
Oracle® Spatial

User’s Guide and Reference

Release 9.2

March 2002

Part No. A96630-01

Oracle Spatial User’s Guide and Reference, Release 9.2

Part No. A96630-01

Copyright © 1999, 2002 Oracle Corporation. All rights reserved.

Primary Author: Chuck Murray

Contributors: Dan Abugov, Nicole Alexander, Bruce Blackwell, Dan Geringer, Albert Godfrind, Ravi
Kothuri, Deborah Owens, Richard Pitts, Siva Ravada, Jack Wang, and Jeffrey Xie

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, Oracle Store, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments ... xvii

Preface.. xix

Audience .. xx
Documentation Accessibility .. xx
Organization... xxi
Technologies Released Separately.. xxiii
Related Documentation ... xxiii
Conventions.. xxiv

New and Changed Features ... xxv

Validation with Context... xxv
Utility Functions ... xxv
Partitioned Spatial Indexes: Splitting and Merging Supported.. xxvi
Exchanging Partitions Including Indexes .. xxvi
Parallel Index Creation and Rebuilding ... xxvi
Deferred Modifications to an Index .. xxvi
SDO_CS.VIEWPORT_TRANSFORM to_srname Parameter Not Supported........................... xxvi

Part I Conceptual and Usage Information
 iii

1 Spatial Concepts

1.1 What Is Oracle Spatial? ... 1-1
1.2 Object-Relational Model ... 1-1
1.3 Introduction to Spatial Data... 1-2
1.4 Geometry Types... 1-3
1.5 Data Model ... 1-4
1.5.1 Element .. 1-5
1.5.2 Geometry ... 1-5
1.5.3 Layer... 1-5
1.5.4 Coordinate System ... 1-6
1.5.5 Tolerance.. 1-7
1.5.5.1 In the Geometry Metadata for a Layer... 1-7
1.5.5.2 As an Input Parameter ... 1-9
1.6 Query Model .. 1-9
1.7 Indexing of Spatial Data ... 1-11
1.7.1 R-tree Indexing ... 1-12
1.7.1.1 R-tree Quality... 1-13
1.7.2 Quadtree Indexing ... 1-14
1.7.2.1 Tessellation of a Layer During Indexing ... 1-15
1.7.2.2 Fixed Indexing ... 1-16
1.8 Spatial Relations and Filtering... 1-20
1.9 Spatial Aggregate Functions .. 1-23
1.9.1 SDOAGGRTYPE Object Type .. 1-24
1.10 Geocoding... 1-25
1.11 Performance and Tuning Information.. 1-25
1.12 Spatial Release (Version) Number .. 1-26
1.13 Spatial Application Hardware Requirement Considerations....................................... 1-26
1.14 Spatial Error Messages.. 1-26
1.15 Spatial Examples.. 1-27

2 Spatial Data Types and Metadata

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data 2-1
2.2 SDO_GEOMETRY Object Type... 2-6
2.2.1 SDO_GTYPE.. 2-7
2.2.2 SDO_SRID ... 2-8
iv

2.2.3 SDO_POINT.. 2-9
2.2.4 SDO_ELEM_INFO ... 2-9
2.2.5 SDO_ORDINATES... 2-14
2.2.6 Usage Considerations.. 2-14
2.3 Geometry Examples .. 2-14
2.3.1 Rectangle ... 2-15
2.3.2 Polygon with a Hole .. 2-16
2.3.3 Compound Line String.. 2-18
2.3.4 Compound Polygon... 2-20
2.3.5 Point ... 2-22
2.3.6 Type 0 (Zero) Element ... 2-24
2.4 Geometry Metadata Structure ... 2-26
2.4.1 TABLE_NAME ... 2-27
2.4.2 COLUMN_NAME ... 2-28
2.4.3 DIMINFO .. 2-28
2.4.4 SRID ... 2-29
2.5 Spatial Index-Related Structures... 2-29
2.5.1 Spatial Index Views ... 2-29
2.5.1.1 xxx_SDO_INDEX_INFO Views .. 2-29
2.5.1.2 xxx_SDO_INDEX_METADATA Views .. 2-30
2.5.2 Spatial Index Table Definition.. 2-33
2.5.3 R-Tree Index Sequence Object.. 2-34
2.6 Unit of Measurement Support... 2-34

3 Loading Spatial Data

3.1 Bulk Loading ... 3-1
3.1.1 Bulk Loading SDO_GEOMETRY Objects... 3-1
3.1.2 Bulk Loading Point-Only Data in SDO_GEOMETRY Objects 3-3
3.2 Transactional Insert Operations Using SQL.. 3-4

4 Indexing and Querying Spatial Data

4.1 Creating a Spatial Index ... 4-1
4.1.1 Creating R-Tree Indexes.. 4-1
4.1.2 Determining Index Creation Behavior (Quadtree Indexes)..................................... 4-3
4.1.3 Spatial Indexing with Fixed-Size Tiles (Quadtree Indexes)..................................... 4-3
v

4.1.4 Indexing Geodetic Data... 4-7
4.1.5 Constraining Data to a Geometry Type .. 4-7
4.1.6 Creating a Cross-Schema Index ... 4-8
4.1.7 Using Partitioned Spatial Indexes.. 4-8
4.1.8 Exchanging Partitions Including Indexes ... 4-10
4.2 Querying Spatial Data... 4-11
4.2.1 Spatial Query ... 4-12
4.2.1.1 Primary Filter Operator ... 4-13
4.2.1.2 Primary and Secondary Filter Operator .. 4-15
4.2.1.3 Within-Distance Operator.. 4-16
4.2.1.4 Nearest Neighbor Operator... 4-17
4.2.1.5 Spatial Functions ... 4-18
4.2.2 Spatial Join... 4-18
4.2.3 Cross-Schema Operator Invocation... 4-19

5 Coordinate Systems (Spatial Reference Systems)

5.1 Terms and Concepts.. 5-1
5.1.1 Coordinate System (Spatial Reference System) .. 5-1
5.1.2 Cartesian Coordinates ... 5-1
5.1.3 Geodetic Coordinates (Geographic Coordinates).. 5-2
5.1.4 Projected Coordinates.. 5-2
5.1.5 Local Coordinates... 5-2
5.1.6 Geodetic Datum.. 5-2
5.1.7 Authalic Sphere .. 5-2
5.1.8 Transformation ... 5-2
5.2 Geodetic Coordinate Support .. 5-3
5.2.1 Geodesy and Two-Dimensional Geometry .. 5-3
5.2.2 Choosing a Geodetic or Projected Coordinate System ... 5-3
5.2.3 Other Considerations and Requirements with Geodetic Data 5-4
5.3 Local Coordinate Support .. 5-5
5.4 Coordinate Systems Data Structures .. 5-6
5.4.1 MDSYS.CS_SRS Table.. 5-7
5.4.1.1 Well-Known Text (WKTEXT).. 5-8
5.4.2 MDSYS.SDO_ANGLE_UNITS Table .. 5-10
5.4.3 MDSYS.SDO_DIST_UNITS Table.. 5-11
vi

5.4.4 MDSYS.SDO_DATUMS Table ... 5-11
5.4.5 MDSYS.SDO_ELLIPSOIDS Table .. 5-14
5.4.6 MDSYS.SDO_PROJECTIONS Table.. 5-15
5.5 Creating a User-Defined Coordinate System .. 5-16
5.6 Coordinate System Transformation Functions ... 5-19
5.7 Notes and Restrictions with Coordinate Systems Support ... 5-19
5.7.1 Different Coordinate Systems for Geometries with Operators and Functions... 5-19
5.7.2 Functions Not Supported with Geodetic Data .. 5-19
5.7.3 Functions Supported by Approximations with Geodetic Data............................. 5-20
5.8 Example of Coordinate System Transformation .. 5-20

6 Linear Referencing System

6.1 Terms and Concepts ... 6-1
6.1.1 Geometric Segments (LRS Segments) .. 6-2
6.1.2 Shape Points.. 6-2
6.1.3 Direction of a Geometric Segment ... 6-3
6.1.4 Measure (Linear Measure) .. 6-3
6.1.5 Offset .. 6-3
6.1.6 Measure Populating... 6-4
6.1.7 Measure Range of a Geometric Segment .. 6-6
6.1.8 Projection... 6-6
6.1.9 LRS Point ... 6-6
6.1.10 Linear Features ... 6-6
6.2 LRS Data Model... 6-7
6.3 Indexing of LRS Data .. 6-8
6.4 3D Formats of LRS Functions .. 6-9
6.5 LRS Operations .. 6-10
6.5.1 Defining a Geometric Segment ... 6-10
6.5.2 Redefining a Geometric Segment .. 6-11
6.5.3 Clipping a Geometric Segment .. 6-12
6.5.4 Splitting a Geometric Segment... 6-13
6.5.5 Concatenating Geometric Segments.. 6-13
6.5.6 Scaling a Geometric Segment .. 6-15
6.5.7 Offsetting a Geometric Segment .. 6-16
6.5.8 Locating a Point on a Geometric Segment.. 6-17
vii

6.5.9 Projecting a Point onto a Geometric Segment .. 6-18
6.5.10 Converting LRS Geometries ... 6-19
6.6 Example of LRS Functions ... 6-20

7 Extending Spatial Indexing Capabilities

7.1 SDO_GEOMETRY Objects in User-Defined Type Definitions 7-1
7.2 SDO_GEOMETRY Objects in Function-Based Indexes ... 7-3
7.2.1 Example: Function with Standard Types.. 7-4
7.2.2 Example: Function with User-Defined Object Type ... 7-6

Part II Reference Information

8 SQL Statements for Indexing Spatial Data

ALTER INDEX ... 8-2

ALTER INDEX REBUILD... 8-7

ALTER INDEX RENAME TO.. 8-11

CREATE INDEX .. 8-12

DROP INDEX... 8-19

9 SDO_GEOMETRY Object Type Methods

GET_DIMS.. 9-2

GET_GTYPE ... 9-3

GET_LRS_DIM... 9-4

10 Spatial Operators

SDO_FILTER .. 10-2

SDO_NN ... 10-6

SDO_NN_DISTANCE .. 10-11

SDO_RELATE .. 10-13

SDO_WITHIN_DISTANCE ... 10-18
viii

11 Geometry Functions

SDO_GEOM.RELATE... 11-4

SDO_GEOM.SDO_ARC_DENSIFY.. 11-7

SDO_GEOM.SDO_AREA .. 11-10

SDO_GEOM.SDO_BUFFER... 11-12

SDO_GEOM.SDO_CENTROID .. 11-16

SDO_GEOM.SDO_CONVEXHULL ... 11-18

SDO_GEOM.SDO_DIFFERENCE... 11-20

SDO_GEOM.SDO_DISTANCE ... 11-23

SDO_GEOM.SDO_INTERSECTION.. 11-25

SDO_GEOM.SDO_LENGTH... 11-28

SDO_GEOM.SDO_MAX_MBR_ORDINATE.. 11-30

SDO_GEOM.SDO_MBR... 11-32

SDO_GEOM.SDO_MIN_MBR_ORDINATE... 11-34

SDO_GEOM.SDO_POINTONSURFACE .. 11-36

SDO_GEOM.SDO_UNION.. 11-38

SDO_GEOM.SDO_XOR ... 11-41

SDO_GEOM.VALIDATE_GEOMETRY... 11-44

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT 11-46

SDO_GEOM.VALIDATE_LAYER.. 11-49

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT ... 11-52

SDO_GEOM.WITHIN_DISTANCE.. 11-55

12 Spatial Aggregate Functions

SDO_AGGR_CENTROID .. 12-2

SDO_AGGR_CONVEXHULL... 12-4

SDO_AGGR_LRS_CONCAT... 12-5

SDO_AGGR_MBR... 12-7

SDO_AGGR_UNION ... 12-8
ix

13 Coordinate System Transformation Functions

SDO_CS.TRANSFORM .. 13-2

SDO_CS.TRANSFORM_LAYER ... 13-5

SDO_CS.VIEWPORT_TRANSFORM... 13-7

14 Linear Referencing Functions

SDO_LRS.CLIP_GEOM_SEGMENT .. 14-5

SDO_LRS.CONCATENATE_GEOM_SEGMENTS.. 14-7

SDO_LRS.CONNECTED_GEOM_SEGMENTS ... 14-10

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY .. 14-12

SDO_LRS.CONVERT_TO_LRS_GEOM... 14-15

SDO_LRS.CONVERT_TO_LRS_LAYER.. 14-18

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY .. 14-21

SDO_LRS.CONVERT_TO_STD_GEOM .. 14-23

SDO_LRS.CONVERT_TO_STD_LAYER ... 14-25

SDO_LRS.DEFINE_GEOM_SEGMENT... 14-27

SDO_LRS.DYNAMIC_SEGMENT.. 14-30

SDO_LRS.FIND_LRS_DIM_POS .. 14-32

SDO_LRS.FIND_MEASURE.. 14-33

SDO_LRS.GEOM_SEGMENT_END_MEASURE... 14-35

SDO_LRS.GEOM_SEGMENT_END_PT.. 14-37

SDO_LRS.GEOM_SEGMENT_LENGTH .. 14-39

SDO_LRS.GEOM_SEGMENT_START_MEASURE ... 14-41

SDO_LRS.GEOM_SEGMENT_START_PT.. 14-43

SDO_LRS.GET_MEASURE.. 14-45

SDO_LRS.IS_GEOM_SEGMENT_DEFINED .. 14-47

SDO_LRS.IS_MEASURE_DECREASING.. 14-49

SDO_LRS.IS_MEASURE_INCREASING... 14-51

SDO_LRS.LOCATE_PT .. 14-53

SDO_LRS.MEASURE_RANGE ... 14-56

SDO_LRS.MEASURE_TO_PERCENTAGE ... 14-58
x

SDO_LRS.OFFSET_GEOM_SEGMENT... 14-60

SDO_LRS.PERCENTAGE_TO_MEASURE... 14-64

SDO_LRS.PROJECT_PT ... 14-66

SDO_LRS.REDEFINE_GEOM_SEGMENT ... 14-68

SDO_LRS.RESET_MEASURE.. 14-71

SDO_LRS.REVERSE_GEOMETRY ... 14-73

SDO_LRS.REVERSE_MEASURE.. 14-75

SDO_LRS.SCALE_GEOM_SEGMENT .. 14-77

SDO_LRS.SET_PT_MEASURE.. 14-80

SDO_LRS.SPLIT_GEOM_SEGMENT... 14-83

SDO_LRS.TRANSLATE_MEASURE.. 14-86

SDO_LRS.VALID_GEOM_SEGMENT .. 14-88

SDO_LRS.VALID_LRS_PT .. 14-90

SDO_LRS.VALID_MEASURE... 14-92

SDO_LRS.VALIDATE_LRS_GEOMETRY... 14-94

15 Migration Procedures

SDO_MIGRATE.FROM_815_TO_81X.. 15-2

SDO_MIGRATE.OGIS_METADATA_FROM... 15-4

SDO_MIGRATE.OGIS_METADATA_TO... 15-5

SDO_MIGRATE.TO_734 .. 15-6

SDO_MIGRATE.TO_81X ... 15-8

SDO_MIGRATE.TO_CURRENT... 15-11

16 Tuning Functions and Procedures

SDO_TUNE.ANALYZE_RTREE... 16-3

SDO_TUNE.AVERAGE_MBR... 16-5

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE ... 16-7

SDO_TUNE.ESTIMATE_TILING_LEVEL .. 16-10

SDO_TUNE.ESTIMATE_TILING_TIME ... 16-12

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES .. 16-14
xi

SDO_TUNE.EXTENT_OF .. 16-17

SDO_TUNE.HISTOGRAM_ANALYSIS .. 16-19

SDO_TUNE.MIX_INFO.. 16-21

SDO_TUNE.QUALITY_DEGRADATION .. 16-23

SDO_TUNE.RTREE_QUALITY .. 16-25

17 Utility Functions

SDO_UTIL.EXTRACT... 17-2

SDO_UTIL.GETVERTICES .. 17-5

A Installation, Compatibility, and Migration

A.1 Introduction.. A-1
A.2 Installation of Spatial .. A-2
A.3 Upgrading from Spatial Release 8.1.5, 8.1.6, or 8.1.7.. A-3
A.4 Upgrading from Spatial Release 9.0.1... A-3
A.5 Upgrading LRS Data ... A-4

B Hybrid Indexing

B.1 Creating a Hybrid Index... B-4
B.2 Tuning Considerations with Hybrid Indexes.. B-5

C Locator

Glossary

Index
xii

xiii

List of Examples

2–1 Simple Example: Inserting, Indexing, and Querying Spatial Data 2-3
2–2 SQL Statement to Insert a Rectangle... 2-15
2–3 SQL Statement to Insert a Polygon with a Hole ... 2-17
2–4 SQL Statement to Insert a Compound Line String... 2-20
2–5 SQL Statement to Insert a Compound Polygon.. 2-22
2–6 SQL Statement to Insert a Point-Only Geometry.. 2-23
2–7 Query for Point-Only Geometry Based on a Coordinate Value................................... 2-24
2–8 SQL Statement to Insert a Geometry with a Type 0 Element 2-26
3–1 Control File for Bulk Load of Cola Market Geometries... 3-1
3–2 Control File for Bulk Load of Polygons ... 3-3
3–3 Control File for a Bulk Load of Point-Only Data.. 3-4
3–4 Procedure to Perform Transactional Insert Operation .. 3-5
3–5 PL/SQL Block Invoking Procedure to Insert a Geometry .. 3-5
4–1 Creating a Fixed Index.. 4-6
4–2 Primary Filter with a Temporary Query Window ... 4-14
4–3 Primary Filter with a Transient Instance of the Query Window.................................. 4-14
4–4 Primary Filter with a Stored Query Window.. 4-14
4–5 Secondary Filter Using a Temporary Query Window... 4-15
4–6 Secondary Filter Using a Stored Query Window ... 4-16
5–1 Creating a User-Defined Projected Coordinate System... 5-18
5–2 Creating a User-Defined Geodetic Coordinate System ... 5-18
5–3 Simplified Example of Coordinate System Transformation ... 5-21
5–4 Output of SELECT Statements in Coordinate System Transformation Example...... 5-25
6–1 Including LRS Measure Dimension in Spatial Metadata .. 6-7
6–2 Simplified Example: Highway .. 6-22
6–3 Simplified Example: Output of SELECT Statements ... 6-26
B–1 Creating a Hybrid Index .. B-5

List of Figures

1–1 Geometric Types .. 1-4
1–2 Query Model .. 1-10
1–3 MBR Enclosing a Geometry ... 1-12
1–4 R-tree Hierarchical Index on MBRs .. 1-13
1–5 Quadtree Decomposition and Morton Codes ... 1-16
1–6 Fixed-Size Tiling with Many Small Tiles ... 1-17
1–7 Fixed-Size Tiling with Fewer Large Tiles... 1-18
1–8 Tessellated Geometry.. 1-19
1–9 The 9-Intersection Model.. 1-21
1–10 Topological Relationships .. 1-22
1–11 Distance Buffers for Points, Lines, and Polygons ... 1-22
1–12 Tolerance in an Aggregate Union Operation .. 1-24
2–1 Areas of Interest for Simple Example ... 2-2
2–2 Rectangle... 2-15
2–3 Polygon with a Hole.. 2-16
2–4 Compound Line String ... 2-19
2–5 Compound Polygon .. 2-21
2–6 Point-Only Geometry.. 2-23
2–7 Geometry with Type 0 (Zero) Element... 2-25
4–1 Sample Domain.. 4-4
4–2 Fixed-Size Tiling at Level 1 .. 4-5
4–3 Fixed-Size Tiling at Level 2 .. 4-5
4–4 Tessellated Layer with Multiple Objects.. 4-12
4–5 Tessellated Layer with a Query Window .. 4-13
6–1 Geometric Segment ... 6-2
6–2 Describing a Point Along a Segment with a Measure and an Offset 6-4
6–3 Measures, Distances, and Their Mapping Relationship .. 6-5
6–4 Measure Populating of a Geometric Segment ... 6-5
6–5 Measure Populating With Disproportional Assigned Measures 6-6
6–6 Linear Feature, Geometric Segments, and LRS Points... 6-7
6–7 Creating a Geometric Segment .. 6-8
6–8 Defining a Geometric Segment.. 6-11
6–9 Redefining a Geometric Segment.. 6-12
6–10 Clipping, Splitting, and Concatenating Geometric Segments 6-12
6–11 Measure Assignment in Geometric Segment Operations.. 6-14
6–12 Segment Direction with Concatenation ... 6-15
6–13 Scaling a Geometric Segment... 6-16
6–14 Offsetting a Geometric Segment.. 6-17
6–15 Locating a Point Along a Segment with a Measure and an Offset............................... 6-17
6–16 Ambiguity in Location Referencing with Offsets ... 6-18
xiv

6–17 Multiple Projection Points.. 6-19
6–18 Conversion from Standard to LRS Line String ... 6-20
6–19 Simplified LRS Example: Highway .. 6-21
11–1 Arc Tolerance ... 11-8
11–2 SDO_GEOM.SDO_DIFFERENCE... 11-21
11–3 SDO_GEOM.SDO_INTERSECTION.. 11-26
11–4 SDO_GEOM.SDO_UNION.. 11-39
11–5 SDO_GEOM.SDO_XOR ... 11-42
14–1 Translating a Geometric Segment... 14-87
B–1 Variable-Sized Tile Spatial Indexing .. B-2
B–2 Decomposition of the Geometry ... B-3
xv

xvi

List of Tables

1–1 Choosing R-tree or Quadtree Indexing .. 1-11
1–2 SDOINDEX Table Using Fixed-Size Tiles.. 1-19
2–1 Valid SDO_GTYPE Values ... 2-7
2–2 Values and Semantics in SDO_ELEM_INFO .. 2-12
2–3 Columns in the xxx_SDO_INDEX_INFO Views .. 2-30
2–4 Columns in the xxx_SDO_INDEX_METADATA Views... 2-31
2–5 Columns in an R-tree Spatial Index Data Table .. 2-33
2–6 Columns in a Quadtree Spatial Index Data Table .. 2-34
2–7 Columns in the SDO_DIST_UNITS Table ... 2-35
2–8 Columns in the SDO_AREA_UNITS Table ... 2-35
5–1 MDSYS.CS_SRS Table... 5-7
5–2 MDSYS.SDO_ANGLE_UNITS Table.. 5-11
5–3 MDSYS.SDO_DIST_UNITS Table ... 5-11
5–4 MDSYS.SDO_DATUMS Table... 5-12
5–5 MDSYS.SDO_ELLIPSOIDS Table ... 5-14
5–6 MDSYS.SDO_PROJECTIONS Table ... 5-15
6–1 Highway Features and LRS Counterparts ... 6-21
8–1 Spatial Index Creation and Usage Statements .. 8-1
8–2 SDO_LEVEL and SDO_NUMTILES Combinations ... 8-16
9–1 SDO_GEOMETRY Type Methods .. 9-1
10–1 Spatial Usage Operators ... 10-1
10–2 Keywords for SDO_NN Parameter .. 10-6
11–1 Geometry Functions .. 11-1
12–1 Spatial Aggregate Functions .. 12-1
13–1 Functions and Procedures for Coordinate Systems ... 13-1
13–2 Table to Hold Transformed Layer... 13-6
14–1 Functions for Creating and Editing Geometric Segments ... 14-1
14–2 Functions for Querying Geometric Segments ... 14-2
14–3 Functions for Converting Geometric Segments .. 14-3
14–4 Functions to Use Instead of SCALE_GEOM_SEGMENT.. 14-78
15–1 Migration Procedures ... 15-1
16–1 Tuning Functions and Procedures .. 16-1
17–1 Utility Functions and Procedures.. 17-1
B–1 Section of the SDOINDEX Table ... B-4
C–1 Spatial Features Supported for Locator.. C-2
C–2 Spatial Features Not Supported for Locator.. C-3
C–3 Feature Availability with Standard and Enterprise Editions.. C-4

Send Us Your Comments

Oracle Spatial User’s Guide and Reference, Release 9.2

Part No. A96630-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

■ Electronic mail: nedc-doc_us@oracle.com
■ FAX: 603.897.3825 Attn: Spatial Documentation
■ Postal service:

Oracle Corporation
Oracle Spatial Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you would like a reply, please give your name and contact information.

If you have problems with the software, please contact your local Oracle Support Services.
xvii

xviii

Preface

The Oracle Spatial User’s Guide and Reference provides usage and reference
information for indexing and storing spatial data and for developing spatial
applications using Oracle Spatial and Oracle Locator.

Oracle Spatial requires Oracle9i Enterprise Edition and is a priced option. It is a
foundation for the deployment of enterprise-wide spatial information systems, and
Web-based and wireless location-based applications requiring complex spatial data
management. Oracle Locator is a feature of Oracle9i Standard and Enterprise
Editions. It offers a subset of Oracle Spatial capabilities (see Appendix C for a list of
Locator features) typically required to support Internet and wireless service
applications and partner-based GIS solutions.

Oracle9i and Oracle9i Enterprise Edition have the same basic features. However,
several advanced features, such as extended data types, are available only with the
Enterprise Edition, and some of these features are optional. For example, to use
Oracle9i table partitioning, you must have the Enterprise Edition and the
Partitioning Option.

For information about the differences between Oracle9i Standard Edition and
Oracle9i Enterprise Edition and the features and options that are available to you,
see Oracle9i Database New Features.

This preface contains these topics:

■ Audience

Note: The relational geometry model of Oracle Spatial is no longer
supported, effective with this release. Only the object-relational
model is supported.
xix

■ Documentation Accessibility

■ Organization

■ Technologies Released Separately

■ Related Documentation

■ Conventions

Audience
This guide is intended for anyone who needs to store spatial data in an Oracle
database.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle Corporation does not own or control. Oracle Corporation
neither evaluates nor makes any representations regarding the accessibility of these
Web sites.
xx

Organization
This guide has two main parts (conceptual and usage information, and reference
information) and several appendixes with supplementary information. The first
part is organized for efficient learning about Oracle Spatial; it covers basic concepts
and techniques first, and proceeds to more advanced material (such as coordinate
systems, the linear referencing system, geocoding, and extending spatial indexing).

This guide has the following elements.

Part I, "Conceptual and Usage Information"
Contains chapters with conceptual and usage information.

Chapter 1, "Spatial Concepts"
Introduces spatial data concepts.

Chapter 2, "Spatial Data Types and Metadata"
Explains the object-relational schema.

Chapter 3, "Loading Spatial Data"
Explains how to load spatial data.

Chapter 4, "Indexing and Querying Spatial Data"
Explains how to index and query spatial data.

Chapter 5, "Coordinate Systems (Spatial Reference Systems)"
Provides conceptual and usage information about coordinate system (spatial
reference system) support.

Chapter 6, "Linear Referencing System"
Provides conceptual and usage information about the Oracle Spatial linear
referencing system (LRS).

Chapter 7, "Extending Spatial Indexing Capabilities"
Explains how to extend the capabilities of Oracle Spatial indexing.

Part II, "Reference Information"
Contains chapters with reference information.
xxi

Chapter 8, "SQL Statements for Indexing Spatial Data"
Provides the syntax and semantics for SQL indexing statements.

Chapter 9, "SDO_GEOMETRY Object Type Methods"
Provides the syntax and semantics for methods used with the spatial object data
type.

Chapter 10, "Spatial Operators"
Provides the syntax and semantics for operators used with the spatial object data
type.

Chapter 11, "Geometry Functions"
Provides the syntax and semantics for the geometric functions and procedures.

Chapter 12, "Spatial Aggregate Functions"
Provides the syntax and semantics for the spatial aggregate functions.

Chapter 13, "Coordinate System Transformation Functions"
Provides the syntax and semantics for the coordinate system transformation
functions.

Chapter 14, "Linear Referencing Functions"
Provides the syntax and semantics for the linear referencing (LRS) functions.

Chapter 15, "Migration Procedures"
Provides the syntax and semantics for the migration functions.

Chapter 16, "Tuning Functions and Procedures"
Provides the syntax and semantics for the tuning functions and procedures.

Chapter 17, "Utility Functions"
Provides the syntax and semantics for the utility functions and procedures.

Other: Supplementary Information
Contains appendixes with supplementary Information, and a glossary.
xxii

Appendix A, "Installation, Compatibility, and Migration"
Describes installation, compatibility, and migration issues.

Appendix B, "Hybrid Indexing"
Describes hybrid indexing.

Appendix C, "Locator"
Describes Oracle Locator.

Glossary
Defines important terms.

Technologies Released Separately
Technologies of interest to spatial application developers, but not officially part of
Oracle Spatial, are sometimes made available through the Oracle Technology
Network (OTN). To access the OTN, go to

http://otn.oracle.com

Related Documentation
For more information, see the following documents:

■ Oracle9i Database New Features

■ Oracle9i Database Administrator’s Guide

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Application Developer’s Guide - Workspace Manager

■ Oracle9i Database Error Messages - Spatial messages are in the range of 13000 to
13499.

■ Oracle9i Database Concepts

■ Oracle9i Database Performance Guide and Reference

■ Oracle9i Database Utilities

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/
xxiii

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, go to the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, go to

http://tahiti.oracle.com

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are used in this guide:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface text indicates a term defined in the text, the glossary, or in
both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

% The percent sign represents the system prompt on a UNIX system.
xxiv

New and Changed Features

This section describes new and changed Oracle Spatial features for Release 9.2.

Validation with Context
You can now validate a geometry or a layer and obtain additional information
about the context (the coordinate, edge, or ring) that causes any geometry to be
invalid.

■ The new SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function
performs the same checks as the SDO_GEOM.VALIDATE_GEOMETRY
function, but also includes context information if the geometry is not valid.

■ The new SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure
performs the same checks as the SDO_GEOM.VALIDATE_LAYER procedure,
but also includes context information about any invalid geometries.

Both of these new interfaces are documented in Chapter 11.

Note that SDO_GEOM.VALIDATE_GEOMETRY function and SDO_
GEOM.VALIDATE_LAYER procedure are deprecated and will not be supported in
future release of Spatial. You are encouraged to switch to the new interfaces.

Utility Functions
A new Spatial utility package (SDO_UTIL) is provided, with the following
functions.

■ The SDO_UTIL.EXTRACT function returns the geometry that represents a
specified element (and optionally a ring) of the input geometry
xxv

■ The SDO_UTIL.GETVERTICES function returns the coordinates of the vertices
of the input geometry.

The utility functions are documented in Chapter 17.

Partitioned Spatial Indexes: Splitting and Merging Supported
ALTER TABLE partitioning statements for splitting and merging partitions, which
were not supported in the previous release, are now supported. For information
about using partitioned Spatial indexes, see Section 4.1.7.

Exchanging Partitions Including Indexes
You can use the ALTER TABLE statement with the EXCHANGE
PARTITION...INCLUDING INDEXES clause to exchange a spatial table partition
and its index partition with a corresponding table and its index, as explained in
Section 4.1.8. In the previous release of Spatial, this operation caused an error to be
generated.

Parallel Index Creation and Rebuilding
Spatial indexes can now be created and rebuilt using parallel execution. The {
NOPARALLEL | PARALLEL [integer] } option is supported for the CREATE
INDEX and ALTER INDEX REBUILD statements, which are documented in
Chapter 8.

Deferred Modifications to an Index
Modifications to a spatial index can be deferred until after spatial table insert,
update, and delete operations are finished, and then the index can be synchronized
with the table. See the description of the index_status keyword for the ALTER
INDEX statement in Chapter 8.

SDO_CS.VIEWPORT_TRANSFORM to_srname Parameter Not
Supported

The SDO_CS.VIEWPORT_TRANSFORM function format with the to_srname
parameter, which was supported in the previous release, is no longer supported.
You must use the format with the to_srid parameter.
xxvi

Part I

Conceptual and Usage Information

This document has two main parts:

■ Part I provides conceptual and usage information about Oracle Spatial.

■ Part II provides reference information about Oracle Spatial methods, operators,
functions, and procedures.

Appendixes with supplementary information follow Part II.

Part I is organized for efficient learning about Oracle Spatial. It covers basic
concepts and techniques first, and proceeds to more advanced material (such as
coordinate systems, the linear referencing system, geocoding, and extending spatial
indexing). Part I contains the following chapters:

■ Chapter 1, "Spatial Concepts"

■ Chapter 2, "Spatial Data Types and Metadata"

■ Chapter 3, "Loading Spatial Data"

■ Chapter 4, "Indexing and Querying Spatial Data"

■ Chapter 5, "Coordinate Systems (Spatial Reference Systems)"

■ Chapter 6, "Linear Referencing System"

■ Chapter 7, "Extending Spatial Indexing Capabilities"

Spatial Con
1

Spatial Concepts

Oracle Spatial is an integrated set of functions and procedures that enables spatial
data to be stored, accessed, and analyzed quickly and efficiently in an Oracle9i
database.

Spatial data represents the essential location characteristics of real or conceptual
objects as those objects relate to the real or conceptual space in which they exist.

1.1 What Is Oracle Spatial?
Oracle Spatial, often referred to as Spatial, provides a SQL schema and functions
that facilitate the storage, retrieval, update, and query of collections of spatial
features in an Oracle9i database. Spatial consists of the following components:

■ A schema (MDSYS) that prescribes the storage, syntax, and semantics of
supported geometric data types

■ A spatial indexing mechanism

■ A set of operators and functions for performing area-of-interest queries, spatial
join queries, and other spatial analysis operations

■ Administrative utilities

The spatial component of a spatial feature is the geometric representation of its
shape in some coordinate space. This is referred to as its geometry.

1.2 Object-Relational Model
Spatial supports the object-relational model for representing geometries. The
object-relational model uses a table with a single column of MDSYS.SDO_
GEOMETRY and a single row per geometry instance. The object-relational model
cepts 1-1

Introduction to Spatial Data
corresponds to a "SQL with Geometry Types" implementation of spatial feature
tables in the OpenGIS ODBC/SQL specification for geospatial features.

The benefits provided by the object-relational model include:

■ Support for many geometry types, including arcs, circles, compound polygons,
compound line strings, and optimized rectangles

■ Ease of use in creating and maintaining indexes and in performing spatial
queries

■ Index maintenance by the Oracle9i database server

■ Geometries modeled in a single row and single column

■ Optimal performance

1.3 Introduction to Spatial Data
Oracle Spatial is designed to make spatial data management easier and more
natural to users of location-enabled applications and Geographic Information
System (GIS) applications. Once this data is stored in an Oracle database, it can be
easily manipulated, retrieved, and related to all the other data stored in the
database.

A common example of spatial data can be seen in a road map. A road map is a
two-dimensional object that contains points, lines, and polygons that can represent
cities, roads, and political boundaries such as states or provinces. A road map is a
visualization of geographic information. The location of cities, roads, and political
boundaries that exist on the surface of the Earth are projected onto a
two-dimensional display or piece of paper, preserving the relative positions and
relative distances of the rendered objects.

The data that indicates the Earth location (latitude and longitude, or height and
depth) of these rendered objects is the spatial data. When the map is rendered, this
spatial data is used to project the locations of the objects on a two-dimensional piece
of paper. A GIS is often used to store, retrieve, and render this Earth-relative spatial
data.

Note: The relational geometry model of Oracle Spatial is no longer
supported, effective with this release. Only the object-relational
model is supported.
1-2 Oracle Spatial User’s Guide and Reference

Geometry Types
Types of spatial data that can be stored using Spatial other than GIS data include
data from computer-aided design (CAD) and computer-aided manufacturing
(CAM) systems. Instead of operating on objects on a geographic scale, CAD/CAM
systems work on a smaller scale, such as for an automobile engine or printed circuit
boards.

The differences among these systems are only in the relative sizes of the data, not
the data’s complexity. The systems might all actually involve the same number of
data points. On a geographic scale, the location of a bridge can vary by a few tenths
of an inch without causing any noticeable problems to the road builders, whereas if
the diameter of an engine’s pistons are off by a few tenths of an inch, the engine will
not run. A printed circuit board is likely to have many thousands of objects etched
on its surface that are no bigger than the smallest detail shown on a road builder’s
blueprints.

These applications all store, retrieve, update, or query some collection of features
that have both nonspatial and spatial attributes. Examples of nonspatial attributes
are name, soil_type, landuse_classification, and part_number. The spatial attribute
is a coordinate geometry, or vector-based representation of the shape of the feature.

1.4 Geometry Types
A geometry is an ordered sequence of vertices that are connected by straight line
segments or circular arcs. The semantics of the geometry are determined by its type.
Spatial supports several primitive types and geometries composed of collections of
these types, including two-dimensional:

■ Points and point clusters

■ Line strings

■ n-point polygons

■ Arc line strings (All arcs are generated as circular arcs.)

■ Arc polygons

■ Compound polygons

■ Compound line strings

■ Circles

■ Optimized rectangles

Two-dimensional points are elements composed of two ordinates, X and Y, often
corresponding to longitude and latitude. Line strings are composed of one or more
Spatial Concepts 1-3

Data Model
pairs of points that define line segments. Polygons are composed of connected line
strings that form a closed ring and the area of the polygon is implied.

Self-crossing polygons are not supported, although self-crossing line strings are
supported. If a line string crosses itself, it does not become a polygon. A
self-crossing line string does not have any implied area.

Figure 1–1 illustrates the geometric types.

Figure 1–1 Geometric Types

Spatial also supports the storage and indexing of three-dimensional and
four-dimensional geometric types, where three or four coordinates are used to
define each vertex of the object being defined. However, spatial functions (except
for LRS functions and MBR-related functions) can work with only the first two
dimensions, and all spatial operators except SDO_FILTER are disabled if the spatial
index has been created on more than two dimensions.

1.5 Data Model
The Spatial data model is a hierarchical structure consisting of elements, geometries,
and layers, which correspond to representations of spatial data. Layers are
composed of geometries, which in turn are made up of elements.
1-4 Oracle Spatial User’s Guide and Reference

Data Model
For example, a point might represent a building location, a line string might
represent a road or flight path, and a polygon might represent a state, city, zoning
district, or city block.

1.5.1 Element
An element is the basic building block of a geometry. The supported spatial element
types are points, line strings, and polygons. For example, elements might model
star constellations (point clusters), roads (line strings), and county boundaries
(polygons). Each coordinate in an element is stored as an X,Y pair. The exterior ring
and the interior ring of a polygon with holes are considered as two distinct elements
that together make up a complex polygon.

Point data consists of one coordinate. Line data consists of two coordinates
representing a line segment of the element. Polygon data consists of coordinate pair
values, one vertex pair for each line segment of the polygon. Coordinates are
defined in order around the polygon (counterclockwise for an exterior polygon
ring, clockwise for an interior polygon ring).

1.5.2 Geometry
A geometry (or geometry object) is the representation of a spatial feature, modeled
as an ordered set of primitive elements. A geometry can consist of a single element,
which is an instance of one of the supported primitive types, or a homogeneous or
heterogeneous collection of elements. A multipolygon, such as one used to
represent a set of islands, is a homogeneous collection. A heterogeneous collection
is one in which the elements are of different types, for example, a point and a
polygon.

An example of a geometry might describe the buildable land in a town. This could
be represented as a polygon with holes where water or zoning prevents
construction.

1.5.3 Layer
A layer is a collection of geometries having the same attribute set. For example, one
layer in a GIS might include topographical features, while another describes
population density, and a third describes the network of roads and bridges in the
area (lines and points). Each layer’s geometries and associated spatial index are
stored in the database in standard tables.
Spatial Concepts 1-5

Data Model
1.5.4 Coordinate System
A coordinate system (also called a spatial reference system) is a means of assigning
coordinates to a location and establishing relationships between sets of such
coordinates. It enables the interpretation of a set of coordinates as a representation
of a position in a real world space.

Any spatial data has a coordinate system associated with it. The coordinate system
can be georeferenced (related to a specific representation of the Earth) or not
georeferenced (that is, Cartesian, and not related to a specific representation of the
Earth). If the coordinate system is georeferenced, it has a default unit of measurement
(such as meters) associated with it, but you can have Spatial automatically return
results in another specified unit (such as miles). (For more information about unit of
measurement support, see Section 2.6.)

Before Oracle Spatial release 8.1.6, geometries (objects of type SDO_GEOMETRY)
were stored as strings of coordinates without reference to any specific coordinate
system. Spatial functions and operators always assumed a coordinate system that
had the properties of an orthogonal Cartesian system, and sometimes did not
provide correct results if Earth-based geometries were stored in latitude and
longitude coordinates. With release 8.1.6, Spatial provided support for many
different coordinate systems, and for converting data freely between different
coordinate systems.

Spatial data can be associated with a Cartesian, geodetic (geographical), projected,
or local coordinate system:

■ Cartesian coordinates are coordinates that measure the position of a point from
a defined origin along axes that are perpendicular in the represented
two-dimensional or three-dimensional space.

If a coordinate system is not explicitly associated with a geometry, a Cartesian
coordinate system is assumed.

■ Geodetic coordinates (sometimes called geographic coordinates) are angular
coordinates (longitude and latitude), closely related to spherical polar
coordinates, and are defined relative to a particular Earth geodetic datum. (A
geodetic datum is a means of representing the figure of the Earth and is the
reference for the system of geodetic coordinates.)

■ Projected coordinates are planar Cartesian coordinates that result from
performing a mathematical mapping from a point on the Earth’s surface to a
plane. There are many such mathematical mappings, each used for a particular
purpose.
1-6 Oracle Spatial User’s Guide and Reference

Data Model
■ Local coordinates are Cartesian coordinates in a non-Earth (non-georeferenced)
coordinate system. Local coordinate systems are often used for CAD
applications and local surveys.

When performing operations on geometries, Spatial uses either a Cartesian or
curvilinear computational model, as appropriate for the coordinate system
associated with the spatial data.

For more information about coordinate system support in Spatial, including
geodetic, projected, and local coordinates and coordinate system transformation, see
Chapter 5.

1.5.5 Tolerance
Tolerance is used to associate a level of precision with spatial data. Tolerance
reflects the distance that two points can be apart and still be considered the same
(for example, to accommodate rounding errors). The tolerance value must be a
non-negative number greater than zero. The significance of the value depends on
whether or not the spatial data is associated with a geodetic coordinate system.
(Geodetic and other types of coordinate systems are described in Section 1.5.4.)

■ For geodetic data (such as data identified by longitude and latitude
coordinates), the tolerance value is a number of meters. For example, a
tolerance value of 100 indicates a tolerance of 100 meters.

■ For non-geodetic data, the tolerance value is a number of the units that are
associated with the coordinate system associated with the data. For example, if
the unit of measurement is miles, a tolerance value of 0.005 indicates a tolerance
of 0.005 (that is, 1/200) mile (approximately 105 feet), and a tolerance value of 2
indicates a tolerance of two miles.

In both cases, the smaller the tolerance value, the more precision is to be associated
with the data.

A tolerance value is specified in two cases:

■ In the geometry metadata definition for a layer (see Section 1.5.5.1)

■ As an optional input parameter to certain functions (see Section 1.5.5.2)

1.5.5.1 In the Geometry Metadata for a Layer
The dimensional information for a layer includes a tolerance value. Specifically, the
DIMINFO column (described in Section 2.4.3) of the xxx_SDO_GEOM_METADATA
views includes an SDO_TOLERANCE value.
Spatial Concepts 1-7

Data Model
If a function accepts an optional tolerance parameter and this parameter is null or
not specified, the SDO_TOLERANCE value of the layer is used. Using the
non-geodetic data from the example in Section 2.1, the actual distance between
geometries cola_b and cola_d is 0.846049894. If a query uses the SDO_GEOM.SDO_
DISTANCE function to return the distance between cola_b and cola_d and does not
specify a tolerance parameter value, the result depends on the SDO_TOLERANCE
value of the layer. For example:

■ If the SDO_TOLERANCE value of the layer is 0.005, this query returns
.846049894.

■ If the SDO_TOLERANCE value of the layer is 0.5, this query returns 0.

The zero result occurs because Spatial first constructs an imaginary buffer of the
tolerance value (0.5) around each geometry to be considered, and the buffers
around cola_b and cola_d overlap in this case.

You can therefore take either of two approaches in selecting an SDO_TOLERANCE
value for a layer:

■ The value can reflect the desired level of precision in queries for distances
between objects. For example, if two non-geodetic geometries 0.8 units apart
should be considered as separated, specify a small SDO_TOLERANCE value
such as 0.05 or smaller.

■ The value can reflect the precision of the values associated with geometries in
the layer. For example, if all the geometries in a non-geodetic layer are defined
using integers and if two objects 0.8 units apart should not be considered as
separated, an SDO_TOLERANCE value of 0.5 is appropriate. To have greater
precision in any query, you must override the default by specifying the tolerance
parameter.

With non-geodetic data, the guideline to follow for most instances of the second
case (precision of the values of the geometries in the layer) is: take the highest level
of precision in the geometry definitions, and use .5 at the next level as the SDO_
TOLERANCE value. For example, if geometries are defined using integers (as in the
simplified example in Section 2.1), the appropriate value is 0.5. However, if
geometries are defined using numbers up to 4 decimal positions (for example,
31.2587), such as with longitude and latitude values, the appropriate value is
0.00005.
1-8 Oracle Spatial User’s Guide and Reference

Query Model
1.5.5.2 As an Input Parameter
Many Spatial functions accept an optional tolerance parameter, which (if specified)
overrides the default tolerance value for the layer (explained in Section 1.5.5.1). If
the distance between two points is less than or equal to the tolerance value, Spatial
considers the two points to be a single point. Thus, tolerance is usually a reflection
of how accurate or precise users perceive their spatial data to be.

For example, assume that you want to know which restaurants are within 5
kilometers of your house. Assume also that Maria’s Pizzeria is 5.1 kilometers from
your house. If the spatial data has a geodetic coordinate system and if you ask, Find
all restaurants within 5 kilometers and use a tolerance of 100 (or greater, such as 500),
Maria’s Pizzeria will be included, because 5.1 kilometers (5100 meters) is within 100
meters of 5 kilometers (5000 meters). However, if you specify a tolerance less than
100 (such as 50), Maria’s Pizzeria will not be included.

Tolerance values for Spatial functions are typically very small, although the best
value in each case depends on the kinds of applications that use or will use the data.

1.6 Query Model
Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term is used to indicate that two distinct operations are performed to resolve
queries. The output of the two combined operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

■ The primary filter permits fast selection of candidate records to pass along to
the secondary filter. The primary filter compares geometry approximations to
reduce computation complexity and is considered a lower-cost filter. Because

Note: This guideline, however, should not be used if the
geometries include any polygons that are so narrow at any point
that the distance between facing sides is less than the proposed
tolerance value. Be sure that the tolerance value is less than the
shortest distance between any two sides in any polygon.

Moreover, if you encounter "invalid geometry" errors with inserted
or updated geometries, and if the geometries are in fact valid,
consider increasing the precision of the tolerance value (for
example, changing 0.00005 to 0.000005).
Spatial Concepts 1-9

Query Model
the primary filter compares geometric approximations, it returns a superset of
the exact result set.

■ The secondary filter applies exact computations to geometries that result from
the primary filter. The secondary filter yields an accurate answer to a spatial
query. The secondary filter operation is computationally expensive, but it is
only applied to the primary filter results, not the entire data set.

Figure 1–2 illustrates the relationship between the primary and secondary filters.

Figure 1–2 Query Model

As shown in Figure 1–2, the primary filter operation on a large input data set
produces a smaller candidate set, which contains at least the exact result set and
may contain more records. The secondary filter operation on the smaller candidate
set produces the exact result set.

Spatial uses a spatial index to implement the primary filter. Spatial does not require
the use of both the primary and secondary filters. In some cases, just using the
primary filter is sufficient. For example, a zoom feature in a mapping application
queries for data that has any interaction with a rectangle representing visible
boundaries. The primary filter very quickly returns a superset of the query. The
mapping application can then apply clipping routines to display the target area.

The purpose of the primary filter is to quickly create a subset of the data and reduce
the processing burden on the secondary filter. The primary filter therefore should be
as efficient (that is, selective yet fast) as possible. This is determined by the
characteristics of the spatial index on the data.

For more information about querying spatial data, see Section 4.2.
1-10 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
1.7 Indexing of Spatial Data
The introduction of spatial indexing capabilities into the Oracle database engine is a
key feature of the Spatial product. A spatial index, like any other index, provides a
mechanism to limit searches, but in this case based on spatial criteria such as
intersection and containment. A spatial index is needed to:

■ Find objects within an indexed data space that interact with a given point or
area of interest (window query)

■ Find pairs of objects from within two indexed data spaces that interact spatially
with each other (spatial join)

A spatial index is considered a logical index. The entries in the spatial index are
dependent on the location of the geometries in a coordinate space, but the index
values are in a different domain. Index entries may be ordered using a linearly
ordered domain, and the coordinates for a geometry may be pairs of integer,
floating-point, or double-precision numbers.

Oracle Spatial lets you use R-tree indexing (the default) or quadtree indexing, or
both. Each index type is appropriate in different situations. You can maintain both
an R-tree and quadtree index on the same geometry column, by using the add_index
parameter with the ALTER INDEX statement (described in Chapter 8), and you can
choose which index to use for a query by specifying the idxtab1 and/or idxtab2
parameters with certain Spatial operators, such as SDO_RELATE, described in
Chapter 10.

In choosing whether to use an R-tree or quadtree index for a spatial application,
consider the items in Table 1–1.

Table 1–1 Choosing R-tree or Quadtree Indexing

R-tree Indexing Quadtree Indexing

The approximation of geometries cannot
be fine-tuned. (Spatial uses the minimum
bounding rectangles, as described in
Section 1.7.1.)

The approximation of geometries can be
fine-tuned by setting the tiling level and
number of tiles.

Index creation and tuning are easier. Tuning is more complex, and setting the
appropriate tuning parameter values can affect
performance significantly.

Less storage is required. More storage is required.

If your application workload includes
nearest-neighbor queries (SDO_NN
operator), R-tree indexes are faster.

If your application workload includes
nearest-neighbor queries (SDO_NN operator),
quadtree indexes are slower.
Spatial Concepts 1-11

Indexing of Spatial Data
Testing of R-tree and quadtree indexes with many workloads and operators is
ongoing, and results and recommendations will be documented as they become
available. However, before choosing an index type for an application, you should
understand the concepts and options associated with both R-tree indexing
(described in Section 1.7.1) and quadtree indexing (described in Section 1.7.2).

1.7.1 R-tree Indexing
A spatial R-tree index can index spatial data of up to four dimensions. An R-tree
index approximates each geometry by a single rectangle that minimally encloses the
geometry (called the minimum bounding rectangle, or MBR), as shown in
Figure 1–3.

Figure 1–3 MBR Enclosing a Geometry

For a layer of geometries, an R-tree index consists of a hierarchical index on the
MBRs of the geometries in the layer, as shown in Figure 1–4.

If there is heavy update activity to the
spatial column, an R-tree index may not
be a good choice.

Heavy update activity does not affect the
performance of a quadtree index.

You can index up to four dimensions. You can index only two dimensions.

An R-tree index is recommended for
indexing geodetic data if SDO_WITHIN_
DISTANCE queries will be used on it.

An R-tree index is required for a
whole-earth index.

Table 1–1 Choosing R-tree or Quadtree Indexing (Cont.)

R-tree Indexing Quadtree Indexing
1-12 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
Figure 1–4 R-tree Hierarchical Index on MBRs

In Figure 1–4:

■ 1 through 9 are geometries in a layer.

■ a, b, c, and d are the leaf nodes of the R-tree index, and contain minimum
bounding rectangles of geometries, along with pointers to the geometries. For
example, a contains the MBR of geometries 1 and 2, b contains the MBR of
geometries 3 and 4, and so on.

■ A contains the MBR of a and b, and B contains the MBR of c and d.

■ The root contains the MBR of A and B (that is, the entire area shown).

An R-tree index is stored in the spatial index table (SDO_INDEX_TABLE in the
USER_SDO_INDEX_METADATA view, described in Section 2.5). The R-tree index
also maintains a sequence number generator (SDO_RTREE_SEQ_NAME in the
USER_SDO_INDEX_METADATA view) to ensure that simultaneous updates by
concurrent users can be made to the index.

1.7.1.1 R-tree Quality
A substantial number of insert and delete operations affecting an R-tree index may
degrade the quality of the R-tree structure, which may adversely affect query
performance.

The R-tree is a hierarchical tree structure with nodes at different heights of the tree.
The performance of an R-tree index structure for queries is roughly proportional to
the area and perimeter of the index nodes of the R-tree. The area covered at level 0
represents the area occupied by the minimum bounding rectangles of the data
geometries, the area at level 1 indicates the area covered by leaf-level R-tree nodes,
and so on. The original ratio of the area at the root (topmost level) to the area at
level 0 can change over time based on updates to the table; and if there is a
Spatial Concepts 1-13

Indexing of Spatial Data
degradation in that ratio (that is, if it increases significantly), rebuilding the index
may help the performance of queries.

Spatial provides several functions and procedures related to the quality of an R-tree
index:

■ SDO_TUNE.ANALYZE_RTREE provides advice about whether or not an index
needs to be rebuilt. It computes the current index quality score and compares it
to the quality score when the index was created or most recently rebuilt, and it
displays a recommendation.

■ SDO_TUNE.RTREE_QUALITY returns the current index quality score.

■ SDO_TUNE.QUALITY_DEGRADATION returns the current index quality
degradation.

These functions and procedures are described in Chapter 16.

To rebuild an R-tree index, use the ALTER INDEX REBUILD statement, which is
described in Chapter 8.

1.7.2 Quadtree Indexing
In the linear quadtree indexing scheme, the coordinate space (for the layer where all
geometric objects are located) is subjected to a process called tessellation, which
defines exclusive and exhaustive cover tiles for every stored geometry. Tessellation
is done by decomposing the coordinate space in a regular hierarchical manner. The
range of coordinates, the coordinate space, is viewed as a rectangle. At the first level
of decomposition, the rectangle is divided into halves along each coordinate
dimension generating four tiles. Each tile that interacts with the geometry being
tessellated is further decomposed into four tiles. This process continues until some
termination criteria, such as size of the tiles or the maximum number of tiles to
cover the geometry, is met.

Spatial can use either fixed-size or variable-sized tiles to cover a geometry:

■ Fixed-size tiles are controlled by tile resolution. If the resolution is the sole
controlling factor, then tessellation terminates when the coordinate space has
been decomposed a specific number of times. Therefore, each tile is of a fixed
size and shape.

■ Variable-sized tiling is controlled by the value supplied for the maximum
number of tiles. If the number of tiles per geometry, n, is the sole controlling
factor, the tessellation terminates when n tiles have been used to cover the given
geometry.
1-14 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
Fixed-size tile resolution and the number of variable-sized tiles used to cover a
geometry are user-selectable parameters called SDO_LEVEL and SDO_NUMTILES,
respectively. Smaller fixed-size tiles or more variable-sized tiles provides better
geometry approximations. The smaller the number of tiles, or the larger the tiles,
the coarser are the approximations.

Spatial supports two quadtree indexing types, reflecting two valid combinations of
SDO_LEVEL and SDO_NUMTILES values:

■ Fixed indexing: a non-null and non-zero SDO_LEVEL value and a null or zero
(0) SDO_NUMTILES value, resulting in fixed-sized tiles. Fixed indexing is
described in Section 1.7.2.2.

■ Hybrid indexing: non-null and non-zero values for SDO_LEVEL and SDO_
NUMTILES, resulting in two sets of tiles per geometry. One set contains
fixed-size tiles and the other set contains variable-sized tiles. Hybrid indexing is
not recommended for most spatial applications, and is described in Appendix B.

1.7.2.1 Tessellation of a Layer During Indexing
The process of determining which tiles cover a given geometry is called
tessellation. The tessellation process is a quadtree decomposition, where the
two-dimensional coordinate space is broken down into four covering tiles of equal
size. Successive tessellations divide those tiles that interact with the geometry down
into smaller tiles, and this process continues until the desired level or number of
tiles has been achieved. The results of the tessellation process on a geometry are
stored in a table, referred to as the SDOINDEX table.

The tiles at a particular level can be linearly sorted by systematically visiting tiles in
an order determined by a space-filling curve as shown in Figure 1–5. The tiles can
also be assigned unique numeric identifiers, known as Morton codes or z-values.
The terms tile and tile code will be used interchangeably in this and other sections
related to spatial indexing.
Spatial Concepts 1-15

Indexing of Spatial Data
Figure 1–5 Quadtree Decomposition and Morton Codes

1.7.2.2 Fixed Indexing
Fixed spatial indexing uses tiles of equal size to cover a geometry. Because all the
tiles are the same size, they all have codes of the same length, and the standard SQL
equality operator (=) can be used to compare tiles during a join operation. This
results in excellent performance characteristics.

Two geometries are likely to interact, and hence pass the primary filter stage, if they
share one or more tiles. The SQL statement for the primary filter stage is:

SELECT DISTINCT <select_list for geometry identifiers>
 FROM table1_sdoindex A, table2_sdoindex B
 WHERE A.sdo_code = B.sdo_code

The effectiveness and efficiency of this indexing method depends on the tiling level
and the variation in size of the geometries in the layer. If you select a small
fixed-size tile to cover small geometries and then try to use the same size tile to
cover a very large geometry, a large number of tiles would be required. However, if
the chosen tile size is large, so that fewer tiles are generated in the case of a large
geometry, then the index selectivity suffers because the large tiles do not
approximate the small geometries very well. Figure 1–6 and Figure 1–7 illustrate the
relationships between tile size, selectivity, and the number of cover tiles.

With a small fixed-size tile as shown in Figure 1–6, selectivity is good, but a large
number of tiles is needed to cover large geometries. A window query would easily
identify geometries A and B, but would reject C.
1-16 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
Figure 1–6 Fixed-Size Tiling with Many Small Tiles

With a large fixed-size tile as shown in Figure 1–7, fewer tiles are needed to cover
the geometries, but the selectivity is not as good. The same window query as in
Figure 1–6 would probably pick up all three geometries. Any object that shares tile
T1 or T2 would identify object C as a candidate, even though the objects may be far
apart, such as objects B and C are in Figure 1–7.
Spatial Concepts 1-17

Indexing of Spatial Data
Figure 1–7 Fixed-Size Tiling with Fewer Large Tiles

You can use the SDO_TUNE.ESTIMATE_TILING_LEVEL function or the tiling
wizard of the Spatial Index Advisor tool in Oracle Enterprise Manager to help
determine an appropriate tiling level for your data set.

Figure 1–8 illustrates geometry 1013 tessellated to three fixed-sized tiles at level 1.
The codes for these cover tiles are then stored in an SDOINDEX table.
1-18 Oracle Spatial User’s Guide and Reference

Indexing of Spatial Data
Figure 1–8 Tessellated Geometry

Only three of the four tiles generated by the first tessellation interact with the
geometry. Only those tiles that interact with the geometry are stored in the
SDOINDEX table, as shown in Table 1–2. In this example, three fixed-size tiles are
used. The table structure is shown for illustrative purposes only, because you
should not directly access the index tables.

All elements in a geometry are tessellated. In a multielement geometry such as 1013,
Element 1 is already covered by tile T2 from the tessellation of Element 0. If,
however, the specified tiling resolution was such that tile T2 was further subdivided

Table 1–2 SDOINDEX Table Using Fixed-Size Tiles

SDO_GID
<number>

SDO_CODE
<raw>

1013 T0

1013 T2

1013 T3
Spatial Concepts 1-19

Spatial Relations and Filtering
and one of these smaller tiles was completely contained in Element 1, then that tile
would be excluded because it would not interact with the geometry.

1.8 Spatial Relations and Filtering
Spatial uses secondary filters to determine the spatial relationship between entities
in the database. The spatial relation is based on geometry locations. The most
common spatial relations are based on topology and distance. For example, the
boundary of an area consists of a set of curves that separates the area from the rest of
the coordinate space. The interior of an area consists of all points in the area that are
not on its boundary. Given this, two areas are said to be adjacent if they share part
of a boundary but do not share any points in their interior.

The distance between two spatial objects is the minimum distance between any
points in them. Two objects are said to be within a given distance of one another if
their distance is less than the given distance.

To determine spatial relations, Spatial has several secondary filter methods:

■ The SDO_RELATE operator evaluates topological criteria.

■ The SDO_WITHIN_DISTANCE operator determines if two spatial objects are
within a specified distance of each other.

■ The SDO_NN operator identifies the nearest neighbors for a spatial object.

The syntax of these operators is given in Chapter 10.

The SDO_RELATE operator implements a 9-intersection model for categorizing
binary topological relations between points, lines, and polygons. Each spatial object
has an interior, a boundary, and an exterior. The boundary consists of points or lines
that separate the interior from the exterior. The boundary of a line consists of its end
points. The boundary of a polygon is the line that describes its perimeter. The
interior consists of points that are in the object but not on its boundary, and the
exterior consists of those points that are not in the object.

Given that an object A has 3 components (a boundary Ab, an interior Ai, and an
exterior Ae), any pair of objects has 9 possible interactions between their
components. Pairs of components have an empty (0) or a non-empty (1) set
intersection. The set of interactions between 2 geometries is represented by a
9-intersection matrix that specifies which pairs of components intersect and which
do not. Figure 1–9 shows the 9-intersection matrix for 2 polygons that are adjacent
to one another. This matrix yields the following bit mask, generated in row-major
form: “101001111”.
1-20 Oracle Spatial User’s Guide and Reference

Spatial Relations and Filtering
Figure 1–9 The 9-Intersection Model

Some of the topological relationships identified in the seminal work by Professor
Max Egenhofer (University of Maine, Orono) and colleagues have names associated
with them. Spatial uses the following names:

■ DISJOINT -- The boundaries and interiors do not intersect.

■ TOUCH -- The boundaries intersect but the interiors do not intersect.

■ OVERLAPBDYDISJOINT -- The interior of one object intersects the boundary
and interior of the other object, but the two boundaries do not intersect. This
relationship occurs, for example, when a line originates outside a polygon and
ends inside that polygon.

■ OVERLAPBDYINTERSECT -- The boundaries and interiors of the two objects
intersect.

■ EQUAL -- The two objects have the same boundary and interior.

■ CONTAINS -- The interior and boundary of one object is completely contained
in the interior of the other object.

■ COVERS -- The interior of one object is completely contained in the interior of
the other object and their boundaries intersect.

■ INSIDE -- The opposite of CONTAINS. A INSIDE B implies B CONTAINS A.

■ COVEREDBY -- The opposite of COVERS. A COVEREDBY B implies B
COVERS A.

■ ON -- The interior and boundary of one object is on the boundary of the other
object (and the second object covers the first object). This relationship occurs, for
example, when a line is on the boundary of a polygon.

■ ANYINTERACT -- The objects are non-disjoint.
Spatial Concepts 1-21

Spatial Relations and Filtering
Figure 1–10 illustrates these topological relationships.

Figure 1–10 Topological Relationships

The SDO_WITHIN_DISTANCE operator determines if two spatial objects, A and B,
are within a specified distance of one another. This operator first constructs a
distance buffer, Db, around the reference object B. It then checks that A and Db are
non-disjoint. The distance buffer of an object consists of all points within the given
distance from that object. Figure 1–11 shows the distance buffers for a point, a line,
and a polygon.

Figure 1–11 Distance Buffers for Points, Lines, and Polygons

In the geometries shown in Figure 1–11:
1-22 Oracle Spatial User’s Guide and Reference

Spatial Aggregate Functions
■ The dashed lines represent distance buffers. Notice how the buffer is rounded
near the corners of the objects.

■ The geometry on the right is a polygon with a hole: the large rectangle is the
exterior polygon ring and the small rectangle is the interior polygon ring (the
hole). The dashed line outside the large rectangle is the buffer for the exterior
ring, and the dashed line inside the small rectangle is the buffer for the interior
ring.

The SDO_NN operator returns a specified number of objects from a geometry
column that are closest to a specified geometry (for example, the five closest
restaurants to a city park). In determining how close two geometry objects are, the
shortest possible distance between any two points on the surface of each object is
used.

1.9 Spatial Aggregate Functions
SQL has long had aggregate functions, which are used to aggregate the results of a
SQL query. The following example uses the SUM aggregate function to aggregate
employee salaries by department:

SELECT SUM(salary), dept
 FROM employees
 GROUP BY dept;

Oracle Spatial aggregate functions aggregate the results of SQL queries involving
geometry objects. Spatial aggregate functions return a geometry object of type SDO_
GEOMETRY. For example, the following statement returns the minimum bounding
rectangle of all the geometries in a table (using the definitions and data from
Section 2.1):

SELECT SDO_AGGR_MBR(shape) FROM cola_markets;

The following example returns the union of all geometries except cola_d:

SELECT SDO_AGGR_UNION(MDSYS.SDOAGGRTYPE(c.shape, 0.005))
 FROM cola_markets c WHERE c.name < ’cola_d’;

All geometries used with spatial aggregate functions must be defined using 4-digit
SDO_GTYPE values (that is, must be in the format used by Oracle Spatial release
8.1.6 or higher). For information about SDO_GTYPE values, see Section 2.2.1.

For reference information about the spatial aggregate functions and examples of
their use, see Chapter 12.
Spatial Concepts 1-23

Spatial Aggregate Functions
1.9.1 SDOAGGRTYPE Object Type
Many spatial aggregate functions accept an input parameter of type
MDSYS.SDOAGGRTYPE. Oracle Spatial defines the object type SDOAGGRTYPE as:

CREATE TYPE sdoaggrtype AS OBJECT (
 geometry MDSYS.SDO_GEOMETRY,
 tolerance NUMBER);

The tolerance value in the SDOAGGRTYPE definition should be the same as the
SDO_TOLERANCE value specified in the DIMINFO in the xxx_SDO_GEOM_
METADATA views for the geometries, unless you have a specific reason for
wanting a different value. For more information about tolerance, see Section 1.5.5;
for information about the xxx_SDO_GEOM_METADATA views, see Section 2.4.

The tolerance value in the SDOAGGRTYPE definition can affect the result of a spatial
aggregate function. Figure 1–12 shows a spatial aggregate union (SDO_AGGR_
UNION) operation of two geometries using two different tolerance values: one
smaller and one larger than the distance between the geometries.

Figure 1–12 Tolerance in an Aggregate Union Operation

In the first aggregate union operation in Figure 1–12, where the tolerance is less
than the distance between the rectangles, the result is a compound geometry
consisting of two rectangles. In the second aggregate union operation, where the
tolerance is greater than the distance between the rectangles, the result is a single
geometry.

Note: Do not use SDOAGGRTYPE as the data type for a column
in a table. Use this type only in calls to spatial aggregate functions.
1-24 Oracle Spatial User’s Guide and Reference

Performance and Tuning Information
1.10 Geocoding
Geocoding is the process of converting tables of address data into standardized
address, location, and possibly other data. The result of a geocoding operation is the
pair of longitude and latitude coordinates that correspond with the input address or
location. For example, if the input address is 22 Monument Square, Concord, MA
01742, the result of the geocoding operation is -71.34937, 42.46101.

Given a geocoded address, you can then perform proximity or location queries
using a spatial engine, such as Oracle Spatial, or demographic analysis using tools
and data from Oracle’s business partners. In addition, geocoded data can be used
with other spatial data such as block group, postal code, and county code for
association with demographic information. Results of analyses or queries can be
presented as maps, in addition to tabular formats, using third-party software
integrated with Oracle Spatial.

Oracle Spatial is integrated with all major geocoding service providers. The usual
and recommended approach for application developers is to use the API for the
geocoding provider to obtain a geocoded result (longitude/latitude coordinate pair)
for an address, and then use these coordinates to construct an MDSYS.SDO_
GEOMETRY object for input to a spatial operator, function, or procedure.

1.11 Performance and Tuning Information
Many factors can affect the performance of Oracle Spatial applications, such as the
indexing method (R-tree or quadtree), the SOD_LEVEL value for a quadtree index,
and the use of optimizer hints to influence the plan for query execution. This guide
contains some information about performance and tuning where it is relevant to a
particular topic. For example, Section 1.7 includes performance-related items
among the considerations for choosing an R-tree or quadtree index.

In addition, more Spatial performance and tuning information is available in one or
more white papers through the Oracle Technology Network (OTN). That
information is often more detailed than what is in this guide, and it is periodically
updated as a result of internal testing and consultations with Spatial users. To find
that information on the OTN, go to

http://otn.oracle.com

Search for Spatial, and then search for white papers relevant to performance and
tuning.
Spatial Concepts 1-25

Spatial Release (Version) Number
1.12 Spatial Release (Version) Number
To check which release of Spatial you are running, use the SDO_VERSION function.
For example:

SELECT SDO_VERSION FROM DUAL;

SDO_VERSION
--
9.0.1

The SDO_VERSION function replaces the SDO_ADMIN.SDO_VERSION function,
which was available with the deprecated relational model of Oracle Spatial.

1.13 Spatial Application Hardware Requirement Considerations
This section discusses some general guidelines that affect the amount of disk
storage space and CPU power needed for spatial applications. They are not,
however, intended to replace any other guidelines you use for general application
sizing, but to supplement them.

