oracle.sql.DATE hiredate) throws SQLException
 { _struct.setOracleAttribute(3, hiredate); }

 public oracle.sql.NUMBER getSalary() throws SQLException
 { return (oracle.sql.NUMBER) _struct.getOracleAttribute(4); }

 public void setSalary(oracle.sql.NUMBER salary) throws SQLException
 { _struct.setOracleAttribute(4, salary); }

}

 JPublisher Examples 4-7

Example: JPublisher Object Attribute Mapping
Example: JPublisher Object Attribute Mapping
This section provides examples of JPublisher output for a variety of object attribute
types, demonstrating the various datatype mappings that JPublisher creates.

The example defines an address object (address) and then uses it as the basis of
the definition of an address array (Addr_Array). The alltypes object definition
also uses the address and address-array objects to demonstrate the mappings that
JPublisher creates for object references and arrays (see attr17, attr18, and
attr19 in the alltypes object definition below).

CONNECT SCOTT/TIGER;

CREATE OR REPLACE TYPE address AS object
(
 street varchar2(50),
 city varchar2(50),
 state varchar2(30),
 zip number
);

CREATE OR REPLACE TYPE Addr_Array AS varray(10) OF address;
CREATE OR REPLACE TYPE ntbl AS table OF Integer;
CREATE TYPE alltypes AS object (
 attr1 bfile,
 attr2 blob,
 attr3 char(10),
 attr4 clob,
 attr5 date,
 attr6 decimal,
 attr7 double precision,
 attr8 float,
 attr9 integer,
 attr10 number,
 attr11 numeric,
 attr12 raw(20),
 attr13 real,
 attr14 smallint,
 attr15 varchar(10),
 attr16 varchar2(10),
 attr17 address,
 attr18 ref address,
 attr19 Addr_Array,
 attr20 ntbl);
4-8 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
In this example, JPublisher was invoked with the following command line (a single
wraparound line):

jpub -user=scott/tiger -input=demoin -dir=demo -package=corp -mapping=objectjdbc
-methods=false

It is not necessary to create the demo and corp directories in advance. JPublisher
will create the directories for you.

The demoin file contains these declarations:

SQL ADDRESS AS Address
SQL ALLTYPES AS all.Alltypes

JPublisher generates declarations of the types Alltypes and Address, because
demoin explicitly lists them. It also generates declarations of the types ntbl and
AddrArray, because the Alltypes type requires them.

Additionally, JPublisher generates declarations of the types AlltypesRef and
AddressRef, because it generates a declaration of a reference type for each object
type. A reference type is in the same package as the corresponding object type.
Reference types are not listed in the INPUT file or on the command line. The
Address and AddressRef types are in package corp, because -package=corp
appears on the command line. The Alltypes and AlltypesRef types are in
package all, because the all in all.Alltypes overrides -package=corp. The
remaining types were not explicitly mentioned, so they go in package corp.

Therefore, JPublisher creates the following files in package corp:

./demo/corp/Address.java

./demo/corp/AddressRef.java

./demo/corp/Ntbl.java

./demo/corp/AddrArray.java

Note: The -mapping option, while deprecated, is still supported
so is therefore demonstrated. The -mapping=objectjdbc setting
is equivalent to the combination of -builtintypes=jdbc,
-numbertypes=objectjdbc, -lobtypes=oracle, and
-usertypes=oracle. See "Mappings for All Types (-mapping)"
on page 3-12 for more information.
 JPublisher Examples 4-9

Example: JPublisher Object Attribute Mapping
and the following files in package all:

./demo/all/Alltypes.java

./demo/all/AlltypesRef.java

Listing and Description of Address.java Generated by JPublisher
The file ./demo/corp/Address.java reads as follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Address implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = { 12,12,12,2 };
 private static ORADataFactory[] _factory = new ORADataFactory[4];
protected static final Address _AddressFactory = new Address(false);

 public static ORADataFactory getORADataFactory()
 { return _AddressFactory; }
 /* constructor */
 protected Address(boolean init)
 { if(init) _struct = new MutableStruct(new Object[4], _sqlType, _factory); }
 public Address()
 { this(true); }

Note: The details of method bodies that JPublisher generates
might change in future releases.
4-10 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 public Address(String street, String city, String state,
 java.math.BigDecimal zip) throws SQLException
 { this(true);
 setStreet(street);
 setCity(city);
 setState(state);
 setZip(zip);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Address o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Address(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public String getStreet() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setStreet(String street) throws SQLException
 { _struct.setAttribute(0, street); }

 public String getCity() throws SQLException
 { return (String) _struct.getAttribute(1); }

 public void setCity(String city) throws SQLException
 { _struct.setAttribute(1, city); }

 public String getState() throws SQLException
 { return (String) _struct.getAttribute(2); }
 JPublisher Examples 4-11

Example: JPublisher Object Attribute Mapping
 public void setState(String state) throws SQLException
 { _struct.setAttribute(2, state); }

 public java.math.BigDecimal getZip() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(3); }

 public void setZip(java.math.BigDecimal zip) throws SQLException
 { _struct.setAttribute(3, zip); }

}

The Address.java file illustrates several points about Java source files.
JPublisher-generated files begin with a package declaration whenever the generated
class is in a named package. Note that you can specify a package in any of these
ways:

■ a -package parameter that you specify on the command line or in the
properties file

■ the AS <Java_identifier> clause in the INPUT file, where
Java_identifier includes a package name

Import declarations for specific classes and interfaces mentioned by the Address
class follow the package declaration.

The class definition follows the import declarations. All classes JPublisher
generates are declared public.

SQLJ uses the _SQL_NAME and _SQL_TYPECODE strings to identify the SQL type
matching the Address class.

The no-argument constructor is used to create the _AddressFactory object,
which will be returned by getORADataFactory(). For efficiency, JPublisher also
generates a protected boolean constructor for Address objects. This can be
used in subclasses of Address to create uninitialized Address objects. Other
Address objects are constructed by the create() method. The protected
create(...,...,...) method is used to encapsulate details of the JPublisher
implementation in the JPublisher-generated Address class, and to simplify the
writing of user-provided subclasses. Implementation details, such as generation of
the static _factory field and the _struct field, are implementation-specific and
should not be referenced or exploited by any subclass of Address. (In this
implementation, the _factory field is an array of factories for attributes of
Address, but in this case the factories are null because none of the attribute types
4-12 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
of Address require a factory. The _struct field holds the object data and is a
MutableStruct instance.)

The toDatum() method converts an Address object to a Datum object (in this
case, a STRUCT object). JDBC requires the connection argument, although it might
not be logically necessary.

The getXXX() and setXXX() accessor methods use the objectjdbc mapping for
numeric attributes and the jdbc mapping for other attributes. The method names
are in mixed case because -case=mixed is the default.

Listing of AddressRef.java Generated by JPublisher
The file ./demo/corp/AddressRef.java reads as follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class AddressRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

private static final AddressRef _AddressRefFactory = new AddressRef();

 public static ORADataFactory getORADataFactory()
 { return _AddressRefFactory; }
 /* constructor */
 public AddressRef()
 {

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 4-13

Example: JPublisher Object Attribute Mapping
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 AddressRef r = new AddressRef();
 r._ref = (REF) d;
 return r;
 }

 public static AddressRef cast(ORAData o) throws SQLException
 {
 if (o == null) return null;
 try { return (AddressRef) getORADataFactory().create(o.toDatum(null),
OracleTypes.REF); }
 catch (Exception exn)
 { throw new SQLException("Unable to convert "+o.getClass().getName()+" to
AddressRef: "+exn.toString()); }
 }

 public Address getValue() throws SQLException
 {
 return (Address) Address.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(Address c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

The getValue() method in the AddressRef class returns the address referenced
by an AddressRef object, with its proper type. The setValue() method copies
the contents of the Address argument into the database Address object to which
the AddressRef object refers. The AddressRef class also provides a static
cast() method to convert references to other types into Address references.
4-14 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
Listing of Alltypes.java Generated by JPublisher
The file ./demo/all/Alltypes.java reads as follows:

package all;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Alltypes implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ALLTYPES";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = {
-13,2004,1,2005,91,3,8,6,4,2,3,-2,7,5,12,12,2002,2006,2003,2003 };
 private static ORADataFactory[] _factory = new ORADataFactory[20];
 static
 {
 _factory[16] = corp.Address.getORADataFactory();
 _factory[17] = corp.AddressRef.getORADataFactory();
 _factory[18] = corp.AddrArray.getORADataFactory();
 _factory[19] = corp.Ntbl.getORADataFactory();
 }
protected static final Alltypes _AlltypesFactory = new Alltypes(false);

 public static ORADataFactory getORADataFactory()
 { return _AlltypesFactory; }
 /* constructor */
 protected Alltypes(boolean init)
 { if(init) _struct = new MutableStruct(new Object[20], _sqlType, _factory); }
 public Alltypes()

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 4-15

Example: JPublisher Object Attribute Mapping
 { this(true); }
 public Alltypes(oracle.sql.BFILE attr1, oracle.sql.BLOB attr2, String attr3,
oracle.sql.CLOB attr4,
 java.sql.Timestamp attr5, java.math.BigDecimal attr6,
Double attr7, Double attr8,
 Integer attr9, java.math.BigDecimal attr10, java.math.BigDecimal
attr11,
 byte[] attr12, Float attr13, Integer attr14, String
attr15, String attr16, corp.Address attr17,
 corp.AddressRef attr18, corp.AddrArray attr19, corp.Ntbl attr20)
throws SQLException
 { this(true);
 setAttr1(attr1);
 setAttr2(attr2);
 setAttr3(attr3);
 setAttr4(attr4);
 setAttr5(attr5);
 setAttr6(attr6);
 setAttr7(attr7);
 setAttr8(attr8);
 setAttr9(attr9);
 setAttr10(attr10);
 setAttr11(attr11);
 setAttr12(attr12);
 setAttr13(attr13);
 setAttr14(attr14);
 setAttr15(attr15);
 setAttr16(attr16);
 setAttr17(attr17);
 setAttr18(attr18);
 setAttr19(attr19);
 setAttr20(attr20);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Alltypes o, Datum d, int sqlType) throws SQLException
4-16 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 {
 if (d == null) return null;
 if (o == null) o = new Alltypes(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public oracle.sql.BFILE getAttr1() throws SQLException
 { return (oracle.sql.BFILE) _struct.getOracleAttribute(0); }

 public void setAttr1(oracle.sql.BFILE attr1) throws SQLException
 { _struct.setOracleAttribute(0, attr1); }

 public oracle.sql.BLOB getAttr2() throws SQLException
 { return (oracle.sql.BLOB) _struct.getOracleAttribute(1); }

 public void setAttr2(oracle.sql.BLOB attr2) throws SQLException
 { _struct.setOracleAttribute(1, attr2); }

 public String getAttr3() throws SQLException
 { return (String) _struct.getAttribute(2); }

 public void setAttr3(String attr3) throws SQLException
 { _struct.setAttribute(2, attr3); }

 public oracle.sql.CLOB getAttr4() throws SQLException
 { return (oracle.sql.CLOB) _struct.getOracleAttribute(3); }

 public void setAttr4(oracle.sql.CLOB attr4) throws SQLException
 { _struct.setOracleAttribute(3, attr4); }

 public java.sql.Timestamp getAttr5() throws SQLException
 { return (java.sql.Timestamp) _struct.getAttribute(4); }

 public void setAttr5(java.sql.Timestamp attr5) throws SQLException
 { _struct.setAttribute(4, attr5); }

 public java.math.BigDecimal getAttr6() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(5); }
 JPublisher Examples 4-17

Example: JPublisher Object Attribute Mapping
 public void setAttr6(java.math.BigDecimal attr6) throws SQLException
 { _struct.setAttribute(5, attr6); }

 public Double getAttr7() throws SQLException
 { return (Double) _struct.getAttribute(6); }

 public void setAttr7(Double attr7) throws SQLException
 { _struct.setAttribute(6, attr7); }

 public Double getAttr8() throws SQLException
 { return (Double) _struct.getAttribute(7); }

 public void setAttr8(Double attr8) throws SQLException
 { _struct.setAttribute(7, attr8); }

 public Integer getAttr9() throws SQLException
 { return (Integer) _struct.getAttribute(8); }

 public void setAttr9(Integer attr9) throws SQLException
 { _struct.setAttribute(8, attr9); }

 public java.math.BigDecimal getAttr10() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(9); }

 public void setAttr10(java.math.BigDecimal attr10) throws SQLException
 { _struct.setAttribute(9, attr10); }

 public java.math.BigDecimal getAttr11() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(10); }

 public void setAttr11(java.math.BigDecimal attr11) throws SQLException
 { _struct.setAttribute(10, attr11); }

 public byte[] getAttr12() throws SQLException
 { return (byte[]) _struct.getAttribute(11); }

 public void setAttr12(byte[] attr12) throws SQLException
 { _struct.setAttribute(11, attr12); }
4-18 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 public Float getAttr13() throws SQLException
 { return (Float) _struct.getAttribute(12); }

 public void setAttr13(Float attr13) throws SQLException
 { _struct.setAttribute(12, attr13); }

 public Integer getAttr14() throws SQLException
 { return (Integer) _struct.getAttribute(13); }

 public void setAttr14(Integer attr14) throws SQLException
 { _struct.setAttribute(13, attr14); }

 public String getAttr15() throws SQLException
 { return (String) _struct.getAttribute(14); }

 public void setAttr15(String attr15) throws SQLException
 { _struct.setAttribute(14, attr15); }

 public String getAttr16() throws SQLException
 { return (String) _struct.getAttribute(15); }

 public void setAttr16(String attr16) throws SQLException
 { _struct.setAttribute(15, attr16); }

 public corp.Address getAttr17() throws SQLException
 { return (corp.Address) _struct.getAttribute(16); }

 public void setAttr17(corp.Address attr17) throws SQLException
 { _struct.setAttribute(16, attr17); }

 public corp.AddressRef getAttr18() throws SQLException
 { return (corp.AddressRef) _struct.getAttribute(17); }

 public void setAttr18(corp.AddressRef attr18) throws SQLException
 { _struct.setAttribute(17, attr18); }

 public corp.AddrArray getAttr19() throws SQLException
 { return (corp.AddrArray) _struct.getAttribute(18); }
 JPublisher Examples 4-19

Example: JPublisher Object Attribute Mapping
 public void setAttr19(corp.AddrArray attr19) throws SQLException
 { _struct.setAttribute(18, attr19); }

 public corp.Ntbl getAttr20() throws SQLException
 { return (corp.Ntbl) _struct.getAttribute(19); }

 public void setAttr20(corp.Ntbl attr20) throws SQLException
 { _struct.setAttribute(19, attr20); }

}

When a declared class requires user-defined classes from another package,
JPublisher generates import declarations for those user-defined classes following
the import declaration for the oracle.sql package. In this case, JDBC requires
the Address and AddressRef classes from package corp.

The attributes with types Address, AddressRef, AddrArray, and Ntbl require
the construction of factories. The static block puts the correct factories in the
_factory array.

Listing of AlltypesRef.java Generated by JPublisher
The file ./demo/corp/all/AlltypesRef.java reads as follows:

package all;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;

Note: Notice that the SMALLINT SQL type for attr14 maps to
the Java type short, but this maps to Integer in
-numbertypes=objectjdbc mapping. This was a JPublisher
implementation decision. See "Mappings For Numeric Types
(-numbertypes)" on page 3-10 for related information.

Note: The details of method bodies that JPublisher generates
might change in future releases.
4-20 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class AlltypesRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.ALLTYPES";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

private static final AlltypesRef _AlltypesRefFactory = new AlltypesRef();

 public static ORADataFactory getORADataFactory()
 { return _AlltypesRefFactory; }
 /* constructor */
 public AlltypesRef()
 {
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 AlltypesRef r = new AlltypesRef();
 r._ref = (REF) d;
 return r;
 }

 public static AlltypesRef cast(ORAData o) throws SQLException
 {
 if (o == null) return null;
 try { return (AlltypesRef) getORADataFactory().create(o.toDatum(null),
OracleTypes.REF); }
 catch (Exception exn)
 { throw new SQLException("Unable to convert "+o.getClass().getName()+" to
AlltypesRef: "+exn.toString()); }
 }
 JPublisher Examples 4-21

Example: JPublisher Object Attribute Mapping
 public Alltypes getValue() throws SQLException
 {
 return (Alltypes) Alltypes.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(Alltypes c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

Listing of Ntbl.java Generated by JPublisher
The file ./demo/corp/Ntbl.java reads as follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.ARRAY;
import oracle.sql.ArrayDescriptor;
import oracle.jpub.runtime.MutableArray;

public class Ntbl implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.NTBL";
 public static final int _SQL_TYPECODE = OracleTypes.ARRAY;

 MutableArray _array;

private static final Ntbl _NtblFactory = new Ntbl();

 public static ORADataFactory getORADataFactory()

Note: The details of method bodies that JPublisher generates
might change in future releases.
4-22 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 { return _NtblFactory; }
 /* constructors */
 public Ntbl()
 {
 this((Integer[])null);
 }

 public Ntbl(Integer[] a)
 {
 _array = new MutableArray(4, a, null);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _array.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Ntbl a = new Ntbl();
 a._array = new MutableArray(4, (ARRAY) d, null);
 return a;
 }

 public int length() throws SQLException
 {
 return _array.length();
 }

 public int getBaseType() throws SQLException
 {
 return _array.getBaseType();
 }

 public String getBaseTypeName() throws SQLException
 {
 return _array.getBaseTypeName();
 }

 public ArrayDescriptor getDescriptor() throws SQLException
 {
 return _array.getDescriptor();
 JPublisher Examples 4-23

Example: JPublisher Object Attribute Mapping
 }

 /* array accessor methods */
 public Integer[] getArray() throws SQLException
 {
 return (Integer[]) _array.getObjectArray();
 }

 public void setArray(Integer[] a) throws SQLException
 {
 _array.setObjectArray(a);
 }

 public Integer[] getArray(long index, int count) throws SQLException
 {
 return (Integer[]) _array.getObjectArray(index, count);
 }

 public void setArray(Integer[] a, long index) throws SQLException
 {
 _array.setObjectArray(a, index);
 }

 public Integer getElement(long index) throws SQLException
 {
 return (Integer) _array.getObjectElement(index);
 }

 public void setElement(Integer a, long index) throws SQLException
 {
 _array.setObjectElement(a, index);
 }

}

4-24 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
Listing of AddrArray.java Generated by JPublisher
JPublisher generates declarations of the type AddrArray because they are required
by the Alltypes type. The file ./demo/corp/AddrArray.java reads as
follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.ARRAY;
import oracle.sql.ArrayDescriptor;
import oracle.jpub.runtime.MutableArray;

public class AddrArray implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDR_ARRAY";
 public static final int _SQL_TYPECODE = OracleTypes.ARRAY;

 MutableArray _array;

private static final AddrArray _AddrArrayFactory = new AddrArray();

 public static ORADataFactory getORADataFactory()
 { return _AddrArrayFactory; }
 /* constructors */
 public AddrArray()
 {
 this((Address[])null);
 }

 public AddrArray(Address[] a)
 {
 _array = new MutableArray(2002, a, Address.getORADataFactory());
 }

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 4-25

Example: JPublisher Object Attribute Mapping
 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _array.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 AddrArray a = new AddrArray();
 a._array = new MutableArray(2002, (ARRAY) d, Address.getORADataFactory());
 return a;
 }

 public int length() throws SQLException
 {
 return _array.length();
 }

 public int getBaseType() throws SQLException
 {
 return _array.getBaseType();
 }

 public String getBaseTypeName() throws SQLException
 {
 return _array.getBaseTypeName();
 }

 public ArrayDescriptor getDescriptor() throws SQLException
 {
 return _array.getDescriptor();
 }

 /* array accessor methods */
 public Address[] getArray() throws SQLException
 {
 return (Address[]) _array.getObjectArray(
 new Address[_array.length()]);
 }

 public void setArray(Address[] a) throws SQLException
 {
 _array.setObjectArray(a);
4-26 Oracle9i JPublisher User’s Guide

Example: JPublisher Object Attribute Mapping
 }

 public Address[] getArray(long index, int count) throws SQLException
 {
 return (Address[]) _array.getObjectArray(index,
 new Address[_array.sliceLength(index, count)]);
 }

 public void setArray(Address[] a, long index) throws SQLException
 {
 _array.setObjectArray(a, index);
 }

 public Address getElement(long index) throws SQLException
 {
 return (Address) _array.getObjectElement(index);
 }

 public void setElement(Address a, long index) throws SQLException
 {
 _array.setObjectElement(a, index);
 }

}

 JPublisher Examples 4-27

Example: Generating a SQLData Class
Example: Generating a SQLData Class
This example is identical to the previous one, except that JPublisher generates a
SQLData class rather than an ORAData class. The command line for this example is:

jpub -user=scott/tiger -input=demoin -dir=demo -package=corp -mapping=objectjdbc
-usertypes=jdbc -methods=false

(This is a single wraparound command line.)

The option -usertypes=jdbc instructs JPublisher to generate classes that
implement the SQLData interface. The SQLData interface supports reference and
collection classes generically, using the generic types java.sql.Ref and
java.sql.Array rather than using custom classes. Therefore, JPublisher
generates only two classes:

./demo/corp/Address.java

./demo/all/Alltypes.java

Listing of Address.java Generated by JPublisher
Because we specified -usertypes=jdbc in this example, the Address class
implements the java.sql.SQLData interface rather than the
oracle.sql.ORAData interface. The file ./demo/corp/Address.java reads as
follows:

Note: The -mapping option, while deprecated, is still supported
so is therefore demonstrated. The -mapping=objectjdbc setting
is equivalent to the combination of -builtintypes=jdbc,
-numbertypes=objectjdbc, -lobtypes=oracle, and
-usertypes=oracle; however, this command line overrides the
-usertypes=oracle setting with a -usertypes=jdbc setting.
See "Mappings for All Types (-mapping)" on page 3-12 for more
information about the -mapping option.

Note: The details of method bodies that JPublisher generates
might change in future releases.
4-28 Oracle9i JPublisher User’s Guide

Example: Generating a SQLData Class
package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Address implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = { 12,12,12,2 };
 private static ORADataFactory[] _factory = new ORADataFactory[4];
protected static final Address _AddressFactory = new Address(false);

 public static ORADataFactory getORADataFactory()
 { return _AddressFactory; }
 /* constructor */
 protected Address(boolean init)
 { if(init) _struct = new MutableStruct(new Object[4], _sqlType, _factory); }
 public Address()
 { this(true); }
 public Address(String street, String city, String state, java.math.BigDecimal
zip) throws SQLException
 { this(true);
 setStreet(street);
 setCity(city);
 setState(state);
 setZip(zip);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }
 JPublisher Examples 4-29

Example: Generating a SQLData Class
 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Address o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Address(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public String getStreet() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setStreet(String street) throws SQLExcept

Listing of Alltypes.java Generated by JPublisher
Because -usertypes=jdbc was specified in this example, the Alltypes class
implements the java.sql.SQLData interface rather than the
oracle.sql.ORAData interface. Although the SQLData interface is a
vendor-neutral standard, there is Oracle-specific code in the Alltypes class
because it uses Oracle-specific types such as oracle.sql.BFILE and
oracle.sql.CLOB. The file ./demo/corp/Alltypes.java reads as follows:

package all;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Alltypes implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ALLTYPES";

Note: The details of method bodies that JPublisher generates
might change in future releases.
4-30 Oracle9i JPublisher User’s Guide