The following characteristics of spatial applications can affect the need for storage
space and CPU power:

■ Data volumes: The amount of storage space needed for spatial objects depends
on their complexity (precision of representation and number of points for each
object). For example, storing one million point objects takes less space than
storing one million road segments or land parcels. Complex natural features
such as coastlines, seismic fault lines, rivers, and land types can require
significant storage space if they are stored at a high precision.

■ Query complexity: The CPU requirements for simple mapping queries, such as
Select all features in this rectangle, are lower than for more complex queries, such
as Find all seismic fault lines that cross this coastline.

1.14 Spatial Error Messages
Spatial error message numbers are in the range of 13000 to 13499. The messages are
documented in Oracle9i Database Error Messages.
1-26 Oracle Spatial User’s Guide and Reference

Spatial Examples
1.15 Spatial Examples
Oracle Spatial provides examples that you can use to reinforce your learning and to
create models for coding certain operations. Several examples are provided in the
following directory:

$ORACLE_HOME/md/demos/examples

The following files in that directory are helpful for applications that use the Oracle
Call Interface (OCI):

■ readgeom.c and readgeom.h

■ writegeom.c and writegeom.h

This guide also includes many examples in SQL and PL/SQL. One or more
examples are usually provided with the reference information for each function or
procedure, and several simplified examples are provided that illustrate table and
index creation, as well as several functions and procedures:

■ Inserting, indexing, and querying spatial data (Section 2.1)

■ Coordinate systems (spatial reference systems) (Section 5.8)

■ Linear referencing system (LRS) (Section 6.6)
Spatial Concepts 1-27

Spatial Examples
1-28 Oracle Spatial User’s Guide and Reference

Spatial Data Types and Met
2

Spatial Data Types and Metadata

The object-relational implementation of Oracle Spatial consists of a set of object data
types, type methods, and operators, functions, and procedures that use these types.
A geometry is stored as an object, in a single row, in a column of type SDO_
GEOMETRY. Spatial index creation and maintenance is done using basic DDL
(CREATE, ALTER, DROP) and DML (INSERT, UPDATE, DELETE) statements.

This chapter starts with a simple example that inserts, indexes, and queries spatial
data. You may find it helpful to read this example quickly before you examine the
detailed data type and metadata information later in the chapter.

This chapter contains the following major sections:

■ Section 2.1, "Simple Example: Inserting, Indexing, and Querying Spatial Data"

■ Section 2.2, "SDO_GEOMETRY Object Type"

■ Section 2.3, "Geometry Examples"

■ Section 2.4, "Geometry Metadata Structure"

■ Section 2.5, "Spatial Index-Related Structures"

■ Section 2.6, "Unit of Measurement Support"

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data
This section presents a simple example of creating a spatial table, inserting data,
creating the spatial index, and performing spatial queries. It refers to concepts that
were explained in Chapter 1 and that will be explained in other sections of this
chapter.

The scenario is a soft drink manufacturer that has identified geographical areas of
marketing interest for several products (colas). The colas could be those produced
adata 2-1

Simple Example: Inserting, Indexing, and Querying Spatial Data
by the company or by its competitors, or some combination. Each area of interest
could represent any user-defined criterion: for example, an area where that cola has
the majority market share, or where the cola is under competitive pressure, or
where the cola is believed to have significant growth potential. Each area could be a
neighborhood in a city, or a part of a state, province, or country.

Figure 2–1 shows the areas of interest for four colas.

Figure 2–1 Areas of Interest for Simple Example

Example 2–1 performs the following operations:

■ Creates a table (COLA_MARKETS) to hold the spatial data

■ Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d)

■ Updates the USER_SDO_GEOM_METADATA view to reflect the dimensional
information for the areas

■ Creates a spatial index (COLA_SPATIAL_IDX)

■ Performs some spatial queries

Many concepts and techniques in Example 2–1 are explained in detail in other
sections of this chapter.
2-2 Oracle Spatial User’s Guide and Reference

Simple Example: Inserting, Indexing, and Querying Spatial Data
Example 2–1 Simple Example: Inserting, Indexing, and Querying Spatial Data

-- Create a table for cola (soft drink) markets in a
-- given geography (such as city or state).
-- Each row will be an area of interest for a specific
-- cola (for example, where the cola is most preferred
-- by residents, where the manufacturer believes the
-- cola has growth potential, and so on).
-- (For restrictions on spatial table and column names, see
-- Section 2.4.1 and Section 2.4.2.)

CREATE TABLE cola_markets (
 mkt_id NUMBER PRIMARY KEY,
 name VARCHAR2(32),
 shape MDSYS.SDO_GEOMETRY);

-- The next INSERT statement creates an area of interest for
-- Cola A. This area happens to be a rectangle.
-- The area could represent any user-defined criterion: for
-- example, where Cola A is the preferred drink, where
-- Cola A is under competitive pressure, where Cola A
-- has strong growth potential, and so on.

INSERT INTO cola_markets VALUES(
 1,
 ’cola_a’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 MDSYS.SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right) with
 -- Cartesian-coordinate data
)
);

-- The next two INSERT statements create areas of interest for
-- Cola B and Cola C. These areas are simple polygons (but not
-- rectangles).

INSERT INTO cola_markets VALUES(
 2,
 ’cola_b’,
 MDSYS.SDO_GEOMETRY(
Spatial Data Types and Metadata 2-3

Simple Example: Inserting, Indexing, and Querying Spatial Data
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 MDSYS.SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
);

INSERT INTO cola_markets VALUES(
 3,
 ’cola_c’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 MDSYS.SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
);

-- Now insert an area of interest for Cola D. This is a
-- circle with a radius of 2. It is completely outside the
-- first three areas of interest.

INSERT INTO cola_markets VALUES(
 4,
 ’cola_d’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,4), -- one circle
 MDSYS.SDO_ORDINATE_ARRAY(8,7, 10,9, 8,11)
)
);

-- UPDATE METADATA VIEW --

-- Update the USER_SDO_GEOM_METADATA view. This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (that is, table-column combination; here: COLA_MARKETS and SHAPE).

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
2-4 Oracle Spatial User’s Guide and Reference

Simple Example: Inserting, Indexing, and Querying Spatial Data
 ’cola_markets’,
 ’shape’,
 MDSYS.SDO_DIM_ARRAY(-- 20X20 grid
 MDSYS.SDO_DIM_ELEMENT(’X’, 0, 20, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 20, 0.005)
),
 NULL -- SRID
);

-- CREATE THE SPATIAL INDEX --

CREATE INDEX cola_spatial_idx
ON cola_markets(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;
-- Preceding created an R-tree index.
-- Following line was for an earlier quadtree index:
-- PARAMETERS(’SDO_LEVEL = 8’);

-- PERFORM SOME SPATIAL QUERIES --

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_INTERSECTION(c_a.shape, c_c.shape, 0.005)
 FROM cola_markets c_a, cola_markets c_c
 WHERE c_a.name = 'cola_a' AND c_c.name = 'cola_c';

-- Do two geometries have any spatial relationship?
SELECT SDO_GEOM.RELATE(c_b.shape, 'anyinteract', c_d.shape, 0.005)
 FROM cola_markets c_b, cola_markets c_d
 WHERE c_b.name = 'cola_b' AND c_d.name = 'cola_d';

-- Return the areas of all cola markets.
SELECT name, SDO_GEOM.SDO_AREA(shape, 0.005) FROM cola_markets;

-- Return the area of just cola_a.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, 0.005) FROM cola_markets c
 WHERE c.name = 'cola_a';

-- Return the distance between two geometries.
SELECT SDO_GEOM.SDO_DISTANCE(c_b.shape, c_d.shape, 0.005)
 FROM cola_markets c_b, cola_markets c_d
 WHERE c_b.name = 'cola_b' AND c_d.name = 'cola_d';

-- Is a geometry valid?
Spatial Data Types and Metadata 2-5

SDO_GEOMETRY Object Type
SELECT c.name, SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(c.shape, 0.005)
 FROM cola_markets c WHERE c.name = ’cola_c’;

-- Is a layer valid? (First, create the results table.)
CREATE TABLE val_results (sdo_rowid ROWID, result VARCHAR2(2000));
EXECUTE SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT(’COLA_MARKETS’, ’SHAPE’,
 ’VAL_RESULTS’, 2);
SELECT * from val_results;

2.2 SDO_GEOMETRY Object Type
In the Spatial object-relational model, the geometric description of a spatial object is
stored in a single row, in a single column of object type SDO_GEOMETRY in a
user-defined table. Any table that has a column of type SDO_GEOMETRY must
have another column, or set of columns, that defines a unique primary key for that
table. Tables of this sort are sometimes referred to as geometry tables.

Oracle Spatial defines the object type SDO_GEOMETRY as:

CREATE TYPE sdo_geometry AS OBJECT (
 SDO_GTYPE NUMBER,
 SDO_SRID NUMBER,
 SDO_POINT SDO_POINT_TYPE,
 SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY,
 SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY);

Oracle Spatial also defines the SDO_POINT_TYPE, SDO_ELEM_INFO_ARRAY, and
SDO_ORDINATE_ARRAY types, which are used in the SDO_GEOMETRY type
definition, as follows:

CREATE TYPE sdo_point_type AS OBJECT (
 X NUMBER,
 Y NUMBER,
 Z NUMBER);
CREATE TYPE sdo_elem_info_array AS VARRAY (1048576) of NUMBER;
CREATE TYPE sdo_ordinate_array AS VARRAY (1048576) of NUMBER;

The sections that follow describe the semantics of each SDO_GEOMETRY attribute,
and then describe some usage considerations (Section 2.2.6).

The SDO_GEOMETRY object type has methods that provide convenient access to
some of the attributes. These methods are described in Chapter 9.
2-6 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Object Type
2.2.1 SDO_GTYPE
SDO_GTYPE indicates the type of the geometry. Valid geometry types correspond
to those specified in the Geometry Object Model for the OGIS Simple Features for SQL
specification (with the exception of Surfaces.) The numeric values differ from those
given in the OGIS specification, but there is a direct correspondence between the
names and semantics where applicable.

The SDO_GTYPE value is 4 digits in the format dltt, where:

■ d identifies the number of dimensions (2, 3, or 4)

■ l identifies the linear referencing measure dimension for a three-dimensional
linear referencing system (LRS) geometry, that is, which dimension (3 or 4)
contains the measure value. For a non-LRS geometry, or to accept the Spatial
default of the last dimension as the measure for an LRS geometry, specify 0. For
information about the linear referencing system (LRS), see Chapter 6.

■ tt identifies the geometry type (00 through 07, with 08 through 99 reserved for
future use).

Table 2–1 shows the valid SDO_GTYPE values. The Geometry Type and Description
values reflect the OGIS specification.

Table 2–1 Valid SDO_GTYPE Values

Value Geometry Type Description

dl00 UNKNOWN_
GEOMETRY

Spatial ignores this geometry.

dl01 POINT Geometry contains one point.

dl02 LINE or CURVE Geometry contains one line string that can contain
straight or circular arc segments, or both. (LINE and
CURVE are synonymous in this context.)

dl03 POLYGON Geometry contains one polygon with or without holes.1

dl04 COLLECTION Geometry is a heterogeneous collection of elements.2
COLLECTION is a superset that includes all other
types.

dl05 MULTIPOINT Geometry has one or more points. (MULTIPOINT is a
superset of POINT.)

dl06 MULTILINE or
MULTICURVE

Geometry has one or more line strings. (MULTILINE
and MULTICURVE are synonymous in this context,
and each is a superset of both LINE and CURVE.)
Spatial Data Types and Metadata 2-7

SDO_GEOMETRY Object Type
The d in the Value column of Table 2–1 is the number of dimensions: 2, 3, or 4. For
example, an SDO_GTYPE value of 2003 indicates a two-dimensional polygon.

The number of dimensions reflects the number of ordinates used to represent each
vertex (for example, X,Y for two-dimensional objects). Points and lines are
considered two-dimensional objects. (However, see Section 6.2 for dimension
information about LRS points.)

In any given layer (column), all geometries must have the same number of
dimensions. For example, you cannot mix two-dimensional and three-dimensional
data in the same layer.

The following methods are available for returning the individual dltt components of
the SDO_GTYPE for a geometry object: GET_DIMS, GET_LRS_DIM, and GET_
GTYPE. These methods are described in Chapter 9.

2.2.2 SDO_SRID
SDO_SRID can be used to identify a coordinate system (spatial reference system) to
be associated with the geometry. If SDO_SRID is null, no coordinate system is
associated with the geometry. If SDO_SRID is not null, it must contain a value from
the SRID column of the MDSYS.CS_SRS table (described in Section 5.4.1), and this

dl07 MULTIPOLYGON Geometry can have multiple, disjoint polygons (more
than one exterior boundary). (MULTIPOLYGON is a
superset of POLYGON.)

1 For a polygon with holes, enter the exterior boundary first, followed by any interior boundaries.
2 Polygons in the collection can be disjoint.

Note: The pre-release 8.1.6 format of a 1-digit SDO_GTYPE value
is still supported. If a 1-digit value is used, however, Oracle Spatial
determines the number of dimensions from the DIMINFO column
of the metadata views described in Section 2.4.

Also, if 1-digit SDO_GTYPE values are converted to 4-digit values,
any SDO_ETYPE values that end in 3 or 5 in the SDO_ELEM_INFO
array (described in Section 2.2.4) must also be converted.

Table 2–1 Valid SDO_GTYPE Values

Value Geometry Type Description
2-8 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Object Type
value must be inserted into the SRID column of the USER_SDO_GEOM_
METADATA view (described in Section 2.4).

All geometries in a geometry column must have the same SDO_SRID value.

For information about coordinate systems, see Chapter 5.

2.2.3 SDO_POINT
SDO_POINT is defined using the SDO_POINT_TYPE object type, which has the
attributes X, Y, and Z, all of type NUMBER. (The SDO_POINT_TYPE definition is
shown in Section 2.2.) If the SDO_ELEM_INFO and SDO_ORDINATES arrays are
both null, and the SDO_POINT attribute is non-null, then the X and Y values are
considered to be the coordinates for a point geometry. Otherwise, the SDO_POINT
attribute is ignored by Spatial. You should store point geometries in the SDO_
POINT attribute for optimal storage; and if you have only point geometries in a
layer, it is strongly recommended that you store the point geometries in the SDO_
POINT attribute.

Section 2.3.5 illustrates a point geometry and provides examples of inserting and
querying point geometries.

2.2.4 SDO_ELEM_INFO
SDO_ELEM_INFO is defined using a varying length array of numbers. This
attribute lets you know how to interpret the ordinates stored in the SDO_
ORDINATES attribute (described in Section 2.2.5).

Each triplet set of numbers is interpreted as follows:

■ SDO_STARTING_OFFSET -- Indicates the offset within the SDO_ORDINATES
array where the first ordinate for this element is stored. Offset values start at 1
and not at 0. Thus, the first ordinate for the first element will be at SDO_
GEOMETRY.SDO_ORDINATES(1). If there is a second element, its first ordinate
will be at SDO_GEOMETRY.SDO_ORDINATES(n), where n reflects the position
within the SDO_ORDINATE_ARRAY definition (for example, 19 for the 19th
number, as in Figure 2–3 later in this chapter).

Note: Do not use the SDO_POINT attribute in defining a linear
referencing system (LRS) point. For information about LRS, see
Chapter 6.
Spatial Data Types and Metadata 2-9

SDO_GEOMETRY Object Type
■ SDO_ETYPE - Indicates the type of the element. Valid values are shown in
Table 2–2.

SDO_ETYPE values 1, 2, 1003, and 2003 are considered simple elements. They are
defined by a single triplet entry in the SDO_ELEM_INFO array. For SDO_
ETYPE values 1003 and 2003, the first digit indicates exterior (1) or interior (2):

1003: exterior polygon ring (must be specified in counterclockwise order)

2003: interior polygon ring (must be specified in clockwise order)

SDO_ETYPE values 4, 1005, and 2005 considered compound elements. They
contain at least one header triplet with a series of triplet values that belong to
the compound element. For SDO_ETYPE values 1005 and 2005, the first digit
indicates exterior (1) or interior (2):

1005: exterior polygon ring (must be specified in counterclockwise order)

2005: interior polygon ring (must be specified in clockwise order)

Note: The use of 3 as an SDO_ETYPE value for polygon ring
elements in a single geometry is discouraged. You should specify 3
only if you do not know if the simple polygon is exterior or interior,
and you should then migrate the table or layer to the current format
using the SDO_MIGRATE.TO_CURRENT procedure, described in
Chapter 15.

You cannot mix 1-digit and 4-digit SDO_ETYPE values in a single
geometry. If you use 4-digit SDO_ETYPE values, you must use
4-digit SDO_GTYPE values.

Note: The use of 5 as an SDO_ETYPE value for polygon ring
elements in a single geometry is discouraged. You should specify 5
only if you do not know if the compound polygon is exterior or
interior, and you should then migrate the table or layer to the
current format using the SDO_MIGRATE.TO_CURRENT
procedure, described in Chapter 15.

You cannot mix 1-digit and 4-digit SDO_ETYPE values in a single
geometry. If you use 4-digit SDO_ETYPE values, you must use
4-digit SDO_GTYPE values.
2-10 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Object Type
The elements of a compound element are contiguous. The last point of a
subelement in a compound element is the first point of the next subelement.
The point is not repeated.

■ SDO_INTERPRETATION - Means one of two things, depending on whether or
not SDO_ETYPE is a compound element.

If SDO_ETYPE is a compound element (4, 1005, or 2005), this field specifies how
many subsequent triplet values are part of the element.

If the SDO_ETYPE is not a compound element (1, 2, 1003, or 2003), the
interpretation attribute determines how the sequence of ordinates for this
element is interpreted. For example, a line string or polygon boundary may be
made up of a sequence of connected straight line segments or circular arcs.

Descriptions of valid SDO_ETYPE and SDO_INTERPRETATION value pairs
are given in Table 2–2.

If a geometry consists of more than one element, then the last ordinate for an
element is always one less than the starting offset for the next element. The last
element in the geometry is described by the ordinates from its starting offset to the
end of the SDO_ORDINATES varying length array.

For compound elements (SDO_ETYPE values 4 and 5), a set of n triplets (one for
each subelement) is used to describe the element. It is important to remember that
subelements of a compound element are contiguous. The last point of a subelement
is the first point of the next subelement. For subelements 1 through n-1, the end
point of one subelement is the same as the starting point of the next subelement.
The starting point for subelements 2...n-2 is the same as the end point of subelement
1...n-1. The last ordinate of subelement n is either the starting offset minus 1 of the
next element in the geometry, or the last ordinate in the SDO_ORDINATES varying
length array.

The current size of a varying length array can be determined by using the function
varray_variable.Count in PL/SQL or OCIColSize in the Oracle Call Interface (OCI).

The semantics of each SDO_ETYPE element and the relationship between the SDO_
ELEM_INFO and SDO_ORDINATES varying length arrays for each of these SDO_
ETYPE elements are given in Table 2–2.
Spatial Data Types and Metadata 2-11

SDO_GEOMETRY Object Type
Table 2–2 Values and Semantics in SDO_ELEM_INFO

SDO_
ETYPE

SDO_
INTERPRETATION Meaning

0 (any numeric
value)

Type 0 (zero) element. Used to model geometry types not
supported by Oracle Spatial. For more information, see
Section 2.3.6.

1 1 Point type.

1 n > 1 Point cluster with n points.

2 1 Line string whose vertices are connected by straight line
segments.

2 2 Line string made up of a connected sequence of circular arcs.

Each circular arc is described using three coordinates: the
arc’s start point, any point on the arc, and the arc’s end point.
The coordinates for a point designating the end of one arc
and the start of the next arc are not repeated. For example,
five coordinates are used to describe a line string made up of
two connected circular arcs. Points 1, 2, and 3 define the first
arc, and points 3, 4, and 5 define the second arc, where point
3 is only stored once.

1003 or
2003

1 Simple polygon whose vertices are connected by straight line
segments. Note that you must specify a point for each vertex,
and the last point specified must be identical to the first (to
close the polygon). For example, for a 4-sided polygon,
specify 5 points, with point 5 the same as point 1.

1003 or
2003

2 Polygon made up of a connected sequence of circular arcs
that closes on itself. The end point of the last arc is the same
as the start point of the first arc.

Each circular arc is described using three coordinates: the
arc’s start point, any point on the arc, and the arc’s end point.
The coordinates for a point designating the end of one arc
and the start of the next arc are not repeated. For example,
five coordinates are used to describe a polygon made up of
two connected circular arcs. Points 1, 2, and 3 define the first
arc, and points 3, 4, and 5 define the second arc. The
coordinates for points 1 and 5 must be the same, and point 3
is not repeated.
2-12 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Object Type
1003 or
2003

3 Rectangle type (sometimes called optimized rectangle). A
bounding rectangle such that only two points, the lower-left
and the upper-right, are required to describe it.

Using this type (that is, defining a rectangle using only two
points) is not supported for geodetic data; it is supported
only for data associated with a Cartesian coordinate system.
With geodetic data, define a rectangle using 5 points (with
point 5 the same as point 1) and an SDO_INTERPRETATION
value of 1. (You can also use the SDO_CS.VIEWPORT_
TRANSFORM function to convert optimized rectangles to
valid geodetic rectangles for use with the SDO_FILTER
operator.)

1003 or
2003

4 Circle type. Described by three points, all on the
circumference of the circle.

4 n > 1 Compound line string with some vertices connected by
straight line segments and some by circular arcs. The value, n,
in the Interpretation column specifies the number of
contiguous subelements that make up the line string.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The last point of a subelement is the first
point of the next subelement, and must not be repeated.

See Section 2.3.3 and Figure 2–4 for an example of a geometry
using this type.

1005 or
2005

n > 1 Compound polygon with some vertices connected by straight
line segments and some by circular arcs. The value, n, in the
Interpretation column specifies the number of contiguous
subelements that make up the polygon.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The end point of a subelement is the start
point of the next subelement, and it must not be repeated.
The start and end points of the polygon must be the same.

See Section 2.3.4 and Figure 2–5 for an example of a geometry
using this type.

Table 2–2 Values and Semantics in SDO_ELEM_INFO (Cont.)

SDO_
ETYPE

SDO_
INTERPRETATION Meaning
Spatial Data Types and Metadata 2-13

Geometry Examples
2.2.5 SDO_ORDINATES
SDO_ORDINATES is defined using a varying length array (1048576) of NUMBER
type that stores the coordinate values that make up the boundary of a spatial object.
This array must always be used in conjunction with the SDO_ELEM_INFO varying
length array. The values in the array are ordered by dimension. For example, a
polygon whose boundary has four two-dimensional points is stored as {X1, Y1, X2,
Y2, X3, Y3, X4, Y4, X1, Y1}. If the points are 3-dimensional, then they are stored as
{X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4, X1, Y1, Z1}. Spatial index creation,
operators, and functions ignore the Z values because this release of the product
supports only two-dimensional spatial objects. The number of dimensions
associated with each point is stored as metadata in the xxx_SDO_GEOM_
METADATA views, described in Section 2.4.

The values in the SDO_ORDINATES array must all be valid and non-null. There are
no special values used to delimit elements in a multielement geometry. The start
and end points for the sequence describing a specific element are determined by the
STARTING_OFFSET values for that element and the next element in the SDO_
ELEM_INFO array as explained previously. The offset values start at 1. SDO_
ORDINATES(1) is the first ordinate of the first point of the first element.

2.2.6 Usage Considerations
You should use the SDO_GTYPE values as shown in Table 2–1; however, Spatial
does not check or enforce all geometry consistency constraints. Spatial does check
the following:

■ For SDO_GTYPE values d001 and d005, any subelement not of SDO_ETYPE 1 is
ignored.

■ For SDO_GTYPE values d002 and d006, any subelement not of SDO_ETYPE 2 or
4 is ignored.

■ For SDO_GTYPE values d003 and d007, any subelement not of SDO_ETYPE 3 or
5 is ignored. (This includes SDO_ETYPE variants 1003, 2003, 1005, and 2005,
which are explained in Section 2.2.4).

The SDO_GEOM.VALIDATE_GEOMETRY function can be used to evaluate the
consistency of a single geometry object or all the instances of SDO_GEOMETRY in a
specified feature table.

2.3 Geometry Examples
This section contains examples of several geometry types.
2-14 Oracle Spatial User’s Guide and Reference

Geometry Examples
2.3.1 Rectangle
Figure 2–2 illustrates the rectangle that represents cola_a in the example in
Section 2.1.

Figure 2–2 Rectangle

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–2:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1, 1003, 3). The final 3 in 1,1003,3 indicates that this is a
rectangle. Because it is a rectangle, only two ordinates are specified in SDO_
ORDINATES (lower-left and upper-right).

■ SDO_ORDINATES = (1,1, 5,7). These identify the lower-left and upper-right
ordinates of the rectangle.

Example 2–2 shows a SQL statement that inserts the geometry illustrated in
Figure 2–2 into the database.

Example 2–2 SQL Statement to Insert a Rectangle

INSERT INTO cola_markets VALUES(
 1,
 ’cola_a’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
Spatial Data Types and Metadata 2-15

Geometry Examples
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 MDSYS.SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right) with
 -- Cartesian-coordinate data
)
);

2.3.2 Polygon with a Hole
Figure 2–3 illustrates a polygon consisting of two elements: an exterior polygon ring
and an interior polygon ring. The inner element in this example is treated as a void
(a hole).

Figure 2–3 Polygon with a Hole

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–3:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.
2-16 Oracle Spatial User’s Guide and Reference

Geometry Examples
■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1003,1, 19,2003,1). There are two triplet elements:
1,1003,1 and 19,2003,1.

1003 indicates that the element is an exterior polygon ring; 2003 indicates that
the element is an interior polygon ring.

19 indicates that the second element (the interior polygon ring) ordinate
specification starts at the 19th number in the SDO_ORDINATES array (that is, 7,
meaning that the first point is 7,5).

■ SDO_ORDINATES = (2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
7,5, 7,10, 10,10, 10,5, 7,5).

■ The area (SDO_GEOM.SDO_AREA function) of the polygon is the area of the
exterior polygon minus the area of the interior polygon. In this example, the
area is 84 (99 - 15).

■ The perimeter (SDO_GEOM.SDO_LENGTH function) of the polygon is the
perimeter of the exterior polygon plus the perimeter of the interior polygon. In
this example, the perimeter is 52.9193065 (36.9193065 + 16).

Example 2–3 shows a SQL statement that inserts the geometry illustrated in
Figure 2–3 into the database.

Example 2–3 SQL Statement to Insert a Polygon with a Hole

INSERT INTO cola_markets VALUES(
 10,
 ’polygon_with_hole’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1, 19,2003,1), -- polygon with hole
 MDSYS.SDO_ORDINATE_ARRAY(2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
 7,5, 7,10, 10,10, 10,5, 7,5)
)
);

An example of such a "polygon with a hole" might be a land mass (such as a
country or an island) with a lake inside it. Of course, an actual land mass might
have many such interior polygons: each one would require a triplet element in
SDO_ELEM_INFO, plus the necessary ordinate specification.
Spatial Data Types and Metadata 2-17

Geometry Examples
Exterior and interior rings cannot be nested. For example, if a country has a lake
and there is an island in the lake (and perhaps a lake on the island), a separate
polygon must be defined for the island; the island cannot be defined as an interior
polygon ring within the interior polygon ring of the lake.

In a multipolygon (polygon collection), rings must be grouped by polygon, and the
first ring of each polygon must be the exterior ring. For example, consider a
polygon collection that contains two polygons (A and B):

■ Polygon A (one interior "hole"): exterior ring A0, interior ring A1

■ Polygon B (two interior "holes"): exterior ring B0, interior ring B1, interior ring
B2

The elements in SDO_ELEM_INFO and SDO_ORDINATES must be in one of the
following orders (depending on whether you specify Polygon A or Polygon B first):

■ A0, A1; B0, B1, B2

■ B0, B1, B2; A0, A1

2.3.3 Compound Line String
Figure 2–4 illustrates a crescent-shaped object represented as a compound line
string made up of one straight line segment and one circular arc. Four points are
required to represent this shape: points (10,10) and (10,14) describe the straight line
segment, and points (10,14), (10,6), and (14,10) describe the circular arc.
2-18 Oracle Spatial User’s Guide and Reference

Geometry Examples
Figure 2–4 Compound Line String

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–4:

■ SDO_GTYPE = 2002. The first 2 indicates two-dimensional, and the second 2
indicates one or more line segments.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,4,2, 1,2,1, 3,2,2). There are three triplet elements: 1,4,2,
1,2,1, and 3,2,2.

The first triplet indicates that this element is a compound line string made up of
two subelement line strings, which are described with the next two triplets.

The second triplet indicates that the line string is made up of straight line
segments and that the ordinates for this line string start at offset 1. The end
point of this line string is determined by the starting offset of the second line
string, 3 in this instance.

The third triplet indicates that the second line string is made up of circular arcs
with ordinates starting at offset 3. The end point of this line string is determined
Spatial Data Types and Metadata 2-19

Geometry Examples
by the starting offset of the next element or the current length of the SDO_
ORDINATES array, if this is the last element.

■ SDO_ORDINATES = (10,10, 10,14, 6,10, 14,10).

Example 2–4 shows a SQL statement that inserts the geometry illustrated in
Figure 2–4 into the database.

Example 2–4 SQL Statement to Insert a Compound Line String

INSERT INTO cola_markets VALUES(
 11,
 ’compound_line_string’,
 MDSYS.SDO_GEOMETRY(
 2002,
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,4,2, 1,2,1, 3,2,2), -- compound line string
 MDSYS.SDO_ORDINATE_ARRAY(10,10, 10,14, 6,10, 14,10)
)
);

2.3.4 Compound Polygon
Figure 2–5 illustrates an ice cream cone-shaped object represented as a compound
polygon made up of one straight line segment and one circular arc. Five points are
required to represent this shape: points (6,10), (10,1), and (14,10) describe one acute
angle-shaped line string, and points (14,10), (10,14), and (6,10) describe the circular
arc. The starting point of the line string and the ending point of the circular arc are
the same point (6,10). The SDO_ELEM_INFO array contains three triplets for this
compound line string. These triplets are {(1,1005,2), (1,2,1), (5,2,2)}.
2-20 Oracle Spatial User’s Guide and Reference

Geometry Examples
Figure 2–5 Compound Polygon

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–5:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1005,2, 1,2,1, 5,2,2). There are three triplet elements:
1,1005,2, 1,2,1, and 5,2,2.

The first triplet indicates that this element is a compound polygon made up of
two subelement line strings, which are described using the next two triplets.

The second triplet indicates that the first subelement line string is made up of
straight line segments and that the ordinates for this line string start at offset 1.
The end point of this line string is determined by the starting offset of the
second line string, 5 in this instance. Because the vertices are 2-dimensional, the
coordinates for the end point of the first line string are at ordinates 5 and 6.
Spatial Data Types and Metadata 2-21

Geometry Examples
The third triplet indicates that the second subelement line string is made up of a
circular arc with ordinates starting at offset 5. The end point of this line string is
determined by the starting offset of the next element or the current length of the
SDO_ORDINATES array, if this is the last element.

■ SDO_ORDINATES = (6,10, 10,1, 14,10, 10,14, 6,10).

Example 2–5 shows a SQL statement that inserts the geometry illustrated in
Figure 2–5 into the database.

Example 2–5 SQL Statement to Insert a Compound Polygon

INSERT INTO cola_markets VALUES(
 12,
 ’compound_polygon’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1005,2, 1,2,1, 5,2,2), -- compound polygon
 MDSYS.SDO_ORDINATE_ARRAY(6,10, 10,1, 14,10, 10,14, 6,10)
)
);

2.3.5 Point
Figure 2–6 illustrates a point-only geometry at coordinates (12,14).
2-22 Oracle Spatial User’s Guide and Reference

Geometry Examples
Figure 2–6 Point-Only Geometry

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–6:

■ SDO_GTYPE = 2001. The 2 indicates two-dimensional, and the 1 indicates a
single point.

■ SDO_SRID = NULL.

■ SDO_POINT = MDSYS.SDO_POINT_TYPE(12, 14, NULL). The SDO_POINT
attribute is defined using the SDO_POINT_TYPE object type, because this is a
point-only geometry.

For more information about the SDO_POINT attribute, see Section 2.2.3.

■ SDO_ELEM_INFO and SDO_ORDINATES are both NULL, as required if the
SDO_POINT attribute is specified.

Example 2–6 shows a SQL statement that inserts the geometry illustrated in
Figure 2–6 into the database.

Example 2–6 SQL Statement to Insert a Point-Only Geometry

INSERT INTO cola_markets VALUES(
Spatial Data Types and Metadata 2-23

Geometry Examples
 90,
 ’point_only’,
 MDSYS.SDO_GEOMETRY(
 2001,
 NULL,
 MDSYS.SDO_POINT_TYPE(12, 14, NULL),
 NULL,
 NULL));

You can search for point-only geometries based on the X, Y, and Z values in the
SDO_POINT_TYPE specification. Example 2–7 is a query that asks for all points
whose first coordinate (the X value) is 12, and it finds the point that was inserted in
Example 2–6.

Example 2–7 Query for Point-Only Geometry Based on a Coordinate Value

SELECT * from cola_markets c WHERE c.shape.SDO_POINT.X = 12;

 MKT_ID NAME
---------- --------------------------------
SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
 90 point_only
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(12, 14, NULL), NULL, NULL)

2.3.6 Type 0 (Zero) Element
Type 0 (zero) elements are used to model geometry types that are not supported by
Oracle Spatial, such as curves and splines. A type 0 element has an SDO_ETYPE
value of 0. (See Section 2.2.4 for information about the SDO_ETYPE.) Type 0
elements are not indexed by Oracle Spatial, and they are ignored by Spatial
functions and procedures.

Geometries with type 0 elements must contain at least one nonzero element, that is,
an element with an SDO_ETYPE value that is not 0. The nonzero element should be
an approximation of the unsupported geometry, and therefore it must have both:

■ An SDO_ETYPE value associated with a geometry type supported by Spatial

■ An SDO_INTERPRETATION value that is valid for the SDO_ETYPE value (see
Table 2–2)

(The SDO_INTERPRETATION value for the type 0 element can be any numeric
value, and applications are responsible for determining the validity and
significance of the value.)
2-24 Oracle Spatial User’s Guide and Reference

Geometry Examples
The nonzero element is indexed by Spatial, and it will be returned by the spatial
index.

The SDO_GTYPE value for a geometry containing a type 0 element must be set to
the value for the geometry type of the nonzero element.

Figure 2–7 shows a geometry with two elements: a curve (unsupported geometry)
and a rectangle (the nonzero element) that approximates the curve. The curve looks
like the letter S, and the rectangle is represented by the dashed line.

Figure 2–7 Geometry with Type 0 (Zero) Element

In the example shown in Figure 2–7:

■ The SDO_GTYPE value for the geometry is 2003 (for a two-dimensional
polygon).

■ The SDO_ELEM_INFO array contains two triplets for this compound line
string. For example, the triplets might be {(1,0,57), (11,1003,3)}. That is:

In this example:

■ The type 0 element has an SDO_ETYPE value of 0.

■ The nonzero element (rectangle) has an SDO_ETYPE value of 1003, indicating
an exterior polygon ring.

Ordinate Starting Offset
(SDO_STARTING_OFFSET)

Element Type
(SDO_ETYPE)

Interpretation
(SDO_INTERPRETATION)

1 0 57

11 1003 3
Spatial Data Types and Metadata 2-25

Geometry Metadata Structure
■ The nonzero element has an SDO_STARTING_OFFSET value of 11 because
ordinate x6 is the eleventh ordinate in the geometry.

■ The type 0 element has an SDO_INTERPRETATION value whose significance is
application-specific. In this example, the SDO_INTERPRETATION value is 57.

■ The nonzero element has an SDO_INTERPRETATION value that is valid for the
SDO_ETYPE of 1003. In this example, the SDO_INTERPRETATION value is 3,
indicating a rectangle defined by two points (lower-left and upper-right).

Example 2–8 shows a SQL statement that inserts the geometry with a type 0 element
(similar to the geometry illustrated in Figure 2–7) into the database. In the SDO_
ORDINATE_ARRAY structure, the curve is defined by points (6,6), (12,6), (9,8),
(6,10), and (12,10), and the rectangle is defined by points (6,4) and (12,12).

Example 2–8 SQL Statement to Insert a Geometry with a Type 0 Element

INSERT INTO cola_markets VALUES(
 13,
 ’type_zero_element_geom’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,0,57, 11,1003,3), -- 1st is type 0 element
 MDSYS.SDO_ORDINATE_ARRAY(6,6, 12,6, 9,8, 6,10, 12,10, 6,4, 12,12)
)
);

2.4 Geometry Metadata Structure
The geometry metadata describing the dimensions, lower and upper bounds, and
tolerance in each dimension is stored in a global table owned by MDSYS (which
users should never directly update). Each Spatial user has the following views
available in the schema associated with that user:

■ USER_SDO_GEOM_METADATA contains metadata information for all spatial
tables owned by the user (schema). This is the only view that you can update,
and it is the one in which Spatial users must insert metadata related to spatial
tables.

■ ALL_SDO_GEOM_METADATA contains metadata information for all spatial
tables on which the user has SELECT permission.
2-26 Oracle Spatial User’s Guide and Reference

Geometry Metadata Structure
■ DBA_SDO_GEOM_METADATA contains metadata information for all spatial
tables on which the user has SELECT permission if the user has the DBA role.

Spatial users are responsible for populating these views. For each spatial column,
you must insert an appropriate row into the USER_SDO_GEOM_METADATA view.
Oracle Spatial ensures that the other two views (ALL_SDO_GEOM_METADATA
and DBA_SDO_GEOM_METADATA) are also updated to reflect the rows that you
insert into USER_SDO_GEOM_METADATA.

Each metadata view has the following definition:

(
 TABLE_NAME VARCHAR2(32),
 COLUMN_NAME VARCHAR2(32),
 DIMINFO MDSYS.SDO_DIM_ARRAY,
 SRID NUMBER
);

In addition, the ALL_SDO_GEOM_METADATA and DBA_SDO_GEOM_
METADATA views have an OWNER column identifying the schema that owns the
table specified in TABLE_NAME.

2.4.1 TABLE_NAME
The TABLE_NAME column contains the name of a feature table, such as COLA_
MARKETS, that has a column of type SDO_GEOMETRY.

The table name is stored in the spatial metadata views in all uppercase characters.

The table name cannot contain spaces or mixed-case letters in a quoted string when
inserted into the USER_SDO_GEOM_METADATA view, and it cannot be in a
quoted string when used in a query (unless it is in all uppercase characters).

The spatial feature table cannot be an index-organized table if you plan to create a
spatial index on the spatial column.

Note: These views were new for release 8.1.6. If you are migrating
from an earlier release of Spatial, see Appendix A and the
information about the SDO_MIGRATE.TO_CURRENT procedure
in Chapter 15.
Spatial Data Types and Metadata 2-27

Geometry Metadata Structure
2.4.2 COLUMN_NAME
The COLUMN_NAME column contains the name of the column of type SDO_
GEOMETRY. For the COLA_MARKETS table, this column is called SHAPE.

The column name is stored in the spatial metadata views in all uppercase
characters.

The column name cannot contain spaces or mixed-case letters in a quoted string
when inserted into the USER_SDO_GEOM_METADATA view, and it cannot be in a
quoted string when used in a query (unless it is in all uppercase characters).

2.4.3 DIMINFO
The DIMINFO column is a varying length array of an object type, ordered by
dimension, and has one entry for each dimension. The SDO_DIM_ARRAY type is
defined as follows:

Create Type SDO_DIM_ARRAY as VARRAY(4) of SDO_DIM_ELEMENT;

The SDO_DIM_ELEMENT type is defined as:

Create Type SDO_DIM_ELEMENT as OBJECT (
 SDO_DIMNAME VARCHAR2(64),
 SDO_LB NUMBER,
 SDO_UB NUMBER,
 SDO_TOLERANCE NUMBER);

The SDO_DIM_ARRAY instance is of size n if there are n dimensions. That is,
DIMINFO contains 2 SDO_DIM_ELEMENT instances for two-dimensional
geometries, 3 instances for three-dimensional geometries, and 4 instances for
four-dimensional geometries. Each SDO_DIM_ELEMENT instance in the array
must have valid (not null) values for the SDO_LB, SDO_UB, and SDO_
TOLERANCE attributes.

For an explanation of tolerance and how to determine the appropriate SDO_
TOLERANCE value, see Section 1.5.5, especially Section 1.5.5.1.

Spatial assumes that the varying length array is ordered by dimension. The
DIMINFO varying length array must be ordered by dimension in the same way the

Note: The number of dimensions reflected in the DIMINFO
information must match the number of dimensions of each
geometry object in the layer.
2-28 Oracle Spatial User’s Guide and Reference

Spatial Index-Related Structures
ordinates for the points in SDO_ORDINATES varying length array are ordered. For
example, if the SDO_ORDINATES varying length array contains {X1, Y1, ..., Xn,
Yn}, then the first DIMINFO entry must define the X dimension and the second
DIMINFO entry must define the Y dimension.

Example 2–1 in Section 2.1 shows the use of the SDO_GEOMETRY and SDO_DIM_
ARRAY types. This example demonstrates how geometry objects (hypothetical
market areas for colas) are represented, and how the COLA_MARKETS feature
table and the USER_SDO_GEOM_METADATA view are populated with the data
for those objects.

2.4.4 SRID
The SRID column should contain either of the following: the SRID value for the
coordinate system (see Chapter 5) for all geometries in the column, or NULL if no
specific coordinate system should be associated with the geometries.

2.5 Spatial Index-Related Structures
This section describes the structure of the tables containing the spatial index data
and metadata. Concepts and usage notes for spatial indexing are explained in
Section 1.7. The spatial index data and metadata are stored in tables that are created
and maintained by the Spatial indexing routines. These tables are created in the
schema of the owner of the feature (underlying) table that has a spatial index
created on a column of type SDO_GEOMETRY.

2.5.1 Spatial Index Views
There are two sets of spatial index metadata views for each schema (user): xxx_
SDO_INDEX_INFO and xxx_SDO_INDEX_METADATA, where xxx can be USER,
DBA, or ALL. These views are read-only to users; they are created and maintained
by the Spatial indexing routines.

2.5.1.1 xxx_SDO_INDEX_INFO Views
The following views contain basic information about spatial indexes:

■ USER_SDO_INDEX_INFO contains index information for all spatial tables
owned by the user.

■ ALL_SDO_INDEX_INFO contains index information for all spatial tables on
which the user has SELECT permission.
Spatial Data Types and Metadata 2-29

Spatial Index-Related Structures
■ DBA_SDO_INDEX_INFO contains index information for all spatial tables on
which the user has SELECT permission if the user has the DBA role.

The USER_SDO_INDEX_INFO, ALL_SDO_INDEX_INFO, and DBA_SDO_INDEX_
INFO views contain the same columns, as shown Table 2–3, except that the USER_
SDO_INDEX_INFO view does not contain the SDO_INDEX_OWNER column. (The
columns are listed in their order in the view definition.)

2.5.1.2 xxx_SDO_INDEX_METADATA Views
The following views contain detailed information about spatial index metadata:

■ USER_SDO_INDEX_METADATA contains index information for all spatial
tables owned by the user. (USER_SDO_INDEX_METADATA is the same as
SDO_INDEX_METADATA, which was the only metadata view for Oracle
Spatial release 8.1.5.)

■ ALL_SDO_INDEX_METADATA contains index information for all spatial
tables on which the user has SELECT permission.

■ DBA_SDO_INDEX_METADATA contains index information for all spatial
tables on which the user has SELECT permission if the user has the DBA role.

Table 2–3 Columns in the xxx_SDO_INDEX_INFO Views

Column Name Data Type Purpose

SDO_INDEX_OWNER VARCHAR2 Owner of the index (ALL_SDO_INDEX_INFO and
DBA_SDO_INDEX_VIEWS only).

INDEX_NAME VARCHAR2 Name of the index.

TABLE_NAME VARCHAR2 Name of the table containing the column on which
this index is built.

COLUMN_NAME VARCHAR2 Name of the column on which this index is built.

SDO_INDEX_TYPE VARCHAR2 Contains QTREE (for a quadtree index) or RTREE
(for an R-tree index).

SDO_INDEX_TABLE VARCHAR2 Name of the spatial index table (described in
Section 2.5.2).

SDO_INDEX_STATUS VARCHAR2 Contains DEFERRED if the index status has been
set to deferred (using the index_status keyword with
the ALTER INDEX statement) and VALID if the
index status is not deferred.
2-30 Oracle Spatial User’s Guide and Reference

Spatial Index-Related Structures
The USER_SDO_INDEX_METADATA, ALL_SDO_INDEX_METADATA, and DBA_
SDO_INDEX_METADATA views contain the same columns, as shown Table 2–4.
(The columns are listed in their order in the view definition.)

Note: These views were new for release 8.1.6. If you are migrating
from an earlier release of Spatial, see Appendix A.

Table 2–4 Columns in the xxx_SDO_INDEX_METADATA Views

Column Name Data Type Purpose

SDO_INDEX_OWNER VARCHAR2 Owner of the index.

SDO_INDEX_TYPE VARCHAR2 Contains QTREE (for a quadtree index) or
RTREE (for an R-tree index).

SDO_INDEX_NAME VARCHAR2 Name of the index.

SDO_INDEX_TABLE VARCHAR2 Name of the spatial index table (described in
Section 2.5.2).

SDO_INDEX_PRIMARY NUMBER Indicates if this is a primary or secondary index.
1 = primary, 2 = secondary.

SDO_INDEX_PARTITION VARCHAR2 For a partitioned index, name of the index
partition.

SDO_PARTITIONED NUMBER Contains 0 if the index is not partitioned or 1 if
the index is partitioned.

SDO_TSNAME VARCHAR2 Schema name of the SDO_INDEX_TABLE.

SDO_COLUMN_NAME VARCHAR2 Name of the column on which this index is
built.

SDO_INDEX_DIMS NUMBER Number of dimensions of the geometry objects
in the column on which this index is built.

SDO_RTREE_HEIGHT NUMBER Height of the R-tree for an R-tree index.

SDO_RTREE_NUM_
NODES

NUMBER Number of nodes in the R-tree for an R-tree
index.

SDO_RTREE_
DIMENSIONALITY

NUMBER Number of dimensions indexed for an R-tree
index.

SDO_RTREE_FANOUT NUMBER Maximum number of children in each R-tree
node for an R-tree index.
Spatial Data Types and Metadata 2-31

Spatial Index-Related Structures
SDO_RTREE_ROOT VARCHAR2 Rowid corresponding to the root node of the
R-tree in the index table for an R-tree index.

SDO_RTREE_SEQ_NAME VARCHAR2 Sequence name associated with the R-tree for an
R-tree index.

SDO_RTREE_PCTFREE NUMBER Minimum percentage of slots in each index tree
node to be left empty when an R-tree index is
created.

SDO_LAYER_GTYPE VARCHAR2 Contains DEFAULT if the layer can contain both
point and polygon data, or a value from the
Geometry Type column of Table 2–1 in
Section 2.2.1.

SDO_LEVEL NUMBER The fixed tiling level at which to tile all objects
in the geometry column for a quadtree index.

SDO_NUMTILES NUMBER Suggested number of tiles per object that should
be used to approximate the shape for a quadtree
index.

SDO_MAXLEVEL NUMBER Maximum level for any tile for any object for a
quadtree index. It will always be greater than
the SDO_LEVEL value.

SDO_COMMIT_INTERVAL NUMBER Number of geometries (rows) to process, during
index creation, before committing the insertion
of spatial index entries into the SDOINDEX
table.

SDO_FIXED_META RAW If applicable, this column contains the metadata
portion of the SDO_GROUPCODE or SDO_
CODE for a fixed-level index.

SDO_TABLESPACE VARCHAR2 Same as in the SQL CREATE TABLE statement.
Tablespace in which to create the SDOINDEX
table.

SDO_INITIAL_EXTENT VARCHAR2 Same as in SQL CREATE TABLE statement.

SDO_NEXT_EXTENT VARCHAR2 Same as in SQL CREATE TABLE statement.

SDO_PCTINCREASE NUMBER Same as in SQL CREATE TABLE statement.

SDO_MIN_EXTENTS NUMBER Same as in SQL CREATE TABLE statement.

SDO_MAX_EXTENTS NUMBER Same as in SQL CREATE TABLE statement.

Table 2–4 Columns in the xxx_SDO_INDEX_METADATA Views (Cont.)

Column Name Data Type Purpose
2-32 Oracle Spatial User’s Guide and Reference

Spatial Index-Related Structures
2.5.2 Spatial Index Table Definition
The information in each quadtree spatial index table (each SDO_INDEX_TABLE
entry as described in Table 2–4 in Section 2.5.1) depends on whether the index is an
R-tree index or a quadtree index.

For an R-tree index, the spatial index table contains the columns shown in Table 2–5.

For a quadtree index, the spatial index table contains the columns shown in
Table 2–6.

SDO_RTREE_QUALITY NUMBER Quality score for an R-tree index. Do not
attempt to interpret this value directly; instead,
use the SDO_TUNE.ANALYZE_RTREE
procedure and the SDO_TUNE.QUALITY_
DEGRADATION function, which are described
in Chapter 16.

SDO_INDEX_VERSION NUMBER Internal version number of the index.

SDO_INDEX_GEODETIC VARCHAR2 Contains TRUE if the index is geodetic (see
Section 4.1.4) and FALSE if the index is not
geodetic.

SDO_INDEX_STATUS VARCHAR2 Contains DEFERRED if the index status has
been set to deferred (using the index_status
keyword with the ALTER INDEX statement)
and VALID if the index status is not deferred.

Table 2–5 Columns in an R-tree Spatial Index Data Table

Column Name Data Type Purpose

NODE_ID NUMBER Unique ID number for this node of the tree.

NODE_LEVEL NUMBER Level of the node in the tree. Leaf nodes (nodes whose
entries point to data items in base table) are at level 1, their
parent nodes are at level 2, and so on.

INFO BLOB Other information in a node. Includes an array of <child_
mbr, child_rowid> pairs (maximum of fanout value, or
number of children in each R-tree node, such pairs), where
child_rowid is the rowid of a child node, or the rowid of a
data item from the base table.

Table 2–4 Columns in the xxx_SDO_INDEX_METADATA Views (Cont.)

Column Name Data Type Purpose
Spatial Data Types and Metadata 2-33

Unit of Measurement Support
For a quadtree index, the SDO_CODE, SDO_ROWID, and SDO_STATUS columns
are always present. The SDO_GROUPCODE column is present only when the
selected index type is HYBRID.

2.5.3 R-Tree Index Sequence Object
Each R-tree spatial index table has an associated sequence object (SDO_RTREE_
SEQ_NAME in the USER_SDO_INDEX_METADATA view, described in Table 2–4
in Section 2.5.1). The sequence is used to ensure that simultaneous updates can be
performed to the index by multiple concurrent users.

The sequence name is the index table name with the letter S replacing the letter T
before the underscore (for example, the sequence object MDRS_5C01$ associated
with the index table MDRT_5C01$).

2.6 Unit of Measurement Support
Geometry functions that involve measurement allow an optional unit parameter to
specify the unit of measurement for a specified distance or area, if a georeferenced
coordinate system (SDO_SRID value) is associated with the input geometry or
geometries. The unit parameter is not valid for geometries with a null SDO_SRID
value (that is, an orthogonal Cartesian system). For information about support for
coordinate systems, see Chapter 5.

The default unit of measure is the one associated with the georeferenced coordinate
system. The unit of measure for most coordinate systems is the meter, and in these
cases the default unit for distances is meter and the default unit for areas is square
meter. By using the unit parameter, however, you can have Spatial automatically

Table 2–6 Columns in a Quadtree Spatial Index Data Table

Column Name Data Type Purpose

SDO_CODE RAW Index entry for the object in the row identified by
SDO_ROWID.

SDO_ROWID ROWID Rowid of a row in a feature table containing the
indexed object.

SDO_STATUS VARCHAR2 Contains I if the tile is inside the geometry, or contains
B if the tile is on the boundary of the geometry.

SDO_GROUPCODE RAW Index entry at level SDO_LEVEL (hybrid indexes
only).
2-34 Oracle Spatial User’s Guide and Reference

Unit of Measurement Support
convert and return results that are more meaningful to application users, for
example, displaying the distance to a restaurant in miles.

The unit parameter must be enclosed in single quotation marks and contain the
string unit= and a valid SDO_UNIT value from the MDSYS.SDO_DIST_UNITS or
MDSYS.SDO_AREA_UNITS table. For example, ’unit=KM’ in the following
example (using data and definitions from Example 5–3 in Section 5.8) specifies
kilometers as the unit of measurement:

SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo, ’unit=KM’)
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS_CS’ AND m.column_name = ’SHAPE’;

Spatial uses the information in the MDSYS.SDO_DIST_UNITS and MDSYS.SDO_
AREA_UNITS tables to determine which unit names are valid and what ratios to
use in comparing or converting between different units.

The MDSYS.SDO_DIST_UNITS table contains the columns shown in Table 2–7.

The MDSYS.SDO_AREA_UNITS table contains the columns shown in Table 2–8.

Table 2–7 Columns in the SDO_DIST_UNITS Table

Column Name Data Type Purpose

SDO_UNIT VARCHAR2 Unit string to be specified with the unit parameter.
Examples: M, KM, CM, MM, MILE, NAUT_MILE,
FOOT, INCH

UNIT_NAME VARCHAR2 Descriptive name of the unit. Examples: Meter,
Kilometer, Centimeter, Millimeter, Mile, Nautical Mile,
Foot, Inch

CONVERSION_
FACTOR

NUMBER Ratio of the unit to 1 meter. For example, the
conversion factor for a meter is 1.0, and the
conversion factor for a mile is 1609.344.

Table 2–8 Columns in the SDO_AREA_UNITS Table

Column Name Data Type Purpose

SDO_UNIT VARCHAR2 Unit string to be specified with the unit parameter.
Examples: SQ_M, SQ_KM, SQ_CM, SQ_MM, SQ_
MILE, SQ_FOOT, SQ_INCH
Spatial Data Types and Metadata 2-35

Unit of Measurement Support
For a complete list of supported unit strings, unit names, and conversion factors,
view the contents of the MDSYS.SDO_DIST_UNITS and MDSYS.SDO_AREA_
UNITS tables. For example:

SELECT * from MDSYS.SDO_DIST_UNITS;
SELECT * from MDSYS.SDO_AREA_UNITS;

UNIT_NAME VARCHAR2 Descriptive name of the unit. Examples: Square Meter,
Square Kilometer, Square Centimeter, Square Millimeter,
Square Mile, Square Foot, Square Inch

CONVERSION_
FACTOR

NUMBER Ratio of the unit to 1 square meter. For example, the
conversion factor for a square meter is 1.0, and the
conversion factor for a square mile is 2589988.

Table 2–8 Columns in the SDO_AREA_UNITS Table (Cont.)

Column Name Data Type Purpose
2-36 Oracle Spatial User’s Guide and Reference

Loading Spatia
3

Loading Spatial Data

This chapter describes how to load spatial data into a database, including storing
the data in a table with a column of type SDO_GEOMETRY. After you have loaded
spatial data, you can create a spatial index for it and perform queries on it, as
described in Chapter 4.

The process of loading data can be classified into two categories:

■ Bulk loading of data

This process is used to load large volumes of data into the database and uses
the SQL*Loader utility to load the data.

■ Transactional insert operations

This process is used to insert relatively small amounts of data into the database
using the INSERT statement in SQL.

3.1 Bulk Loading
Bulk loading can import large amounts of ASCII data into an Oracle database. Bulk
loading is accomplished with the SQL*Loader utility. (For information about
SQL*Loader, see Oracle9i Database Utilities.)

3.1.1 Bulk Loading SDO_GEOMETRY Objects
Example 3–1 is the SQL*Loader control file for loading four geometries. When this
control file is used with SQL*Loader, it loads the same cola market geometries that
are inserted using SQL statements in Example 2–1 in Section 2.1.

Example 3–1 Control File for Bulk Load of Cola Market Geometries

LOAD DATA
l Data 3-1

Bulk Loading
INFILE *
TRUNCATE
CONTINUEIF NEXT(1:1) = ’#’
INTO TABLE COLA_MARKETS
FIELDS TERMINATED BY ’|’
TRAILING NULLCOLS (
mkt_id INTEGER EXTERNAL,
name CHAR,
shape COLUMN OBJECT
(
SDO_GTYPE INTEGER EXTERNAL,
SDO_ELEM_INFO VARRAY TERMINATED BY ’|/’
(elements FLOAT EXTERNAL),
SDO_ORDINATES VARRAY TERMINATED BY ’|/’
(ordinates FLOAT EXTERNAL)
)
)
begindata
 1|cola_a|
#2003|1|1003|3|/
#1|1|5|7|/
 2|cola_b|
#2003|1|1003|1|/
#5|1|8|1|8|6|5|7|5|1|/
 3|cola_c|
#2003|1|1003|1|/
#3|3|6|3|6|5|4|5|3|3|/
 4|cola_d|
#2003|1|1003|4|/
#8|7|10|9|8|11|/

Notes on Example 3–1:

■ The EXTERNAL keyword in the definition mkt_id INTEGER EXTERNAL
means that each value to be inserted into the MKT_ID column (1, 2, 3, and 4 in
this example) is an integer in human-readable form, not binary format.

■ In the data after begindata, each MKT_ID value is preceded by one space,
because the CONTINUEIF NEXT(1:1) = ’#’ specification causes the first
position of each data line to be ignored unless it is the number sign (#)
continuation character.

Example 3–2 assumes that a table named POLY_4PT was created as follows:

CREATE TABLE POLY_4PT (GID VARCHAR2(32),
 GEOMETRY MDSYS.SDO_GEOMETRY);
3-2 Oracle Spatial User’s Guide and Reference

Bulk Loading
Assume that the ASCII data consists of a file with delimited columns and separate
rows fixed by the limits of the table with the following format:

geometry rows: GID, GEOMETRY

The coordinates in the GEOMETRY column represent polygons. Example 3–2 shows
the control file for loading the data.

Example 3–2 Control File for Bulk Load of Polygons

LOAD DATA
 INFILE *
 TRUNCATE
 CONTINUEIF NEXT(1:1) = ’#’
 INTO TABLE POLY_4PT
 FIELDS TERMINATED BY ’|’
 TRAILING NULLCOLS (
 GID INTEGER EXTERNAL,
 GEOM COLUMN OBJECT
 (
 SDO_GTYPE INTEGER EXTERNAL,
 SDO_ELEM_INFO VARRAY TERMINATED BY ’|/’
 (elements FLOAT EXTERNAL),
 SDO_ORDINATES VARRAY TERMINATED BY ’|/’
 (ordinates FLOAT EXTERNAL)
)
)
begindata
 1|2003|1|1003|1|/
#-122.4215|37.7862|-122.422|37.7869|-122.421|37.789|-122.42|37.7866|
#-122.4215|37.7862|/
 2|2003|1|1003|1|/
#-122.4019|37.8052|-122.4027|37.8055|-122.4031|37.806|-122.4012|37.8052|
#-122.4019|37.8052|/
 3|2003|1|1003|1|/
#-122.426|37.803|-122.4242|37.8053|-122.42355|37.8044|-122.4235|37.8025|
#-122.426|37.803|/

3.1.2 Bulk Loading Point-Only Data in SDO_GEOMETRY Objects
Example 3–3 shows a control file for loading a table with point data.
Loading Spatial Data 3-3

Transactional Insert Operations Using SQL
Example 3–3 Control File for a Bulk Load of Point-Only Data

LOAD DATA
 INFILE *
 TRUNCATE
 CONTINUEIF NEXT(1:1) = ’#’
 INTO TABLE POINT
 FIELDS TERMINATED BY ’|’
 TRAILING NULLCOLS (
 GID INTEGER EXTERNAL,
 GEOMETRY COLUMN OBJECT
 (
 SDO_GTYPE INTEGER EXTERNAL,
 SDO_POINT COLUMN OBJECT
 (X FLOAT EXTERNAL,
 Y FLOAT EXTERNAL)
)
)

BEGINDATA
 1|
200
1| -122.4215| 37.7862|
 2|
200
1| -122.4019| 37.8052|
 3|
200
1| -122.426| 37.803|
 4|
200
1| -122.4171| 37.8034|
 5|
200
1| -122.416151| 37.8027228|

3.2 Transactional Insert Operations Using SQL
Oracle Spatial uses standard Oracle9i tables that can be accessed or loaded with
standard SQL syntax. This section contains examples of transactional inserts into
columns of type SDO_GEOMETRY. Note that the INSERT statement in Oracle SQL
has a limit of 999 arguments. Therefore, you cannot create a variable-length array of
more than 999 elements using the SDO_GEOMETRY constructor inside a
transactional INSERT statement; however, you can insert a geometry using a host
3-4 Oracle Spatial User’s Guide and Reference

Transactional Insert Operations Using SQL
variable, and the host variable can be built using the SDO_GEOMETRY constructor
with more than 999 values in the SDO_ORDINATE_ARRAY specification. (The host
variable is an OCI, PL/SQL, or Java program variable.)

To perform transactional insertions of geometries, you can create a procedure to
insert a geometry, and then invoke that procedure on each geometry to be inserted.
Example 3–4 creates a procedure to perform the insert operation.

Example 3–4 Procedure to Perform Transactional Insert Operation

CREATE OR REPLACE PROCEDURE
 INSERT_GEOM(GEOM MDSYS.SDO_GEOMETRY)
IS

BEGIN
 INSERT INTO TEST_1 VALUES (GEOM);
 COMMIT;
END;
/

Using the procedure created in Example 3–4, you can insert data by using a
PL/SQL block, such as the one in Example 3–5, which loads a geometry into the
variable named geom and then invokes the INSERT_GEOM procedure to insert that
geometry.

Example 3–5 PL/SQL Block Invoking Procedure to Insert a Geometry

DECLARE
geom mdsys.sdo_geometry :=
 mdsys.sdo_geometry (2003, null, null,
 mdsys.sdo_elem_info_array (1,1003,3),
 mdsys.sdo_ordinate_array (-109,37,-102,40));
BEGIN
 INSERT_GEOM(geom);
 COMMIT;
END;
/
For additional examples with various geometry types, see the following:

■ Rectangle: Example 2–2 in Section 2.3.1

■ Polygon with a hole: Example 2–3 in Section 2.3.2

■ Compound polygon: Example 2–5 in Section 2.3.4

■ Point: Example 2–6 and Example 2–7 in Section 2.3.5
Loading Spatial Data 3-5

Transactional Insert Operations Using SQL
■ Type 0 (zero) element: Example 2–8 in Section 2.3.6
3-6 Oracle Spatial User’s Guide and Reference

Indexing and Querying Spatia
4

Indexing and Querying Spatial Data

After you have loaded spatial data (discussed in Chapter 3), you should create a
spatial index on it to enable efficient query performance using the data. This chapter
describes how to:

■ Create a spatial index

■ Query spatial data efficiently, based on an understanding of the Oracle Spatial
query model and primary and secondary filtering

4.1 Creating a Spatial Index
Once data has been loaded into the spatial tables through either bulk or
transactional loading, a spatial index must be created on the tables for efficient
access to the data. Each spatial index can be an R-tree index or a quadtree index. To
decide which type of index to use for a spatial application, you must understand the
concepts and guidelines discussed in Section 1.7.

If the index creation does not complete for any reason, the index is invalid and must
be deleted with the DROP INDEX <index_name> [FORCE] statement.

4.1.1 Creating R-Tree Indexes
If you create a spatial index without specifying any quadtree-specific parameters,
an R-tree index is created. For example, the following statement creates a spatial
R-tree index named territory_idx using default values for parameters that apply to
R-tree indexes:

CREATE INDEX territory_idx ON territories (territory_geom)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;
l Data 4-1

Creating a Spatial Index
For detailed information about options when creating a spatial index, see the
documentation for the CREATE INDEX statement in Chapter 8.

R-tree indexes can be built on two, three, or four dimensions of data. The default
number of dimensions for an R-tree index is two, but if the data has more than two
dimensions, you can use the sdo_indx_dims parameter keyword to specify the
number of dimensions on which to build the index. However, if a spatial index has
been built on more than two dimensions of a layer, the only spatial operator that
can be used against that layer is SDO_FILTER (the primary filter or index-only
query), which considers all dimensions. The SDO_RELATE, SDO_NN, and SDO_
WITHIN_DISTANCE operators are disabled if the index has been built on more
than two dimensions.

If the rollback segment is not large enough, an attempt to create an R-tree index will
fail. The rollback segment should be 100*n bytes, where n is the number of rows of
data to be indexed. For example, if the table contains 1 million (1,000,000) rows, the
rollback segment size should be 100,000,000 (100 million bytes).

To ensure an adequate rollback segment, or if you have tried to create an R-tree
index and received an error that a rollback segment cannot be extended, review (or
have a DBA review) the size and structure of the rollback segments that are
available to the schema that owns the table with the geometries. Create a public
rollback segment of the appropriate size, and place that rollback segment online. In
addition, ensure that any small inappropriate rollback segments are placed offline
during large spatial index operations. For information about performing these
operations on a rollback segment, see the Oracle9i Database Administrator’s Guide.

The system parameter SORT_AREA_SIZE affects the amount of time required to
create the index. The SORT_AREA_SIZE value is the maximum amount, in bytes, of
memory to use for a sort operation. The optimal value depends on the database
size, but a good guideline is to make it at least 1 million bytes when you create an
R-tree index. To change the SORT_AREA_SIZE value, use the ALTER SESSION
statement. For example, to change the value to 20 million bytes:

ALTER SESSION SET SORT_AREA_SIZE = 20000000;

The tablespace specified with the tablespace keyword in the CREATE INDEX
statement (or the default tablespace if the tablespace keyword is not specified) is
used to hold both the index data table and some transient tables that are created for
internal computations.

■ The R-tree index data table requires approximately 70*n bytes (where n is the
number of rows in the table)
4-2 Oracle Spatial User’s Guide and Reference

Creating a Spatial Index
■ The transient tables require up to approximately 200*n bytes (where n is the
number of rows in the table); however, this space is freed up after the R-tree
index is created.

For large databases (over 1 million rows), a temporary tablespace may be needed to
perform internal sorting operations. The recommended size for this temporary
tablespace is 100*n bytes, where n is the number of rows in the table.

4.1.2 Determining Index Creation Behavior (Quadtree Indexes)
With a quadtree index, the tessellation algorithm used by the CREATE INDEX
statement and by index maintenance routines on insert or update operations is
determined by the SDO_LEVEL and SDO_NUMTILES values, which are supplied
in the PARAMETERS clause of the CREATE INDEX statement. They are interpreted
as follows:

An explicit commit operation is executed after the tessellation of all the geometries
in a geometry column.

By default, spatial index creation requires a sizable amount of rollback space. To
reduce the amount of rollback space required, you can supply the SDO_COMMIT_
INTERVAL parameter in the CREATE INDEX statement. This will perform a
database commit after every n geometries are indexed, where n is a user-defined
value.

4.1.3 Spatial Indexing with Fixed-Size Tiles (Quadtree Indexes)
If you choose quadtree indexing for a spatial index, you should use fixed indexing
for most applications, except for the rare circumstances where hybrid indexing
should be considered. (See Appendix B for information about hybrid indexing.

SDO_LEVEL SDO_NUMTILES Action

Not specified or 0 Not specified or 0 R-tree index.

>= 1 Not specified or 0 Fixed indexing (indexing with fixed-size tiles).

>= 1 >= 1 Hybrid indexing with fixed-size and
variable-sized tiles. The SDO_LEVEL column
defines the fixed tile size. The SDO_NUMTILES
column defines the number of variable tiles to
generate per geometry.

Not specified or 0 >= 1 Not supported (error).
Indexing and Querying Spatial Data 4-3

Creating a Spatial Index
However, you should also consider using R-tree indexing before deciding on hybrid
indexing.)

The fixed-size tile algorithm is expressed as a level referring to the number of
tessellations performed. To use fixed-size tile indexing, omit the SDO_NUMTILES
parameter and set the SDO_LEVEL value to the desired tiling level. The
relationship between the tiling level and the resulting size of the tiles depends on
the domain of the layer.

The domain used for indexing is defined by the upper and lower boundaries of
each dimension stored in the DIMINFO column of the USER_SDO_GEOM_
METADATA view, which contains an entry for the table and geometry column to
spatially index. A typical domain could be -180 to 180 degrees for longitude, and -90
to 90 degrees for latitude, as represented in Figure 4–1. (The transference of the
domain onto a sphere or other projection is left up to an application, unless a
coordinate system is specified, as explained in Chapter 5.)

Figure 4–1 Sample Domain

If the SDO_LEVEL column is set to 1, then the tiles created by the indexing
mechanism are the same size as tiles at the first level of tessellation. Each tile would
be 180 degrees by 90 degrees as shown in Figure 4–2.
4-4 Oracle Spatial User’s Guide and Reference

Creating a Spatial Index
Figure 4–2 Fixed-Size Tiling at Level 1

The formula for the number of fixed-size tiles in a domain is 4n where n is the
number of tessellations, stored in the SDO_LEVEL column. In reality, tiles are only
generated where geometries exist, and not for the whole domain. Figure 4–3 shows
fixed-size tiling at level 2. In this figure, each tile is 90 degrees by 45 degrees.