Example: Generating a SQLData Class
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = {
-13,2004,1,2005,91,3,8,6,4,2,3,-2,7,5,12,12,2002,2006,2003,2003 };
 private static ORADataFactory[] _factory = new ORADataFactory[20];
 static
 {
 _factory[16] = corp.Address.getORADataFactory();
 _factory[17] = corp.AddressRef.getORADataFactory();
 _factory[18] = corp.AddrArray.getORADataFactory();
 _factory[19] = corp.Ntbl.getORADataFactory();
 }
protected static final Alltypes _AlltypesFactory = new Alltypes(false);

 public static ORADataFactory getORADataFactory()
 { return _AlltypesFactory; }
 /* constructor */
 protected Alltypes(boolean init)
 { if(init) _struct = new MutableStruct(new Object[20], _sqlType, _factory); }
 public Alltypes()
 { this(true); }
 public Alltypes(oracle.sql.BFILE attr1, oracle.sql.BLOB attr2, String attr3,
oracle.sql.CLOB attr4,
 java.sql.Timestamp attr5, java.math.BigDecimal attr6,
Double attr7, Double attr8,
 Integer attr9, java.math.BigDecimal attr10,
java.math.BigDecimal attr11, byte[] attr12,
 Float attr13, Integer attr14, String attr15, String
attr16, corp.Address attr17,
 corp.AddressRef attr18, corp.AddrArray attr19,
corp.Ntbl attr20) throws SQLException
 { this(true);
 setAttr1(attr1);
 setAttr2(attr2);
 setAttr3(attr3);
 setAttr4(attr4);
 setAttr5(attr5);
 setAttr6(attr6);
 setAttr7(attr7);
 setAttr8(attr8);
 setAttr9(attr9);
 setAttr10(attr10);
 setAttr11(attr11);
 JPublisher Examples 4-31

Example: Generating a SQLData Class
 setAttr12(attr12);
 setAttr13(attr13);
 setAttr14(attr14);
 setAttr15(attr15);
 setAttr16(attr16);
 setAttr17(attr17);
 setAttr18(attr18);
 setAttr19(attr19);
 setAttr20(attr20);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Alltypes o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Alltypes(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public oracle.sql.BFILE getAttr1() throws SQLException
 { return (oracle.sql.BFILE) _struct.getOracleAttribute(0); }

 public void setAttr1(oracle.sql.BFILE attr1) throws SQLException
 { _struct.setOracleAttribute(0, attr1); }

 public oracle.sql.BLOB getAttr2() throws SQLException
 { return (oracle.sql.BLOB) _struct.getOracleAttribute(1); }

 public void setAttr2(oracle.sql.BLOB attr2) throws SQLException
 { _struct.setOracleAttribute(1, attr2); }

 public String getAttr3() throws SQLException
 { return (String) _struct.getAttribute(2); }
4-32 Oracle9i JPublisher User’s Guide

Example: Generating a SQLData Class
 public void setAttr3(String attr3) throws SQLException
 { _struct.setAttribute(2, attr3); }

 public oracle.sql.CLOB getAttr4() throws SQLException
 { return (oracle.sql.CLOB) _struct.getOracleAttribute(3); }

 public void setAttr4(oracle.sql.CLOB attr4) throws SQLException
 { _struct.setOracleAttribute(3, attr4); }

 public java.sql.Timestamp getAttr5() throws SQLException
 { return (java.sql.Timestamp) _struct.getAttribute(4); }

 public void setAttr5(java.sql.Timestamp attr5) throws SQLException
 { _struct.setAttribute(4, attr5); }

 public java.math.BigDecimal getAttr6() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(5); }

 public void setAttr6(java.math.BigDecimal attr6) throws SQLException
 { _struct.setAttribute(5, attr6); }

 public Double getAttr7() throws SQLException
 { return (Double) _struct.getAttribute(6); }

 public void setAttr7(Double attr7) throws SQLException
 { _struct.setAttribute(6, attr7); }

 public Double getAttr8() throws SQLException
 { return (Double) _struct.getAttribute(7); }

 public void setAttr8(Double attr8) throws SQLException
 { _struct.setAttribute(7, attr8); }

 public Integer getAttr9() throws SQLException
 { return (Integer) _struct.getAttribute(8); }

 public void setAttr9(Integer attr9) throws SQLException
 { _struct.setAttribute(8, attr9); }
 JPublisher Examples 4-33

Example: Generating a SQLData Class
 public java.math.BigDecimal getAttr10() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(9); }

 public void setAttr10(java.math.BigDecimal attr10) throws SQLException
 { _struct.setAttribute(9, attr10); }

 public java.math.BigDecimal getAttr11() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(10); }

 public void setAttr11(java.math.BigDecimal attr11) throws SQLException
 { _struct.setAttribute(10, attr11); }

 public byte[] getAttr12() throws SQLException
 { return (byte[]) _struct.getAttribute(11); }

 public void setAttr12(byte[] attr12) throws SQLException
 { _struct.setAttribute(11, attr12); }

 public Float getAttr13() throws SQLException
 { return (Float) _struct.getAttribute(12); }

 public void setAttr13(Float attr13) throws SQLException
 { _struct.setAttribute(12, attr13); }

 public Integer getAttr14() throws SQLException
 { return (Integer) _struct.getAttribute(13); }

 public void setAttr14(Integer attr14) throws SQLException
 { _struct.setAttribute(13, attr14); }

 public String getAttr15() throws SQLException
 { return (String) _struct.getAttribute(14); }

 public void setAttr15(String attr15) throws SQLException
 { _struct.setAttribute(14, attr15); }

 public String getAttr16() throws SQLException
4-34 Oracle9i JPublisher User’s Guide

Example: Generating a SQLData Class
 { return (String) _struct.getAttribute(15); }

 public void setAttr16(String attr16) throws SQLException
 { _struct.setAttribute(15, attr16); }

 public corp.Address getAttr17() throws SQLException
 { return (corp.Address) _struct.getAttribute(16); }

 public void setAttr17(corp.Address attr17) throws SQLException
 { _struct.setAttribute(16, attr17); }

 public corp.AddressRef getAttr18() throws SQLException
 { return (corp.AddressRef) _struct.getAttribute(17); }

 public void setAttr18(corp.AddressRef attr18) throws SQLException
 { _struct.setAttribute(17, attr18); }

 public corp.AddrArray getAttr19() throws SQLException
 { return (corp.AddrArray) _struct.getAttribute(18); }

 public void setAttr19(corp.AddrArray attr19) throws SQLException
 { _struct.setAttribute(18, attr19); }

 public corp.Ntbl getAttr20() throws SQLException
 { return (corp.Ntbl) _struct.getAttribute(19); }

 public void setAttr20(corp.Ntbl attr20) throws SQLException
 { _struct.setAttribute(19, attr20); }

}

 JPublisher Examples 4-35

Example: Extending JPublisher Classes
Example: Extending JPublisher Classes
Here is an example of the scenario described in "Extending JPublisher-Generated
Classes" on page 2-34.

The following code is the initial version for the class MyAddress.java. This code
is automatically created by JPublisher and stored in the directory demo/corp. You
can subsequently modify this code, since JPublisher will regenerate the superclass
JAddress, not MyAddress (if it already exists), whenever it is invoked again with
the same command line.

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class MyAddress extends JAddress implements ORAData, ORADataFactory
{
 private static final MyAddress _MyAddressFactory = new MyAddress();
 public static ORADataFactory getORADataFactory()
 { return _MyAddressFactory; }

 public MyAddress() { super(); }
 public MyAddress(String street, String city, String state,
 java.math.BigDecimal zip) throws SQLException
 {
 setStreet(street);
 setCity(city);
 setState(state);
 setZip(zip);
 }

Note: There way the ORADataFactory create() method is
coded here ensures that an object instance is not needlessly created
if the data object is null, or needlessly re-initialized if the data object
is non-null. This is discussed in "Format of the Class that Extends
the Generated Class" on page 2-35.
4-36 Oracle9i JPublisher User’s Guide

Example: Extending JPublisher Classes
 /* ORAData interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(new MyAddress(), d, sqlType); }

 /* superclass accessors */

/*
 public String getStreet() throws SQLException { return super.getStreet(); }
 public void setStreet(String street) throws SQLException {
super.setStreet(street); }
 */

/*
 public String getCity() throws SQLException { return super.getCity(); }
 public void setCity(String city) throws SQLException { super.setCity(city); }
 */

/*
 public String getState() throws SQLException { return super.getState(); }
 public void setState(String state) throws SQLException {
super.setState(state); }
 */

/*
 public java.math.BigDecimal getZip() throws SQLException { return
super.getZip(); }
 public void setZip(java.math.BigDecimal zip) throws SQLException {
super.setZip(zip); }
 */

}

Enter the following command line to have JPublisher generate code for the
superclass JAddress, and also to generate an initial stub for the class MyAddress
that is to extend JAddress. (The stub is only created if MyAddress.java does not
already exist.)

jpub -user=scott/tiger -input=demoin -dir=demo -package=corp

Assume the demoin file includes the following:

SQL ADDRESS GENERATE JAddress AS MyAddress
 JPublisher Examples 4-37

Example: Extending JPublisher Classes
JPublisher will generate these files:

demo/corp/JAddress.java
demo/corp/MyAddressRef.java

Because an ADDRESS object will be represented in the Java program as a
MyAddress instance, JPublisher generates the class MyAddressRef rather than
JAddressRef.

Here is a listing of the demo/corp/JAddress.java class file, which will always
be generated by JPublisher:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class JAddress implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = { 12,12,12,2 };
 private static ORADataFactory[] _factory = new ORADataFactory[4];
protected static final JAddress _JAddressFactory = new JAddress(false);

 public static ORADataFactory getORADataFactory()
 { return _JAddressFactory; }
 /* constructor */
 protected JAddress(boolean init)
 { if(init) _struct = new MutableStruct(new Object[4], _sqlType, _factory); }
 public JAddress()
 { this(true); }

Note: The details of method bodies that JPublisher generates
might change in future releases.
4-38 Oracle9i JPublisher User’s Guide

Example: Extending JPublisher Classes
 public JAddress(String street, String city, String state,
 java.math.BigDecimal zip) throws SQLException
 { this(true);
 setStreet(street);
 setCity(city);
 setState(state);
 setZip(zip);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(JAddress o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new JAddress(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public String getStreet() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setStreet(String street) throws SQLException
 { _struct.setAttribute(0, street); }

 public String getCity() throws SQLException
 { return (String) _struct.getAttribute(1); }

 public void setCity(String city) throws SQLException
 { _struct.setAttribute(1, city); }

 public String getState() throws SQLException
 { return (String) _struct.getAttribute(2); }
 JPublisher Examples 4-39

Example: Extending JPublisher Classes
 public void setState(String state) throws SQLException
 { _struct.setAttribute(2, state); }

 public java.math.BigDecimal getZip() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(3); }

 public void setZip(java.math.BigDecimal zip) throws SQLException
 { _struct.setAttribute(3, zip); }

}

Here is a listing of the demo/corp/MyAddressRef.java class file generated by
JPublisher:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class MyAddressRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

private static final MyAddressRef _MyAddressRefFactory = new MyAddressRef();

 public static ORADataFactory getORADataFactory()
 { return _MyAddressRefFactory; }
 /* constructor */
 public MyAddressRef()
 {
 }
4-40 Oracle9i JPublisher User’s Guide

Example: Extending JPublisher Classes
 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 MyAddressRef r = new MyAddressRef();
 r._ref = (REF) d;
 return r;
 }

 public static MyAddressRef cast(ORAData o) throws SQLException
 {
 if (o == null) return null;
 try { return (MyAddressRef) getORADataFactory().create(o.toDatum(null),
OracleTypes.REF); }
 catch (Exception exn)
 { throw new SQLException("Unable to convert "+o.getClass().getName()+" to
MyAddressRef: "+exn.toString()); }
 }

 public MyAddress getValue() throws SQLException
 {
 return (MyAddress) MyAddress.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(MyAddress c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

 JPublisher Examples 4-41

Example: Wrappers Generated for Methods in Objects
Example: Wrappers Generated for Methods in Objects

This section describes an example of JPublisher output given the definition below of
a SQL type containing methods. The example defines a type Rational with
numerator and denominator attributes and the following functions and
procedures:

■ MEMBER FUNCTION toReal: Given two integers, this function converts a
rational number to a real number and returns a real number.

■ MEMBER PROCEDURE normalize: Given two integers, representing a
numerator and a denominator, this procedure reduces a fraction by dividing the
numerator and denominator by their greatest common divisor.

■ STATIC FUNCTION gcd: Given two integers, this function returns their
greatest common divisor.

■ MEMBER FUNCTION plus: This function adds two rational numbers and
returns the result.