Figure 4–3 Fixed-Size Tiling at Level 2

The size of a tile can be determined by applying the following formula to each
dimension:

length = (upper_bound - lower_bound) / 2 ^ sdo_level

The length refers to the length of the tile along the specified dimension. Applying
this formula to the tiling shown in Figure 4–3 yields the following sizes:
Indexing and Querying Spatial Data 4-5

Creating a Spatial Index
length for dimension X = (180 - (-180)) / 2^2
 = (360) / 4
 = 90
length for dimension Y = (90 - (-90)) / 2^2
 = (180) / 4
 = 45

At level 2, the tiles are 90 degrees by 45 degrees in size. As the number of levels
increases, the tiles become smaller and smaller. Smaller tiles provide a more precise
fit of the tiles over the geometry being indexed. However, because the number of
tiles generated is unbounded, you must take into account the performance
implications of using higher levels.

Besides the performance aspects related to selecting a fixed-size tile, tessellating the
geometry into fixed-size tiles might have benefits related to the type of data being
stored, such as using tiles sized to represent 1-acre farm plots, city blocks, or
individual pixels on a display. Data modeling, an important part of any database
design, is essential in a spatial database where the data often represents actual
physical locations.

In Example 4–1, assume that data has been loaded into a table called ROADS, and
the USER_SDO_GEOM_METADATA view has an entry for ROADS.SHAPE. You
can use the following SQL statement to create a fixed index named ROADS_FIXED.

Example 4–1 Creating a Fixed Index

CREATE INDEX ROADS_FIXED ON ROADS(SHAPE) INDEXTYPE IS MDSYS.SPATIAL_INDEX
 PARAMETERS(’SDO_LEVEL=8’);

The SDO_LEVEL value is used while tessellating objects. Increasing the level results
in smaller tiles and better geometry approximations.

Note: The Spatial Index Advisor component of Oracle Enterprise
Manager can be used to determine an appropriate level for
indexing with fixed-size tiles. The SDO_TUNE.ESTIMATE_
TILING_LEVEL function, described in Chapter 16, can also be used
for this purpose; however, this function performs less analysis than
the Spatial Index Advisor.
4-6 Oracle Spatial User’s Guide and Reference

Creating a Spatial Index
4.1.4 Indexing Geodetic Data
To take full advantage of Spatial features, you must index geodetic data using a
geodetic R-tree index. Geodetic data consists of geometries that have geodetic SDO_
SRID values, reflecting the fact that they are based on a geodetic coordinate system
(such as using longitude and latitude) as opposed to a flat or projected plane
coordinate system. (Chapter 5 explains coordinate systems and related concepts.) A
geodetic index is one that provides the full range of Spatial features with geodetic
data. Thus, it is highly recommended that you use a geodetic index with geodetic
data.

Only R-tree indexes can be geodetic indexes. Quadtree indexes cannot be geodetic
indexes. If you create an R-tree or quadtree index and specify ’geodetic=false’
in the CREATE INDEX statement, the index is non-geodetic. The following notes
and restrictions apply to non-geodetic indexes:

■ If you create a non-geodetic index on geodetic data, you cannot use the unit
parameter with the SDO_WITHIN_DISTANCE operator or the SDO_NN_
DISTANCE ancillary operator with the SDO_NN operator.

■ If you create a non-geodetic index on projected data that has a projected SDO_
SRID value, you can use the full range of Spatial features.

■ If you create a non-geodetic index on projected data that has a null SDO_SRID
value, you cannot use the unit parameter with the SDO_WITHIN_DISTANCE
operator or the SDO_NN_DISTANCE ancillary operator with the SDO_NN
operator.

For additional information, see the Usage Notes about the geodetic parameter for the
CREATE INDEX statement in Chapter 8.

4.1.5 Constraining Data to a Geometry Type
When you create or rebuild a spatial index, you can ensure that all geometries that
are in the table or that are inserted later are of a specified geometry type. To
constrain the data to a geometry type in this way, use the layer_gtype keyword in the
PARAMETERS clause of the CREATE INDEX or ALTER INDEX REBUILD
statement, and specify a value from the Geometry Type column of Table 2–1 in
Section 2.2.1. For example, to constrain spatial data in a layer to polygons:

CREATE INDEX cola_spatial_idx
ON cola_markets(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX
PARAMETERS (’layer_gtype=POLYGON’);
Indexing and Querying Spatial Data 4-7

Creating a Spatial Index
The geometry types in Table 2–1 are considered as a hierarchy when data is
checked:

■ The MULTI forms include the regular form also. For example, specifying
’layer_gtype=MULTIPOINT’ allows the layer to include both POINT and
MULTIPOINT geometries.

■ COLLECTION allows the layer to include all types of geometries.

4.1.6 Creating a Cross-Schema Index
You can create a spatial index on a table that is not in your schema. Assume that
user B wants to create a spatial index on column GEOMETRY in table T1 under user
A’s schema. User B must perform the following steps:

1. Connect as user A (or have user A connect) and execute the following
statement:

GRANT select on T1 to B;

1. Connect as user B and execute a statement such as the following:

GRANT create table to A;
CREATE INDEX t1_spatial_idx on A.T1(geometry)
 INDEXTYPE IS mdsys.spatial_index;

4.1.7 Using Partitioned Spatial Indexes
You can create a partitioned spatial index on a partitioned table. This section
describes usage considerations specific to Oracle Spatial. For a detailed explanation
of partitioned tables and partitioned indexes, see the Oracle9i Database
Administrator’s Guide.

A partitioned spatial index can provide the following benefits:

■ Reduced response times for long-running queries, because partitioning reduces
disk I/O operations

■ Reduced response times for concurrent queries, because I/O operations run
concurrently on each partition

■ Easier index maintenance, because of partition-level create and rebuild
operations

Indexes on partitions can be rebuilt without affecting the queries on other
partitions, and storage parameters for each local index can be changed
independent of other partitions.
4-8 Oracle Spatial User’s Guide and Reference

Creating a Spatial Index
The following restrictions apply to spatial index partitioning:

■ The partition key for spatial tables must be a scalar value, and must not be a
spatial column.

■ Only range partitioning is supported on the underlying table. Hash and
composite partitioning are not currently supported for partitioned spatial
indexes.

To create a partitioned spatial index, you must specify the LOCAL keyword. For
example:

CREATE INDEX counties_idx ON counties(geometry)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX LOCAL;

In this example, the default values are used for the number and placement of index
partitions, namely:

■ Index partitioning is based on the underlying table partitioning. For each table
partition, a corresponding index partition is created.

■ Each index partition is placed in the default tablespace.

If you do specify parameters for individual partitions, the following considerations
apply:

■ The storage characteristics for each partition can be the same or different for
each partition. If they are different, it may enable parallel I/O (if the tablespaces
are on different disks) and may improve performance.

■ Any Oracle Spatial parameters (relating to R-tree or quadtree indexing) should
be the same for each partition.

To override the default partitioning values, use a CREATE INDEX statement with
the following general format:

CREATE INDEX <indexname> ON <table>(<column>)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX
 [PARAMETERS (’<spatial-params>, <storage-params>’)] LOCAL
 [(PARTITION <index_partition>
 PARAMETERS (’<spatial-params>, <storage-params>’)
 [, PARTITION <index_partition>
 PARAMETERS (’<spatial-params>, <storage-params>’)]
)]

For example, if the COUNTIES table has two partitions, P1 and P2, you can create a
quadtree index as follows:
Indexing and Querying Spatial Data 4-9

Creating a Spatial Index
CREATE INDEX counties_idx ON counties(geometry)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX
 PARAMETERS ('sdo_level=6 tablespace=def_tbs’)
LOCAL
 (PARTITION ip1 PARAMETERS ('sdo_level=6 tablespace=local_tbs1'),
 PARTITION ip2 PARAMETERS ('sdo_level=6 tablespace=local_tbs2'),
 PARTITION ip3);

In the preceding example:

■ IP1 is the index partition that corresponds to partition P1 of the COUNTIES
table, and IP2 is the index partition that corresponds to partition P2.

■ The tablespace parameters are specified for each of the local index partitions as
LOCAL_TBS1 and LOCAL_TBS2, respectively.

■ If you omit the PARTITION ip2 PARAMETERS... clause (as is done for
partition IP3), the default parameters specified before LOCAL are used.
Specifically, the DEF_TBS tablespace is used for storing the index partition
(which will have the same name as the second partition of the COUNTIES table,
that is, P2).

Queries can operate on partitioned tables to perform the query on only one
partition. For example:

SELECT * FROM counties PARTITION(p1)
 WHERE ...<some-spatial-predicate>;

Querying on a selected partition may speed up the query and also improve overall
throughput when multiple queries operate on different partitions concurrently.

When queries use a partitioned spatial index, the semantics (meaning or behavior)
of spatial operators and functions is the same with partitioned and nonpartitioned
indexes, except in the case of SDO_NN (nearest neighbor). With SDO_NN, the
requested number of geometries is returned for each partition that is affected by the
query. For example, if you request the 5 closest restaurants to a point and the spatial
index has 4 partitions, SDO_NN returns up to 20 (5*4) geometries. In this case, you
must use the ROWNUM pseudocolumn (here, WHERE ROWNUM <=5) to return the 5
closest restaurants. See the description of the SDO_NN in Chapter 10 for more
information.

4.1.8 Exchanging Partitions Including Indexes
You can use the ALTER TABLE statement with the EXCHANGE
PARTITION...INCLUDING INDEXES clause to exchange a spatial table partition
4-10 Oracle Spatial User’s Guide and Reference

Querying Spatial Data
and its index partition with a corresponding table and its index. For information
about exchanging partitions, see the description of the ALTER TABLE statement in
the Oracle9i SQL Reference.

This feature can help you to operate more efficiently in a number of situations, such
as:

■ Bringing data into a partitioned table and avoiding the cost of index re-creation.

■ Managing and creating partitioned indexes. For example, the data could be
divided into multiple tables. The index for each table could be built one after
the other to minimize the memory and tablespace resources needed during
index creation. Alternately, the indexes could be created in parallel in multiple
sessions. The tables (along with the indexes) could then be exchanged with the
partitions of the original data table.

■ Managing offline insert operations. New data can be stored in a temporary table
and periodically exchanged with a new partition (for example, in a database
with historical data).

To exchange partitions including indexes with spatial data and indexes, the two
spatial indexes (one on the partition, the other on the table) must be of compatible
types. Specifically:

■ Both indexes must be either R-tree indexes with the same dimensionality (sdo_
indx_dims value) or quadtree indexes with the same SDO_LEVEL and SDO_
NUMTILES values.

■ Both indexes must be either geodetic or non-geodetic. (Geodetic and
non-geodetic indexes are explained in Section 4.1.4.)

■ Neither index can have a status of deferred updates. (Deferred update status is
set by specifying ’index_status=deferred’ with the ALTER INDEX
statement, as described in Chapter 8.)

If the indexes not compatible, an error is raised. The table data is exchanged, but the
indexes are not exchanged and the indexes are marked as failed. To use the indexes,
you must rebuild them.

4.2 Querying Spatial Data
This section describes how the structures of a Spatial layer are used to resolve
spatial queries and spatial joins.

Spatial uses a two-tier query model with primary and secondary filter operations to
resolve spatial queries and spatial joins, as explained in Section 1.6. The term
Indexing and Querying Spatial Data 4-11

Querying Spatial Data
two-tier is used to indicate that two distinct operations are performed in order to
resolve queries. If both operations are performed, the exact result set is returned.

4.2.1 Spatial Query
 An important concept in the spatial data model is that each geometry is
represented by a set of exclusive and exhaustive tiles. This means that no tiles
overlap each other (exclusive), and the tiles fully cover the object (exhaustive).

Consider the following layer containing several objects in Figure 4–4. Each object is
labeled with its geometry name (geom_1 for the polygon with a hole, geom_2 for
the triangular polygon, geom_3 for the line, and geom_4 and geom_5 for other
polygons). The relevant tiles are labeled with Tn (T1, T2, and so on)

Figure 4–4 Tessellated Layer with Multiple Objects

A typical spatial query is to request all objects that lie within a defined fence or
window. A query window is shown in Figure 4–5 by the dotted-line box. A
dynamic query window refers to a fence that is not defined in the database, but that
must be defined before it is used.
4-12 Oracle Spatial User’s Guide and Reference

Querying Spatial Data
Figure 4–5 Tessellated Layer with a Query Window

4.2.1.1 Primary Filter Operator
The SDO_FILTER operator implements the primary filter portion of the two-step
process involved in the product’s query processing model. The primary filter uses
the index data only to determine a set of candidate object pairs that may interact.
The syntax is as follows:

SDO_FILTER(geometry1 MDSYS.SDO_GEOMETRY, geometry2 MDSYS.SDO_GEOMETRY,
 params VARCHAR2)

Where:

■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table. geometry1
must be spatially indexed.

■ geometry2 is an object of type MDSYS.SDO_GEOMETRY. geometry2 may or may
not come from a table. If it comes from a table, it may or may not be spatially
indexed.

■ params is a quoted string of keyword value pairs that determine the behavior of
the operator. See the SDO_FILTER operator in Chapter 10 for a list of
parameters.
Indexing and Querying Spatial Data 4-13

Querying Spatial Data
The following examples perform a primary filter operation only. They will return all
the geometries shown in Figure 4–5 that have an index tile in common with one of
the index tiles that approximates the query window: tiles T1, T2, T3, and T4. The
result of the following examples are geometries with IDs 1013, 1243, 12, and 501.

Example 4–2 performs a primary filter operation without inserting the query
window into a table. The window will be indexed in memory and performance will
be very good.

Example 4–2 Primary Filter with a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_filter(A.shape, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1, x2,y2)),
 ’querytype=window’) = ’TRUE’;

Note that (x1,y1) and (x2,y2) are the lower-left and upper-right corners of the query
window.

In Example 4–3, a transient instance of type SDO_GEOMETRY was constructed for
the query window instead of specifying the window parameters in the query itself.

Example 4–3 Primary Filter with a Transient Instance of the Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_filter(A.shape, :theWindow,’querytype=window’) = ’TRUE’;

Example 4–4 assumes the query window was inserted into a table called
WINDOWS, with an ID of WINS_1.

Example 4–4 Primary Filter with a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
 WHERE B.ID = ’WINS_1’ AND
 sdo_filter(A.shape, B.shape,’querytype=window’) = ’TRUE’;

If the B.SHAPE column is not spatially indexed, the SDO_FILTER operator indexes
the query window in memory and performance is very good.

If the B.SHAPE column is spatially indexed with the same SDO_LEVEL value as the
A.SHAPE column, the SDO_FILTER operator reuses the existing index, and
performance is very good or better.

If the B.SHAPE column is spatially indexed with a different SDO_LEVEL value than
the A.SHAPE column, the SDO_FILTER operator reindexes B.SHAPE in the same
4-14 Oracle Spatial User’s Guide and Reference

Querying Spatial Data
way as if there were no index on the column originally, and then performance is
very good.

4.2.1.2 Primary and Secondary Filter Operator
The SDO_RELATE operator performs both the primary and secondary filter stages
when processing a query. This operator can be used only if a spatial index has been
created on two dimensions of data. The syntax of the operator is as follows:

SDO_RELATE(geometry1 MDSYS.SDO_GEOMETRY,
 geometry2 MDSYS.SDO_GEOMETRY,
 params VARCHAR2)

Where:

■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table. geometry1
must be spatially indexed.

■ geometry2 is an object of type MDSYS.SDO_GEOMETRY. geometry2 may or may
not come from a table. If it comes from a table, it may or may not be spatially
indexed.

■ params is a quoted string of keyword value pairs that determine the behavior of
the operator. See the SDO_NN operator in Chapter 10 for a list of parameters.

The following examples perform both primary and secondary filter operations.
They return all the geometries in Figure 4–5 that lie within or overlap the query
window. The result of these examples is objects 1243 and 1013.

Example 4–5 performs both primary and secondary filter operations without
inserting the query window into a table. The window will be indexed in memory
and performance will be very good.

Example 4–5 Secondary Filter Using a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_relate(A.shape, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1, x2,y2)),
 ’mask=anyinteract querytype=window’) = ’TRUE’;

Note that (x1,y1) and (x2,y2) are the lower-left and upper-right corners of the query
window.

Example 4–6 assumes the query window was inserted into a table called
WINDOWS, with an ID of WINS_1.
Indexing and Querying Spatial Data 4-15

Querying Spatial Data
Example 4–6 Secondary Filter Using a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
 WHERE B.ID= ’WINS_1’ AND
 sdo_relate(A.shape, B.shape,
 ’mask=anyinteract querytype=window’) = ’TRUE’;

If the B.SHAPE column is not spatially indexed, the SDO_NN operator indexes the
query window in memory and performance is very good.

If the B.SHAPE column is spatially indexed with the same SDO_LEVEL value as the
A.SHAPE column, the SDO_NN operator reuses the existing index, and
performance is very good or better.

If the B.SHAPE column is spatially indexed with a different SDO_LEVEL value than
the A.SHAPE column, the SDO_FILTER operator reindexes B.SHAPE in the same
way as if there were no index on the column originally, and then performance is
very good.

4.2.1.3 Within-Distance Operator
The SDO_WITHIN_DISTANCE operator is used to determine the set of objects in a
table that are within n distance units from a reference object. This operator can be
used only if a spatial index has been created on two dimensions of data. The
reference object may be a transient or persistent instance of MDSYS.SDO_
GEOMETRY (such as a temporary query window or a permanent geometry stored
in the database). The syntax of the operator is as follows:

SDO_WITHIN_DISTANCE(geometry1 MDSYS.SDO_GEOMETRY,
 aGeom MDSYS.SDO_GEOMETRY,
 params VARCHAR2);

Where:

■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table. geometry1
must be spatially indexed.

■ aGeom is an instance of type MDSYS.SDO_GEOMETRY.

■ params is a quoted string of keyword value pairs that determines the behavior
of the operator. See the SDO_WITHIN_DISTANCE operator in Chapter 10 for a
list of parameters.

The following example selects any objects within 1.35 distance units from the query
window:

SELECT A.Feature_ID
4-16 Oracle Spatial User’s Guide and Reference

Querying Spatial Data
 FROM TARGET A
 WHERE SDO_WITHIN_DISTANCE(A.shape, :theWindow, ’distance=1.35’) = ’TRUE’;

The distance units are based on the geometry coordinate system in use. The distance
units are those specified in the UNIT field of the well-known text (WKTEXT)
associated with the coordinate system. (The WKTEXT is explained in
Section 5.4.1.1.) If you are using a geodetic coordinate system, the units are meters.
If no coordinate system is used, the units are the same as for the stored data.

The SDO_WITHIN_DISTANCE operator is not suitable for performing spatial joins.
That is, a query such as Find all parks that are within 10 distance units from coastlines
will not be processed as an index-based spatial join of the COASTLINES and
PARKS tables. Instead, it will be processed as a nested loop query in which each
COASTLINES instance is in turn a reference object that is buffered, indexed, and
evaluated against the PARKS table. Thus, the SDO_WITHIN_DISTANCE operation
is performed n times if there are n rows in the COASTLINES table.

For non-geodetic data, there is an efficient way to accomplish a spatial join that
involves buffering all the geometries of a layer. This method does not use the SDO_
WITHIN_DISTANCE operator. First, create a new table COSINE_BUFS as follows:

CREATE TABLE cosine_bufs UNRECOVERABLE AS
 SELECT SDO_BUFFER (A.SHAPE, B.DIMINFO, 1.35)
 FROM COSINE A, USER_SDO_GEOM_METADATA B
 WHERE TABLE_NAME=’COSINES’ AND COLUMN_NAME=’SHAPE’;

Next, create a spatial index on the SHAPE column of COSINE_BUFS. Then you can
perform the following query:

SELECT a.gif, b.gid FROM parks A cosine_bufs B
 WHERE SDO_Relate(A.shape, B.shape, ’mask=ANYINTERACT querytype=JOIN’) =’TRUE’;

4.2.1.4 Nearest Neighbor Operator
The SDO_NN operator is used to identify the nearest neighbors for a geometry. This
operator can be used only if a spatial index has been created on two dimensions of
data. The syntax of the operator is as follows:

SDO_NN(geometry1 MDSYS.SDO_GEOMETRY,
 geometry2 MDSYS.SDO_GEOMETRY,
 param VARCHAR2
 [, number NUMBER]);

Where:
Indexing and Querying Spatial Data 4-17

Querying Spatial Data
■ geometry1 is a column of type MDSYS.SDO_GEOMETRY in a table. geometry1
must be spatially indexed.

■ geometry2 is an instance of type MDSYS.SDO_GEOMETRY.

■ param is a quoted string of a keyword value pair that determines how many
nearest neighbor geometries are returned by the operator. See the SDO_NN
operator in Chapter 10 for information about this parameter.

■ number is the same number used in the call to SDO_NN_DISTANCE. Use this
only if the SDO_NN_DISTANCE ancillary operator is included in the call to
SDO_NN. See the SDO_NN operator in Chapter 10 for information about this
parameter.

The following example finds the two objects from the SHAPE column in the COLA_
MARKETS table that are closest to a specified point (10,7). (Note the use of the
optimizer hint in the SELECT statement, as explained in the Usage Notes for the
SDO_NN operator in Chapter 10.)

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */
 c.mkt_id, c.name FROM cola_markets c WHERE SDO_NN(c.shape,
 mdsys.sdo_geometry(2001, NULL, mdsys.sdo_point_type(10,7,NULL), NULL,
 NULL), ’sdo_num_res=2’) = ’TRUE’;

4.2.1.5 Spatial Functions
Spatial also supplies functions for determining relationships between geometries,
finding information about single geometries, changing geometries, and combining
geometries. These functions all take into account two dimensions of source data. If
the output value of these functions is a geometry, the resulting geometry will have
the same dimensionality as the input geometry, but only the first two dimensions
will accurately reflect the result of the operation.

4.2.2 Spatial Join
A spatial join is the same as a regular join except that the predicate involves a
spatial operator. In Spatial, a spatial join takes place when you compare all the
geometries of one layer to all the geometries of another layer. This is unlike a query
window that only compares a single geometry to all geometries of a layer.

In a spatial join, all tables must have the same type of spatial index (that is, R-tree or
quadtree) defined on the geometry column; and if they have quadtree indexes, the
SDO_LEVEL value must be the same for all the indexes.

Spatial joins can be used to answer questions such as, Which highways cross national
parks?
4-18 Oracle Spatial User’s Guide and Reference

Querying Spatial Data
The following table structures illustrate how the join would be accomplished for
this example:

PARKS(GID VARCHAR2(32), SHAPE MDSYS.SDO_GEOMETRY)
HIGHWAYS(GID VARCHAR2(32), SHAPE MDSYS.SDO_GEOMETRY)

The primary filter would identify pairs of GID values from the PARKS and
HIGHWAYS tables that interact in their index entries. The query that performs the
primary filter join is:

SELECT A.GID, B.GID
 FROM PARKS A, HIGHWAYS B
 WHERE sdo_filter(A.shape, B.shape, ’querytype=join’) = ’TRUE’;

The original question, asking about highways that cross national parks, requires the
secondary filter operator to find the exact relationship between highways and
parks.

The query that performs this join using both primary and secondary filters is:

SELECT A.GID, B.GID
 FROM parks A, highways B
 WHERE sdo_relate(A.shape, B.shape,
 ’mask=ANYINTERACT querytype=join’);

4.2.3 Cross-Schema Operator Invocation
You can invoke spatial operators on an indexed table that is not in your schema.
Assume that user A has a spatial table T1 (with index table IDX_TAB1) with a
spatial index defined, that user B has a spatial table T2 (with index table IDX_TAB2)
with a spatial index defined, and that user C wants to invoke operators on tables in
one or both of the other schemas.

If user C wants to invoke an operator only on T1, user C must perform the
following steps:

1. Connect as user A and execute the following statements:

GRANT select on T1 to C;
GRANT select on idx_tab1 to C;

2. Connect as user C and execute a statement such as the following:

SELECT a.gid
 FROM T1 a
 WHERE sdo_filter(a.geometry, :theGeometry, ’querytype=WINDOW’) = ’TRUE’;
Indexing and Querying Spatial Data 4-19

Querying Spatial Data
If user C wants to invoke an operator on both T1 and T2, user C must perform the
following steps:

1. Connect as user A and execute the following statements:

GRANT select on T1 to C;
GRANT select on idx_tab1 to C;

2. Connect as user B and execute the following statements:

GRANT select on T2 to C;
GRANT select on idx_tab2 to C;

3. Connect as user C and execute a statement such as the following:

SELECT a.gid
 FROM T1 a, T2 b
 WHERE b.gid = 5 AND
 sdo_filter(a.geometry, b.geometry, ’querytype=WINDOW’) = ’TRUE’;
4-20 Oracle Spatial User’s Guide and Reference

Coordinate Systems (Spatial Reference Sys
5

Coordinate Systems (Spatial Reference

Systems)

This chapter describes in greater detail the Oracle Spatial coordinate system
support, which was introduced in Section 1.5.4. You can store and manipulate SDO_
GEOMETRY objects in a variety of coordinate systems.

For reference information about coordinate system transformation functions and
procedures, see Chapter 13.

5.1 Terms and Concepts
This section explains important terms and concepts related to coordinate system
support in Oracle Spatial.

5.1.1 Coordinate System (Spatial Reference System)
A coordinate system (also called a spatial reference system) is a means of assigning
coordinates to a location and establishing relationships between sets of such
coordinates. It enables the interpretation of a set of coordinates as a representation
of a position in a real world space.

5.1.2 Cartesian Coordinates
Cartesian coordinates are coordinates that measure the position of a point from a
defined origin along axes that are perpendicular in the represented
two-dimensional or three-dimensional space.
tems) 5-1

Terms and Concepts
5.1.3 Geodetic Coordinates (Geographic Coordinates)
Geodetic coordinates (sometimes called geographic coordinates) are angular
coordinates (longitude and latitude), closely related to spherical polar coordinates,
and are defined relative to a particular Earth geodetic datum (described in
Section 5.1.6). For more information about geodetic coordinate system support, see
Section 5.2.

5.1.4 Projected Coordinates
Projected coordinates are planar Cartesian coordinates that result from performing
a mathematical mapping from a point on the Earth’s surface to a plane. There are
many such mathematical mappings, each used for a particular purpose.

5.1.5 Local Coordinates
Local coordinates are Cartesian coordinates in a non-Earth (non-georeferenced)
coordinate system. Section 5.3 describes local coordinate system support in Spatial.

5.1.6 Geodetic Datum
A geodetic datum is a means of representing the figure of the Earth, usually as an
oblate ellipsoid of revolution, that approximates the surface of the Earth locally or
globally, and is the reference for the system of geodetic coordinates.

5.1.7 Authalic Sphere
An authalic sphere is a sphere that has the same surface area as a particular oblate
ellipsoid of revolution representing the figure of the Earth.

5.1.8 Transformation
Transformation is the conversion of coordinates from one coordinate system to
another coordinate system.

If the coordinate system is georeferenced, transformation can involve datum
transformation: the conversion of geodetic coordinates from one geodetic datum to
another geodetic datum, usually involving changes in the shape, orientation, and
center position of the reference ellipsoid.
5-2 Oracle Spatial User’s Guide and Reference

Geodetic Coordinate Support
5.2 Geodetic Coordinate Support
With Oracle9i, Spatial provides a rational and complete treatment of geodetic
coordinates. Before Oracle 9i, Spatial computations were based solely on flat
(Cartesian) coordinates, regardless of the coordinate system specified for the layer
of geometries. Consequently, computations for data in geodetic coordinate systems
were inaccurate, because they always treated the coordinates as if they were on a
flat surface, and they did not consider the curvature of the surface.

With the current release, ellipsoidal surface computations consider the curvatures of
arcs in the specified geodetic coordinate system and return correct, accurate results.
In other words, with the current release, Spatial queries return the right answers all
the time.

5.2.1 Geodesy and Two-Dimensional Geometry
A two-dimensional geometry is a surface geometry, but the important question is:
What is the surface? A flat surface (plane) is accurately represented by Cartesian
coordinates. However, Cartesian coordinates are not adequate for representing the
surface of a solid. A commonly used surface for spatial geometry is the surface of
the Earth, and the laws of geometry there are different than they are in a plane. For
example, on the Earth’s surface there are no parallel lines: lines are geodesics, and
all geodesics intersect. Thus, closed curved surface problems cannot be done
accurately with Cartesian geometry.

With Oracle9i, Spatial provides accurate results regardless of the coordinate system
or the size of the area involved, without requiring that the data be projected to a flat
surface. The results are accurate regardless of where on the Earth’s surface the
query is focused, even in "special" areas such as the poles. Thus, you can store
coordinates in any datum and projections that you choose, and you can perform
accurate queries regardless of the coordinate system.

5.2.2 Choosing a Geodetic or Projected Coordinate System
For applications that deal with the Earth’s surface, the data can be represented
using a geodetic coordinate system or a projected plane coordinate system. In
deciding which approach to take with the data, consider any needs related to
accuracy and performance:

■ Accuracy

For many spatial applications, the area is sufficiently small to allow adequate
computations on Cartesian coordinates in a local projection. For example, the
Coordinate Systems (Spatial Reference Systems) 5-3

Geodetic Coordinate Support
New Hampshire State Plane local projection provides adequate accuracy for
most spatial applications that use data for that state.

However, Cartesian computations on a plane projection will never give accurate
results for a large area such as Canada or Scandinavia. For example, a query
asking if Stockholm, Sweden and Helsinki, Finland are within a specified
distance may return an incorrect result if the specified distance is close to the
actual measured distance. Computations involving large areas -- or requiring
very precise accuracy -- must account for the curvature of the Earth’s surface.

■ Performance

Spherical computations use more computing resources than Cartesian
computations, and take longer to complete. In general, a Spatial operation using
geodetic coordinates will take two to three times longer than the same
operation using Cartesian coordinates.

5.2.3 Other Considerations and Requirements with Geodetic Data
The following geometries are not permitted if a geodetic coordinate system is used:

■ Circles

■ Circular arcs

■ Optimized rectangles (rectangles defined specifying only two points)

However, you can use the SDO_CS.VIEWPORT_TRANSFORM function to
convert optimized longitude/latitude rectangles to valid geodetic polygons for
use with the SDO_FILTER operator.

Geodetic coordinate system support is provided only for geometries that consist of
points or geodesics (lines on the ellipsoid). If you have geometries containing circles
or circular arcs in a projected coordinate system, you can densify them using the
SDO_GEOM.SDO_ARC_DENSIFY function (documented in Chapter 11) before
transforming them to geodetic coordinates, and then perform Spatial operations on
the resulting geometries.

The following size limits apply with geodetic data:

■ No polygon element can have an area larger than one-half the surface of the
Earth.

■ No line element can have a length longer than half the perimeter (a great circle)
of the Earth.
5-4 Oracle Spatial User’s Guide and Reference

Local Coordinate Support
If you need to work with larger elements, first break these elements into multiple
smaller elements and work with them. For example, you cannot create an element
representing all the ocean surface of the Earth; however, you can create multiple
elements, each representing part of the overall ocean surface.

To take full advantage of Spatial features, you must index geodetic data layers using
a geodetic R-tree index. (You can create a non-geodetic R-tree or quadtree index on
geodetic data by specifying ’geodetic=FALSE’ in the PARAMETERS clause of
the CREATE INDEX statement; however, this is not recommended. See the Usage
Notes for the CREATE INDEX statement in Chapter 8 for more information.) In
addition, for Spatial release 9.0.1 and higher you must delete (DROP INDEX) and
re-create all spatial indexes on geodetic data from a release before 9.0.1.

Tolerance is specified as meters for geodetic layers. Note that if you use tolerance
values typical for non-geodetic data, these values are interpreted as meters for
geodetic data. For example, if you specify a tolerance value of 0.005 for geodetic
data, this is interpreted as precise to 5 millimeters. If this value is more precise than
your applications need, performance may be affected because of the internal
computational steps taken to implement the specified precision. (For more
information about tolerance, see Section 1.5.5.)

For geodetic layers, you must specify the dimensional extents in the index metadata
as -180,180 for longitude and -90,90 for latitude. The following statement (from
Example 5–3 in Section 5.8) specifies these extents (with a 10-meter tolerance value
in each dimension) for a geodetic data layer:

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 ’cola_markets_cs’,
 ’shape’,
 MDSYS.SDO_DIM_ARRAY(
 MDSYS.SDO_DIM_ELEMENT(’Longitude’, -180, 180, 10), -- 10 meters tolerance
 MDSYS.SDO_DIM_ELEMENT(’Latitude’, -90, 90, 10) -- 10 meters tolerance
),
 8307 -- SRID for ’Longitude / Latitude (WGS 84)’ coordinate system
);

See Section 5.7 for additional notes and restrictions relating to geodetic data.

5.3 Local Coordinate Support
With Oracle9i, Spatial provides a level of support for local coordinate systems. Local
coordinate systems are often used in CAD systems, and they can also be used in
Coordinate Systems (Spatial Reference Systems) 5-5

Coordinate Systems Data Structures
local surveys where the relationship between the surveyed site and the rest of the
world is not important.

Several local coordinate systems are predefined and included with Spatial in the
MDSYS.CS_SRS table (described in Section 5.4.1). These supplied local coordinate
systems, whose names start with Non-Earth, define non-Earth Cartesian coordinate
systems based on different units of measurement (Meter, Millimeter, Inch, and so on).
In the current release, you can use these local coordinate systems only to convert
coordinates in a local coordinate system from one unit of measurement to another
(for example, inches to millimeters) by transforming a geometry or a layer of
geometries.

5.4 Coordinate Systems Data Structures
The coordinate systems functions and procedures use information provided in the
following tables supplied with Oracle Spatial:

■ MDSYS.CS_SRS (see Section 5.4.1) defines the valid coordinate systems. It
associates each coordinate system with its well-known text description, which is
in conformance with the standard published by the OpenGIS Consortium
(http://www.opengis.org).

■ MDSYS.SDO_ANGLE_UNITS (see Section 5.4.2) defines the valid angle units.
The angle unit is part of the well-known text description.

■ MDSYS.SDO_DIST_UNITS (see Section 5.4.3) defines the valid distance units.
The distance unit is included in the well-known text description.

■ MDSYS.SDO_DATUMS (see Section 5.4.4) defines the valid datums. The datum
is part of the well-known text description.

■ MDSYS.SDO_ELLIPSOIDS (see Section 5.4.5) defines the valid ellipsoids. The
ellipsoid is part of the well-known text description.

■ MDSYS.SDO_PROJECTIONS (see Section 5.4.6) defines the valid map
projections. The map projection is part of the well-known text description.
5-6 Oracle Spatial User’s Guide and Reference

Coordinate Systems Data Structures
5.4.1 MDSYS.CS_SRS Table
The MDSYS.CS_SRS reference table contains over 900 rows, one for each valid
coordinate system.

The MDSYS.CS_SRS table contains the columns shown in Table 5–1.

Note: You should not modify or delete any Oracle-supplied
information in any of the tables that are used for coordinate system
support.

You should not add any information to the MDSYS.CS_SRS table
unless you are creating a user-defined coordinate system. (Do not
add information to the MDSYS.SDO_DATUMS, MDSYS.SDO_
ELLIPSOIDS, or MDSYS.PROJECTIONS tables.) Section 5.5
describes how to create a user-defined coordinate system.

Note: You should probably not modify, delete, or add any
information in the MDSYS.CS_SRS table. If you plan to add any
user-defined coordinate systems, be sure to use SRID values of
1000000 (1 million) or higher, and follow the guidelines in
Section 5.5.

Table 5–1 MDSYS.CS_SRS Table

Column
Name Data Type Description

CS_NAME VARCHAR2(68) A well-known name, often mnemonic, by which a
user can refer to the coordinate system.

SRID NUMBER(38) The unique ID number (Spatial Reference ID) for a
coordinate system. Currently, SRID values 1-999999
are reserved for use by Oracle Spatial, and values
1000000 (1 million) and higher are available for
user-defined coordinate systems.

AUTH_SRID NUMBER(38) An optional ID number that can be used to indicate
how the entry was derived; it might be a foreign key
into another coordinate table, for example.

AUTH_NAME VARCHAR2(256) An authority name for the coordinate system.
Contains ’Oracle’ in the supplied table. Users can
specify any value in any rows that they add.
Coordinate Systems (Spatial Reference Systems) 5-7

Coordinate Systems Data Structures
5.4.1.1 Well-Known Text (WKTEXT)
The WKTEXT column of the MDSYS.CS_SRS table contains the well-known text
(WKT) description of the SRS, as defined by the OpenGIS Consortium.

The following is the WKT EBNF syntax. All user-defined coordinate systems must
strictly comply with this syntax.

<coordinate system> ::=
 <horz cs> | <local cs>

<horz cs> ::=
 <geographic cs> | <projected cs>

<projected cs> ::=
 PROJCS ["<name>", <geographic cs>, <projection>,
 {<parameter>,}* <linear unit>]

<projection> ::=
 PROJECTION ["<name>"]

<parameter> ::=
 PARAMETER ["name", <number>]

<geographic cs> ::=
 GEOGCS ["<name>", <datum>, <prime meridian>, <angular unit>]

<datum> ::=
 DATUM ["<name>", <spheroid>
 {, <shift-x>, <shift-y>, <shift-z>

WKTEXT VARCHAR2(2046) The well-known text (WKT) description of the SRS, as
defined by the OpenGIS Consortium. For more
information, see Section 5.4.1.1.

CS_BOUNDS MDSYS.SDO_
GEOMETRY

Optional SDO_GEOMETRY object that is a polygon
with WGS-84 longitude and latitude vertices,
representing the spheroidal polygon description of
the zone of validity for a projected coordinate system.
Must be null for a geographic or non-Earth coordinate
system. Is null in all supplied rows.

Table 5–1 MDSYS.CS_SRS Table (Cont.)

Column
Name Data Type Description
5-8 Oracle Spatial User’s Guide and Reference

Coordinate Systems Data Structures
 , <rot-x>, <rot-y>, <rot-z>, <scale_adjust>}
]

<spheroid> ::=
 SPHEROID ["<name>", <semi major axis>, <inverse flattening>]

<prime meridian> ::=
 PRIMEM ["<name>", <longitude>]

<longitude> ::=
 <number>

<semi-major axis> ::=
 <number>

<inverse flattening> ::=
 <number>

<angular unit> ::= <unit>

<linear unit> ::= <unit>

<unit> ::=
 UNIT ["<name>", <conversion factor>]

<local cs> ::=
 LOCAL_CS ["<name>", <local datum>, <linear unit>,
 <axis> {, <axis>}*]

<local datum> ::=
 LOCAL_DATUM ["<name>", <datum type>
 {, <shift-x>, <shift-y>, <shift-z>
 , <rot-x>, <rot-y>, <rot-z>, <scale_adjust>}
]

<datum type> ::=
 <number>

<axis> ::=
 AXIS ["<name>", NORTH | SOUTH | EAST |
 WEST | UP | DOWN | OTHER]

The prime meridian (PRIMEM) must be specified in decimal degrees of longitude.

An example of the WKT for a geodetic (geographic) coordinate system is:
Coordinate Systems (Spatial Reference Systems) 5-9

Coordinate Systems Data Structures
’GEOGCS ["Longitude / Latitude (Old Hawaiian)", DATUM ["Old Hawaiian", SPHEROID
["Clarke 1866", 6378206.400000, 294.978698]], PRIMEM ["Greenwich", 0.000000],
UNIT ["Decimal Degree", 0.01745329251994330]]’

The WKT definition of the coordinate system is hierarchically nested. The Old
Hawaiian geographic coordinate system (GEOGCS) is composed of a named datum
(DATUM), a prime meridian (PRIMEM), and a unit definition (UNIT). The datum is
in turn composed of a named spheroid and its parameters of semimajor axis and
inverse flattening.

An example of the WKT for a projected coordinate system (a Wyoming state plane)
is:

'PROJCS["Wyoming 4901, Eastern Zone (1983, meters)", GEOGCS ["GRS 80", DATUM
["GRS 80", SPHEROID ["GRS 80", 6378137.000000, 298.257222]], PRIMEM [
"Greenwich", 0.000000], UNIT ["Decimal Degree", 0.01745329251994330]],
PROJECTION ["Transverse Mercator"], PARAMETER ["Scale_Factor", 0.999938],
PARAMETER ["Central_Meridian", -105.166667], PARAMETER ["Latitude_Of_Origin",
40.500000], PARAMETER ["False_Easting", 200000.000000], UNIT ["Meter",
1.000000000000]]'

The projected coordinate system contains a nested geographic coordinate system as
its basis, as well as parameters that control the projection.

Oracle Spatial supports all the common geodetic datums and map projections.

An example of the WKT for a local coordinate system is:

LOCAL_CS ["Non-Earth (Meter)", LOCAL_DATUM ["Local Datum", 0], UNIT ["Meter",
1.0], AXIS ["X", EAST], AXIS["Y", NORTH]]

Local coordinate systems are described in Section 5.3.

5.4.2 MDSYS.SDO_ANGLE_UNITS Table
The MDSYS.SDO_ANGLE_UNITS reference table contains one row for each valid
UNIT specification in the well-known text (WKT) description in the coordinate
system definition. The WKT is described in Section 5.4.1.1.

The MDSYS.SDO_ANGLE_UNITS table contains the columns shown in Table 5–2.
5-10 Oracle Spatial User’s Guide and Reference

Coordinate Systems Data Structures
5.4.3 MDSYS.SDO_DIST_UNITS Table
The MDSYS.SDO_DIST_UNITS reference table contains one row for each valid
distance unit specification in the well-known text (WKT) description in the
coordinate system definition. The WKT is described in Section 5.4.1.1.

The MDSYS.SDO_DIST_UNITS table contains the columns shown in Table 5–3.

5.4.4 MDSYS.SDO_DATUMS Table
The MDSYS.SDO_DATUMS reference table contains one row for each valid
DATUM specification in the well-known text (WKT) description in the coordinate
system definition. The WKT is described in Section 5.4.1.1.

The MDSYS.SDO_DATUMS table contains the columns shown in Table 5–4.

Table 5–2 MDSYS.SDO_ANGLE_UNITS Table

Column Name Data Type Description

SDO_UNIT VARCHAR2(32) (Reserved for future use by Oracle Spatial.)

UNIT_NAME VARCHAR2(100) Name of the angle unit. Specify a value from this
column in the UNIT specification of the WKT for
any user-defined coordinate system. Examples:
Decimal Degree, Radian, Decimal Second, Decimal
Minute, Gon, Grad

CONVERSION_
FACTOR

NUMBER The ratio of the specified unit to one Radian. For
example, the ratio of Decimal Degree to Radian is
0.017453293.

Table 5–3 MDSYS.SDO_DIST_UNITS Table

Column Name Data Type Purpose

SDO_UNIT VARCHAR2 Unit string identifier. Examples: M, KM, CM, MM,
MILE, NAUT_MILE, FOOT, INCH. Do not use this in
the WKT definition; instead, use a value from UNIT_
NAME.

UNIT_NAME VARCHAR2 Descriptive name of the unit, to be used in the WKT
specification. Examples: Meter, Kilometer, Centimeter,
Millimeter, Mile, Nautical Mile, Foot, Inch

CONVERSION_
FACTOR

NUMBER Ratio of the unit to 1 meter. For example, the
conversion factor for a meter is 1.0, and the
conversion factor for a mile is 1609.344.
Coordinate Systems (Spatial Reference Systems) 5-11

Coordinate Systems Data Structures
The following are the names (in tabular format) of the supported datums:

Table 5–4 MDSYS.SDO_DATUMS Table

Column Name Data Type Description

NAME VARCHAR2(64) Name of the datum. Specify a value
(Oracle-supplied or user-defined) from this column
in the DATUM specification of the WKT for any
user-defined coordinate system. Examples: Adindan,
Afgooye, Ain el Abd 1970, Anna 1 Astro 1965, Arc 1950,
Arc 1960, Ascension Island 1958.

SHIFT_X NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
x-axis.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
z-axis.

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.

ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.

ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.

SCALE_
ADJUST

NUMBER A value to be used in adjusting the X, Y, and Z
values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10-6)

Adindan Afgooye Ain el Abd 1970

Anna 1 Astro 1965 Arc 1950 Arc 1960

Ascension Island 1958 Astro B4 Sorol Atoll Astro Beacon E

Astro DOS 71/4 Astronomic Station 1952 Australian Geodetic 1966

Australian Geodetic 1984 Belgium Hayford Bellevue (IGN)

Bermuda 1957 Bogota Observatory CH 1903 (Switzerland)

Campo Inchauspe Canton Astro 1966 Cape

Cape Canaveral Carthage Chatham 1971
5-12 Oracle Spatial User’s Guide and Reference

Coordinate Systems Data Structures
Chua Astro Corrego Alegre DHDN
(Potsdam/Rauenberg)

DOS 1968 Djakarta (Batavia) Easter Island 1967

European 1950 European 1979 European 1987

GRS 67 GRS 80 GUX 1 Astro

Gandajika Base Geodetic Datum 1949 Guam 1963

Hito XVIII 1963 Hjorsey 1955 Hong Kong 1963

Hu-Tzu-Shan ISTS 073 Astro 1969 Indian (Bangladesh, etc.)

Indian
(Thailand/Vietnam)

Ireland 1965 Johnston Island 1961

Kandawala Kerguelen Island Kertau 1948

L.C. 5 Astro Liberia 1964 Lisboa (DLx)

Luzon (Mindanao Island) Luzon (Philippines) Mahe 1971

Marco Astro Massawa Melrica 1973 (D73)

Merchich Midway Astro 1961 Minna

NAD 27 (Alaska) NAD 27 (Bahamas) NAD 27 (Canada)

NAD 27 (Canal Zone) NAD 27 (Caribbean) NAD 27 (Central
America)

NAD 27 (Continental US) NAD 27 (Cuba) NAD 27 (Greenland)

NAD 27 (Mexico) NAD 27 (Michigan) NAD 27 (San Salvador)

NAD 83 NTF (Greenwich
meridian)

NTF (Paris meridian)

NWGL 10 Nahrwan (Masirah Island) Nahrwan (Saudi Arabia)

Nahrwan (Un. Arab
Emirates)

Naparima, BWI Netherlands Bessel

Observatorio 1966 Old Egyptian Old Hawaiian

Oman Ordinance Survey Great
Brit

Pico de las Nieves

Pitcairn Astro 1967 Provisional South
American

Puerto Rico

Pulkovo 1942 Qatar National Qornoq
Coordinate Systems (Spatial Reference Systems) 5-13

Coordinate Systems Data Structures
5.4.5 MDSYS.SDO_ELLIPSOIDS Table
The MDSYS.SDO_ELLIPSOIDS reference table contains one row for each valid
SPHEROID specification in the well-known text (WKT) description in the
coordinate system definition. The WKT is described in Section 5.4.1.1.

The MDSYS.SDO_ELLIPSOIDS table contains the columns shown in Table 5–5.

The following are the names (in tabular format) of the supported ellipsoids:

RT 90 (Sweden) Reunion Rome 1940

Santo (DOS) Sao Braz Sapper Hill 1943

Schwarzeck South American 1969 South Asia

Southeast Base Southwest Base Timbalai 1948

Tokyo Tristan Astro 1968 Viti Levu 1916

WGS 60 WGS 66 WGS 72

WGS 84 Wake-Eniwetok 1960 Yacare

Zanderij

Table 5–5 MDSYS.SDO_ELLIPSOIDS Table

Column Name Data Type Description

NAME VARCHAR2(64) Name of the ellipsoid (spheroid). Specify a value
from this column in the SPHEROID specification of
the WKT for any user-defined coordinate system.
Examples: Clarke 1866, WGS 72, Australian,
Krassovsky, International 1924.

SEMI_MAJOR_
AXIS

NUMBER Radius in meters along the semi-major axis (one-half
of the long axis of the ellipsoid).

INVERSE_
FLATTENING

NUMBER Inverse flattening of the ellipsoid. That is, 1/f, where
f = (a-b)/a, and a = semi-major axis and b =
semi-minor axis.

Airy 1930 Airy 1930(Ireland 1965) Australian

Bessel 1841 Bessel 1841 (NGO 1948) Bessel 1841 (Schwarzeck)

Clarke 1858 Clarke 1866 Clarke 1866 (Michigan)

Clarke 1880 Clarke 1880 (Arc 1950) Clarke 1880 (IGN)
5-14 Oracle Spatial User’s Guide and Reference

Coordinate Systems Data Structures
5.4.6 MDSYS.SDO_PROJECTIONS Table
The MDSYS.SDO_PROJECTIONS reference table contains one row for each valid
PROJECTION specification in the well-known text (WKT) description in the
coordinate system definition. The WKT is described in Section 5.4.1.1.

The MDSYS.SDO_PROJECTIONS table contains the column shown in Table 5–6.

The following are the names (in tabular format) of the supported projections:

Clarke 1880 (Jamaica) Clarke 1880 (Merchich) Clarke 1880 (Palestine)

Everest Everest (Kalianpur) Everest (Kertau)

Everest (Timbalai) Fischer 1960 (Mercury) Fischer 1960 (South Asia)

Fischer 1968 GRS 67 GRS 80

Hayford Helmert 1906 Hough

IAG 75 Indonesian International 1924

Krassovsky MERIT 83 NWL 10D

NWL 9D New International 1967 OSU86F

OSU91A Plessis 1817 South American 1969

Sphere (6370997m) Struve 1860 WGS 60

WGS 66 WGS 72 WGS 84

Walbeck War Office

Table 5–6 MDSYS.SDO_PROJECTIONS Table

Column Name Data Type Description

NAME VARCHAR2(64) Name of the map projection. Specify a value from
this column in the PROJECTION specification of the
WKT for any user-defined coordinate system.
Examples: Geographic (Lat/Long), Universal Transverse
Mercator, State Plane Coordinates, Albers Conical Equal
Area.

Alaska Conformal Albers Conical Equal Area

Azimuthal Equidistant Bonne

Cassini Cylindrical Equal Area
Coordinate Systems (Spatial Reference Systems) 5-15

Creating a User-Defined Coordinate System
5.5 Creating a User-Defined Coordinate System
To create a user-defined coordinate system, add a row to the MDSYS.CS_SRS table.
See Section 5.4.1 for information about this table, including the requirements for
values in each column.

To specify the WKTEXT column in the MDSYS.CS_SRS table, follow the syntax
specified in Section 5.4.1.1. See also the examples in that section.

When you specify the WKTEXT column entry, use valid values from several Spatial
reference tables:

Eckert IV Eckert VI

Equidistant Conic Equirectangular

Gall General Vertical Near-Side Perspective

Geographic (Lat/Long) Gnomonic

Hammer Hotine Oblique Mercator

Interrupted Goode Homolosine Interrupted Mollweide

Lambert Azimuthal Equal Area Lambert Conformal Conic

Lambert Conformal Conic (Belgium
1972)

Mercator

Miller Cylindrical Mollweide

New Zealand Map Grid Oblated Equal Area

Orthographic Polar Stereographic

Polyconic Robinson

Sinusoidal Space Oblique Mercator

State Plane Coordinates Stereographic

Swiss Oblique Mercator Transverse Mercator

Transverse Mercator Danish System 34
Jylland-Fyn

Transverse Mercator Danish System 45
Bornholm

Transverse Mercator Finnish KKJ Transverse Mercator Sjaelland

Universal Transverse Mercator Van der Grinten

Wagner IV Wagner VII
5-16 Oracle Spatial User’s Guide and Reference

Creating a User-Defined Coordinate System
■ MDSYS.SDO_ANGLE_UNITS (see Section 5.4.2) in a UNIT specification for
angle units

■ MDSYS.SDO_DIST_UNITS (see Section 5.4.3) in a UNIT specification for
distance units

■ MDSYS.SDO_DATUMS (see Section 5.4.4) in the DATUM specification, or a
user-defined datum not in MDSYS.SDO_DATUMS

If you supply a user-defined datum, the datum name must be different from
any datum name in the MDSYS.SDO_DATUMS table, and the WKT must
specify at least the datum name and the spheroid (or ellipsoid) information
listed in Section 5.4.1.1. If the shift, rotation, and scale parameters are all zero,
you can omit them; however, if any of these parameter values are nonzero, you
must specify them all.

■ MDSYS.SDO_ELLIPSOIDS (see Section 5.4.5) in the SPHEROID specification

If you supply a user-defined ellipsoid, the ellipsoid name must be different
from any ellipsoid name in the MDSYS.SDO_ELLIPSOIDS table. You must also
specify the semi-major axis and inverse flattening for a user-defined ellipsoid.

■ MDSYS.SDO_PROJECTIONS (see Section 5.4.6) in the PROJECTION
specification

The name in each PARAMETER specification must be one of the following,
depending on the projection that you use:

■ Standard_Parallel_1 (in decimal degrees)

■ Standard_Parallel_2 (in decimal degrees)

■ Central_Meridian (in decimal degrees)

■ Latitude_of_Origin (in decimal degrees)

■ Azimuth (in decimal degrees)

■ False_Easting (in meters)

■ False_Northing (in meters)

■ Perspective_Point_Height (in meters)

■ Landsat_Number (must be 1, 2, 3, 4, or 5)

■ Path_Number

■ Scale_Factor
Coordinate Systems (Spatial Reference Systems) 5-17

Creating a User-Defined Coordinate System
Some of these parameters are appropriate for several projections. They are not all
appropriate for every projection.

Example 5–1 creates a user-defined projected coordinate system. The first four
columns are not the WKT information, but specify other fields in the MSDYD.CS_
SRS table. The WKT information starts with PROJCS. This example is similar to an
existing coordinate system, but has a different name, SRID, and central meridian.

Example 5–1 Creating a User-Defined Projected Coordinate System

INSERT INTO mdsys.cs_srs VALUES (’UTM Zone 44.5, Northern Hemisphere (WGS 84)’,
1082378, 1082378, ’Oracle’,
’PROJCS["UTM Zone 44.5, Northern Hemisphere (WGS 84)",
GEOGCS ["WGS 84",
DATUM ["WGS 84 ",
SPHEROID ["WGS 84", 6378137.000000, 298.257224]],
PRIMEM ["Greenwich", 0.000000],
UNIT ["Decimal Degree", 0.01745329251994330]],
PROJECTION ["Transverse Mercator"],
PARAMETER ["Scale_Factor", 0.999600],
PARAMETER ["Central_Meridian", 84.000000],
PARAMETER ["False_Easting", 500000.000000],
UNIT ["Meter", 1.000000000000]]’,NULL);

Example 5–2 creates a user-defined geodetic coordinate system. The first four
columns are not the WKT information, but specify other fields in the MSDYD.CS_
SRS table. The WKT information starts with GEOGCS. This example includes an
ellipsoid (SPHEROID) definition in which the semi-major axis and inverse
flattening parameters are slightly changed from the WGS 84 coordinate system, as
well as a different datum definition. Because the shift_x and shift_y parameter values
are specified, all the shift, rotation, and scaling values must be specified. There is no
projection information included for a geodetic coordinate system.

Example 5–2 Creating a User-Defined Geodetic Coordinate System

INSERT INTO mdsys.cs_srs VALUES
(’Longitude / Latitude (WGS 90)’, 1008307, 1008307, ’Oracle’,
’GEOGCS ["Longitude / Latitude (WGS 90)",
DATUM ["WGS 90",
SPHEROID ["WGS 90", 6378137.032499, 298.257236], 100, 100, 0, 0, 0, 0, 0],
PRIMEM ["Greenwich", 0.000000],
UNIT ["Decimal Degree", 0.01745329251994330]]’,NULL);
5-18 Oracle Spatial User’s Guide and Reference

Notes and Restrictions with Coordinate Systems Support
5.6 Coordinate System Transformation Functions
The current release of Oracle Spatial includes the following functions and
procedures for data transformation using coordinate systems:

■ SDO_CS.TRANSFORM function: Transforms a geometry representation using a
coordinate system (specified by SRID or name).

■ SDO_CS.TRANSFORM_LAYER procedure: Transforms an entire layer of
geometries (that is, all geometries in a specified column in a table).

■ SDO_CS.VIEWPORT_TRANSFORM function: Transforms an optimized
rectangle into a valid geodetic polygon for use with Spatial operators and
functions.

Reference information about these functions and procedures is in Chapter 13.

Support for additional functions and procedures is planned for future releases of
Oracle Spatial.

5.7 Notes and Restrictions with Coordinate Systems Support
The following notes and restrictions apply to coordinate systems support in the
current release of Spatial.

If you have geodetic data, see also Section 5.2 for considerations, guidelines, and
additional restrictions.

5.7.1 Different Coordinate Systems for Geometries with Operators and Functions
For Spatial operators (described in Chapter 10) that take two geometries as input
parameters, if the geometries are based on different coordinate systems, the query
window (the second geometry) is transformed to the coordinate system of the first
geometry before the operation is performed. This transformation is a temporary
internal operation performed by Spatial; it does not affect any stored query-window
geometry.

For SDO_GEOM package geometry functions (described in Chapter 11) that take
two geometries as input parameters, both geometries must be based on the same
coordinate system.

5.7.2 Functions Not Supported with Geodetic Data
In the current release, the following functions are not supported with geodetic data:
Coordinate Systems (Spatial Reference Systems) 5-19

Example of Coordinate System Transformation
■ SDO_AGGR_MBR

■ SDO_GEOM.SDO_MBR

■ SDO_GEOM.SDO_MAX_MBR_ORDINATE

■ SDO_GEOM.SDO_MIN_MBR_ORDINATE

■ All 3D formats of LRS functions (explained in Section 6.4)

5.7.3 Functions Supported by Approximations with Geodetic Data
In the current release, the following functions are supported by approximations
with geodetic data:

■ SDO_GEOM.SDO_BUFFER

■ SDO_GEOM.SDO_CENTROID

■ SDO_GEOM.SDO_CONVEXHULL

When these functions are used on data with geodetic coordinates, they internally
perform the operations in an implicitly generated local-tangent-plane Cartesian
coordinate system and then transform the results to the geodetic coordinate system.
For SDO_GEOM.SDO_BUFFER, generated arcs are approximated by line segments
before the back-transform.

5.8 Example of Coordinate System Transformation
This section presents a simplified example that uses coordinate system
transformation functions and procedures. It refers to concepts that are explained in
this chapter and uses functions documented in Chapter 13.

Example 5–3 uses mostly the same geometry data (cola markets) as in Section 2.1,
except that instead of null SDO_SRID values, the SDO_SRID value 8307 is used.
That is, the geometries are defined as using the coordinate system whose SRID is
8307 and whose well-known name is "Longitude / Latitude (WGS 84)". This is
probably the most widely used coordinate system, and it is the one used for global
positioning system (GPS) devices. The geometries are then transformed using the
coordinate system whose SRID is 8199 and whose well-known name is "Longitude
/ Latitude (Arc 1950)".

Example 5–3 uses the geometries illustrated in Figure 2–1 in Section 2.1, except that
cola_d is a rectangle (here, a square) instead of a circle, because arcs are not
supported with geodetic coordinate systems.
5-20 Oracle Spatial User’s Guide and Reference

Example of Coordinate System Transformation
Example 5–3 does the following:

■ Creates a table (COLA_MARKETS_CS) to hold the spatial data

■ Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d), using the
SDO_SRID value 8307

■ Updates the USER_SDO_GEOM_METADATA view to reflect the dimension of
the areas, using the SDO_SRID value 8307

■ Creates a spatial index (COLA_SPATIAL_IDX_CS)

■ Performs some transformation operations (single geometry and entire layer)

Example 5–4 includes the output of the SELECT statements in Example 5–3.

Example 5–3 Simplified Example of Coordinate System Transformation

-- Create a table for cola (soft drink) markets in a
-- given geography (such as city or state).
-- Each row will be an area of interest for a specific
-- cola (for example, where the cola is most preferred
-- by residents, where the manufacturer believes the
-- cola has growth potential, etc.

CREATE TABLE cola_markets_cs (
 mkt_id NUMBER PRIMARY KEY,
 name VARCHAR2(32),
 shape MDSYS.SDO_GEOMETRY);

-- Note re. areas of interest: cola_a (rectangle) and
-- cola_b (4-sided polygon) are side by side (share 1 border).
-- cola_c is a small 4-sided polygon that overlaps parts of
-- cola_a and cola_b. A rough sketch:
-- ---------+
-- | a | b \
-- | +------+ |
-- | /___c____| |
-- | | |
-- ---------+---------|

-- The next INSERT statement creates an area of interest for
-- Cola A. This area happens to be a rectangle.
-- The area could represent any user-defined criterion: for
-- example, where Cola A is the preferred drink, where
-- Cola A is under competitive pressure, where Cola A
-- has strong growth potential, and so on.
Coordinate Systems (Spatial Reference Systems) 5-21

Example of Coordinate System Transformation

INSERT INTO cola_markets_cs VALUES(
 1,
 ’cola_a’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 8307, -- SRID for ’Longitude / Latitude (WGS 84)’ coordinate system
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- polygon
 MDSYS.SDO_ORDINATE_ARRAY(1,1, 5,1, 5,7, 1,7, 1,1) -- All vertices must
 -- be defined for rectangle with geodetic data.
)
);

-- The next two INSERT statements create areas of interest for
-- Cola B and Cola C. These areas are simple polygons (but not
-- rectangles).

INSERT INTO cola_markets_cs VALUES(
 2,
 ’cola_b’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 8307,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 MDSYS.SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
);

INSERT INTO cola_markets_cs VALUES(
 3,
 ’cola_c’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 8307,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), --one polygon (exterior polygon ring)
 MDSYS.SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
);

-- Insert a rectangle (here, square) instead of a circle as in the original,
-- because arcs are not supported with geodetic coordinate systems.
INSERT INTO cola_markets_cs VALUES(
5-22 Oracle Spatial User’s Guide and Reference

Example of Coordinate System Transformation
 4,
 ’cola_d’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 8307, -- SRID for ’Longitude / Latitude (WGS 84)’ coordinate system
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- polygon
 MDSYS.SDO_ORDINATE_ARRAY(10,9, 11,9, 11,10, 10,10, 10,9) -- All vertices
must
 -- be defined for rectangle with geodetic data.
)
);

-- UPDATE METADATA VIEW --

-- Update the USER_SDO_GEOM_METADATA view. This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (i.e., table-column combination; here: cola_markets_cs and shape).

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 ’cola_markets_cs’,
 ’shape’,
 MDSYS.SDO_DIM_ARRAY(
 MDSYS.SDO_DIM_ELEMENT(’Longitude’, -180, 180, 10), -- 10 meters tolerance
 MDSYS.SDO_DIM_ELEMENT(’Latitude’, -90, 90, 10) -- 10 meters tolerance
),
 8307 -- SRID for ’Longitude / Latitude (WGS 84)’ coordinate system
);

-- CREATE THE SPATIAL INDEX --

-- Must be R-tree; quadtree not supported for geodetic data.
CREATE INDEX cola_spatial_idx_cs
ON cola_markets_cs(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

-- TEST COORDINATE SYSTEM TRANSFORMATION --

-- Return the transformation of cola_c using to_srid 8199
-- (’Longitude / Latitude (Arc 1950)’)
Coordinate Systems (Spatial Reference Systems) 5-23

Example of Coordinate System Transformation
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS_CS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

-- Same as preceding, but using to_srname parameter.
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, ’Longitude / Latitude (Arc
1950)’)
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS_CS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

-- Transform the entire SHAPE layer and put results in the table
-- named cola_markets_cs_8199, which the procedure will create.
EXECUTE SDO_CS.TRANSFORM_LAYER(’COLA_MARKETS_CS’,’SHAPE’,’COLA_MARKETS_CS_
8199’,8199);

-- Select all from the old (existing) table.
SELECT * from cola_markets_cs;

-- Select all from the new (layer transformed) table.
SELECT * from cola_markets_cs_8199;

-- Show metadata for the new (layer transformed) table.
DESCRIBE cola_markets_cs_8199;

-- Viewport_Transform
SELECT c.name FROM cola_markets_cs c WHERE
 SDO_FILTER(c.shape, SDO_CS.VIEWPORT_TRANSFORM(
 MDSYS.SDO_GEOMETRY(
 2003,
 0, -- SRID = 0 (special case)
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3),
 MDSYS.SDO_ORDINATE_ARRAY(-180,-90,180,90)),
 8307), ’querytype=window’) = ’TRUE’;

Example 5–4 shows the output of the SELECT statements in Example 5–3. Notice
the slight differences between the coordinates in the original geometries (SRID 8307)
and the transformed coordinates (SRID 8199) -- for example, (1, 1, 5, 1, 5, 7, 1, 7, 1, 1)
and (1.00078604, 1.00274579, 5.00069354, 1.00274488, 5.0006986, 7.00323528,
1.00079179, 7.00324162, 1.00078604, 1.00274579) for cola_a.
5-24 Oracle Spatial User’s Guide and Reference

Example of Coordinate System Transformation
Example 5–4 Output of SELECT Statements in Coordinate System Transformation
Example

SQL> -- Return the transformation of cola_c using to_srid 8199
SQL> -- (’Longitude / Latitude (Arc 1950)’)
SQL> SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 2 FROM cola_markets_cs c, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’COLA_MARKETS_CS’ AND m.column_name = ’SHAPE’
 4 AND c.name = ’cola_c’;

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,8199)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

SQL>
SQL> -- Same as preceding, but using to_srname parameter.
SQL> SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, ’Longitude / Latitude
(Arc 1950)’)
 2 FROM cola_markets_cs c, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’COLA_MARKETS_CS’ AND m.column_name = ’SHAPE’
 4 AND c.name = ’cola_c’;

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,’LONGITUDE/LATITUDE(ARC1950)’)(SDO_GTYPE, SDO
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

SQL>
SQL> -- Transform the entire SHAPE layer and put results in the table
SQL> -- named cola_markets_cs_8199, which the procedure will create.
SQL> EXECUTE SDO_CS.TRANSFORM_LAYER(’COLA_MARKETS_CS’,’SHAPE’,’COLA_MARKETS_CS_
8199’,8199);

PL/SQL procedure successfully completed.
Coordinate Systems (Spatial Reference Systems) 5-25

Example of Coordinate System Transformation
SQL>
SQL> -- Select all from the old (existing) table.
SQL> SELECT * from cola_markets_cs;

 MKT_ID NAME
---------- --------------------------------
SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
 1 cola_a
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1, 1, 5, 1, 5, 7, 1, 7, 1, 1))

 2 cola_b
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

 3 cola_c

 MKT_ID NAME
---------- --------------------------------
SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3, 3, 6, 3, 6, 5, 4, 5, 3, 3))

 4 cola_d
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(10, 9, 11, 9, 11, 10, 10, 10, 10, 9))

SQL>
SQL> -- Select all from the new (layer transformed) table.
SQL> SELECT * from cola_markets_cs_8199;

SDO_ROWID

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
AAABZzAABAAAOa6AAA
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1.00078604, 1.00274579, 5.00069354, 1.00274488, 5.0006986, 7.00323528, 1.0007
9179, 7.00324162, 1.00078604, 1.00274579))

AAABZzAABAAAOa6AAB
5-26 Oracle Spatial User’s Guide and Reference

Example of Coordinate System Transformation
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5.00069354, 1.00274488, 8.00062191, 1.00274427, 8.00062522, 6.00315345, 5.000
6986, 7.00323528, 5.00069354, 1.00274488))

SDO_ROWID

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--

AAABZzAABAAAOa6AAC
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

AAABZzAABAAAOa6AAD
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(10.0005802, 9.00337775, 11.0005553, 9.00337621, 11.0005569, 10.0034478, 10.00

SDO_ROWID

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
05819, 10.0034495, 10.0005802, 9.00337775))

SQL>
SQL> -- Show metadata for the new (layer transformed) table.
SQL> DESCRIBE cola_markets_cs_8199;
 Name Null? Type
 --- -------- ----------------------------
 SDO_ROWID ROWID
 GEOMETRY MDSYS.SDO_GEOMETRY

SQL>
SQL> -- Viewport_Transform
SQL> SELECT c.name FROM cola_markets_cs c WHERE
 2 SDO_FILTER(c.shape, SDO_CS.VIEWPORT_TRANSFORM(
 3 MDSYS.SDO_GEOMETRY(
 4 2003,
 5 0, -- SRID = 0 (special case)
 6 NULL,
 7 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3),
 8 MDSYS.SDO_ORDINATE_ARRAY(-180,-90,180,90)),
 9 8307), ’querytype=window’) = ’TRUE’;
Coordinate Systems (Spatial Reference Systems) 5-27

Example of Coordinate System Transformation
NAME

cola_a
cola_c
cola_b
cola_d
5-28 Oracle Spatial User’s Guide and Reference

Linear Referencing S
6

Linear Referencing System

Linear referencing is a natural and convenient means to associate attributes or
events to locations or portions of a linear feature. It has been widely used in
transportation applications (such as for highways, railroads, and transit routes) and
utilities applications (such as for gas and oil pipelines). The major advantage of
linear referencing is its capability of locating attributes and events along a linear
feature with only one parameter (usually known as measure) instead of two (such as
latitude/longitude or x/y in Cartesian space). Sections of a linear feature can be
referenced and created dynamically by indicating the start and end locations along
the feature without explicitly storing them.

The linear referencing system (LRS) application programming interface (API) in
Oracle Spatial provides server-side LRS capabilities at the cartographic level. The
linear measure information is directly integrated into the Oracle Spatial geometry
structure. The Oracle Spatial LRS API provides support for dynamic segmentation,
and it serves as a groundwork for third-party or middle-tier application
development virtually for any linear referencing methods and models in any
coordinate systems.

For an example of LRS, see Section 6.6. However, you may want to read the rest of
this chapter first, to understand the concepts that the example illustrates.

For reference information about LRS functions, see Chapter 14.

If you have LRS data from a previous release of Spatial, see Section A.5 for
information about migrating LRS data.

6.1 Terms and Concepts
This section explains important terms and concepts related to linear referencing
support in Oracle Spatial.
ystem 6-1

Terms and Concepts
6.1.1 Geometric Segments (LRS Segments)
Geometric segments are basic LRS elements in Oracle Spatial. A geometric segment
can be any of the following:

■ Line string: an ordered, non-branching, and continuous geometry (for example,
a simple road)

■ Multiline string: non-connected line strings (for example, a highway with a gap
caused by a lake or a bypass road)

■ Polygon (for example, a racetrack or a scenic tour route that starts and ends at
the same point)

A geometric segment must contain at least start and end measures for its start and
end points. Measures of points of interest (such as highway exits) on the geometric
segments can also be assigned. These measures are either assigned by users or
derived from existing geometric segments. Figure 6–1 shows a geometric segment
with four line segments and one arc. Points on the geometric segment are
represented by triplets (x, y, m), where x and y describe the location and m denotes
the measure (with each measure value underlined in Figure 6–1).

Figure 6–1 Geometric Segment

6.1.2 Shape Points
Shape points are points that are specified when an LRS segment is constructed, and
that are assigned measure information. In Oracle Spatial, a line segment is
6-2 Oracle Spatial User’s Guide and Reference

Terms and Concepts
represented by its start and end points, and an arc is represented by three points:
start, middle, and end points of the arc. You must specify these points as shape
points, but you can also specify other points as shape points if you need measure
information stored for these points (for example, an exit in the middle of a straight
part of the highway).

Thus, shape points can serve one or both of the following purposes: to indicate the
direction of the segment (for example, a turn or curve), and to identify a point of
interest for which measure information is to be stored.

Shape points might not directly relate to mileposts or reference posts in LRS; they
are used as internal reference points. The measure information of shape points is
automatically populated when you define the LRS segment using the SDO_
LRS.DEFINE_GEOM_SEGMENT procedure.

6.1.3 Direction of a Geometric Segment
The direction of a geometric segment is indicated from the start point of the
geometric segment to the end point. The direction is determined by the order of the
vertices (from start point to end point) in the geometry definition. Measures of
points on a geometric segment always either increase or decrease along the
direction of the geometric segment.

6.1.4 Measure (Linear Measure)
The measure of a point along a geometric segment is the linear distance (in the
measure dimension) measured from the start point (for increasing values) or end
point (for decreasing values) of the geometric segment. The measure information
does not necessarily have to be of the same scale as their distance. However, the
linear mapping relationship between measure and distance is always preserved.

Some LRS functions use offset instead of measure to represent measured distance
along linear features. Although some other linear referencing systems might use
offset to mean what the Oracle Spatial LRS refers to as measure, offset has a
different meaning in Oracle Spatial from measure, as explained in Section 6.1.5.

6.1.5 Offset
The offset of a point along a geometric segment is the perpendicular distance
between the point and the geometric segment. Offsets are positive if points are on
the left side along the segment direction and are negative if they are on the right
side. Points are on a geometric segment if their offsets to the segment are zero.
Linear Referencing System 6-3

Terms and Concepts
The unit of measurement for an offset is the same as for the coordinate system
associated with the geometric segment. For geodetic data, the default unit of
measurement is meters.

Figure 6–2 shows how a point can be located along a geometric segment with
measure and offset information. By assigning an offset together with a measure, it is
possible to locate not only points that are on the geometric segment, but also points
that are perpendicular to the geometric segment.

Figure 6–2 Describing a Point Along a Segment with a Measure and an Offset

6.1.6 Measure Populating
Any unassigned measures of a geometric segment are automatically populated
based upon their distance distribution. This is done before any LRS operations for
geometric segments with unknown measures (NULL in Oracle Spatial). The
resulting geometric segments from any LRS operations return the measure
information associated with geometric segments. The measure of a point on the
geometric segment can be obtained based upon a linear mapping relationship
between its previous and next known measures or locations. See the algorithm
representation in Figure 6–3 and the example in Figure 6–4.
6-4 Oracle Spatial User’s Guide and Reference

Terms and Concepts
Figure 6–3 Measures, Distances, and Their Mapping Relationship

Figure 6–4 Measure Populating of a Geometric Segment

Measures are evenly spaced between assigned measures. However, the assigned
measures for points of interest on a geometric segment do not need to be evenly
spaced. This could eliminate the problem of error accumulation and account for
inaccuracy of data source.

Moreover, the assigned measures do not even need to reflect actual distances (for
example, they can reflect estimated driving time); they can be any valid values
within the measure range. Figure 6–5 shows the measure population that results
when assigned measure values are not proportional and reflect widely varying
gaps.
Linear Referencing System 6-5

Terms and Concepts
Figure 6–5 Measure Populating With Disproportional Assigned Measures

In all cases, measure populating is done in an incremental fashion along the
segment direction. This improves the performance of current and subsequent LRS
operations.

6.1.7 Measure Range of a Geometric Segment
The start and end measures of a geometric segment define the linear measure range
of the geometric segment. Any valid LRS measures of a geometric segment must fall
within its linear measure range.

6.1.8 Projection
The projection of a point along a geometric segment is the point on the geometric
segment with the minimum distance to the point. The measure information of the
resulting point is also returned in the point geometry.

6.1.9 LRS Point
LRS points are points with linear measure information along a geometric segment.
A valid LRS point is a point geometry with measure information.

All LRS point data must be stored in the SDO_ELEM_INFO_ARRAY and SDO_
ORDINATE_ARRAY, and cannot be stored in the SDO_POINT field in the SDO_
GEOMETRY definition of the point.

6.1.10 Linear Features
Linear features are any spatial objects that can be treated as a logical set of linear
segments. Examples of linear features are highways in transportation applications
6-6 Oracle Spatial User’s Guide and Reference

LRS Data Model
and pipelines in utility industry applications. The relationship of linear features,
geometric segments, and LRS points is shown in Figure 6–6.

Figure 6–6 Linear Feature, Geometric Segments, and LRS Points

6.2 LRS Data Model
The Oracle Spatial LRS data model incorporates measure information into its
geometry representation at the point level. The measure information is directly
integrated into the Oracle Spatial model. To accomplish this, an additional measure
dimension must be added to the Oracle Spatial metadata.

Oracle Spatial LRS support affects the Spatial metadata and data (the geometries).
Example 6–1 shows how a measure dimension can be added to two-dimensional
geometries in the Spatial metadata. The measure dimension must be the last
element of the SDO_DIM_ARRAY in a spatial object definition (shown in bold in
Example 6–1).

Example 6–1 Including LRS Measure Dimension in Spatial Metadata

INSERT INTO user_sdo_geom_metadata VALUES(
 ’LRS_ROUTES’,
 ’GEOMETRY’,
 MDSYS.SDO_DIM_ARRAY (
 MDSYS.SDO_DIM_ELEMENT(’X’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 100, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’M’, 0, 100, 0.005)),
 NULL);
Linear Referencing System 6-7

Indexing of LRS Data
After adding the new measure dimension, geometries with measure information
such as geometric segments and LRS points can be represented. An example of
creating a geometric segment with three line segments is shown in Figure 6–7.

Figure 6–7 Creating a Geometric Segment

In Figure 6–7, the geometric segment has the following definition (with measure
values underlined):

SDO_GEOMETRY(3302, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1),
 MDSYS.SDO_ORDINATE_ARRAY(5,10,0, 20,5,NULL, 35,10,NULL, 55,10,100))

Whenever a geometric segment is defined, its start and end measures must be
defined or derived from some existing geometric segment. The unsigned measures
of all shape points on a geometric segment will be automatically populated.

The LRS API works with geometries in formats of Oracle Spatial before release
8.1.6, but the resulting geometries will be converted to the Oracle Spatial release
8.1.6 or higher format, specifically with 4-digit SDO_GTYPE and SDO_ETYPE
values. For example, in Oracle Spatial release 8.1.6 and higher, the geometry type
(SDO_GTYPE) of a spatial object includes the number of dimensions of the object as
the first digit of the SDO_GTYPE value. Thus, the SDO_GTYPE value of a point is 1
in the pre-release 8.1.6 format but 2001 in the release 8.1.6 format (the number of
dimensions of the point is 2). However, an LRS point (which includes measure
information) has three dimensions, and thus the SDO_GTYPE of any point
geometry used with an LRS function must be 3301.

6.3 Indexing of LRS Data
If LRS data is indexed using a spatial quadtree index, only the first two dimensions
are indexed; the measure dimension and its values are not indexed.

If LRS data has four dimensions (three plus the M dimension) and if you need to
index all three non-measure dimensions, you must use a spatial R-tree index to
index the data, and you must specify PARAMETERS(’sdo_indx_dims=3’) in the
6-8 Oracle Spatial User’s Guide and Reference

3D Formats of LRS Functions
CREATE INDEX statement to ensure that the first three dimensions are indexed.
Note, however, that if you specify an sdo_indx_dims value of 3 or higher, the only
Spatial operator that can be used on the indexed geometries is SDO_FILTER; the
other operators described in Chapter 10 cannot be used. (The default value for the
sdo_indx_dims keyword is 2, which would cause only the first two dimensions to be
indexed.) For example, if the dimensions are X, Y, Z, and M, specify sdo_indx_
dims=3 to index the X, Y, and Z dimensions, but not the measure (M) dimension. Do
not include the measure dimension in a spatial index, because this causes additional
processing overhead and produces no benefit.

Information about the CREATE INDEX statement and its parameters and keywords
is in Chapter 8.

6.4 3D Formats of LRS Functions
Most LRS functions have formats that end in _3D: for example, DEFINE_GEOM_
SEGMENT_3D, CLIP_GEOM_SEGMENT_3D, FIND_MEASURE_3D, and
LOCATE_PT_3D. If a function has a 3D format, it is identified in the Usage Notes
for the function in Chapter 14.

The 3D formats should be used only when the geometry object has four dimensions
and the fourth dimension is the measure (for example, X, Y, Z, and M), and only
when you want the function to consider the first three dimensions (for example, X,
Y, and Z). If the standard format of a function (that is, without the _3D) is used on a
geometry with four dimensions, the function considers only the first two
dimensions (for example, X and Y).

For example, the following format considers the X, Y, and Z dimensions of the
specified GEOM object in performing the clip operation:

SELECT SDO_LRS.CLIP_GEOM_SEGMENT_3D(a.geom, m.diminfo, 5, 10)
 FROM routes r, user_sdo_geom_metadata m
 WHERE m.table_name = ’ROUTES’ AND m.column_name = ’GEOM’
 AND r.route_id = 1;

However, the following format considers only the X and Y dimensions, and ignores
the Z dimension, of the specified GEOM object in performing the clip operation:

SELECT SDO_LRS.CLIP_GEOM_SEGMENT(a.geom, m.diminfo, 5, 10)
 FROM routes r, user_sdo_geom_metadata m
 WHERE m.table_name = ’ROUTES’ AND m.column_name = ’GEOM’
 AND r.route_id = 1;
Linear Referencing System 6-9

LRS Operations
The parameters for the standard and 3D formats of any function are the same, and
the usage notes apply to both formats.

The 3D formats are not supported with geodetic data.

6.5 LRS Operations
This section describes several linear referencing operations supported by the Oracle
Spatial LRS API.

6.5.1 Defining a Geometric Segment
There are two ways to create a geometric segment with measure information:

■ Construct a geometric segment and assign measures explicitly.

■ Define a geometric segment with specified start and end, and/or any other
measures, in an ascending or descending order. Measures of shape points with
unknown (unassigned) measures (null values) in the geometric segment will be
automatically populated according to their locations and distance distribution.

Figure 6–8 shows different ways of defining a geometric segment.
6-10 Oracle Spatial User’s Guide and Reference

LRS Operations
Figure 6–8 Defining a Geometric Segment

An LRS segment must be defined (or must already exist) before any LRS operations
can proceed. That is, the start, end, and any other assigned measures must be
present to derive the location from a specified measure. The measure information of
intermediate shape points will automatically be populated if they are not assigned.

6.5.2 Redefining a Geometric Segment
You can redefine a geometric segment to replace the existing measures of all shape
points between the start and end point with automatically calculated measures.
Redefining a segment can be useful if errors have been made in one or more explicit
measure assignments, and you want to start over with proportionally assigned
measures.

Figure 6–9 shows the redefinition of a segment where the existing (before) assigned
measure values are not proportional and reflect widely varying gaps.
Linear Referencing System 6-11

LRS Operations
Figure 6–9 Redefining a Geometric Segment

After the segment redefinition in Figure 6–9, the populated measures reflect
proportional distances along the segment.

6.5.3 Clipping a Geometric Segment
You can clip a geometric segment to create a new geometric segment out of an
existing geometric segment (Figure 6–10, part a).

Figure 6–10 Clipping, Splitting, and Concatenating Geometric Segments
6-12 Oracle Spatial User’s Guide and Reference

LRS Operations
6.5.4 Splitting a Geometric Segment
You can create two new geometric segments by splitting a geometric segment
(Figure 6–10, part b).

6.5.5 Concatenating Geometric Segments
You can create a new geometric segment by concatenating two geometric segments
(Figure 6–10, part c). Note that the geometric segments do not need to be spatially
connected, although they are connected in the illustration in Figure 6–10, part c. The
measures of the second geometric segment are shifted so that the end measure of
the first segment is the same as the start measure of the second segment.

Measure assignments for the clipping, splitting, and concatenating operations in
Figure 6–10 are shown in Figure 6–11. Measure information and segment direction
are preserved in a consistent manner. The assignment is done automatically when
the operations have completed.

Note: In Figure 6–10 and several that follow, small gaps between
segments are used in illustrations of segment splitting and
concatenation. Each gap simply reinforces the fact that two
different segments are involved. However, the two segments (such
as segment 1 and segment 2 in Figure 6–10, parts b and c) are
actually connected. The tolerance (see Section 1.5.5) is considered in
determining whether or not segments are connected.
Linear Referencing System 6-13

LRS Operations
Figure 6–11 Measure Assignment in Geometric Segment Operations

The direction of the geometric segment resulting from concatenation is always the
direction of the first segment (geom_segment1 in the call to the SDO_
LRS.CONCATENATE_GEOM_SEGMENTS function), as shown in Figure 6–12.
6-14 Oracle Spatial User’s Guide and Reference

LRS Operations
Figure 6–12 Segment Direction with Concatenation

In addition to explicitly concatenating two connected segments using the SDO_
LRS.CONCATENATE_GEOM_SEGMENTS function, you can perform aggregate
concatenation: that is, you can concatenate all connected geometric segments in a
column (layer) using the SDO_AGGR_LRS_CONCAT spatial aggregate function.
(See the description and example of the SDO_AGGR_LRS_CONCAT spatial
aggregate function in Chapter 12.)

6.5.6 Scaling a Geometric Segment
You can create a new geometric segment by performing a linear scaling operation
on a geometric segment. Figure 6–13 shows the mapping relationship for geometric
segment scaling.
Linear Referencing System 6-15

LRS Operations
Figure 6–13 Scaling a Geometric Segment

In general, scaling a geometric segment only involves rearranging measures of the
newly created geometric segment. However, if the scaling factor is negative, the
order of the shape points needs to be reversed so that measures will increase along
the geometric segment’s direction (which is defined by the order of the shape
points).

A scale operation can perform any combination of the following operations:

■ Translating (shifting) measure information. (For example, add the same value to
Ms and Me to get M’s and M’e.)

■ Reversing measure information. (Let M’s = Me, M’e = Ms, and Mshift = 0.)

■ Performing simple scaling of measure information. (Let Mshift = 0.)

For examples of these operations, see usage notes and examples for the SDO_
LRS.SCALE_GEOM_SEGMENT function in Chapter 14.

6.5.7 Offsetting a Geometric Segment
You can create a new geometric segment by performing an offsetting operation on a
geometric segment. Figure 6–14 shows the mapping relationship for geometric
segment offsetting.
6-16 Oracle Spatial User’s Guide and Reference

LRS Operations
Figure 6–14 Offsetting a Geometric Segment

In the offsetting operation shown in Figure 6–14, the resulting geometric segment is
offset by 5 units from the specified start and end measures of the original segment.

For more information, see usage notes and examples for the SDO_LRS.OFFSET_
GEOM_SEGMENT function in Chapter 14.

6.5.8 Locating a Point on a Geometric Segment
You can find the position of a point described by a measure and an offset on a
geometric segment (see Figure 6–15).

Figure 6–15 Locating a Point Along a Segment with a Measure and an Offset

There is always a unique a location with a specific measure on a geometric segment.
Ambiguity arises when offsets are given and the points described by the measures
fall on shape points of the geometric segment (see Figure 6–16).
Linear Referencing System 6-17

LRS Operations
Figure 6–16 Ambiguity in Location Referencing with Offsets

As shown in Figure 6–16, an offset arc of a shape point on a geometric segment is an
arc on which all points have the same minimum distance to the shape point. As a
result, all points on the offset arc are represented by the same (measure, offset) pair.
To resolve this one-to-many mapping problem, the middle point on the offset arc is
returned.

6.5.9 Projecting a Point onto a Geometric Segment
You can find the projection point of a point with respect to a geometric segment.
The point to be projected can be on or off the segment. If the point is on the
segment, the point and its projection point are the same.

Projection is a reverse operation of the point-locating operation shown in
Figure 6–15. Similar to a point-locating operation, all points on the offset arc of a
shape point will have the same projection point (that is, the shape point itself),
measure, and offset (see Figure 6–16). If there are multiple projection points for a
point, the first one from the start point is returned (projection pt 1 in both
illustrations in Figure 6–17).
6-18 Oracle Spatial User’s Guide and Reference

LRS Operations
Figure 6–17 Multiple Projection Points

6.5.10 Converting LRS Geometries
You can convert geometries from standard line string format to Linear Referencing
System format, and vice versa. The main use of conversion functions will probably
occur if you have a large amount of existing line string data, in which case
conversion is a convenient alternative to creating all of the LRS segments manually.
However, if you need to convert LRS segments to standard line strings for certain
applications, that capability is provided also.

Functions are provided to convert:

■ Individual line strings or points

For conversion from standard format to LRS format, a measure dimension
(named M by default) is added, and measure information is provided for each
point. For conversion from LRS format to standard format, the measure
dimension and information are removed. In both cases, the dimensional
information (DIMINFO) metadata in the USER_SDO_GEOM_METADATA
view is not affected.

■ Layers (all geometries in a column)

For conversion from standard format to LRS format, a measure dimension
(named M by default) is added, but no measure information is provided for
each point. For conversion from LRS format to standard format, the measure
dimension and information are removed. In both cases, the dimensional
information (DIMINFO) metadata in the USER_SDO_GEOM_METADATA
view is modified as needed.

■ Dimensional information (DIMINFO)

The dimensional information (DIMINFO) metadata in the USER_SDO_GEOM_
METADATA view is modified as needed. For example, converting a standard
Linear Referencing System 6-19

Example of LRS Functions
dimensional array with X and Y dimensions (SDO_DIM_ELEMENT) to an LRS
dimensional array causes an M dimension (SDO_DIM_ELEMENT) to be added.

Figure 6–18 shows the addition of measure information when a standard line string
is converted to an LRS line string (using the SDO_LRS.CONVERT_TO_LRS_GEOM
function). The measure dimension values are underlined in Figure 6–18.

Figure 6–18 Conversion from Standard to LRS Line String

For conversions of point geometries, the SDO_POINT attribute (described in
Section 2.2.3) in the returned geometry is affected as follows:

■ If a standard point is converted to an LRS point, the SDO_POINT attribute
information in the input geometry is used to set the SDO_ELEM_INFO and
SDO_ORDINATES attributes (described in Section 2.2.4 and Section 2.2.5) in the
resulting geometry, and the SDO_POINT attribute in the resulting geometry is
set to null.

■ If an LRS point is converted to a standard point, the information in the SDO_
ELEM_INFO and SDO_ORDINATES attributes (described in Section 2.2.4 and
Section 2.2.5) in the input geometry is used to set the SDO_POINT attribute
information in the resulting geometry, and the SDO_ELEM_INFO and SDO_
ORDINATES attributes in the resulting geometry are set to null.

The conversion functions are listed in Table 14–3 in Chapter 14. See also the
reference information in Chapter 14 about each conversion function.

6.6 Example of LRS Functions
This section presents a simplified example that uses LRS functions. It refers to
concepts that are explained in this chapter and uses functions documented in
Chapter 14.

This example uses the road that is illustrated in Figure 6–19.
6-20 Oracle Spatial User’s Guide and Reference

Example of LRS Functions
Figure 6–19 Simplified LRS Example: Highway

In Figure 6–19, the highway (Route 1) starts at point 2,2 and ends at point 5,14,
follows the path shown, and has six entrance-exit points (Exit 1 through Exit 6). For
simplicity, each unit on the graph represents one unit of measure, and thus the
measure from start to end is 27 (the segment from Exit 5 to Exit 6 being the
hypotenuse of a 3-4-5 right triangle).

Each row in Table 6–1 lists an actual highway-related feature and the LRS feature
that corresponds to it or that can be used to represent it.

Table 6–1 Highway Features and LRS Counterparts

Highway Feature LRS Feature

Named route, road, or street LRS segment, or linear feature (logical set
of segments)

Mile or kilometer marker Measure

Accident reporting and location tracking SDO_LRS.LOCATE_PT function

Construction zone (portion of a road) SDO_LRS.CLIP_GEOM_SEGMENT
function
Linear Referencing System 6-21

Example of LRS Functions
Example 6–2 does the following:

■ Creates a table to hold the segment

■ Inserts the definition of the highway into the table

■ Inserts the necessary metadata into the USER_SDO_GEOM_METADATA view

■ Uses PL/SQL and SQL statements to define the segment and perform
operations on it

Example 6–3 includes the output of the SELECT statements in Example 6–2.

Example 6–2 Simplified Example: Highway

-- Create a table for routes (highways).
CREATE TABLE lrs_routes (
 route_id NUMBER PRIMARY KEY,
 route_name VARCHAR2(32),
 route_geometry MDSYS.SDO_GEOMETRY);

-- Populate table with just one route for this example.
INSERT INTO lrs_routes VALUES(
 1,
 ’Route1’,
 MDSYS.SDO_GEOMETRY(
 3302, -- line string, 3 dimensions: X,Y,M
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
 MDSYS.SDO_ORDINATE_ARRAY(
 2,2,0, -- Start point - Exit1; 0 is measure from start.

Road extension (adding at the beginning or
end) or combination (designating or renaming
two roads that meet as one road)

SDO_LRS.CONCATENATE_GEOM_
SEGMENTS function

Road reconstruction or splitting (resulting in
two named roads from one named road)

SDO_LRS.SPLIT_GEOM_SEGMENT
function

Finding the closest point on the road to a point
off the road (such as a building)

SDO_LRS.PROJECT_PT function

Guard rail or fence alongside a road. SDO_LRS.OFFSET_GEOM_SEGMENT
function

Table 6–1 Highway Features and LRS Counterparts (Cont.)

Highway Feature LRS Feature
6-22 Oracle Spatial User’s Guide and Reference

Example of LRS Functions
 2,4,2, -- Exit2; 2 is measure from start.
 8,4,8, -- Exit3; 8 is measure from start.
 12,4,12, -- Exit4; 12 is measure from start.
 12,10,NULL, -- Not an exit; measure automatically calculated and filled.
 8,10,22, -- Exit5; 22 is measure from start.
 5,14,27) -- End point (Exit6); 27 is measure from start.
)
);

-- Update the Spatial metadata.
INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 ’lrs_routes’,
 ’route_geometry’,
 MDSYS.SDO_DIM_ARRAY(-- 20X20 grid
 MDSYS.SDO_DIM_ELEMENT(’X’, 0, 20, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 20, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’M’, 0, 20, 0.005) -- Measure dimension
),
 NULL -- SRID
);

-- Create the spatial index.
CREATE INDEX lrs_routes_idx ON lrs_routes(route_geometry)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

-- Test the LRS procedures.
DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
line_string MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result_geom_1 MDSYS.SDO_GEOMETRY;
result_geom_2 MDSYS.SDO_GEOMETRY;
result_geom_3 MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- Define the LRS segment for Route1. This will populate any null measures.
-- No need to specify start and end measures, because they’re already defined
Linear Referencing System 6-23

Example of LRS Functions
-- in the geometry.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment, dim_array);

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Update and insert geometries into table, to display later.
UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

INSERT INTO lrs_routes VALUES(
 11,
 ’result_geom_1’,
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 ’result_geom_2’,
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 ’result_geom_3’,
 result_geom_3
);

END;
/

-- First, display the data in the LRS table.
SELECT route_id, route_name, route_geometry FROM lrs_routes;

-- Are result_geom_1 and result_geom2 connected?
SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry,
 b.route_geometry, 0.005)
 FROM lrs_routes a, lrs_routes b
 WHERE a.route_id = 11 AND b.route_id = 12;
6-24 Oracle Spatial User’s Guide and Reference

Example of LRS Functions
-- Is the Route1 segment valid?
SELECT SDO_LRS.VALID_GEOM_SEGMENT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- Is 50 a valid measure on Route1? (Should return FALSE; highest Route1 measure
is 27.)
SELECT SDO_LRS.VALID_MEASURE(route_geometry, 50)
 FROM lrs_routes WHERE route_id = 1;

-- Is the Route1 segment defined?
SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- How long is Route1?
SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- What is the start measure of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- What is the end measure of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- What is the start point of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_START_PT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- What is the end point of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_END_PT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- Shift by 5 (for example, 5-mile segment added before original start)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo, 0, 27, 5)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- "Convert" mile measures to kilometers (27 * 1.609 = 43.443)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(route_geometry, 0, 43.443, 0)
 FROM lrs_routes WHERE route_id = 1;

-- Clip a piece of Route1.
SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10)
 FROM lrs_routes WHERE route_id = 1;
Linear Referencing System 6-25

Example of LRS Functions
-- Point (9,3,NULL) is off the road; should return (9,4,9).
SELECT SDO_LRS.PROJECT_PT(route_geometry,
 MDSYS.SDO_GEOMETRY(3301, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)))
 FROM lrs_routes WHERE route_id = 1;

-- Return the measure of the projected point.
SELECT SDO_LRS.GET_MEASURE(
 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 MDSYS.SDO_GEOMETRY(3301, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL))),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Is point (9,3,NULL) a valid LRS point? (Should return TRUE.)
SELECT SDO_LRS.VALID_LRS_PT(
 MDSYS.SDO_GEOMETRY(3301, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND a.route_id = 1;

-- Locate the point on Route1 at measure 9, offset 0.
SELECT SDO_LRS.LOCATE_PT(route_geometry, 9, 0)
 FROM lrs_routes WHERE route_id = 1;

Example 6–3 shows the output of the SELECT statements in Example 6–2.

Example 6–3 Simplified Example: Output of SELECT Statements

SQL> -- First, display the data in the LRS table.
SQL> SELECT route_id, route_name, route_geometry FROM lrs_routes;

 ROUTE_ID ROUTE_NAME
---------- --------------------------------
ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
 1 Route1
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))
6-26 Oracle Spatial User’s Guide and Reference

Example of LRS Functions

 11 result_geom_1
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 5, 4, 5))

 12 result_geom_2

 ROUTE_ID ROUTE_NAME
---------- --------------------------------
ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

 13 result_geom_3
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 5, 4, 5, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27)
)

SQL>
SQL> -- Are result_geom_1 and result_geom2 connected?
SQL> SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry,
 2 b.route_geometry, 0.005)
 3 FROM lrs_routes a, lrs_routes b
 4 WHERE a.route_id = 11 AND b.route_id = 12;

SDO_LRS.CONNECTED_GEOM_SEGMENTS(A.ROUTE_GEOMETRY,B.ROUTE_GEOMETRY,0.005)
--
TRUE

SQL>
SQL> -- Is the Route1 segment valid?
SQL> SELECT SDO_LRS.VALID_GEOM_SEGMENT(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.VALID_GEOM_SEGMENT(ROUTE_GEOMETRY)
--
TRUE

SQL>
SQL> -- Is 50 a valid measure on Route1? (Should return FALSE; highest Route1
measure is 27.)
SQL> SELECT SDO_LRS.VALID_MEASURE(route_geometry, 50)
 2 FROM lrs_routes WHERE route_id = 1;
Linear Referencing System 6-27

Example of LRS Functions
SDO_LRS.VALID_MEASURE(ROUTE_GEOMETRY,50)
--
FALSE

SQL>
SQL> -- Is the Route1 segment defined?
SQL> SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.IS_GEOM_SEGMENT_DEFINED(ROUTE_GEOMETRY)
--
TRUE

SQL>
SQL> -- How long is Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_LENGTH(ROUTE_GEOMETRY)

 27

SQL>
SQL> -- What is the start measure of Route1?
SQL> -- What is the start measure of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_MEASURE(ROUTE_GEOMETRY)
--
 0

SQL>
SQL> -- What is the end measure of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_MEASURE(ROUTE_GEOMETRY)
--
 27

SQL>
SQL> -- What is the start point of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_START_PT(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;
6-28 Oracle Spatial User’s Guide and Reference

Example of LRS Functions
SDO_LRS.GEOM_SEGMENT_START_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
2, 2, 0))

SQL>
SQL> -- What is the end point of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_END_PT(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
5, 14, 27))

SQL>
SQL> -- Shift by 5 (for example, 5-mile segment added before original start)
SQL> SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo, 0, 27, 5)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 4 AND a.route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,0,27,5)(SDO_GTYPE, SDO_SRI
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 5, 2, 4, 7, 8, 4, 13, 12, 4, 17, 12, 10, 23, 8, 10, 27, 5, 14, 32))

SQL>
SQL> -- "Convert" mile measures to kilometers (27 * 1.609 = 43.443)
SQL> SELECT SDO_LRS.SCALE_GEOM_SEGMENT(route_geometry, 0, 43.443, 0)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(ROUTE_GEOMETRY,0,43.443,0)(SDO_GTYPE, SDO_SRID, SDO_P
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 3.218, 8, 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))

SQL>
SQL> -- Clip a piece of Route1.
SQL> SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.CLIP_GEOM_SEGMENT(ROUTE_GEOMETRY,5,10)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
Linear Referencing System 6-29

Example of LRS Functions
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))

SQL>
SQL> -- Point (9,3,NULL) is off the road; should return (9,4,9).
SQL> SELECT SDO_LRS.PROJECT_PT(route_geometry,
 2 MDSYS.SDO_GEOMETRY(3301, NULL, NULL,
 3 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 4 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)))
 5 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.PROJECT_PT(ROUTE_GEOMETRY,MDSYS.SDO_GEOMETRY(3301,NULL,NULL,MDSYS.SDO_EL
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

SQL>
SQL> -- Return the measure of the projected point.
SQL> SELECT SDO_LRS.GET_MEASURE(
 2 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 3 MDSYS.SDO_GEOMETRY(3301, NULL, NULL,
 4 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 5 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL))),
 6 m.diminfo)
 7 FROM lrs_routes a, user_sdo_geom_metadata m
 8 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 9 AND a.route_id = 1;

SDO_LRS.GET_MEASURE(SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY,M.DIMINFO,MDSYS.SDO_GEOM
--
 9
SQL>
SQL> -- Is point (9,3,NULL) a valid LRS point? (Should return TRUE.)
SQL> SELECT SDO_LRS.VALID_LRS_PT(
 2 MDSYS.SDO_GEOMETRY(3301, NULL, NULL,
 3 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 4 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)),
 5 m.diminfo)
 6 FROM lrs_routes a, user_sdo_geom_metadata m
 7 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 8 AND a.route_id = 1;

SDO_LRS.VALID_LRS_PT(MDSYS.SDO_GEOMETRY(3301,NULL,NULL,MDSYS.SDO_ELEM_INFO_ARRAY
--
6-30 Oracle Spatial User’s Guide and Reference

Example of LRS Functions
TRUE

SQL>
SQL> -- Locate the point on Route1 at measure 9, offset 0.
SQL> SELECT SDO_LRS.LOCATE_PT(route_geometry, 9, 0)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.LOCATE_PT(ROUTE_GEOMETRY,9,0)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), S
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))
Linear Referencing System 6-31

Example of LRS Functions
6-32 Oracle Spatial User’s Guide and Reference

Extending Spatial Indexing Capab
7

Extending Spatial Indexing Capabilities

This chapter shows how to create and use spatial indexes on objects other than a
geometry column. In other chapters, the focus is on indexing and querying spatial
data that is stored in a single column of type SDO_GEOMETRY. This chapter shows
how to:

■ Embed an SDO_GEOMETRY object in a user-defined object type, and index the
geometry attribute of that type

■ Create an use a function-based index where the function returns an SDO_
GEOMETRY object

The techniques in this chapter are intended for experienced and knowledgeable
application developers. You should be familiar with the Spatial concepts and
techniques described in other chapters. You should also be familiar with, or able to
learn about, relevant Oracle database features, such as user-defined data types and
functional indexing.

7.1 SDO_GEOMETRY Objects in User-Defined Type Definitions
The SDO_GEOMETRY type can be embedded in a user-defined data type
definition. The procedure is very similar to that for using the SDO_GEOMETRY
type for a spatial data column:

1. Create the user-defined data type.

2. Create a table with a column based on that data type.

3. Insert data into the table.

4. Update the USER_SDO_GEOM_METADATA view.

5. Create the spatial index on the geometry attribute.
ilities 7-1

SDO_GEOMETRY Objects in User-Defined Type Definitions
6. Perform queries on the data.

For example, assume that you wanted to follow the cola markets scenario in the
simplified example in Section 2.1, but wanted to incorporate the market name
attribute and the geometry attribute in a single type. First, create the user-defined
data type, as in the following example that creates an object type named MARKET_
TYPE:

CREATE OR REPLACE TYPE market_type AS OBJECT
 (name VARCHAR2(32), shape MDSYS.SDO_GEOMETRY);
/

Create a table that includes a column based on the user-defined type. The following
example creates a table named COLA_MARKETS_2 that will contain the same
information as the COLA_MARKETS table used in the example in Section 2.1.

CREATE TABLE cola_markets_2 (
 mkt_id NUMBER PRIMARY KEY,
 market MARKET_TYPE);

Insert data into the table, using the object type name as a constructor. For example:

INSERT INTO cola_markets_2 VALUES(
 1,
 MARKET_TYPE(’cola_a’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 MDSYS.SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right)
)
)
);

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify
the column name and spatial attribute. The following example specifies
MARKET.SHAPE as the COLUMN_NAME (explained in Section 2.4.2) in the
metadata view.

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 ’cola_markets_2’,
 ’market.shape’,
 MDSYS.SDO_DIM_ARRAY(-- 20X20 grid
7-2 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Objects in Function-Based Indexes
 MDSYS.SDO_DIM_ELEMENT(’X’, 0, 20, 0.005),
 MDSYS.SDO_DIM_ELEMENT(’Y’, 0, 20, 0.005)
),
 NULL -- SRID
);

Create the spatial index, specifying the column name and spatial attribute using
dot-notation. For example.

CREATE INDEX cola_spatial_idx_2
ON cola_markets_2(market.shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Perform queries on the data, using dot-notation to refer to attributes of the
user-defined type. The following simple query returns information associated with
the cola market named cola_a.

SELECT c.mkt_id, c.market.name, c.market.shape
 FROM cola_markets_2 c
 WHERE c.market.name = ’cola_a’;

The following query returns information associated with all geometries that have
any spatial interaction with a specified query window, namely, the rectangle with
lower-left coordinates (4,6) and upper-right coordinates (8,8).

SELECT c.mkt_id, c.market.name, c.market.shape
 FROM cola_markets_2 c
 WHERE SDO_RELATE(c.market.shape,
 MDSYS.SDO_GEOMETRY(2003, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3),
 MDSYS.SDO_ORDINATE_ARRAY(4,6, 8,8)),
 ’mask=anyinteract querytype=window’ = ’TRUE’;

7.2 SDO_GEOMETRY Objects in Function-Based Indexes
A function-based spatial index facilitates queries that use locational information (of
type SDO_GEOMETRY) returned by a function or expression. In this case, the
spatial index is created based on the precomputed values returned by the function
or expression.

If you are not already familiar with function-based indexes, see the following for
detailed explanations of the their benefits, options, and requirements, as well as
usage examples:

■ Oracle9i Application Developer’s Guide - Fundamentals
Extending Spatial Indexing Capabilities 7-3

SDO_GEOMETRY Objects in Function-Based Indexes
■ Oracle9i Database Administrator’s Guide

See especially the information in those documents about requirements and
restrictions related to function-based indexes. For example, you must grant Spatial
application users the QUERY REWRITE privilege, and you must have the
initialization parameters COMPATIBLE set to 8.1.0.0.0 or higher, QUERY_
REWRITE_ENABLED=TRUE, and QUERY_REWRITE_INTEGRITY=TRUSTED.

The procedure for using an SDO_GEOMETRY object in a function-based index is as
follows:

1. Create the function that returns an SDO_GEOMETRY object.

The function must be declared as DETERMINISTIC.

2. If the spatial data table does not already exist, create it, and insert data into the
table.

3. Update the USER_SDO_GEOM_METADATA view.

4. Create the spatial index.

For a function-based spatial index, the number of parameters must not exceed
32.

5. Perform queries on the data.

The rest of this section describes two examples of using function-based indexes. In
both examples, a function is created that returns an SDO_GEOMETRY object, and a
spatial index is created on that function. In the first example, the input parameters
to the function are a standard Oracle data type (NUMBER). In the second example,
the input to the function is a user-defined object type.

7.2.1 Example: Function with Standard Types
In the following example, the input parameters to the function used for the
function-based index are standard numeric values (longitude and latitude).

Assume that you wanted to create a function that returns the longitude and latitude
of a point and to use that function in a spatial index. First, create the function, as in
the following example that creates a function named GET_LONG_LAT_PT:

-- Create a function to return a point geometry (SDO_GTYPE = 2001) with
-- input of 2 numbers: longitude and latitude (SDO_SRID = 8307, for
-- "Longitude / Latitude (WGS 84)", probably the most widely used
-- coordinate system, and the one used for GPS devices.
-- Specify DETERMINISTIC for the function.
7-4 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Objects in Function-Based Indexes
create or replace function get_long_lat_pt(longitude in number,
 latitude in number)
return MDSYS.SDO_GEOMETRY deterministic is
begin
 return mdsys.sdo_geometry(2001, 8307,
 mdsys.sdo_point_type(longitude, latitude, NULL),NULL, NULL);
end;
/

If the spatial data table does not already exist, create the table and add data to it, as
in the following example that creates a table named LONG_LAT_TABLE:

create table LONG_LAT_TABLE
(longitude number, latitude number, name varchar2(32));

insert into LONG_LAT_TABLE values (10,10, ’Place1’);
insert into LONG_LAT_TABLE values (20,20, ’Place2’);
insert into LONG_LAT_TABLE values (30,30, ’Place3’);

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify
the schema name and function name. The following example specifies SCOTT.GET_
LONG_LAT_PT(LONGITUDE,LATITUDE) as the COLUMN_NAME (explained in
Section 2.4.2) in the metadata view.

-- Set up the metadata entry for this table.
-- note that the column name sets up the function on top
-- of the two columns used in this function,
-- along with the owner of the function.
insert into user_sdo_geom_metadata values(’LONG_LAT_TABLE’,
 ’scott.get_long_lat_pt(longitude,latitude)’,
 mdsys.sdo_dim_array(
 mdsys.sdo_dim_element(’Longitude’, -180, 180, 0.005),
 mdsys.sdo_dim_element(’Latitude’, -90, 90, 0.005)), 8307);

Create the spatial index, specifying the function name with parameters. For
example, creating an R-tree index:

create index LONG_LAT_TABLE_IDX on
 LONG_LAT_TABLE(get_long_lat_pt(longitude,latitude))
 indextype is mdsys.spatial_index;

Perform queries on the data. In the following example, the two queries accomplish
the same thing; however, the first query does not use a user-defined function
(instead using a constructor to specify the point), whereas the second query uses the
function to specify the point.
Extending Spatial Indexing Capabilities 7-5

SDO_GEOMETRY Objects in Function-Based Indexes
-- First query: call sdo_filter with an SDO_GEOMETRY constructor
select name from LONG_LAT_TABLE a
 where sdo_filter(get_long_lat_pt(a.longitude,a.latitude),
 mdsys.sdo_geometry(2001, 8307,
 mdsys.sdo_point_type(10,10,NULL), NULL, NULL),
 ’querytype=WINDOW’)=’TRUE’;

-- Second query: call sdo_filter with the function that returns an sdo_geometry
select name from LONG_LAT_TABLE a
 where sdo_filter(get_long_lat_pt(a.longitude,a.latitude),
 get_long_lat_pt(10,10),
 ’querytype=WINDOW’)=’TRUE’;

7.2.2 Example: Function with User-Defined Object Type
In the following example, the input parameter to the function used for the
function-based index is an object of a user-defined type that includes the longitude
and latitude.

Assume that you wanted to create a function that returns the longitude and latitude
of a point and to create a spatial index on that function. First, create the user-defined
data type, as in the following example that creates an object type named LONG_
LAT and its member function GetGeometry:

create type long_lat as object (
 longitude number,
 latitude number,
member function GetGeometry(SELF in long_lat)
RETURN MDSYS.SDO_GEOMETRY DETERMINISTIC)
/

create or replace type body long_lat as
 member function GetGeometry(self in long_lat)
 return MDSYS.SDO_GEOMETRY is
 begin
 return mdsys.sdo_geometry(2001, 8307,
 mdsys.sdo_point_type(longitude, latitude, NULL), NULL,NULL);
 end;
end;
/

If the spatial data table does not already exist, create the table and add data to it, as
in the following example that creates a table named TEST_LONG_LAT:

create table test_long_lat
7-6 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Objects in Function-Based Indexes
 (location long_lat, name varchar2(32));

insert into test_long_lat values (long_lat(10,10), ’Place1’);
insert into test_long_lat values (long_lat(20,20), ’Place2’);
insert into test_long_lat values (long_lat(30,30), ’Place3’);

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify
the schema name, table name, and function name and parameter value. The
following example specifies SCOTT.LONG_LAT.GetGeometry(LOCATION) as the
COLUMN_NAME (explained in Section 2.4.2) in the metadata view.

insert into user_sdo_geom_metadata values(’test_long_lat’,
 ’scott.long_lat.GetGeometry(location)’,
 mdsys.sdo_dim_array(
 mdsys.sdo_dim_element(’Longitude’, -180, 180, 0.005),
 mdsys.sdo_dim_element(’Latitude’, -90, 90, 0.005)), 8307);

Create the spatial index, specifying the column name and function name using
dot-notation. For example:

create index test_long_lat_idx on test_long_lat(location.GetGeometry())
 indextype is mdsys.spatial_index;

Perform queries on the data. The following performs a primary filter operation,
asking for the names of geometries that are likely to interact spatially with point
(10,10).

SELECT a.name FROM test_long_lat a
 WHERE SDO_FILTER(a.location.GetGeometry(),
 MDSYS.SDO_GEOMETRY(2001, 8307,
 MDSYS.SDO_POINT_TYPE(10,10,NULL), NULL, NULL),
 ’querytype=window’) = ’TRUE’;
Extending Spatial Indexing Capabilities 7-7

SDO_GEOMETRY Objects in Function-Based Indexes
7-8 Oracle Spatial User’s Guide and Reference

Part II

Reference Information

This document has two main parts:

■ Part I provides conceptual and usage information about Oracle Spatial.

■ Part II provides reference information about Oracle Spatial methods, operators,
functions, and procedures.

Appendixes with supplementary information follow Part II.

Part II contains the following chapters with reference information:

■ Chapter 8, "SQL Statements for Indexing Spatial Data"

■ Chapter 9, "SDO_GEOMETRY Object Type Methods"

■ Chapter 10, "Spatial Operators"

■ Chapter 11, "Geometry Functions"

■ Chapter 12, "Spatial Aggregate Functions"

■ Chapter 13, "Coordinate System Transformation Functions"

■ Chapter 14, "Linear Referencing Functions"

■ Chapter 15, "Migration Procedures"

■ Chapter 16, "Tuning Functions and Procedures"

■ Chapter 17, "Utility Functions"

To understand the examples in the reference chapters, you must understand the
conceptual and data type information in Chapter 2, "Spatial Data Types and
Metadata", especially Section 2.2, "SDO_GEOMETRY Object Type".

SQL Statements for Indexing Spatia
8

SQL Statements for Indexing Spatial Data

This chapter describes the statements used when working with the spatial object
data type. The statements are listed in Table 8–1.

This chapter focuses on using these SQL statements with spatial indexes. For
complete reference information about any statement, see the Oracle9i SQL Reference.

Table 8–1 Spatial Index Creation and Usage Statements

Statement Description

ALTER INDEX Alters a spatial index on a column of type MDSYS.SDO_
GEOMETRY.

ALTER INDEX REBUILD Rebuilds a spatial index on a column of type MDSYS.SDO_
GEOMETRY.

ALTER INDEX RENAME
TO

Changes the name of a spatial index on a column of type
MDSYS.SDO_GEOMETRY.

CREATE INDEX Creates a spatial index on a column of type MDSYS.SDO_
GEOMETRY.

DROP INDEX Deletes a spatial index on a column of type MDSYS.SDO_
GEOMETRY
l Data 8-1

ALTER INDEX
ALTER INDEX

Purpose
Alters specific parameters for a spatial index or rebuilds a spatial index.

Syntax
ALTER INDEX [schema.]index PARAMETERS (‘index_params [physical_storage_params]’);

Keywords and Parameters

Value Description

INDEX_PARAMS Allows you to change the characteristics of the spatial index, and
the type (fixed or hybrid) of a quadtree index.

Some keywords apply only to R-tree or to quadtree indexes.

add_index Specifies the name of the new index table to add.
Data type is VARCHAR2.

delete_index Specifies the name of the index table to delete. You can only
delete index tables that were created with the ALTER INDEX
add_index statement. The primary index table cannot be deleted
with this parameter. To delete the primary index table, use the
DROP INDEX statement.
Data type is VARCHAR2.

index_status Specifies that index modifications are to be deferred (’index_
status=deferred’) or that deferred index modifications are
to be synchronized with the data in the spatial table (’index_
status=synchronize’). See the Usage Notes for further
details.
Data type is VARCHAR2.

sdo_commit_interval Quadtree indexes only: Specifies the number of underlying table
rows that are processed between commit intervals for the index
data. The default behavior commits the index data only after all
rows in the underlying table have been processed. See the Usage
Notes for the CREATE INDEX statement for further details.
Data type is NUMBER.
8-2 Oracle Spatial User’s Guide and Reference

ALTER INDEX
sdo_indx_dims R-tree indexes only: Specifies the number of dimensions to be
indexed. For example, a value of 2 causes the first two
dimensions to be indexed. Must be less than or equal to the
number of actual dimensions (number of SDO_DIM_ELEMENT
instances in the dimensional array that describes the geometry
objects in the column). Note that if the value is 3 or higher, the
only Spatial operator that can be used on the indexed geometries
is SDO_FILTER; the other operators described in Chapter 10
cannot be used.
Data type is NUMBER. Default = 2.

sdo_level Quadtree indexes only: Specifies the desired fixed-size tiling
level.
Data type is NUMBER.

sdo_numtiles Quadtree indexes only: Specifies the number of variable-sized
tiles to be used in tessellating an object.
Data type is NUMBER.

sdo_rtr_pctfree R-tree indexes only: Specifies the minimum percentage of slots
in each index tree node to be left empty when the index is
created. Slots that are left empty can be filled later when new
data is inserted into the table. The value can range from 0 to 50.
The default value is best for most applications; however, a value
of 0 is recommended if no updates will be performed to the
geometry column.
Data type is NUMBER. Default = 10.

PHYSICAL_STORAGE_
PARAMS

Determines the storage parameters used for altering the spatial
index data table. A spatial index data table is a standard Oracle
table with a prescribed format. Not all physical storage
parameters that are allowed in the STORAGE clause of a
CREATE TABLE statement are supported. The following is a list
of the supported subset.

tablespace Specifies the tablespace in which the index data table is created.
This parameter is the same as TABLESPACE in the STORAGE
clause of a CREATE TABLE statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE
TABLE statement.

next Is the same as NEXT in the STORAGE clause of a CREATE
TABLE statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

Value Description
SQL Statements for Indexing Spatial Data 8-3

ALTER INDEX
Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
This statement is used to change the parameters of an existing index. This is the
only way you can add or build multiple indexes on the same column.

The index_status keyword lets you defer modifications to the spatial index when
geometries are inserted, updated, or deleted in a spatial table. Deferring the index
modifications allows the geometry insert, update, and delete operations to be
completed sooner, and it can reduce concurrency issues with R-tree indexes if
multiple sessions are inserting rows into the spatial table. While index
modifications are being deferred, spatial functions and procedures will work
correctly with the current table data; however, spatial operator-based queries might
perform more slowly, will not include the results of new insert operations, and
might not include the results of new update operations. Therefore, you are advised
not to use spatial operators while index modifications are being deferred.

For partitioned indexes, the index status can only be changed for a single partition
at a time. That is, you cannot set all index partitions to deferred status with a single
ALTER INDEX statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE TABLE statement.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index.
(Quadtree indexes only.)

btree_next Is the same as NEXT in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index.
(Quadtree indexes only.)

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE INDEX statement in the case of a standard B-tree
index. (Quadtree indexes only.)

Value Description
8-4 Oracle Spatial User’s Guide and Reference

ALTER INDEX
If you set the index status to deferred, you must later set the status to synchronize to
make the index reflect the data in the table and to set the index to a valid state.

See the Usage Notes for the CREATE INDEX statement for usage information about
many of the other available parameters.

Examples
The following example adds a new index table named FIXED_INDEX$ to the index
named QTREE.

ALTER INDEX qtree PARAMETERS (’add_index=fixed_index$
 sdo_level=8
 initial=100M
 next=1M
 pctincrease=0
 btree_initial=5M
 btree_next=1M
 btree_pctincrease=0’);

The following example modifies the tablespace and the SDO_LEVEL value for
partition IP2 of the spatial index named BGI.

ALTER INDEX bgi MODIFY PARTITION ip2
 PAREMETERS (’tablespace=TBS_3 sdo_level=4’);

The following example defers index modifications and later (after the updates to the
spatial table) synchronizes the index to reflect the table.

ALTER INDEX xyz_idx PARAMETERS (’index_status=deferred’);
 .
 . <Insert rows in spatial table.>
 .
ALTER INDEX xyz_idx PARAMETERS (’index_status=synchronize’);

The following example defers index modifications for an index partition and later
(after the updates to the spatial table) synchronizes the index partition to reflect the
table.

ALTER INDEX part_sidx MODIFY PARTITION p3
 PARAMETERS (’index_status=deferred’);
 .
 . <Insert rows in spatial table.>
 .
ALTER INDEX part_sidx MODIFY PARTITION p3
 PARAMETERS (’index_status=synchronize’);
SQL Statements for Indexing Spatial Data 8-5

ALTER INDEX
Related Topics
■ ALTER INDEX REBUILD

■ ALTER INDEX RENAME TO

■ CREATE INDEX

■ ALTER TABLE (clauses for partition maintenance) in the Oracle9i SQL Reference
8-6 Oracle Spatial User’s Guide and Reference

ALTER INDEX REBUILD
ALTER INDEX REBUILD

Syntax
ALTER INDEX [schema.]index REBUILD

[PARAMETERS (‘rebuild_params [physical_storage_params]’)]
[{ NOPARALLEL | PARALLEL [integer] }] ;

ALTER INDEX [schema.]index REBUILD PARTITION partition
[PARAMETERS (‘rebuild_params [physical_storage_params]’)] ;

Purpose
Rebuilds a spatial index or a specified partition of a partitioned index.

Keywords and Parameters

Value Description

REBUILD_PARAMS Specifies in a command string the index parameters to use in
rebuilding the spatial index.

Some keywords apply only to R-tree or to quadtree indexes.

layer_gtype Checks to ensure that all geometries are of a specified geometry
type. The value must be from the Geometry Type column of
Table 2–1 in Section 2.2.1 (except that UNKNOWN_GEOMETRY
is not allowed). In addition, specifying POINT allows for
optimized processing of point data.
Data type is VARCHAR2.

rebuild_index Specifies the name of the spatial index table to be rebuilt.
Data type is VARCHAR2.

sdo_commit_interval Quadtree indexes only: Specifies the number of underlying table
rows that are processed between commit intervals for the index
data. The default behavior commits the index data only after all
rows in the underlying table have been processed. See the Usage
Notes for further details.
Data type is NUMBER.
SQL Statements for Indexing Spatial Data 8-7

ALTER INDEX REBUILD
sdo_indx_dims R-tree indexes only: Specifies the number of dimensions to be
indexed. For example, a value of 2 causes the first two
dimensions to be indexed. Must be less than or equal to the
number of actual dimensions (number of SDO_DIM_ELEMENT
instances in the dimensional array that describes the geometry
objects in the column). Note that if the value is 3 or higher, the
only Spatial operator that can be used on the indexed geometries
is SDO_FILTER; the other operators described in Chapter 10
cannot be used.
Data type is NUMBER. Default = 2.

sdo_level Quadtree indexes only: Specifies the desired fixed-size tiling
level.
Data type is NUMBER.

sdo_numtiles Quadtree indexes only: Specifies the number of variable-sized
tiles to be used in tessellating an object.
Data type is NUMBER.

sdo_rtr_pctfree R-tree indexes only: Specifies the minimum percentage of slots
in each index tree node to be left empty when the index is
created. Slots that are left empty can be filled later when new
data is inserted into the table. The value can range from 0 to 50.
Data type is NUMBER. Default = 10.

PHYSICAL_STORAGE_
PARAMS

Determines the storage parameters used for rebuilding the
spatial index data table. A spatial index data table is a regular
Oracle table with a prescribed format. Not all physical storage
parameters that are allowed in the STORAGE clause of a
CREATE TABLE statement are supported. The following is a list
of the supported subset.

tablespace Specifies the tablespace in which the index data table is created.
Same as TABLESPACE in the STORAGE clause of a CREATE
TABLE statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE
TABLE statement.

next Is the same as NEXT in the STORAGE clause of a CREATE
TABLE statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE TABLE statement.

Value Description
8-8 Oracle Spatial User’s Guide and Reference

ALTER INDEX REBUILD
Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
An ALTER INDEX REBUILD ‘rebuild_params’ statement rebuilds the index using
supplied parameters. Spatial index creation involves creating and inserting index
data, for each row in the underlying table column being spatially indexed, into a
table with a prescribed format. The default, or normal, operation is that all rows in
the underlying table are processed before the insertion of index data is committed.
This requires adequate rollback segment space.

You may choose to commit index data after every n rows of the underlying table
have been processed. This is done by specifying SDO_COMMIT_INTERVAL = n.
The potential complication is that, if there is an error during index rebuild and if
periodic commit operations have taken place, then the spatial index will be in an
inconsistent state. The only recovery option is to use DROP INDEX (possibly with
the FORCE option) and CREATE INDEX statements after ensuring that the various
tablespaces are the required size and any other error conditions have been removed.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index.
(Quadtree indexes only.)

btree_next Is the same as NEXT in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index.
(Quadtree indexes only.)

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE INDEX statement in the case of a standard B-tree
index. (Quadtree indexes only.)

{ NOPARALLEL
| PARALLEL
[integer] }

Controls whether the rebuilding of the index is performed using
serial execution (NOPARALLEL) or parallel (PARALLEL)
execution. For parallel execution you can specify an integer
value of degree of parallelism. See the Usage Notes for the
CREATE INDEX statement for guidelines and restrictions that
apply to the use of the PARALLEL keyword.
Default = NOPARALLEL. (If PARALLEL is specified without an
integer value, the Oracle database server calculates the optimum
degree of parallelism.)

Value Description
SQL Statements for Indexing Spatial Data 8-9

ALTER INDEX REBUILD
This statement does not use any previous parameters from the index creation. All
parameters should be specified for the index you want to rebuild.

For more information about using the layer_gtype keyword to constrain data in a
layer to a geometry type, see Section 4.1.5.

With a partitioned spatial index, you must use a separate ALTER INDEX REBUILD
statement for each partition to be rebuilt.

See also the Usage Notes for the CREATE INDEX statement for usage information
about many of the available parameters and about the use of the PARALLEL
keyword.

Examples
The following example rebuilds OLDINDEX with an SDO_LEVEL value of 12.

ALTER INDEX oldindex REBUILD PARAMETERS(’sdo_level=12’);

The following example uses the ALTER INDEX statement to add a new index table
named USBG_IDX_QTREE to the index named USBG_IDX, and later it uses the
ALTER INDEX REBUILD statement to rebuild the index table using a different sdo_
level value and specifying parallel execution. This approach lets you add a small
index table, and later rebuild it in parallel execution mode with the desired
parameter values (necessary because you cannot specify parallel execution for
ALTER INDEX).

ALTER INDEX usbg_idx PARAMETERS (add_index=usbg_idx_qtree sdo_level=6’);

-- (Add substantial geometry data to the spatial table)

ALTER INDEX usbg_idx REBUILD
 PARAMETERS (’rebuild_index=usbg_idx_qtree sdo_level=14’) PARALLEL;

Related Topics
■ CREATE INDEX

■ DROP INDEX

■ ALTER TABLE (clauses for partition maintenance) in the Oracle9i SQL Reference
8-10 Oracle Spatial User’s Guide and Reference

ALTER INDEX RENAME TO
ALTER INDEX RENAME TO

Syntax
ALTER INDEX [schema.]index RENAME TO <new_index_name>;

ALTER INDEX [schema.]index PARTITION partition RENAME TO <new_partition_name>;

Purpose
Alters the name of a spatial index or a partition of a spatial index.

Keywords and Parameters

Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
None.

Examples
The following example renames OLDINDEX to NEWINDEX.

ALTER INDEX oldindex RENAME TO newindex;

Related Topics
■ CREATE INDEX

■ DROP INDEX

Value Description

new_index_name Specifies the new name of the index.

new_partition_name Specifies the new name of the partition.
SQL Statements for Indexing Spatial Data 8-11

CREATE INDEX
CREATE INDEX

Syntax
CREATE INDEX [schema.]<index_name> ON [schema.]<tableName> (column)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

[PARAMETERS (‘index_params [physical_storage_params]’)]

[{ NOPARALLEL | PARALLEL [integer] }];

Purpose
Creates a spatial index on a column of type MDSYS.SDO_GEOMETRY.

Keywords and Parameters

Value Description

INDEX_PARAMS Determines the type (R-tree or quadtree; and for quadtree, fixed
or hybrid) and the characteristics of the spatial index.

Some keywords apply only to R-tree or to quadtree indexes.

geodetic ’geodetic=FALSE’ allows a non-geodetic index to be built on
geodetic data, but with restrictions. (FALSE is the only
acceptable value for this keyword.) See the Usage Notes for
more information.
Data type is VARCHAR2.

layer_gtype Checks to ensure that all geometries are of a specified geometry
type. The value must be from the Geometry Type column of
Table 2–1 in Section 2.2.1 (except that UNKNOWN_GEOMETRY
is not allowed). In addition, specifying POINT allows for
optimized processing of point data.
Data type is VARCHAR2.

sdo_commit_interval Quadtree indexes only: Specifies the number of underlying table
rows that are processed between commit intervals for the index
data. The default behavior commits the index data only after all
rows in the underlying table have been processed. See the Usage
Notes for further details.
Data type is NUMBER.
8-12 Oracle Spatial User’s Guide and Reference

CREATE INDEX
sdo_indx_dims R-tree indexes only: Specifies the number of dimensions to be
indexed. For example, a value of 2 causes the first two
dimensions to be indexed. Must be less than or equal to the
number of actual dimensions (number of SDO_DIM_ELEMENT
instances in the dimensional array that describes the geometry
objects in the column). Note that if the value is 3 or higher, the
only Spatial operator that can be used on the indexed geometries
is SDO_FILTER; the other operators described in Chapter 10
cannot be used.
Data type is NUMBER. Default = 2.

sdo_level Quadtree indexes only: Specifies the desired fixed-size tiling
level.
Data type is NUMBER.

sdo_numtiles Quadtree indexes only: Specifies the number of variable-sized
tiles to be used in tessellating an object.
Data type is NUMBER.

sdo_rtr_pctfree Specifies the minimum percentage of slots in each index tree
node to be left empty when the index is created. Slots that are
left empty can be filled later when new data is inserted into the
table. (R-tree indexes only.) The value can range from 0 to 50.
Data type is NUMBER. Default = 10.

PHYSICAL_STORAGE_
PARAMS

Determines the storage parameters used for creating the spatial
index data table. A spatial index data table is a regular Oracle
table with a prescribed format. Not all physical_storage_params
that are allowed in the STORAGE clause of a CREATE TABLE
statement are supported. The following is a list of the supported
subset.

tablespace Specifies the tablespace in which the index data table is created.
Same as TABLESPACE in the STORAGE clause of a CREATE
TABLE statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE
TABLE statement.

next Is the same as NEXT in the STORAGE clause of a CREATE
TABLE statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE TABLE statement.

Value Description
SQL Statements for Indexing Spatial Data 8-13

CREATE INDEX
Prerequisites
■ All the current SQL CREATE INDEX prerequisites apply.

■ You must have EXECUTE privilege on the index type and its implementation
type.

■ The USER_SDO_GEOM_METADATA view must contain an entry with the
dimensions and coordinate boundary information for the table column to be
spatially indexed.

Usage Notes
For information about R-tree and quadtree indexes, see Section 1.7.

By default, an R-tree index is created if the index_params string does not contain the
sdo_level keyword or if the sdo_level value is zero (0). If the index_params string
contains the sdo_level keyword with a nonzero value, a quadtree index is created.
Some keywords apply only to R-tree or quadtree indexes, as noted in the Keywords
and Parameters section.

Before you create an R-tree index, be sure that the rollback segment size and the
SORT_AREA_SIZE parameter value are adequate, as described in Section 4.1.1.

btree_initial Is the same as INITIAL in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index.
(Quadtree indexes only.)

btree_next Is the same as NEXT in the STORAGE clause of a CREATE
INDEX statement in the case of a standard B-tree index.
(Quadtree indexes only.)

btree_pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE INDEX statement in the case of a standard B-tree
index. (Quadtree indexes only.)

{ NOPARALLEL
| PARALLEL
[integer] }

Controls whether the creation of the index is performed using
serial execution (NOPARALLEL) or parallel (PARALLEL)
execution. For parallel execution you can specify an integer
value of degree of parallelism. See the Usage Notes for more
information about parallel index creation.
Default = NOPARALLEL. (If PARALLEL is specified without an
integer value, the Oracle database server calculates the optimum
degree of parallelism.)

Value Description
8-14 Oracle Spatial User’s Guide and Reference

CREATE INDEX
For a quadtree index, the index_params string must contain either sdo_level or both
sdo_level and sdo_numtiles, and any values specified for these parameters must be
valid.

If an R-tree index is used on linear referencing system (LRS) data and if the LRS
data has four dimensions (three plus the M dimension), the sdo_indx_dims
parameter must be used and must specify 3 (the number of dimensions minus one),
to avoid the default sdo_indx_dims value of 2, which would index only the X and Y
dimensions. For example, if the dimensions are X, Y, Z, and M, specify sdo_indx_
dims=3 to index the X, Y, and Z dimensions, but not the measure (M) dimension.
(The LRS data model, including the measure dimension, is explained in Section 6.2.)

A partitioned spatial index can be created on a partitioned table. See Section 4.1.7
for more information about partitioned spatial indexes, including benefits and
restrictions.

A spatial index cannot be created on an index-organized table.

You can specify the PARALLEL keyword to cause the index creation to be
parallelized. For example:

CREATE INDEX cola_spatial_idx ON cola_markets(shape)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX PARALLEL;

For information about using the PARALLEL keyword, see the description of the
parallel_clause in the section on the CREATE INDEX statement in the Oracle9i SQL
Reference. In addition, the following notes apply to the use of the PARALLEL
keyword for creating or rebuilding (using the ALTER INDEX REBUILD statement)
spatial indexes:

■ The PARALLEL clause is not supported for adding an index table with the
ALTER INDEX statement; however, it is supported for rebuilding such an index
table with the ALTER INDEX REBUILD statement. One useful scenario is to
add a small second index table, and later rebuild the index table specifying the
desired parameters and using parallel execution. See the parallel execution
example for the ALTER INDEX REBUILD statement.

■ The performance cost and benefits from parallel execution for creating or
rebuilding an index depend on a system’s resources and load. If the system’s
CPUs or disk controllers are already heavily loaded, you should not specify the
PARALLEL keyword.

■ Specifying PARALLEL for creating or rebuilding an index on tables with simple
geometries, such as point data, usually results in less performance
improvement than on tables with complex geometries. However, for a
SQL Statements for Indexing Spatial Data 8-15

CREATE INDEX
function-based quadtree index on point data, parallel execution does improve
index creation performance significantly.

■ For a quadtree index on mixed point and nonpoint data, specifying PARALLEL
can degrade the performance of creating or rebuilding an index

Other options available for regular indexes (such as ASC and DESC) are not
applicable for spatial indexes.

Default values for quadtree indexing:

■ sdo_numtiles must be supplied with a value greater than or equal to 1 to perform
hybrid indexing. If this parameter is not supplied, indexing with fixed-size tiles
is performed.

■ sdo_commit_interval does not allow spatial data to be committed at intervals.
Insertion of spatial index data is committed only at the end of the index creation
process. That is, it is committed after all rows in the underlying table have been
processed.

The sdo_level value must be greater than zero.

If an sdo_numtiles value is specified, it might be overridden by the indexing
algorithm.

Spatial index creation involves creating and inserting index data, for each row in the
underlying table column being spatially indexed, into a table with a prescribed
format. The default, or normal, operation is that all rows in the underlying table are
processed before the insertion of index data is committed. This requires adequate
rollback segment space.

You may choose to commit index data after every n rows of the underlying table
have been processed. This is done by specifying SDO_COMMIT_INTERVAL = n.
The potential complication is that, if there is an error during index rebuild and if
periodic commit operations have taken place, then the spatial index will be in an
inconsistent state. The only recovery option is to use DROP INDEX (possibly with
the FORCE option) and CREATE INDEX statements after ensuring that the various
tablespaces are the required size and any other error conditions have been removed.

Interpretation of sdo_level and sdo_numtiles value combinations (quadtree indexing)
is shown in Table 8–2.

Table 8–2 SDO_LEVEL and SDO_NUMTILES Combinations

SDO_LEVEL SDO_NUMTILES Action

Not specified or 0 Not specified or 0 R-tree index.
8-16 Oracle Spatial User’s Guide and Reference

CREATE INDEX
If a tablespace name is provided in the parameters clause, the user (underlying table
owner) must have appropriate privileges for that tablespace.

For more information about using the layer_gtype keyword to constrain data in a
layer to a geometry type, see Section 4.1.5.

The ’geodetic=FALSE’ parameter allows you to bypass the restriction that a standard
quadtree index cannot be used with geodetic data. However, using this parameter is
not recommended, because much of the Oracle Spatial geodetic support will be
disabled, and some Spatial operations that use the quadtree index with geodetic
data will not work correctly or will return less accurate results. This parameter
should only be used if you cannot yet reindex the data with an R-tree index and if
the results using the non-geodetic quadtree index are acceptable. (For more
information about geodetic and non-geodetic indexes, see Section 4.1.4.)

Moreover, if you specify 'geodetic=FALSE', ensure that the tolerance value stored in
the USER_SDO_GEOM_METADATA view is what would be used for Cartesian
data. That is, do not use meters for the units of the tolerance value, but instead use
the number of decimal places in the data followed by a 5 (for example, 0.00005).
This tolerance value will be used for spatial operators. When you use spatial
functions that require a tolerance value with this data, use the function format that
allows you to specify a tolerance value, and specify the tolerance value in meters.

If you are creating a function-based spatial index, the number of parameters must
not exceed 32. For information about using function-based spatial indexes, see
Section 7.2.

To determine if a CREATE INDEX statement for a spatial index has failed, check to
see if the DOMIDX_OPSTATUS column in the USER_INDEXES view is set to

>= 1 Not specified or 0 Fixed indexing (indexing with fixed-size
tiles).