The code for rational.sql follows:

CREATE TYPE Rational AS OBJECT (
 numerator INTEGER,
 denominator INTEGER,
 MAP MEMBER FUNCTION toReal RETURN REAL,
 MEMBER PROCEDURE normalize,
 STATIC FUNCTION gcd(x INTEGER,
 y INTEGER) RETURN INTEGER,
 MEMBER FUNCTION plus (x Rational) RETURN Rational
);

CREATE TYPE BODY Rational AS

MAP MEMBER FUNCTION toReal RETURN REAL IS
-- convert rational number to real number
BEGIN
 RETURN numerator / denominator;
END toReal;

Note: The wrapper methods that JPublisher generates to invoke
stored procedures are generated in SQLJ code; therefore,
JPublisher-generated classes that contain wrapper methods must be
processed by the SQLJ translator.
4-42 Oracle9i JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects
MEMBER PROCEDURE normalize IS
 g INTEGER;
BEGIN
 g := Rational.gcd(numerator, denominator);
 numerator := numerator / g;
 denominator := denominator / g;
END normalize;

STATIC FUNCTION gcd(x INTEGER,
 y INTEGER) RETURN INTEGER IS
-- find greatest common divisor of x and y
ans INTEGER;
z INTEGER;
BEGIN
IF x < y THEN
 ans := Rational.gcd(y, x);
ELSIF (x MOD y = 0) THEN
 ans := y;
ELSE
 z := x MOD y;
 ans := Rational.gcd(y, z);
END IF;
RETURN ans;
END gcd;

MEMBER FUNCTION plus (x Rational) RETURN Rational IS
BEGIN
 return Rational(numerator * x.denominator + x.numerator * denominator,
 denominator * x.denominator);
END plus;
END;

In this example, JPublisher is invoked with the following command line:

jpub -user=scott/tiger -sql=Rational -methods=true

The -user parameter directs JPublisher to login to the database as user scott with
password tiger. The -methods parameter directs JPublisher to generate wrappers
for the methods contained in the type Rational. You can omit this parameter,
because -methods=true is the default.
 JPublisher Examples 4-43

Example: Wrappers Generated for Methods in Objects
Listing and Description of Rational.sqlj Generated by JPublisher
JPublisher generates the file Rational.sqlj. This file reads as follows:

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class Rational implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.RATIONAL";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}

Notes:

■ The details of method bodies that JPublisher generates might
change in future releases.

■ Notice the release() calls, which are to avoid memory leaks
related to SQLJ connection contexts. See "Releasing Connection
Context Resources" on page 2-30 for more information.
4-44 Oracle9i JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }

 protected MutableStruct _struct;

 private static int[] _sqlType = { 4,4 };
 private static ORADataFactory[] _factory = new ORADataFactory[2];
protected static final Rational _RationalFactory = new Rational(false);

 public static ORADataFactory getORADataFactory()
 { return _RationalFactory; }
 /* constructors */
 protected Rational(boolean init)
 { if (init) _struct = new MutableStruct(new Object[2], _sqlType, _factory); }
 public Rational()
 { this(true); __tx = DefaultContext.getDefaultContext(); }
 public Rational(DefaultContext c) /*throws SQLException*/
 { this(true); __tx = c; }
 public Rational(Connection c) /*throws SQLException*/
 { this(true); __onn = c; }
 public Rational(Integer numerator, Integer denominator) throws SQLException
 {
 this(true);
 setNumerator(numerator);
 setDenominator(denominator);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 if (__tx!=null && __onn!=c) release();
 __onn = c;
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 public void setFrom(Rational o) throws SQLException
 { setContextFrom(o); setValueFrom(o); }
 protected void setContextFrom(Rational o) throws SQLException
 JPublisher Examples 4-45

Example: Wrappers Generated for Methods in Objects
 { release(); __tx = o.__tx; __onn = o.__onn; }
 protected void setValueFrom(Rational o) { _struct = o._struct; }
 protected ORAData create(Rational o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) { if (o!=null) { o.release(); }; return null; }
 if (o == null) o = new Rational(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o.__onn = ((STRUCT) d).getJavaSqlConnection();
 return o;
 }
 /* accessor methods */
 public Integer getNumerator() throws SQLException
 { return (Integer) _struct.getAttribute(0); }

 public void setNumerator(Integer numerator) throws SQLException
 { _struct.setAttribute(0, numerator); }

 public Integer getDenominator() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setDenominator(Integer denominator) throws SQLException
 { _struct.setAttribute(1, denominator); }

 public Integer gcd (
 Integer x,
 Integer y)
 throws SQLException
 {
 Integer __jPt_result;
 #sql [getConnectionContext()] __jPt_result = { VALUES(SCOTT.RATIONAL.GCD(
 :x,
 :y)) };
 return __jPt_result;
 }

 public Rational normalize ()
 throws SQLException
 {
 Rational __jPt_temp = this;
 #sql [getConnectionContext()] {
 BEGIN
 :INOUT __jPt_temp.NORMALIZE();
 END;
4-46 Oracle9i JPublisher User’s Guide

Example: Wrappers Generated for Methods in Objects
 };
 return __jPt_temp;
 }

 public Rational plus (
 Rational x)
 throws SQLException
 {
 Rational __jPt_temp = this;
 Rational __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.PLUS(
 :x);
 END;
 };
 return __jPt_result;
 }

 public Float toreal ()
 throws SQLException
 {
 Rational __jPt_temp = this;
 Float __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.TOREAL();
 END;
 };
 return __jPt_result;
 }
}

All the methods that JPublisher generates invoke the corresponding PL/SQL
methods executing in the server.

JPublisher declares the sql_name for the object to be SCOTT.RATIONAL, and its
sql_type_code to be OracleTypes.STRUCT. By default, it uses the SQLJ
connection context class sqlj.runtime.ref.DefaultContext. It creates
accessor methods getNumerator(), setNumerator(), getDenominator(),
and setDenominator() for the object attributes numerator and denominator.

JPublisher generates source code for the gcd static function, which takes two
Integer values as input and returns an Integer result. This gcd function invokes
the RATIONAL.GCD stored function with IN host variables :x and :y.
 JPublisher Examples 4-47

Example: Wrappers Generated for Methods in Objects
JPublisher generates source code for the normalize member procedure, which
defines a PL/SQL block containing an IN OUT parameter inside the SQLJ
statement. The this parameter passes the values to the PL/SQL block.

JPublisher generates source code for the plus member function, which takes an
object x of type Rational and returns an object of type Rational. It defines a
PL/SQL block inside the SQLJ statement. The IN host variables are :x and a copy
of this. The result of the function is an OUT host variable.

JPublisher generates source code for the toReal member function, which returns a
Float value. It defines a host OUT variable that is assigned the value returned by
the function. A copy of the this object is an IN parameter.
4-48 Oracle9i JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages
Example: Wrappers Generated for Methods in Packages

This section describes an example of JPublisher output given the definition below of
a PL/SQL package containing methods. The example defines the package
RationalP with the following functions and procedures, which manipulate the
numerators and denominators of fractions.

■ FUNCTION toReal: Given two integers, this function converts a rational
number to a real number and returns a real number.

■ PROCEDURE normalize: Given two integers (representing a numerator and a
denominator), this procedure reduces a fraction by dividing the numerator and
denominator by their greatest common divisor.

■ FUNCTION gcd: Given two integers, this function returns their greatest
common divisor.

■ PROCEDURE plus: Adds two rational numbers and returns the result.

The code for RationalP.sql follows:

CREATE PACKAGE RationalP AS

 FUNCTION toReal(numerator INTEGER,
 denominator INTEGER) RETURN REAL;

 PROCEDURE normalize(numerator IN OUT INTEGER,
 denominator IN OUT INTEGER);

 FUNCTION gcd(x INTEGER, y INTEGER) RETURN INTEGER;

 PROCEDURE plus (n1 INTEGER, d1 INTEGER,
 n2 INTEGER, d2 INTEGER,
 n3 OUT INTEGER, d3 OUT INTEGER);
END rationalP;

/

Note: The wrapper methods that JPublisher generates to invoke
stored procedures are generated in SQLJ code; therefore,
JPublisher-generated classes that contain wrapper methods must be
processed by the SQLJ translator.
 JPublisher Examples 4-49

Example: Wrappers Generated for Methods in Packages
CREATE PACKAGE BODY rationalP AS

 FUNCTION toReal(numerator INTEGER,
 denominator INTEGER) RETURN real IS
 -- convert rational number to real number
 BEGIN
 RETURN numerator / denominator;
 END toReal;

 FUNCTION gcd(x INTEGER, y INTEGER) RETURN INTEGER IS
 -- find greatest common divisor of x and y
 ans INTEGER;
 BEGIN
 IF x < y THEN
 ans := gcd(y, x);
 ELSIF (x MOD y = 0) THEN
 ans := y;
 ELSE
 ans := gcd(y, x MOD y);
 END IF;
 RETURN ans;
 END gcd;

 PROCEDURE normalize(numerator IN OUT INTEGER,
 denominator IN OUT INTEGER) IS
 g INTEGER;
 BEGIN
 g := gcd(numerator, denominator);
 numerator := numerator / g;
 denominator := denominator / g;
 END normalize;

 PROCEDURE plus (n1 INTEGER, d1 INTEGER,
 n2 INTEGER, d2 INTEGER,
 n3 OUT INTEGER, d3 OUT INTEGER) IS
 BEGIN
 n3 := n1 * d2 + n2 * d1;
 d3 := d1 * d2;
 END plus;

END rationalP;

In this example, JPublisher is invoked with the following command line:

jpub -user=scott/tiger -sql=RationalP -methods=true
4-50 Oracle9i JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages
The -user parameter directs JPublisher to login to the database as user scott with
password tiger. The -methods parameter directs JPublisher to generate wrappers
for the methods in the package RationalP. You can omit this parameter, because
-methods=true is the default.

Listing and Description of RationalP.sqlj Generated by JPublisher
JPublisher generates the file RationalP.sqlj, as follows:

import java.sql.SQLException;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class RationalP
{
 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }

 /* constructors */
 public RationalP() throws SQLException

Note: The details of method bodies that JPublisher generates
might change in future releases.
 JPublisher Examples 4-51

Example: Wrappers Generated for Methods in Packages
 { __tx = DefaultContext.getDefaultContext();
 }
 public RationalP(DefaultContext c) throws SQLException
 { __tx = c; }
 public RationalP(Connection c) throws SQLException
 {__onn = c; __tx = new DefaultContext(c); }

 public Integer gcd (
 Integer x,
 Integer y)
 throws SQLException
 {
 Integer __jPt_result;
 #sql [getConnectionContext()] __jPt_result = { VALUES(SCOTT.RATIONALP.GCD(
 :x,
 :y)) };
 return __jPt_result;
 }
 public void plus (
 Integer n1,
 Integer d1,
 Integer n2,
 Integer d2,
 Integer n3[],
 Integer d3[])
 throws SQLException
 {
 #sql [getConnectionContext()] { CALL SCOTT.RATIONALP.PLUS(
 :n1,
 :d1,
 :n2,
 :d2,
 :OUT (n3[0]),
 :OUT (d3[0])) };
 }
 public Float toreal (
 Integer numerator,
 Integer denominator)
 throws SQLException
 {
 Float __jPt_result;
 #sql [getConnectionContext()] __jPt_result = {
VALUES(SCOTT.RATIONALP.TOREAL(
 :numerator,
 :denominator)) };
4-52 Oracle9i JPublisher User’s Guide

Example: Wrappers Generated for Methods in Packages
 return __jPt_result;
 }

 public void normalize (
 Integer numerator[],
 Integer denominator[])
 throws SQLException
 {
 #sql [getConnectionContext()] { CALL SCOTT.RATIONALP.NORMALIZE(
 :INOUT (numerator[0]),
 :INOUT (denominator[0])) };
 }
}

All the methods that JPublisher generates invoke the corresponding PL/SQL
methods executing in the server.

By default, JPublisher uses the existing SQLJ connection context class
sqlj.runtime.ref.DefaultContext and associates an instance of it with the
RationalP package.

JPublisher generates source code for the gcd function, which takes two
BigDecimal values—x and y—and returns a BigDecimal result. This gcd
function invokes the stored function RATIONALP.GCD with IN host variables :x
and :y.