>= 1 >= 1 Hybrid indexing with fixed-size and
variable-sized tiles. The SDO_LEVEL
column defines the fixed tile size. The
SDO_NUMTILES column defines the
number of variable tiles to generate for
each geometry.

Not specified or 0 >= 1 Not supported (error).

Table 8–2 SDO_LEVEL and SDO_NUMTILES Combinations (Cont.)

SDO_LEVEL SDO_NUMTILES Action
SQL Statements for Indexing Spatial Data 8-17

CREATE INDEX
FAILED. Note that this is different from the case of regular indexes, where you
check to see if the STATUS column in the USER_INDEXES view is set to FAILED.

If the CREATE INDEX statement fails because of an invalid geometry, the ROWID
of the failed geometry is returned in an error message along with the reason for the
failure.

If the CREATE INDEX statement fails for any reason, then the DROP INDEX
statement must be used to clean up the partially built index and associated
metadata. If DROP INDEX does not work, add the FORCE parameter and try again.

Examples
The following example creates a spatial R-tree index named COLA_SPATIAL_IDX.
(An R-tree index is created by default if no quadtree-specific parameters are
specified.)

CREATE INDEX cola_spatial_idx ON cola_markets(shape)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

The following example creates a spatial quadtree index named QTREE.

CREATE INDEX qtree ON POLY_4PT(geometry)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX
 PARAMETERS(’sdo_level=6
 sdo_commit_interval=500 tablespace=TBS_3 initial=10K
 next=10K pctincrease=10 minextents=10 maxextents=20’);

The following example creates a spatial quadtree index named BG06075 with two
partitions, named IP1 and IP2.

CREATE INDEX BGI ON BG06075(geometry)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX
 PARAMETERS (’tablespace=TBS_3 sdo_level=6’) LOCAL
 (PARTITION IP1 PARAMETERS (’tablespace=TBS_3 sdo_level=6’),
 PARTITION IP2 PARAMETERS (’tablespace=TBS_2 sdo_level=6’));

Related Topics
■ ALTER INDEX

■ DROP INDEX
8-18 Oracle Spatial User’s Guide and Reference

DROP INDEX
DROP INDEX

Syntax
DROP INDEX [schema.]index [FORCE];

Purpose
Deletes a spatial index.

Keywords and Parameters

Prerequisites
You must have EXECUTE privileges on the index type and its implementation type.

Usage Notes
Use DROP INDEX indexname FORCE to clean up after a failure in the CREATE
INDEX statement.

Examples
The following example deletes a spatial quadtree index named OLDINDEX and
forces the deletion to be performed even if the index is marked in-process or an
error occurs.

DROP INDEX oldindex FORCE;

Related Topics
■ CREATE INDEX

Value Description

FORCE Causes the spatial index to be deleted from the system tables
even if the index is marked in-progress or some other error
condition occurs.
SQL Statements for Indexing Spatial Data 8-19

DROP INDEX
8-20 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY Object Type
9

SDO_GEOMETRY Object Type Methods

This chapter contains reference and usage information for the SDO_GEOMETRY
object type methods.

The SDO_GEOMETRY object type is described in Section 2.2. The type methods are
listed in Table 9–1.

Table 9–1 SDO_GEOMETRY Type Methods

Method Description

GET_DIMS Returns the number of dimensions of a geometry object.

GET_GTYPE Returns the geometry type of a geometry object.

GET_LRS_DIM Returns the measure dimension of an LRS geometry object.
Methods 9-1

GET_DIMS
GET_DIMS

Format
GET_DIMS() RETURN NUMBER;

Description
Returns the number of dimensions of a geometry object, as specified in its SDO_
GTYPE value.

Parameters
None.

Usage Notes
The SDO_TYPE value is 4 digits in the format dltt, as described in Section 2.2.1. This
method returns the d (dimensionality) value, that is, the number of dimensions.

Examples
The following example returns the number of dimensions of the cola_d geometry
object. (The example uses the definitions and data from Section 2.1.)

SELECT c.mkt_id, c.shape.GET_DIMS()
 FROM cola_markets c WHERE c.name = ’cola_d’;

 MKT_ID C.SHAPE.GET_DIMS()
---------- ------------------
 4 2
9-2 Oracle Spatial User’s Guide and Reference

GET_GTYPE
GET_GTYPE

Format
GET_GTYPE() RETURN NUMBER;

Description
Returns the geometry type of a geometry object, as specified in its SDO_GTYPE
value.

Parameters
None.

Usage Notes
The SDO_TYPE value is 4 digits in the format dltt, as described in Section 2.2.1. This
method returns the tt value, that is, the geometry type.

Examples
The following example returns the geometry type of each geometry object in the
COLA_MARKETS table. (The example uses the definitions and data from
Section 2.1.)

SELECT c.mkt_id, c.shape.GET_GTYPE() FROM cola_markets c;

 MKT_ID C.SHAPE.GET_GTYPE()
---------- -------------------
 1 3
 2 3
 3 3
 4 3
SDO_GEOMETRY Object Type Methods 9-3

GET_LRS_DIM
GET_LRS_DIM

Format
GET_LRS_DIM() RETURN NUMBER;

Description
Returns the measure dimension of an LRS geometry object, as specified in its SDO_
GTYPE value.

Parameters
None.

Usage Notes
The SDO_TYPE value is 4 digits in the format dltt, as described in Section 2.2.1. This
method returns the l value.

The l value is meaningful only for LRS geometry objects, and must be 0, 3, or 4:

■ 0 indicates that the geometry is a pre-release 9.0.1 LRS geometry with measure
as the default (last) dimension, or that the geometry is a release 9.0.1 standard
geometry.

■ 3 indicates that the third dimension contains the measure information.

■ 4 indicates that the fourth dimension contains the measure information.

Examples
The following example returns the measure dimension of the Route 1 geometry
object. (This example uses the definitions from the example in Section 6.6.)

SELECT a.route_id, a.route_geometry.GET_LRS_DIM()
 FROM lrs_routes a WHERE a.route_id = 1;

 ROUTE_ID A.ROUTE_GEOMETRY.GET_LRS_DIM()
---------- ------------------------------
 1 3
9-4 Oracle Spatial User’s Guide and Reference

Spatial Op
10

Spatial Operators

This chapter describes the operators used when working with the spatial object data
type. The operators are listed in Table 10–1.

Table 10–1 Spatial Usage Operators

Operator Description

SDO_FILTER Specifies which geometries may interact with a given
geometry.

SDO_NN Determines the nearest neighbor geometries to a geometry.

SDO_NN_DISTANCE Returns the distance of an object returned by the SDO_NN
operator.

SDO_RELATE Determines whether or not two geometries interact in a
specified way.

SDO_WITHIN_
DISTANCE

Determines if two geometries are within a specified distance
from one another.
erators 10-1

SDO_FILTER
SDO_FILTER

Format
SDO_FILTER(geometry1, geometry2, params);

Description
Uses the spatial index to identify either the set of spatial objects that are likely to
interact spatially with a given object (such as an area of interest), or pairs of spatial
objects that are likely to interact spatially. Objects interact spatially if they are not
disjoint.

This operator performs only a primary filter operation. The secondary filtering
operation, performed by the SDO_RELATE operator, can be used to determine with
certainty if objects interact spatially.

Keywords and Parameters

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a geometry.
(Specified using a bind variable or SDO_GEOMETRY constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator. Data type is VARCHAR2.

querytype Specifies valid query types: WINDOW or JOIN. This is a required parameter.

WINDOW is recommended in almost all cases. WINDOW implies that a
query is performed for every geometry1 candidate geometry to be compared
with geometry2. WINDOW can be used to compare a single geometry
(geometry2) to all the geometries in a column (geometry1).

JOIN is rarely used. Use JOIN when you want to compare all the geometries
of a column to all the geometries of another column. JOIN implies that
geometry2 refers to a table column that must have a spatial index built on it.
(See the Usage Notes for additional requirements.)

idxtab1 Specifies the name of the index table, if there are multiple spatial indexes, for
geometry1.
10-2 Oracle Spatial User’s Guide and Reference

SDO_FILTER
Returns
The expression SDO_FILTER(arg1, arg2, arg3) = ‘TRUE’ evaluates to TRUE for
object pairs that are non-disjoint, and FALSE otherwise.

Usage Notes
SDO_FILTER is the only operator that can be used with data that is indexed using
more than two dimensions. The operator considers all dimensions specified in the
spatial index.

The operator must always be used in a WHERE clause and the condition that
includes the operator should be an expression of the form SDO_FILTER(arg1, arg2,
arg3) = ‘TRUE’.

If querytype is WINDOW, geometry2 can come from a table or be a transient SDO_
GEOMETRY object (such as a bind variable or SDO_GEOMETRY constructor).

■ If the geometry2 column is not spatially indexed, the operator indexes the query
window in memory and performance is very good.

■ If the geometry2 column is spatially indexed with the same SDO_LEVEL value
as the geometry1 column, the operator reuses the existing index, and
performance is very good or better.

■ If the geometry2 column is spatially indexed with a different SDO_LEVEL value
than the geometry1 column, the operator reindexes geometry2 in the same way as
if there were no index on the column originally, and then performance is very
good.

■ If two or more geometries from geometry2 are passed to the operator, the
ORDERED optimizer hint must be specified, and the table in geometry2 must be
specified first in the FROM clause.

If querytype is JOIN:

■ geometry2 must be a column in a table.

■ For best performance, both geometry1 and geometry2 should have the same type
of index (R-tree or quadtree); and if the geometries have quadtree indexes, the
indexes should have the same sdo_level value. If the geometries do not have the

idxtab2 Specifies the name of the index table, if there are multiple spatial indexes, for
geometry2. Valid only if querytype is JOIN.

Value Description
Spatial Operators 10-3

SDO_FILTER
same index type (and for quadtree indexes the same sdo_level value), geometry2
is reindexed to be indexed as geometry1 (with the considerations listed for
querytype = WINDOW), and performance is less efficient.

If geometry1 and geometry2 are based on different coordinate systems, geometry2 is
temporarily transformed to the coordinate system of geometry1 for the operation to
be performed, as described in Section 5.7.1.

The layer_gtype keyword for PARAMS has been deprecated, and it is ignored if
specified. The operator automatically optimizes its behavior based on the SDO_
GTYPE value (explained in Section 2.2.1) of the geometries, which can be specified
using the layer_gtype keyword in the parameters for the CREATE INDEX or ALTER
INDEX REBUILD statement.

Examples
The following example selects the GID values from the POLYGONS table where the
GEOMETRY column objects are likely to interact spatially with the GEOMETRY
column object in the QUERY_POLYS table that has a GID value of 1.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE B.gid = 1
 AND SDO_FILTER(A.Geometry, B.Geometry, ’querytype = WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with the geometry stored in
the aGeom variable.

Select A.Gid
 FROM Polygons A
 WHERE SDO_FILTER(A.Geometry, :aGeom, ’querytype=WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

Select A.Gid
 FROM Polygons A
 WHERE SDO_FILTER(A.Geometry, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1,x2,y2)),
 ’querytype=WINDOW’) = ’TRUE’;
10-4 Oracle Spatial User’s Guide and Reference

SDO_FILTER
The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the ORDERED
optimizer hint is used and QUERY_POLYS (geometry2) table is specified first in the
FROM clause, because multiple geometries from geometry2 are involved (see the
Usage Notes)

SELECT /*+ ORDERED */
 A.gid
 FROM query_polys B, polygons A
 WHERE SDO_FILTER(A.Geometry, B.Geometry, ’querytype = WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the QUERY_
POLYS.GEOMETRY column must be spatially indexed.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE SDO_FILTER(A.Geometry, B.Geometry, ’querytype = JOIN’) = ’TRUE’;

Related Topics
■ SDO_RELATE
Spatial Operators 10-5

SDO_NN
SDO_NN

Format
SDO_NN(geometry1, geometry2, param [, number]);

Description
Uses the spatial index to identify the nearest neighbors for a geometry.

Keywords and Parameters

Table 10–2 lists the keywords for the param parameter.

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a geometry.
The nearest neighbor or neighbors to geometry2 will be returned from
geometry1. (geometry2 is specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is MDSYS.SDO_GEOMETRY.

param Determines the behavior of the operator. The available keywords are listed
in Table 10–2.
Data type is VARCHAR2.

number If the SDO_NN_DISTANCE ancillary operator is included in the call to
SDO_NN, specifies the same number used in the call to SDO_NN_
DISTANCE.
Data type is NUMBER.

Table 10–2 Keywords for SDO_NN Parameter

Keyword Description

sdo_batch_
size

Specifies the number of rows to be evaluated at a time when the SDO_NN
expression may need to be evaluated multiple times in order to return the
desired number of results that satisfy the WHERE clause. Available only
when an R-tree index is used. See the Usage Notes for more information.
Data type is NUMBER.

For example: ’sdo_batch_size=10’
10-6 Oracle Spatial User’s Guide and Reference

SDO_NN
Returns
This operator returns the sdo_num_res number of objects from geometry1 that are
nearest to geometry2 in the query. In determining how near two geometry objects
are, the shortest possible distance between any two points on the surface of each
object is used.

Usage Notes
The operator is disabled if the table does not have a spatial index or if the index has
been built on more than two dimensions.

The operator must always be used in a WHERE clause, and the condition that
includes the operator should be an expression of the form SDO_NN(arg1, arg2,
’<some_parameter>’) = ’TRUE’.

The operator can be used in two ways:

■ If all geometries in the layer are candidates, use the sdo_num_res keyword to
specify the number of geometries returned.

■ If any geometries in the table might be nearer than the geometries specified in
the WHERE clause, use the sdo_batch_size keyword and use the WHERE clause
(including the ROWNUM pseudocolumn) to limit the number of geometries
returned.

Specify the sdo_batch_size keyword if any geometries in the table might be nearer
than the geometries specified in the WHERE clause. For example, assume that a

sdo_num_res If sdo_batch_size is not specified, specifies the number of results (nearest
neighbors) to be returned. If sdo_batch_size is specified, this keyword is
ignored; instead, use the ROWNUM pseudocolumn to limit the number of
results. See the Usage Notes and Examples for more information.
Data type is NUMBER. Default = 1.

For example: ’sdo_num_res=5’

unit If the SDO_NN_DISTANCE ancillary operator is included in the call to
SDO_NN, specifies the unit of measurement: a quoted string with unit=
and an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table. See
Section 2.6 for more information about unit of measurement specification.
Data type is NUMBER. Default = unit of measurement associated with the
data. For geodetic data, the default is meters.

For example: ’unit=KM’

Table 10–2 Keywords for SDO_NN Parameter (Cont.)

Keyword Description
Spatial Operators 10-7

SDO_NN
RESTAURANTS table contained different types of restaurants, and you wanted to
find the two nearest Italian restaurants to your hotel. The query might look like the
following:

SELECT r.name FROM restaurants r WHERE
 SDO_NN(r.geometry, :my_hotel, ’sdo_batch_size=10’) = ’TRUE’
 AND r.cuisine = ’Italian’ AND ROWNUM <=2;

If the sdo_batch_size keyword is not specified in this example, only the two nearest
restaurants are returned, regardless of their CUISINE value; and if the CUISINE
value of these two rows is not Italian, the query may return no rows. The ROWNUM
<=2 clause is necessary to limit the number of results returned to no more than 2
where CUISINE is Italian.

The sdo_batch_size keyword can be used only when SDO_NN will be using an R-tree
index to perform the operation. This keyword cannot be used with a quadtree
index.

The sdo_batch_size value can affect the performance of nearest neighbor queries. A
good general guideline is to specify the number of candidate rows likely to satisfy
the WHERE clause. Using the preceding example of a query for Italian restaurants,
if approximately 20 percent of the restaurants nearest to the hotel are Italian and if
you want 2 restaurants, an sdo_batch_size value of 10 will probably result in the best
performance. On the other hand, if only approximately 5 percent of the restaurants
nearest to the hotel are Italian and if you want 2 restaurants, an sdo_batch_size value
of 40 would be better.

If the sdo_batch_size keyword is specified, any sdo_num_res value is ignored. Do not
specify both keywords.

Specify the number parameter only if you are using the SDO_NN_DISTANCE
ancillary operator in the call to SDO_NN. See the information about SDO_NN_
DISTANCE.

If this operator is used with geodetic data, the data must be indexed with an R-tree
spatial index. If this operator is used with geodetic data and if the R-tree spatial
index is created with ’geodetic=false’ specified, you cannot use the unit parameter.

If two or more objects from geometry1 are an equal distance from geometry2, any of
the objects can be returned on any call to the function. For example, if item_a, item_b,
and item_c are nearest to and equally distant from geometry2, and if SDO_NUM_
RES=2, two of those three objects are returned, but they can be any two of the three.

If the SDO_NN operator uses a partitioned spatial index (see Section 4.1.7), the
requested number of geometries is returned for each partition that contains
candidate rows based on the query criteria. For example, if you request the 5 nearest
10-8 Oracle Spatial User’s Guide and Reference

SDO_NN
restaurants to a point and the spatial index has 4 partitions, the operator returns up
to 20 (5*4) geometries. In this case, you must use the ROWNUM pseudocolumn
(here, WHERE ROWNUM <=5) to return the 5 nearest restaurants.

If geometry1 and geometry2 are based on different coordinate systems, geometry2 is
temporarily transformed to the coordinate system of geometry1 for the operation to
be performed, as described in Section 5.7.1.

SDO_NN is not supported for spatial joins.

In some situations the SDO_NN operator will not use the spatial index unless an
optimizer hint forces the index to be used. This can occur when a query involves a
join; and if the optimizer hint is not used in such situations, an internal error occurs.
To prevent such errors, you should always specify an optimizer hint to use the
spatial index with the SDO_NN operator, regardless of how simple or complex the
query is. For example, the following excerpt from a query specifies to use the
COLA_SPATIAL_IDX index that is defined on the COLA_MARKETS table:

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */
 c.mkt_id, c.name, ... FROM cola_markets c, ...;

For detailed information about using optimizer hints, see Oracle9i Database
Performance Guide and Reference.

Examples
The following example finds the two objects from the SHAPE column in the COLA_
MARKETS table that are nearest to a specified point (10,7). (The example uses the
definitions and data from Section 2.1.)

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */
 c.mkt_id, c.name FROM cola_markets c WHERE SDO_NN(c.shape,
 mdsys.sdo_geometry(2001, NULL, mdsys.sdo_point_type(10,7,NULL), NULL,
 NULL), ’sdo_num_res=2’) = ’TRUE’;

 MKT_ID NAME
---------- --------------------------------
 2 cola_b
 4 cola_d

The following example uses the sdo_batch_size keyword to find the two objects
(ROWNUM <=2), with a NAME value less than ’cola_d’, from the SHAPE column
in the COLA_MARKETS table that are nearest to a specified point (10,7). The value
of 3 for sdo_batch_size represents a best guess at the number of nearest geometries
Spatial Operators 10-9

SDO_NN
that need to be evaluated before the WHERE clause condition is satisfied. (The
example uses the definitions and data from Section 2.1.)

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */ c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_NN(c.shape, mdsys.sdo_geometry(2001, NULL,
 mdsys.sdo_point_type(10,7,NULL), NULL, NULL),
 ’sdo_batch_size=3’) = ’TRUE’
 AND c.name < ’cola_d’ AND ROWNUM <= 2;

 MKT_ID NAME
---------- --------------------------------
 2 cola_b
 3 cola_c

Related Topics
■ SDO_NN_DISTANCE
10-10 Oracle Spatial User’s Guide and Reference

SDO_NN_DISTANCE
SDO_NN_DISTANCE

Format
SDO_NN_DISTANCE(number);

Description
Returns the distance of an object returned by the SDO_NN operator. Valid only
within a call to the SDO_NN operator.

Keywords and Parameters

Returns
This operator returns the distance of an object returned by the SDO_NN operator. In
determining how near two geometry objects are, the shortest possible distance
between any two points on the surface of each object is used.

Usage Notes
SDO_NN_DISTANCE is an ancillary operator to the SDO_NN operator. It returns
the distance between the specified geometry and a nearest neighbor object. This
distance is passed as ancillary data to the SDO_NN operator. (For an explanation of
how operators can use ancillary data, see the section on ancillary data in the chapter
on domain indexes in the Oracle9i Data Cartridge Developer’s Guide.)

You can choose any arbitrary number for the number parameter. The only
requirement is that it must match the last parameter in the call to the SDO_NN
operator.

Use a bind variable to store and operate on the distance value.

Value Description

number Specifies a number that must be the same as the last parameter passed to the
SDO_NN operator.
Data type is NUMBER.
Spatial Operators 10-11

SDO_NN_DISTANCE
Examples
The following example finds the two objects from the SHAPE column in the COLA_
MARKETS table that are nearest to a specified point (10,7), and it finds the distance
between each object and the point. (The example uses the definitions and data from
Section 2.1.)

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */
 c.mkt_id, c.name, mdsys.SDO_NN_DISTANCE(1) dist
 FROM cola_markets c
 WHERE SDO_NN(c.shape, mdsys.sdo_geometry(2001, NULL,
 mdsys.sdo_point_type(10,7,NULL), NULL, NULL),
 ’sdo_num_res=2’, 1) = ’TRUE’ ORDER BY dist;

 MKT_ID NAME DIST
---------- -------------------------------- ----------
 4 cola_d .828427125
 2 cola_b 2.23606798

Note the following about this example:

■ 1 is used as the number parameter for SDO_NN_DISTANCE, and 1 is also
specified as the last parameter to SDO_NN (after ’sdo_num_res=2’).

■ The column alias dist holds the distance between the object and the point. (For
geodetic data, the distance unit is meters; for non-geodetic data, the distance
unit is the unit associated with the data.)

Related Topics
■ SDO_NN
10-12 Oracle Spatial User’s Guide and Reference

SDO_RELATE
SDO_RELATE

Format
SDO_RELATE(geometry1, geometry2, params);

Description
Uses the spatial index to identify either the spatial objects that have a particular
spatial interaction with a given object such as an area of interest, or pairs of spatial
objects that have a particular spatial interaction.

This operator performs both primary and secondary filter operations.

Keywords and Parameters

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is MDSYS.SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator.
Data type is VARCHAR2.

Keyword Description

mask Specifies the topological relation of interest. This is a required parameter.

Valid values are one or more of the following in the 9-intersection pattern:
TOUCH, OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, EQUAL,
INSIDE, COVEREDBY, CONTAINS, COVERS, ANYINTERACT, ON.
Multiple masks are combined with the logical Boolean operator OR, for
example, ’mask=inside+touch’; however, see the Usage Notes for an
alternative syntax using UNION ALL that may result in better
performance. See Section 1.8 for an explanation of the 9-intersection
relationship pattern.
Spatial Operators 10-13

SDO_RELATE
Returns
The expression SDO_RELATE(geometry1,geometry2, ’mask = <some_mask_val>
querytype = <some_querytype>’) = ’TRUE’ evaluates to TRUE for object pairs that
have the topological relationship specified by <some_mask_val>, and FALSE
otherwise.

Usage Notes
The operator is disabled if the table does not have a spatial index or if the index has
been built on more than two dimensions.

The operator must always be used in a WHERE clause, and the condition that
includes the operator should be an expression of the form SDO_RELATE(arg1, arg2,
’mask = <some_mask_val> querytype = <some_querytype>’) = ’TRUE’.

If querytype is WINDOW, geometry2 can come from a table or be a transient SDO_
GEOMETRY object (such as a bind variable or SDO_GEOMETRY constructor).

■ If the geometry2 column is not spatially indexed, the operator indexes the query
window in memory and performance is very good.

■ If the geometry2 column is spatially indexed with the same SDO_LEVEL value
as the geometry1 column, the operator reuses the existing index, and
performance is very good or better.

querytype Valid query types are: WINDOW or JOIN. This is a required parameter if
geometry2 is from another table, but it is not a required parameter if
geometry2 is a literal or a host variable.

WINDOW is recommended in almost all cases. WINDOW implies that a
query is performed for every geometry1 candidate geometry to be
compared with geometry2. WINDOW can be used to compare a single
geometry (geometry2) to all the geometries in a column (geometry1).

JOIN is rarely used. Use JOIN when you want to compare all the
geometries of a column to all the geometries of another column. JOIN
implies that geometry2 refers to a table column that must have a spatial
index built on it. (See the Usage Notes for additional requirements.)

idxtab1 Specifies the name of the index table, if there are multiple spatial indexes,
for geometry1.

idxtab2 Specifies the name of the index table, if there are multiple spatial indexes,
for geometry2. Only valid for ’querytype = JOIN’.

Value Description
10-14 Oracle Spatial User’s Guide and Reference

SDO_RELATE
■ If the geometry2 column is spatially indexed with a different SDO_LEVEL value
than the geometry1 column, the operator reindexes geometry2 in the same way as
if there were no index on the column originally, and then performance is very
good.

■ If two or more geometries from geometry2 are passed to the operator, the
ORDERED optimizer hint must be specified, and the table in geometry2 must be
specified first in the FROM clause.

If querytype is JOIN:

■ geometry2 must be a column in a table.

■ For best performance, both geometry1 and geometry2 should have the same type
of index (R-tree or quadtree); and if the geometries have quadtree indexes, the
indexes should have the same sdo_level value. If the geometries do not have the
same index type (and for quadtree indexes the same sdo_level value), geometry2
is reindexed to be indexed as geometry1 (with the considerations listed for
querytype = WINDOW), and performance is less efficient.

If geometry1 and geometry2 are based on different coordinate systems, geometry2 is
temporarily transformed to the coordinate system of geometry1 for the operation to
be performed, as described in Section 5.7.1.

The layer_gtype keyword for PARAMS has been deprecated, and it is ignored if
specified. The operator automatically optimizes its behavior based on the SDO_
GTYPE value (explained in Section 2.2.1) of the geometries, which can be specified
using the layer_gtype keyword in the parameters for the CREATE INDEX or ALTER
INDEX REBUILD statement.

Unlike with the SDO_GEOM.RELATE function, DISJOINT and DETERMINE masks
are not allowed in the relationship mask with the SDO_RELATE operator. This is
because SDO_RELATE uses the spatial index to find candidates that may interact,
and the information to satisfy DISJOINT or DETERMINE is not present in the
index.

Although multiple masks can be combined using the logical Boolean operator OR,
for example, ’mask=inside+coveredby’, better performance may result if the spatial
query specifies each mask individually and uses the UNION ALL syntax to
combine the results. This is due to internal optimizations that Spatial can apply
under certain conditions when masks are specified singly rather than grouped
within the same SDO_RELATE operator call. For example, the following query
using the logical Boolean operator OR to group multiple masks:

SELECT a.gid
 FROM polygons a, query_polys B
Spatial Operators 10-15

SDO_RELATE
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=inside+coveredby querytype=WINDOW’) = ’TRUE’;

may result in better performance if it is expressed thus, using UNION ALL to
combine results of multiple SDO_RELATE operator calls, each with a single mask:

SELECT a.gid
 FROM polygons a, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=inside querytype=WINDOW’) = ’TRUE’
UNION ALL
SELECT a.gid
 FROM polygons a, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=coveredby querytype=WINDOW’) = ’TRUE’;

Examples
The following examples are similar to those for the SDO_FILTER operator; however,
they identify a specific type of interaction (using the mask parameter), and they
determine with certainty (not mere likelihood) if the spatial interaction occurs.

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column objects have any spatial interaction with the GEOMETRY
column object in the QUERY_POLYS table that has a GID value of 1.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=ANYINTERACT querytype=WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with the geometry stored in
the aGeom variable.

Select A.Gid
 FROM Polygons A
 WHERE SDO_RELATE(A.Geometry, :aGeom, ’mask=ANYINTERACT querytype=WINDOW’)
 = ’TRUE’;
10-16 Oracle Spatial User’s Guide and Reference

SDO_RELATE
The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

Select A.Gid
 FROM Polygons A
 WHERE SDO_RELATE(A.Geometry, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1,x2,y2)),
 ’mask=ANYINTERACT querytype=WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object has any spatial interaction with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the ORDERED
optimizer hint is used and QUERY_POLYS (geometry2) table is specified first in the
FROM clause, because multiple geometries from geometry2 are involved (see the
Usage Notes).

SELECT /*+ ORDERED */
 A.gid
 FROM query_polys B, polygons A
 WHERE SDO_RELATE(A.Geometry, B.Geometry, ’querytype = WINDOW’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with any GEOMETRY
column object in the QUERY_POLYS table. In this example, the QUERY_
POLYS.GEOMETRY column must be spatially indexed.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE SDO_RELATE(A.Geometry, B.Geometry,
 ’mask=ANYINTERACT querytype=JOIN’) = ’TRUE’;

Related Topics
■ SDO_FILTER

■ SDO_WITHIN_DISTANCE

■ SDO_GEOM.RELATE function
Spatial Operators 10-17

SDO_WITHIN_DISTANCE
SDO_WITHIN_DISTANCE

Format
SDO_WITHIN_DISTANCE(geometry1, aGeom, params);

Description
Uses the spatial index to identify the set of spatial objects that are within some
specified distance of a given object (such as an area of interest or point of interest).

Keywords and Parameters

Value Description

geometry1 Specifies a geometry column in a table. The column has the set of
geometry objects that will be operated on to determine if they are within
the specified distance of the given object (aGeom). The column must be
spatially indexed.
Data type is MDSYS.SDO_GEOMETRY.

aGeom Specifies the object to be checked for distance against the geometry
objects in geometry1. Specify either a geometry from a table (using a bind
variable) or a transient instance of a geometry (using the SDO_
GEOMETRY constructor).
Data type is MDSYS.SDO_GEOMETRY.

PARAMS Determines the behavior of the operator.
Data type is VARCHAR2.

distance Specifies the distance value. If a coordinate system is associated with the
geometry, the distance unit is assumed to be the unit associated with the
coordinate system. This is a required parameter.
Data type is NUMBER.

idxtab1 Specifies the name of the index table if there are multiple spatial index
tables for geometry1.

querytype Set ’querytype=FILTER’ to perform only a primary filter operation. If
querytype is not specified, both primary and secondary filter operations
are performed (default).
Data type is VARCHAR2.
10-18 Oracle Spatial User’s Guide and Reference

SDO_WITHIN_DISTANCE
Returns
The expression SDO_WITHIN_DISTANCE(arg1, arg2, arg3) = ’TRUE’ evaluates to
TRUE for object pairs that are within the specified distance, and FALSE otherwise.

Usage Notes
Distance between two extended objects (nonpoint objects such as lines and
polygons) is defined as the minimum distance between these two objects. The
distance between two adjacent polygons is zero.

If this operator is used with geodetic data, the data must be indexed with an R-tree
spatial index. If this operator is used with geodetic data and if the R-tree spatial
index is created with ’geodetic=false’ specified, you cannot use the unit parameter.

The operator is disabled if the table does not have a spatial index or if the index has
been built on more than two dimensions.

The operator must always be used in a WHERE clause and the condition that
includes the operator should be an expression of the form:

SDO_WITHIN_DISTANCE(arg1, arg2, ’distance = <some_dist_val>’) = ’TRUE’

The geometry column must have a spatial index built on it. If the data is geodetic,
the spatial index must be an R-tree index.

The layer_gtype keyword for PARAMS has been deprecated, and it is ignored if
specified. The operator automatically optimizes its behavior based on the SDO_
GTYPE value (explained in Section 2.2.1) of the geometries, which can be specified
using the layer_gtype keyword in the parameters for the CREATE INDEX or ALTER
INDEX REBUILD statement.

SDO_WITHIN_DISTANCE is not supported for spatial joins. See Section 4.2.1.3 for
a discussion on how to perform a spatial join within-distance operation.

unit Specifies the unit of measurement: a quoted string with unit= and an
SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table (for
example, ’unit=KM’). See Section 2.6 for more information about unit of
measurement specification.
Data type is NUMBER. Default = unit of measurement associated with
the data. For geodetic data, the default is meters.

Value Description
Spatial Operators 10-19

SDO_WITHIN_DISTANCE
Examples
The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is within 10 distance units of the geometry stored in the
aGeom variable.

SELECT A.GID
 FROM POLYGONS A
 WHERE
 SDO_WITHIN_DISTANCE(A.Geometry, :aGeom, ’distance = 10’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is within 10 distance units of the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

SELECT A.GID
 FROM POLYGONS A
 WHERE
 SDO_WITHIN_DISTANCE(A.Geometry, mdsys.sdo_geometry(2003,NULL,NULL,
 mdsys.sdo_elem_info_array(1,1003,3),
 mdsys.sdo_ordinate_array(x1,y1,x2,y2)),
 ’distance = 10’) = ’TRUE’;

The following example selects the GID values from the POLYGONS table where the
GID value in the QUERY_POINTS table is 1 and a POLYGONS.GEOMETRY object
is within 10 distance units of the QUERY_POINTS.GEOMETRY object.

SELECT A.GID
 FROM POLYGONS A, Query_Points B
 WHERE B.GID = 1 AND
 SDO_WITHIN_DISTANCE(A.Geometry, B.Geometry, ’distance = 10’) = ’TRUE’;

Related Topics
■ SDO_FILTER

■ SDO_RELATE
10-20 Oracle Spatial User’s Guide and Reference

Geometry Fu
11

Geometry Functions

This chapter contains descriptions of the geometry functions, which can be grouped
into the following categories:

■ Relationship (True/False) between two objects: RELATE, WITHIN_DISTANCE

■ Validation: VALIDATE_GEOMETRY, VALIDATE_LAYER

■ Single-object operations: SDO_ARC_DENSIFY, SDO_AREA, SDO_BUFFER,
SDO_CENTROID, SDO_CONVEXHULL, SDO_LENGTH, SDO_MBR, SDO_
POINTONSURFACE

■ Two-object operations: SDO_DISTANCE, SDO_DIFFERENCE, SDO_
INTERSECTION, SDO_UNION, SDO_XOR

The geometry functions are listed Table 11–1, and some usage information follows
the table.

Table 11–1 Geometry Functions

Function Description

SDO_GEOM.RELATE Determines how two objects interact.

SDO_GEOM.SDO_ARC_DENSIFY Changes each circular arc into an approximation
consisting of straight lines, and each circle into a
polygon consisting of a series of straight lines
that approximate the circle.

SDO_GEOM.SDO_AREA Computes the area of a two-dimensional
polygon.

SDO_GEOM.SDO_BUFFER Generates a buffer polygon around a geometry.

SDO_GEOM.SDO_CENTROID Returns the centroid of a polygon.
nctions 11-1

SDO_GEOM.SDO_CONVEXHULL Returns a polygon-type object that represents the
convex hull of a geometry object.

SDO_GEOM.SDO_DIFFERENCE Returns a geometry object that is the topological
difference (MINUS operation) of two geometry
objects.

SDO_GEOM.SDO_DISTANCE Computes the distance between two geometry
objects.

SDO_GEOM.SDO_INTERSECTION Returns a geometry object that is the topological
intersection (AND operation) of two geometry
objects.

SDO_GEOM.SDO_LENGTH Computes the length or perimeter of a geometry.

SDO_GEOM.SDO_MAX_MBR_
ORDINATE

Returns the maximum value for the specified
ordinate (dimension) of the minimum bounding
rectangle of a geometry object.

SDO_GEOM.SDO_MBR Returns the minimum bounding rectangle of a
geometry.

SDO_GEOM.SDO_MIN_MBR_
ORDINATE

Returns the minimum value for the specified
ordinate (dimension) of the minimum bounding
rectangle of a geometry object.

SDO_GEOM.SDO_POINTONSURFACE Returns a point that is guaranteed to be on the
surface of a polygon.

SDO_GEOM.SDO_UNION Returns a geometry object that is the topological
union (OR operation) of two geometry objects.

SDO_GEOM.SDO_XOR Returns a geometry object that is the topological
symmetric difference (XOR operation) of two
geometry objects.

SDO_GEOM.VALIDATE_GEOMETRY Determines if a geometry is valid.

SDO_GEOM.VALIDATE_LAYER Determines if all the geometries stored in a
column are valid.

SDO_GEOM.WITHIN_DISTANCE Determines if two geometries are within a
specified distance from one another.

Table 11–1 Geometry Functions (Cont.)

Function Description
11-2 Oracle Spatial User’s Guide and Reference

The following usage information applies to the geometry functions. (See also the
Usage Notes under the reference information for each function.)

■ Certain combinations of input parameters and operations can return a null
value, that is, an empty geometry. For example, requesting the intersection of
two disjoint geometry objects returns a null value.

■ A null value (empty geometry) as an input parameter to a geometry function
(for example, SDO_GEOM.RELATE) produces an error.

■ Certain operations can return a geometry of a different type than one or both
input geometries. For example, the intersection of a line and an overlapping
polygon returns a line; the intersection of two lines returns a point; and the
intersection of two tangent polygons returns a line.

Note: The SDO_POLY_xxx functions were deprecated at release
8.1.6 and have been removed from this guide. You should use
instead the corresponding generic (not restricted to polygons)
SDO_xxx functions: SDO_GEOM.SDO_DIFFERENCE, SDO_
GEOM.SDO_INTERSECTION, SDO_GEOM.SDO_UNION, and
SDO_GEOM.SDO_XOR.
Geometry Functions 11-3

SDO_GEOM.RELATE
SDO_GEOM.RELATE

Format
SDO_GEOM.RELATE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

mask IN VARCHAR2,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

or

SDO_GEOM.RELATE(

geom1 IN MDSYS.SDO_GEOMETRY,

mask IN VARCHAR2,

geom2 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN VARCHAR2;

Description
Examines two geometry objects to determine their spatial relationship.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

mask
Specifies a list of relationships to check. See the list of keywords in the Usage Notes.
11-4 Oracle Spatial User’s Guide and Reference

SDO_GEOM.RELATE
geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
The MDSYS.SDO_GEOM.RELATE function can return the following types of
answers:

■ If you pass a mask listing one or more relationships, the function returns the
name of the relationship if it is true for the pair of geometries. If all the
relationships are false, the procedure returns FALSE.

■ If you pass the DETERMINE keyword in mask, the function returns the one
relationship keyword that best matches the geometries.

■ If you pass the ANYINTERACT keyword in mask, the function returns TRUE if
the two geometries are not disjoint.

The following mask relationships can be tested:

■ ANYINTERACT: Returns TRUE if the objects are not disjoint.

■ CONTAINS: Returns CONTAINS if the second object is entirely within the first
object and the object boundaries do not touch; otherwise, returns FALSE.

■ COVEREDBY: Returns COVEREDBY if the first object is entirely within the
second object and the object boundaries touch at one or more points; otherwise,
returns FALSE.

■ COVERS: Returns COVERS if the second object is entirely within the first object
and the boundaries touch in one or more places; otherwise, returns FALSE.

■ DISJOINT: Returns DISJOINT if the objects have no common boundary or
interior points; otherwise, returns FALSE.

■ EQUAL: Returns EQUAL if the objects share every point of their boundaries
and interior, including any holes in the objects; otherwise, returns FALSE.

■ INSIDE: Returns INSIDE if the first object is entirely within the second object
and the object boundaries do not touch; otherwise, returns FALSE.
Geometry Functions 11-5

SDO_GEOM.RELATE
■ ON: Returns ON if the boundary and interior of a line (the first object) is
completely on the boundary of a polygon (the second object); otherwise, returns
FALSE.

■ OVERLAPBDYDISJOINT: Returns OVERLAPBDYDISJOINT if the objects
overlap, but their boundaries do not interact; otherwise, returns FALSE.

■ OVERLAPBDYINTERSECT: Returns OVERLAPBDYINTERSECT if the objects
overlap, and their boundaries intersect in one or more places; otherwise, returns
FALSE.

■ TOUCH: Returns TOUCH if the two objects share a common boundary point,
but no interior points; otherwise, returns FALSE.

Values for mask can be combined using the logical Boolean operator OR. For
example, ‘INSIDE + TOUCH’ returns ’INSIDE + TOUCH’ or ’FALSE’ depending on
the outcome of the test.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example checks if there is any spatial interaction between geometry
objects cola_b and cola_d. (The example uses the definitions and data from
Section 2.1.)

SELECT SDO_GEOM.RELATE(c_b.shape, ’anyinteract’, c_d.shape, 0.005)
 FROM cola_markets c_b, cola_markets c_d
 WHERE c_b.name = ’cola_b’ AND c_d.name = ’cola_d’;

SDO_GEOM.RELATE(C_B.SHAPE,’ANYINTERACT’,C_D.SHAPE,0.005)
--
FALSE

Related Topics
 None.
11-6 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_ARC_DENSIFY
SDO_GEOM.SDO_ARC_DENSIFY

Format
SDO_GEOM.SDO_ARC_DENSIFY(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

params IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_ARC_DENSIFY(

geom IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

params IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry in which each circular arc in the input geometry is changed into
an approximation of the circular arc consisting of straight lines, and each circle is
changed into a polygon consisting of a series of straight lines that approximate the
circle.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).
Geometry Functions 11-7

SDO_GEOM.SDO_ARC_DENSIFY
params
A quoted string containing an arc tolerance value and optionally a unit value. See
the Usage Notes for an explanation of the format and meaning.

Usage Notes
This function is especially useful when operations involve geodetic coordinate
systems. Geodetic coordinate system support is provided only for geometries that
consist of points or geodesics (lines on the sphere). If you have geometries
containing circles or circular arcs, you can transform them to a projected coordinate
system, use this function to densify them into regular polygons, and perform
Spatial operations on the resulting geometries. You can then transform the
geometries to any projected or geodetic coordinate system.

The params parameter is a quoted string that must contain the arc_tolerance keyword
and that may contain the unit keyword to identify the unit of measurement
associated with the arc_tolerance value. For example:

’arc_tolerance=0.05 unit=km’

The arc_tolerance keyword specifies, for each arc in the geometry, the maximum
length of the perpendicular line between the surface of the arc and the straight line
between the start and end points of the arc. Figure 11–1 shows a line whose length is
the arc_tolerance value for the arc between points A and B.

Figure 11–1 Arc Tolerance

The arc_tolerance keyword value must be greater than or equal to the tolerance value
associated with the geometry. As you increase the arc_tolerance keyword value, the
resulting polygon has fewer sides and a smaller area; as you decrease the arc_
tolerance keyword value, the resulting polygon has more sides and a larger area (but
never larger than the original geometry).

If the unit keyword is specified, the value must be an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, ’unit=KM’). If the unit keyword is
not specified, the unit of measurement associated with the geometry is used. See
Section 2.6 for more information about unit of measurement specification.
11-8 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_ARC_DENSIFY
If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns the geometry that results from the arc densification
of cola_d, which is a circle. (The example uses the definitions and data from
Section 2.1.)

-- Arc densification of the circle cola_d
SELECT c.name, SDO_GEOM.SDO_ARC_DENSIFY(c.shape, m.diminfo,
 ’arc_tolerance=0.05’)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_d’;

NAME

SDO_GEOM.SDO_ARC_DENSIFY(C.SHAPE,M.DIMINFO,’ARC_TOLERANCE=0.05’)(SDO_GTYPE, SDO_
--
cola_d
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(8, 7, 8.76536686, 7.15224093, 9.41421356, 7.58578644, 9.84775907, 8.23463314,
 10, 9, 9.84775907, 9.76536686, 9.41421356, 10.4142136, 8.76536686, 10.8477591,
8, 11, 7.23463314, 10.8477591, 6.58578644, 10.4142136, 6.15224093, 9.76536686, 6
, 9, 6.15224093, 8.23463314, 6.58578644, 7.58578644, 7.23463314, 7.15224093, 8,
7))

Related Topics
■ Section 5.2.3, "Other Considerations and Requirements with Geodetic Data"
Geometry Functions 11-9

SDO_GEOM.SDO_AREA
SDO_GEOM.SDO_AREA

Format
SDO_GEOM.SDO_AREA(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

[, unit IN VARCHAR2]

) RETURN NUMBER;

or

SDO_GEOM.SDO_AREA(

geom IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

[, unit IN VARCHAR2]

) RETURN NUMBER;

Description
Returns the area of a two-dimensional polygon.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

unit
Unit of measurement: a quoted string with unit= and an SDO_UNIT value from the
MDSYS.SDO_AREA_UNITS table (for example, ’unit=SQ_KM’). See Section 2.6 for
more information about unit of measurement specification.

If this parameter is not specified, the unit of measurement associated with the data
is assumed. For geodetic data, the default unit of measurement is square meters.
11-10 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_AREA
tol
Tolerance value (see Section 1.5.5).

Usage Notes
This function works with any polygon, including polygons with holes.

Lines that close to form a ring have no area.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns the areas of geometry objects stored in the COLA_
MARKETS table. The first statement returns the areas all objects; the second returns
just the area of cola_a. (The example uses the definitions and data from Section 2.1.)

-- Return the areas of all cola markets.
SELECT name, SDO_GEOM.SDO_AREA(shape, 0.005) FROM cola_markets;

NAME SDO_GEOM.SDO_AREA(SHAPE,0.005)
-------------------------------- ------------------------------
cola_a 24
cola_b 16.5
cola_c 5
cola_d 12.5663706

-- Return the area of just cola_a.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, 0.005) FROM cola_markets c
 WHERE c.name = ’cola_a’;

NAME SDO_GEOM.SDO_AREA(C.SHAPE,0.005)
-------------------------------- --------------------------------
cola_a 24

Related Topics
None.
Geometry Functions 11-11

SDO_GEOM.SDO_BUFFER
SDO_GEOM.SDO_BUFFER

Format
SDO_GEOM.SDO_BUFFER(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY,

dist IN NUMBER

[, params IN VARCHAR2]

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_BUFFER(

geom IN MDSYS.SDO_GEOMETRY,

dist IN NUMBER,

tol IN NUMBER

[, params IN VARCHAR2]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Generates a buffer polygon around a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

dist
Distance value. Must be greater than the tolerance value, as specified in the
dimensional array (dim parameter) or in the tol parameter.
11-12 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_BUFFER
tol
Tolerance value (see Section 1.5.5).

params
A quoted string with one or both of the following keywords:

■ unit and an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table. It
identifies the unit of measurement associated with the dist parameter value, and
also with the arc tolerance value if the arc_tolerance keyword is specified. See
Section 2.6 for more information about unit of measurement specification.

■ arc_tolerance and an arc tolerance value. See the Usage Notes for the SDO_
GEOM.SDO_ARC_DENSIFY function in this chapter for more information
about the arc_tolerance keyword.

For example: ’unit=km arc_tolerance=0.05’

If the input geometry is geodetic data, this parameter is required, and arc_tolerance
must be specified. If the input geometry is Cartesian or projected data, arc_tolerance
has no effect and should not be specified.

If this parameter is not specified for a Cartesian or projected geometry, or if the arc_
tolerance keyword is specified for a geodetic geometry but the unit keyword is not
specified, the unit of measurement associated with the data is assumed.

Usage Notes
This function returns a geometry object representing the buffer polygon.

This function creates a rounded buffer around a point, line, or polygon. The buffer
within a void is also rounded, and is the same distance from the inner boundary as
the outer buffer is from the outer boundary. See Figure 1–11 for an illustration.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

With geodetic data, this function is supported by approximations, as explained in
Section 5.7.3.

Examples
The following example returns a polygon representing a buffer of 1 around cola_a.
Note the "rounded" corners (for example, at .292893219,.292893219) in the returned
polygon. (The example uses the non-geodetic definitions and data from Section 2.1.)

-- Generate a buffer of 1 unit around a geometry.
SELECT c.name, SDO_GEOM.SDO_BUFFER(c.shape, m.diminfo, 1)
Geometry Functions 11-13

SDO_GEOM.SDO_BUFFER
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_a’;

NAME

SDO_GEOM.SDO_BUFFER(C.SHAPE,M.DIMINFO,1)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_a
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1005, 8, 1, 2, 2, 5, 2, 1,
 7, 2, 2, 11, 2, 1, 13, 2, 2, 17, 2, 1, 19, 2, 2, 23, 2, 1), SDO_ORDINATE_ARRAY(
0, 1, .292893219, .292893219, 1, 0, 5, 0, 5.70710678, .292893219, 6, 1, 6, 7, 5.
70710678, 7.70710678, 5, 8, 1, 8, .292893219, 7.70710678, 0, 7, 0, 1))

The following example returns a polygon representing a buffer of 1 around cola_a
using the geodetic definitions and data from Section 5.8.

-- Generate a buffer of 1 kilometer around a geometry.
SELECT c.name, SDO_GEOM.SDO_BUFFER(c.shape, m.diminfo, 1,
 ’unit=km arc_tolerance=0.05’)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’
 AND m.column_name = ’SHAPE’ AND c.name = ’cola_a’;

NAME

SDO_GEOM.SDO_BUFFER(C.SHAPE,M.DIMINFO,1,’UNIT=KMARC_TOLERANCE=0.05’)(SDO_GTYPE,
--
cola_a
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(.991023822, 1.00002073, .992223711, .995486419, .99551726, .99217077, 1.00001
929, .990964898, 4.99998067, .990964929, 5.00448268, .9921708, 5.00777624, .9954
86449, 5.00897618, 1.00002076, 5.00904194, 6.99997941, 5.00784065, 7.00450033, 5
.00454112, 7.00781357, 5.00002479, 7.009034, .999975166, 7.00903403, .995458814,
 7.00781359, .992159303, 7.00450036, .990958058, 6.99997944, .991023822, 1.00002
073))

Related Topics
■ SDO_TUNE.EXTENT_OF

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_UNION
11-14 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_BUFFER
■ SDO_GEOM.SDO_XOR
Geometry Functions 11-15

SDO_GEOM.SDO_CENTROID
SDO_GEOM.SDO_CENTROID

Format
SDO_GEOM.SDO_CENTROID(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_CENTROID(

geom1 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a point geometry that is the centroid of a polygon, multipolygon, point, or
point cluster. (The centroid is also known as the "center of gravity.")

For an input geometry consisting of multiple objects, the result is weighted by the
area of each polygon in the geometry objects. If the geometry objects are a mixture
of polygons and points, the points are not used in the calculation of the centroid. If
the geometry objects are all points, the points have equal weight.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).
11-16 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_CENTROID
Usage Notes
The function returns a null value if geom is not a polygon, multipolygon, point, or
point cluster.

If geom1 is a point, the function returns the point (the input geometry).

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

With geodetic data, this function is supported by approximations, as explained in
Section 5.7.3.

Examples
The following example returns a geometry object that is the centroid of cola_c. (The
example uses the definitions and data from Section 2.1.)

-- Return the centroid of a geometry.
SELECT c.name, SDO_GEOM.SDO_CENTROID(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

NAME

SDO_GEOM.SDO_CENTROID(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
4.73333333, 3.93333333))

Related Topics
None.
Geometry Functions 11-17

SDO_GEOM.SDO_CONVEXHULL
SDO_GEOM.SDO_CONVEXHULL

Format
SDO_GEOM.SDO_CONVEXHULL(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_CONVEXHULL(

geom1 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a polygon-type object that represents the convex hull of a geometry object.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
The convex hull is a simple convex polygon that completely encloses the geometry
object. Spatial uses as few straight-line sides as possible to create the smallest
polygon that completely encloses the specified object. A convex hull is a convenient
way to get an approximation of a complex geometry object.
11-18 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_CONVEXHULL
If the geometry (geom1) contains any arc elements, the function calculates the
minimum bounding rectangle (MBR) for each arc element and uses these MBRs in
calculating the convex hull of the geometry. If the geometry object (geom1) is a circle,
the function returns a square that minimally encloses the circle.

The function returns the original (input) geometry if geom is of point type, has fewer
than three points or vertices, or consists of multiple points all in a straight line.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

With geodetic data, this function is supported by approximations, as explained in
Section 5.7.3.

Examples
The following example returns a geometry object that is the convex hull of cola_c.
(The example uses the definitions and data from Section 2.1. This specific example,
however, does not produce useful output -- the returned polygon is identical to the
input polygon -- because the input polygon is already a simple convex polygon.)

-- Return the convex hull of a polygon.
SELECT c.name, SDO_GEOM.SDO_CONVEXHULL(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

NAME

SDO_GEOM.SDO_CONVEXHULL(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
cola_c
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(6, 3, 6, 5, 4, 5, 3, 3, 6, 3))

Related Topics
None.
Geometry Functions 11-19

SDO_GEOM.SDO_DIFFERENCE
SDO_GEOM.SDO_DIFFERENCE

Format
SDO_GEOM.SDO_DIFFERENCE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_DIFFERENCE(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological difference (MINUS operation) of
two geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.
11-20 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_DIFFERENCE
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
In Figure 11–2, the shaded area represents the polygon returned when SDO_
DIFFERENCE is used with a square (geom1) and another polygon (geom2).

Figure 11–2 SDO_GEOM.SDO_DIFFERENCE

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

You should use this function instead of the deprecated function SDO_GEOM.SDO_
POLY_DIFFERENCE.

Examples
The following example returns a geometry object that is the topological difference
(MINUS operation) of cola_a and cola_c. (The example uses the definitions and data
from Section 2.1.)

-- Return the topological difference of two geometries.
SELECT SDO_GEOM.SDO_DIFFERENCE(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;
Geometry Functions 11-21

SDO_GEOM.SDO_DIFFERENCE
SDO_GEOM.SDO_DIFFERENCE(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1, 7, 1, 1, 5, 1, 5, 3, 3, 3, 4, 5, 5, 5, 5, 7, 1, 7)

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (1, 7).

Related Topics
■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_XOR
11-22 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_DISTANCE
SDO_GEOM.SDO_DISTANCE

Format
SDO_GEOM.SDO_DISTANCE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

[, unit IN VARCHAR2]

) RETURN NUMBER;

or

SDO_GEOM.SDO_DISTANCE(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

[, unit IN VARCHAR2]

) RETURN NUMBER;

Description
Computes the distance between two geometry objects. The distance between two
geometry objects is the distance between the closest pair of points or segments of
the two objects.

Parameters

geom1
Geometry object whose distance from geom2 is to be computed.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).
Geometry Functions 11-23

SDO_GEOM.SDO_DISTANCE
geom2
Geometry object whose distance from geom1 is to be computed.

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

unit
Unit of measurement: a quoted string with unit= and an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, ’unit=KM’). See Section 2.6 for more
information about unit of measurement specification.

If this parameter is not specified, the unit of measurement associated with the data
is assumed.

tol
Tolerance value (see Section 1.5.5).

Usage Notes
If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example returns the shortest distance between cola_b and cola_d. (The
example uses the definitions and data from Section 2.1.)

-- Return the distance between two geometries.
SELECT SDO_GEOM.SDO_DISTANCE(c_b.shape, c_d.shape, 0.005)
 FROM cola_markets c_b, cola_markets c_d
 WHERE c_b.name = ’cola_b’ AND c_d.name = ’cola_d’;

SDO_GEOM.SDO_DISTANCE(C_B.SHAPE,C_D.SHAPE,0.005)
--
 .846049894

Related Topics
■ SDO_GEOM.WITHIN_DISTANCE
11-24 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_INTERSECTION
SDO_GEOM.SDO_INTERSECTION

Format
SDO_GEOM.SDO_INTERSECTION(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_INTERSECTION(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological intersection (AND operation) of
two geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.
Geometry Functions 11-25

SDO_GEOM.SDO_INTERSECTION
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
In Figure 11–3, the shaded area represents the polygon returned when SDO_
INTERSECTION is used with a square (geom1) and another polygon (geom2).

Figure 11–3 SDO_GEOM.SDO_INTERSECTION

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

You should use this function instead of the deprecated function SDO_GEOM.SDO_
POLY_INTERSECTION.

Examples
The following example returns a geometry object that is the topological intersection
(AND operation) of cola_a and cola_c. (The example uses the definitions and data
from Section 2.1.)

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_INTERSECTION(c_a.shape, c_c.shape, 0.005)
 FROM cola_markets c_a, cola_markets c_c
 WHERE c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;
11-26 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_INTERSECTION
SDO_GEOM.SDO_INTERSECTION(C_A.SHAPE,C_C.SHAPE,0.005)(SDO_GTYPE, SDO_SRID, SDO_PO
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(4, 5, 3, 3, 5, 3, 5, 5, 4, 5))

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (4, 5).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_XOR
Geometry Functions 11-27

SDO_GEOM.SDO_LENGTH
SDO_GEOM.SDO_LENGTH

Format
SDO_GEOM.SDO_LENGTH(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY

[, unit IN VARCHAR2]

) RETURN NUMBER;

or

SDO_GEOM.SDO_LENGTH(

geom IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

[, unit IN VARCHAR2]

) RETURN NUMBER;

Description
Returns the length or perimeter of a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

unit
Unit of measurement: a quoted string with unit= and an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, ’unit=KM’). See Section 2.6 for more
information about unit of measurement specification.

If this parameter is not specified, the unit of measurement associated with the data
is assumed. For geodetic data, the default unit of measurement is meters.
11-28 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_LENGTH
tol
Tolerance value (see Section 1.5.5).

Usage Notes
If the input polygon contains one or more holes, this function calculates the
perimeters of the exterior boundary and all holes. It returns the sum of all the
perimeters.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns the perimeters of geometry objects stored in the
COLA_MARKETS table. The first statement returns the perimeters of all objects; the
second returns just the perimeter of cola_a. (The example uses the definitions and
data from Section 2.1.)

-- Return the perimeters of all cola markets.
SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’;

NAME SDO_GEOM.SDO_LENGTH(C.SHAPE,M.DIMINFO)
-------------------------------- --------------------------------------
cola_a 20
cola_b 17.1622777
cola_c 9.23606798
cola_d 12.5663706

-- Return the perimeter of just cola_a.
SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_a’;

NAME SDO_GEOM.SDO_LENGTH(C.SHAPE,M.DIMINFO)
-------------------------------- --------------------------------------
cola_a 20

Related Topics
None.
Geometry Functions 11-29

SDO_GEOM.SDO_MAX_MBR_ORDINATE
SDO_GEOM.SDO_MAX_MBR_ORDINATE

Format
SDO_GEOM.SDO_MAX_MBR_ORDINATE(

geom IN MDSYS.SDO_GEOMETRY,

ordinate_pos IN NUMBER

) RETURN NUMBER;

or

SDO_GEOM.SDO_MAX_MBR_ORDINATE(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY,

ordinate_pos IN NUMBER

) RETURN NUMBER;

Description
Returns the maximum value for the specified ordinate (dimension) of the minimum
bounding rectangle of a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

ordinate_pos
Position of the ordinate (dimension) in the definition of the geometry object: 1 for
the first ordinate, 2 for the second ordinate, and so on. For example, if geom has X, Y
ordinates, 1 identifies the X ordinate and 2 identifies the Y ordinate.
11-30 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_MAX_MBR_ORDINATE
Usage Notes
This function is not supported with geodetic data.

Examples
The following example returns the maximum X (first) ordinate value of the
minimum bounding rectangle of the cola_d geometry in the COLA_MARKETS
table. (The example uses the definitions and data from Section 2.1. The minimum
bounding rectangle of cola_d is returned in the example for the SDO_GEOM.SDO_
MBR function.)

SELECT SDO_GEOM.SDO_MAX_MBR_ORDINATE(c.shape, m.diminfo, 1)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_d’;

SDO_GEOM.SDO_MAX_MBR_ORDINATE(C.SHAPE,M.DIMINFO,1)
--
 10

Related Topics
■ SDO_GEOM.SDO_MBR

■ SDO_GEOM.SDO_MIN_MBR_ORDINATE
Geometry Functions 11-31

SDO_GEOM.SDO_MBR
SDO_GEOM.SDO_MBR

Format
SDO_GEOM.SDO_MBR(

geom IN MDSYS.SDO_GEOMETRY

[, dim IN MDSYS.SDO_DIM_ARRAY]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the minimum bounding rectangle of a geometry object, that is, a single
rectangle that minimally encloses the geometry.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

Usage Notes
This function is not supported with geodetic data.

Examples
The following example returns the minimum bounding rectangle of the cola_d
geometry in the COLA_MARKETS table. (The example uses the definitions and
data from Section 2.1. Because cola_d is a circle, the minimum bounding rectangle in
this case is a square.)

-- Return the minimum bounding rectangle of cola_d (a circle).
SELECT SDO_GEOM.SDO_MBR(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_d’;

SDO_GEOM.SDO_MBR(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO
11-32 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_MBR
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(6, 7, 10, 11))

Related Topics
■ SDO_GEOM.SDO_MAX_MBR_ORDINATE

■ SDO_GEOM.SDO_MIN_MBR_ORDINATE
Geometry Functions 11-33

SDO_GEOM.SDO_MIN_MBR_ORDINATE
SDO_GEOM.SDO_MIN_MBR_ORDINATE

Format
SDO_GEOM.SDO_MIN_MBR_ORDINATE(

geom IN MDSYS.SDO_GEOMETRY,

ordinate_pos IN NUMBER

) RETURN NUMBER;

or

SDO_GEOM.SDO_MIN_MBR_ORDINATE(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY,

ordinate_pos IN NUMBER

) RETURN NUMBER;

Description
Returns the minimum value for the specified ordinate (dimension) of the minimum
bounding rectangle of a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

ordinate_pos
Position of the ordinate (dimension) in the definition of the geometry object: 1 for
the first ordinate, 2 for the second ordinate, and so on. For example, if geom has X, Y
ordinates, 1 identifies the X ordinate and 2 identifies the Y ordinate.
11-34 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_MIN_MBR_ORDINATE
Usage Notes
This function is not supported with geodetic data.

Examples
The following example returns the minimum X (first) ordinate value of the
minimum bounding rectangle of the cola_d geometry in the COLA_MARKETS
table. (The example uses the definitions and data from Section 2.1. The minimum
bounding rectangle of cola_d is returned in the example for the SDO_GEOM.SDO_
MBR function.)

SELECT SDO_GEOM.SDO_MIN_MBR_ORDINATE(c.shape, m.diminfo, 1)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_d’;

SDO_GEOM.SDO_MIN_MBR_ORDINATE(C.SHAPE,M.DIMINFO,1)
--
 6

Related Topics
■ SDO_GEOM.SDO_MAX_MBR_ORDINATE

■ SDO_GEOM.SDO_MBR
Geometry Functions 11-35

SDO_GEOM.SDO_POINTONSURFACE
SDO_GEOM.SDO_POINTONSURFACE

Format
SDO_GEOM.SDO_POINTONSURFACE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_POINTONSURFACE(

geom1 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a point that is guaranteed to be on the surface of a polygon geometry
object.

Parameters

geom1
Polygon geometry object.

dim1
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
This function returns a point geometry object representing a point that is
guaranteed to be on the surface of geom1.
11-36 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_POINTONSURFACE
The returned point can be any point on the surface. You should not make any
assumptions about where on the surface the returned point is, or about whether the
point is the same or different when the function is called multiple times with the
same input parameter values.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns a geometry object that is a point on the surface of
cola_a. (The example uses the definitions and data from Section 2.1.)

-- Return a point on the surface of a geometry.
SELECT SDO_GEOM.SDO_POINTONSURFACE(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_a’;

SDO_GEOM.SDO_POINTONSURFACE(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(2001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
1, 1))

Related Topics
None.
Geometry Functions 11-37

SDO_GEOM.SDO_UNION
SDO_GEOM.SDO_UNION

Format
SDO_GEOM.SDO_UNION(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_UNION(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological union (OR operation) of two
geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.
11-38 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_UNION
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
In Figure 11–4, the shaded area represents the polygon returned when SDO_
UNION is used with a square (geom1) and another polygon (geom2).

Figure 11–4 SDO_GEOM.SDO_UNION

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

You should use this function instead of the deprecated function SDO_GEOM.SDO_
POLY_UNION.

Examples
The following example returns a geometry object that is the topological union (OR
operation) of cola_a and cola_c. (The example uses the definitions and data from
Section 2.1.)

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_UNION(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;
Geometry Functions 11-39

SDO_GEOM.SDO_UNION
SDO_GEOM.SDO_UNION(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID,
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 5, 5, 7, 1, 7, 1, 1, 5, 1, 5, 3, 6, 3, 6, 5, 5, 5))

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (5, 5).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_XOR
11-40 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_XOR
SDO_GEOM.SDO_XOR

Format
SDO_GEOM.SDO_XOR(

geom1 IN MDSYS.SDO_XOR,

dim1 IN MDSYS.SDO_DIM_ARRAY,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_GEOM.SDO_XOR(

geom1 IN MDSYS.SDO_GEOMETRY,

geom2 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological symmetric difference (XOR
operation) of two geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

geom2
Geometry object.
Geometry Functions 11-41

SDO_GEOM.SDO_XOR
dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
In Figure 11–5, the shaded area represents the polygon returned when SDO_XOR is
used with a square (geom1) and another polygon (geom2).

Figure 11–5 SDO_GEOM.SDO_XOR

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

You should use this function instead of the deprecated function SDO_GEOM.SDO_
POLY_XOR.

Examples
The following example returns a geometry object that is the topological symmetric
difference (XOR operation) of cola_a and cola_c. (The example uses the definitions
and data from Section 2.1.)

-- Return the topological symmetric difference of two geometries.
SELECT SDO_GEOM.SDO_XOR(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_a.name = ’cola_a’ AND c_c.name = ’cola_c’;
11-42 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_XOR
SDO_GEOM.SDO_XOR(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, S
--
SDO_GEOMETRY(2007, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1, 19, 1003, 1), SDO
_ORDINATE_ARRAY(1, 7, 1, 1, 5, 1, 5, 3, 3, 3, 4, 5, 5, 5, 5, 7, 1, 7, 5, 5, 5, 3
, 6, 3, 6, 5, 5, 5))

Note that in the returned polygon is a multipolygon (SDO_GTYPE = 2007), and the
SDO_ORDINATE_ARRAY describes two polygons: one starting and ending at (1, 7)
and the other starting and ending at (5, 5).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_UNION
Geometry Functions 11-43

SDO_GEOM.VALIDATE_GEOMETRY
SDO_GEOM.VALIDATE_GEOMETRY

Format
SDO_GEOM.VALIDATE_GEOMETRY(

theGeometry IN MDSYS.SDO_GEOMETRY,

theDimInfo IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

or

SDO_GEOM.VALIDATE_GEOMETRY(

theGeometry IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN VARCHAR2;

Description
Performs a consistency check for valid geometry types. The function checks the
representation of the geometry from the tables against the element definitions.

Parameters

theGeometry
Geometry object.

theDimInfo
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
The VALIDATE_GEOMETRY function is deprecated and will not be supported in
future releases of Oracle Spatial. You should use instead the SDO_
GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function.
11-44 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_GEOMETRY
This function performs the same checks as the SDO_GEOM.VALIDATE_
GEOMETRY_WITH_CONTEXT function; however, if the geometry is not valid, it
does not return information about the context.

If the geometry is not valid, this function returns one of the following:

■ An Oracle error message number based on the specific reason the geometry is
invalid

■ FALSE if the geometry fails for some other reason

If the function format with tolerance is used, the following guidelines apply:

■ All geometry objects must be defined using 4-digit SDO_GTYPE values
(explained in Section 2.2.1).

■ No checking is done to validate that the geometry is within the coordinate
system bounds as stored in the DIMINFO field of the USER_SDO_GEOM_
METADATA view. If this check is required for your usage, use the function
format with theDimInfo.

You can use this function in a PL/SQL procedure as an alternative to using the
SDO_GEOM.VALIDATE_LAYER procedure. See the Usage Notes for SDO_
GEOM.VALIDATE_LAYER for more information.

Examples
The following example validates the geometry of cola_c. (The example uses the
definitions and data from Section 2.1.)

-- Is a geometry valid?
SELECT c.name, SDO_GEOM.VALIDATE_GEOMETRY(c.shape, 0.005)
 FROM cola_markets c WHERE c.name = ’cola_c’;

NAME

SDO_GEOM.VALIDATE_GEOMETRY(C.SHAPE,0.005)
--
cola_c
TRUE

Related Topics
■ SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

■ SDO_GEOM.VALIDATE_LAYER
Geometry Functions 11-45

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

Format
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(

theGeometry IN MDSYS.SDO_GEOMETRY,

theDimInfo IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

or

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(

theGeometry IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN VARCHAR2;

Description
Performs a consistency check for valid geometry types and returns context
information if the geometry is invalid. The function checks the representation of the
geometry from the tables against the element definitions.

Parameters

theGeometry
Geometry object.

theDimInfo
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
If the geometry is valid, this function returns TRUE.

If the geometry is not valid, this function returns the following:
11-46 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
■ An Oracle error message number based on the specific reason the geometry is
invalid, or FALSE if the geometry fails for some other reason

■ The context of the error (the coordinate, edge, or ring that causes the geometry
to be invalid)

This function checks for type consistency and geometry consistency.

For type consistency, the function checks for the following:

■ The SDO_GTYPE is valid.

■ The SDO_ETYPE values are consistent with the SDO_GTYPE value. For
example, if the SDO_GTYPE is 2003, there should be at least one element of
type POLYGON in the geometry.

■ The SDO_ELEM_INFO_ARRAY has valid triplet values.

For geometry consistency, the function checks for the following, as appropriate for
the specific geometry type:

■ Polygons have at least four points, which includes the point that closes the
polygon. (The last point is the same as the first.)

■ Polygons are not self-crossing.

■ No two vertices on a line or polygon are the same.