JPublisher generates source code for the normalize procedure, which takes two
BigDecimal values—numerator and denominator. This normalize procedure
invokes the stored procedure call RATIONALP.NORMALIZE with IN OUT host
variables :numerator and :denominator. Because these are IN OUT parameters,
JPublisher passes their values as the first element of an array.

JPublisher generates source code for the plus procedure, which has four
BigDecimal IN parameters and two BigDecimal OUT parameters. This plus
procedure invokes the stored procedure call RATIONALP.PLUS, with IN host
variables :n1, :d1, :n2, and :d2. It also defines the OUT host variables :n3 and
:d3. Because these are OUT variables, JPublisher passes each of their values as the
first element of an array.

JPublisher generates source code for the toReal function, which takes two
BigDecimal values—numerator and denominator—and returns a
BigDecimal result. This toReal function invokes the stored function call
RATIONALP.TOREAL, with IN host variables :numerator and :denominator.
 JPublisher Examples 4-53

Example: Using Classes Generated for Object Types
Example: Using Classes Generated for Object Types
This section illustrates an example of how you can use the classes that JPublisher
generates for object types. Suppose you have defined a SQL object type that
contains attributes and methods. You use JPublisher to generate a <name>.sqlj
file and a <name>Ref.java file for the object type. To enhance the functionality of
the Java class generated by JPublisher for the object type, you can extend the class.
After translating (if applicable) and compiling the classes, you can use them in a
program. For more information on this topic, see "Use of Classes JPublisher
Generates for Object Types" on page 2-26.

The following steps demonstrate the scenario described above. In this case, define a
RationalO SQL object type that contains numerator and denominator
attributes and several methods to manipulate rational numbers. After using
JPublisher to generate JPubRationalO.sqlj, RationalORef.java, and an
initial version of RationalO.sqlj, edit RationalO.sqlj to extend and enhance
the functionality of the JPubRationalO class. After translating and compiling the
necessary files, use the classes in a test file to test the performance of the
RationalO.java class.

Here are the steps, followed by listings of the files:

1. Create the SQL object type RationalO. "Listing of RationalO.sql (Definition of
Object Type)" on page 4-56 contains the code for the RationalO.sql file.

2. Use JPublisher to generate Java classes for the object—a
JPubRationalO.sqlj file, a RationalORef.java file, and an initial
RationalO.sqlj file for the subclass. Use this command line:

jpub -props=RationalO.props

Assume the properties file RationalO.props contains the following:

jpub.user=scott/tiger
jpub.sql=RationalO:JPubRationalO:RationalO
jpub.methods=true

According to the properties file, JPublisher will log into the database with user
name scott and password tiger. The sql parameter directs JPublisher to
translate the object type RationalO (declared by RationalO.sql) and
generate JPubRationalO as RationalO, where the second RationalO
indicates a subclass (RationalO.sqlj) that extends the functionality of the
original RationalO. The value of the methods parameter indicates that
JPublisher will generate classes for PL/SQL packages and wrapper methods.
4-54 Oracle9i JPublisher User’s Guide

Example: Using Classes Generated for Object Types
JPublisher produces the following files:

JPubRationalO.sqlj
RationalORef.java
RationalO.sqlj

See sections that follow for listings of these files.

3. Edit RationalO.sqlj to extend and enhance the functionality of
JPubRationalO.sqlj. In particular, add code for a toString() method,
which is used in the last two System.out.println() calls in the test
program TestRationalO.java.

4. Use SQLJ to translate and compile the necessary files. Enter the following:

sqlj JPubRationalO.sqlj RationalO.sqlj

This translates and compiles the JPubRationalO.sqlj and
RationalO.sqlj files.

5. Write a program TestRationalO.java that uses the RationalO class.
"Listing of TestRationalO.java Written by User" on page 4-64 contains the code.

6. Create the file connect.properties, which TestRationalO uses to
determine how to connect to the database. The file reads as follows:

sqlj.user=scott
sqlj.password=tiger
sqlj.url=jdbc:oracle:oci:@
sqlj.driver=oracle.jdbc.driver.OracleDriver

7. Compile and run TestRationalO:

javac TestRationalO.java
java TestRationalO

The program produces the following output:

gcd: 5
real value: 0.5
sum: 100/100
sum: 1/1
 JPublisher Examples 4-55

Example: Using Classes Generated for Object Types
Listing of RationalO.sql (Definition of Object Type)
This section contains the code that defines the RationalO SQL object type.

CREATE TYPE RationalO AS OBJECT (
 numerator INTEGER,
 denominator INTEGER,
 MAP MEMBER FUNCTION toReal RETURN REAL,
 MEMBER PROCEDURE normalize,
 STATIC FUNCTION gcd(x INTEGER,
 y INTEGER) RETURN INTEGER,
 MEMBER FUNCTION plus (x RationalO) RETURN RationalO
);

CREATE TYPE BODY RationalO AS

 MAP MEMBER FUNCTION toReal RETURN REAL IS
 -- convert rational number to real number
 BEGIN
 RETURN numerator / denominator;
 END toReal;

 MEMBER PROCEDURE normalize IS
 g BINARY_INTEGER;
 BEGIN
 g := RationalO.gcd(numerator, denominator);
 numerator := numerator / g;
 denominator := denominator / g;
 END normalize;

 STATIC FUNCTION gcd(x INTEGER,
 y INTEGER) RETURN INTEGER IS
 -- find greatest common divisor of x and y
 ans BINARY_INTEGER;
 BEGIN
 IF x < y THEN
 ans := RationalO.gcd(y, x);
 ELSIF (x MOD y = 0) THEN
 ans := y;
 ELSE
 ans := RationalO.gcd(y, x MOD y);
 END IF;
 RETURN ans;
 END gcd;

 MEMBER FUNCTION plus (x RationalO) RETURN RationalO IS
4-56 Oracle9i JPublisher User’s Guide

Example: Using Classes Generated for Object Types
 BEGIN
 return RationalO(numerator * x.denominator + x.numerator * denominator,
 denominator * x.denominator);
 END plus;
END;

Listing of JPubRationalO.sqlj Generated by JPublisher
This section lists the code in JPubRationalO.java that JPublisher generates.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class JPubRationalO implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.RATIONALO";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 JPublisher Examples 4-57

Example: Using Classes Generated for Object Types
 __onn = null; __tx = null;
 }

 protected MutableStruct _struct;

 private static int[] _sqlType = { 4,4 };
 private static ORADataFactory[] _factory = new ORADataFactory[2];
 protected static final JPubRationalO _JPubRationalOFactory = new
JPubRationalO(false);

 public static ORADataFactory getORADataFactory()
 { return _JPubRationalOFactory; }
 /* constructors */
 protected JPubRationalO(boolean init)
 { if (init) _struct = new MutableStruct(new Object[2], _sqlType, _factory); }
 public JPubRationalO()
 { this(true); __tx = DefaultContext.getDefaultContext(); }
 public JPubRationalO(DefaultContext c) /*throws SQLException*/
 { this(true); __tx = c; }
 public JPubRationalO(Connection c) /*throws SQLException*/
 { this(true); __onn = c; }
 public JPubRationalO(Integer numerator, Integer denominator) throws
SQLException
 {
 this(true);
 setNumerator(numerator);
 setDenominator(denominator);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 if (__tx!=null && __onn!=c) release();
 __onn = c;
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 public void setFrom(JPubRationalO o) throws SQLException
 { setContextFrom(o); setValueFrom(o); }
 protected void setContextFrom(JPubRationalO o) throws SQLException
 { release(); __tx = o.__tx; __onn = o.__onn; }
 protected void setValueFrom(JPubRationalO o) { _struct = o._struct; }
4-58 Oracle9i JPublisher User’s Guide

Example: Using Classes Generated for Object Types
 protected ORAData create(JPubRationalO o, Datum d, int sqlType) throws
SQLException
 {
 if (d == null) { if (o!=null) { o.release(); }; return null; }
 if (o == null) o = new JPubRationalO(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o.__onn = ((STRUCT) d).getJavaSqlConnection();
 return o;
 }
 /* accessor methods */
 public Integer getNumerator() throws SQLException
 { return (Integer) _struct.getAttribute(0); }

 public void setNumerator(Integer numerator) throws SQLException
 { _struct.setAttribute(0, numerator); }

 public Integer getDenominator() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setDenominator(Integer denominator) throws SQLException
 { _struct.setAttribute(1, denominator); }

 public Integer gcd (
 Integer x,
 Integer y)
 throws SQLException
 {
 Integer __jPt_result;
 #sql [getConnectionContext()] __jPt_result = { VALUES(SCOTT.RATIONALO.GCD(
 :x,
 :y)) };
 return __jPt_result;
 }

 public RationalO normalize ()
 throws SQLException
 {
 RationalO __jPt_temp = (RationalO) this;
 #sql [getConnectionContext()] {
 BEGIN
 :INOUT __jPt_temp.NORMALIZE();
 END;
 };
 return __jPt_temp;
 }
 JPublisher Examples 4-59

Example: Using Classes Generated for Object Types
 public RationalO plus (
 RationalO x)
 throws SQLException
 {
 JPubRationalO __jPt_temp = this;
 RationalO __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.PLUS(
 :x);
 END;
 };
 return __jPt_result;
 }

 public Float toreal ()
 throws SQLException
 {
 JPubRationalO __jPt_temp = this;
 Float __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.TOREAL();
 END;
 };
 return __jPt_result;
 }
}

Listing of RationalORef.java Generated by JPublisher
This section lists the code in RationalORef.java that JPublisher generates.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;

Note: The details of method bodies that JPublisher generates
might change in future releases.
4-60 Oracle9i JPublisher User’s Guide

Example: Using Classes Generated for Object Types
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class RationalORef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.RATIONALO";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 REF _ref;

private static final RationalORef _RationalORefFactory = new RationalORef();

 public static ORADataFactory getORADataFactory()
 { return _RationalORefFactory; }
 /* constructor */
 public RationalORef()
 {
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 RationalORef r = new RationalORef();
 r._ref = (REF) d;
 return r;
 }

 public static RationalORef cast(ORAData o) throws SQLException
 {
 if (o == null) return null;
 try { return (RationalORef) getORADataFactory().create(o.toDatum(null),
OracleTypes.REF); }
 catch (Exception exn)
 { throw new SQLException("Unable to convert "+o.getClass().getName()+" to
RationalORef: "+exn.toString()); }
 }
 JPublisher Examples 4-61

Example: Using Classes Generated for Object Types
 public RationalO getValue() throws SQLException
 {
 return (RationalO) RationalO.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(RationalO c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

Listing of RationalO.sqlj Generated by JPublisher and Modified by User
This section lists the code for the RationalO class that extends the
JPublisher-generated superclass JpubRationalO. This is for the default mode
(-gensubclass=true), where JPublisher generates an initial .sqlj source file for
the class, which the user then modifies as desired.

Typically, a user-written subclass needs to accomplish the following:

■ It declares a factory object, _JPubRationalO.

■ It implements a getORADataFactory() method.

■ It implements a create() method.

■ It implements the constructors by calling the constructors in the superclass.

This particular subclass also requires a toString() method, which is used in the
last two System.out.println() calls in TestRationalO.java (described in
"Listing of TestRationalO.java Written by User" on page 4-64). See "Manually Coded
toString() Method" at the end of the generated code.

JPublisher-Generated Code
This section lists the RationalO.sqlj source code generated by JPublisher.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
4-62 Oracle9i JPublisher User’s Guide

Example: Using Classes Generated for Object Types
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class RationalO extends JPubRationalO implements ORAData, ORADataFactory
{
 private static final RationalO _RationalOFactory = new RationalO(false);
 public static ORADataFactory getORADataFactory()
 { return _RationalOFactory; }

 public RationalO() { super(); }
 public RationalO(Connection conn) throws SQLException { super(conn); }
 public RationalO(DefaultContext ctx) throws SQLException { super(ctx); }
 protected RationalO(boolean init) { super(init); }

 public RationalO(Integer numerator, Integer denominator) throws SQLException
 {
 setNumerator(numerator);
 setDenominator(denominator);
 }
 /* ORAData interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(new RationalO(false), d, sqlType); }

 /* superclass accessors */

/*
 public Integer getNumerator() throws SQLException { return
super.getNumerator(); }
 public void setNumerator(Integer numerator) throws SQLException {
super.setNumerator(numerator); }
 */

/*
 public Integer getDenominator() throws SQLException { return
super.getDenominator(); }
 public void setDenominator(Integer denominator) throws SQLException {
super.setDenominator(denominator); }
 */

 /* superclass methods */
/*
 public Integer gcd(Integer x, Integer y) throws SQLException
 { return super.gcd(x, y); }
 */
 JPublisher Examples 4-63

Example: Using Classes Generated for Object Types
/*
 public RationalO normalize() throws SQLException
 { return super.normalize(); }
 */
/*
 public RationalO plus(RationalO x) throws SQLException
 { return super.plus(x); }
 */
/*
 public Float toreal() throws SQLException
 { return super.toreal(); }
 */
}

Manually Coded toString() Method
This section shows the toString() method required by TestRationalO. In this
example, you would have to add this method definition to the JPublisher-generated
RationalO.sqlj source file.

Alternatively, you could use the JPublisher option setting -tostring=true to
have JPublisher automatically generate a toString() method into the Java object
type wrappers.

 /* additional method not in base class */
 public String toString()
 {
 try
 {
 return getNumerator().toString() + "/" + getDenominator().toString();
 }
 catch (SQLException e)
 {
 return null;
 }
 }

Listing of TestRationalO.java Written by User
This section lists the contents of a user-written file, TestRationalO.java, that
tests the performance of the RationalO class, given initial values for numerator
and denominator. Note that the TestRationalO.java file also demonstrates
how to perform the following tasks.
4-64 Oracle9i JPublisher User’s Guide

Example: Using Classes Generated for Object Types
■ Connect to the database by calling the Oracle.connect() method.

■ Declare a Java object representing a SQL object type and initialize it by setting
its attributes.

■ Use the object to call server methods.

import oracle.sqlj.runtime.Oracle;
import oracle.sql.Datum;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Driver;

public class TestRationalO
{

 public static void main(String[] args)
 throws java.sql.SQLException
 {
 Oracle.connect(new TestRationalO().getClass(),
 "connect.properties");

 RationalO r = new RationalO();

 Integer n = new Integer(5);
 Integer d = new Integer(10);

 r.setNumerator(n);
 r.setDenominator(d);

 Integer g = r.gcd(n, d);
 System.out.println("gcd: " + g);

 Float f = r.toreal();
 System.out.println("real value: " + f);

 RationalO s = r.plus(r);
 System.out.println("sum: " + s);

 s = s.normalize();
 System.out.println("sum: " + s);
 }
}

 JPublisher Examples 4-65

Example: Using Classes Generated for Packages
Example: Using Classes Generated for Packages
This section provides an example of how you can use the classes and method
wrappers that JPublisher generates for objects and packages, respectively. Suppose
you have defined a SQL object type that contains attributes and a package with
methods. Use JPublisher to generate <name>.sqlj files for the object and the
package. After translating the classes, you can use them in a program. For more
information on this topic, see "Use of SQLJ Classes JPublisher Generates for
PL/SQL Packages" on page 2-25.

The following steps demonstrate the scenario described above. In this case, you
define a Rational SQL object type that contains numerator and denominator
integer attributes, and a package RationalP that contains methods to manipulate
rational numbers. After using JPublisher to generate the Rational.sqlj and
RationalP.sqlj files, translate them with SQLJ, then use them in a test file to test
the performance of the Rational and RationalP classes.

Here are the steps, followed by listings of the files:

1. Create the SQL object type Rational and package RationalP. "Listing of
RationalP.sql (Definition of the Object Type and Package)" on page 4-67 contains
the SQL code for the RationalP.sql file.

2. Use JPublisher to generate a Java class file and a SQLJ class file
(Rational.java and RationalP.sqlj) for the object and package,
respectively. Use this command line:

jpub -props=RationalP.props

Assume the properties file RationalP.props contains the following:

jpub.user=scott/tiger
jpub.sql=RationalP,Rational
jpub.mapping=oracle
jpub.methods=true

According to the properties file, JPublisher will log into the database with user
name scott and password tiger. The sql parameter directs JPublisher to
translate the object type Rational and package RationalP (declared in
RationalP.sql). JPublisher will translate the type and package according to
the oracle mapping. The value of the methods parameter indicates that
JPublisher will generate classes for PL/SQL packages, including wrapper
methods. Since the object type Rational does not have any member functions,
JPublisher will translate it into a .java file, not a .sqlj file. By using the
-methods=always setting for JPublisher, however, you could have requested
4-66 Oracle9i JPublisher User’s Guide

Example: Using Classes Generated for Packages
the generation of a .sqlj file regardless. See "Generation of Package Classes
and Wrapper Methods (-methods)" on page 3-21 for more information.

JPublisher produces the following files:

Rational.java
RationalP.sqlj

3. Translate/compile the RationalP.sqlj and Rational.java files:

sqlj RationalP.sqlj Rational.java

4. Write a program, TestRationalP.java, that uses the RationalP class.

5. Write the file connect.properties, which TestRationalP.java uses to
determine how to connect to the database. The file is as follows:

sqlj.user=scott
sqlj.password=tiger
sqlj.url=jdbc:oracle:oci:@
sqlj.driver=oracle.jdbc.driver.OracleDriver

6. Compile and run TestRationalP:

javac TestRationalP.java
java TestRationalP

The program produces the following output:

gcd: 5
real value: 0.5
sum: 100/100
sum: 1/1

Listing of RationalP.sql (Definition of the Object Type and Package)
This section lists the contents of the file RationalP.sql, which defines the
Rational SQL object type and the RationalP package.

CREATE TYPE Rational AS OBJECT (
 numerator INTEGER,
 denominator INTEGER
);
/
CREATE PACKAGE RationalP AS

 FUNCTION toReal(r Rational) RETURN REAL;
 JPublisher Examples 4-67

Example: Using Classes Generated for Packages
 PROCEDURE normalize(r IN OUT Rational);

 FUNCTION gcd(x INTEGER, y INTEGER) RETURN INTEGER;

 FUNCTION plus (r1 Rational, r2 Rational) RETURN Rational;

END rationalP;
/
CREATE PACKAGE BODY rationalP AS

 FUNCTION toReal(r Rational) RETURN real IS
 -- convert rational number to real number
 BEGIN
 RETURN r.numerator / r.denominator;
 END toReal;

 FUNCTION gcd(x INTEGER, y INTEGER) RETURN INTEGER IS
 -- find greatest common divisor of x and y
 result INTEGER;
 BEGIN
 IF x < y THEN
 result := gcd(y, x);
 ELSIF (x MOD y = 0) THEN
 result := y;
 ELSE
 result := gcd(y, x MOD y);
 END IF;
 RETURN result;
 END gcd;

 PROCEDURE normalize(r IN OUT Rational) IS
 g INTEGER;
 BEGIN
 g := gcd(r.numerator, r.denominator);
 r.numerator := r.numerator / g;
 r.denominator := r.denominator / g;
 END normalize;

 FUNCTION plus (r1 Rational,
 r2 Rational) RETURN Rational IS
 n INTEGER;
 d INTEGER;
 result Rational;
 BEGIN
 n := r1.numerator * r2.denominator + r2.numerator * r1.denominator;
4-68 Oracle9i JPublisher User’s Guide

Example: Using Classes Generated for Packages
 d := r1.denominator * r2.denominator;
 result := Rational(n, d);
 RETURN result;
 END plus;

END rationalP;
/

Listing of TestRationalP.java Written by User
The test program, TestRationalP.java, uses the package RationalP and the
object type Rational, which does not have methods. The test program creates an
instance of package RationalP and two Rational objects.

TestRationalP connects to the database through the Oracle SQLJ
Oracle.connect() method. In this example, the Oracle.connect() call
specifies the file connect.properties, which contains these connection
properties:

sqlj.url=jdbc:oracle:oci:@
sqlj.user=scott
sqlj.password=tiger

Following is a listing of TestRationalP.java:

import oracle.sql.Datum;
import oracle.sql.NUMBER;
import java.math.BigDecimal;
import sqlj.runtime.ref.DefaultContext;
import oracle.sqlj.runtime.Oracle;
import java.sql.Connection;

public class TestRationalP
{

 public static void main(String[] args)
 throws java.sql.SQLException
 {

 Oracle.connect(new TestRationalP().getClass(),
 "connect.properties");

 RationalP p = new RationalP();
 JPublisher Examples 4-69

Example: Using Classes Generated for Packages
 NUMBER n = new NUMBER(5);
 NUMBER d = new NUMBER(10);
 Rational r = new Rational();
 r.setNumerator(n);
 r.setDenominator(d);

 NUMBER f = p.toreal(r);
 System.out.println("real value: " + f.stringValue());

 NUMBER g = p.gcd(n, d);
 System.out.println("gcd: " + g.stringValue());

 Rational s = p.plus(r, r);
 System.out.println("sum: " + s.getNumerator().stringValue() +
 "/" + s.getDenominator().stringValue());

 Rational[] sa = {s};
 p.normalize(sa);
 s = sa[0];
 System.out.println("sum: " + s.getNumerator().stringValue() +
 "/" + s.getDenominator().stringValue());
 }
}

4-70 Oracle9i JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC
Example: Using Datatypes Unsupported by JDBC
JPublisher provides a number of mechanisms to facilitate the use of types that are
PL/SQL-specific and cannot be accessed directly from Java. This example sets up a
SQL object type that uses the PL/SQL BOOLEAN type in its object methods.

We contrast publishing this type directly using JPublisher, with writing conversions
for this type manually. Since JPublisher can deal automatically with the BOOLEAN
type, there is no question as to which approach brings you the quickest result.
However, the manual approach provides a good illustration of the basic conversion
idea that is also employed by JPublisher. Also, remember that for types that do not
have predefined conversions, you will still have to create corresponding SQL types
as well as conversion functions. Fortunately, once you have done this for a
particular type, you can provide the type map entry to JPublisher, which will use
the information to properly map every method in which the type occurs.

The User-Defined BOOLEANS Datatype
The following .sql file defines an object type with methods that use PL/SQL
BOOLEAN arguments. The methods this program uses are elementary; they serve
only to demonstrate that arguments are passed correctly.

CREATE TYPE BOOLEANS AS OBJECT (
 iIn INTEGER,
 iInOut INTEGER,
 iOut INTEGER,

 MEMBER PROCEDURE p(i1 IN BOOLEAN,
 i2 IN OUT BOOLEAN,
 i3 OUT BOOLEAN),

 MEMBER FUNCTION f(i1 IN BOOLEAN) RETURN BOOLEAN
);

CREATE TYPE BODY BOOLEANS AS

MEMBER PROCEDURE p(i1 IN BOOLEAN,
 i2 IN OUT BOOLEAN,
 i3 OUT BOOLEAN) IS

Note: Do not confuse the user-defined BOOLEANS object type with
the PL/SQL BOOLEAN type.
 JPublisher Examples 4-71

Example: Using Datatypes Unsupported by JDBC
BEGIN
 iOut := iIn;

 IF iInOut IS NULL THEN
 iInOut := 0;
 ELSIF iInOut = 0 THEN
 iInOut := 1;
 ELSE
 iInOut := NULL;
 END IF;

 i3 := i1;
 i2 := NOT i2;
END;

MEMBER FUNCTION f(i1 IN BOOLEAN) RETURN BOOLEAN IS
BEGIN
 return i1 = (iIn = 1);
END;

END;

Alternative 1: Using JPublisher for the Entire Process
You can directly publish the BOOLEANS object type, as shown in the JPublisher
command line below, because conversions for BOOLEAN are defined in the
SYS.SQLJUTL package to convert between PL/SQL BOOLEAN and SQL INTEGER.
Additionally, SQL INTEGER itself is directly mappable to Java boolean, so there is
a natural correspondence. Also, remember to install the PL/SQL wrapper script
before using the SQLJ code that JPublisher generates in Boolean.sqlj.

jpub -u scott/tiger -s BOOLEANS:Booleans -plsqlfile=BWrap.sql
-plsqlpackage=B_WRAP
sqljplus scott/tiger @BWrap.sql

As noted in "Type Mapping Support Through PL/SQL Conversion Functions" on
page 2-11, the JPublisher default type map relates PL/SQL BOOLEAN to Java
boolean. To preserve the ability to represent null data, you might prefer mapping
to the Java object type Boolean instead. You can accomplish this by redefining the
default type map.