■ Polygons are oriented correctly. (Exterior ring boundaries must be oriented
counterclockwise, and interior ring boundaries must be oriented clockwise.)

■ An interior polygon ring touches the exterior polygon ring at no more than one
point.

■ If two or more interior polygon rings are in an exterior polygon ring, the
interior polygon rings touch at no more than one point.

■ Line strings have at least two points.

■ 1-digit and 4-digit SDO_ETYPE values are not mixed (that is, both used) in
defining polygon ring elements.

■ Points on an arc are not colinear (that is, are not on a straight line) and are not
the same point.

■ Geometries are within the specified bounds of the applicable DIMINFO column
value (from the USER_SDO_GEOM_METADATA view).

■ LRS geometries (see Chapter 6) have three or four dimensions and a valid
measure dimension position (3 or 4, depending on the number of dimensions).
Geometry Functions 11-47

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
In checking for geometry consistency, the function considers the geometry’s
tolerance value in determining if lines touch or if points are the same.

If the function format with tolerance is used, the following guidelines apply:

■ All geometry objects must be defined using 4-digit SDO_GTYPE values
(explained in Section 2.2.1).

■ No checking is done to validate that the geometry is within the coordinate
system bounds as stored in the DIMINFO field of the USER_SDO_GEOM_
METADATA view. If this check is required for your usage, use the function
format with theDimInfo.

You can use this function in a PL/SQL procedure as an alternative to using the
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure. See the Usage
Notes for SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT for more
information.

Examples
The following example validates a geometry (deliberately created as invalid) named
cola_invalid_geom.

-- Validate; provide context if invalid
SELECT c.name, SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(c.shape, 0.005)
 FROM cola_markets c WHERE c.name = ’cola_invalid_geom’;

NAME

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(C.SHAPE,0.005)
--
cola_invalid_geom
13349 [Element <1>] [Ring <1>][Edge <1>][Edge <3>]

Related Topics
■ SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
11-48 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_LAYER
SDO_GEOM.VALIDATE_LAYER

Format
SDO_GEOM.VALIDATE_LAYER(

geom_table IN VARCHAR2,

geom_column IN VARCHAR2,

pkey_column IN VARCHAR2,

result_table IN VARCHAR2

[, commit_interval IN NUMBER]);

Description
Examines a geometry column to determine if the stored geometries follow the
defined rules for geometry objects.

Parameters

geom_table
Geometry table.

geom_column
Geometry object column to be examined.

pkey_column
The primary key column. This must be a single numeric (NUMBER data type)
column.

result_table
Result table to hold the validation results. A row is added to result_table for each
invalid geometry. If there are no invalid geometries, one or more (depending on the
commit_interval value) rows with a result of DONE are added.

commit_interval
Number of geometries to validate before Spatial performs an internal commit
operation and writes a row with a result of DONE to result_table (if no rows for
invalid geometries have been written since the last commit operation). If commit_
Geometry Functions 11-49

SDO_GEOM.VALIDATE_LAYER
interval is not specified, no internal commit operations are performed during the
validation.

The commit_interval option is helpful if you want to look at the contents of result_
table while the validation is in progress. If the primary key is indexed, you can look
at the last PKEY_COLUMN value to see approximately how much of the validation
is completed.

Usage Notes
The VALIDATE_LAYER procedure is deprecated and will not be supported in
future releases of Oracle Spatial. You should use instead the SDO_
GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure.

This procedure loads the result table with validation results. (VALIDATE_LAYER is
a procedure, not a function.)

An empty result table (result_table parameter) must be created before calling this
procedure. The format of the result table is: (pkey_column NUMBER, result
VARCHAR2(10)). If result_table is not empty, you should truncate the table before
calling the procedure; otherwise, the procedure appends rows to the existing data in
the table.

The result table contains one row for each invalid geometry. A row is not written if a
geometry is valid, except as follows:

■ If commit_interval is not specified (or if the commit_interval value is greater than
the number of geometries in the layer) and no invalid geometries are found, a
single row with a RESULT value of DONE is written.

■ If commit_interval is specified and if no invalid geometries are found between an
internal commit and the previous internal commit (or start of validation for the
first internal commit), a single row with the primary key of the last geometry
validated and a RESULT value of DONE is written. (If there have been no
invalid geometries since the last internal commit operation, this row replaces
the previous row that had a result of DONE.)

In each row for an invalid geometry, the PKEY_COLUMN column contains the
primary key value of the row containing the invalid geometry, and the RESULT
column contains an Oracle error message number. You can then look up this error
message to determine the cause of the failure.

This procedure performs the following checks on each geometry in the layer (geom_
column):
11-50 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_LAYER
■ All the type consistency and geometry consistency checks that are performed by
the SDO_GEOM.VALIDATE_GEOMETRY function (see Usage Notes for that
function).

■ If 4-digit SDO_GTYPE values are used, the geometry’s SDO_GTYPE specifies
the same dimensionality as specified in the applicable DIMINFO column value
(from the USER_SDO_GEOM_METADATA view).

■ The geometry’s SRID value (coordinate system) is the same as the one specified
in the applicable DIMINFO column value (from the USER_SDO_GEOM_
METADATA view).

As an alternative to using the VALIDATE_LAYER procedure, you can use a
PL/SQL procedure that calls the SDO_GEOM.VALIDATE_GEOMETRY function for
each input row and inserts rows in a result table for errors. With this approach, you
have more options in defining the result table; for example, the key field can
anything that you choose.

Examples
The following example validates the geometry objects stored in the SHAPE column
of the COLA_MARKETS table. The example includes the creation of the result table.
(The example uses the definitions and data from Section 2.1.) In this case, a row
with a RESULT value of DONE is written to the result table, because all the
geometries are valid.

-- Is a layer valid? (First, create the result table.)
CREATE TABLE val_results (mkt_id number, result varchar2(10));
EXECUTE SDO_GEOM.VALIDATE_LAYER(’COLA_MARKETS’,’SHAPE’,’MKT_ID’,’VAL_RESULTS’);

PL/SQL procedure successfully completed.

SELECT * from val_results;

 MKT_ID RESULT
---------- ----------
 DONE

Related Topics
■ SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

■ SDO_GEOM.VALIDATE_GEOMETRY
Geometry Functions 11-51

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

Format
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT(

geom_table IN VARCHAR2,

geom_column IN VARCHAR2,

result_table IN VARCHAR2

[, commit_interval IN NUMBER]);

Description
Examines a geometry column to determine if the stored geometries follow the
defined rules for geometry objects, and returns context information about any
invalid geometries.

Parameters

geom_table
Geometry table.

geom_column
Geometry object column to be examined.

result_table
Result table to hold the validation results. A row is added to result_table for each
invalid geometry. If there are no invalid geometries, one or more (depending on the
commit_interval value) rows with a result of DONE are added.

commit_interval
Number of geometries to validate before Spatial performs an internal commit
operation and writes a row with a result of DONE to result_table (if no rows for
invalid geometries have been written since the last commit operation). If commit_
interval is not specified, no internal commit operations are performed during the
validation.

The commit_interval option is helpful if you want to look at the contents of result_
table while the validation is in progress.
11-52 Oracle Spatial User’s Guide and Reference

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
Usage Notes
This procedure loads the result table with validation results. (VALIDATE_LAYER_
WITH_CONTEXT is a procedure, not a function.)

An empty result table (result_table parameter) must be created before calling this
procedure. The format of the result table is: (sdo_rowid ROWID, result
VARCHAR2(2000)). If result_table is not empty, you should truncate the table before
calling the procedure; otherwise, the procedure appends rows to the existing data in
the table.

The result table contains one row for each invalid geometry. A row is not written if a
geometry is valid, except as follows:

■ If commit_interval is not specified (or if the commit_interval value is greater than
the number of geometries in the layer) and no invalid geometries are found, a
single row with a RESULT value of DONE is written.

■ If commit_interval is specified and if no invalid geometries are found between an
internal commit and the previous internal commit (or start of validation for the
first internal commit), a single row with the primary key of the last geometry
validated and a RESULT value of DONE is written. (If there have been no
invalid geometries since the last internal commit operation, this row replaces
the previous row that had a result of DONE.)

In each row for an invalid geometry, the SDO_ROWID column contains the ROWID
value of the row containing the invalid geometry, and the RESULT column contains
an Oracle error message number and the context of the error (the coordinate, edge,
or ring that causes the geometry to be invalid). You can then look up the error
message for more information about the cause of the failure.

This procedure performs the following checks on each geometry in the layer (geom_
column):

■ All the type consistency and geometry consistency checks that are performed by
the SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function (see the
Usage Notes for that function).

■ If 4-digit SDO_GTYPE values are used, the geometry’s SDO_GTYPE specifies
the same dimensionality as specified in the applicable DIMINFO column value
(from the USER_SDO_GEOM_METADATA view).

■ The geometry’s SRID value (coordinate system) is the same as the one specified
in the applicable DIMINFO column value (from the USER_SDO_GEOM_
METADATA view).
Geometry Functions 11-53

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
Examples
The following example validates the geometry objects stored in the SHAPE column
of the COLA_MARKETS table. The example includes the creation of the result table.
For this example, a deliberately invalid geometry was inserted into the table before
the validation was performed.

-- Is a layer valid? (First, create the result table.)
CREATE TABLE val_results (sdo_rowid ROWID, result varchar2(1000));
-- (Next statement must be on one command line.)
EXECUTE SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT(’COLA_MARKETS’,’SHAPE’,’VAL_
RESULTS’);

PL/SQL procedure successfully completed.

SQL> SELECT * from val_results;

SDO_ROWID

RESULT
--

Rows Processed <12>

AAABXNAABAAAK+YAAC
13349 [Element <1>] [Ring <1>][Edge <1>][Edge <3>]

Related Topics
■ SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
11-54 Oracle Spatial User’s Guide and Reference

SDO_GEOM.WITHIN_DISTANCE
SDO_GEOM.WITHIN_DISTANCE

Format
SDO_GEOM.WITHIN_DISTANCE(

geom1 IN MDSYS.SDO_GEOMETRY,

dim1 IN MDSYS.SDO_DIM_ARRAY,

dist IN NUMBER,

geom2 IN MDSYS.SDO_GEOMETRY,

dim2 IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

or

SDO_GEOM.WITHIN_DISTANCE(

geom1 IN MDSYS.SDO_GEOMETRY,

dist IN NUMBER,

geom2 IN MDSYS.SDO_GEOMETRY,

tol IN NUMBER

) RETURN VARCHAR2;

Description
Determines if two spatial objects are within some specified distance from each
other.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).
Geometry Functions 11-55

SDO_GEOM.WITHIN_DISTANCE
dist
Distance value.

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one
of the xxx_SDO_GEOM_METADATA views (see Section 2.4).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
This function returns TRUE for object pairs that are within the specified distance,
and FALSE otherwise.

The distance between two extended objects (for example, nonpoint objects such as
lines and polygons) is defined as the minimum distance between these two objects.
Thus the distance between two adjacent polygons is zero.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example checks if cola_b and cola_d are within 1 unit apart at the
shortest distance between them. (The example uses the definitions and data from
Section 2.1.)

-- Are two geometries within 1 unit of distance apart?
SELECT SDO_GEOM.WITHIN_DISTANCE(c_b.shape, m.diminfo, 1,
 c_d.shape, m.diminfo)
 FROM cola_markets c_b, cola_markets c_d, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS’ AND m.column_name = ’SHAPE’
 AND c_b.name = ’cola_b’ AND c_d.name = ’cola_d’;

SDO_GEOM.WITHIN_DISTANCE(C_B.SHAPE,M.DIMINFO,1,C_D.SHAPE,M.DIMINFO)
--
TRUE
11-56 Oracle Spatial User’s Guide and Reference

SDO_GEOM.WITHIN_DISTANCE
Related Topics
■ SDO_GEOM.SDO_DISTANCE
Geometry Functions 11-57

SDO_GEOM.WITHIN_DISTANCE
11-58 Oracle Spatial User’s Guide and Reference

Spatial Aggregate Fu
12

Spatial Aggregate Functions

This chapter contains reference and usage information for the spatial aggregate
functions, which are listed in Table 12–1.

See the usage information about spatial aggregate functions in Section 1.9.

Most of these aggregate functions accept a parameter of type
MDSYS.SDOAGGRTYPE, which is described in Section 1.9.1.

Table 12–1 Spatial Aggregate Functions

Method Description

SDO_AGGR_CENTROID Returns a geometry object that is the centroid ("center of
gravity") of the specified geometry objects.

SDO_AGGR_CONVEXHULL Returns a geometry object that is the convex hull of the
specified geometry objects.

SDO_AGGR_LRS_CONCAT Returns an LRS geometry object that concatenates specified
LRS geometry objects.

SDO_AGGR_MBR Returns the minimum bounding rectangle of the specified
geometry objects

SDO_AGGR_UNION Returns a geometry object that is the topological union (OR
operation) of the specified geometry objects.
nctions 12-1

SDO_AGGR_CENTROID
SDO_AGGR_CENTROID

Format
SDO_AGGR_CENTROID(

AggregateGeometry MDSYS.SDOAGGRTYPE

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the centroid ("center of gravity") of the specified
geometry objects.

Parameters

AggregateGeometry
An object of type MDSYS.SDOAGGRTYPE (see Section 1.9.1) that specifies the
geometry column and dimensional array.

Usage Notes
The behavior of the function depends on whether the geometry objects are all
polygons, all points, or a mixture of polygons and points:

■ If the geometry objects are all polygons, the centroid of all the objects is
returned.

■ If the geometry objects are all points, the centroid of all the objects is returned.

■ If the geometry objects are a mixture of polygons and points (specifically, if they
include at least one polygon and at least one point), any points are ignored, and
the centroid of all the polygons is returned.

The result is weighted by the area of each polygon in the geometry objects. If the
geometry objects are a mixture of polygons and points, the points are not used in
the calculation of the centroid. If the geometry objects are all points, the points have
equal weight.

See also the information about the SDO_GEOM.SDO_CENTROID function in
Chapter 12.
12-2 Oracle Spatial User’s Guide and Reference

SDO_AGGR_CENTROID
Examples
The following example returns the centroid of the geometry objects in the COLA_
MARKETS table. (The example uses the definitions and data from Section 2.1.)

SELECT SDO_AGGR_CENTROID(MDSYS.SDOAGGRTYPE(shape, 0.005))
 FROM cola_markets;

SDO_AGGR_CENTROID(MDSYS.SDOAGGRTYPE(SHAPE,0.005))(SDO_GTYPE, SDO_SRID, SDO_POINT
--
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(5.21295938, 5.00744233, NULL), NULL, NUL
L)
Spatial Aggregate Functions 12-3

SDO_AGGR_CONVEXHULL
SDO_AGGR_CONVEXHULL

Format
SDO_AGGR_CONVEXHULL(

AggregateGeometry MDSYS.SDOAGGRTYPE

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the convex hull of the specified geometry objects.

Parameters

AggregateGeometry
An object of type MDSYS.SDOAGGRTYPE (see Section 1.9.1) that specifies the
geometry column and dimensional array.

Usage Notes
See also the information about the SDO_GEOM.SDO_CONVEXHULL in
Chapter 12.

Examples
The following example returns the convex hull of the geometry objects in the
COLA_MARKETS table. (The example uses the definitions and data from
Section 2.1.)

SELECT SDO_AGGR_CONVEXHULL(MDSYS.SDOAGGRTYPE(shape, 0.005))
 FROM cola_markets;

SDO_AGGR_CONVEXHULL(MDSYS.SDOAGGRTYPE(SHAPE,0.005))(SDO_GTYPE, SDO_SRID, SDO_POI
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(8, 1, 10, 7, 10, 11, 8, 11, 6, 11, 1, 7, 1, 1, 8, 1))
12-4 Oracle Spatial User’s Guide and Reference

SDO_AGGR_LRS_CONCAT
SDO_AGGR_LRS_CONCAT

Format
SDO_AGGR_LRS_CONCAT(

AggregateGeometry MDSYS.SDOAGGRTYPE

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns an LRS geometry that concatenates specified LRS geometries.

Parameters

AggregateGeometry
An object of type MDSYS.SDOAGGRTYPE (see Section 1.9.1) that specifies the
geometry column and dimensional array.

Usage Notes
This function performs an aggregate concatenation of any number of LRS
geometries. If you want to control the order in which the geometries are
concatenated, you must use a subquery with the NO_MERGE optimizer hint and
the ORDER BY clause. (See the examples.)

The direction of the resulting segment is the same as the direction of the first
geometry in the concatenation.

A 3D format of this function (SDO_AGGR_LRS_CONCAT_3D) is available. For
information about 3D formats of LRS functions, see Section 6.4.)

For information about the Spatial linear referencing system, see Chapter 6.

Examples
The following example adds an LRS geometry to the LRS_ROUTES table, and then
performs two queries that concatenate the LRS geometries in the table. The first
query does not control the order of concatenation, and the second query controls
the order of concatenation. Notice the difference in direction of the two segments:
the segment resulting from the second query has decreasing measure values
Spatial Aggregate Functions 12-5

SDO_AGGR_LRS_CONCAT
because the first segment in the concatenation (Route0) has decreasing measure
values. (This example uses the definitions from the example in Section 6.6.)

-- Add a segment with route_id less than 1 (here, zero).
INSERT INTO lrs_routes VALUES(
 0,
 ’Route0’,
 MDSYS.SDO_GEOMETRY(
 3302, -- line string, 3 dimensions (X,Y,M), 3rd is linear referencing
dimension
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
 MDSYS.SDO_ORDINATE_ARRAY(
 5,14,5, -- Starting point - 5 is measure from start.
 10,14,0) -- Ending point - 0 measure (decreasing measure)
)
);

1 row created.

-- Concatenate all routes (no ordering specified).
SELECT SDO_AGGR_LRS_CONCAT(MDSYS.SDOAGGRTYPE(route_geometry, 0.005))
 FROM lrs_routes;

SDO_AGGR_LRS_CONCAT(MDSYS.SDOAGGRTYPE(ROUTE_GEOMETRY,0.005))(SDO_GTYPE, SDO_SRID
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27, 10, 14,
32))

-- Aggregate concatenation using subquery for ordering.
SELECT
SDO_AGGR_LRS_CONCAT(MDSYS.SDOAGGRTYPE(route_geometry, 0.005))
FROM (
 SELECT /*+ NO_MERGE */ route_geometry
 FROM lrs_routes
 ORDER BY route_id);

SDO_AGGR_LRS_CONCAT(MDSYS.SDOAGGRTYPE(ROUTE_GEOMETRY,0.005))(SDO_GTYPE, SDO_SRID
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 32, 2, 4, 30, 8, 4, 24, 12, 4, 20, 12, 10, 14, 8, 10, 10, 5, 14, 5, 10, 14
, 0))
12-6 Oracle Spatial User’s Guide and Reference

SDO_AGGR_MBR
SDO_AGGR_MBR

Format
SDO_AGGR_MBR(

geom MDSYS.SDO_GEOMETRY

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the minimum bounding rectangle (MBR) of the specified geometries, that
is, a single rectangle that minimally encloses the geometries.

Parameters

geom
Geometry objects.

Usage Notes
Use this function instead of the deprecated SDO_TUNE.EXTENT_OF function to
return the MBR of geometries. The SDO_TUNE.EXTENT_OF function is limited to
two-dimensional geometries, whereas this function is not.

This function is not supported with geodetic data.

Examples
The following example returns the minimum bounding rectangle of the geometry
objects in the COLA_MARKETS table. (The example uses the definitions and data
from Section 2.1.)

SELECT SDO_AGGR_MBR(shape) FROM cola_markets;

SDO_AGGR_MBR(C.SHAPE)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SD
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(1, 1, 10, 11))
Spatial Aggregate Functions 12-7

SDO_AGGR_UNION
SDO_AGGR_UNION

Format
SDO_AGGR_UNION(

AggregateGeometry MDSYS.SDOAGGRTYPE

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a geometry object that is the topological union (OR operation) of the
specified geometry objects.

Parameters

AggregateGeometry
An object of type MDSYS.SDOAGGRTYPE (see Section 1.9.1) that specifies the
geometry column and dimensional array.

Usage Notes
See also the information about the SDO_GEOM.SDO_UNION function in
Chapter 12.

Examples
The following example returns the union of the first three geometry objects in the
COLA_MARKETS table (that is, all except cola_d). (The example uses the definitions
and data from Section 2.1.)

SELECT SDO_AGGR_UNION(
 MDSYS.SDOAGGRTYPE(c.shape, 0.005))
 FROM cola_markets c
 WHERE c.name < ’cola_d’;

SDO_AGGR_UNION(MDSYS.SDOAGGRTYPE(C.SHAPE,0.005))(SDO_GTYPE, SDO_SRID, SDO_POINT(
--
SDO_GEOMETRY(2007, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 2, 11, 1003, 1), SDO
_ORDINATE_ARRAY(8, 11, 6, 9, 8, 7, 10, 9, 8, 11, 1, 7, 1, 1, 5, 1, 8, 1, 8, 6, 5
, 7, 1, 7))
12-8 Oracle Spatial User’s Guide and Reference

Coordinate System Transformation Fu
13

Coordinate System Transformation

Functions

The MDSYS.SDO_CS package contains functions and procedures for working with
coordinate systems. You can perform explicit coordinate transformations on a single
geometry or an entire layer of geometries (that is, all geometries in a specified
column in a table).

To use the functions and procedures in this chapter, you must understand the
conceptual information about coordinate systems in Section 1.5.4 and Chapter 5.

Table 13–1 lists the coordinate systems functions and procedures.

The rest of this chapter provides reference information on the functions and
procedures, listed in alphabetical order.

Table 13–1 Functions and Procedures for Coordinate Systems

Function Description

SDO_CS.TRANSFORM Transforms a geometry representation using a
coordinate system (specified by SRID or name).

SDO_CS.TRANSFORM_LAYER Transforms an entire layer of geometries (that is, all
geometries in a specified column in a table).

SDO_CS.VIEWPORT_TRANSFORM Transforms an optimized rectangle into a valid
polygon for use with Spatial operators and
functions.
nctions 13-1

SDO_CS.TRANSFORM
SDO_CS.TRANSFORM

Format
SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

to_srid IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY,

to_srid IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

to_srname IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

dim IN MDSYS.SDO_DIM_ARRAY,

to_srname IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

Description
Transforms a geometry representation using a coordinate system (specified by SRID
or name).
13-2 Oracle Spatial User’s Guide and Reference

SDO_CS.TRANSFORM
Parameters

geom
Geometry whose representation is to be transformed using another coordinate
system. The input geometry must have a valid non-null SRID, that is, a value in the
SRID column of the MDSYS.CS_SRS table (described in Section 5.4.1).

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

to_srid
The SRID of the coordinate system to be used for the transformation. It must be a
value in the SRID column of the MDSYS.CS_SRS table (described in Section 5.4.1).

to_srname
The name of the coordinate system to be used for the transformation. It must be a
value (specified exactly) in the CS_NAME column of the MDSYS.CS_SRS table
(described in Section 5.4.1).

Usage Notes
Transformation can be done only between two different georeferenced coordinate
systems or between two different local coordinate systems.

An exception is raised if geom, to_srid, or to_srname is invalid. For geom to be valid
for this function, its definition must include an SRID value matching a value in the
SRID column of the MDSYS.CS_SRS table (described in Section 5.4.1).

Examples
The following example transforms the cola_c geometry to a representation that uses
SRID value 8199. (This example uses the definitions from the example in
Section 5.8.)

-- Return the transformation of cola_c using to_srid 8199
-- (’Longitude / Latitude (Arc 1950)’)
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS_CS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

NAME

Coordinate System Transformation Functions 13-3

SDO_CS.TRANSFORM
SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,8199)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

-- Same as preceding, but using to_srname parameter.
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo,
 ’Longitude / Latitude (Arc 1950)’)
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = ’COLA_MARKETS_CS’ AND m.column_name = ’SHAPE’
 AND c.name = ’cola_c’;

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,’LONGITUDE/LATITUDE(ARC1950)’)(SDO_GTYPE, SDO
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))
13-4 Oracle Spatial User’s Guide and Reference

SDO_CS.TRANSFORM_LAYER
SDO_CS.TRANSFORM_LAYER

Format
SDO_CS.TRANSFORM_LAYER(

table_in IN VARCHAR2,

column_in IN VARCHAR2,

table_out IN VARCHAR2,

to_srid IN NUMBER);

Description
Transforms an entire layer of geometries (that is, all geometries in a specified
column in a table).

Parameters

table_in
Table containing the layer (column_in) whose geometries are to be transformed.

column_in
Column in table_in that contains the geometries to be transformed.

table_out
Table that will be created and that will contain the results of the transformation. See
the Usage Notes for information about the format of this table.

to_srid
The SRID of the coordinate system to be used for the transformation. to_srid must be
a value in the SRID column of the MDSYS.CS_SRS table (described in Section 5.4.1).

Usage Notes
Transformation can be done only between two different georeferenced coordinate
systems or between two different local coordinate systems.

An exception is raised if any of the following occurs:

■ table_in does not exist, or column_in does not exist in the table.
Coordinate System Transformation Functions 13-5

SDO_CS.TRANSFORM_LAYER
■ The geometries in column_in have a null or invalid SDO_SRID value.

■ table_out already exists.

■ to_srid is invalid.

The table_out table is created by the procedure and is filled with one row for each
transformed geometry. This table has the columns shown in Table 13–2.

Examples
The following example transforms the geometries in the shape column in the
COLA_MARKETS_CS table to a representation that uses SRID value 8199. The
transformed geometries are stored in the newly created table named COLA_
MARKETS_CS_8199. (This example uses the definitions from the example in
Section 5.8.)

-- Transform the entire SHAPE layer and put results in the table
-- named cola_markets_cs_8199, which the procedure will create.
EXECUTE SDO_CS.TRANSFORM_LAYER(’COLA_MARKETS_CS’,’SHAPE’,’COLA_MARKETS_CS_8199’,8199);

Example 5–4 in Section 5.8 includes a display of the geometry object coordinates in
both tables (COLA_MARKETS_CS and COLA_MARKETS_CS_8199).

Table 13–2 Table to Hold Transformed Layer

Column
Name Data Type Description

SDO_ROWID ROWID Oracle ROWID (row address identifier). For
more information about the ROWID data type,
see the Oracle9i SQL Reference.

GEOMETRY MDSYS.SDO_GEOMETRY Geometry object with coordinate values in the
specified (to_srid parameter) coordinate
system.
13-6 Oracle Spatial User’s Guide and Reference

SDO_CS.VIEWPORT_TRANSFORM
SDO_CS.VIEWPORT_TRANSFORM

Format
SDO_CS.VIEWPORT_TRANSFORM(

geom IN MDSYS.SDO_GEOMETRY,

to_srid IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Transforms an optimized rectangle into a valid polygon for use with Spatial
operators and functions.

Parameters

geom
Geometry whose representation is to be transformed from an optimized rectangle to
a valid polygon. The input geometry must have an SRID value of 0 (zero), as
explained in the Usage Notes.

to_srid
The SRID of the coordinate system to be used for the transformation (that is, the
SRID to be used in the returned geometry). to_srid must be either a value in the
SRID column of the MDSYS.CS_SRS table (described in Section 5.4.1) or NULL.

Usage Notes
The geometry passed in must be an optimized rectangle.

If to_srid is a geodetic SRID, a geometry (not an optimized rectangle) is returned
that conforms to the Oracle Spatial requirements for a geodetic geometry (for
example, each polygon element’s area must be less than one-half the surface area of
the Earth).

If to_srid is not a geodetic SRID, an optimized rectangle is returned in which the
SRID is set to to_srid

Visualizer applications that work on geodetic data usually treat the longitude and
latitude space as a regular Cartesian coordinate system. Fetching the data
corresponding to a viewport is usually done with the help of an SDO_FILTER or
Coordinate System Transformation Functions 13-7

SDO_CS.VIEWPORT_TRANSFORM
SDO_GEOM.RELATE operation where the viewport (with an optimized rectangle
representation) is sent as the window query. With the current restriction of not
allowing this optimized rectangle type in geodetic space, this type of viewport
queries cannot be sent to the database.

The VIEWPORT_TRANSFORM function provides a workaround. The viewport
rectangles should be constructed with the SRID value as 0 and input to the function
to generate a corresponding valid geodetic polygon. This geodetic polygon can then
be used in the SDO_FILTER or SDO_GEOM.RELATE call as the window object.

Note that an SRID value of 0 should only be specified when calling the
VIEWPORT_TRANSFORM function. It is not valid in any other context in Spatial.

This function should be used only when the display space is equirectangular (a
rectangle), and the data displayed is geodetic.

Examples
The following example specifies the viewport as the whole Earth represented by an
optimized rectangle. It returns the names of all four cola markets. (This example
uses the definitions from the example in Section 5.8.)

SELECT c.name FROM cola_markets_cs c WHERE
 SDO_FILTER(c.shape, SDO_CS.VIEWPORT_TRANSFORM(
 MDSYS.SDO_GEOMETRY(
 2003,
 0, -- SRID = 0 (special case)
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3),
 MDSYS.SDO_ORDINATE_ARRAY(-180,-90,180,90)),
 8307), ’querytype=window’) = ’TRUE’;

NAME

cola_a
cola_c
cola_b
cola_d

Note: The function format with the to_srname parameter, which
was supported in the previous release, is no longer supported. You
must use the format with the to_srid parameter.
13-8 Oracle Spatial User’s Guide and Reference

SDO_CS.VIEWPORT_TRANSFORM
If the optimizer does not generate an optimal plan and performance is not as you
expect, you can try the following alternative version of the query.

SELECT c.name FROM cola_markets_cs c,
 (SELECT
 SDO_CS.VIEWPORT_TRANSFORM(
 MDSYS.SDO_GEOMETRY(2003, 0, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3),
 MDSYS.SDO_ORDINATE_ARRAY(-180,-90,180,90)), 8307)
 window_geom FROM DUAL)
WHERE SDO_FILTER(c.shape, window_geom, ’querytype=window’) = ’TRUE’;

NAME

cola_a
cola_c
cola_b
cola_d
Coordinate System Transformation Functions 13-9

SDO_CS.VIEWPORT_TRANSFORM
13-10 Oracle Spatial User’s Guide and Reference

Linear Referencing Fu
14

Linear Referencing Functions

The MDSYS.SDO_LRS package contains functions that create, modify, query, and
convert linear referencing elements. These functions do not change the state of the
database.

To use the functions in this chapter, you must understand the linear referencing
system (LRS) concepts and techniques described in Chapter 6.

Table 14–1 lists functions related to creating and editing geometric segments.

Note: Most Oracle LRS interfaces are functions. Any that are
procedures, such as DEFINE_GEOM_SEGMENT, are identified as
such. (Functions return a value; procedures do not return a value.)

The word functions is often used to refer to LRS interfaces (both
functions and procedures) collectively.

Table 14–1 Functions for Creating and Editing Geometric Segments

Function Description

SDO_LRS.DEFINE_GEOM_SEGMENT
(procedure)

Defines a geometric segment.

SDO_LRS.REDEFINE_GEOM_SEGMENT
(procedure)

Populates the measures of all shape points of a
geometric segment based on the start and end
measures, overriding any previously assigned
measures between the start point and end point.

SDO_LRS.CLIP_GEOM_SEGMENT Clips a geometric segment (synonym of SDO_
LRS.DYNAMIC_SEGMENT).

SDO_LRS.DYNAMIC_SEGMENT Clips a geometric segment (synonym of SDO_
LRS.CLIP_GEOM_SEGMENT).
nctions 14-1

Table 14–2 lists functions related to querying geometric segments.

SDO_LRS.CONCATENATE_GEOM_
SEGMENTS

Concatenates two geometric segments into one
segment.

SDO_LRS.OFFSET_GEOM_SEGMENT Returns the geometric segment at a specified
offset from a geometric segment.

SDO_LRS.SCALE_GEOM_SEGMENT Scales a geometric segment.

SDO_LRS.SPLIT_GEOM_SEGMENT
(procedure)

Splits a geometric segment into two segments.

SDO_LRS.REVERSE_MEASURE Returns a new geometric segment by reversing
the original geometric segment.

SDO_LRS.TRANSLATE_MEASURE Returns a new geometric segment by
translating the original geometric segment (that
is, shifting the start and end measures by a
specified value).

SDO_LRS.REVERSE_GEOMETRY Returns a new geometric segment by reversing
the measure values and the direction of the
original geometric segment.

Table 14–2 Functions for Querying Geometric Segments

Function Description

SDO_LRS.VALID_GEOM_SEGMENT Checks if a geometric segment is valid.

SDO_LRS.VALID_LRS_PT Checks if an LRS point is valid.

SDO_LRS.VALID_MEASURE Checks if a measure falls within the measure
range of a geometric segment.

SDO_LRS.CONNECTED_GEOM_
SEGMENTS

Checks if two geometric segments are
connected.

SDO_LRS.GEOM_SEGMENT_LENGTH Returns the length of a geometric segment.

SDO_LRS.GEOM_SEGMENT_START_PT Returns the start point of a geometric segment.

SDO_LRS.GEOM_SEGMENT_END_PT Returns the end point of a geometric segment.

SDO_LRS.GEOM_SEGMENT_START_
MEASURE

Returns the start measure of a geometric
segment.

Table 14–1 Functions for Creating and Editing Geometric Segments (Cont.)

Function Description
14-2 Oracle Spatial User’s Guide and Reference

Table 14–3 lists functions related to converting geometric segments.

SDO_LRS.GEOM_SEGMENT_END_
MEASURE

Returns the end measure of a geometric
segment.

SDO_LRS.GET_MEASURE Returns the measure of an LRS point.

SDO_LRS.MEASURE_RANGE Returns the measure range of a geometric
segment, that is, the difference between the
start measure and end measure.

SDO_LRS.MEASURE_TO_PERCENTAGE Returns the percentage (0 to 100) that a
specified measure is of the measure range of a
geometric segment.

SDO_LRS.PERCENTAGE_TO_MEASURE Returns the measure value of a specified
percentage (0 to 100) of the measure range of a
geometric segment.

SDO_LRS.LOCATE_PT Finds the location of a point described by a
measure and an offset on a geometric
segment.

SDO_LRS.PROJECT_PT Returns the projection point of a point on a
geometric segment.

SDO_LRS.FIND_LRS_DIM_POS Returns the position of the measure dimension
within the SDO_DIM_ARRAY structure for a
specified SDO_GEOMETRY column.

SDO_LRS.FIND_MEASURE Returns the measure of the closest point on a
segment to a specified projection point.

Table 14–3 Functions for Converting Geometric Segments

Function Description

SDO_LRS.CONVERT_TO_LRS_DIM_
ARRAY

Converts a standard dimensional array to a
Linear Referencing System dimensional array
by creating a measure dimension.

SDO_LRS.CONVERT_TO_LRS_GEOM Converts a standard SDO_GEOMETRY line
string to a Linear Referencing System geometric
segment by adding measure information.

Table 14–2 Functions for Querying Geometric Segments (Cont.)

Function Description
Linear Referencing Functions 14-3

For more information about conversion functions, see Section 6.5.10.

The rest of this chapter provides reference information on the functions, listed in
alphabetical order.

SDO_LRS.CONVERT_TO_LRS_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from standard line
string geometries without measure information
to Linear Referencing System geometric
segments with measure information, and
updates the metadata.

SDO_LRS.CONVERT_TO_STD_DIM_
ARRAY

Converts a Linear Referencing System
dimensional array to a standard dimensional
array by removing the measure dimension.

SDO_LRS.CONVERT_TO_STD_GEOM Converts a Linear Referencing System
geometric segment to a standard SDO_
GEOMETRY line string by removing measure
information.

SDO_LRS.CONVERT_TO_STD_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from Linear
Referencing System geometric segments with
measure information to standard line string
geometries without measure information, and
updates the metadata.

Table 14–3 Functions for Converting Geometric Segments (Cont.)

Function Description
14-4 Oracle Spatial User’s Guide and Reference

SDO_LRS.CLIP_GEOM_SEGMENT
SDO_LRS.CLIP_GEOM_SEGMENT

Format
SDO_LRS.CLIP_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

start_measure IN NUMBER,

end_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.CLIP_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry object resulting from a clip operation on a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Note: SDO_LRS.CLIP_GEOM_SEGMENT and SDO_
LRS.DYNAMIC_SEGMENT are synonyms: both functions have the
same parameters, behavior, and return value.
Linear Referencing Functions 14-5

SDO_LRS.CLIP_GEOM_SEGMENT
start_measure
Start measure of the geometric segment.

end_measure
End measure of the geometric segment.

Usage Notes
An exception is raised if geom_segment, start_measure, or end_measure is invalid.

start_measure and end_measure can be any points on the geometric segment. They do
not have to be in any specific order. For example, start_measure and end_measure can
be 5 and 10, respectively, or 10 and 5, respectively.

The direction and measures of the resulting geometric segment are preserved (that
is, they reflect the original segment).

The _3D format of this function (SDO_LRS.CLIP_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

For more information about clipping geometric segments, see Section 6.5.3.

Examples
The following example clips the geometric segment representing Route 1, returning
the segment from measures 5 through 10. This segment might represent a
construction zone. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.CLIP_GEOM_SEGMENT(ROUTE_GEOMETRY,5,10)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))
14-6 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONCATENATE_GEOM_SEGMENTS
SDO_LRS.CONCATENATE_GEOM_SEGMENTS

Format
SDO_LRS.CONCATENATE_GEOM_SEGMENTS(

geom_segment_1 IN MDSYS.SDO_GEOMETRY,

geom_segment_2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.CONCATENATE_GEOM_SEGMENTS(

geom_segment_1 IN MDSYS.SDO_GEOMETRY,

dim_array_1 IN MDSYS.SDO_DIM_ARRAY,

geom_segment_2 IN MDSYS.SDO_GEOMETRY,

dim_array_2 IN MDSYS.SDO_DIM_ARRAY

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry object resulting from the concatenation of two geometric
segments.

Parameters

geom_segment_1
First geometric segment to be concatenated.

dim_array_1
Dimensional information array corresponding to geom_segment_1, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

geom_segment_2
Second geometric segment to be concatenated.
Linear Referencing Functions 14-7

SDO_LRS.CONCATENATE_GEOM_SEGMENTS
dim_array_2
Dimensional information array corresponding to geom_segment_2, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
An exception is raised if geom_segment_1 or geom_segment_2 has an invalid geometry
type or dimensionality, or if geom_segment_1 and geom_segment_2 are based on
different coordinate systems.

The direction of the first geometric segment is preserved, and all measures of the
second segment are shifted so that its start measure is the same as the end measure
of the first segment.

The _3D format of this function (SDO_LRS.CONCATENATE_GEOM_SEGMENTS_
3D) is available. For information about _3D formats of LRS functions, see
Section 6.4.

For more information about concatenating geometric segments, see Section 6.5.5

Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section 6.6. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example 6–3.)

DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
line_string MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result_geom_1 MDSYS.SDO_GEOMETRY;
result_geom_2 MDSYS.SDO_GEOMETRY;
result_geom_3 MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;
14-8 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONCATENATE_GEOM_SEGMENTS
-- Define the LRS segment for Route1.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Insert geometries into table, to display later.
INSERT INTO lrs_routes VALUES(
 11,
 ’result_geom_1’,
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 ’result_geom_2’,
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 ’result_geom_3’,
 result_geom_3
);

END;
/

Linear Referencing Functions 14-9

SDO_LRS.CONNECTED_GEOM_SEGMENTS
SDO_LRS.CONNECTED_GEOM_SEGMENTS

Format
SDO_LRS.CONNECTED_GEOM_SEGMENTS(

geom_segment_1 IN MDSYS.SDO_GEOMETRY,

geom_segment_2 IN MDSYS.SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN VARCHAR2;

or

SDO_LRS.CONNECTED_GEOM_SEGMENTS(

geom_segment_1 IN MDSYS.SDO_GEOMETRY,

dim_array_1 IN MDSYS.SDO_DIM_ARRAY,

geom_segment_2 IN MDSYS.SDO_GEOMETRY,

dim_array_2 IN MDSYS.SDO_DIM_ARRAY

) RETURN VARCHAR2;

Description
Checks if two geometric segments are spatially connected.

Parameters

geom_segment_1
First of two geometric segments to be checked.

dim_array_1
Dimensional information array corresponding to geom_segment_1, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

geom_segment_2
Second of two geometric segments to be checked.
14-10 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONNECTED_GEOM_SEGMENTS
dim_array_2
Dimensional information array corresponding to geom_segment_2, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
This function returns TRUE if the geometric segments are spatially connected and
FALSE if the geometric segments are not spatially connected.

An exception is raised if geom_segment_1 or geom_segment_2 has an invalid geometry
type or dimensionality, or if geom_segment_1 and geom_segment_2 are based on
different coordinate systems.

The _3D format of this function (SDO_LRS.CONNECTED_GEOM_SEGMENTS_
3D) is available. For information about _3D formats of LRS functions, see
Section 6.4.

Examples
The following example checks if two geometric segments (results of a previous split
operation) are spatially connected.

-- Are result_geom_1 and result_geom2 connected?
SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry,
 b.route_geometry, 0.005)
 FROM lrs_routes a, lrs_routes b
 WHERE a.route_id = 11 AND b.route_id = 12;

SDO_LRS.CONNECTED_GEOM_SEGMENTS(A.ROUTE_GEOMETRY,B.ROUTE_GEOMETRY,0.005)
--
TRUE
Linear Referencing Functions 14-11

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY

Format
SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(

dim_array IN MDSYS.SDO_DIM_ARRAY

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN MDSYS.SDO_DIM_ARRAY;

or

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(

dim_array IN MDSYS.SDO_DIM_ARRAY,

dim_name IN VARCHAR2

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN MDSYS.SDO_DIM_ARRAY;

or

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(

dim_array IN MDSYS.SDO_DIM_ARRAY,

dim_name IN VARCHAR2,

dim_pos IN INTEGER

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN MDSYS.SDO_DIM_ARRAY;
14-12 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
Description
Converts a standard dimensional array to a Linear Referencing System dimensional
array by creating a measure dimension.

Parameters

dim_array
Dimensional information array corresponding to the layer (column of geometries)
to be converted, usually selected from one of the xxx_SDO_GEOM_METADATA
views.

dim_name
Name of the measure dimension (M, if not otherwise specified).

dim_pos
Position of the measure dimension (the last SDO_DIM_ELEMENT object position in
the SDO_DIM_ARRAY, if not otherwise specified).

lower_bound
Lower bound (SDO_LB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

upper_bound
Upper bound (SDO_UB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
This function converts a standard dimensional array to a Linear Referencing System
dimensional array by creating a measure dimension. Specifically, it adds an SDO_
DIM_ELEMENT object at the end of the current SDO_DIM_ELEMENT objects in
the SDO_DIM_ARRAY for the diminfo (unless another dim_pos is specified), and
sets the SDO_DIMNAME value in this added SDO_DIM_ELEMENT to M (unless
another dim_name is specified). It sets the other values in the added SDO_DIM_
ELEMENT according to the values if the upper_bound, lower_bound, and tolerance
parameter values.

If dim_array already contains dimensional information, the dim_array is returned.
Linear Referencing Functions 14-13

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
The _3D format of this function (SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY_3D)
is available. For information about _3D formats of LRS functions, see Section 6.4.

For more information about conversion functions, see Section 6.5.10.

Examples
The following example converts the dimensional array for the LRS_ROUTES table
to Linear Referencing System format. (This example uses the definitions from the
example in Section 6.6.)

SELECT SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(m.diminfo)
 FROM user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(M.DIMINFO)(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOL
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT(’X’, 0, 20, .005), SDO_DIM_ELEMENT(’Y’, 0, 20, .00
5), SDO_DIM_ELEMENT(’M’, 0, 20, .005))
14-14 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_GEOM
SDO_LRS.CONVERT_TO_LRS_GEOM

Format
SDO_LRS.CONVERT_TO_LRS_GEOM(

standard_geom IN MDSYS.SDO_GEOMETRY

[, start_measure IN NUMBER,

end_measure IN NUMBER]

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.CONVERT_TO_LRS_GEOM(

standard_geom IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

[, start_measure IN NUMBER,

end_measure IN NUMBER]

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.CONVERT_TO_LRS_GEOM(

standard_geom IN MDSYS.SDO_GEOMETRY,

m_pos IN INTEGER

[, start_measure IN NUMBER,

end_measure IN NUMBER]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Converts a standard SDO_GEOMETRY line string to a Linear Referencing System
geometric segment by adding measure information.
Linear Referencing Functions 14-15

SDO_LRS.CONVERT_TO_LRS_GEOM
Parameters

standard_geom
Line string geometry that does not contain measure information.

dim_array
Dimensional information array corresponding to standard_geom, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

m_pos
Position of the measure dimension. If specified, must be 3 or 4. By default, the
measure dimension is the last dimension in the SDO_DIM_ARRAY.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature. The default is 0.

end_measure
Distance measured from the end point of a geometric segment to the start point of
the linear feature. The default is the cartographic length (for example, 75 if the
cartographic length is 75 miles and the unit of measure is miles).

Usage Notes
This function returns a Linear Referencing System geometric segment with measure
information, with measure information provided for all shape points.

An exception is raised if standard_geom has an invalid geometry type or
dimensionality, if m_pos is less than 3 or greater than 4, or if start_measure or end_
measure is out of range.

The _3D format of this function (SDO_LRS.CONVERT_TO_LRS_GEOM_3D) is
available; however, the m_pos parameter is not available for SDO_LRS.CONVERT_
TO_LRS_GEOM_3D. For information about _3D formats of LRS functions, see
Section 6.4.

For more information about conversion functions, see Section 6.5.10.

Examples
The following example converts the geometric segment representing Route 1 to
Linear Referencing System format. (This example uses the definitions from the
example in Section 6.6.)

SELECT SDO_LRS.CONVERT_TO_LRS_GEOM(a.route_geometry, m.diminfo)
14-16 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_GEOM
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.CONVERT_TO_LRS_GEOM(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, NULL, 8, 10, 22, 5, 14, 27))
Linear Referencing Functions 14-17

SDO_LRS.CONVERT_TO_LRS_LAYER
SDO_LRS.CONVERT_TO_LRS_LAYER

Format
SDO_LRS.CONVERT_TO_LRS_LAYER(

table_name IN VARCHAR2,

column_name IN VARCHAR2

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN VARCHAR2;

or

SDO_LRS.CONVERT_TO_LRS_LAYER(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

dim_name IN VARCHAR2,

dim_pos IN INTEGER

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN VARCHAR2;

Description
Converts all geometry objects in a column of type SDO_GEOMETRY (that is,
converts a layer) from standard line string geometries without measure information
to Linear Referencing System geometric segments with measure information, and
updates the metadata in the USER_SDO_GEOM_METADATA view.
14-18 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_LAYER
Parameters

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

dim_name
Name of the measure dimension. If this parameter is null, M is assumed.

dim_pos
Position of the measure dimension within the SDO_DIM_ARRAY structure for the
specified SDO_GEOMETRY column. If this parameter is null, the number
corresponding to the last position is assumed.

lower_bound
Lower bound (SDO_LB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

upper_bound
Upper bound (SDO_UB value in the SDO_DIM_ELEMENT definition) of the
ordinate in the measure dimension.

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
This function returns TRUE if the conversion was successful or if the layer already
contains measure information, and the function returns an exception if the
conversion was not successful.

An exception is raised if the existing dimensional information for the table is
invalid.

The measure values are assigned based on a start measure of zero and an end
measure of the cartographic length.

If a spatial index already exists on column_name, you must delete (drop) the index
before converting the layer and create a new index after converting the layer. For
information about deleting and creating indexes, see the DROP INDEX and
CREATE INDEX statements in Chapter 8.
Linear Referencing Functions 14-19

SDO_LRS.CONVERT_TO_LRS_LAYER
The _3D format of this function (SDO_LRS.CONVERT_TO_LRS_LAYER_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

For more information about conversion functions, see Section 6.5.10.

Examples
The following example converts the geometric segments in the ROUTE_
GEOMETRY column of the LRS_ROUTES table to Linear Referencing System
format. (This example uses the definitions from the example in Section 6.6.) The
SELECT statement shows that dimensional information has been added (that is,
SDO_DIM_ELEMENT(’M’, NULL, NULL, NULL) is included in the definition).

BEGIN
 IF (SDO_LRS.CONVERT_TO_LRS_LAYER(’LRS_ROUTES’, ’ROUTE_GEOMETRY’) = ’TRUE’)
 THEN
 DBMS_OUTPUT.PUT_LINE(’Conversion from STD_LAYER to LRS_LAYER succeeded’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Conversion from STD_LAYER to LRS_LAYER failed’);
 END IF;
END;
.
/
Conversion from STD_LAYER to LRS_LAYER succeeded

PL/SQL procedure successfully completed.

SQL> SELECT diminfo FROM user_sdo_geom_metadata WHERE table_name = ’LRS_ROUTES’
AND column_name = ’ROUTE_GEOMETRY’;

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT(’X’, 0, 20, .005), SDO_DIM_ELEMENT(’Y’, 0, 20, .00
5), SDO_DIM_ELEMENT(’M’, NULL, NULL, NULL))
14-20 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
SDO_LRS.CONVERT_TO_STD_DIM_ARRAY

Format
SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(

dim_array IN MDSYS.SDO_DIM_ARRAY

[, m_pos IN INTEGER]

) RETURN MDSYS.SDO_DIM_ARRAY;

Description
Converts a Linear Referencing System dimensional array to a standard dimensional
array by removing the measure dimension.

Parameters

dim_array
Dimensional information array corresponding to the layer (column of geometries)
to be converted, usually selected from one of the xxx_SDO_GEOM_METADATA
views.

m_pos
Position of the measure dimension. If specified, must be 3 or 4. By default, the
measure dimension is the last dimension in the SDO_DIM_ARRAY.

Usage Notes
This function converts a Linear Referencing System dimensional array to a standard
dimensional array by removing the measure dimension. Specifically, it removes the
SDO_DIM_ELEMENT object at the end of the current SDO_DIM_ELEMENT objects
in the SDO_DIM_ARRAY for the diminfo.

An exception is raised if m_pos is invalid (less than 3 or greater than 4).

If dim_array is already a standard dimensional array (that is, does not contain
dimensional information), the dim_array is returned.

The _3D format of this function (SDO_LRS.CONVERT_TO_STD_DIM_ARRAY_3D)
is available. For information about _3D formats of LRS functions, see Section 6.4.

For more information about conversion functions, see Section 6.5.10.
Linear Referencing Functions 14-21

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
Examples
The following example converts the dimensional array for the LRS_ROUTES table
to standard format. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(m.diminfo)
 FROM user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(M.DIMINFO)(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOL
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT(’X’, 0, 20, .005), SDO_DIM_ELEMENT(’Y’, 0, 20, .00
5))
14-22 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_STD_GEOM
SDO_LRS.CONVERT_TO_STD_GEOM

Format
SDO_LRS.CONVERT_TO_STD_GEOM(

lrs _geom IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Converts a Linear Referencing System geometric segment to a standard SDO_
GEOMETRY line string by removing measure information.

Parameters

lrs_geom
Linear Referencing System geometry that contains measure information.

dim_array
Dimensional information array corresponding to lrs_geom, usually selected from
one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns an SDO_GEOMETRY object in which all measure information
is removed.

The _3D format of this function (SDO_LRS.CONVERT_TO_STD_GEOM_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

For more information about conversion functions, see Section 6.5.10.

Examples
The following example converts the geometric segment representing Route 1 to
standard format. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.CONVERT_TO_STD_GEOM(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
Linear Referencing Functions 14-23

SDO_LRS.CONVERT_TO_STD_GEOM
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.CONVERT_TO_STD_GEOM(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO
--
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 2, 4, 8, 4, 12, 4, 12, 10, 8, 10, 5, 14))
14-24 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_STD_LAYER
SDO_LRS.CONVERT_TO_STD_LAYER

Format
SDO_LRS.CONVERT_TO_STD_LAYER(

table_name IN VARCHAR2,

column_name IN VARCHAR2

) RETURN VARCHAR2;

Description
Converts all geometry objects in a column of type SDO_GEOMETRY (that is,
converts a layer) from Linear Referencing System geometric segments with measure
information to standard line string geometries without measure information, and
updates the metadata in the USER_SDO_GEOM_METADATA view.

Parameters

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

Usage Notes
This function returns TRUE if the conversion was successful or if the layer already
is a standard layer (that is, contains geometries without measure information), and
the function returns an exception if the conversion was not successful.

An exception is raised if the conversion failed.

If a spatial index already exists on column_name, you must delete (drop) the index
before converting the layer and create a new index after converting the layer. For
information about deleting and creating indexes, see the DROP INDEX and
CREATE INDEX statements in Chapter 8.

The _3D format of this function (SDO_LRS.CONVERT_TO_STD_LAYER_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

For more information about conversion functions, see Section 6.5.10.
Linear Referencing Functions 14-25

SDO_LRS.CONVERT_TO_STD_LAYER
Examples
The following example converts the geometric segments in the ROUTE_
GEOMETRY column of the LRS_ROUTES table to standard format. (This example
uses the definitions from the example in Section 6.6.) The SELECT statement shows
that dimensional information has been removed (that is, no SDO_DIM_
ELEMENT(’M’, NULL, NULL, NULL) is included in the definition).

BEGIN
 IF (SDO_LRS.CONVERT_TO_STD_LAYER(’LRS_ROUTES’, ’ROUTE_GEOMETRY’) = ’TRUE’)
 THEN
 DBMS_OUTPUT.PUT_LINE(’Conversion from LRS_LAYER to STD_LAYER succeeded’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Conversion from LRS_LAYER to STD_LAYER failed’);
 END IF;
END;
.
/
Conversion from LRS_LAYER to STD_LAYER succeeded

PL/SQL procedure successfully completed.

SELECT diminfo FROM user_sdo_geom_metadata
 WHERE table_name = ’LRS_ROUTES’ AND column_name = ’ROUTE_GEOMETRY’;

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT(’X’, 0, 20, .005), SDO_DIM_ELEMENT(’Y’, 0, 20, .00
5))
14-26 Oracle Spatial User’s Guide and Reference

SDO_LRS.DEFINE_GEOM_SEGMENT
SDO_LRS.DEFINE_GEOM_SEGMENT

Format
SDO_LRS.DEFINE_GEOM_SEGMENT(

geom_segment IN OUT MDSYS.SDO_GEOMETRY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

or

SDO_LRS.DEFINE_GEOM_SEGMENT(

geom_segment IN OUT MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

Description
Defines a geometric segment by assigning start and end measures to a geometric
segment, and assigns values to any null measures. (This is a procedure, not a
function.)

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature. The default is the existing value (if any) in the measure
dimension; otherwise, the default is 0.
Linear Referencing Functions 14-27

SDO_LRS.DEFINE_GEOM_SEGMENT
end_measure
Distance measured from the end point of a geometric segment to the start point of
the linear feature. The default is the existing value (if any) in the measure
dimension; otherwise, the default is the cartographic length of the segment.

Usage Notes
An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if start_measure or end_measure is out of range.

All unassigned measures of the geometric segment will be populated automatically.

To store the resulting geometric segment (geom_segment) in the database, you must
execute and UPDATE or INSERT statement, as appropriate.

The _3D format of this procedure (SDO_LRS.DEFINE_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions and procedures, see
Section 6.4.

For more information about defining a geometric segment, see Section 6.5.1

Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section 6.6. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example 6–3.)

DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
line_string MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result_geom_1 MDSYS.SDO_GEOMETRY;
result_geom_2 MDSYS.SDO_GEOMETRY;
result_geom_3 MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- Define the LRS segment for Route1. This will populate any null measures.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
14-28 Oracle Spatial User’s Guide and Reference

SDO_LRS.DEFINE_GEOM_SEGMENT
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Update and insert geometries into table, to display later.
UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

INSERT INTO lrs_routes VALUES(
 11,
 ’result_geom_1’,
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 ’result_geom_2’,
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 ’result_geom_3’,
 result_geom_3
);

END;
/

Linear Referencing Functions 14-29

SDO_LRS.DYNAMIC_SEGMENT
SDO_LRS.DYNAMIC_SEGMENT

Format
SDO_LRS.DYNAMIC_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

start_measure IN NUMBER,

end_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.DYNAMIC_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry object resulting from a clip operation on a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Note: SDO_LRS.CLIP_GEOM_SEGMENT and SDO_
LRS.DYNAMIC_SEGMENT are synonyms: both functions have the
same parameters, behavior, and return value.
14-30 Oracle Spatial User’s Guide and Reference

SDO_LRS.DYNAMIC_SEGMENT
start_measure
Start measure of the geometric segment.

end_measure
End measure of the geometric segment.

Usage Notes
An exception is raised if geom_segment, start_measure, or end_measure is invalid.

The direction and measures of the resulting geometric segment are preserved.

For more information about clipping a geometric segment, see Section 6.5.3

Examples
The following example clips the geometric segment representing Route 1, returning
the segment from measures 5 through 10. This segment might represent a
construction zone. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.DYNAMIC_SEGMENT(route_geometry, 5, 10)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.DYNAMIC_SEGMENT(ROUTE_GEOMETRY,5,10)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))
Linear Referencing Functions 14-31

SDO_LRS.FIND_LRS_DIM_POS
SDO_LRS.FIND_LRS_DIM_POS

Format
SDO_LRS.FIND_LRS_DIM_POS(

table_name IN VARCHAR2,

column_name IN VARCHAR2

) RETURN INTEGER;

Description
Returns the position of the measure dimension within the SDO_DIM_ARRAY
structure for a specified SDO_GEOMETRY column.

Parameters

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

Usage Notes
None.

Examples
The following example returns the position of the measure dimension within the
SDO_DIM_ARRAY structure for geometries in the ROUTE_GEOMETRY column of
the LRS_ROUTES table. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.FIND_LRS_DIM_POS(’LRS_ROUTES’, ’ROUTE_GEOMETRY’) FROM DUAL;

SDO_LRS.FIND_LRS_DIM_POS(’LRS_ROUTES’,’ROUTE_GEOMETRY’)

 3
14-32 Oracle Spatial User’s Guide and Reference

SDO_LRS.FIND_MEASURE
SDO_LRS.FIND_MEASURE

Format
SDO_LRS.FIND_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

point IN MDSYS.SDO_GEOMETRY

) RETURN NUMBER;

or

SDO_LRS.FIND_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

point IN MDSYS.SDO_GEOMETRY

) RETURN NUMBER;

Description
Returns the measure of the closest point on a segment to a specified projection
point.

Parameters

geom_segment
Cartographic representation of a linear feature. This function returns the measure of
the point on this segment that is closest to the projection point.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

point
Projection point. This function returns the measure of the point on geom_segment
that is closest to the projection point.
Linear Referencing Functions 14-33

SDO_LRS.FIND_MEASURE
Usage Notes
This function returns the measure of the point on geom_segment that is closest to the
projection point. For example, if the projection point represents a shopping mall, the
function could be used to find how far from the start of the highway is the point on
the highway that is closest to the shopping mall.

An exception is raised if geom_segment_1 or geom_segment_2 has an invalid geometry
type or dimensionality, or if geom_segment and point are based on different
coordinate systems.

The _3D format of this function (SDO_LRS.FIND_MEASURE_3D) is available. For
information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example finds the measure for the point on the geometric segment
representing Route 1 that is closest to the point (10, 7). (This example uses the
definitions from the example in Section 6.6.)

-- Find measure for point on segment closest to 10,7
-- Should return 15 (for point 12,7)
SELECT SDO_LRS.FIND_MEASURE(a.route_geometry, m.diminfo,
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(10, 7, NULL)))
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.FIND_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,MDSYS.SDO_GEOMETRY(3001,NULL,NUL
--
 15
14-34 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_END_MEASURE
SDO_LRS.GEOM_SEGMENT_END_MEASURE

Format
SDO_LRS.GEOM_SEGMENT_END_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the end measure of a geometric segment.

Parameters

geom_segment
Geometric segment whose end measure is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the end measure of geom_segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_END_MEASURE_
3D) is available. For information about _3D formats of LRS functions, see
Section 6.4.

Examples
The following example returns the end measure of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;
Linear Referencing Functions 14-35

SDO_LRS.GEOM_SEGMENT_END_MEASURE
SDO_LRS.GEOM_SEGMENT_END_MEASURE(ROUTE_GEOMETRY)
--
 27
14-36 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_END_PT
SDO_LRS.GEOM_SEGMENT_END_PT

Format
SDO_LRS.GEOM_SEGMENT_END_PT(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the end point of a geometric segment.

Parameters

geom_segment
Geometric segment whose end point is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the end point of geom_segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_END_PT_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example returns the end point of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section 6.6.)

SELECT SDO_LRS.GEOM_SEGMENT_END_PT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
Linear Referencing Functions 14-37

SDO_LRS.GEOM_SEGMENT_END_PT
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
5, 14, 27))
14-38 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_LENGTH
SDO_LRS.GEOM_SEGMENT_LENGTH

Format
SDO_LRS.GEOM_SEGMENT_LENGTH(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the length of a geometric segment.

Parameters

geom_segment
Geometric segment whose length is to be calculated.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the length of geom_segment. The length is the geometric length,
which is not the same as the total of the measure unit values. To determine how
long a segment is in terms of measure units, subtract the result of an SDO_
LRS.GEOM_SEGMENT_START_MEASURE operation from the result of an SDO_
LRS.GEOM_SEGMENT_END_MEASURE operation.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_LENGTH_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example returns the length of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section 6.6.)
Linear Referencing Functions 14-39

SDO_LRS.GEOM_SEGMENT_LENGTH
SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_LENGTH(ROUTE_GEOMETRY)

 27
14-40 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_START_MEASURE
SDO_LRS.GEOM_SEGMENT_START_MEASURE

Format
SDO_LRS.GEOM_SEGMENT_START_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the start measure of a geometric segment.

Parameters

geom_segment
Geometric segment whose start measure is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the start measure of geom_segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_START_MEASURE_
3D) is available. For information about _3D formats of LRS functions, see
Section 6.4.

Examples
The following example returns the start measure of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;
Linear Referencing Functions 14-41

SDO_LRS.GEOM_SEGMENT_START_MEASURE
SDO_LRS.GEOM_SEGMENT_START_MEASURE(ROUTE_GEOMETRY)
--
 0
14-42 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_START_PT
SDO_LRS.GEOM_SEGMENT_START_PT

Format
SDO_LRS.GEOM_SEGMENT_START_PT(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the start point of a geometric segment.

Parameters

geom_segment
Geometric segment whose start point is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the start point of geom_segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_START_PT_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example returns the start point of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.GEOM_SEGMENT_START_PT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;
Linear Referencing Functions 14-43

SDO_LRS.GEOM_SEGMENT_START_PT
SDO_LRS.GEOM_SEGMENT_START_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
2, 2, 0))
14-44 Oracle Spatial User’s Guide and Reference

SDO_LRS.GET_MEASURE
SDO_LRS.GET_MEASURE

Format
SDO_LRS.GET_MEASURE(

point IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the measure of an LRS point.

Parameters

point
Point whose measure is to be returned.

dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns the measure of an LRS point.

If point is not valid, an “invalid LRS point” exception is raised.

Contrast this function with SDO_LRS.PROJECT_PT, which accepts as input a point
that is not necessarily on the geometric segment, but which returns a point that is
on the geometric segment, as opposed to a measure value. As the following
example shows, the SDO_LRS.GET_MEASURE function can be used to return the
measure of the projected point returned by SDO_LRS.PROJECT_PT.

The _3D format of this function (SDO_LRS.GET_MEASURE_3D) is available. For
information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example returns the measure of a projected point. In this case, the
point resulting from the projection is 9 units from the start of the segment.
Linear Referencing Functions 14-45

SDO_LRS.GET_MEASURE
SQL> SELECT SDO_LRS.GET_MEASURE(
 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL))),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.GET_MEASURE(SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY,M.DIMINFO,MDSYS.SDO_GEOM
--
 9
14-46 Oracle Spatial User’s Guide and Reference

SDO_LRS.IS_GEOM_SEGMENT_DEFINED
SDO_LRS.IS_GEOM_SEGMENT_DEFINED

Format
SDO_LRS.IS_GEOM_SEGMENT_DEFINED(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if an LRS segment is defined correctly.

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if geom_segment is defined correctly and FALSE if geom_
segment is not defined correctly.

The start and end measures of geom_segment must be defined (cannot be null), and
any measures assigned must be in an ascending or descending order along the
segment direction.

The _3D format of this function (SDO_LRS.IS_GEOM_SEGMENT_DEFINED_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

See also the SDO_LRS.VALID_GEOM_SEGMENT function.

Examples
The following example checks if the geometric segment representing Route 1 is
defined. (This example uses the definitions from the example in Section 6.6.)

SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(route_geometry)
Linear Referencing Functions 14-47

SDO_LRS.IS_GEOM_SEGMENT_DEFINED
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.IS_GEOM_SEGMENT_DEFINED(ROUTE_GEOMETRY)
--
TRUE
14-48 Oracle Spatial User’s Guide and Reference

SDO_LRS.IS_MEASURE_DECREASING
SDO_LRS.IS_MEASURE_DECREASING

Format
SDO_LRS.IS_MEASURE_DECREASING(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if the measure values along an LRS segment are decreasing (that is,
descending in numerical value).

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if the measure values along an LRS segment are
decreasing and FALSE if the measure values along an LRS segment are not
decreasing.

The start and end measures of geom_segment must be defined (cannot be null).

The _3D format of this function (SDO_LRS.IS_MEASURE_DECREASING_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

See also the SDO_LRS.IS_MEASURE_INCREASING function.

Examples
The following example checks if the measure values along the geometric segment
representing Route 1 are decreasing. (This example uses the definitions from the
example in Section 6.6.)
Linear Referencing Functions 14-49

SDO_LRS.IS_MEASURE_DECREASING
SELECT SDO_LRS.IS_MEASURE_DECREASING(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.IS_MEASURE_DECREASING(A.ROUTE_GEOMETRY,M.DIMINFO)
--
FALSE
14-50 Oracle Spatial User’s Guide and Reference

SDO_LRS.IS_MEASURE_INCREASING
SDO_LRS.IS_MEASURE_INCREASING

Format
SDO_LRS.IS_MEASURE_INCREASING(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if the measure values along an LRS segment are increasing (that is,
ascending in numerical value).

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if the measure values along an LRS segment are
increasing and FALSE if the measure values along an LRS segment are not
increasing.

The start and end measures of geom_segment must be defined (cannot be null).

The _3D format of this function (SDO_LRS.IS_MEASURE_INCREASING_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

See also the SDO_LRS.IS_MEASURE_DECREASING function.

Examples
The following example checks if the measure values along the geometric segment
representing Route 1 are increasing. (This example uses the definitions from the
example in Section 6.6.)
Linear Referencing Functions 14-51

SDO_LRS.IS_MEASURE_INCREASING
SELECT SDO_LRS.IS_MEASURE_INCREASING(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.IS_MEASURE_INCREASING(A.ROUTE_GEOMETRY,M.DIMINFO)
--
TRUE
14-52 Oracle Spatial User’s Guide and Reference

SDO_LRS.LOCATE_PT
SDO_LRS.LOCATE_PT

Format
SDO_LRS.LOCATE_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,

measure IN NUMBER

[, offset IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.LOCATE_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

measure IN NUMBER

[, offset IN NUMBER]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the point located at a specified distance from the start of a geometric
segment.

Parameters

geom_segment
Geometric segment to be checked to see if it falls within the measure range of
measure.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Distance to measure from the start point of geom_segment.
Linear Referencing Functions 14-53

SDO_LRS.LOCATE_PT
offset
Distance to measure perpendicularly from the point that is located at measure units
from the start point of geom_segment. The default is 0 (that is, the point is on geom_
segment).

Usage Notes
This function returns the referenced point. For example, on a highway, the point
might represent the location of an accident.

The unit of measurement for offset is the same as for the coordinate system
associated with geom_segment. For geodetic data, the default unit of measurement is
meters.

With geodetic data using the WGS 84 coordinate system, this function can be used
to return the longitude and latitude coordinates of any point on or offset from the
segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if the location is out of range.

The _3D format of this function (SDO_LRS.LOCATE_PT_3D) is available; however,
the offset parameter is not available for SDO_LRS.LOCATE_PT_3D. For information
about _3D formats of LRS functions, see Section 6.4.

For more information about locating a point on a geometric segment, see
Section 6.5.8.

Examples
The following example creates a table for automobile accident data, inserts a record
for an accident at the point at measure 9 and on (that is, offset 0) the geometric
segment representing Route 1, and displays the data. (The accident table is
deliberately oversimplified. This example also uses the route definition from the
example in Section 6.6.)