For completeness, the content of the JPublisher-generated file Booleans.sqlj
follows.
4-72 Oracle9i JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC
import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class Booleans implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.BOOLEANS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }

 protected MutableStruct _struct;

 private static int[] _sqlType = { 4,4,4 };
 private static ORADataFactory[] _factory = new ORADataFactory[3];
protected static final Booleans _BooleansFactory = new Booleans(false);

 public static ORADataFactory getORADataFactory()
 { return _BooleansFactory; }
 JPublisher Examples 4-73

Example: Using Datatypes Unsupported by JDBC
 /* constructors */
 protected Booleans(boolean init)
 { if (init) _struct = new MutableStruct(new Object[3], _sqlType, _factory); }
 public Booleans()
 { this(true); __tx = DefaultContext.getDefaultContext(); }
 public Booleans(DefaultContext c) /*throws SQLException*/
 { this(true); __tx = c; }
 public Booleans(Connection c) /*throws SQLException*/
 { this(true); __onn = c; }
 public Booleans(Integer iin, Integer iinout, Integer iout) throws SQLException
 {
 this(true);
 setIin(iin);
 setIinout(iinout);
 setIout(iout);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 if (__tx!=null && __onn!=c) release();
 __onn = c;
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 public void setFrom(Booleans o) throws SQLException
 { setContextFrom(o); setValueFrom(o); }
 protected void setContextFrom(Booleans o) throws SQLException
 { release(); __tx = o.__tx; __onn = o.__onn; }
 protected void setValueFrom(Booleans o) { _struct = o._struct; }
 protected ORAData create(Booleans o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) { if (o!=null) { o.release(); }; return null; }
 if (o == null) o = new Booleans(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o.__onn = ((STRUCT) d).getJavaSqlConnection();
 return o;
 }
 /* accessor methods */
 public Integer getIin() throws SQLException
 { return (Integer) _struct.getAttribute(0); }
4-74 Oracle9i JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC
 public void setIin(Integer iin) throws SQLException
 { _struct.setAttribute(0, iin); }

 public Integer getIinout() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setIinout(Integer iinout) throws SQLException
 { _struct.setAttribute(1, iinout); }

 public Integer getIout() throws SQLException
 { return (Integer) _struct.getAttribute(2); }

 public void setIout(Integer iout) throws SQLException
 { _struct.setAttribute(2, iout); }

 public boolean f (
 boolean i1)
 throws SQLException
 {
 Booleans __jPt_temp = this;
 boolean __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := SYS.SQLJUTL.BOOL2INT(:__jPt_temp.F(
 SYS.SQLJUTL.INT2BOOL(:i1)));
 END;
 };
 return __jPt_result;
 }

 public Booleans p (
 boolean i1,
 boolean i2[],
 boolean i3[])
 throws SQLException
 {
 Booleans __jPt_temp = this;
 #sql [getConnectionContext()] {
 BEGIN
 B_WRAP.BOOLEANS$P(:INOUT __jPt_temp,
 :i1,
 JPublisher Examples 4-75

Example: Using Datatypes Unsupported by JDBC
 :INOUT (i2[0]),
 :OUT (i3[0]));
 END;
 };
 return __jPt_temp;
 }
}

And this is the content of the file BWrap.sql generated by JPublisher that contains
PL/SQL wrapper code. Note that JPublisher must generate wrappers only in those
cases where PL/SQL arguments occur as IN OUT or as OUT parameters.

CREATE OR REPLACE PACKAGE B_WRAP AS
 PROCEDURE BOOLEANS$P (SELF_ IN OUT SCOTT.BOOLEANS,I1 INTEGER,I2 IN OUT
INTEGER,I3 OUT INTEGER);
END B_WRAP;
/
CREATE OR REPLACE PACKAGE BODY B_WRAP IS

 PROCEDURE BOOLEANS$P (SELF_ IN OUT SCOTT.BOOLEANS,I1 INTEGER,I2 IN OUT
INTEGER,I3 OUT INTEGER) IS
 I1_ BOOLEAN;
 I2_ BOOLEAN;
 I3_ BOOLEAN;
 BEGIN
 I1_ := SYS.SQLJUTL.INT2BOOL(I1);
 I2_ := SYS.SQLJUTL.INT2BOOL(I2);
 SELF_.P(I1_,I2_,I3_);
 I2 := SYS.SQLJUTL.BOOL2INT(I2_);
 I3 := SYS.SQLJUTL.BOOL2INT(I3_);
 END BOOLEANS$P;

END B_WRAP;
/

Alternative 2: Manual Conversion
Another technique you can employ to use datatypes not supported by JDBC is to
write an anonymous PL/SQL block that converts JDBC-supported input types into
input types that the PL/SQL method uses. Then convert the output types that the
PL/SQL method uses into output types that JDBC supports. For more information
on this topic, see "Using Datatypes Unsupported by JDBC" on page 2-7.
4-76 Oracle9i JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC
The following steps offer a general outline of how you would do this. The steps
assume that you used JPublisher to translate an object type with methods that
contain argument types not supported by JDBC. The steps describe the changes you
must make. You could make changes by extending the class or by modifying the
generated files. Extending the classes is generally a better technique; however, in
this example, the generated files are modified.

1. In Java, convert each IN or IN OUT argument having a type that JDBC does not
support to a Java type that JDBC does support.

2. Pass each IN or IN OUT argument to a PL/SQL block.

3. In the PL/SQL block, convert each IN or IN OUT argument to the correct type
for the PL/SQL method.

4. Call the PL/SQL method.

5. In PL/SQL, convert each OUT argument, IN OUT argument, or function result
from the type that JDBC does not support to the corresponding type that JDBC
does support.

6. Return each OUT argument, IN OUT argument, or function result from the
PL/SQL block.

7. In Java, convert each OUT argument, IN OUT argument, or function result from
the type JDBC does support to the type it does not support.

Here is an example of how to handle an argument type not directly supported by
JDBC. The example converts from or to a type that JDBC does not support
(Boolean/BOOLEAN) to or from a type that JDBC does support
(String/VARCHAR2).

The following .sqlj file was first generated by JPublisher and then user-modified,
according to the preceding steps. The wrapper methods accomplish the following:

■ Convert each argument from Boolean to String in Java.

■ Pass each argument into a PL/SQL block.

■ Convert the argument from VARCHAR2 to BOOLEAN in PL/SQL.

■ Call the PL/SQL method.

■ Convert each OUT argument, IN OUT argument, or function result from
BOOLEAN to VARCHAR2 in PL/SQL.

■ Return each OUT argument, IN OUT argument, or function result from the
PL/SQL block.
 JPublisher Examples 4-77

Example: Using Datatypes Unsupported by JDBC
■ Finally, convert each OUT argument, IN OUT argument, or function result.

Here is the code:

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;

public class Booleans implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.BOOLEANS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() : new
DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn;
}
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null)
__tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }

 protected MutableStruct _struct;

 static int[] _sqlType =
 {
 4, 4, 4
4-78 Oracle9i JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC
 };

 static ORADataFactory[] _factory = new ORADataFactory[3];

 static final Booleans _BooleansFactory = new Booleans(false);
 public static ORADataFactory getORADataFactory()
 {
 return _BooleansFactory;
 }

 /* constructors */
 protected Booleans(boolean init)
 { if (init) _struct = new MutableStruct(new Object[3], _sqlType, _factory); }
 public Booleans()
 { this(true); __tx = DefaultContext.getDefaultContext(); }
 public Booleans(DefaultContext c) throws SQLException
 { this(true); __tx = c; }
 public Booleans(Connection c) throws SQLException
 { this(true); __onn = c; }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 if (__tx!=null && __onn!=c) release();
 __onn = c;
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 public void setFrom(Booleans o) throws SQLException
 { release(); _struct = o._struct; __tx = o.__tx; __onn = o.__onn; }
 protected void setValueFrom(Booleans o) { _struct = o._struct; }
 protected ORAData create(Booleans o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) { if (o!=null) { o.release(); }; return null; }
 if (o == null) o = new Booleans(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o.__onn = ((STRUCT) d).getJavaSqlConnection();
 return o;
 }

 /* accessor methods */
 public Integer getIin() throws SQLException
 JPublisher Examples 4-79

Example: Using Datatypes Unsupported by JDBC
 { return (Integer) _struct.getAttribute(0); }

 public void setIin(Integer iin) throws SQLException
 { _struct.setAttribute(0, iin); }

 public Integer getIinout() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setIinout(Integer iinout) throws SQLException
 { _struct.setAttribute(1, iinout); }

 public Integer getIout() throws SQLException
 { return (Integer) _struct.getAttribute(2); }

 public void setIout(Integer iout) throws SQLException
 { _struct.setAttribute(2, iout); }

/* Unable to generate method "f"
 because it uses a type that is not supported

 public <unsupported type> f (
 <unsupported type> i1)
 throws SQLException
 {
 Booleans __jPt_temp = this;
 <unsupported type> __jPt_result;
 #sql [getConnectionContext()] {
 BEGIN
 :OUT __jPt_result := :__jPt_temp.F(
 :i1);
 END;
 };
 return __jPt_result;
 } */

 public Boolean f (
 Boolean i1)
 throws SQLException
 {
 Booleans _temp = this;
 String _i1 = null;
4-80 Oracle9i JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC
 String _result = null;

 if (i1 != null) _i1 = i1.toString();

 #sql [getConnectionContext()] {
 DECLARE
 i1_ BOOLEAN;
 result_ BOOLEAN;
 t_ VARCHAR2(5);

 BEGIN
 i1_ := :_i1 = ’true’;

 result_ := :_temp.F(i1_);

 IF result_ THEN
 t_ := ’true’;
 ELSIF NOT result_ THEN
 t_ := ’false’;
 ELSE
 t_ := NULL;
 END IF;
 :OUT _result := t_;

 END;
 };

 if (_result == null)
 return null;
 else
 return new Boolean(_result.equals("true"));
 }

/* Unable to generate method "p"
 because it uses a type that is not supported

 public Booleans p (
 <unsupported type> i1,
 <unsupported type> i2[],
 <unsupported type> i3[])
 throws SQLException
 {
 Booleans __jPt_temp = this;
 #sql [getConnectionContext()] {
 JPublisher Examples 4-81

Example: Using Datatypes Unsupported by JDBC
 BEGIN
 :INOUT __jPt_temp.P(
 :i1,
 :INOUT (i2[0]),
 :OUT (i3[0]));
 END;
 };
 return __jPt_temp;
 } */

 public Booleans p (
 Boolean i1,
 Boolean i2[],
 Boolean i3[])
 throws SQLException
 {
 String _i1 = (i1 == null) ? null
 : i1.toString();

 String _i2 = (i2[0] == null) ? null
 : i2[0].toString();

 String _i3 = (i3[0] == null) ? null
 : i3[0].toString();

 Booleans _temp = this;

 #sql [getConnectionContext()] {
 DECLARE
 i1_ BOOLEAN;
 i2_ BOOLEAN;
 i3_ BOOLEAN;
 t_ VARCHAR2(5);

 BEGIN
 i1_ := :_i1 = ’true’;
 i2_ := :_i2 = ’true’;

 :INOUT _temp.P(i1_, i2_, i3_);

 IF i2_ THEN
 t_ := ’true’;
 ELSIF NOT i2_ THEN
 t_ := ’false’;
 ELSE
4-82 Oracle9i JPublisher User’s Guide

Example: Using Datatypes Unsupported by JDBC
 t_ := NULL;
 END IF;
 :OUT _i2 := t_;

 IF i3_ THEN
 t_ := ’true’;
 ELSIF NOT i3_ THEN
 t_ := ’false’;
 ELSE
 t_ := NULL;
 END IF;
 :OUT _i3 := t_;

 END;
 };

 i2[0] = (_i2 == null) ? null
 : new Boolean(_i2.equals("true"));
 i3[0] = (_i3 == null) ? null
 : new Boolean(_i3.equals("true"));
 return _temp;
 }
}