-- Create a table for accidents
CREATE TABLE accidents (
 accident_id NUMBER PRIMARY KEY,
 route_id NUMBER,
 accident_geometry MDSYS.SDO_GEOMETRY);

-- Insert an accident record.
DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
14-54 Oracle Spatial User’s Guide and Reference

SDO_LRS.LOCATE_PT
BEGIN

SELECT SDO_LRS.LOCATE_PT(a.route_geometry, 9, 0) into geom_segment
 FROM lrs_routes a WHERE a.route_name = ’Route1’;

INSERT INTO accidents VALUES(1, 1, geom_segment);

END;
/

SELECT * from accidents;

ACCIDENT_ID ROUTE_ID
----------- ----------
ACCIDENT_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_OR
--
 1 1
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))
Linear Referencing Functions 14-55

SDO_LRS.MEASURE_RANGE
SDO_LRS.MEASURE_RANGE

Format
SDO_LRS.MEASURE_RANGE(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the measure range of a geometric segment, that is, the difference between
the start measure and end measure.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function subtracts the start measure of geom_segment from the end measure of
geom_segment.

The _3D format of this function (SDO_LRS.MEASURE_RANGE_3D) is available.
For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example returns the measure range of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section 6.6.)

SELECT SDO_LRS.MEASURE_RANGE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.MEASURE_RANGE(ROUTE_GEOMETRY)
14-56 Oracle Spatial User’s Guide and Reference

SDO_LRS.MEASURE_RANGE

 27
Linear Referencing Functions 14-57

SDO_LRS.MEASURE_TO_PERCENTAGE
SDO_LRS.MEASURE_TO_PERCENTAGE

Format
SDO_LRS.MEASURE_TO_PERCENTAGE(

geom_segment IN MDSYS.SDO_GEOMETRY,

measure IN NUMBER

) RETURN NUMBER;

or

SDO_LRS.MEASURE_TO_PERCENTAGE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN NUMBER;

Description
Returns the percentage (0 to 100) that a specified measure is of the measure range of
a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Measure value. This function returns the percentage that this measure value is of
the measure range.
14-58 Oracle Spatial User’s Guide and Reference

SDO_LRS.MEASURE_TO_PERCENTAGE
Usage Notes
This function returns a number (0 to 100) that is the percentage of the measure
range that the specified measure represents. (The measure range is the end measure
minus the start measure.) For example, if the measure range of geom_segment is 50
and measure is 20, the function returns 40 (because 20/50 = 40%).

This function performs the reverse of the SDO_LRS.PERCENTAGE_TO_MEASURE
function, which returns the measure that corresponds to a percentage value.

An exception is raised if geom_segment or measure is invalid.

Examples
The following example returns the percentage that 5 is of the measure range of
geometric segment representing Route 1. (This example uses the definitions from
the example in Section 6.6.) The measure range of this segment is 27, and 5 is
approximately 18.5 percent of 27.

SELECT SDO_LRS.MEASURE_TO_PERCENTAGE(a.route_geometry, m.diminfo, 5)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.MEASURE_TO_PERCENTAGE(A.ROUTE_GEOMETRY,M.DIMINFO,5)

 18.5185185
Linear Referencing Functions 14-59

SDO_LRS.OFFSET_GEOM_SEGMENT
SDO_LRS.OFFSET_GEOM_SEGMENT

Format
SDO_LRS.OFFSET_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

start_measure IN NUMBER,

end_measure IN NUMBER,

offset IN NUMBER

[, tolerance IN NUMBER]

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.OFFSET_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

start_measure IN NUMBER,

end_measure IN NUMBER,

offset IN NUMBER,

tolerance IN NUMBER

[, unit IN VARCHAR2]

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.OFFSET_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER,

offset IN NUMBER

[, unit IN VARCHAR2]
14-60 Oracle Spatial User’s Guide and Reference

SDO_LRS.OFFSET_GEOM_SEGMENT
) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometric segment at a specified offset from a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Start measure of geom_segment at which to start the offset operation.

end_measure
End measure of geom_segment at which to start the offset operation.

offset
Distance to measure perpendicularly from the points along geom_segment. Positive
offset values are to the left of geom_segment; negative offset values are to the right of
geom_segment.

tolerance
Tolerance value (see Section 1.5.5).

unit
Unit of measurement specification: a quoted string with one or both of the
following keywords:

■ unit and an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table. See
Section 2.6 for more information about unit of measurement specification.

■ arc_tolerance and an arc tolerance value. See the Usage Notes for the SDO_
GEOM.SDO_ARC_DENSIFY function in Chapter 11 for more information about
the arc_tolerance keyword.

For example: ’unit=km arc_tolerance=0.05’
Linear Referencing Functions 14-61

SDO_LRS.OFFSET_GEOM_SEGMENT
If the input geometry is geodetic data, this parameter is required, and arc_tolerance
must be specified. If the input geometry is Cartesian or projected data, arc_tolerance
has no effect and should not be specified.

If this parameter is not specified for a Cartesian or projected geometry, or if the arc_
tolerance keyword is specified for a geodetic geometry but the unit keyword is not
specified, the unit of measurement associated with the data is assumed.

Usage Notes
start_measure and end_measure can be any points on the geometric segment. They do
not have to be in any specific order. For example, start_measure and end_measure can
be 5 and 10, respectively, or 10 and 5, respectively.

The direction and measures of the resulting geometric segment are preserved (that
is, they reflect the original segment).

The geometry type of geom_segment must be line or multiline. For example, it cannot
be a polygon.

An exception is raised if geom_segment, start_measure, or end_measure is invalid.

Examples
The following example returns the geometric segment 2 distance units to the left
(positive offset 2) of the segment from measures 5 through 10 of Route 1. (This
example uses the definitions from the example in Section 6.6.)

-- Create a segment offset 2 to the left from measures 5 through 10.
-- First, display the original segment; then, offset.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

SELECT SDO_LRS.OFFSET_GEOM_SEGMENT(a.route_geometry, m.diminfo, 5, 10, 2)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.OFFSET_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,5,10,2)(SDO_GTYPE, SDO_SR
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 6, 5, 10, 6, 10))
14-62 Oracle Spatial User’s Guide and Reference

SDO_LRS.OFFSET_GEOM_SEGMENT
Note in SDO_ORDINATE_ARRAY of the returned segment that the Y values (6) are 2
greater than the Y values (4) of the relevant part of the original segment.
Linear Referencing Functions 14-63

SDO_LRS.PERCENTAGE_TO_MEASURE
SDO_LRS.PERCENTAGE_TO_MEASURE

Format
SDO_LRS.PERCENTAGE_TO_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

percentage IN NUMBER

) RETURN NUMBER;

or

SDO_LRS.PERCENTAGE_TO_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

percentage IN NUMBER

) RETURN NUMBER;

Description
Returns the measure value of a specified percentage (0 to 100) of the measure range
of a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

percentage
Percentage value. Must be from 0 to 100. This function returns the measure value
corresponding to this percentage of the measure range.
14-64 Oracle Spatial User’s Guide and Reference

SDO_LRS.PERCENTAGE_TO_MEASURE
Usage Notes
This function returns the measure value corresponding to this percentage of the
measure range. (The measure range is the end measure minus the start measure.)
For example, if the measure range of geom_segment is 50 and percentage is 40, the
function returns 20 (because 40% of 50 = 20).

This function performs the reverse of the SDO_LRS.MEASURE_TO_PERCENTAGE
function, which returns the percentage value that corresponds to a measure.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if percentage is less than 0 or greater than 100.

Examples
The following example returns the measure that is 50 percent of the measure range
of geometric segment representing Route 1. (This example uses the definitions from
the example in Section 6.6.) The measure range of this segment is 27, and 50 percent
of 17 is 13.5.

SELECT SDO_LRS.PERCENTAGE_TO_MEASURE(a.route_geometry, m.diminfo, 50)
 FROM lrs_routes a, user_sdo_geom_metadata m
 HERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.PERCENTAGE_TO_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,50)
--
 13.5
Linear Referencing Functions 14-65

SDO_LRS.PROJECT_PT
SDO_LRS.PROJECT_PT

Format
SDO_LRS.PROJECT_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,

point IN MDSYS.SDO_GEOMETRY

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.PROJECT_PT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

point IN MDSYS.SDO_GEOMETRY

[, point_dim_array IN MDSYS.SDO_GEOMETRY]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the projection point of a point on a geometric segment.

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

point
Point to be projected.

point_dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views.
14-66 Oracle Spatial User’s Guide and Reference

SDO_LRS.PROJECT_PT
Usage Notes
This function returns the projection point (including its measure) of a specified
point (point). The projection point is on the geometric segment.

If multiple projection points exist, the first projection point encountered from the
start point is returned.

An exception is raised if geom_segment or point has an invalid geometry type or
dimensionality, or if geom_segment and point are based on different coordinate
systems.

The _3D format of this function (SDO_LRS.PROJECT_PT_3D) is available. For
information about _3D formats of LRS functions, see Section 6.4.

For more information about projecting a point onto a geometric segment, see
Section 6.5.9.

Examples
The following example returns the point (9,4,9) on the geometric segment
representing Route 1 that is closest to the specified point (9,3,NULL). (This example
uses the definitions from the example in Section 6.6.)

-- Point 9,3,NULL is off the road; should return 9,4,9
SELECT SDO_LRS.PROJECT_PT(route_geometry,
 MDSYS.SDO_GEOMETRY(3301, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)))
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.PROJECT_PT(ROUTE_GEOMETRY,MDSYS.SDO_GEOMETRY(3301,NULL,NULL,MDSYS.SDO_EL
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))
Linear Referencing Functions 14-67

SDO_LRS.REDEFINE_GEOM_SEGMENT
SDO_LRS.REDEFINE_GEOM_SEGMENT

Format
SDO_LRS.REDEFINE_GEOM_SEGMENT(

geom_segment IN OUT MDSYS.SDO_GEOMETRY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

or

SDO_LRS.REDEFINE_GEOM_SEGMENT(

geom_segment IN OUT MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

Description
Populates the measures of all shape points based on the start and end measures of a
geometric segment, overriding any previously assigned measures between the start
point and end point.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Distance measured from the start point of a geometric segment to the start point of
the linear feature. The default is the existing value (if any) in the measure
dimension; otherwise, the default is 0.
14-68 Oracle Spatial User’s Guide and Reference

SDO_LRS.REDEFINE_GEOM_SEGMENT
end_measure
Distance measured from the end point of a geometric segment to the start point of
the linear feature. The default is the existing value (if any) in the measure
dimension; otherwise, the default is the cartographic length of the segment.

Usage Notes
An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if start_measure or end_measure is out of range.

The _3D format of this procedure (SDO_LRS.REDEFINE_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions and procedures, see
Section 6.4.

For more information about redefining a geometric segment, see Section 6.5.2.

Examples
The following example redefines a geometric segment, effectively converting miles
to kilometers in the measure values. (This example uses the definitions from the
example in Section 6.6.)

-- First, display the original segment; then, redefine.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

-- Redefine geom segment to "convert" miles to kilometers.
DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- "Convert" mile measures to kilometers (27 * 1.609 = 43.443).
SDO_LRS.REDEFINE_GEOM_SEGMENT (geom_segment,
Linear Referencing Functions 14-69

SDO_LRS.REDEFINE_GEOM_SEGMENT
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 43.443); -- End of LRS segment. 27 miles = 43.443 kilometers.

-- Update and insert geometries into table, to display later.
UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

END;
/

PL/SQL procedure successfully completed.

-- Display the redefined segment, with all measures "converted".
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 3.218, 8, 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))
14-70 Oracle Spatial User’s Guide and Reference

SDO_LRS.RESET_MEASURE
SDO_LRS.RESET_MEASURE

Format
SDO_LRS.RESET_MEASURE(

geom_segment IN OUT MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]);

Description
Sets all measures of a geometric segment, including the start and end measures, to
null values, overriding any previously assigned measures.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

Examples
The following example sets all measures of a geometric segment to null values.
(This example uses the definitions from the example in Section 6.6.)

-- First, display the original segment; then, redefine.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

-- Reset geom segment measures.
Linear Referencing Functions 14-71

SDO_LRS.RESET_MEASURE
DECLARE
geom_segment MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

SDO_LRS.RESET_MEASURE (geom_segment);

-- Update and insert geometries into table, to display later.
UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

END;
/

PL/SQL procedure successfully completed.

-- Display the segment, with all measures set to null.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, NULL, 2, 4, NULL, 8, 4, NULL, 12, 4, NULL, 12, 10, NULL, 8, 10, NULL, 5, 1
4, NULL))
14-72 Oracle Spatial User’s Guide and Reference

SDO_LRS.REVERSE_GEOMETRY
SDO_LRS.REVERSE_GEOMETRY

Format
SDO_LRS.REVERSE_GEOMETRY(

geom IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a new geometric segment by reversing the measure values and the
direction of the original geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function:

■ Reverses the measure values of geom_segment

That is, the start measure of geom_segment is the end measure of the returned
geometric segment, the end measure of geom_segment is the start measure of the
returned geometric segment, and all other measures are adjusted accordingly.

■ Reverses the direction of geom_segment

Compare this function with SDO_LRS.REVERSE_MEASURE, which reverses only
the measure values (not the direction) of a geometric segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality. The geometry type must be a line or multiline, and the
dimensionality must be 3 (two dimensions plus the measure dimension).
Linear Referencing Functions 14-73

SDO_LRS.REVERSE_GEOMETRY
The _3D format of this function (SDO_LRS.REVERSE_GEOMETRY_3D) is available.
For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example reverses the measure values and the direction of the
geometric segment representing route 1. (This example uses the definitions from the
example in Section 6.6.)

-- Reverse direction and measures (for example, to prepare for
-- concatenating with another road)
-- First, display the original segment; then, reverse.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

SELECT SDO_LRS.REVERSE_GEOMETRY(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.REVERSE_GEOMETRY(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_PO
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 14, 27, 8, 10, 22, 12, 10, 18, 12, 4, 12, 8, 4, 8, 2, 4, 2, 2, 2, 0))

Note in the returned segment that the M values (measures) now go in descending
order from 27 to 0, and the segment start and end points have the opposite X and Y
values as in the original segment (5,14 and 2,2 here, as opposed to 2,2 and 5,14 in
the original).
14-74 Oracle Spatial User’s Guide and Reference

SDO_LRS.REVERSE_MEASURE
SDO_LRS.REVERSE_MEASURE

Format
SDO_LRS.REVERSE_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a new geometric segment by reversing the measure values, but not the
direction, of the original geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function:

■ Reverses the measure values of geom_segment

That is, the start measure of geom_segment is the end measure of the returned
geometric segment, the end measure of geom_segment is the start measure of the
returned geometric segment, and all other measures are adjusted accordingly.

■ Does not affect the direction of geom_segment

Compare this function with SDO_LRS.REVERSE_GEOMETRY, which reverses both
the direction and the measure values of a geometric segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.
Linear Referencing Functions 14-75

SDO_LRS.REVERSE_MEASURE
The _3D format of this function (SDO_LRS.REVERSE_MEASURE_3D) is available.
For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example reverses the measure values of the geometric segment
representing route 1, but does not affect the direction. (This example uses the
definitions from the example in Section 6.6.)

-- First, display the original segment; then, reverse.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

SELECT SDO_LRS.REVERSE_MEASURE(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.REVERSE_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POI
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 27, 2, 4, 25, 8, 4, 19, 12, 4, 15, 12, 10, 9, 8, 10, 5, 5, 14, 0))

Note in the returned segment that the M values (measures) now go in descending
order from 27 to 0, but the segment start and end points have the same X and Y
values as in the original segment (2,2 and 5,14).

Note: The behavior of the SDO_LRS.REVERSE_MEASURE
function changed between Release 8.1.7 and the current release. In
Release 8.1.7, REVERSE_MEASURE reversed both the measures
and the segment direction. However, if you want to have this same
behavior with the current release, you must use the SDO_
LRS.REVERSE_GEOMETRY function.
14-76 Oracle Spatial User’s Guide and Reference

SDO_LRS.SCALE_GEOM_SEGMENT
SDO_LRS.SCALE_GEOM_SEGMENT

Format
SDO_LRS.SCALE_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

start_measure IN NUMBER,

end_measure IN NUMBER,

shift_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.SCALE_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER,

shift_measure IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry object resulting from the scaling of a geometric segment.

Parameters

geom_segment
Geometric segment to be scaled.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

start_measure
Start measure of the scaled geometric segment.
Linear Referencing Functions 14-77

SDO_LRS.SCALE_GEOM_SEGMENT
end_measure
End measure of the scaled geometric segment.

shift_measure
Shift measure of the scaled geometric segment.

Usage Notes
This function performs a general scaling operation to the geometric segment. The
new start and end measures are assigned, and all measures are populated by a
linear mapping between old and new start and end measures. The shift measure is
applied to the segment after scaling.

Table 14–4 lists some common tasks and the suggested functions to use instead of
SCALE_GEOM_SEGMENT.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if start_measure or end_measure is out of range.

For more information about scaling a geometric segment, see Section 6.5.6.

Note: This general-purpose function has been deprecated and will
not be supported in a future release of Spatial. You should instead
use other functions for specific purposes, as described in
Table 14–4.

Table 14–4 Functions to Use Instead of SCALE_GEOM_SEGMENT

Task Suggested Function

Shift all measures by a specified amount (for example, to
accommodate new construction at the start of a road that
causes the original start point to be n measure units
beyond the new start point).

SDO_LRS.TRANSLATE_
MEASURE

Reverse the direction of a segment (for example, to allow
one road segment to be concatenated with another coming
from the opposite direction, because both segments to be
concatenated must have the same direction).

SDO_LRS.REVERSE_
GEOMETRY

Scale the measure information without performing a shift
(for example, to change the measures from miles to
kilometers).

SDO_LRS.REDEFINE_GEOM_
SEGMENT
14-78 Oracle Spatial User’s Guide and Reference

SDO_LRS.SCALE_GEOM_SEGMENT
Examples
The following examples illustrate some SCALE_GEOM_ELEMENT uses. (These
examples use the definitions from the example in Section 6.6.)

-- Shift by 5 (for example, 5-mile segment added before original start)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(a.route_geometry, m.diminfo, 0, 27, 5)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,0,27,5)(SDO_GTYPE, SDO_SRI
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 5, 2, 4, 7, 8, 4, 13, 12, 4, 17, 12, 10, 23, 8, 10, 27, 5, 14, 32))

-- "Convert" mile measures to kilometers (27 * 1.609 = 43.443)
SELECT SDO_LRS.SCALE_GEOM_SEGMENT(route_geometry, 0, 43.443, 0)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.SCALE_GEOM_SEGMENT(ROUTE_GEOMETRY,0,43.443,0)(SDO_GTYPE, SDO_SRID, SDO_P
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 3.218, 8, 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))
Linear Referencing Functions 14-79

SDO_LRS.SET_PT_MEASURE
SDO_LRS.SET_PT_MEASURE

Format
SDO_LRS.SET_PT_MEASURE(

geom_segment IN OUT MDSYS.SDO_GEOMETRY,

point IN MDSYS.SDO_GEOMETRY,

measure IN NUMBER) RETURN VARCHAR2;

or

SDO_LRS.SET_PT_MEASURE(

geom_segment IN OUT MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

point IN MDSYS.SDO_GEOMETRY,

pt_dim_array IN MDSYS.SDO_DIM_ARRAY,

measure IN NUMBER) RETURN VARCHAR2;

or

SDO_LRS.SET_PT_MEASURE(

point IN OUT MDSYS.SDO_GEOMETRY,

measure IN NUMBER) RETURN VARCHAR2;

or

SDO_LRS.SET_PT_MEASURE(

point IN OUT MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

measure IN NUMBER) RETURN VARCHAR2;

Description
Sets the measure value of a specified point.
14-80 Oracle Spatial User’s Guide and Reference

SDO_LRS.SET_PT_MEASURE
Parameters

geom_segment
Geometric segment containing the point.

dim_array
Dimensional information array corresponding to geom_segment (in the second
format) or point (in the fourth format), usually selected from one of the xxx_SDO_
GEOM_METADATA views.

point
Point for which the measure value is to be set.

pt_dim_array
Dimensional information array corresponding to point (in the second format),
usually selected from one of the xxx_SDO_GEOM_METADATA views.

measure
Measure value to be assigned to the specified point.

Usage Notes
The function returns TRUE if the measure value was successfully set, and FALSE if
the measure value was not set.

If both geom_segment and point are specified, the behavior of the procedure depends
on whether or not point is a shape point on geom_segment:

■ If point is a shape point on geom_segment, the measure value of point is set.

■ If point is not a shape point on geom_segment, the shape point on geom_segment
that is nearest to point is found, and the measure value of that shape point is set.

The _3D format of this function (SDO_LRS.SET_PT_MEASURE_3D) is available;
however, only the formats that include the geom_segment parameter are available for
SDO_LRS.SET_PT_MEASURE_3D. For information about _3D formats of LRS
functions, see Section 6.4.

An exception is raised if geom_segment or point is invalid.

Examples
The following example sets the measure value of point (8,10) to 20. (This example
uses the definitions from the example in Section 6.6.)

-- Set the measure value of point 8,10 to 20 (originally 22).
Linear Referencing Functions 14-81

SDO_LRS.SET_PT_MEASURE
DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result VARCHAR2(32);

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- Set the measure value of point 8,10 to 20 (originally 22).
result := SDO_LRS.SET_PT_MEASURE (geom_segment,
 MDSYS.SDO_GEOMETRY(3301, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(8, 10, 22)),
 20);

-- Display the result.
DBMS_OUTPUT.PUT_LINE(’Returned value = ’ || result);

END;
/
Returned value = TRUE

PL/SQL procedure successfully completed.

14-82 Oracle Spatial User’s Guide and Reference

SDO_LRS.SPLIT_GEOM_SEGMENT
SDO_LRS.SPLIT_GEOM_SEGMENT

Format
SDO_LRS.SPLIT_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

split_measure IN NUMBER,

segment_1 OUT MDSYS.SDO_GEOMETRY,

segment_2 OUT MDSYS.SDO_GEOMETRY);

or

SDO_LRS.SPLIT_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

split_measure IN NUMBER,

segment_1 OUT MDSYS.SDO_GEOMETRY,

segment_2 OUT MDSYS.SDO_GEOMETRY);

Description
Splits a geometric segment into two geometric segments. (This is a procedure, not a
function.)

Parameters

geom_segment
Geometric segment to be split.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

split_measure
Distance measured from the start point of a geometric segment to the split point.
Linear Referencing Functions 14-83

SDO_LRS.SPLIT_GEOM_SEGMENT
segment_1
First geometric segment: from the start point of geom_segment to the split point.

segment_2
Second geometric segment: from the split point to the end point of geom_segment.

Usage Notes
An exception is raised if geom_segment or split_measure is invalid.

The directions and measures of the resulting geometric segments are preserved.

The _3D format of this procedure (SDO_LRS.SPLIT_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions and procedures, see
Section 6.4.

For more information about splitting a geometric segment, see Section 6.5.4.

Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section 6.6. The definitions of result_geom_1, result_geom_2, and result_
geom_3 are displayed in Example 6–3.)

DECLARE
geom_segment MDSYS.SDO_GEOMETRY;
line_string MDSYS.SDO_GEOMETRY;
dim_array MDSYS.SDO_DIM_ARRAY;
result_geom_1 MDSYS.SDO_GEOMETRY;
result_geom_2 MDSYS.SDO_GEOMETRY;
result_geom_3 MDSYS.SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = ’Route1’;
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’;

-- Define the LRS segment for Route1.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.
14-84 Oracle Spatial User’s Guide and Reference

SDO_LRS.SPLIT_GEOM_SEGMENT
SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = ’Route1’;

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Insert geometries into table, to display later.
INSERT INTO lrs_routes VALUES(
 11,
 ’result_geom_1’,
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 ’result_geom_2’,
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 ’result_geom_3’,
 result_geom_3
);

END;
/

Linear Referencing Functions 14-85

SDO_LRS.TRANSLATE_MEASURE
SDO_LRS.TRANSLATE_MEASURE

Format
SDO_LRS.TRANSLATE_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

translate_m IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

or

SDO_LRS.TRANSLATE_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

translate_m IN NUMBER

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns a new geometric segment by translating the original geometric segment
(that is, shifting the start and end measures by a specified value).

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

translate_m
Distance measured from the start point of a geometric segment to the start point of
the linear feature.
14-86 Oracle Spatial User’s Guide and Reference

SDO_LRS.TRANSLATE_MEASURE
Usage Notes
This function adds translate_m to the start and end measures of geom_segment. For
example, if geom_segment has a start measure of 50 and an end measure of 100, and
if translate_m is 10, the returned geometric segment has a start measure of 60 and an
end measure of 110, as shown in Figure 14–1.

Figure 14–1 Translating a Geometric Segment

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.TRANSLATE_MEASURE_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example translates (shifts) by 10 the geometric segment representing
Route 1. (This example uses the definitions from the example in Section 6.6.)

SELECT SDO_LRS.TRANSLATE_MEASURE(a.route_geometry, m.diminfo, 10)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.TRANSLATE_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,10)(SDO_GTYPE, SDO_SRID, SD
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 10, 2, 4, 12, 8, 4, 18, 12, 4, 22, 12, 10, 28, 8, 10, 32, 5, 14, 37))
Linear Referencing Functions 14-87

SDO_LRS.VALID_GEOM_SEGMENT
SDO_LRS.VALID_GEOM_SEGMENT

Format
SDO_LRS.VALID_GEOM_SEGMENT(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if a geometry object is a valid geometric segment.

Parameters

geom_segment
Geometric segment to be checked for validity.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if geom_segment is valid and FALSE if geom_segment is
not valid.

Measure information is assumed to be stored in the last element of the SDO_DIM_
ARRAY in the Oracle Spatial metadata.

This function only checks for geometry type and number of dimensions of the
geometric segment. To further validate measure information, use the IS_GEOM_
SEGMENT_DEFINED function.

The _3D format of this function (SDO_LRS.VALID_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example checks if the geometric segment representing Route 1 is
valid. (This example uses the definitions from the example in Section 6.6.)
14-88 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALID_GEOM_SEGMENT
SELECT SDO_LRS.VALID_GEOM_SEGMENT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.VALID_GEOM_SEGMENT(ROUTE_GEOMETRY)
--
TRUE
Linear Referencing Functions 14-89

SDO_LRS.VALID_LRS_PT
SDO_LRS.VALID_LRS_PT

Format
SDO_LRS.VALID_LRS_PT(

point IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if an LRS point is valid.

Parameters

point
Point to be checked for validity.

dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if point is valid and FALSE if point is not valid.

This function checks if point is a point with measure information, and it checks for
the geometry type and number of dimensions for the point geometry.

All LRS point data must be stored in the SDO_ELEM_INFO_ARRAY and SDO_
ORDINATE_ARRAY, and cannot be stored in the SDO_POINT field in the SDO_
GEOMETRY definition of the point.

The _3D format of this function (SDO_LRS.VALID_LRS_PT_3D) is available. For
information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example checks if point (9,3,NULL) is a valid LRS point. (This
example uses the definitions from the example in Section 6.6.)

SELECT SDO_LRS.VALID_LRS_PT(
14-90 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALID_LRS_PT
 MDSYS.SDO_GEOMETRY(3001, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1),
 MDSYS.SDO_ORDINATE_ARRAY(9, 3, NULL)),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
 AND a.route_id = 1;

SDO_LRS.VALID_LRS_PT(MDSYS.SDO_GEOMETRY(3001,NULL,NULL,MDSYS.SDO_ELEM_INFO_ARRAY
--
TRUE
Linear Referencing Functions 14-91

SDO_LRS.VALID_MEASURE
SDO_LRS.VALID_MEASURE

Format
SDO_LRS.VALID_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

measure IN NUMBER

) RETURN VARCHAR2;

or

SDO_LRS.VALID_MEASURE(

geom_segment IN MDSYS.SDO_GEOMETRY,

dim_array IN MDSYS.SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN VARCHAR2;

Description
Checks if a measure falls within the measure range of a geometric segment.

Parameters

geom_segment
Geometric segment to be checked to see if it falls within the measure range of
measure.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

measure
Geometric segment to be checked to see if geom_segment falls within its measure
range.
14-92 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALID_MEASURE
Usage Notes
This function returns TRUE if measure falls within the measure range of geom_
segment and FALSE if measure does not fall within the measure range of geom_
segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.VALID_MEASURE_3D) is available. For
information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example checks if 50 is a valid measure on the Route 1 segment. The
function returns FALSE because the measure range for that segment is 0 to 27. For
example, if the route is 27 miles long and there is a mile marker at one-mile
intervals, there is no 50-mile marker because the last marker is the 27-mile marker.
(This example uses the definitions from the example in Section 6.6.)

SELECT SDO_LRS.VALID_MEASURE(route_geometry, 50)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.VALID_MEASURE(ROUTE_GEOMETRY,50)
--
FALSE
Linear Referencing Functions 14-93

SDO_LRS.VALIDATE_LRS_GEOMETRY
SDO_LRS.VALIDATE_LRS_GEOMETRY

Format
SDO_LRS.VALIDATE_LRS_GEOMETRY(

geom_segment IN MDSYS.SDO_GEOMETRY

[, dim_array IN MDSYS.SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if an LRS geometry is valid.

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views.

Usage Notes
This function returns TRUE if geom_segment is valid and one of the following error
codes if geom_segment is not valid:

■ 13331 (invalid LRS geometry type)

■ 13335 (measure information not defined)

The _3D format of this function (SDO_LRS.VALIDATE_LRS_GEOMETRY_3D) is
available. For information about _3D formats of LRS functions, see Section 6.4.

Examples
The following example checks if the Route 1 segment is a valid LRS geometry. (This
example uses the definitions from the example in Section 6.6.)

SELECT SDO_LRS.VALIDATE_LRS_GEOMETRY(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = ’LRS_ROUTES’ AND m.column_name = ’ROUTE_GEOMETRY’
14-94 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALIDATE_LRS_GEOMETRY
 AND a.route_id = 1;

SDO_LRS.VALIDATE_LRS_GEOMETRY(A.ROUTE_GEOMETRY,M.DIMINFO)
--
TRUE
Linear Referencing Functions 14-95

SDO_LRS.VALIDATE_LRS_GEOMETRY
14-96 Oracle Spatial User’s Guide and Reference

Migration Proc
15

Migration Procedures

The procedures described in this chapter let you upgrade geometry tables from
previous releases of Spatial Cartridge or Spatial Data Option.

This chapter contains descriptions of the migration procedures shown in Table 15–1.

Table 15–1 Migration Procedures

Procedure Description

SDO_MIGRATE.FROM_
815_TO_81X

Migrates data from Spatial release 8.1.5 to the current release.

SDO_MIGRATE.OGIS_
METADATA_FROM

Generates a temporary table used when migrating OGIS
(OpenGIS) metadata tables.

SDO_MIGRATE.OGIS_
METADATA_TO

Reads a temporary table used when migrating OGIS metadata
tables.

SDO_MIGRATE.TO_734 Migrates data from a previous release of Spatial Data Option to
release 7.3.4.

SDO_MIGRATE.TO_81X Migrates tables from Spatial Data Option release 7.3.4 or
Spatial Cartridge release 8.0.4 to Oracle Spatial.

SDO_MIGRATE.TO_
CURRENT

Migrates data from a previous Spatial release to the current
release.
edures 15-1

SDO_MIGRATE.FROM_815_TO_81X
SDO_MIGRATE.FROM_815_TO_81X

Format
SDO_MIGRATE.FROM_815_TO_81X(

tabname IN VARCHAR2

[, commit_int IN NUMBER]);

Description
Migrates data from Spatial release 8.1.5 to the current release.

Parameters

tabname
Table with geometry objects.

commit_int
Number of geometries to migrate before Spatial performs an internal commit
operation. If commit_int is not specified, no internal commit operations are
performed during the migration.

If you specify a commit_int value, you can use a smaller rollback segment than
would otherwise be needed.

Usage Notes
See Section A.3 for important information about migrating from Spatial release
8.1.5.

All geometry objects in tabname will be migrated so that their SDO_GTYPE and
SDO_ETYPE values are in the format of the current release:

■ SDO_GTYPE values of 4 digits are created, using the format (d00n) shown in
Table 2–1 in Section 2.2.1.

■ SDO_ETYPE values are as discussed in Section 2.2.4.

Note: You should use the SDO_MIGRATE.TO_CURRENT
procedure instead of this procedure.
15-2 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.FROM_815_TO_81X
The procedure also orders geometries so that exterior rings are followed by their
interior rings, and saves them in the correct rotation (counterclockwise for exterior
rings, and clockwise for interior rings).

Examples
The following example changes the definitions of geometry objects in the ROADS
table from the release 8.1.5 format to the format of the current release.

SQL> execute sdo_migrate.from_815_to_81x(’ROADS’);
Migration Procedures 15-3

SDO_MIGRATE.OGIS_METADATA_FROM
SDO_MIGRATE.OGIS_METADATA_FROM

Format
SDO_MIGRATE.OGIS_METADATA_FROM

Description
Called at the source database when migrating from one 8.1.5 database to another
8.1.5 database. The procedure migrates OGIS (OpenGIS) metadata entries from
schemas owned by MDSYS.

Parameters
None.

Usage Notes
Consider the following when using this procedure:

■ The tables involved are strictly maintained by the user, and not by Spatial.
Details are available in the sdocat.sql file and the OpenGIS specification.

■ Call this procedure once before migrating the data, and it will generate a
temporary table called SDO_GC_MIG. Export the temporary table to the new
database and call SDO_MIGRATE.OGIS_METADATA_TO to restore the data.
15-4 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.OGIS_METADATA_TO
SDO_MIGRATE.OGIS_METADATA_TO

Format
SDO_MIGRATE.OGIS_METADATA_TO

Description
Used at the destination database when migrating from one 8.1.5 database to another
8.1.5 database. The procedure migrates OGIS (OpenGIS) metadata entries from
schemas owned by MDSYS.

Parameters
None.

Usage Notes
Consider the following when using this procedure:

■ The tables involved are strictly maintained by the user, and not by Spatial.
Details are available in the sdocat.sql file and the OpenGIS specification.

■ Call this procedure once after migrating the data. See SDO_MIGRATE.OGIS_
METADATA_FROM.
Migration Procedures 15-5

SDO_MIGRATE.TO_734
SDO_MIGRATE.TO_734

Format
SDO_MIGRATE.TO_734(

sn IN VARCHAR2,

layer IN VARCHAR2,

tess_type IN VARCHAR2,

param IN INTEGER);

Description
Migrates data from a previous release of Spatial Data Option to release 7.3.4.

Parameters

sn
Schema name of the owner of layer.

layer
Name of the layer to be migrated.

tess_type
Type of tessellation (indexing) to be used: FIXED or VARIABLE.

param
Parameter whose significance depends on tess_type:

■ If tess_type is FIXED, param is the SDO_LEVEL value.

■ If tess_type is VARIABLE, param is the SDO_NUMTILES value.

Usage Notes
None.

Examples
For fixed-size tessellation:

SQL> execute sdo_migrate.to_734(’HERMAN’, ’ROADS’, ’FIXED’, 10);
15-6 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.TO_734
For variable-sized tessellation:

SQL> execute sdo_migrate_to_734(’HERMAN’, ’ROADS’, ’VARIABLE’,4);
Migration Procedures 15-7

SDO_MIGRATE.TO_81X
SDO_MIGRATE.TO_81X

Format
SDO_MIGRATE.TO_81X(

layer IN VARCHAR2,

newtabname IN VARCHAR2,

gidcolumn IN VARCHAR2,

geocolname IN VARCHAR2,

layer_gtype IN VARCHAR2,

updateflag IN VARCHAR2);

Description
Migrates data from a previous release of Spatial Cartridge or Spatial Data Option to
the current release of Oracle Spatial.

Parameters

layer
Name of the layer to be migrated.

newtabname
Name of the new table to which you are migrating the data.

gidcolumn
Name of the column in which to store the GID from the old table.

geocolname
Name of the column in the new table where the geometry objects will be inserted.

layer_gtype
One of the following values: POINT or NOTPOINT (default).

Note: You should use the SDO_MIGRATE.TO_CURRENT
procedure instead of this procedure.
15-8 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.TO_81X
If the layer you are migrating is composed solely of point data, set this parameter to
POINT for optimal performance; otherwise, set this parameter to NOTPOINT. If
you set the value to POINT and the layer contains any nonpoint geometries, the
migration might produce invalid data.

updateflag
One of the following values: UPDATE or INSERT (default).

If you are migrating the layer into an existing populated attribute table, set this
parameter to UPDATE; otherwise, set this parameter to INSERT.

Usage Notes
Consider the following when using this procedure:

■ The new table must be created before calling this procedure.

■ The procedure converts geometries from the relational model to the
object-relational model.

■ A commit operation is performed by this procedure.

■ If any of the migration steps fails, nothing is migrated for the layer.

■ layer is the underlying layer name, without the _SDOGEOM suffix.

■ The old SDO_GID is stored in gidcolumn.

■ SDO_GTYPE values of 4 digits are created, using the format (d00n) shown in
Table 2–1 in Section 2.2.1.

■ SDO_ETYPE values are created, using the values discussed in Section 2.2.4.

■ The procedure orders geometries so that exterior rings are followed by their
interior rings, and saves them in the correct rotation (counter clockwise for
exterior rings, and clockwise for interior rings).

Examples
Insert point-only data into new rows:

execute sdo_migrate.to_81x(’raptor’, ’raptor’, ’sdo_gid’, ’feature’, ’point’);

Insert nonpoint data into new rows:

execute sdo_migrate.to_81x(’BTU’, ’BTU’, ’sdo_gid’, ’feature’);

Update point-only data in existing rows:
Migration Procedures 15-9

SDO_MIGRATE.TO_81X
execute sdo_migrate.to_81x(’raptor’, ’raptor’, ’sdo_gid’, ’feature’,
 ’point’, ’update’);

Update nonpoint data in existing rows:

execute sdo_migrate.to_81x(’BTU’, ’BTU’, ’sdo_gid’, ’feature’,
 ’notpoint’, ’update’);
15-10 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.TO_CURRENT
SDO_MIGRATE.TO_CURRENT

Format (Any Object-Relational Model Implementation to Current)
SDO_MIGRATE.TO_CURRENT(

tabname IN VARCHAR2

[, column_name IN VARCHAR2]);

or

SDO_MIGRATE.TO_CURRENT(

tabname IN VARCHAR2,

column_name IN VARCHAR2

[, commit_int IN NUMBER]);

Format (Any Relational Model Implementation to Current)
SDO_MIGRATE.TO_CURRENT(

layer IN VARCHAR2,

newtabname IN VARCHAR2,

gidcolumn IN VARCHAR2,

geocolname IN VARCHAR2,

layer_gtype IN VARCHAR2,

updateflag IN VARCHAR2);

Description
Migrates data from a previous Spatial release to the current release. The format
depends on whether you are migrating from the Spatial relational model (release
8.1.5 or lower) or object-relational model (release 8.1.6 or higher). See the Usage
Notes for the model that applies to you.

You are encouraged to use this procedure instead of the SDO_MIGRATE.FROM_
815_TO_81X or SDO_MIGRATE.TO_81X procedure.
Migration Procedures 15-11

SDO_MIGRATE.TO_CURRENT
Parameters

tabname
Table with geometry objects.

column_name
Column in tabname that contains geometry objects. If column_name is not specified or
is specified as null, the column containing geometry objects is migrated.

commit_int
Number of geometries to migrate before Spatial performs an internal commit
operation. If commit_int is not specified, no internal commit operations are
performed during the migration.

If you specify a commit_int value, you can use a smaller rollback segment than
would otherwise be needed.

layer
Name of the layer to be migrated.

newtabname
Name of the new table to which you are migrating the data.

gidcolumn
Name of the column in which to store the GID from the old table.

geocolname
Name of the column in the new table where the geometry objects will be inserted.

layer_gtype
One of the following values: POINT or NOTPOINT (default).

If the layer you are migrating is composed solely of point data, set this parameter to
POINT for optimal performance; otherwise, set this parameter to NOTPOINT. If
you set the value to POINT and the layer contains any nonpoint geometries, the
migration might produce invalid data.

updateflag
One of the following values: UPDATE or INSERT (default).

If you are migrating the layer into an existing populated attribute table, set this
parameter to UPDATE; otherwise, set this parameter to INSERT.
15-12 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.TO_CURRENT
Usage Notes for Object-Relational Model Migration
See Section A.3 for important information about upgrading from Spatial release
8.1.5.

All geometry objects in tabname will be migrated so that their SDO_GTYPE and
SDO_ETYPE values are in the format of the current release:

■ SDO_GTYPE values of 4 digits are created, using the format (d00n) shown in
Table 2–1 in Section 2.2.1.

■ SDO_ETYPE values are as discussed in Section 2.2.4.

The procedure also orders geometries so that exterior rings are followed by their
interior rings, and saves them in the correct rotation (counter clockwise for exterior
rings, and clockwise for interior rings).

Usage Notes for Relational Model Migration
Consider the following when using this procedure:

■ The new table must be created before calling this procedure.

■ The procedure converts geometries from the relational model to the
object-relational model.

■ A commit operation is performed by this procedure.

■ If any of the migration steps fails, nothing is migrated for the layer.

■ layer is the underlying layer name, without the _SDOGEOM suffix.

■ The old SDO_GID is stored in gidcolumn.

■ SDO_GTYPE values of 4 digits are created, using the format (d00n) shown in
Table 2–1 in Section 2.2.1.

■ SDO_ETYPE values are created, using the values discussed in Section 2.2.4.

■ The procedure orders geometries so that exterior rings are followed by their
interior rings, and saves them in the correct rotation (counter clockwise for
exterior rings, and clockwise for interior rings).

Examples
The following example changes the definitions of geometry objects in the ROADS
table from the release 8.1.5 or higher format to the format of the current release.

SQL> execute sdo_migrate.to_current(’ROADS’);
Migration Procedures 15-13

SDO_MIGRATE.TO_CURRENT
15-14 Oracle Spatial User’s Guide and Reference

Tuning Functions and Proc
16

Tuning Functions and Procedures

This chapter contains descriptions of the tuning functions and procedures shown in
Table 16–1.

Table 16–1 Tuning Functions and Procedures

Function/Procedure Description

SDO_TUNE.ANALYZE_RTREE Analyzes an R-tree index; generates statistics about the
index use, and recommends a rebuild of the index if a
rebuild would improve query performance
significantly.

SDO_TUNE.AVERAGE_MBR Calculates the average minimum bounding rectangle
for geometries in a layer.

SDO_TUNE.ESTIMATE_INDEX_
PERFORMANCE

Estimates the spatial index selectivity.

SDO_TUNE.ESTIMATE_TILING_
LEVEL

Determines an appropriate tiling level for creating
fixed-size index tiles.

SDO_TUNE.ESTIMATE_TILING_
TIME

Estimates the tiling time for a layer, in seconds.

SDO_TUNE.ESTIMATE_TOTAL_
NUMTILES

Estimates the total number of spatial tiles for a layer.

SDO_TUNE.EXTENT_OF Determines the minimum bounding rectangle of the
data in a layer.

SDO_TUNE.HISTOGRAM_
ANALYSIS

Calculates statistical histograms for a spatial layer.

SDO_TUNE.MIX_INFO Calculates geometry type information for a spatial
layer, such as the percentage of each geometry type.
edures 16-1

SDO_TUNE.QUALITY_
DEGRADATION

Returns the quality degradation for an R-tree index or
the average quality degradation for all index tables for
an R-tree index.

SDO_TUNE.RTREE_QUALITY Returns the quality score for an R-tree index or the
average quality score for all index tables for an R-tree
index.

Table 16–1 Tuning Functions and Procedures

Function/Procedure Description
16-2 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ANALYZE_RTREE
SDO_TUNE.ANALYZE_RTREE

Format
SDO_TUNE.ANALYZE_RTREE(

schemaname IN VARCHAR2,

indexname IN VARCHAR2);

Description
Analyzes an R-tree index; generates statistics about the index, and recommends a
rebuild of the index if a rebuild would improve query performance significantly.

Parameters

schemaname
Name of the schema that contains the index specified in indexname.

indexname
Name of the Spatial R-tree index to be analyzed.

Usage Notes
The procedure computes an index quality score and compares it to the quality score
when the index was created or most recently rebuilt (stored as SDO_RTREE_
QUALITY in the xxx_INDEX_METADATA views, described in Section 2.5.1). If the
comparison of the index quality scores shows that quality has degraded by 50% or
more, the procedure recommends that the index be rebuilt.

For R-tree indexes with secondary indexes (created using the ALTER INDEX
statement with the add_index keyword), the statistics for each index table are
printed.

This procedure should be used only in a PL/SQL procedure or from the SQL*Plus
command line; it should not be used in an OCI program or with any other
programming interface.

Because this procedure only prints the output to standard output, the SDO_
TUNE.RTREE_QUALITY and SDO_TUNE.QUALITY_DEGRADATION functions
are also provided, to return the quality score and quality degradation, respectively,
for an R-tree index.
Tuning Functions and Procedures 16-3

SDO_TUNE.ANALYZE_RTREE
For more information about R-tree quality and its effect on query performance, see
Section 1.7.1.1.

Examples
The following example analyzes the quality of the COLA_SPATIAL_IDX index.

EXECUTE SDO_TUNE.ANALYZE_RTREE(’SCOTT’, ’COLA_SPATIAL_IDX’);

The display to standard output might be as follows:

--- Quality Statistics for Index table: MDRT_11A5$ ---
 Current Perf. Index : 1.000000
 Previous Perf. Index: 1.000000
 Index Quality: Good, No Rebuild Necessary

Related Topics
SDO_TUNE.QUALITY_DEGRADATION

SDO_TUNE.RTREE_QUALITY
16-4 Oracle Spatial User’s Guide and Reference

SDO_TUNE.AVERAGE_MBR
SDO_TUNE.AVERAGE_MBR

Format
SDO_TUNE.AVERAGE_MBR(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

width OUT NUMBER,

height OUT NUMBER);

Description
Calculates the average minimum bounding rectangle (MBR) for a geometry object
column.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the average minimum bounding rectangle is to be
computed.

width
Width of the average minimum bounding rectangle.

height
Height of the average minimum bounding rectangle.

Usage Notes
This procedure computes and stores the width and height of the average minimum
bounding rectangle for all geometries in a geometry table. It calculates the average
MBR by keeping track of the maximum and minimum X and Y values for all
geometries in a geometry table.

AVERAGE_MBR is a procedure, not a function. (Procedures do not return values.)
Tuning Functions and Procedures 16-5

SDO_TUNE.AVERAGE_MBR
Examples
The following example calculates the minimum bounding rectangle for the SHAPE
column of the COLA_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := ’COLA_MARKETS’;
 column_name VARCHAR2(32) := ’SHAPE’;
 width NUMBER;
 height NUMBER;
BEGIN
SDO_TUNE.AVERAGE_MBR(
 table_name,
 column_name,
 width,
 height);
DBMS_OUTPUT.PUT_LINE(’Width = ’ || width);
DBMS_OUTPUT.PUT_LINE(’Height = ’ || height);
END;
/
Width = 3.5
Height = 4.5

Related Topics
SDO_TUNE.EXTENT_OF
16-6 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE

Format
SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

sample_ratio IN INTEGER,

tiling_level IN INTEGER,

num_tiles IN INTEGER,

window_obj IN MDSYS.SDO_GEOMETRY,

tiling_time OUT NUMBER,

filter_time OUT NUMBER,

query_time OUT NUMBER

) RETURN NUMBER;

Description
Estimates the spatial index performance such as query selectivity and window
query time for a column of type SDO_GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the tiling time is to be estimated.

sample_ratio
Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated in order to perform the estimate). The default is 20:
that is, the sample layer will contain approximately 1/20 (5 percent) of the
geometries in the original layer. The larger the sample_ratio value, the faster the
function will run, but the less accurate will be the result (the estimate).
Tuning Functions and Procedures 16-7

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
SELECT statement section of the Oracle9i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.

num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

window_obj
Window geometry object.

tiling_time
Estimated tiling time in seconds.

filter_time
Estimated spatial index filter time in seconds.

query_time
Estimated window query time in seconds.

Usage Notes
The function returns a number between 0.0 and 1.0 representing estimated spatial
index selectivity. The larger the number, the better the selectivity.

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

A return value of 0.0 indicates an error.

Examples
The following example calculates the minimum bounding rectangle for the SHAPE
column of the COLA_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := ’COLA_MARKETS’;
 column_name VARCHAR2(32) := ’SHAPE’;
 sample_ratio INTEGER := 15;
16-8 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
 tiling_level INTEGER := 4;
 num_tiles INTEGER := 10;
 window_obj MDSYS.SDO_GEOMETRY :=
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon
 MDSYS.SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
);
 tiling_time NUMBER;
 filter_time NUMBER;
 query_time NUMBER;
 ret_number NUMBER;
BEGIN
ret_number := SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE(
 table_name,
 column_name,
 sample_ratio,
 tiling_level,
 num_tiles,
 window_obj,
 tiling_time,
 filter_time,
 query_time
);
END;
/

Tuning Functions and Procedures 16-9

SDO_TUNE.ESTIMATE_TILING_LEVEL
SDO_TUNE.ESTIMATE_TILING_LEVEL

Format
SDO_TUNE.ESTIMATE_TILING_LEVEL(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

num_tiles IN INTEGER

[, type_of_estimate IN VARCHAR2]

) RETURN INTEGER;

Description
Estimates the appropriate SDO_LEVEL value to use when indexing with hybrid or
fixed-size tiles.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the tiling level is to be estimated.

num_tiles
Maximum number of tiles that can be used to index the rectangle defined by type_
of_estimate.

type_of_estimate
Keyword to specify the type of estimate:

■ LAYER_EXTENT -- Uses the rectangle defined by your coordinate system.

■ ALL_GID_EXTENT -- Uses the minimum bounding rectangle that encompasses
all the geometric objects in the column. This estimate is recommended for most
applications.

■ AVG_GID_EXTENT (default) -- Uses a rectangle representing the average size
of the individual geometric objects within the column. This option is the default
16-10 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_LEVEL
and performs the most analysis of the three types, but it takes the longest time
to complete.

Usage Notes
The function returns an integer representing the level to use when creating a spatial
index for the specified layer. The function returns NULL if the data is inconsistent.

If type_of_estimate is ALL_GID_EXTENT, a maxtiles value of 10000 is recommended
for most applications.

Examples
The following example estimates the appropriate SDO_LEVEL value to use with the
SHAPE column of the COLA_MARKETS table.

SELECT SDO_TUNE.ESTIMATE_TILING_LEVEL(’COLA_MARKETS’, ’SHAPE’,
 10000, ’ALL_GID_EXTENT’)
 FROM DUAL;

SDO_TUNE.ESTIMATE_TILING_LEVEL(’COLA_MARKETS’,’SHAPE’,10000,’ALL_GID_EXTENT’)

 7

Related Topics
■ SDO_TUNE.EXTENT_OF
Tuning Functions and Procedures 16-11

SDO_TUNE.ESTIMATE_TILING_TIME
SDO_TUNE.ESTIMATE_TILING_TIME

Format
SDO_TUNE.ESTIMATE_TILING_TIME(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

sample_ratio IN INTEGER,

tiling_level IN INTEGER,

num_tiles IN INTEGER

) RETURN NUMBER;

Description
Returns the estimated time (in seconds) to tessellate a column of type SDO_
GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the tiling time is to be estimated.

sample_ratio
Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated to perform the estimate). The default is 20: that is, the
sample layer will contain approximately 1/20 (5 percent) of the geometries in the
original layer. As you increase the sample_ratio value, the execution time for the
function decreases, but the accuracy of the result (the estimate) decreases also.

Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
SELECT statement section of the Oracle9i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.
16-12 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TILING_TIME
num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

Usage Notes
A return value of 0 indicates an error.

The tiling time estimate is based on the tiling time of a small sample geometry table
that is automatically generated from the original table column. (This generated table
is deleted before the function completes.)

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

The CREATE TABLE privilege is required for using this function.

Examples
The following example estimates the tiling time to tessellate the REGIONS column
of the XYZ_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := ’XYZ_MARKETS’;
 column_name VARCHAR2(32) := ’REGIONS’;
 sample_ratio INTEGER := 15;
 tiling_level INTEGER := 6;
 num_tiles INTEGER := 10;
 ret_number NUMBER;
BEGIN
ret_number := SDO_TUNE.ESTIMATE_TILING_TIME(
 table_name,
 column_name,
 sample_ratio,
 tiling_level,
 num_tiles
);
END;
/

Tuning Functions and Procedures 16-13

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
SDO_TUNE.ESTIMATE_TOTAL_NUMTILES

Format
SDO_TUNE.ESTIMATE_TOTAL_NUMTILES(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

sample_ratio IN INTEGER,

tiling_level IN INTEGER,

num_tiles IN INTEGER,

num_largetiles OUT INTEGER

) RETURN INTEGER;

Description
Estimates the total number of spatial tiles for a layer.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the total number of spatial tiles is to be estimated.

sample_ratio
Approximate ratio between the geometries in the original layer and those in the
sample layer (to be generated to perform the estimate). The default is 20: that is, the
sample layer will contain approximately 1/20 (5 percent) of the geometries in the
original layer. The larger the sample_ratio value, the faster the function will run, but
the less accurate will be the result (the estimate).

Note that Spatial obtains the sample by using the SAMPLE(sample_percent) feature
internally. For a description of this feature, see the sample_clause description in the
SELECT statement section of the Oracle9i SQL Reference.

tiling_level
Spatial index level at which the layer is to be tessellated.
16-14 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
num_tiles
Number of tiles for variable or hybrid tessellation. Should be 0 for fixed tessellation.
The default is 0.

num_largetiles
Output parameter to contain the number of spatial tiles that are of the same size as
group tiles for hybrid indexing. (For fixed indexing, num_largetiles will be the same
as the returned value: the total number of spatial tiles.)

Usage Notes
The estimate is based on the total number of tiles for a small sample layer that is
automatically generated from the original layer. (This generated table is deleted
before the function completes.)

The sample_ratio parameter lets you control the trade-off between speed and
accuracy. Note that sample_ratio is not exact, but reflects an average. For example, a
sample_ratio value of 20 sometimes causes fewer than 5 percent of geometry objects
to be sampled and sometimes more than 5 percent, but over time an average of 5
percent will be sampled.

The CREATE TABLE privilege is required for using this function.

Examples
The following example estimates the total number of spatial tiles required to index
the REGIONS column of the XYZ_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := ’XYZ_MARKETS’;
 column_name VARCHAR2(32) := ’REGIONS’;
 sample_ratio INTEGER := 15;
 tiling_level INTEGER := 4;
 num_tiles INTEGER := 10;
 num_largetiles INTEGER;
 ret_integer INTEGER;
BEGIN
ret_integer := SDO_TUNE.ESTIMATE_TOTAL_NUMTILES(
 table_name,
 column_name,
 sample_ratio,
 tiling_level,
 num_tiles,
 num_largetiles
);
Tuning Functions and Procedures 16-15

SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
END;
/

16-16 Oracle Spatial User’s Guide and Reference

SDO_TUNE.EXTENT_OF
SDO_TUNE.EXTENT_OF

Format
SDO_TUNE.EXTENT_OF(

table_name IN VARCHAR2,

column_name IN VARCHAR2

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the minimum bounding rectangle of all geometries in a column of type
SDO_GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry column for which the minimum bounding rectangle is to be returned.

Usage Notes
The function returns NULL if the data is inconsistent.

Examples
The following example calculates the minimum bounding rectangle for the objects
in the SHAPE column of the COLA_MARKETS table.

SELECT SDO_TUNE.EXTENT_OF(’COLA_MARKETS’, ’SHAPE’)

Note: This function is deprecated, and will not be supported in
future versions of Spatial. You are instead encouraged to use the
SDO_AGGR_MBR function, documented in Chapter 12, to return
the MBR of geometries. The SDO_TUNE.EXTENT_OF function is
limited to two-dimensional geometries, whereas the SDO_AGGR_
MBR function is not.
Tuning Functions and Procedures 16-17

SDO_TUNE.EXTENT_OF
 FROM DUAL;

SDO_TUNE.EXTENT_OF(’COLA_MARKETS’,’SHAPE’)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_
ARRAY(1, 1, 10, 11))

Related Topics
SDO_AGGR_MBR (in Chapter 12)

SDO_TUNE.ESTIMATE_TILING_LEVEL

SDO_TUNE.AVERAGE_MBR procedure
16-18 Oracle Spatial User’s Guide and Reference

SDO_TUNE.HISTOGRAM_ANALYSIS
SDO_TUNE.HISTOGRAM_ANALYSIS

Format
SDO_TUNE.HISTOGRAM_ANALYSIS(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

result_table IN VARCHAR2,

type_of_histogram IN VARCHAR2,

max_value IN NUMBER,

intervals IN INTEGER);

Description
Generates statistical histograms based on columns of type SDO_GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry object column for which the histogram is to be computed.

result_table
Result table to hold the histogram.

type_of_histogram
Keyword to specify the type of histogram:

■ TILES_VS_LEVEL (default) -- Provides the number of tiles at different spatial
index levels. (Available only with hybrid indexes.) This histogram is the default,
and is used to evaluate the spatial index that is already built on the geometry
column.

■ GEOMS_VS_TILES -- Provides the number of geometries in different
number-of-tiles ranges. This histogram is used to evaluate the spatial index that
is already built on the geometry column.
Tuning Functions and Procedures 16-19

SDO_TUNE.HISTOGRAM_ANALYSIS
■ GEOMS_VS_AREA -- Provides the number of geometries in different size
ranges. The shape of this histogram could be helpful in choosing a proper index
type and index level

■ GEOMS_VS_VERTICES -- Provides a histogram of the geometry count against
the number of vertices. This histogram could help determine if spatial index
selectivity is important for the layer. Because the number of vertices determines
the performance of the secondary filter, selectivity of the primary filter could be
crucial for layers that contain many complicated geometries.

max_value
 The upper limit of the histogram. That is, the histogram runs in range (0, max_
value).

intervals
Number of intervals between 0 and max_value.

Usage Notes
The procedure populates the result table with statistical histograms for a geometry
table. (HISTOGRAM_ANALYSIS is a procedure, not a function. Procedures do not
return values.)

Before calling this procedure, create the result table (result_table parameter) with
VALUE and COUNT columns. For example:

CREATE TABLE histogram (value NUMBER, count NUMBER);
16-20 Oracle Spatial User’s Guide and Reference

SDO_TUNE.MIX_INFO
SDO_TUNE.MIX_INFO

Format
SDO_TUNE.MIX_INFO(

table_name IN VARCHAR2,

column_name IN VARCHAR2

[, total_geom OUT INTEGER,

point_geom OUT INTEGER,

curve_geom OUT INTEGER,

poly_geom OUT INTEGER,

complex_geom OUT INTEGER]);

Description
Provides information about each geometry type stored in a column of type SDO_
GEOMETRY.

Parameters

table_name
Geometry table.

column_name
Geometry object column for which the geometry type information is to be
calculated.

total_geom
Total number of geometry objects.

point_geom
Number of point geometry objects.

curve_geom
Number of curve string geometry objects.
Tuning Functions and Procedures 16-21

SDO_TUNE.MIX_INFO
poly_geom
Number of polygon geometry objects.

complex_geom
Number of complex geometry objects.

Usage Notes
This procedure calculates geometry type information for the table. It calculates the
total number of geometries, as well as the number of point, curve string, polygon,
and complex geometries.

Examples
The following example displays information about the mix of geometry objects in
the SHAPE column of the COLA_MARKETS table.

EXECUTE SDO_TUNE.MIX_INFO(’COLA_MARKETS’, ’SHAPE’);
Total number of geometries: 4
Point geometries: 0 (0%)
Curvestring geometries: 0 (0%)
Polygon geometries: 4 (100%)
Complex geometries: 0 (0%)
16-22 Oracle Spatial User’s Guide and Reference

SDO_TUNE.QUALITY_DEGRADATION
SDO_TUNE.QUALITY_DEGRADATION

Format
SDO_TUNE.QUALITY_DEGRADATION(

schemaname IN VARCHAR2,

indexname IN VARCHAR2

[, indextable IN VARCHAR2]

) RETURN NUMBER;

Description
Returns the quality degradation for an R-tree index or the average quality
degradation for all index tables for an R-tree index.

Parameters

schemaname
Name of the schema that contains the index specified in indexname.

indexname
Name of the Spatial R-tree index.

indextable
Name of the index table associated with the index specified in indexname. (This
parameter is appropriate only if multiple index tables have been created using the
ALTER INDEX statement with the add_index keyword.)

Usage Notes
The quality degradation is a number indicating approximately how much longer it
will take to execute the I/O operations of the index portion of any given query with
the current index (or index table), compared to executing the I/O operations of the
index portion of the same query when the index was created or most recently
rebuilt. For example, if the I/O operations of the index portion of a typical query
will probably take twice as much time as when the index was created or rebuilt, the
quality degradation is 2. The exact degradation in overall query time is impossible
to predict; however, a substantial quality degradation (2 or 3 or higher) will
Tuning Functions and Procedures 16-23

SDO_TUNE.QUALITY_DEGRADATION
probably affect query performance significantly for large databases, such as those
with millions of rows.

If indextable is not specified, the function returns the average quality degradation for
all index tables associated with indexname if multiple index tables have been created
for the R-tree index. If multiple index tables have not been created (that is, if only
one index table exists for the index), the quality degradation for the index is
returned.

Index names and index table names are available through the xxx_SDO_INDEX_
INFO and xxx_SDO_INDEX_METADATA views, which are described in
Section 2.5.1.

For more information about R-tree quality and its effect on query performance, see
Section 1.7.1.1.

Examples
The following example returns the quality degradation for the COLA_SPATIAL_
IDX index. In this example, the quality has not degraded at all, and therefore the
degradation is 1; that is, the I/O operations of the index portion of queries will
typically take the same time using the current index as using the original or
previous index.

SELECT SDO_TUNE.QUALITY_DEGRADATION(’SCOTT’, ’COLA_SPATIAL_IDX’) FROM DUAL;

SDO_TUNE.QUALITY_DEGRADATION(’SCOTT’,’COLA_SPATIAL_IDX’)
--
 1

Related Topics
SDO_TUNE.ANALYZE_RTREE

SDO_TUNE.RTREE_QUALITY
16-24 Oracle Spatial User’s Guide and Reference

SDO_TUNE.RTREE_QUALITY
SDO_TUNE.RTREE_QUALITY

Format
SDO_TUNE.RTREE_QUALITY(

schemaname IN VARCHAR2,

indexname IN VARCHAR2

[, indextable IN VARCHAR2]

) RETURN NUMBER;

Description
Returns the quality score for an R-tree index table or the average quality score for all
index tables for an R-tree index.

Parameters

schemaname
Name of the schema that contains the index specified in indexname.

indexname
Name of the Spatial R-tree index.

indextable
Name of the index table associated with the index specified in indexname. (This
parameter is appropriate only if multiple index tables have been created using the
ALTER INDEX statement with the add_index keyword.)

Usage Notes
If indextable is not specified, the function returns the average quality score for all
index tables associated with indexname if multiple index tables have been created for
the R-tree index. If multiple index tables have not been created (that is, if only one
index table exists for the index), the quality score for the index is returned.

Index names and index table names are available through the xxx_SDO_INDEX_
INFO and xxx_SDO_INDEX_METADATA views, which are described in
Section 2.5.1.
Tuning Functions and Procedures 16-25

SDO_TUNE.RTREE_QUALITY
This function can be useful in determining the quality of an R-tree and whether or
not an R-tree index should be rebuilt in order to improve query performance. You
can compare the index quality score returned by the function to the quality score at
the time the index was created or most recently rebuilt (stored as SDO_RTREE_
QUALITY in the xxx_INDEX_METADATA views, described in Section 2.5.1).

For more information about R-tree quality and its effect on query performance, see
Section 1.7.1.1.

Examples
The following example returns the current quality score for the COLA_SPATIAL_
IDX index.

SELECT SDO_TUNE.RTREE_QUALITY(’SCOTT’, ’COLA_SPATIAL_IDX’) FROM DUAL;

SDO_TUNE.RTREE_QUALITY(’SCOTT’,’COLA_SPATIAL_IDX’)
--
 1

Related Topics
SDO_TUNE.ANALYZE_RTREE

SDO_TUNE.QUALITY_DEGRADATION
16-26 Oracle Spatial User’s Guide and Reference

Utility Fu
17

Utility Functions

This chapter contains descriptions of the utility functions and procedures shown in
Table 17–1.

Table 17–1 Utility Functions and Procedures

Function/Procedure Description

SDO_UTIL.EXTRACT Returns the geometry that represents a specified
element (and optionally a ring) of the input geometry.

SDO_UTIL.GETVERTICES Returns the coordinates of the vertices of the input
geometry.
nctions 17-1

SDO_UTIL.EXTRACT
SDO_UTIL.EXTRACT

Format
SDO_UTIL.EXTRACT(

geometry IN MDSYS.SDO_GEOMETRY,

element IN NUMBER

[, ring IN NUMBER]

) RETURN MDSYS.SDO_GEOMETRY;

Description
Returns the geometry that represents a specified element (and optionally a ring) of
the input geometry.

Parameters

geometry
Geometry from which to extract the geometry to be returned.

element
Number of the element in the geometry: 1 for the first element, 2 for the second
element, and so on. Geometries with SDO_GTYPE values (explained in
Section 2.2.1) ending in 1, 2, or 3 have one element; geometries with SDO_TYPE
values ending in 4, 5, 6, or 7 can have more than one element. For example, a
multipolygon with an SDO_GTYPE of 2007 might contain three elements
(polygons).

ring
Number of the subelement (ring) within element: 1 for the first subelement, 2 for the
second subelement, and so on. This parameter is valid only for specifying a
subelement of a polygon with one or more holes or of a point cluster:

■ For a polygon with holes, its first subelement is its exterior ring, its second
subelement is its first interior ring, its third subelement is its second interior
ring, and so on. For example, in the polygon with a hole shown in Figure 2–3 in
Section 2.3.2, the exterior ring is subelement 1 and the interior ring (the hole) is
subelement 2.
17-2 Oracle Spatial User’s Guide and Reference

SDO_UTIL.EXTRACT
■ For a point cluster, its first subelement is the first point in the point cluster, its
second subelement is the second point in the point cluster, and so on.

The default is 0, which causes the entire element to be extracted.

Usage Notes
This function is useful for extracting a specific element or subelement from a
complex geometry. For example, if you have identified a geometry as invalid by
using the SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function or the
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure (both of which are
documented in Chapter 11), you can use EXTRACT function to extract the invalid
geometry in order to examine it.

For a polygon with one or more holes, the returned geometry representing an
extracted interior ring is "reoriented" so that its vertices are presented in
counterclockwise order (as opposed to the clockwise order within an interior ring).

If geometry is null or has an SDO_GTYPE value ending in 0, this function returns a
null geometry.

geometry cannot contain a type 0 (zero) element. Type 0 elements are described in
Section 2.3.6.

An exception is raised if element or ring is an invalid number for geometry.

Examples
The following example extracts the first (and only) element in the cola_c geometry.
(The example uses the definitions and data from Section 2.1.)

SELECT c.name, SDO_UTIL.EXTRACT(c.shape, 1)
 FROM cola_markets c WHERE c.name = ’cola_c’;

NAME

SDO_UTIL.EXTRACT(C.SHAPE,1)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_IN
--
cola_c
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3, 3, 6, 3, 6, 5, 4, 5, 3, 3))

The following example inserts a polygon with a hole (using the same INSERT
statement as in Example 2–3 in Section 2.3.2), and extracts the geometry
representing the hole (the second subelement). Notice that in the geometry returned
Utility Functions 17-3

SDO_UTIL.EXTRACT
by the EXTRACT function, the vertices are in counterclockwise order, as opposed to
the clockwise order in the hole (second subelement) in the input geometry.

-- Insert polygon with hole.
INSERT INTO cola_markets VALUES(
 10,
 ’polygon_with_hole’,
 MDSYS.SDO_GEOMETRY(
 2003, -- 2-dimensional polygon
 NULL,
 NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1, 19,2003,1), -- polygon with hole
 MDSYS.SDO_ORDINATE_ARRAY(2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
 7,5, 7,10, 10,10, 10,5, 7,5)
)
);

1 row created.

-- Extract the hole geometry (second subelement).
SELECT SDO_UTIL.EXTRACT(c.shape, 1, 2)
 FROM cola_markets c WHERE c.name = ’polygon_with_hole’;

SDO_UTIL.EXTRACT(C.SHAPE,1,2)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(7, 5, 10, 5, 10, 10, 7, 10, 7, 5))

Related Topics
SDO_UTIL.GETVERTICES

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
17-4 Oracle Spatial User’s Guide and Reference

SDO_UTIL.GETVERTICES
SDO_UTIL.GETVERTICES

Format
SDO_UTIL.GETVERTICES(

geometry IN MDSYS.SDO_GEOMETRY

) RETURN MDSYS.VERTEX_SET_TYPE;

Description
Returns a table containing the coordinates of the vertices of the input geometry.

Parameters

geometry
Geometry for which to return the coordinates of the vertices.

Usage Notes
This function returns an object of MDSYS.VERTEX_SET_TYPE, which consists of a
table of objects of VERTEX_TYPE. Oracle Spatial defines the type VERTEX_SET_
TYPE as:

CREATE TYPE vertex_set_type as TABLE OF vertex_type;

Oracle Spatial defines the object type VERTEX_TYPE as:

CREATE TYPE vertex_type AS OBJECT
 (x NUMBER,
 y NUMBER,
 z NUMBER,
 w NUMBER);

This function can be useful in finding a vertex that is causing a geometry to be
invalid. For example, if you have identified a geometry as invalid by using the
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function or the SDO_
GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure (both of which are
documented in Chapter 11), you can use the GETVERTICES function to view the
vertices in tabular format.
Utility Functions 17-5

SDO_UTIL.GETVERTICES
Examples
The following example returns the X and Y coordinates of the vertices of the
geometries in the SHAPE column of the COLA_MARKETS table. (The example uses
the definitions and data from Section 2.1.)

SELECT c.name, t.X, t.Y
 FROM cola_markets c,
 TABLE(SDO_UTIL.GETVERTICES(c.shape)) t;

NAME X Y
-------------------------------- ---------- ----------
cola_a 1 1
cola_a 5 7
cola_b 5 1
cola_b 8 1
cola_b 8 6
cola_b 5 7
cola_b 5 1
cola_c 3 3
cola_c 6 3
cola_c 6 5
cola_c 4 5
cola_c 3 3
cola_d 8 7
cola_d 10 9
cola_d 8 11

15 rows selected.

Related Topics
SDO_UTIL.EXTRACT

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
17-6 Oracle Spatial User’s Guide and Reference

Installation, Compatibility, and Mig
A

Installation, Compatibility, and Migration

This appendix provides information concerning installation, compatibility, and
migration between various Oracle Spatial product releases.

You must upgrade both the database server and Spatial at the same time if you wish
to use older spatial applications with an Oracle9i release of Spatial. Spatial must
always be synchronized with the Oracle9i database server on upgrade or
downgrade. In both cases, Spatial must be reinstalled.

A.1 Introduction
Many of the Spatial release 9i features depend on new features in release 9i of the
database server. Therefore, there are compatibility and migration issues that need to
be addressed in this release of Spatial. This appendix outlines the database and
application compatibility issues.

An upgrade or downgrade of the database server version requires a corresponding
upgrade or downgrade of Spatial. If an Oracle8i (8.1.5, 8.1.6, or 8.1.7) database
server is upgraded to an Oracle9i database server, Spatial must also be upgraded.
Similarly, if an Oracle9i database server is downgraded, Spatial must be
downgraded too. Lastly, if an Oracle9i database server is running in Oracle8i
compatibility mode, features that are new for Spatial in release 9.0.1 (Oracle9i) will
not work.

In summary:

■ The Spatial release and the Oracle database server release must match.

■ Upgrade and downgrade scripts must be run when upgrading or downgrading
between Oracle8i and Oracle9i.
ration A-1

Installation of Spatial
A.2 Installation of Spatial
This section applies to new users of Oracle Spatial. If you are upgrading from a
previous release of Spatial, see Section A.3, "Upgrading from Spatial Release 8.1.5,
8.1.6, or 8.1.7" or Section A.4, "Upgrading from Spatial Release 9.0.1".

When you install Oracle release 9.2.0, the option to install Spatial is preselected by
default. If you accept this default, you do not need to perform the installation steps
described in this section, because the MDSYS user is already created and locked
automatically.

If you create an Oracle database using the Database Configuration Assistant
(DBCA), Spatial is installed by default and you do not need to perform the
installation steps described in this section.

If you did not select the option to install Spatial at installation time and you want to
install Spatial later, follow these steps.

1. Connect to the database instance specifying AS SYSDBA.

2. Create the MDSYS user with a command in the following format:

SQL> CREATE USER MDSYS IDENTIFIED BY <password>;

3. Grant the required privileges to the MDSYS user by running the following
procedure:

SQL> @ORACLE_HOME/md/admin/mdprivs.sql

4. Connect as MDSYS.

5. Install Spatial by running the following procedure:

SQL> @ORACLE_HOME/md/admin/catmd.sql

After you install Spatial, it is strongly recommended that you lock the MDSYS user.
The MDSYS user is created with administrator privileges; therefore, it is important

Note: Installation of Spatial for release 9.2.0 requires that the
COMPATIBLE init.ora parameter is set to 9.0.0.0.0 or higher. This is
required for the creation and definition of Spatial index types and
operators. Thus, if the database was created with a compatibility
parameter value of 8.n.n.n.n, the DBA must shut down the
database and restart with COMPATIBLE=9.0.n.n.n.
A-2 Oracle Spatial User’s Guide and Reference

Upgrading from Spatial Release 9.0.1
to protect this account from unauthorized use. To lock the MDSYS user, connect as
SYS and enter the following command:

SQL> ALTER USER MDSYS ACCOUNT LOCK;

A.3 Upgrading from Spatial Release 8.1.5, 8.1.6, or 8.1.7
If you are upgrading from Spatial release 8.1.5, 8.1.6, or 8.1.7 to Spatial 9i release 2
(9.2.0), and if you have not chosen the automatic upgrade option, perform the
following steps to upgrade to Spatial release 9.2.0.

1. Make sure that the Oracle RDBMS is upgraded to release 9.2.0.

2. Connect to the database instance specifying AS SYSDBA.

3. Grant the required privileges to the MDSYS user by running the following
procedure:

SQL> @$ORACLE_HOME/md/admin/mdprivs.sql

4. Connect as MDSYS.

5. Perform the migration by running the following procedure:

SQL> @$ORACLE_HOME/md/admin/c81Xu9X.sql

A.4 Upgrading from Spatial Release 9.0.1
If you are upgrading from Spatial 9i release 1 (9.0.1) to Spatial 9i release 2 (9.2.0),
and if you have not chosen the automatic upgrade option, perform the following
steps to upgrade to Spatial release 9.2.0.

Note: The following steps are not necessary if you chose the
Oracle Installer option for an automatic upgrade.

If you have linear referencing system (LRS) data, you must perform
the steps in Section A.5 regardless of whether or not you chose an
automatic upgrade.
Installation, Compatibility, and Migration A-3

Upgrading LRS Data
1. Make sure that the Oracle RDBMS is upgraded to release 9.2.0.

2. Connect to the database instance specifying AS SYSDBA.

3. Grant the required privileges to the MDSYS user by running the following
procedure:

SQL> @$ORACLE_HOME/md/admin/mdprivs.sql

4. Connect as MDSYS.

5. Perform the migration by running the following procedure:

SQL> @$ORACLE_HOME/md/admin/c901u920.sql

A.5 Upgrading LRS Data
If you have linear referencing data (that is, geometries with measure information) in
release 8.1.5, 8.1.6, or 8.1.7 format, you must upgrade that data to the format for
Spatial releases 9.0.1 and 9.2.0, as follows:

1. Drop any spatial indexes on the table with the linear referencing data.

2. Find out which dimension of the object has the linear referencing information.

This could be the third or the fourth dimension, depending on the
dimensionality of the data. For example, if the data has three dimensions (such
as X, Y, and height), the LRS geometry object is 4D, and the LRS dimension in
this case is usually 4.

3. Make sure that the data is in the format for release 8.1.6 or higher (that is, it has
4-digit SDO_GTYPE values).

4. Update the LRS geometry objects by setting the LRS dimension in the SDO_
GTYPE field, as in the following examples.

Example 1: The LRS dimension is 3 for the geometries in the GEOMETRY
column of table LRS_DATA. Update the SDO_GTYPE as follows:

Note: The following steps are not necessary if you chose the
Oracle Installer option for an automatic upgrade.

If you have linear referencing system (LRS) data in release 8.1.7 or
lower format (that is, if the LRS data was not already converted to
release 9.0.1 format), you must perform the steps in Section A.5
regardless of whether or not you chose an automatic upgrade.
A-4 Oracle Spatial User’s Guide and Reference

Upgrading LRS Data
UPDATE LRS_DATA a SET a.geometry.sdo_gtype = a.geometry.sdo_gtype + 300;

Example 2: The LRS dimension is 4 for the geometries in the GEOMETRY
column of table LRS_DATA. Update the SDO_GTYPE as follows:

UPDATE LRS_DATA a SET a.geometry.sdo_gtype = a.geometry.sdo_gtype + 400;
Installation, Compatibility, and Migration A-5

Upgrading LRS Data
A-6 Oracle Spatial User’s Guide and Reference

Hybrid Ind
B

Hybrid Indexing

Quadtree hybrid indexing uses a combination of fixed-size and variable-sized tiles
for spatially indexing a layer. Variable-sized tile spatial indexing uses tiles of
different sizes to approximate a geometry. For each geometry, you will have a set of
fixed-size tiles that fully cover the geometry, and also a set of variable-sized tiles
that fully cover the geometry.

For most applications, you should not use hybrid indexes, but should instead use
quadtree fixed indexes or R-tree indexes. The rare circumstances where hybrid
indexes should be considered are as follows:

■ When joins are required between layers whose optimal fixed index level (SDO_
LEVEL) values are significantly different (4 levels or more), it may be possible
to get better performance by bringing the layer with a higher optimal SDO_
LEVEL down to the lower SDO_LEVEL and adding the SDO_NUMTILES
parameter to ensure adequate tiling of the layer.

The best starting value for SDO_NUMTILES in the new hybrid layer can be
calculated by getting a count of the rows in the spatial index table and dividing
this number by the number of rows with geometries in the layer, then rounding
up. A spatial join (‘QUERYTYPE=JOIN’) is not a common requirement for
applications, and it is comparable to a spatial cross product where each of the
geometries in one layer will be compared with each of the geometries in the
other layer.

■ When both of the following are true for a single layer, hybrid indexing may be
preferable: (1) the layer has a mixture of many geometries covering a very small
area and many polygons covering a very large area; and (2) the optimal fixed
tiling level for the very small geometries will result in an extremely large
number of tiles to be generated for the very large geometries, causing the
spatial index to grow to an unreasonable size.
exing B-1

If both of these conditions are true, it may be better to use the SDO_NUMTILES
parameter to get coverage for the smaller geometries, while keeping the fixed
tile size relatively large for the large geometries by using a smaller SDO_LEVEL
value.

In Figure B–1, the variable-sized cover tiles closely approximate each geometry. This
results in good selectivity. The number of variable tiles needed to cover a geometry
is controlled using the SDO_NUMTILES parameter.

Figure B–1 Variable-Sized Tile Spatial Indexing

A variable tile is subdivided if it interacts with the geometry, and subdivision will
not result in tiles that are smaller than a predetermined size. This size, or tiling
resolution, is determined by a default SDO_MAXLEVEL value.
B-2 Oracle Spatial User’s Guide and Reference

Figure B–2 illustrates how geometry OBJ_1 is approximated with hybrid indexing
(SDO_LEVEL = 1 and SDO_NUMTILES = 4). These are not recommended values
for SDO_LEVEL and SDO_NUMTILES; they were chosen to simplify this example.
The cover tiles are stored in the SDOINDEX table as shown in Table B–1.

Figure B–2 Decomposition of the Geometry

In Figure B–2, note that for simplicity the tiles have been numbered, and LL and UR
indicate lower left and upper right, respectively. For example, T2_LL indicates the
lower left corner of tile T2. (This designation scheme does not reflect the actual
format use in Spatial.)
Hybrid Indexing B-3

Creating a Hybrid Index
In Figure B–2, note which fixed-size tiles are associated with geometry OBJ_1. Only
three (T0, T2, T3) of the four large tiles (T0, T1, T2, T3) generated by the tessellation
actually interact with the geometry. Only those three are stored in the SDOINDEX
table. In examining which variable-sized tiles are used, tile T0 shows a further
tessellation to four smaller tiles, two of which (T02, T03) are used to cover a portion
of the geometry. The variable-sized tiles are stored in the SDO_CODE column in the
Spatial index table. The fixed-size tiles are stored in the SDO_GROUPCODE
column. The spatial index structure is discussed in Section 2.5.

Table B–1 shows the tiles from Figure B–2 that are stored in the SDOINDEX table.

As with the fixed-size tile model, all elements in a geometry are tessellated in one
step. In a multielement geometry like OBJ_1, Element 1 (the hole shown in
Figure B–2) is covered by a redundant tile (T2) from the tessellation of Element 0,
but this tile is stored only once.

The SDO_TUNE package has some functions that help determine appropriate SDO_
LEVEL and SDO_NUMTILES values.

B.1 Creating a Hybrid Index
This section describes hybrid indexing, which uses both fixed-size and
variable-sized tiles as a spatial indexing mechanism. For each geometry, you will
have a set of fixed-size tiles that fully covers the geometry, and a set of
variable-sized tiles that fully covers the geometry. The terms hybrid indexing,
hybrid tiling, and hybrid tessellation are used interchangeably in this section.

To use hybrid tiling, the SDO_LEVEL and SDO_NUMTILES keywords in the
PARAMETERS clause must contain valid values. Both SDO_LEVEL and SDO_
NUMTILES must be greater than 1.

Table B–1 Section of the SDOINDEX Table

SDO_ROWID
<RAW>

SDO_CODE
<RAW>

SDO_
MAXCODE
<RAW>

SDO_
GROUPCODE
<RAW>

SDO_META
<RAW>

GID_OBJ_1 T02 <binary data> T0 <binary data>

GID_OBJ_1 T03 <binary data> T0 <binary data>

GID_OBJ_1 T2 <binary data> T2 <binary data>

GID_OBJ_1 T3 <binary data> T3 <binary data>
B-4 Oracle Spatial User’s Guide and Reference

Tuning Considerations with Hybrid Indexes
The SDO_NUMTILES value determines the number of variable tiles that will be
used to fully cover a geometry being indexed. Typically this value is small. For
points, SDO_NUMTILES is always one. For other element types, you might set
SDO_NUMTILES to a value around 8. The larger the SDO_NUMTILES value, the
better the tiles will approximate the geometry being covered. A larger SDO_
NUMTILES value improves the selectivity of the primary filter, but it also increases
the number of index entries per geometry (see Section 4.2.1.1 and Section 4.2.1.2 for
a discussion of primary and secondary filters). The SDO_NUMTILES value should
be larger for long, linear spatial entities, such as major highways or rivers, than for
area-related spatial entities such as county or state boundaries.

The SDO_LEVEL value determines the size of the fixed tiles used to fully cover the
geometry being indexed. Setting the proper SDO_LEVEL value may appear more
like art than science. Performing some simple data analysis and testing puts the
process back in the realm of science. One approach would be to use the SDO_
TUNE.ESTIMATE_TILING_LEVEL function to determine an appropriate starting
SDO_LEVEL value, and then compare the performance with slightly higher or
lower values.

In Example B–1, assume that data has been loaded into a table called ROADS, and
the USER_SDO_GEOM_METADATA view has an entry for ROADS.SHAPE.
(Assume also that no spatial index has already been created on the ROADS.SHAPE
column.) You can use the following SQL statement to create a hybrid index named
ROADS_HYBRID.

Example B–1 Creating a Hybrid Index

CREATE INDEX ROADS_HYBRID ON ROADS(SHAPE)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX PARAMETERS(’SDO_LEVEL=6 SDO_NUMTILES=12’);

B.2 Tuning Considerations with Hybrid Indexes
Hybrid indexing allows indexes to be built using the tiling mechanism by
specifying the SDO_LEVEL. Additionally, hybrid indexing introduces the ability to
specify the minimum number of tiles to be created for each geometry during the
indexing process by specifying the indexing parameter SDO_NUMTILES.

If the number of tiles created for a geometry using the SDO_LEVEL value is less
than the value specified by the SDO_NUMTILES value, then the indexing process
continues by creating more tiles for the geometry until the SDO_NUMTILES value
has been reached. The ability to specify the minimum number of tiles for each
geometry is important for a number of reasons:
Hybrid Indexing B-5

Tuning Considerations with Hybrid Indexes
■ It ensures that all geometries will have at least as many index entries as the
value of SDO_NUMTILES, regardless of the tiling level.

■ It can reduce (as compared to fixed indexing) the space required for index data
to get full indexing coverage of all geometries.

■ Special performance enhancing algorithms have been coded within Spatial to
make use of hybrid indexes.

If hybrid indexing is used and if the layer being indexed is point-only data, the
SDO_NUMTILES value should be set to 1.
B-6 Oracle Spatial User’s Guide and Reference

Lo
C

Locator

Oracle9i Locator (also referred to as Locator) is a feature of Oracle interMedia,
which is available on the Oracle Standard Edition. Locator provides core features
and services available in Oracle Spatial. It provides significant capabilities typically
required to support Internet and wireless service-based applications and
partner-based GIS solutions. Locator is not designed to be a solution for GIS
applications requiring complex spatial data management. If you need capabilities
such as linear referencing, spatial functions, or coordinate system transformations,
use Oracle Spatial instead of Locator.

Like Spatial, Locator is not designed to be an end-user application, but is a set of
spatial capabilities for application developers.

Locator is available with both Oracle9i Standard Edition and Oracle9i Enterprise
Edition. Spatial is a priced option available only with Oracle9i Enterprise Edition.
Spatial includes all Locator features as well as other features that are not available
with Locator.

Locator has been enhanced for Oracle9i. In general, it includes the data types,
operators, and indexing capabilities of Oracle Spatial, along with a limited set of the
functions and procedures of Spatial. The Locator features include the following:

■ An object type (SDO_GEOMETRY) that describes and supports any type of
geometry

■ A spatial indexing capability that lets you create R-tree or quadtree-based
spatial indexes on geometry data

■ Spatial operators that use the spatial index for performing spatial queries: SDO_
FILTER, SDO_NN, SDO_NN, SDO_NN_DISTANCE, and SDO_WITHIN_
DISTANCE
cator C-1

■ Some geometry functions and the SDO_AGGR_MBR spatial aggregate function

■ Ability to work with third-party geocoding tools

■ Integration with Oracle9iAS Wireless Edition

For information about spatial concepts, the SDO_GEOMETRY object type, and
indexing and loading spatial data, see Chapters 1 through 4 in this guide. For
reference and usage information about features supported by Locator, see the
chapter or section listed in Table C–1.

Note: For Oracle8i, LOCATOR_WITHIN_DISTANCE was the
only Locator operator supported. For Oracle9i, LOCATOR_
WITHIN_DISTANCE and SDO_WITHIN_DISTANCE are
synonyms (same signatures and behavior), and both are supported.

Table C–1 Spatial Features Supported for Locator

Spatial Feature Described in

Ability to integrate with third-party geocoders Section 1.10

Function-based spatial indexing Section 7.2

Table partitioning support for spatial indexes (including
splitting, merging, and exchanging partitions and their
indexes)

Section 4.1.7 and
Section 4.1.8

Geodetic data support Section 5.2 and Section 5.4

SQL statements for creating, altering, and deleting indexes
(except deferred updates to spatial indexes, as noted in
Table C–2)

 Chapter 8

Parallel spatial index builds (PARALLEL keyword with ALTER
INDEX REBUILD and CREATE INDEX statements) (new with
Release 9.2)

Chapter 8

SDO_GEOMETRY object type methods Chapter 9

Spatial operators Chapter 10

Implicit coordinate system transformations for operator calls
where a window needs to be converted to the coordinate
system of the queried layer

Chapter 10
C-2 Oracle Spatial User’s Guide and Reference

Table C–2 lists Spatial features that are not supported for Locator, with the chapter
or section in this guide that describes the feature.

The following SDO_GEOM package functions and procedures:
SDO_GEOM.SDO_DISTANCE
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
SDO_GEOM.VALIDATE_GEOMETRY (deprecated)
SDO_GEOM.VALIDATE_LAYER (deprecated)

 Chapter 11

SDO_AGGR_MBR spatial aggregate function (new to Locator
with Release 9.2)

 Chapter 12

Function (SDO_CS.VIEWPORT_TRANSFORM) to transform a
viewport MBR to work with geodetic coordinate systems, thus
allowing client tools to select geodetic data for viewing

Chapter 13

Package (SDO_MIGRATE) to migrate data from release 8.1.5
object-relational format to the release 8.1.6 object-relational
format (data using the release 8.1.6 format requires no further
migration)

Chapter 15

Object replication Oracle9i Replication

Graphical tool for tuning spatial quadtree indexes (Spatial
Index Advisor integrated application in Oracle Enterprise
Manager)

Online help for Oracle
Enterprise Manager

Table C–2 Spatial Features Not Supported for Locator

Spatial Feature Described in

Deferred updates to spatial indexes (’index_
status=deferred’ with the ALTER INDEX statement)

 Chapter 8

SDO_GEOM package functions and procedures, except for
those listed in Table C–1

 Chapter 11

Spatial aggregate functions, except for any listed in
Table C–1

 Chapter 12

Linear Referencing System (LRS) support Chapter 6 (concepts and
usage) and Chapter 14
(reference)

Table C–1 Spatial Features Supported for Locator (Cont.)

Spatial Feature Described in
Locator C-3

Locator is available on both Oracle9i Standard Edition and Oracle9i Enterprise
Edition. Some capabilities requires server features that are not available or are
limited on Oracle9i Standard Edition. Some of those features and their availability
are listed in Table C–3.

Coordinate system support for explicit geometry and layer
transformations (SDO_CS.TRANSFORM function and
SDO_CS.TRANSFORM_LAYER procedure)

 Chapter 13

Tuning functions and procedures (SDO_TUNE package) Chapter 16

Spatial utility functions (SDO_UTIL package) Chapter 17

Table C–3 Feature Availability with Standard and Enterprise Editions

Feature Standard/Enterprise Edition Availability

Parallel spatial index
builds

Supported with Enterprise Edition only.

Multimaster replication of
SDO_GEOMETRY objects

Supported with Enterprise Edition only. (Single
master/materialized view replication for SDO_GEOMETRY
objects is supported with both Standard Edition and Enterprise
Edition. See Oracle9i Replication for more information.)

Partitioned spatial indexes Requires the Partitioning Option with Enterprise Edition. Not
supported with Standard Edition.

Table C–2 Spatial Features Not Supported for Locator (Cont.)

Spatial Feature Described in
C-4 Oracle Spatial User’s Guide and Reference

Glossary

area

An extent or region of dimensional space.

attribute

Descriptive information characterizing a geographical feature such as a point, line,
or area.

attribute data

Nondimensional data that provides additional descriptive information about
multidimensional data, for example a class or feature such as a bridge or a road.

authalic sphere

A sphere that has the same surface area as a particular oblate ellipsoid of revolution
representing the figure of the Earth.

batch geocoding

An operation that simultaneously geocodes many records from one table. See also
geocoding.

boundary

1. The lower or upper extent of the range of a dimension, expressed by a numeric
value.

2. The line representing the outline of a polygon.

Cartesian coordinate system

A coordinate system in which the location of a point in n-dimensional space is
defined by distances from the point to the reference plane. Distances are measured
Glossary-1

parallel to the planes intersecting a given reference plane. See also coordinate
system.

contain

To describe a geometric relationship where one object encompasses another and the
inner object does not touch any boundaries of the outer. The outer object contains
the inner object. See also inside.

convex hull

A simple convex polygon that completely encloses the associated geometry object.

coordinate

A set of values uniquely defining a point in an n-dimensional coordinate system.

coordinate system

A reference system for the unique definition for the location of a point in
n-dimensional space. Also called a spatial reference system.

cover

To describe a geometric relationship in which one object encompasses another and
the inner object touches the boundary of the outer object in one or more places.

data dictionary

A repository of information about data. A data dictionary stores relational
information on all the objects in a database.

datum transformation

See transformation.

decompose

To separate or resolve into constituent parts or elements, or into simpler
compounds.

dimensional data

Data that has one or more dimensional components and is described by multiple
values.
Glossary-2

direction

The direction of an LRS geometric segment is indicated from the start point of the
geometric segment to the end point. Measures of points on a geometric segment
always increase along the direction of the geometric segment.

disjoint

A geometric relationship where two objects do not interact in any way. Two disjoint
objects do not share any element or piece of their geometry.

equal

A geometric relationship in which two objects are considered to represent the same
geometric figure. The two objects must be composed of the same number of points,
however, the ordering of the points defining the two objects’ geometries may differ
(clockwise or counterclockwise).

extent

A rectangle bounding a map, the size of which is determined by the minimum and
maximum map coordinates.

feature

An object with a distinct set of characteristics in a spatial database.

geocoding

The process of converting tables of address data into standardized address, location,
and possibly other data.

geodetic coordinates

Angular coordinates (longitude and latitude), closely related to spherical polar
coordinates, and are defined relative to a particular Earth geodetic datum. Also
referred to as geographic coordinates.

geodetic datum

A means of representing the figure of the Earth, usually as an oblate ellipsoid of
revolution, that approximates the surface of the Earth locally or globally, and is the
reference for the system of geodetic coordinates.

geographic coordinates

See geodetic coordinates.
Glossary-3

geographical information system (GIS)

A computerized database management system used for the capture, conversion,
storage, retrieval, analysis, and display of spatial data.

geographically referenced data

See spatiotemporal data.

geometry

The geometric representation of the shape of a spatial feature in some coordinate
space.

georeferenced data

See spatiotemporal data.

GIS

See geographical information system (GIS).

grid

A data structure composed of points located at the nodes of an imaginary grid. The
spacing of the nodes is constant in both the horizontal and vertical directions.

hole

A polygon can include subelements that negate sections of its interior. For example,
consider a polygon representing a map of buildable land with an inner polygon (a
hole) representing where a lake is located.

homogeneous

Spatial data of one feature type such as points, lines, or regions.

hyperspatial data

In mathematics, any space having more than the three standard x, y, and z
dimensions, also referred to as multidimensional data.

index

Identifier that is not part of a database and used to access stored information.
Glossary-4

inside

To describe a geometric relationship where one object is surrounded by a larger
object and the inner object does not touch the boundary of the outer. The smaller
object is inside the larger. See also contain.

key

A field in a database used to obtain access to stored information.

keyword

Synonym for reserved word.

latitude

North/south position of a point on the Earth defined as the angle between the
normal to the Earth’s surface at that point and the plane of the equator.

layer

A collection of geometries having the same attribute set and stored in a geometry
column.

line

A geometric object represented by a series of points, or inferred as existing between
two coordinate points.

linear feature

Any spatial object that can be treated as a logical set of linear segments.

local coordinates

Cartesian coordinates in a non-Earth (non-georeferenced) coordinate system.

longitude

East/west position of a point on the Earth defined as the angle between the plane of
a reference meridian and the plane of a meridian passing through an arbitrary
point.

measure

The linear distance (in the LRS measure dimension) measured from the start point
of the geometric segment.
Glossary-5

measure range

The measure values at the start and end measures of a geometric segment.

multidimensional data

See hyperspatial data.

offset

The perpendicular distance between a point along a geometric segment and the
geometric segment. Offsets are positive if points are on the left side along the
segment direction and are negative if they are on the right side. Points are on a
geometric segment if their offsets to the segment are zero.

polygon

A class of spatial objects having a nonzero area and perimeter, and representing a
closed boundary region of uniform characteristics.

primary filter

The operation that permits fast selection of candidate records to pass along to the
secondary filter. The primary filter compares geometry approximations to reduce
computation complexity and is considered a lower-cost filter. Because the primary
filter compares geometric approximations, it returns a superset of the exact result
set. See also secondary filter and two-tier query model.

projected coordinates

Planar Cartesian coordinates that result from performing a mathematical mapping
from a point on the Earth’s surface to a plane. There are many such mathematical
mappings, each used for a particular purpose.

projection

The point on the LRS geometric segment with the minimum distance to the
specified point.

proximity

A measure of inter-object distance.

query

A set of conditions or questions that form the basis for the retrieval of information
from a database.
Glossary-6

query window

Area within which the retrieval of spatial information and related attributes is
performed.

RDBMS

See Relational Database Management System (RDBMS).

recursion

A process, function, or routine that executes continuously until a specified condition
is met.

region

An extent or area of multidimensional space.

Relational Database Management System (RDBMS)

A computer program designed to store and retrieve shared data. In a relational
system, data is stored in tables consisting of one or more rows, each containing the
same set of columns. Oracle9i is an object-relational database management system.
Other types of database systems are called hierarchical or network database
systems.

resolution

The number of subdivision levels of data.

scale

The ratio of the distance on a map, photograph, or image to the corresponding
image on the ground, all expressed in the same units.

secondary filter

The operation that applies exact computations to geometries that result from the
primary filter. The secondary filter yields an accurate answer to a spatial query. The
secondary filter operation is computationally expensive, but it is only applied to the
primary filter results, not the entire data set. See also primary filter and two-tier
query model.

shape points

Points that are specified when an LRS segment is constructed, and that are assigned
measure information.
Glossary-7

sort

The operation of arranging a set of items according to a key that determines the
sequence and precedence of items.

spatial

A generic term used to reference the mathematical concept of n-dimensional data.

spatial data

Data that is referenced by its location in n-dimensional space. The position of spatial
data is described by multiple values. See also hyperspatial data.

spatial database

A database containing information indexed by location.

spatial data model

A model of how objects are located on a spatial context.

Spatial data dictionary

An extension of the Oracle9i data dictionary. It keeps track of the number of
partitions created in a spatial table. The Spatial data dictionary is owned by user
MDSYS. The data dictionary is used only by the deprecated partitioned point
routines.

spatial data structures

A class of data structures designed to store spatial information and facilitate its
manipulation.

spatial join

A query in which each of the geometries in one layer is compared with each of the
geometries in the other layer. Comparable to a spatial cross product.

spatial query

A query that includes criteria for which selected features must meet location
conditions.

spatial reference system

See coordinate system.
Glossary-8

spatiotemporal data

Data that contains time and/or location components as one of its dimensions, also
referred to as geographically referenced data or georeferenced data.

SQL*Loader

A utility to load formatted data into spatial tables.

tessellation

The process of covering a geometry with rectangular tiles without gaps or overlaps.

tiling

 See tessellation.

touch

A geometric relationship where two objects share a common point on their
boundaries, but their interiors do not intersect.

transformation

The conversion of coordinates from one coordinate system to another coordinate
system. If the coordinate system is georeferenced, transformation can involve
datum transformation: the conversion of geodetic coordinates from one geodetic
datum to another geodetic datum, usually involving changes in the shape,
orientation, and center position of the reference ellipsoid.

two-tier query model

The query model used by Spatial to resolve spatial queries and spatial joins. Two
distinct filtering operations (primary and secondary) are performed to resolve
queries. The output of both operations yields the exact result set. See also primary
filter and secondary filter.
Glossary-9

Glossary-10

Index

Symbols
_3D

formats of LRS functions, 6-9

Numerics
0

SRID value used with SDO_CS.VIEWPORT_
TRANSFORM function, 13-8

type 0 (zero) element, 2-24
9i

migrating to Oracle9i, 15-11

A
aggregate functions

description, 1-23
reference information, 12-1
SDO_AGGR_CENTROID, 12-2
SDO_AGGR_CONVEXHULL, 12-4
SDO_AGGR_LRS_CONCAT, 12-5
SDO_AGGR_MBR, 12-7
SDO_AGGR_UNION, 12-8
SDOAGGRTYPE object type, 1-24

ALL_SDO_GEOM_METADATA view, 2-26
ALL_SDO_INDEX_INFO view, 2-29
ALL_SDO_INDEX_METADATA view, 2-30
ALTER INDEX statement, 8-2

REBUILD clause, 8-7
RENAME TO clause, 8-11

ANALYZE_RTREE procedure, 16-3
angle units, 5-10
ANYINTERACT mask relationship, 11-5

application size (hardware) requirements, 1-26
arc

densifying, 11-7
not supported with geodetic data, 5-4

area, 11-10
authalic sphere, 5-2
average minimum bounding rectangle, 16-5
AVERAGE_MBR procedure, 16-5

B
bounding rectangle

minimum, 16-17
buffer area, 11-12
bulk loading of spatial data, 3-1

C
C language

examples (using OCI), 1-27
Cartesian coordinates, 1-6, 5-1
center of gravity (centroid), 11-16
centroid

SDO_AGGR_CENTROID aggregate
function, 12-2

SDO_CENTROID function, 11-16
circle

not supported with geodetic data, 5-4
type, 2-13

CLIP_GEOM_SEGMENT function, 14-5
clipping a geometric segment, 6-12
column name

restrictions on spatial column names, 2-28
COLUMN_NAME (in USER_SDO_GEOM_
Index-1

METADATA), 2-28
compatibility, A-1
compound element, 2-10
compound line string, 2-13, 2-18
compound polygon, 2-13
CONCATENATE_GEOM_SEGMENTS

function, 14-7
concatenating geometric segments, 6-13

aggregate concatenation, 6-15, 12-5
CONNECTED_GEOM_SEGMENTS

function, 14-10
consistency

checking for valid geometry types, 11-44, 11-46
constraining data to a geometry type, 4-7
CONTAINS mask relationship, 11-5
CONVERSION_FACTOR column

in SDO_ANGLE_UNITS table, 5-11
in SDO_AREA_UNITS table, 2-36
in SDO_DIST_UNITS table, 2-35

CONVERSION_FACTOR column in SDO_DIST_
UNITS table, 5-11

CONVERT_TO_LRS_DIM_ARRAY function, 14-12
CONVERT_TO_LRS_GEOM function, 14-15
CONVERT_TO_LRS_LAYER function, 14-18
CONVERT_TO_STD_DIM_ARRAY

function, 14-21
CONVERT_TO_STD_GEOM function, 14-23
CONVERT_TO_STD_LAYER function, 14-25
converting

geometric segments
functions for, 14-3
overview, 6-19

convex hull
SDO_AGGR_CONVEXHULL aggregate

function, 12-4
SDO_CONVEXHULL function, 11-18

coordinate systems
conceptual and usage information, 5-1
example, 5-20
function reference information, 13-1
local, 5-5
user-defined, 5-16

coordinates
Cartesian, 1-6, 5-1
geodetic, 1-6, 5-2, 5-3

geographic, 1-6, 5-2
local, 1-7, 5-2
projected, 1-6, 5-2

COVEREDBY mask relationship, 11-5
COVERS mask relationship, 11-5
CPU requirements for spatial applications, 1-26
CREATE INDEX statement, 8-12
creating

geometric segments
functions for, 14-1

cross-schema index creation, 4-8
CS_SRS table, 5-7
current release

migrating to, 15-11

D
data model, 1-4

LRS, 6-7
data types

spatial, 2-1
datum

geodetic, 1-6, 5-2
MDSYS.SDO_DATUMS table, 5-11
transformation, 5-2

DBA_SDO_GEOM_METADATA view, 2-27
DBA_SDO_INDEX_INFO view, 2-30
DBA_SDO_INDEX_METADATA view, 2-30
deferred index updates, 8-2
DEFINE_GEOM_SEGMENT function, 14-27
defining a geometric segment, 6-10
densification of arcs, 11-7
difference, 11-20
dimension (in SDO_GTYPE), 2-7, 2-8

GET_DIMS method, 9-2
GET_LRS_DIM method, 9-4

DIMINFO (in USER_SDO_GEOM_
METADATA), 2-28

direction of geometric segment, 6-3
concatenation result, 6-14

DISJOINT mask relationship, 11-5
disk storage requirements for spatial

applications, 1-26
distance

SDO_NN_DISTANCE ancillary operator, 10-11
Index-2

WITHIN_DISTANCE function, 11-55
distance units, 5-11
DROP INDEX statement, 8-19
dynamic query window, 4-12
DYNAMIC_SEGMENT function, 14-30

E
editing

geometric segments
functions for, 14-1

ELEM_INFO (SDO_ELEM_INFO), 2-9
element, 1-5

extracting from a geometry, 17-2
ellipsoids, 5-14
embedded SDO_GEOMETRY object in user-defined

type, 7-1
EQUAL mask relationship, 11-5
error messages

Spatial, 1-26
ESTIMATE_INDEX_PERFORMANCE

function, 16-7
ESTIMATE_TILING_LEVEL function, 16-10
ESTIMATE_TILING_TIME function, 16-12
ESTIMATE_TOTAL_NUMTILES function, 16-14
ETYPE (SDO_ETYPE), 2-10
examples

C, 1-27
coordinate systems, 5-20
creating, indexing, and querying spatial

data, 2-1
directory for Spatial examples, 1-27
Linear Referencing System (LRS), 6-20
OCI (Oracle Call Interface), 1-27
PL/SQL, 1-27
SQL, 1-27

exchanging partitions including indexes, 4-10
EXTENT_OF function, 16-17
exterior polygon rings, 2-7, 2-10, 2-16, 2-18
EXTRACT function, 17-2

F
features

linear, 6-6

FIND_LRS_DIM_POS function, 14-32
FIND_MEASURE function, 14-33
fixed indexing, 1-16
fixed-size tiles, 4-3
FROM_815_TO_81x procedure, 15-2
function-based index

with SDO_GEOMETRY objects, 7-3
function-based indexes

privilege and session requirements, 7-4
functions and procedures

aggregate (spatial), 12-1
ANALYZE_RTREE, 16-3
AVERAGE_MBR, 16-5
CLIP_GEOM_SEGMENT, 14-5
CONCATENATE_GEOM_SEGMENTS, 14-7
CONNECTED_GEOM_SEGMENTS, 14-10
CONVERT_TO_LRS_DIM_ARRAY, 14-12
CONVERT_TO_LRS_GEOM, 14-15
CONVERT_TO_LRS_LAYER, 14-18
CONVERT_TO_STD_DIM_ARRAY, 14-21
CONVERT_TO_STD_GEOM, 14-23
CONVERT_TO_STD_LAYER, 14-25
coordinate system transformation, 13-1
DEFINE_GEOM_SEGMENT, 14-27
DYNAMIC_SEGMENT, 14-30
ESTIMATE_INDEX_PERFORMANCE, 16-7
ESTIMATE_TILING_LEVEL, 16-10
ESTIMATE_TILING_TIME, 16-12
ESTIMATE_TOTAL_NUMTILES, 16-14
EXTENT_OF, 16-17
EXTRACT, 17-2
FIND_LRS_DIM_POS, 14-32
FIND_MEASURE, 14-33
FROM_815_TO_81x, 15-2
GEOM_SEGMENT_END_MEASURE, 14-45
GEOM_SEGMENT_END_PT, 14-37
GEOM_SEGMENT_LENGTH, 14-39
GEOM_SEGMENT_START_MEASURE, 14-41
GEOM_SEGMENT_START_PT, 14-43
geometry, 11-1
GET_MEASURE, 14-45
GETVERTICES, 17-5
HISTOGRAM_ANALYSIS, 16-19
IS_GEOM_SEGMENT_DEFINED, 14-47
IS_MEASURE_DECREASING, 14-49
Index-3

IS_MEASURE_INCREASING, 14-51
linear referencing (LRS), 14-1
LOCATE_PT, 14-53
MEASURE_RANGE, 14-56
MEASURE_TO_PERCENTAGE, 14-58
migration, 15-1
MIX_INFO, 16-21
not supported with geodetic data, 5-19
OFFSET_GEOM_SEGMENT, 14-60
OGIS_METADATA_FROM, 15-4
OGIS_METADATA_TO, 15-5
PERCENTAGE_TO_MEASURE, 14-64
PROJECT_PT, 14-66
QUALITY_DEGRADATION, 16-23
REDEFINE_GEOM_SEGMENT, 14-68
RELATE, 11-4
RESET_MEASURE, 14-71
REVERSE_GEOMETRY, 14-73
REVERSE_MEASURE, 14-75
RTREE_QUALITY, 16-25
SCALE_GEOM_SEGMENT, 14-77
SDO_AGGR_CENTROID, 12-2
SDO_AGGR_CONVEXHULL, 12-4
SDO_ARC_DENSIFY, 11-7
SDO_AREA, 11-10
SDO_BUFFER, 11-12
SDO_CENTROID, 11-16
SDO_CONVEXHULL, 11-18
SDO_DIFFERENCE, 11-20
SDO_DISTANCE, 11-23
SDO_INTERSECTION, 11-25
SDO_LENGTH, 11-28
SDO_MAX_MBR_ORDINATE, 11-30
SDO_MBR, 11-32
SDO_MIN_MBR_ORDINATE, 11-34
SDO_POINTONSURFACE, 11-36
SDO_UNION, 11-38
SDO_XOR, 11-41
SET_PT_MEASURE, 14-80
spatial aggregate, 12-1
SPLIT_GEOM_SEGMENT, 14-83
supported by approximations with geodetic

data, 5-20
TO_734, 15-6
TO_81x, 15-8

TO_CURRENT, 15-11
TRANSFORM, 13-2
TRANSFORM_LAYER, 13-5
TRANSLATE_MEASURE, 14-86
tuning, 16-1
utility, 17-1
VALID_GEOM_SEGMENT, 14-88
VALID_LRS_POINT, 14-90
VALID_MEASURE, 14-92
VALIDATE_GEOMETRY, 11-44
VALIDATE_GEOMETRY_WITH_

CONTEXT, 11-46
VALIDATE_LAYER, 11-49
VALIDATE_LAYER_WITH_CONTEXT, 11-52
VALIDATE_LRS_GEOMETRY, 14-94
VIEWPORT_TRANSFORM function, 13-7
WITHIN_DISTANCE, 11-55

G
geocoding, 1-25
geodetic coordinates, 1-6, 5-2

arcs and circles not supported, 5-4
functions not supported, 5-19
functions supported by approximations, 5-20
support for, 5-3

geodetic datum, 1-6, 5-2
geodetic index, 4-7
geographic coordinates, 1-6, 5-2
GEOM_SEGMENT_END_MEASURE

function, 14-45
GEOM_SEGMENT_END_PT function, 14-37
GEOM_SEGMENT_LENGTH function, 14-39
GEOM_SEGMENT_START_MEASURE

function, 14-41
GEOM_SEGMENT_START_PT function, 14-43
geometric segment

clipping, 6-12
concatenating, 6-13

aggregate, 6-15, 12-5
converting (functions for), 14-3
converting (overview), 6-19
creating (functions for), 14-1
defining, 6-10
definition of, 6-2
Index-4

direction, 6-3
direction with concatenation, 6-14
editing (functions for), 14-1
locating point on, 6-17
offsetting, 6-16
projecting point onto, 6-18
querying (functions for), 14-2
redefining, 6-11
scaling, 6-15
splitting, 6-13

geometry functions
reference information, 11-1

geometry type
constraining data to, 4-7
GET_DIMS method, 9-3
SDO_GTYPE, 2-7

geometry types, 1-3
GET_DIMS method, 9-2
GET_GTYPE method, 9-3
GET_LRS_DIM method, 9-4
GET_MEASURE function, 14-45
GETVERTICES function, 17-5
GTYPE (SDO_GTYPE), 2-7

constraining data to a geometry type, 4-7

H
hardware requirements for spatial

applications, 1-26
HISTOGRAM_ANALYSIS procedure, 16-19
hybrid indexing, B-1

I
index

creation, 4-1
cross-schema, 4-8
parallel execution, 8-14

deferred updating, 8-2
description of Spatial indexing, 1-11
geodetic and non-geodetic, 4-7
hybrid, B-1
partitioned, 4-8

exchanging partitions including
indexes, 4-10

performance, 16-7
quadtree, 1-14
rebuilding

parallel execution, 8-9
R-tree, 1-12
R-tree (requirements before creating), 4-2
synchronizing deferred updates, 8-2

index-organized table
cannot create spatial index on, 8-15

inserting spatial data
PL/SQL, 3-4

INSIDE mask relationship, 11-5
installation, A-1
installation procedure for Spatial, A-2
INTEPRETATION (SDO_

INTERPRETATION), 2-11
interaction

ANYINTERACT, 11-5
interior polygon rings, 2-7, 2-10, 2-16, 2-18
interMedia Locator

See Locator
intersection, 11-25
inverse flattening, 5-14
IS_GEOM_SEGMENT_DEFINED function, 14-47
IS_MEASURE_DECREASING function, 14-49
IS_MEASURE_INCREASING function, 14-51

L
layer, 1-5

transforming, 13-5
validating, 11-49
validating with context, 11-52

layer_gtype
constraining data to a geometry type, 4-7

length
SDO_LENGTH function, 11-28

line
data, 1-5
length, 11-28

line string
compound, 2-13, 2-18
self-crossing, 1-4

linear features, 6-6
linear measure, 6-3
Index-5

Linear Referencing System (LRS)
3D formats of functions, 6-9
conceptual and usage information, 6-1
data model, 6-7
example, 6-20
function reference information, 14-1
GET_LRS_DIM method, 9-4
limiting indexing to X and Y dimensions, 6-8
LRS point, 6-6
segments, 6-2
upgrading data to current release, A-4

loading spatial data, 3-1
local coordinate systems, 5-5
local coordinates, 1-7, 5-2
LOCAL partitioning

spatial index, 4-8
LOCATE_PT function, 14-53
Locator, C-1
LRS

See Linear Referencing System (LRS)
LRS point, 6-6

M
map projections, 5-15
MBR

SDO_AGGR_MBR aggregate function, 12-7
SDO_MAX_MBR_ORDINATE function, 11-30
SDO_MBR function, 11-32
SDO_MIN_MBR_ORDINATE function, 11-34

MDSYS schema, 1-1
MDSYS user

created during default installation, A-2
protecting against unauthorized use, A-2

MDSYS.CS_SRS table, 5-7
MDSYS.SDO_ANGLE_UNITS table, 5-10
MDSYS.SDO_CS package, 13-1
MDSYS.SDO_DATUMS table, 5-11
MDSYS.SDO_DIST_UNITS table, 5-11
MDSYS.SDO_ELLIPSOIDS table, 5-14
MDSYS.SDO_PROJECTIONS table, 5-15
measure, 6-3

populating, 6-4
resetting, 14-71
reversing, 14-75

measure range, 6-6
MEASURE_RANGE function, 14-56
MEASURE_TO_PERCENTAGE function, 14-58
messages

Spatial error messages, 1-26
migration

instructions and issues, A-1
OGIS, 15-4, 15-5
procedures, 15-1
to current Spatial release, 15-11
to release 7.3.4, 15-6
See also upgrading

minimum bounding rectangle
AVERAGE_MBR procedure, 16-5
EXTENT_OF function, 16-17
SDO_AGGR_MBR aggregate function, 12-7
SDO_MAX_MBR_ORDINATE function, 11-30
SDO_MBR function, 11-32
SDO_MIN_MBR_ORDINATE function, 11-34

MIX_INFO procedure, 16-21
multipolygon, 2-18

N
nearest neighbor

SDO_NN operator, 10-6
non-geodetic index, 4-7

O
object types

embedding SDO_GEOMETRY objects in, 7-1,
7-6

object-relational model, 2-1
OCI (Oracle Call Interface) examples, 1-27
offset, 6-3
OFFSET_GEOM_SEGMENT function, 14-60
offsetting a geometric segment, 6-16
OGIS_METADATA_FROM procedure, 15-4
OGIS_METADATA_TO procedure, 15-5
ON mask relationship, 11-6
operators

cross-schema invocation, 4-19
SDO_FILTER, 10-2
SDO_NN, 10-6
Index-6

SDO_NN_DISTANCE, 10-11
SDO_RELATE, 10-13
SDO_WITHIN_DISTANCE, 10-18

optimized rectangle, 2-13
Oracle Call Interface (OCI) examples, 1-27
OVERLAPBDYDISJOINT mask relationship, 11-6
OVERLAPBDYINTERSECT mask

relationship, 11-6

P
parallel execution for index creation and

rebuilding, 8-9, 8-14
partitioned spatial index, 4-8

exchanging partitions, 4-10
PERCENTAGE_TO_MEASURE function, 14-64
performance and tuning information, 1-25
PL/SQL and SQL examples, 1-27
point

data, 1-5
illustration and examples of point-only

geometry, 2-22
locating on geometric segment, 6-17
LRS, 6-6
on surface of polygon, 11-36
shape, 6-2

polygon
area of, 11-10
centroid, 11-16
compound, 2-13
exterior and interior rings, 2-7, 2-10, 2-16, 2-18
point on surface, 11-36
self-crossing not supported, 1-4

polygon collection, 2-18
polygon data, 1-5
populating

measure, 6-4
primary filter, 1-9, 4-13, 4-15
primitive types, 1-3
problems in current release, 5-19

geodetic data, 5-4
procedures

See functions and procedures
PROJECT_PT function, 14-66
projected coordinates, 1-6, 5-2

projection, 6-6
point onto geometric segment, 6-18
PROJECT_PT function, 14-66

projections, 5-15

Q
quadtree indexes, 1-14
quality

degradation of R-tree index, 16-23
R-tree, 1-13

QUALITY_DEGRADATION function, 16-23
query, 4-12
query model for Spatial, 1-9
QUERY REWRITE

privilege and session requirements, 7-4
query window, 4-12
querying geometric segments

functions for, 14-2

R
range

measure, 6-6
rectangle

minimum bounding, 16-17
type, 2-13

REDEFINE_GEOM_SEGMENT procedure, 14-68
redefining a geometric segment, 6-11
RELATE function, 11-4
release 9i

migrating to Oracle9i, 15-11
release number (Spatial)

retrieving, 1-26
RESET_MEASURE procedure, 14-71
restrictions in current release, 5-19

geodetic data, 5-4
REVERSE_GEOMETRY function, 14-73
REVERSE_MEASURE function, 14-75
ring

exterior and interior polygon, 2-10
extracting from a geometry, 17-2

rollback segment
R-tree index creation, 4-2

R-tree indexes, 1-12
Index-7

analyzing quality, 16-3
before creating, 4-2
quality degradation, 16-23
quality score, 16-25
sequence object, 2-34

R-tree quality, 1-13
RTREE_QUALITY function, 16-25

S
SCALE_GEOM_SEGMENT function, 14-77
scaling a geometric segment, 6-15
schema

creating index on table in another schema, 4-8
invoking operators on table in another

schema, 4-19
SDO_AGGR_CENTROID aggregate function, 12-2
SDO_AGGR_CONVEXHULL aggregate

function, 12-4
SDO_AGGR_LRS_CONCAT aggregate

function, 12-5
SDO_AGGR_MBR aggregate function, 12-7
SDO_AGGR_UNION aggregate function, 12-8
SDO_ANGLE_UNITS table, 5-10
SDO_ARC_DENSIFY function, 11-7
SDO_AREA function, 11-10
SDO_AREA_UNITS table, 2-35
SDO_BUFFER function, 11-12
SDO_CENTROID function, 11-16
SDO_CODE, 2-34
SDO_CONVEXHULL function, 11-18
SDO_CS package, 13-1
SDO_DATUMS table, 5-11
SDO_DIFFERENCE function, 11-20
SDO_DIST_UNITS table, 2-35, 5-11
SDO_DISTANCE function, 11-23
SDO_ELEM_INFO, 2-9
SDO_ELEM_INFO_ARRAY type, 2-6
SDO_ELLIPSOIDS table, 5-14
SDO_ETYPE, 2-10
SDO_FILTER operator, 10-2
SDO_GEOMETRY object type, 2-6

embedding in user-defined type, 7-1, 7-6
in function-based indexes, 7-3
methods, 9-1, 12-1

SDO_GROUPCODE, 2-34
SDO_GTYPE, 2-7

constraining data to a geometry type, 4-7
GET_DIMS method, 9-2
GET_GTYPE method, 9-3
GET_LRS_DIM method, 9-4

SDO_INDEX_TABLE, 2-33
SDO_INDX_DIMS keyword, 6-8
SDO_INTERPRETATION, 2-11
SDO_INTERSECTION function, 11-25
SDO_LENGTH function, 11-28
SDO_LEVEL, 1-15
SDO_MAX_MBR_ORDINATE function, 11-30
SDO_MBR function, 11-32
SDO_MIN_MBR_ORDINATE function, 11-34
SDO_NN operator, 10-6

optimizer hint, 10-9
SDO_NN_DISTANCE ancillary operator, 10-11
SDO_NUMTILES, 1-15
SDO_ORDINATE_ARRAY type, 2-6
SDO_ORDINATES, 2-14
SDO_POINT, 2-9
SDO_POINT_TYPE object type, 2-6
SDO_POINTONSURFACE function, 11-36
SDO_POLY_xxx functions (deprecated and

removed), 11-3
SDO_PROJECTIONS table, 5-15
SDO_RELATE operator, 10-13
SDO_ROWID, 2-34
SDO_RTREE_SEQ_NAME, 2-34
SDO_SRID, 2-8
SDO_STARTING_OFFSET, 2-9
SDO_STATUS, 2-34
SDO_UNION function, 11-38
SDO_UNIT column

in SDO_AREA_UNITS table, 2-35
in SDO_DIST_UNITS table, 2-35, 5-11

SDO_VERSION function, 1-26
SDO_WITHIN_DISTANCE operator, 10-18
SDO_XOR function, 11-41
SDOAGGRTYPE object type, 1-24
secondary filter, 1-9, 4-15
segments

geometric, 6-2
self-crossing line strings and polygons, 1-4
Index-8

semi-major axis, 5-14
sequence object for R-tree index, 2-34
SET_PT_MEASURE procedure, 14-80
shape point, 6-2
simple element, 2-10
size requirements (hardware) for spatial

applications, 1-26
SORT_AREA_SIZE parameter

R-tree index creation, 4-2
spatial aggregate functions

See aggregate functions
spatial data structures

object-relational model, 2-1
spatial data types, 2-1
spatial index

See index
Spatial Index Advisor

using to determine best tiling level, 4-6
spatial indexing

fixed, 1-16
spatial join, 4-18
spatial query, 4-12
spatial reference systems

conceptual and usage information, 5-1
example, 5-20
function reference information, 13-1

sphere
authalic, 5-2

spheroids (ellipsoids), 5-14
SPLIT_GEOM_SEGMENT procedure, 14-83
splitting a geometric segment, 6-13
SQL and PL/SQL examples, 1-27
SQL*Loader, 3-1
SRID

0 (zero) special case with SDO_CS.VIEWPORT_
TRANSFORM function, 13-8

in USER_SDO_GEOM_METADATA, 2-29
SDO_SRID in SDO_GEOMETRY, 2-8

synchronizing deferred index updates, 8-2

T
table name

restrictions on spatial table names, 2-27
TABLE_NAME (in USER_SDO_GEOM_

METADATA), 2-27
tessellation, 1-15
three-dimensional (3D)

formats of LRS functions, 6-9
tile, 1-15, 4-12
tiling level

estimating, 16-10
TO_734 procedure, 15-6
TO_81x procedure, 15-8
TO_CURRENT procedure, 15-11
tolerance, 1-7
TOUCH mask relationship, 11-6
transactional insertion of spatial data, 3-4
TRANSFORM, 13-2
TRANSFORM_LAYER, 13-5

table for transformed layer, 13-6
transformation, 5-2
TRANSLATE_MEASURE procedure, 14-86
tuning and performance information, 1-25
tuning functions and procedures, 16-1
two-tier query, 1-9
type zero (0) element, 2-24

U
union, 11-38
unit of measurement

MDSYS tables, 2-34
UNIT_NAME column

in SDO_ANGLE_UNITS table, 5-11
in SDO_AREA_UNITS table, 2-36
in SDO_DIST_UNITS table, 2-35

UNIT_NAME column in SDO_DIST_UNITS
table, 5-11

upgrading
from Spatial release 8.1.5, 8.1.6, or 8.7.1, A-3
from Spatial release 9.0.1, A-3
instructions and issues, A-1
LRS data, A-4
See also migration

USER_SDO_GEOM_METADATA view, 2-26
USER_SDO_INDEX_INFO view, 2-29
USER_SDO_INDEX_METADATA view, 2-30
user-defined coordinate system, 5-16
user-defined data types
Index-9

embedding SDO_GEOMETRY objects in, 7-1,
7-6

utility functions, 17-1

V
VALID_GEOM_SEGMENT function, 14-88
VALID_LRS_POINT function, 14-90
VALID_MEASURE function, 14-92
VALIDATE_GEOMETRY function, 11-44
VALIDATE_GEOMETRY_WITH_CONTEXT

function, 11-46
VALIDATE_LAYER procedure, 11-49
VALIDATE_LAYER_WITH_CONTEXT

procedure, 11-52
VALIDATE_LRS_GEOMETRY function, 14-94
version number (Spatial)

retrieving, 1-26
VERTEX_SET_TYPE data type, 17-5
VERTEX_TYPE object type, 17-5
vertices

returning geometry coordinates as, 17-5
VIEWPORT_TRANSFORM, 13-7

W
well-known text (WKTEXT), 5-8
WITHIN_DISTANCE function, 11-55
WKTEXT column of MDSYS.CS_SRS table, 5-8

X
XOR

SDO_XOR function, 11-41

Z
zero

SRID value used with SDO_CS.VIEWPORT_
TRANSFORM function, 13-8

type 0 element, 2-24
Index-10

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Technologies Released Separately
	Related Documentation
	Conventions

	New and Changed Features
	Validation with Context
	Utility Functions
	Partitioned Spatial Indexes: Splitting and Merging Supported
	Exchanging Partitions Including Indexes
	Parallel Index Creation and Rebuilding
	Deferred Modifications to an Index
	SDO_CS.VIEWPORT_TRANSFORM to_srname Parameter Not Supported

	Part I Conceptual and Usage Information
	1 Spatial Concepts
	1.1� What Is Oracle Spatial?
	1.2� Object-Relational Model
	1.3� Introduction to Spatial Data
	1.4� Geometry Types
	1.5� Data Model
	1.5.1� Element
	1.5.2� Geometry
	1.5.3� Layer
	1.5.4� Coordinate System
	1.5.5� Tolerance
	1.5.5.1� In the Geometry Metadata for a Layer
	1.5.5.2� As an Input Parameter

	1.6� Query Model
	1.7� Indexing of Spatial Data
	1.7.1� R-tree Indexing
	1.7.1.1� R-tree Quality

	1.7.2� Quadtree Indexing
	1.7.2.1� Tessellation of a Layer During Indexing
	1.7.2.2� Fixed Indexing

	1.8� Spatial Relations and Filtering
	1.9� Spatial Aggregate Functions
	1.9.1� SDOAGGRTYPE Object Type

	1.10� Geocoding
	1.11� Performance and Tuning Information
	1.12� Spatial Release (Version) Number
	1.13� Spatial Application Hardware Requirement Considerations
	1.14� Spatial Error Messages
	1.15� Spatial Examples

	2 Spatial Data Types and Metadata
	2.1� Simple Example: Inserting, Indexing, and Querying Spatial Data
	2.2� SDO_GEOMETRY Object Type
	2.2.1� SDO_GTYPE
	2.2.2� SDO_SRID
	2.2.3� SDO_POINT
	2.2.4� SDO_ELEM_INFO
	2.2.5� SDO_ORDINATES
	2.2.6� Usage Considerations

	2.3� Geometry Examples
	2.3.1� Rectangle
	2.3.2� Polygon with a Hole
	2.3.3� Compound Line String
	2.3.4� Compound Polygon
	2.3.5� Point
	2.3.6� Type 0 (Zero) Element

	2.4� Geometry Metadata Structure
	2.4.1� TABLE_NAME
	2.4.2� COLUMN_NAME
	2.4.3� DIMINFO
	2.4.4� SRID

	2.5� Spatial Index-Related Structures
	2.5.1� Spatial Index Views
	2.5.1.1� xxx_SDO_INDEX_INFO Views
	2.5.1.2� xxx_SDO_INDEX_METADATA Views

	2.5.2� Spatial Index Table Definition
	2.5.3� R-Tree Index Sequence Object

	2.6� Unit of Measurement Support

	3 Loading Spatial Data
	3.1� Bulk Loading
	3.1.1� Bulk Loading SDO_GEOMETRY Objects
	3.1.2� Bulk Loading Point-Only Data in SDO_GEOMETRY Objects

	3.2� Transactional Insert Operations Using SQL

	4 Indexing and Querying Spatial Data
	4.1� Creating a Spatial Index
	4.1.1� Creating R-Tree Indexes
	4.1.2� Determining Index Creation Behavior (Quadtree Indexes)
	4.1.3� Spatial Indexing with Fixed-Size Tiles (Quadtree Indexes)
	4.1.4� Indexing Geodetic Data
	4.1.5� Constraining Data to a Geometry Type
	4.1.6� Creating a Cross-Schema Index
	4.1.7� Using Partitioned Spatial Indexes
	4.1.8� Exchanging Partitions Including Indexes

	4.2� Querying Spatial Data
	4.2.1� Spatial Query
	4.2.1.1� Primary Filter Operator
	4.2.1.2� Primary and Secondary Filter Operator
	4.2.1.3� Within-Distance Operator
	4.2.1.4� Nearest Neighbor Operator
	4.2.1.5� Spatial Functions

	4.2.2� Spatial Join
	4.2.3� Cross-Schema Operator Invocation

	5 Coordinate Systems (Spatial Reference Systems)
	5.1� Terms and Concepts
	5.1.1� Coordinate System (Spatial Reference System)
	5.1.2� Cartesian Coordinates
	5.1.3� Geodetic Coordinates (Geographic Coordinates)
	5.1.4� Projected Coordinates
	5.1.5� Local Coordinates
	5.1.6� Geodetic Datum
	5.1.7� Authalic Sphere
	5.1.8� Transformation

	5.2� Geodetic Coordinate Support
	5.2.1� Geodesy and Two-Dimensional Geometry
	5.2.2� Choosing a Geodetic or Projected Coordinate System
	5.2.3� Other Considerations and Requirements with Geodetic Data

	5.3� Local Coordinate Support
	5.4� Coordinate Systems Data Structures
	5.4.1� MDSYS.CS_SRS Table
	5.4.1.1� Well-Known Text (WKTEXT)

	5.4.2� MDSYS.SDO_ANGLE_UNITS Table
	5.4.3� MDSYS.SDO_DIST_UNITS Table
	5.4.4� MDSYS.SDO_DATUMS Table
	5.4.5� MDSYS.SDO_ELLIPSOIDS Table
	5.4.6� MDSYS.SDO_PROJECTIONS Table

	5.5� Creating a User-Defined Coordinate System
	5.6� Coordinate System Transformation Functions
	5.7� Notes and Restrictions with Coordinate Systems Support
	5.7.1� Different Coordinate Systems for Geometries with Operators and Functions
	5.7.2� Functions Not Supported with Geodetic Data
	5.7.3� Functions Supported by Approximations with Geodetic Data

	5.8� Example of Coordinate System Transformation

	6 Linear Referencing System
	6.1� Terms and Concepts
	6.1.1� Geometric Segments (LRS Segments)
	6.1.2� Shape Points
	6.1.3� Direction of a Geometric Segment
	6.1.4� Measure (Linear Measure)
	6.1.5� Offset
	6.1.6� Measure Populating
	6.1.7� Measure Range of a Geometric Segment
	6.1.8� Projection
	6.1.9� LRS Point
	6.1.10� Linear Features

	6.2� LRS Data Model
	6.3� Indexing of LRS Data
	6.4� 3D Formats of LRS Functions
	6.5� LRS Operations
	6.5.1� Defining a Geometric Segment
	6.5.2� Redefining a Geometric Segment
	6.5.3� Clipping a Geometric Segment
	6.5.4� Splitting a Geometric Segment
	6.5.5� Concatenating Geometric Segments
	6.5.6� Scaling a Geometric Segment
	6.5.7� Offsetting a Geometric Segment
	6.5.8� Locating a Point on a Geometric Segment
	6.5.9� Projecting a Point onto a Geometric Segment
	6.5.10� Converting LRS Geometries

	6.6� Example of LRS Functions

	7 Extending Spatial Indexing Capabilities
	7.1� SDO_GEOMETRY Objects in User-Defined Type Definitions
	7.2� SDO_GEOMETRY Objects in Function-Based Indexes
	7.2.1� Example: Function with Standard Types
	7.2.2� Example: Function with User-Defined Object Type

	Part II Reference Information
	8 SQL Statements for Indexing Spatial Data
	ALTER INDEX
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

	9 SDO_GEOMETRY Object Type Methods
	GET_DIMS
	GET_GTYPE
	GET_LRS_DIM

	10 Spatial Operators
	SDO_FILTER
	SDO_NN
	SDO_NN_DISTANCE
	SDO_RELATE
	SDO_WITHIN_DISTANCE

	11 Geometry Functions
	SDO_GEOM.RELATE
	SDO_GEOM.SDO_ARC_DENSIFY
	SDO_GEOM.SDO_AREA
	SDO_GEOM.SDO_BUFFER
	SDO_GEOM.SDO_CENTROID
	SDO_GEOM.SDO_CONVEXHULL
	SDO_GEOM.SDO_DIFFERENCE
	SDO_GEOM.SDO_DISTANCE
	SDO_GEOM.SDO_INTERSECTION
	SDO_GEOM.SDO_LENGTH
	SDO_GEOM.SDO_MAX_MBR_ORDINATE
	SDO_GEOM.SDO_MBR
	SDO_GEOM.SDO_MIN_MBR_ORDINATE
	SDO_GEOM.SDO_POINTONSURFACE
	SDO_GEOM.SDO_UNION
	SDO_GEOM.SDO_XOR
	SDO_GEOM.VALIDATE_GEOMETRY
	SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
	SDO_GEOM.VALIDATE_LAYER
	SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
	SDO_GEOM.WITHIN_DISTANCE

	12 Spatial Aggregate Functions
	SDO_AGGR_CENTROID
	SDO_AGGR_CONVEXHULL
	SDO_AGGR_LRS_CONCAT
	SDO_AGGR_MBR
	SDO_AGGR_UNION

	13 Coordinate System Transformation Functions
	SDO_CS.TRANSFORM
	SDO_CS.TRANSFORM_LAYER
	SDO_CS.VIEWPORT_TRANSFORM

	14 Linear Referencing Functions
	SDO_LRS.CLIP_GEOM_SEGMENT
	SDO_LRS.CONCATENATE_GEOM_SEGMENTS
	SDO_LRS.CONNECTED_GEOM_SEGMENTS
	SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
	SDO_LRS.CONVERT_TO_LRS_GEOM
	SDO_LRS.CONVERT_TO_LRS_LAYER
	SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
	SDO_LRS.CONVERT_TO_STD_GEOM
	SDO_LRS.CONVERT_TO_STD_LAYER
	SDO_LRS.DEFINE_GEOM_SEGMENT
	SDO_LRS.DYNAMIC_SEGMENT
	SDO_LRS.FIND_LRS_DIM_POS
	SDO_LRS.FIND_MEASURE
	SDO_LRS.GEOM_SEGMENT_END_MEASURE
	SDO_LRS.GEOM_SEGMENT_END_PT
	SDO_LRS.GEOM_SEGMENT_LENGTH
	SDO_LRS.GEOM_SEGMENT_START_MEASURE
	SDO_LRS.GEOM_SEGMENT_START_PT
	SDO_LRS.GET_MEASURE
	SDO_LRS.IS_GEOM_SEGMENT_DEFINED
	SDO_LRS.IS_MEASURE_DECREASING
	SDO_LRS.IS_MEASURE_INCREASING
	SDO_LRS.LOCATE_PT
	SDO_LRS.MEASURE_RANGE
	SDO_LRS.MEASURE_TO_PERCENTAGE
	SDO_LRS.OFFSET_GEOM_SEGMENT
	SDO_LRS.PERCENTAGE_TO_MEASURE
	SDO_LRS.PROJECT_PT
	SDO_LRS.REDEFINE_GEOM_SEGMENT
	SDO_LRS.RESET_MEASURE
	SDO_LRS.REVERSE_GEOMETRY
	SDO_LRS.REVERSE_MEASURE
	SDO_LRS.SCALE_GEOM_SEGMENT
	SDO_LRS.SET_PT_MEASURE
	SDO_LRS.SPLIT_GEOM_SEGMENT
	SDO_LRS.TRANSLATE_MEASURE
	SDO_LRS.VALID_GEOM_SEGMENT
	SDO_LRS.VALID_LRS_PT
	SDO_LRS.VALID_MEASURE
	SDO_LRS.VALIDATE_LRS_GEOMETRY

	15 Migration Procedures
	SDO_MIGRATE.FROM_815_TO_81X
	SDO_MIGRATE.OGIS_METADATA_FROM
	SDO_MIGRATE.OGIS_METADATA_TO
	SDO_MIGRATE.TO_734
	SDO_MIGRATE.TO_81X
	SDO_MIGRATE.TO_CURRENT

	16 Tuning Functions and Procedures
	SDO_TUNE.ANALYZE_RTREE
	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_INDEX_PERFORMANCE
	SDO_TUNE.ESTIMATE_TILING_LEVEL
	SDO_TUNE.ESTIMATE_TILING_TIME
	SDO_TUNE.ESTIMATE_TOTAL_NUMTILES
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.HISTOGRAM_ANALYSIS
	SDO_TUNE.MIX_INFO
	SDO_TUNE.QUALITY_DEGRADATION
	SDO_TUNE.RTREE_QUALITY

	17 Utility Functions
	SDO_UTIL.EXTRACT
	SDO_UTIL.GETVERTICES

	A Installation, Compatibility, and Migration
	A.1� Introduction
	A.2� Installation of Spatial
	A.3� Upgrading from Spatial Release 8.1.5, 8.1.6, or 8.1.7
	A.4� Upgrading from Spatial Release 9.0.1
	A.5� Upgrading LRS Data

	B Hybrid Indexing
	B.1� Creating a Hybrid Index
	B.2� Tuning Considerations with Hybrid Indexes

	C Locator
	Glossary
	Index