Note: Because of the semantics of SQLJ parameters, it is necessary
to assign to each output parameter exactly once within the block.
 JPublisher Examples 4-83

Example: Using Datatypes Unsupported by JDBC
4-84 Oracle9i JPublisher User’s Guide

Index

A
access option, 3-13
adddefaulttypemap option, 3-14
addtypemap option, 3-14
ARRAY class, features supported, 2-33
AS clause, translation statement, 3-36
attribute mapping, sample program, 4-8
attribute types, allowed, 2-6

B
backward compatibility for JPublisher, 2-49
BigDecimal mapping, 1-19
builtintypes option, 3-11

C
case option, 3-15
case-sensitive SQL UDT names, 3-27, 3-36
classes, extending, 2-34
collection types

output, 1-17
representing in Java, 1-23

command-line options--see options
command-line syntax, 1-25
compatibility

backward, for JPublisher, 2-49
between JDK versions, 2-49
Oracle8i compatibility mode, 2-52

compatible option, 3-9
connection contexts and instances, use of, 2-27
context option, 3-16
conventions, notation, 3-6

CREATE PACKAGE BODY statement, 1-19
CREATE PACKAGE statement, 1-19
CREATE TYPE statement, 1-19

D
datatype mappings

allowed object attribute types, 2-6
BigDecimal mapping, 1-19
-builtintypes option, 3-11
-compatible option, 3-9
datatype tables, 2-3
details of use, 2-2
indexed-by table support (general), 2-16
indexed-by table support with JDBC OCI, 2-9
JDBC mapping, 1-18
-lobtypes option, 3-11
-mapping option (deprecated), 3-12
mapping to alternative class (subclass),

syntax, 2-35
-numbertypes option, 3-10
Object JDBC mapping, 1-18
OPAQUE type support, 2-8
Oracle mapping, 1-19
overview, 1-18
PL/SQL conversion functions, 2-11
RECORD type support, 2-14
relevant options, 3-7
sample program, 4-2
-usertypes option, 3-8
using types not supported by JDBC, 2-7, 2-19
using types not supported by JDBC, sample

program, 4-71
default type map, 2-18
 Index-1

defaulttypemap option, 3-17
dir option, 3-18

E
extending JPublisher-generated classes

changes in Oracle9i JPublisher, 2-36
concepts, 2-34
format of subclass, 2-35
-gensubclass option, 3-20
introduction, 2-34
sample program, 4-36

G
GENERATE clause, translation statement, 3-37
gensubclass option, 3-20
getConnection() method, 2-29
getConnectionContext() method, 2-29
getting started, 1-3

I
i option (-input), 3-20
indexed-by table support, 2-6

general support, 2-16
with JDBC OCI, 2-9

inheritance, support through ORAData, 2-39
INPUT files

package naming rules, 3-38
precautions, 3-41
structure and syntax, 3-35
translation statement, 3-35

input files
overview, 1-17
properties files and INPUT files, 3-33
-props option (properties file), 3-25

input option, 3-20
input, JPublisher (overview), 1-17

J
Java classes, generation and use, 2-31
JDBC mapping

overview, 1-18
sample program, 4-2

JDK versions, JPublisher compatibility, 2-49

L
limitations of JPublisher, 2-55
lobtypes option, 3-11

M
mapping option (deprecated), 3-12
mappings--see datatype mappings
method access option, 3-13
methods option, 3-21
methods, overloaded, translating, 2-23

N
nested table types, creating in the database, 1-19
nested tables, output, 1-17
new features in Oracle9i, 1-9
notational conventions, 3-6
numbertypes option, 3-10

O
Object JDBC mapping, 1-18
object types

classes generated for, 2-26
creating in the database, 1-19
inheritance, 2-39
output, 1-17
publishing (introduction), 1-4
representing in Java, 1-23
translation, 1-21
using generated classes, sample program, 4-54
with JPublisher, overview, 1-11

omit_schema_names option, 3-22
OPAQUE type support, 2-8
option syntax (command line), 1-25
options

-access option, 3-13
-adddefaulttypemap option, 3-14
-addtypemap option, 3-14
-builtintypes option, 3-11
-case option, 3-15
-compatible option, 3-9
Index-2

-context option, 3-16
-defaulttypemap option, 3-17
-dir option, 3-18
general options, 3-13
general tips, 3-5
-gensubclass option, 3-20
-i option (-input), 3-20
-input option, 3-20
-lobtypes option, 3-11
-mapping option (deprecated), 3-12
-methods option, 3-21
-numbertypes option, 3-10
-omit_schema_names option, 3-22
-p option (-props), 3-25
-package option, 3-23
-plsqlfile option, 3-24
-plsqlmap option, 3-24
-plsqlpackage option, 3-25
-props option (properties file), 3-25
-s option (-sql), 3-26
-serializable option, 3-26
-sql option, 3-26
summary and overview, 3-2
that affect type mappings, 3-7
-tostring option, 3-29
-typemap option, 3-29
-types option (deprecated), 3-30
-u option (-user), 3-32
-user option, 3-32
-usertypes option, 3-8

Oracle mapping
overview, 1-19
sample program, 4-5

Oracle8i compatibility mode, 2-52
Oracle9i, new JPublisher features, 1-9
ORAData interface

object types and inheritance, 2-39
reference types and inheritance, 2-42
use by JPublisher, 1-11

OUT parameters, passing, 2-20
output

-dir option, 3-18
from JPublisher (overview), 1-17
overview, what JPublisher produces, 1-13

overloaded methods, translating, 2-23

P
p option (-props), 3-25
packages

creating in the database, 1-19
naming rules in INPUT file, 3-38
-package option, 3-23
using generated classes, sample program, 4-66

PL/SQL conversion functions, 2-11
PL/SQL packages

generated classes for, 2-25
output, 1-17
publishing (introduction), 1-7
translation, 1-21
with JPublisher, overview, 1-11

PL/SQL subprograms, translating top level, 3-27
PL/SQL wrapper code

controlling generation, 3-24
generation of toString() method, 3-29
serializability of object wrappers, 3-26
specifying file name, 3-24
specifying package name, 3-25

plsqlfile option, 3-24
plsqlmap option, 3-24
plsqlpackage option, 3-25
properties files

overview, 1-17
structure and syntax, 3-33

props option (properties file), 3-25

R
RECORD type support, 2-14
reference types

inheritance, 2-42
representing in Java, 1-23
strongly typed, 1-24

release() method (releasing connection
contexts), 2-30, 4-44

requirements for JPublisher, 1-15

S
s option (-sql), 3-26
sample translation, 1-26
schema names, -omit_schema_names option, 3-22
 Index-3

serializable option, 3-26
setConnectionContext() method, 2-28
setContextFrom() method, 2-38
setFrom() method, 2-38
setValueFrom() method, 2-38
SQL name clause, translation statement, 3-35
sql option, 3-26
SQLData interface

object types and inheritance, 2-47
sample, generated SQLData class, 4-28
use by JPublisher, 1-11

SQLJ classes, generation and use, 2-24
strongly typed object references, 1-24
subclassing JPublisher-generated classes--see

extending
syntax, command line, 1-25

T
TABLE types--see indexed-by tables
toplevel keyword (-sql option), 3-27
tostring option, 3-29
TRANSLATE...AS clause, translation

statement, 3-37
translation

declare objects/packages to translate, 3-26
of types, steps involved, 1-21

translation statement
in INPUT file, 3-35
sample statement, 3-40

type mappings--see datatype mappings
type maps

add to default type map, 3-14
add to user type map, 3-14
default type map, 2-18
option for default type map, 3-17
replace user type map, 3-29
user type map, 2-18

typemap option, 3-29
types option (deprecated), 3-30
types, creating in the database, 1-19

U
u option (-user), 3-32

user option, 3-32
user type map, 2-18
usertypes option, 3-8

V
VARRAY types, creating in the database, 1-19
VARRAY, output, 1-17

W
wrapper methods

for object, sample program, 4-42
-methods option, 3-21
Index-4

	Send Us Your Comments
	Preface
	1 Introduction to JPublisher
	Introduction to JPublisher Features
	Invitation to JPublisher
	Getting Started with JPublisher
	New JPublisher Features in Oracle9i Release 2

	Understanding JPublisher
	JPublisher Object Type Mappings and PL/SQL Mappings
	JPublisher Processes
	What JPublisher Produces
	JPublisher Requirements
	JPublisher Input and Output
	Overview of Datatype Mappings
	Creating Types and Packages in the Database

	JPublisher Operation
	Translating and Using PL/SQL Packages and User-Defined Types
	Representing User-Defined Object, Collection, and Reference Types in Java
	Strongly Typed Object References for ORAData Implementations
	JPublisher Command-Line Syntax
	Sample JPublisher Translation

	2 JPublisher Concepts
	Details of Datatype Mapping
	SQL and PL/SQL Mappings to Oracle and JDBC Types
	Allowed Object Attribute Types
	Using Datatypes Unsupported by JDBC

	Concepts of JPublisher-Generated Classes
	Passing OUT Parameters
	Translating Overloaded Methods

	JPublisher Generation of SQLJ Classes (.sqlj)
	Important Notes About Generation of SQLJ Classes
	Use of SQLJ Classes JPublisher Generates for PL/SQL Packages
	Use of Classes JPublisher Generates for Object Types
	Use of Connection Contexts and Instances in SQLJ Code Generated by JPublisher

	JPublisher Generation of Java Classes (.java)
	User-Written Subclasses of JPublisher-Generated Classes
	Extending JPublisher-Generated Classes
	Changes in User-Written Subclasses of Oracle9i JPublisher-Generated Classes
	The setFrom(), setValueFrom(), and setContextFrom() Methods

	JPublisher Support for Inheritance
	ORAData Object Types and Inheritance
	ORAData Reference Types and Inheritance
	SQLData Object Types and Inheritance
	Effect of Using SQL FINAL, NOT FINAL, INSTANTIABLE, NOT INSTANTIABLE

	Backward Compatibility and Migration
	JPublisher Backward Compatibility
	JPublisher Compatibility Between JDK Versions
	Migration Between Oracle8i JPublisher and Oracle9i JPublisher

	JPublisher Limitations

	3 Command-Line Options and Input Files
	JPublisher Options
	JPublisher Option Summary
	JPublisher Option Tips
	Notational Conventions
	Detailed Descriptions of Options That Affect Datatype Mappings
	Detailed Descriptions of General JPublisher Options

	JPublisher Input Files
	Properties File Structure and Syntax
	INPUT File Structure and Syntax
	INPUT File Precautions

	4 JPublisher Examples
	Example: JPublisher Translations with Different Mappings
	JPublisher Translation with the JDBC Mapping
	JPublisher Translation with the Oracle Mapping

	Example: JPublisher Object Attribute Mapping
	Listing and Description of Address.java Generated by JPublisher
	Listing of AddressRef.java Generated by JPublisher
	Listing of Alltypes.java Generated by JPublisher
	Listing of AlltypesRef.java Generated by JPublisher
	Listing of Ntbl.java Generated by JPublisher
	Listing of AddrArray.java Generated by JPublisher

	Example: Generating a SQLData Class
	Listing of Address.java Generated by JPublisher
	Listing of Alltypes.java Generated by JPublisher

	Example: Extending JPublisher Classes
	Example: Wrappers Generated for Methods in Objects
	Listing and Description of Rational.sqlj Generated by JPublisher

	Example: Wrappers Generated for Methods in Packages
	Listing and Description of RationalP.sqlj Generated by JPublisher

	Example: Using Classes Generated for Object Types
	Listing of RationalO.sql (Definition of Object Type)
	Listing of JPubRationalO.sqlj Generated by JPublisher
	Listing of RationalORef.java Generated by JPublisher
	Listing of RationalO.sqlj Generated by JPublisher and Modified by User
	Listing of TestRationalO.java Written by User

	Example: Using Classes Generated for Packages
	Listing of RationalP.sql (Definition of the Object Type and Package)
	Listing of TestRationalP.java Written by User

	Example: Using Datatypes Unsupported by JDBC
	The User-Defined BOOLEANS Datatype
	Alternative 1: Using JPublisher for the Entire Process
	Alternative 2: Manual Conversion

	Index

